

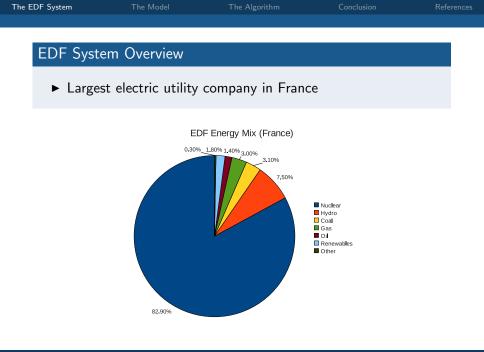
The EDF Day Ahead Unit Commitment Approach

Scheduling à la Française - It's all French to me!

THE UNIVERSITY of EDINBURGH

School of Mathematics

The EDF System	The Model	The Algorithm	Conclusion	
Agenda				
1. The	e EDF System			
2. The	e Model			
3. The	e Algorithm			
4. Cor	nclusion			



The EDF System	The Model	The Algorithm	Conclusion	References

EDF System Overview

- ▶ 58 nuclear units and 47 other thermal units (coal, gas, oil)
- ► 50 hydro valleys: interconnected reservoirs (150) and hydro plants (448)
- ▶ Wind, solar and biomass < 2% but significantly growing

The day-ahead model has 48h in half-hour periods (96 periods)

The EDF System	The Model	The Algorithm	Conclusion	References

EDF System Overview

- 1. Data collection finished, optimization timeframe of 15 min
- 2. Human postprocessing of schedules
- 3. Grid operator and engineers on site prepare for operation
- 4. Schedule is active, hourly intra-day reoptimization with at most 30 changes in total, 3h ahead

Model for Thermal Units (incl. Nuclear)

- 1. Output bounds, min up/down times
- 2. Discrete output levels, ramp rates
- 3. Min const. time after increase and variation prohibition after decrease
- 4. Startup and shutdown curves
- 5. Daily limits on variation, startup, shutdown
- 6. IP instead of MIP, so as to be solved by DP

The EDF System	The Model	The Algorithm	Conclusion	References

Model for Hydro Valleys

- 1. Turbines discharge water from upstream reservoirs, some can pump
- 2. The plants' turbines are modeled individually, with fixed output (approx.)
- 3. Discrete output levels for plants, turbines ranked according to power rates (sequence constraint)
- 4. A plant can either produce or pump, with 30min pause in between
- 5. A turbine has to be switched (on/off) for at least 1h
- 6. There are plant-wide ramp rates
- 7. Preservation constraints balance the water flow, objective is the value of water

Abstract Model of the Whole System

 (p_i)

$$\begin{array}{ll} \min_{(r_i) \in \mathcal{P}_i} & \sum_{i \in I} c_i(p_i) \\ \text{s.t.} & \sum_{i \in I} p_{it} = D_t, \; \forall t \in T \\ & \sum_{i \in I} r_{it} \geq R_t, \; \forall t \in T \end{array}$$

Notation

- I units (gens, valleys)
- T planning horizon
- \mathcal{P}_i feasible schedules
- R_t required reserve

- p_i output schedule (all $t \in T$)
- r_i reserve (all $t \in T$)
- D_t demand

The EDF System	The Model	The Algorithm	Conclusion	

The Solution Method

- APOGEE solver, proprietary software developed 1993 under A. Renaud, later modified by C. Lemaréchal
- ► Based on Lagrangian decomposition of the system into
 - 1. Individual thermal units
 - 2. Individual hydro valleys (multiple plants, turbines, reservoirs)
- Solve the Lagrangian by Uzawa type subgradient methods (in new version: bundle methods)

The EDF S		The Model	The Algorithm	Conclusion	
Tł	ne Primal				
		$\min_{(p_i,r_i)\in\mathcal{P}_i}$	$\sum_{i\in I}c_i(p_i)$		
		s.t.	$\sum_{i\in I} p_{it} = D_t, \ \forall t \in T$		
			$\sum_{i\in I} r_{it} \geq R_t, \ \forall t \in T$		

A Lagrangian Dual

$$\max_{\lambda \text{ free, } \mu \geq 0} \min_{(p_i, r_i) \in \mathcal{P}_i} \sum_{i \in I} c_i(p_i) + \sum_{t \in T} \lambda_t \left(D_t - \sum_{i \in I} p_{it} \right) + \sum_{t \in T} \mu_t \left(R_t - \sum_{i \in I} r_{it} \right)$$

