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BORDISM AND COBORDISM
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Introduction. In (10), (11) Wall determined the structure of the cobordism ring
introduced by Thorn in (9). Among Wall's results is a certain exact sequence relating
the oriented and unoriented cobordism groups. There is also another exact sequence,
due to Rohlin(5), (6) and Dold(3) which is closely connected with that of Wall. These
exact sequences are established by ad hoc methods. The purpose of this paper is to
show that both these sequences are ' cohomology-type' exact sequences arising in the
well-known way from mappings into a universal space. The appropriate ' cohomology'
theory is constructed by taking as universal space the Thom complex MS0(n), for
n large. This gives rise to (oriented) cobordism groups MS0*(X) of a space X.

We consider also a 'singular homology' theory based on differentiable manifolds,
and we define in this way the (oriented) bordism groups MS0*{X) of a space X. The
justification for these definitions is that the main theorem of Thom (9) then gives a
'Poincare duality' isomorphism MS0*(X) ~ MSO^(X) for a compact oriented
differentiable manifold X. The usual generalizations to manifolds which are open
and not necessarily orientable also hold (Theorem (3-6)).

The unoriented corbordism group jV'k of Thom enters the picture via the iso-

morphism (4-1) jrk ~ MS0*n-k(P2n) (n large),

where P2n is real projective 2%-space. The exact sequence of Wall is then just the
cobordism sequence for the triad P2n, P2»-i> 2̂n-2> while the exact sequence of Rohlin-
Dold is essentially the corbordism sequence of the pair P2n, P2n_2. A simple geometrical
construction shows that this latter sequence splits canonically (4-4). This fact can
then be used to shorten Wall's proof (li) of the non-existence of elements of order 4
in the oriented cobordism groups €lk.

In addition to the applications given here the bordism-cobordism theory has close
connexions with the methods and results of (2). These aspects of cobordism and in
particular the question of multiplicative structures will be treated elsewhere.

The general ideas developed here on bordism and cobordism were the result of
discussions with J. Milnor.

1. Cobordism groups. We recall some standard definitions and results of homotopy
theory (cf. (7)). If X, Y are spaces with base points x0, yQ we denote by [X, Y] the set
of homotopy classes of maps (X, x0) -> (Y, y0). We have the suspension sequence

[X, Y]^[SX,SY]-> ...->[SnX,SnY]^ ..., (1)

in which all terms after the first two are Abelian groups, the maps being then group
homomorphisms. Moreover we have an isomorphism

[SnX, Sn Y] -* [ S ^ X , Sn+l Y] (2)
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if w + 2(connectivity Y) 5= dimX, provided X is, say, a finite CW-complex. In this
case the direct limit of the sequence (1), i.e. the common value of the groups [SnX, Sn F]
for large n is denoted by {X, Y} and called the group of jS-maps of X into Y.

We recall now the definition of the space MSO(n) given by Thorn in (9). Let BSO(n)
be the classifying space of SO(n), let A denote the universal unit ball bundle over
BS0(n), A the universal unit sphere bundle. Then MS0(n) is defined to be A\A, the
space obtained by collapsing A to a point; it has a canonical base point, namely, the
image of A. I t is shown in (9) that the natural map

S{M80(n)} -> MS0(n +1) (3)

induces isomorphism of the homotopy groups TTn+r provided n is large (n > 2r). I t
follows that, if X is a finite CW-complex with base point, the mapping

[X, 8{MSO(n)}] -> [X, MS0(n + 1)] (4)

will be bijective if n is large.
Let X be a finite CW-complex, Y a subcomplex, then from (1) and (3) we have a map

[Sn-k(XI Y), MS0(n)] -> [Sn+1-k(XI Y), MS0(n + 1)]. (5)

We define the oriented cobordism group of dimension k of the pair (X, Y) to be

MSOk(X, Y) = \im[Sn-k(XIY),MSO(n)],

the limit being taken with respect to the maps (5). We note that MSOk(X, Y) is defined
for all integers k, positive or negative.

