
Digital Object Identifier (DOI) 10.1007/s10107-005-0593-4

Math. Program., Ser. A 104, 129–151 (2005)

L. Dubost · R. Gonzalez · C. Lemaréchal
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Abstract. This paper is devoted to the numerical resolution of unit-commitment problems, with emphasis on
the French model optimizing the daily production of electricity. The solution process has two phases. First a
Lagrangian relaxation solves the dual to find a lower bound; it also gives a primal relaxed solution. We then
propose to use the latter in the second phase, for a heuristic resolution based on a primal proximal algorithm.
This second step comes as an alternative to an earlier approach, based on augmented Lagrangian (i.e. a dual
proximal algorithm). We illustrate the method with some real-life numerical results. A companion paper is
devoted to a theoretical study of the heuristic in the second phase.
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1. Introduction

This paper reports on a practical application: to optimize the daily production of the
French electricity mix. We symbolize this unit-commitment problem by

min c(x) , x ∈ X ⊂ R
n , g(x) = 0 ∈ R

m , (1.1)

and Section 2 outlines more precisely the model currently in operation at EdF (Électricité
de France, the French Electricity Board).

In (1.1), X = ∏
i Xi , c(x) = ∑

i ci(xi), where i denotes a production unit (nuclear,
thermal or hydro-valley), with decision variable xi varying in Xi ; also, g(x) = ∑

i gi(xi)

collects linking constraints: the problem is decomposable. It is therefore conveniently
solved via Lagrangian relaxation (see [8, 4, 15, 35] among others, and also the review
[42]): to (1.1), is associated the Lagrangian problem

θ(λ) := min
x∈X

L(x, λ) , where

L(x, λ) := c(x) + λ�g(x) . (1.2)
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Computing θ(λ) amounts to solving independently the local problems

min
xi∈Xi

ci(xi) + λ�gi(xi) , (1.3)

where i ranges over the set of production units.
A dual algorithm constructs iteratively λk to maximize θ (the dual problem), (1.3)

being repeatedly solved for λ = λk . Section 3 recalls the approach and gives some illus-
trative results obtained with EdF’s unit-commitment model, in which a bundle method
maximizes θ [32], with the help of the quadratic solver of [27, 28].

The above technique provides a lower bound for the optimal cost. However, (1.1)
itself is still unsolved: no optimal schedule need be produced while maximizing θ , not
even an approximately feasible one. Several works are devoted to the resulting primal
recovery problem via appropriate heuristics; see [42]. In its current implementation, EdF
uses a heuristic based on augmented Lagrangian. The heuristics presented in the present
paper is closer to [16], and can roughly be outlined as follows.

After convergence, the dual algorithm produces a primal point x̂, which solves a cer-
tain convex relaxation of (1.1) (think of column generation, see [14, 36], [30, Sections 2.6,
4.2, 5.2], [47]). We call this x̂ pseudo-schedule; unless there is no duality gap, the pseudo-
schedule is a non-trivial convex combination of schedules, and therefore does not lie in
the nonconvex set X. Nevertheless, x̂ tends to satisfy the linking constraints, a property
which is enjoyed by none of the minimizers in (1.3) – here precisely lies the trouble with
Lagrangian relaxation!

Starting from this idea, we perturb θ to

θr(λ) := min
x∈X

Lr(x, λ) , where

Lr(x, λ) := L(x, λ) + r‖x − x̂‖2 .

A crucial observation is that θr is readily computable because the decomposability (1.2)–
(1.3) is preserved:

Lr(x, λ) =
∑

i

[
ci(x

i) + λ�gi(xi) + r‖xi − x̂i‖2] .

It can therefore be maximized with just the same bundle algorithm that maximized θ ,
using essentially the same subalgorithms that solved (1.3). Section 4 presents the heu-
ristics and gives illustrative results suggesting the superiority of the present approach
over augmented Lagrangian.