- Inner problem separable by generation units / valleys
- Thermal unit subproblems solved by DP, hydro valley solutions approximated by LP (simplex method)
- Outer problem can be solved by subgradient method

Uzawa's Subgradient Method

Initialize k = 1, $\lambda = \mu = 0$ and a tolerance $\delta > 0$. Choose sequences $(\epsilon_p^k)_{k \in \mathbb{N}}$ and $(\epsilon_r^k)_{k \in \mathbb{N}}$ with $\sum_{k=0}^{\infty} \epsilon^k = \infty$ and $\sum_{k=0}^{\infty} (\epsilon^k)^2 < \infty$.

- 1. For all $i \in I$ solve $\min_{(p_i, r_i) \in \mathcal{P}_i} \left[c_i(p_i) \sum_{t \in T} \lambda_t^k p_{it} \sum_{t \in T} \mu_t^k r_{it} \right]$ to find p_i^{k+1} and r_i^{k+1} .
- 2. Update $\lambda_t^{k+1} = \lambda_t^k + \epsilon_{\rho}^k \left(D_t \sum_{i \in I} p_{it}^{k+1} \right).$
- 3. Update $\mu_t^{k+1} = \max\left\{\mu_t^k + \epsilon_r^k\left(R_t \sum_{i \in I} r_{it}^{k+1}\right), 0\right\}$.
- $\begin{array}{l} \text{4. If } \left\|\lambda_t^{k+1}-\lambda_t^k\right\|_2 < \delta \text{ and } \left\|\mu_t^{k+1}-\mu_t^k\right\|_2 < \delta \text{ terminate. Otherwise set} \\ k=k+1 \text{ and go to } 1. \end{array}$

A Variable Metric Bundle Method

Initialize k = 1 and $\lambda^1 = \mu^1 = \hat{\lambda} = \hat{\mu} = 0$ and ρ^1 , r^1 . Choose a penalty s > 0 and tolerance $\delta > 0$.

- 1. For all $i \in I$ solve $\min_{(p_i, r_i) \in \mathcal{P}_i} \left[c_i(p_i) \sum_{t \in T} \lambda_t^k p_{it} \sum_{t \in T} \mu_t^k r_{it} \right]$ to find p_i^{k+1} and r_i^{k+1} .
- 2. If $L(p^{k+1}, r^{k+1}, \lambda^k, \mu^k) > L(p^k, r^k, \lambda^k, \mu^k)$ set $\hat{\lambda} = \lambda^k$, $\hat{\mu} = \mu^k$ and increase s. Else decrease s.
- 3. To find λ_t^{k+1} and μ_t^{k+1} , solve

$$\max \qquad r - \frac{1}{2s} \|\lambda - \hat{\lambda}\|_{2}^{2} - \frac{1}{2s} \|\mu - \hat{\mu}\|_{2}^{2}$$
s.t.
$$r \leq L(p^{l}, r^{l}, \lambda^{l}, \mu^{l}) + \lambda^{T}(D_{t} - \sum_{i \in I} p_{it}^{l}) + \mu^{T}(R_{t} - \sum_{i \in I} r_{it}^{l}), \ \forall l = 1, \dots, k$$

$$\mu \geq 0$$

 $\text{4. If } \left\| r^{opt} - \textit{L}(p^{k+1}, r^{k+1}, \lambda^{k+1}, \mu^{k+1}) \right\|_2 < \delta \text{ terminate. Otherwise set } k = k+1 \text{ and go to } 1.$

The EDF System	The Model	The Algorithm	Conclusion	References
Why it fai	ls.			

- \blacktriangleright Primal problem is nonconvex \rightarrow duality gap is nonzero
- Subgradient method: solving the dual yields no primal point
- Bundle method: After convergence of the dual, the primal point is noninteger
- This convex combination of schedules (think CG in the primal!) is called pseudo schedule
- For hydro valleys only the LP relaxation is solved

How to proceed.

Use the dual solution as lower bound and perform a heuristic search for a primal solution.

APOGEE:

- 1. Solve the dual to obtain a pseudo schedule and a lower bound. Formerly by subgradients, more recently by a bundle method. Solve subproblems by DP (thermal) and LP (hydro).
- 2. Primal recovery: perform an augmented Lagrangian based heuristic search for primal feasible solutions. Solve subproblems by DP (thermal) and IP heuristics (hydro).