In view of (2) and (4) and the fact that MS0{n) is (n — l)-connected it follows that.
for large n, (5) is also an isomorphism, and so for large n

MSOk(X, Y) ~ [Sn-k(XI Y), MS0(n)] ~ {Sn~k(XI Y), MS0(n)}. (6)

The absolute cobordism groups are defined by

MSOk(X) = MSOk(X,0),

where 0 is the empty set and X/0 is interpreted as the disjoint union of X and a base
point. In view of (6), and the fact that the group of $-maps satisfies exactness (7) we
deduce

PROPOSITION (1-1). Let X be a finite CW-complex, Y a subcomplex of X, Z a sub-
complex of Y. Then we have an exact sequence

... -> MSOk(X, Y) -». MSOk(X, Z) -> M SOk{ Y,Z)^ MSOk^{X, Y)-+....

From their definition the cobordism groups are invariants of #-type, and satisfy
the excision axiom. Thus they satisfy all the axioms of a cohomology theory except
the dimension axiom.

PBOPOSITION (1-2). MSOk(X, Y) = Ofor k > dimX.
Proof. For fc> dimX we have dimSn~k(XIY) ^n-1. But MS0(n) is (n-1)-

connected, and so MSOk(X, Y) = 0.
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If we take I to be a point then MS0~k(X) ~ nn_k{MS0(n)} for n large. From the
main theorem of Thorn (9) it follows that MSO~k(pomt) ^ Qfc, the cobordism group
of dimension k in the sense of Thorn (9).

Replacing SO(n) by any of the other classical groups: O(n), Spin(w), U(n), Sp(w)
we may give corresponding definitions. In particular M0~k{j}oint) ~ jVk, the un-
oriented cobordism group of dimension k in the sense of Thom (9).

2. Bordism groups. In this section all spaces will belong to some fixed category
jtf satisfying the conditions of the classification theorem for fibre-bundles (8). For
example, stf could be the category of countable finite-dimensional CW-complexes.

We shall consider the category 88 of pairs (X, a.) where l e i and a is a principal
Z2-bundle over X, i.e. a double covering of X. Maps and homotopies in 88 will mean
bundle maps and bundle homotopies in the sense of (8). Thus a map F: (Y, /?) -> (X, a)
consists of a map/ : Y -> X together with an isomorphism /? s /*a.

Let J(k be the subset of 88 consisting of pairs (M, T) with M a compact differenti-
ablef manifold (with boundary) of dimension k, and T the orientation bundle of M
(cf. (l)). Let ~̂ j> be the subset of *J(k for which M is closed.^ If M is a manifold with
boundary N we may identify the orientation bundle of N with the restriction to N of
the orientation bundle of M. Then we have a boundary map d: ^k -> ~M%_V

Let (X, a)s.88 and define Ck(X, a) to be the set of all pairs {(M, T), F} with
(M, T) e ^(% and F a map (M, T) -+ (X, a). We define an equivalence relation on
Gk(X,a) as follows. {(M,T),F} ~ {{M',r'),F'} if there exists (N,cr)e~//k+1 and a
map G: (N, cr) ->• (X, a) such that

(i) dN = M + M' (disjoint sum),

(ii) 6\M = F, G\M' = F'.

The set of equivalence classes will be denoted by MSOk(X,a). The disjoint sum
induces on it an Abelian group structure. We shall call this group the k-dimensional
oriented bordism group of X with coefficients in a.

If a is the trivial bundle I x Z 2 w e write simply MSOk{X). Elements of MSOk(X)
are then represented by maps/ : M ->- X where M is oriented.

From the definition it is clear that MSOk(X,a) is a covariant functor of (X, a).
Moreover, we have

LEMMA (2-1). Homotopic maps (Y, /?) -> (X, a) induce the same homomorphism
MSOk{ Y, p) -> MSOk{X, a).