Actually, the above heuristics gives fairly good empirical results. Besides, it is not
limited to unit-commitment: it can be applied to most nonconvex problems lending
themselves to Lagrangian relaxation (the only restriction being that the local solvers
(1.3) must accommodate simple quadratic costs). A question of interest is therefore: can
it be assessed by some theoretical study? This is the subject of [13], a sequel to the
present work; it suggests that, unfortunately, little can be said along these lines.

2. The French model for electricity production

The French production mix is composed of nearly 150 thermal units and 50 hydro-val-
leys. Depending on the period of the day and on the season of the year, the load demand
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oscillates between some 40 000 and 70 000 MW. A reasonably reliable demand fore-
cast, as well as the list of available power units with their updated technical constraints
and economic characteristics, are available each day by 4 pm. Appropriate production
schedules must then be computed, to be sent to the local units by 5 pm.

The generation mix is composed of nuclear, thermal (fuel or coal) and hydro-plants,
which represent respectively 61%, 16% and 23% in terms of total capacity. Of course
these figures are very different from the actual distribution of the generation, which
highly depends on the economic characteristics of each unit. Gas turbines are also pres-
ent; they are not included in the model: due to their high operating costs and flexibility,
they are generally viewed as a potential reserve, to be used in some emergency cases.

Calling T the time horizon, each schedule is represented by a vector xi ∈ R
T ; each

day is discretized in 48 half-hours. However, optimizing over one day only (which is the
required exercise) is a myopic strategy. It may produce costly situations such as shutting
down by the end of the day some thermal unit which will have to be switched on early the
day after: a startup sequence is a costly transition. This is why the model takes T = 96,
i.e. the optimization is performed over two days, even though only the first half of the
schedules are actually sent to the local units.

Altogether, the unit-commitment problem is to compute feasible schedules xi , min-
imizing the total operating cost over the period, while matching the predicted demand
and satisfying some reserve constraints, present to face unexpected events (increase in
demand, failure of a production unit). We now proceed to describe the technological
and economic characteristics of EdF’s model. See also [11] for other possible “real-life”
models.

2.1. Nuclear and thermal units

Nuclear and thermal units have similar behaviours; their decision variable xi used in the
notation (1.1) is indeed the power delivered pi .

The operating domain related to each thermal unit is defined by a particular set of
dynamic constraints, a non-exhaustive list of which is given below:

(i) The delay between two output variations must be longer than some value depending
on the unit.

(ii) Ramping constraints are associated to each thermal unit: jumping from one output
level to another cannot be done instantaneously.

(iii) After switching off a unit, a mimimum down time must precede any following
startup sequence.

(iv) Particular startup curves must be used, depending on which cold start they apply
to (e.g. depending on how long the unit has been switched off ).

(v) When a generator is on, it must remain online for a minimum amount of time.
(vi) When a generator is on, its output level must remain between given maximum and

minimum values (both positive); say 0 < pi � pi � p̄i .
(vii) A generator may or may not be allowed to participate in the frequency regulation

at time t (this is a device to ensure the automatically generated reserves, see §2.3
below).
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If pi = (
pi

1, . . . , pi
T

)
denotes the production vector of unit i, satisfaction of these

various constraints can be symbolized by pi ∈ P i . Besides, a cost ci(pi) is associated
to the production vector (with respect to the notation (1.1), (1.3), remember that the
decision variable is here xi = pi). When the linking constraints of §2.3 are dualized,
unit i will aim at minimizing ci(pi)+λ�gi(pi), subject to pi ∈ P i : a fairly complicated
problem, with lots of Boolean constraints, and nonlinear cost.

A simplifying assumption is made at this point, replacing the continuous segment
[pi, p̄i] introduced in (vi) by a set of discrete values: for instance, the output level of a

thermal unit can take on 3 values only (pi , p̄i , and a nominal value in between). With
this simplification, the problem becomes purely discrete, and can be given a formulation
suitable to standard dynamic programming. For this, a number of state variables are
used, to characterize the state of unit i; for example

(i) the time qi
t elapsed since the last output variation,

(iii) when the unit is off, the time ri
t elapsed since the switch off (this is also useful

to cope with (iv)),
(v) when the unit is on, the time si

t elapsed since the switch on,
( . . . ) and so on.