Phase 2: Augmented Lagrangians

Consider the convex split variable problem (J₁, J₂ differentiable, $\mathcal{U} \cap \mathcal{V} \neq \emptyset$)

$$\min_{u\in\mathcal{U},\ v\in\mathcal{V}}J_1(u)+J_2(v) \ \text{ s.t. } \ u-v=0.$$

Its augmented Lagrangian

$$L(u, v, \lambda) = J_1(u) + J_2(v) + \lambda^T (u - v) + \frac{c}{2} (u - v)^T (u - v)$$

is not separable due to the quadratic term. However, with a maximizing price λ the primal minimization yields a feasible solution.

Idea: make quadratic term separable by linearizing it.

The EDF System The Model The Algorithm Conclusion References

An Auxiliary Problem

Consider the convex problem (with l_1 differentiable, l_2 l.s.c.)

 $\min_{x\in\mathcal{X}} l_1(x) + l_2(x).$

The auxiliary function at a given point $\bar{x} \in \mathcal{X}$ with some strongly convex, differentiable K [e.g. $K(x) = \frac{1}{2}x^T x$] and $\epsilon > 0$ is

$$G^{\bar{x}}(x) := \frac{1}{\epsilon} K(x) - \frac{1}{\epsilon} x^T K'(\bar{x}) + x^T l_1'(\bar{x}) + l_2(x).$$

Lemma (Auxiliary Problem Principle), Proof in [1]

Assume that \bar{x} minimizes $G^{\bar{x}}$:

$$G^{\bar{x}}(\bar{x}) = \min_{x \in \mathcal{X}} G^{\bar{x}}(x),$$

then

$$l_1(\bar{x}) + l_2(\bar{x}) = \min_{x \in \mathcal{X}} l_1(x) + l_2(x).$$

Auxiliary Problem for the Augmented Lagrangian

We can apply this to the Lagrangian

$$L(u, v, \lambda) = \underbrace{J_{1}(u) + J_{2}(v) + \lambda^{T}(u - v)}_{l_{2}(u, v)} + \underbrace{\frac{c}{2}(u - v)^{T}(u - v)}_{l_{1}(u, v)}$$

to get a separable auxiliary function

$$\begin{split} G^{(u^{k},v^{k})}(u,v) &:= \ \frac{1}{\epsilon} K_{1}(u) - \frac{1}{\epsilon} u^{T} K_{1}'(u^{k}) + [\lambda + c(u^{k} - v^{k})]^{T} u + J_{1}(u) \\ &+ \ \frac{1}{\epsilon} K_{2}(v) - \frac{1}{\epsilon} v^{T} K_{2}'(v^{k}) - [\lambda + c(u^{k} - v^{k})]^{T} v + J_{2}(v) \end{split}$$

 The EDF System
 The Model
 The Algorithm
 Conclusion
 References

 The Algorithm
 Initialize k = 1 and λ^k , u^k , v^k , a tolerance $\delta > 0$ and a steplength $0 < \rho < 2c$.
 Initialize k = 1 and λ^k , u^k , v^k , a tolerance $\delta > 0$ and a steplength $0 < \rho < 2c$.

1.
$$u^{k+1} = \operatorname{argmin}_{u \in \mathcal{U}} \left[\frac{1}{\epsilon} K_1(u) - \frac{1}{\epsilon} u^T K_1'(u^k) + [\lambda^k + c(u^k - v^k)]^T u + J_1(u) \right]$$

2. $v^{k+1} = \operatorname{argmin}_{v \in \mathcal{V}} \left[\frac{1}{\epsilon} K_2(v) - \frac{1}{\epsilon} v^T K_2'(v^k) - [\lambda^k + c(u^k - v^k)]^T v + J_2(v) \right]$
3. $\lambda^{k+1} = \lambda^k + \rho(u^{k+1} - v^{k+1})$
4. If $\| u^{k+1} - v^{k+1} \|_2 < \delta$ stop. Otherwise set $k = k + 1$ and go to 1.

The choice for $K_{1,2}(\cdot)$ is $K(x) := \epsilon K^c ||x||^2$.