Proof. By definition ((8), § 11-2) a homotopy Ft: (Y,j3) -> (X, a) is a map

(D: (YxI,P) + (X,a),

where I is the unit interval and ft is the bundle induced on Y x I from /? by the pro-
jection 7 x Z - > Y. An element of MSOk(Y,/?) is represented by a map

Q:

•f Differentiable will mean C^-differentiable.
% A closed manifold will mean a compact manifold without boundary.
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with M a closed manifold and T its orientation bundle. Then we have a map

(5o(Gxl): (MxI,f)->(X,a).

Restricted to M x 0 this gives F0G, and restricted to M x 1 it gives FXG. But

FtO: (M,r)^{X,a) (» = 1, 2)

are representatives for the induced elements of MSOk(X, a). This completes the proof.
The unoriented bordism groups MOk(X) are defined similarly except that no

orientation bundles are introduced, and we work in the original category jtf. Unitary
bordism groups MUk(X) may be defined using generalized almost complex manifolds
in the sense of Milnor(4). One can also introduce groups MSpfc(Z), MSpinft(Z).

From the definitions it is clear that

point) s iifc, MOk(point) s jVk.

Let Pn denote »-dimensional real projective space, £ the double covering Sn -»• Pn,
where Sn is the n-sphere. Then £, is an (n— l)-universal Z2-bundle. Hence we have
(cf. (8), proof of §19-3)

LEMMA (2-2). Let d imZ < n — 2, then there is a unique homotopy class

(X,OL)^{Pn,g).

PROPOSITION (2-3). For large n we have a natural isomorphism

M80k{Pn,i) ^ JTk.

Proof. If F: {M, r) -> (Pn, £) represents an element A of MSOk(Pn,£,), then M
represents an element d(X) o£jVk. From the definitions it is clear that 6(X) depends only
on A and not on the choice of representative. Conversely, given a manifold M repre-
senting an element /i of */Vk, there is by (2-2) a map (M, T) -> (Pn, E) unique up to
homotopy. By (2-1) this defines a unique element <f>(/i) of MSOk(Pn, £). Moreover,
applying (2-2) to manifolds of dimension k + 1, it follows that (j}(/j,) depends only on/i.
Clearly <j> and 6 are inverses of each other, and since they are homomorphisms the
proposition is established,

3. The Poincare—Thorn duality. Let X, Y be differentiable manifolds with orienta-
tion bundles £, rj, respectively. Then a map / : Y -+X is orientable if /*£ ^ rj. An
oriented map Y -*• X is a map/together with a given isomorphism/*^ £ 7], i.e. a map
(Y, 7]) -¥• (X, £,) in the sense of § 2. In particlar a differentiable embedding f:Y^-X
is oriented if and only if the normal bundle of/(Y) in X is oriented.

In (9) Thorn introduced the notion of ^-equivalence for submanifolds of a manifold.
The definition is as follows. Two closed differentiable submanifolds Fo, Yt (of a differ-
entiable manifold X without boundary) with oriented normal bundles are L-equivalent
if there exists a compact differentiable submanifold Z of X x I with oriented normal
bundle such that Z intersects XxO, X xl transversally in 70x0, Y± x 1, induces
there the given normal orientations and has no other boundary. The set of L-equi-
valence classes of X of dimension k is denoted by Lk(X). In the stable range, i.e. for
2k < dim X, Lk(X) is an Abelian group, the addition being induced by the disjoint sum.
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If Y is a closed fc-dimensional differentiate submanifold of X with oriented normal
bundle then, as remarked above, this defines an oriented map i: Y ->• X and thus an
element ifr( Y) of MSOk(X, £), where £ is the orientation bundle of X. If Yo and Yx are
i-equivalent then the" map Z -*• X (with Z as above) induced by the projection
X x / -=• X is oriented and is the map which shows that xjr(Y0) = ̂ (Yj). Hence we
have a natural map ^ ^ ( J } _^ m ( ) ^ fl_

In the stable range this is a group homomorphism.
Before proceeding to examine rjr more closely we digress to give a lemma on mani-

folds with boundary which is an elementary consequence of the general theorems of
Whitney (12).