These state variables evolve along time according to appropriate state equations, in
which pi acts as a control variable. The states are themselves subject to various con-
straints, such as qi

t � qi , ri
t � ri , si

t � si , and so on. In a word, the problem can be
solved efficiently by dynamic programming.

Remark 21. As already said, our list of constraints above is not exhaustive, the main merit
of dynamic programming being its flexibility. However there are also daily constraints,
expressing for example that the number of output variations and startup sequences in
a day is limited. A direct treatment of these constraints increases the number of states
drastically, the cost in CPU becomes prohibitive. The current strategy is therefore to
penalize or dualize them.

For the record, “semi-local” constraints also exist. The units are actually clustered
in production plants (a plant may contain up to 4 units) and constraints link units within
the same plant. For example, there is a minimum delay between two startup sequences
of two different units within the same plant. No rigorous method has been found to deal
with this kind of constraints; dualizing them would increase the size of the problem
with little hope to compute schedules satisfying them, therefore they are ignored in the
model. ��

2.2. Hydro-valleys

The French hydro-power system is composed of 50 independent hydro-valleys. A hydro-
valley i is a set of interconnected reservoirs – we index them by r – and associated power
plants – indexed by j ; the plants in turn have a certain number of turbines. The decision
variable xi in the notation (1.1) is now the set of flows wj passing through the various
plants, each of which results in a power pj = pj (wj ). A flow wj can take on finitely
many values; these values correspond to the optimal rate of efficiency of the turbines in
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flow
w̄

power

ρuw + yu

Fig. 2.1. Hydro-production as a function of flow

the given plant. Besides, some plants are equipped to pump water from their downstream
reservoir up into their upstream reservoir (thus allowing to re-use water later in peak
hours).

Again a simplifying assumption is made here: each wj is allowed to vary continu-
ously in a given interval1 [0, w̄j ]. Besides, the rate of each turbine is considered as fixed.
With this simplification, the power delivered is a piecewise linear function, which turns
out to be concave, as depicted on Fig. 2.1 (each break point corresponds to switching a
turbine, and the most efficient turbines are of course switched on first). As a result, the
power delivered can be written as the minimum of a number of affine functions; say

pj (wj ) = min {ρj
gwj + y

j
g : g runs over the turbines} . (2.1)

Pumping is modelled as follows: every plant with the pumping capability is duplicated in
two plants, say j and j ′; the (nonnegative) flow wj ′

of the “dummy” plant j ′ is counted
upstream, and pj ′

(wj ′
) � 0 (pumping consumes energy!).

The volume V r in a given reservoir r is then a state variable, which obeys an equation
of the type

V r
t = V r

t−1 −
∑

j∈N↓(r)

w
j

t+τ(r,j) +
∑

j∈N↑(r)

w
j

t−τ(j,r) + Or
t , t = 1, . . . , T .

Here O represents the exchange of water with the outside (rain, snow, spillage); N↓(r)

[resp. N↑(r)] is the set of neighboring plants down [resp. up] reservoir r; τ(r, j) [resp.
τ(j, r)] is the travel time of water from reservoir r to plant j [resp. from plant j to
reservoir r] – with the appropriate conventions for the dummy pumps.

Now the cost of the schedules in valley i is just the global loss in water:

ci(wi) =
∑

r

γ r (V r
0 − V r

T ) , for each valley i ;

this is a linear function of the decision variable w. The marginal costs γ r result from
mid- and long-term models, assessing the value of water. To complete the model, bound
constraints are introduced on the volumes V r .

Some crucial observations are relevant at this point.