The EDF System

The Algorithm

Conclusio

References

The Split Variable Unit Commitment Problem

$$\begin{array}{ll} \min & \sum_{i \in I} c_i(p_i) \\ \text{s.t.} & \sum_{i \in I} q_{it} = D_t, \ \forall t \in T \\ & \sum_{i \in I} s_{it} \geq R_t, \ \forall t \in T \\ & (p_i, r_i) \in \mathcal{P}_i \\ & p_{it} = q_{it}, \ \forall t \in T, \ i \in I \\ & r_{it} = s_{it}, \ \forall t \in T, \ i \in I \end{array}$$

- q_i and s_i satisfy the static constraints (demand, reserve)
- *p_i* and *r_i* satisfy the dynamic constraints (technical, temporal)
- the linking constraints need to be relaxed to achieve separability by units
- apply the augmented Lagrangian based decomposition heuristic to solve this problem

The EDF System The Model The Algorithm Conclusion References

The Phase 2 Algorithm

Initialize k=1 and λ^k , μ^k from Phase 1 and choose a tolerance $\delta>0$

1. For all $i \in I$ find p_i^{k+1} , r_i^{k+1} by solving

$$\min_{(p_i,r_i)\in\mathcal{P}_i}\left[c_i(p_i)-\sum_{t\in\mathcal{T}}\left(\bar{\lambda}_{it}^k p_{it}+\bar{\mu}_{it}^k r_{it}\right)+\mathcal{K}^c\sum_{t\in\mathcal{T}}\left((p_{it}-p_{it}^k)^2+(r_{it}-r_{it}^k)^2\right)\right]$$

2. For all
$$t \in T$$
 find q_t^{k+1} , s_t^{k+1} by solving

$$\begin{split} \min_{q_{it},s_{it}} & \qquad \left[\sum_{i \in I} \left(\bar{\lambda}_{it}^{k} q_{it} + \bar{\mu}_{it}^{k} s_{it} \right) + \mathcal{K}^{c} \sum_{i \in I} \left((q_{it} - q_{it}^{k})^{2} + (s_{it} - s_{it}^{k})^{2} \right) \right] \\ \text{s.t.} & \qquad \sum_{i \in I} q_{it} = D_{t}, \ \sum_{i \in I} s_{it} = R_{t}. \end{split}$$

3. Set
$$\lambda_{it}^{k+1} = \lambda_{it}^{k} + c(q_{it}^{k+1} - p_{it}^{k+1})$$
 and $\mu_{it}^{k+1} = \mu_{it}^{k} + c(s_{it}^{k+1} - r_{it}^{k+1})$.
4. If $\left\|q_{it}^{k+1} - p_{it}^{k+1}\right\|_{2} < \delta$ and $\left\|r_{it}^{k+1} - s_{it}^{k+1}\right\|_{2} < \delta$ stop. Otherwise set $k = k + 1$ and go to 1.

Here the shifted duals are $\bar{\lambda}_{it}^k = \lambda_{it}^k + c(q_{it}^k - p_{it}^k)$ and $\bar{\mu}_{it}^k = \mu_{it}^k + c(s_{it}^k - r_{it}^k)$.

The EDF Unit Commitment Approach

The EDF System	The Model	The Algorithm	Conclusion	
Performar	ice			
In oper	ational practice ph	ases 1 and 2 require	pprox10 min	
Due to approxi	5	final schedule satisfie	s load balance only	
	5			
► The fir	al gap is $pprox 3\%$			
Margin	al costs are taken f	rom the phase 1 solu	ution	

EDF in the Future

- MIP for hydro subproblems in phase 1 (currently LP in phase 1 and heur. in phase 2)
- Get meaningful marginal costs from phase 2
- ▶ Improve phase 2: better heuristics (gen. alg.) to reduce the gap

G. Cohen.

Optimization by decomposition and coordination: A unified approach.

IEEE Transactions on Automatic Control, 1978.

L. Dubost, R. Gonzalez, and C. Lemaréchal.

A primal-proximal heuristic applied to the french unit commitment problem.

Mathematical Programming, 2005.

 G. Hechme-Doukopoulos, S. Brignol-Charousset, J. Malick, and C. Lemaréchal.
 The short-term electricity production management problem at EDF.
 OPTIMA 84 Mathematical Optimization Society Newsletter, 2010.

A. Renaud.

Daily generation management at Electricité de France: From planning towards real time.

IEEE Transactions on Automatic Control, 1993.

The EDF Day Ahead Unit Commitment Approach

Scheduling à la Française - It's all French to me!

THE UNIVERSITY of EDINBURGH

School of Mathematics