LEMMA (3-1). Let X, Y be differentiable manifolds with boundaries Xo, Yo, respectively,
let Y be compact and suppose dim X > 2 dim Y. Letf: (Y, Yo) ->• (X, Xo) be a continuous
map such that/: YQ -> Xo is a differentiable embedding. Then there exists a differentiable
embedding g: Y ->• X such that

(i) g is homotopic tof,

(ii) g(Y-Y0)^X-X0,

(iii) g=fonY0,

(iv) g( Y) meets Xo transversally.

Proof. We can find a neighbourhood Yx of Yo in Y diffeomorphic to Y x I, with Yo

corresponding to Yo x 0. Let Xt be defined similarly. Now define g±: Y±^>- Xx by
gx(y, t) = (f(y), t),yeY0,teI. Since X — Xlf Y — Y1 are homeomorphic to X, Y, respec-
tively, the existence of/ can be used to extend gx to a continuous map Y -> X. Now
we can apply Whitney's extension theorem (Theorem 5 of (12)) to the closed sub-
manifold Y1 — Yo of Y — Yo, and we deduce that g1\Y1 — Y0 can be extended to a differ-
entiable embedding G: Y — Yo->-X — Xo. The maps G, gx together define a difFeren-
tiable embedding g: Y ->• X with the required properties.

Now we can prove

PROPOSITION (3-2). Let Xbea differentiable manifold (without boundary) of dimension
n with orientation bundle £. Then, in the stable range (2k < n),

jfr: Lk(X)^MSOk(X,i)
is an isomorphism.

Proof. Let/ : Y -»• X be an oriented map representing an element A of MSOk(X, £).
Then by Theorem 1 of (i2)/is homotopic to a differentiable embedding g. The orienta-
tion of/ induces an orientation of g and with this orientation g: Y -> X is another
representative for A (by (2-1)). This proves that xjr is surjective. Suppose now that
/j,0, fix e Lk(X) are such that tfr(/i0) = ̂ (/^i), and let fi0, fix be represented by the oriented
embeddings i0: Yo -> X, ix: Yx -> X. Then there exists a compact differentiable manifold
Z with boundary yo + -̂ i a n d an oriented map/: Z -> X with/|Z0 = io , / ! ^ = iv Let
A: ^ - > / b e a continuous map of Z into the unit interval with A-^O) = Y^h'^l) = YV

and define F: Z ->• X x / by F(z) = {/(z), h(z)}. We are now in a position to apply (3-1)



Bordism and cdbordism 205

and we deduce the existence of a differentiable embedding g: Z->XxI having
properties (i)-(iv). The orientation of/induces an orientation of F and hence of gr
(by (i)). Hence Fo and Yx are L-equivalent, i.e. fi0 = /i^. Thus \]r is injective and the proof
is completed.

An immediate consequence of (3-2) is

COROLLARY (3-3). Let X be a differentiable manifold {without boundary) with orienta-
tion bundle £, and let f denote the bundle on Xx Rn induced from £. Then, for large n,

\Jr: Lk(X x Rn) -> MSOk(X x Rn, | )
is an isomorphism.

In view of (2-1) we have MSOk(X x Rn, £) ~ MSOk(X,£) and so from (3-3) we
deduce

COROLLARY (3-4). Let X, £ be as in (3-3). Then for large n we have a canonical iso-
morPhis™ Lk(XxR")~MSOk(X,£).

The main theorem of Thom (9) may be stated in the following form

THEOREM (3-5). Let X be a finite GW-complex, Y a subcomplex and let X—Y be a
differentiable manifold (without boundary) of dimension m. Then we have a canonical
isomorphism L ^ _ y ) „ [ X / ^ MSQ{m _ ^

We can now translate (3-4) into a Poincare duality theorem for bordism and co-
bordism.