1 Compare this simplification with that of thermal plants, where continuous variables were replaced by
discrete ones. After the simplified model is solved, a smoothing “off-model” phase is performed, aimed at
restoring feasible wj ’s without changing the overall power produced.
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– The rate ρ
j
u of a given turbine does not depend on the volume in the reservoir feeding

it; in other words: water elevation in the reservoirs is considered as a constant over
the period [0, T ], thus allowing the simple expression (2.1). Due to the shortness of
the optimized period (max. 2 days) and to the existence of bound constraints on the
reservoir’s volumes, this is quite a valid approximation.

– A plant cannot discharge and pump simultaneously: there are constraints of the form

w
j
t w

j ′
t = 0. However, it can be shown that these constraints are automatically sat-

isfied by an optimal solution – such a property relies heavily on the particular form
of the Lagrangian, though.

– As will be seen in §2.3, dualization of the constraints results in a hydraulic Lagrangian
of the form

ci(wi) − λ� ∑

j

pj (wj ) .

If λ � 0 – quite a natural property, always true in practice –, the particular form
(2.1) of w 
→ p(w) allows an LP formulation, via the addition of an extra variable
for each unit u.

As a result “everything is linear”: minimizing the Lagrangian over the feasible set
amounts to minimizing a linear function over a polyhedron, which we symbolize by
wi ∈ Wi . The resulting linear program is solved by an interior-point method, as described
in [45] and implemented in [19]. In view of the form of the constraints, an LP solver
tailored to flow problems would be more appropriate. However, some valleys might have
additional constraints (for example limitations on flow variations); besides, quadratic La-
grangians will appear in §4. This motivates the choice of an interior-point methodology.

In what follows, we will use the notation ϑ [resp. H] for the thermal [rep. hydraulic]
mix. The total cost of a schedule is then

∑

i∈ϑ

ci(pi) +
∑

i∈H
ci(wi) . (2.2)

2.3. Linking constraints

Demand. Denote by d0 ∈ R
T the predicted power demand vector. The mismatch

between production and demand is

p0
t := d0

t −
∑

i∈ϑ∪H
pi

t , for t = 1, . . . , T . (2.3)

This notation introduces a “fictitious power generator” p0 ∈ R
T , analogous to a slack

variable. Imposing brutally the constraint p0 = 0 – or even p0 � 0 – would ignore
various uncertainties present in the problem (the power demand vector d0 is not 100%
reliable, some production failures may occur, etc.). Rather, the model attaches a cost

c0(p0) =
∑

t

c0
t (p

0
t )

to the fictitious generation, where the elementary cost c0
t is depicted on Fig. 2.2. Then

the balance constraint is just (2.3).
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x

c0
t (x)

Fig. 2.2. Cost of the fictitious power generator

Reserves. In order to face unexpected events such as generator outages or sudden load
variations in operational conditions, three types of spinning reserves impose constraints
linking the production plants.

– The primary reserve continually adjusts (within a few seconds) small oscillations
of the power load, simply by controlling automatically the angular speed of the
alternators. This kind of reserve also aims at immediately compensating unexpected
generator outages until the frequency of the network comes back to its nominal
value. The total power thus available for adjustment must be at least some value
d1 = (d1

1 , . . . , d1
T ).

– The secondary reserve also controls automatically the network’s frequency with a
response time of minutes, and must be at least some value d2. The contribution of a
given thermal unit i to the secondary reserve has a predefined value which depends
on whether pi is at its minimal, maximal or intermediate value.

– The tertiary reserve is triggered manually and its time response is longer than 20
minutes. The contribution of a thermal unit i to this reserve is p̄i −pi , but there are a
number of conditions; for example, it is 0 if the unit is following a decreasing ramp,
or during a startup sequence, and of course if it is off.

The total reserve mismatch is then

p−k := dk −
∑

i∈ϑ

Rk,i(pi) −
∑

i∈H
Rk,ipi ∈ R

T , k = 1, 2, 3 . (2.4)

Each Rk,i is a more or less complex function of the power; if i indexes hydraulic pro-
duction, Rk,ipi is actually linear. Analogously to the power constraint (2.3), the notation
above introduces three “fictitious reserve generators” p−k ∈ R

T , which induce three
costs, as displayed on Fig. 2.3. Note that c−k(x) = 0 for x � 0: in fact, p−k � 0 is
imposed as a hard constraint – even though it may be violated by the final solution, see
Remark 22 below.

