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EDF System Overview

I Largest electric utility company in France
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EDF System Overview

I 58 nuclear units and 47 other thermal units (coal, gas, oil)

I 50 hydro valleys: interconnected reservoirs (150) and hydro
plants (448)

I Wind, solar and biomass < 2% but significantly growing

The day-ahead model has 48h in half-hour periods (96 periods)
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EDF System Overview

1. Data collection finished, optimization timeframe of 15 min

2. Human postprocessing of schedules

3. Grid operator and engineers on site prepare for operation

4. Schedule is active, hourly intra-day reoptimization with at
most 30 changes in total, 3h ahead
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Model for Thermal Units (incl. Nuclear)

1. Output bounds, min up/down times

2. Discrete output levels, ramp rates

3. Min const. time after increase and variation prohibition after
decrease

4. Startup and shutdown curves

5. Daily limits on variation, startup, shutdown

6. IP instead of MIP, so as to be solved by DP
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Model for Hydro Valleys

1. Turbines discharge water from upstream reservoirs, some can
pump

2. The plants’ turbines are modeled individually, with fixed
output (approx.)

3. Discrete output levels for plants, turbines ranked according to
power rates (sequence constraint)

4. A plant can either produce or pump, with 30min pause in
between

5. A turbine has to be switched (on/off) for at least 1h

6. There are plant-wide ramp rates

7. Preservation constraints balance the water flow, objective is
the value of water
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Abstract Model of the Whole System

min
(pi ,ri )∈Pi

∑
i∈I

ci (pi )

s.t.
∑
i∈I

pit = Dt , ∀t ∈ T∑
i∈I

rit ≥ Rt , ∀t ∈ T

Notation

I – units (gens,valleys) pi – output schedule (all t ∈ T )
T – planning horizon ri – reserve (all t ∈ T )
Pi – feasible schedules Dt – demand
Rt – required reserve
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The Solution Method

I APOGEE solver, proprietary software developed 1993 under A.
Renaud, later modified by C. Lemaréchal

I Based on Lagrangian decomposition of the system into

1. Individual thermal units
2. Individual hydro valleys (multiple plants, turbines, reservoirs)

I Solve the Lagrangian by Uzawa type subgradient methods (in
new version: bundle methods)
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The Primal

min
(pi ,ri )∈Pi

X
i∈I

ci (pi )

s.t.
X
i∈I

pit = Dt , ∀t ∈ T

X
i∈I

rit ≥ Rt , ∀t ∈ T

A Lagrangian Dual

max
λ free, µ≥0

min
(pi ,ri )∈Pi

X
i∈I

ci (pi ) +
X
t∈T

λt

 
Dt −

X
i∈I

pit

!
+
X
t∈T

µt

 
Rt −

X
i∈I

rit

!

I Inner problem separable by generation units / valleys

I Thermal unit subproblems solved by DP, hydro valley solutions
approximated by LP (simplex method)

I Outer problem can be solved by subgradient method
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Uzawa’s Subgradient Method

Initialize k = 1, λ = µ = 0 and a tolerance δ > 0. Choose sequences
`
εkp
´
k∈N

and
`
εkr
´
k∈N with

P∞
k=0 ε

k =∞ and
P∞

k=0

`
εk
´2
<∞.

1. For all i ∈ I solve min(pi ,ri )∈Pi

ˆ
ci (pi )−

P
t∈T λ

k
t pit −

P
t∈T µ

k
t rit
˜

to find

pk+1
i and r k+1

i .

2. Update λk+1
t = λk

t + εkp
`
Dt −

P
i∈I pk+1

it

´
.

3. Update µk+1
t = max

˘
µk

t + εkr
`
Rt −

P
i∈I r k+1

it

´
, 0
¯

.

4. If
‚‚λk+1

t − λk
t

‚‚
2
< δ and

‚‚µk+1
t − µk

t

‚‚
2
< δ terminate. Otherwise set

k = k + 1 and go to 1.
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A Variable Metric Bundle Method
Initialize k = 1 and λ1 = µ1 = λ̂ = µ̂ = 0 and p1, r1. Choose a penalty s > 0 and tolerance δ > 0.

1. For all i ∈ I solve min(pi ,ri )∈Pi

h
ci (pi )−

P
t∈T λ

k
t pit −

P
t∈T µ

k
t rit

i
to find pk+1

i and rk+1
i .

2. If L(pk+1, rk+1, λk , µk ) > L(pk , rk , λk , µk ) set λ̂ = λk ,µ̂ = µk and increase s. Else decrease s.

3. To find λk+1
t and µk+1

t , solve

max r − 1
2s
‖λ− λ̂‖2

2 −
1
2s
‖µ− µ̂‖2

2

s.t. r ≤ L(pl
, r l
, λ

l
, µ

l ) + λ
T (Dt −

X
i∈I

pl
it ) + µ

T (Rt −
X
i∈I

r l
it ), ∀l = 1, . . . , k

µ ≥ 0

4. If
‚‚‚ropt − L(pk+1, rk+1, λk+1, µk+1)

‚‚‚
2
< δ terminate. Otherwise set k = k + 1 and go to 1.
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Why it fails.

I Primal problem is nonconvex → duality gap is nonzero

I Subgradient method: solving the dual yields no primal point

I Bundle method: After convergence of the dual, the primal
point is noninteger

I This convex combination of schedules (think CG in the
primal!) is called pseudo schedule

I For hydro valleys only the LP relaxation is solved
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How to proceed.

Use the dual solution as lower bound and perform a heuristic
search for a primal solution.