THEOREM (3-6). Let X be a finite CW-complex, Y a subcomplex and let X—Y be a
differentiable manifold (without boundary) of dimension m, with orientation bundle r.
Then we have a canonical isomorphism

MSOk(X, Y) ~ MSOm_k(X- Y,r).

Proof. By (6) of § 1 we have, for large n,

MSOk(X, Y) £ [Sn-k(XIY),MS0(n)].

Now Sn-k(XI7) = I x S n - k l Y x 8 n ~ k vXxa, where a e Sn~k is a base point. Hence
by (3-5) we have an isomorphism

[S»-k(XIY),MS0(n)] ~ Lm_k{(X- Y) x (S-k-a)}.

Identifying R»-fc with Sn~k — a and using (3-4) we obtain finally

MSOk(X, Y) ~ MSOm_k(X- Y,T)
as required.

Remark. Theorem (3-6) is the purely ' additive' Poincare duality. There is, however,
a multiplicative form, with cap products, quite analogous to the ordinary Poincar6
duality. One has first to show that MSO*(X) is a graded ring and that MSO* (X) is
a graded module over MSO*(X). These structures are induced from the natural maps:

MS0(n) A MS0(m) -> M80(m + n).
14 Camb. Philos. 57, 2
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Alternatively they may be defined using products and intersections of manifolds.
For our present purposes the additive theory is sufficient. We will return to the
multiplicative structure on a future occasion.

4. The exact sequences. First we establish the following

PROPOSITION (4-1). For large n we have a canonical isomorphism

jrk ^ MS0^{P2n).
Proof. For large n we have

jrk~M80k(Pw® by (2-3)

S MSO*»-HP2n) by (3-6),

since £ is the orientation bundle of P2n.
We now define Wk = MSO2~k(P2, Po). Since P2JP2n_2 = Sin-2(P2/P0) we have

•Wk~MS0^-\P2n,P2n_t). (7)

Applying the cobordism exact sequence (1-1) to the triad P2, Plt Po, and observing
that PJPi = 82, PJPQ = S1 we deduce

THEOREM (4-2). We have an exact sequence

Applying (1-1) to the triad P2n, P2n~2, 0, and using (4-1) and (7), we obtain

THEOREM (4-3). We have an exact sequence

(4-2) is the exact sequence of Wall (io), (ll) though we have not yet identified
our fflk with his. This identification arises from a further examination of (4-3). In
fact we shall establish

THEOREM (4-4). There is a splitting homomorphism 6: ^Vk_it^-^Vk of the exact
sequence (4-3). / / Y is a representative manifold for A e^Vk_2, a representative of 6{\) is
the P2-bundle over T associated to the vector bundle L@l@l, where L is the line-bundle
defined by wx( Y), and 1 is the trivial line-bundle.

Remark. This result has also been found by Dold(3), though his proof is on different
lines.

Assuming for the moment that (4-4) has been proved, we deduce from (4-3) the

exact sequence 0 ̂  #"fc - ^ - * ^ _ 8 - * 0. (8)

Bearing in mind the definition of jVk ->• Jfk-2 this enables us to identify ifk with the
subgroup of ^Vk represented by manifolds Y whose characteristic map Y ->- P2n

factors through Y -> P2n — P2n-2. Since P2n — P2n_2 retracts onto Pt it follows that
"Wk is represented by manifolds Y with w^{ Y) the image of an integral class. This is
the definition of Wall. The geometrical interpretation of the homomorphisms in (4-2),
i.e. their identification with the homomorphisms in Wall's sequence, presents no
difficulties.
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From (8) we deduce at once

dim7Ffc = dim^fc - dim jVk_2, (9)

the dimensions being over Z2. This formula is an essential step in Wall's proof(n)
that Q.k has no elements of order 4 and Wall establishes it by a calculation with the
Steenrod algebra.