In summary, our commitment problem is





min
∑3

k=0 c−k(p−k) + ∑
i∈ϑ ci(pi) + ∑

i∈H ci(wi) ;
pi ∈ P i , i ∈ ϑ ; wi ∈ Wi , i ∈ H ; p−k � 0 ∈ R

T , k = 1, 2, 3 ;
d0 − p0 − ∑

i∈ϑ pi − ∑
i∈H pi(wi) = 0 ∈ R

T ;
dk − p−k − ∑

i∈ϑ Rk,i(pi) − ∑
i∈H Rk,ipi(wi) = 0 ∈ R

T , k = 1, 2, 3 .

(2.5)

This problem is large-scale, heterogenous, mixed-integer, nonlinear; in a word: a nasty
problem. However, dualizing the linking constraints is particularly attractive.
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x

c−k
t (x)

Fig. 2.3. Cost of a fictitious reserve generator

Remark 22 (Role of the fictitious costs). Solving this problem is clearly impossible.
More precisely, it is impossible to obtain schedules satisfying exactly the various link-
ing constraints (or rather the associated complementary slackness). A common objective
function is therefore required to assess a given schedule, in terms of its real cost and of
its constraint mismatch. The fictitious costs c−k do the job: the value of a “real” schedule
{pi}i∈ϑ∪H is the sum of its real cost (2.2) and of the total fictitious cost

c0
(
d0 − ∑

i∈ϑ∪H
pi

)
+

3∑

k=1

c−k
(
dk − ∑

i∈ϑ∪H
Rk,i(pi)

)

−
.

In particular, the fictitious cost of a reserve is useful to penalize violations of the con-
straints p−k � 0, k = 1, 2, 3. This remark will be important for Sections 4 and 5. ��

3. The dual problem and its resolution

A first step for the resolution of (2.5) via Lagrangian relaxation is to solve the dual. This
provides a lower bound on the optimal cost. More importantly, a solution of a convexified
form of (2.5) is also provided; we call it a pseudo-schedule, and it will play a crucial
role to recover a primal heuristic solution in §4. The reader may wish to consult [30, 31]
for a more complete account of duality, following the same lines.

3.1. The dual problem

Taking dual variables λ ∈ R
T (for the balance constraint (2.3) at each time period) and

µ ∈ R
3T
+ (for each reserve constraint (2.4) at each time period), we form the lagrangian

L(p, w, λ, µ) := c0(p0) − λ�p0 + ∑3
k=1

(
c−k(p−k) − µ�

k p−k
)

+ ∑
i∈ϑ ci(pi) − λ�pi − µ�Ri(pi)

+ ∑
i∈H ci(wi) − λ�pi(wi) − µ�Ripi(wi)

+λ�d0 + µ�d .

Its minimization for given λ, µ amounts to solving the local problems

min
p0∈RT

c0(p0) − λ�p0 ,

min
p−k∈R

T+
c−k(p−k) − µ�

k p−k k = 1, 2, 3 ,

min
pi∈P i

ci(pi) − λ�pi − µ�Ri(pi) i ∈ ϑ ,

min
wi∈Wi

ci(wi) − λ�pi(wi) − µ�Ripi(wi) i ∈ H .

(3.1)



A primal-proximal heuristic applied to the french unit-commitment problem 137

The resulting optimal value is the dual function, which must be maximized over (λ, µ) ∈
R

T × R
3T
+ .

From now on, we will return to the condensed notation (1.1), (1.2) and neglect the
sign-constraint on the dual variables; then we have x = (p−k, pϑ, wH) and m = 4T .

