Convex MINLP Algorithms

Algorithm	Basic Idea	Solvers
Branch and Bound	Solve continuous relaxation; branch on fractional	BONMIN,
	Xj	MINLPBB,
		SBB
Extended Cutting	Solve MILP iteratively; if solution is infeasible	Alpha-ECP
Plane	for MINLP then add a linearization of the most	
	violated constraint to the next MILP. If solution	
	is feasible then it is optimal	
Outer-Approximation	Based on OA cut:	BONMIN,
	Divide into 2 subproblems: NLP in which the	DICOPT,
	integer variables are fixed; MILP which uses the	MINOPT
	OA cuts generated from the NLP	
Generalised Benders	Similar to OA; 2 subproblems: NLP in which the	MINOPT
Decompostion	integer variables are fixed; MILP master	
	problem which is the relaxation of the projection	
	of the MINLP on the x-space	
LP/NLP B&B	Use BB to solve MILP of NLP relaxation. When	BONMIN,
	an integer feasible solution is found, solve NLP	FilMINT
	subproblem and add OA cut to all open nodes	
Bonami Hybrid	Like above, but NLP is solved at more times	BONMIN
	than just when integer solution is found. Also,	
	local search is performed at some nodes by	
	partial enumeration of MILP relaxations (to	
	collect more OA cuts and improve bounds early)	

NonConvex Adjustments

Reformulation	
Convex envelopes/Underestimators	
Factorisation	
:: Spatial Branch-and-Bound, branch and	COUENNE, BARON
reduce	

COUENNE Algorithm

```
Input: Problem P<sup>,</sup>
Output: The value zopt of an optimal solution of P'
Define set L of subproblems; let L \leftarrow \{P'\};
Define z_u as an upper bound for P'; let z_u \leftarrow +\infty
        while L <> 0
                choose P_k \in L
                L \leftarrow L \setminus \{P_k\}
                apply bounds tightening to Pk
                if bounds tightening did not prove Pk infeasible, then
                        generate a linear relaxation LPk of Pk
                        repeat
                                solve LPk; let x'k be an optimum and z'k its obj value
                                refine linearization LPk
                        until x'k is feasible for Pk or z'k does not improve sufficiently
                if x'k is feasible for Pk, then let z_u \leftarrow \min\{z_u, z'_k\}
                (optional) find a local optimum z^*k of Pk
                        z_u \leftarrow \min\{z_u, z^*_k\}
                if z'_k \leq z_u - \epsilon then
                        choose a variable xi
                        choose a branching point xbi
                        create subproblems:
                                P_{k-} with x_i \leq x_{bi}
                                P_{k+} with x_i \ge x_{bi}
                        L \leftarrow L \cup \{P_{k-}, P_{k+}\}
        output zopt := zu
```

Select Sources:

C. D'Ambrosio, A. Lodi. Mixed integer nonlinear programming tools: a practical overview. 4OR-Q J Oper Res (2011) 9:329–349

S. Burer, A. Letchford. Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science 17 (2012) 97–106

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Waechter. Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software (2009), 24(4-5):597–634.