The exact sequence of Rohlin (5), (6) and Dold(3) is obtained by putting (8) and
(4-2) together. I t can also be obtained directly as the cobordism sequence of the pair
P2n, P2n_i; m order to determine MSOk(P2n_1) we use the pair P2n-i> P271-2 an<i observe
that their cobordism sequence splits (in consequence of (4-4)).

It remains now to prove (4-4). First we establish an auxiliary lemma

LEMMA (4-5). Let L denote the real line-bundle over P2n_2 associated to the principal
O(l)-bundle <S2n~2 ->• P2n_2. Let Q2n denote the bundle over P2n_2 with P2 as fibre associated
to the vector bundle L © 1 © 1 , where 1 denotes the trivial line-bundle. Let P2rv_2 and Px

be embedded in P2n with P2n_2<"> P± = 0 . Then there is an orientable map a: Q2n -> P2n

such that

(i) <x maps each fibre of Q2n linearly onto a P2 in P2n,

(ii) o~ is a dijfeomorphism of Q2n — ar~1(P1) onto P2n — Pv

Proof. Let K2n+1 = H2™-1©!*2 be the decomposition corresponding to the sub-
spaces PZn-2

 a n d P\ of P2n- The fibre Lx of L at a point x e P2n_2 may be identified
with the 1-dimensional vector space of R2"-1 corresponding to x. Hence the fibre of
Q2n at x may be identified with xPx, the P2 containing x and Pv Thus Q2n may be
defined as the subspace of P2n_2 x P2n consisting of pairs (x, y) with y e xPx. The pro-
jection P2n_2 x P2n -> P2n then induces a map cr: Q2n->P2n which has properties (i)
and (ii). I t remains to check that o~ is orientable, i.e. that o'*w1(P2n) = w>i(<22n). Now

and so it is sufficient to check that o-*w1(P2m) — w)
1(Q2n) restricts to zero

(a) on a fibre P2,
(6) on the cross-section c-1(P2n_2).

Now (b) follows at once from property (ii) of cr. As for (a), it follows from property (i)
of a and the fact that the normal bundles of P2 in Q2n and P2re are both oriented.

Remark. Q2n is just obtained from P2n by 'blowing up' Px as in complex algebraic
geometry.

We now make a choice of orientation for o~. In view of property (ii) of a there is
actually a preferred choice. Let / : Y ->• P2re_2 be an oriented map representing
Ae M8Ok_2{P2n_2,£,). By (2-1) we may assume / differentiable. Let Z =f-l(Q2n) be
the induced P2-bundle over Y. Then we have an oriented map F: Z ->• Q2n induced
by / , and hence an oriented map g = aF: Z^-P2n. I t is clear that the element of
MSOk(P2n, E) defined by g depends only on A. Thus we have defined a homomorphism

•^<Sf0fc_2(P2n_2, g) -> MS0k(P2n, g)

and so by (2-3) a homomorphism
6: Jrk_2^jrk,

14-2
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and this is the one described in (4-4). It remains to show that this does in fact give
a splitting of (4-3).

An element A of ^Vk_2 = MSO2n~k(P2n_2)
 m a y be represented by a submanifold

Y of P2n_2 x RN with oriented normal bundle (3-5). Let / : Y -> P2n_2, h: Y -+ RN be
induced by the projections, and let g: Z -> P2n be as constructed above from/. Let
n: Z-> Y be the bundle map and define g': Z -> P2nxKN by g'(z) = (g(z),hn(z)).
Then g' is an embedding in a neighbourhood of PZn-2 x R^ and g'(Z) intersects
P2n_2 x R^ transversally in Y. By Theorem 5 of (12) we can approximate g' by an
embedding g" with g' = g" in a neighbourhood of P27l_2 x R^. Then g"(Z) is a sub-
manifold of P2n x R^ with oriented normal bundle. It represents the element

and it intersects P2n_2 x R^ transversally in Y, inducing on Y its normal orientation.
Hence rd(A) = A, where r: MSO2n~k{P2n) -» MSO2n-k{P2n_2) is the restriction homo-
morphism (cf. (9)). This completes the proof of (4-4).
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