It is well known that any dual value θ(λ) is a lower bound for the optimal cost in
(1.1) = (2.5), and that θ is a concave function. Calling x(λ) an optimal solution in (1.3) =
(3.1), it is also known that the vector g := g(x(λ)) ∈ R

m is a subgradient of θ (or rather
a “supergradient”, θ being concave). Examining the local problems (3.1) shows that θ

is a polyhedral function, with kinks at those λ such that x(λ) is ambiguously defined.
The dual problem is definitely a nonsmooth optimization problem.

The present dual approach is fairly classical, especially for unit commitment, and
does not deserve much more comment. We just mention that the numerical illustrations
to be reported below have been obtained with a bundle method. This is substantially
more sophisticated than a mere subgradient method of the type λ+ = λ+ sg(x(λ)). The
resulting dual algorithm therefore involves two (complicated but) very different worlds,
sketched in Fig. 3.1: the primal world is in charge of solving (1.3) = (3.1), and the dual
world iterates over the dual variable λk . For each of these two worlds, the other is a black
box which delivers appropriate information upon request.

3.2. Overview of bundle methods

A bundle method works in a way analogous to column generation.
Having solved the local problems (1.3) for a number of dual iterates λk , one has

obtained corresponding optimal solutions xk = x(λk); by construction, each xk lies
in the set X of “technically feasible” schedules; note that none of them satisfies the
linking constraints, though – otherwise (1.1) would be solved. Then one constructs the
“restricted” dual function

θ̂ (λ) := min
k

L(xk, λ) = min
k

[
c(xk) + λ�g(xk)

]
, (3.2)

which (over-)approximates the actual θ , insofar as the “restricted” set {xk}k approximates
the whole of X.

Standard column generation finds the next iterate λ+ by solving the LP restricted
master maxλ θ̂(λ), i.e. maxλ mink L(xk, λ), i.e.

bundle

Dual world

x(λ)

λ

θ and g

Primal world

min
xi∈Xi

ci(xi) + λ�gi(xi)

λk

Fig. 3.1. The primal-dual dialogue
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{
max r (λ, r) ∈ R

m × R ,

r � c(xk) + λ�g(xk) for each k .
(3.3)

In nonsmooth optimization, this is known as the method of Kelley, or Cheney-Goldstein,
or cutting planes [10, 26].

Bundle methods are stabilized versions of column generation. At the current itera-
tion, one chooses a stability center λ̂, a stepsize s > 0, and one solves the QP restricted
master max θ̂ (λ) − ‖λ − λ̂‖2/2s, i.e.

{
max r − 1

2s
‖λ − λ̂‖2 (λ, r) ∈ R

m × R ,

r � c(xk) + λ�g(xk) for each k .
(3.4)

Without entering details, the stepsize is adjusted at each execution of the local problems;
and the stability center λ̂ is essentially the best among the previous iterates. It is this λ̂

which is supposed to converge to some dual solution, say λ̂ → λ∗.

3.3. Primal interpretation and pseudo-schedules

The above algorithms have a primal interpretation, obtained by (bi-)dualization. This is
well-known for pure cutting planes: the dual of (3.3) is

min
α∈�

∑

k

αkc(xk) , subject to
∑

k

αkg(xk) = 0 , (3.5)

where � is the unit simplex (of appropriate dimension, depending on the iteration num-
ber). In a bundle method, the QP restricted master (3.4) has also a dual, which turns out
to be

min
α∈�

∑

k

αkc(xk) + s

2

∥
∥
∥
∑

k

αkg(xk)

∥
∥
∥

2 + λ̂� ∑

k

αkg(xk) . (3.6)

Call α̂ ∈ � an optimal solution of (3.5) or (3.6). This (bi)-dualization reveals impor-
tant primal objects:

a pseudo-schedule x̂ := ∑
k α̂kxk

with corresponding pseudo-cost ĉ := ∑
k α̂kc(xk)

and pseudo-constraint ĝ := ∑
k α̂kg(xk) .