APOGEE:

1. Solve the dual to obtain a pseudo schedule and a lower
bound. Formerly by subgradients, more recently by a bundle
method. Solve subproblems by DP (thermal) and LP (hydro).

2. Primal recovery: perform an augmented Lagrangian based
heuristic search for primal feasible solutions. Solve
subproblems by DP (thermal) and IP heuristics (hydro).
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Phase 2: Augmented Lagrangians

Consider the convex split variable problem (J1, J2 differentiable, U ∩ V 6= ∅)

min
u∈U, v∈V

J1(u) + J2(v) s.t. u − v = 0.

Its augmented Lagrangian

L(u, v , λ) = J1(u) + J2(v) + λT (u − v) + c
2

(u − v)T (u − v)

is not separable due to the quadratic term. However, with a maximizing price λ
the primal minimization yields a feasible solution.
Idea: make quadratic term separable by linearizing it.
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An Auxiliary Problem

Consider the convex problem (with l1 differentiable, l2 l.s.c.)

min
x∈X

l1(x) + l2(x).

The auxiliary function at a given point x̄ ∈ X with some strongly convex,
differentiable K [e.g. K(x) = 1

2
xT x ] and ε > 0 is

G x̄(x) := 1
ε
K(x)− 1

ε
xTK ′(x̄) + xT l ′1(x̄) + l2(x).

Lemma (Auxiliary Problem Principle), Proof in [1]
Assume that x̄ minimizes G x̄ :

G x̄(x̄) = min
x∈X

G x̄(x),

then
l1(x̄) + l2(x̄) = min

x∈X
l1(x) + l2(x).

The EDF Unit Commitment Approach Tim Schulze



The EDF System The Model The Algorithm Conclusion References

Auxiliary Problem for the Augmented Lagrangian

We can apply this to the Lagrangian

L(u, v , λ) = J1(u) + J2(v) + λT (u − v)| {z }
l2(u,v)

+ c
2

(u − v)T (u − v)| {z }
l1(u,v)

to get a separable auxiliary function

G (uk ,vk )(u, v) := 1
ε
K1(u)− 1

ε
uTK ′1(uk) + [λ+ c(uk − v k)]Tu + J1(u)

+ 1
ε
K2(v)− 1

ε
vTK ′2(v k)− [λ+ c(uk − v k)]T v + J2(v)
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The Algorithm

Initialize k = 1 and λk , uk , v k , a tolerance δ > 0 and a steplength 0 < ρ < 2c.

1. uk+1 = argminu∈U
ˆ

1
ε
K1(u)− 1

ε
uTK ′1(uk) + [λk + c(uk − v k)]Tu + J1(u)

˜
2. v k+1 = argminv∈V

ˆ
1
ε
K2(v)− 1

ε
vTK ′2(v k)− [λk + c(uk − v k)]T v + J2(v)

˜
3. λk+1 = λk + ρ(uk+1 − v k+1)

4. If
‚‚uk+1 − v k+1

‚‚
2
< δ stop. Otherwise set k = k + 1 and go to 1.

The choice for K1,2(·) is K(x) := εK c‖x‖2.
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The Split Variable Unit Commitment Problem

min
X
i∈I

ci (pi )

s.t.
X
i∈I

qit = Dt , ∀t ∈ T

X
i∈I

sit ≥ Rt , ∀t ∈ T

(pi , ri ) ∈ Pi

pit = qit , ∀t ∈ T , i ∈ I

rit = sit , ∀t ∈ T , i ∈ I

I qi and si satisfy the static constraints (demand, reserve)

I pi and ri satisfy the dynamic constraints (technical, temporal)

I the linking constraints need to be relaxed to achieve separability by units

I apply the augmented Lagrangian based decomposition heuristic to solve
this problem
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The Phase 2 Algorithm
Initialize k = 1 and λk , µk from Phase 1 and choose a tolerance δ > 0

1. For all i ∈ I find pk+1
i , rk+1

i by solving

min
(pi ,ri )∈Pi

24ci (pi )−
X
t∈T

“
λ̄

k
itpit + µ̄

k
it rit

”
+ Kc

X
t∈T

“
(pit − pk

it )2 + (rit − rk
it )2
”35

2. For all t ∈ T find qk+1
t , sk+1

t by solving

min
qit ,sit

24X
i∈I

“
λ̄

k
itqit + µ̄

k
it sit

”
+ Kc

X
i∈I

“
(qit − qk

it )2 + (sit − sk
it )2
”35

s.t.
X
i∈I

qit = Dt ,
X
i∈I

sit = Rt .

3. Set λk+1
it = λk

it + c(qk+1
it − pk+1

it ) and µk+1
it = µk

it + c(sk+1
it − rk+1

it ).

4. If
‚‚‚qk+1

it − pk+1
it

‚‚‚
2
< δ and

‚‚‚rk+1
it − sk+1

it

‚‚‚
2
< δ stop. Otherwise set k = k + 1 and go to 1.

Here the shifted duals are λ̄k
it = λk

it + c(qk
it − pk

it ) and µ̄k
it = µk

it + c(sk
it − rk

it ).
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Performance

I In operational practice phases 1 and 2 require ≈10 min

I Due to nonconvexity the final schedule satisfies load balance only
approximately

I The final gap is ≈3%

I Marginal costs are taken from the phase 1 solution

EDF in the Future

I MIP for hydro subproblems in phase 1 (currently LP in phase 1 and heur.
in phase 2)

I Get meaningful marginal costs from phase 2

I Improve phase 2: better heuristics (gen. alg.) to reduce the gap
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