(3.7)

To help intuition, observe that

– pure cutting-planes imposes the constraint ĝ = 0: see (3.5);
– in a bundle method, this constraint is rather dualized (with multiplier λ̂) and penalized

(with penalty parameter s/2): see (3.6);
– if c is linear, then ĉ = c(x̂): the pseudo-cost is the cost of the pseudo-schedule;
– if g is affine, then ĝ = g(x̂): the pseudo-constraint is the constraint-value at the

pseudo-schedule.

Observe also that x̂ does not normally lie in X: it is not a “technically feasible” schedule,
hence our terminology.
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Remark 31. The solution of (3.4) is λ+ = λ̂ + sĝ, with ĝ given in (3.7) and α̂ solving
(3.6). Knowing that ĝ is an “approximate subgradient” of θ at λ̂, s appears as a stepsize
and we see here that a bundle method resembles a subgradient method.

Our use of simplified notation (1.1), (1.2), instead of (2.5), (3.1), eliminates the
additional dual variable µ. A more serious simplification is that, if (3.4) had positivity

constraints, say maxµ�0 θ̂ (µ) − ‖µ−µ̂‖2

2s
, its dual would be fairly more intricate than

(3.6). Deriving this dual would be possible, though. Calculations are left to a motivated
reader, they follow [40], [9, §14.3]. ��

Convergence of a bundle method means that

– the pseudo-cost tends to the dual optimal value: θ(λ̂) → max θ and ĉ → max θ ;
– the pseudo-constraint tends to 0: ĝ → 0;
– besides, the stability center tends to a dual solution, if any: λ̂ → λ∗.

Theory tells us that ĉ � max θ ; besides, we have at each iteration

θ(λ) � θ(λ̂) + ε + ĝ�(λ − λ̂) , for all λ ∈ R
m ,

where we have set ε := ĉ − θ(λ̂) � 0. The algorithm can therefore be stopped when
both ε and ĝ are small: λ̂ is then approximately dual optimal.

In practice, ε tends to 0 much faster than ĝ. Altogether, we see that the crucial point
in a bundle method is to obtain a small ĝ, i.e. to obtain a pseudo-schedule which is
approximately “pseudo-feasible” with respect to the linking constraints (more simply,
it is approximately “feasible” if these constraints are affine).

3.4. Numerical illustration

In EdF’s current implementation, the dual problem is solved by the bundle code de-
scribed in [34], the restricted master problem being solved by K.C. Kiwiel’s code qpdf4
described in [27, 28]. Some numerical illustrations following the same approach can be
found in [32, 16, 15, 18] among others, see also [20] for most recent results; [37, 35]
give comparative results with the interior-point and subgradient algorithms. Here we
illustrate the behaviour of [34] on the model of §2.

We use three datasets, representative of various everyday situations, with different
sets of available production units. In each of these sets, the primary reserve is neglected.
There are 96 demand constraints, plus 2 × 96 = 192 reserve constraints, plus a number
of daily constraints alluded to in Remark 21.

– Dataset A has 69 408 primal variables (power generation and reserves contributions
for each unit at each time step) and 828 linking constraints (corresponding to 540
daily constraints); the maximal demand is 62 000 MW.

– Dataset B has 62 496 primal variables and 780 linking constraints (corresponding to
492 daily constraints); the maximal demand is 58 000 MW.

– Data C has 52 128 primal variables, 780 linking constraints, and a maximal demand
of 52 000 MW.
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Table 3.1. Statistics for three dual optimizations

Data m # iters |B| (R2)− (R3)−
A 828 200 6.70 5.59 2.18
B 780 189 2.21 2.99 0.0
C 780 174 1.70 2.86 0.0

A

0.1

0.03


 = normalized θ
1

0.0001 C
B

iterations
2001

0

Fig. 3.2. Evolution of the (normalized) dual function

Table 3.1 gives the statistics: number of iterations, and constraints violations ĝ by the
final pseudo-schedule – see (3.7). An iteration is one resolution of the quadratic master,
followed by one minimization of the Lagrangian. In the last three columns of Table 3.1,
the notation B [resp. Rk] stands for the real mismatch in the balance constraint (2.3)
[resp. the reserve constraints (2.4)], excluding the fictitious generators. In other words
we have (recall that there is no primary reserve)

Bt = d0
t −

∑

i∈ϑ∪H
pi

t and Rk
t = dk

t −
∑

i∈ϑ∪H
R

k,i
t (pi

t ) , k = 2, 3 . (3.8)

An overline means average value (over time); the powers are given in MW.
It should be mentioned that excellent initializations are available for λ: between the

initial and final iterates, the dual function increases by less than 5 %. Figure 3.2 gives an
idea of the behaviour of θ(λ̂) along the iterations. For industrial privacy, θ -values are
normalized: K being the total iteration number, the picture displays in logarithmic scale


k := θ(λ̂k) − θ(λ̂K)

θ(λ̂1) − θ(λ̂K)
, for k = 1, . . . , K − 1 ,

a number varying from 1 to 0.
Due to the logarithmic scale, Fig. 3.2 is slightly deceiving, especially by the last

iterations. Figure 3.3 zooms the values of 
k for dataset A, during the last 60 iterations.
As explained at the end of § 3.3, a crucial parameter in the algorithm is the pseudo-

constraint ĝ in (3.7). Figure 3.4 shows the evolution of
∥
∥ĝ

∥
∥ for the three examples, also

in logarithmic scale.
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200
0

0.009

0.001

0.0001

140

normalized θ

iterations

Fig. 3.3. Tail of the (normalized) dual function, dataset A

iterations
200

‖ĝ‖ (log)

1

A

B
C

1000 MW

10 MW

Fig. 3.4. Evolution of the pseudo-constraint

Remark 32. Passing from one iteration to the next in the bundle algorithm does not
change much the restricted master (3.4) or (3.6):

– a new piece L(x+, λ) is introduced in θ̂ of (3.2) – resulting in an additional variable
α+ in (3.6),

– and/or the stepsize s is changed,
– and/or the stability center λ̂ is updated.

Thus the restricted master lends itself to warm starts. However, the CPU time to solve
(3.6) with qpdf4 is negligible compared with the time necessary for the local problems
(3.1). In our reported experiments, the QP solver is actually used in a very primitive
manner, where a cold start is performed at each iteration. This costs nothing in CPU and
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can but improve robustness of the QP solver: propagation of roundoff errors is avoided
in the Choleski matrix associated with (3.6). ��

3.5. Reoptimization

A problem of raising importance in energy production is the following. Suppose (1.1)
= (2.5) is solved, at least approximately. In particular the optimal cost is known, at
least a good approximation of it (we will see in §5 that the dual bound is such a good
approximation). Then comes a perturbation of the righthand side: d in (2.5) is replaced
by d + δd , and one wishes to estimate quickly the corresponding perturbation of the
optimal cost. A simple solution is to use duality: the sensitivity of the optimal cost (or of
its dual approximation but this is good enough) with respect to the righthand side is λ∗.
When the perturbation is large, however, this may result in substantial error; it is then
safer to perform a reoptimization with the new righthand side.

Call C(d) the dual optimal value of (2.5), considered as a function of the righthand
side. Standard duality theory says that C is a convex function:

C(d + δd) � C(d) + λ∗�
δd .

Therefore λ∗�δd underestimates the change of the optimal cost, and is exact if a poste-
riori, λ∗ is still a dual optimal solution for the new righthand side d + δd.

An obvious but important remark is that the righthand side has no influence whatso-
ever on the Lagrangian problems (3.1). Thus, each primal point xk obtained during the
first dual optimization would be obtained again during the second, if L(x, λk) in (1.2)
were minimized with the same λk . It follows that the function θ̂ (λ) + λ�δd – see (3.2)
– is still a valid restricted dual function: it can be used right away for the second dual
optimization, and this hot start may spare computing time.

We illustrate this technique with four typical perturbations of the demand d0, given
on Fig. 3.5. The data concern a Friday, with its dangling Saturday; the nominal demand
oscillates between 37 000 and 54 000 MW; δd is a “stripe”, extending between two time-
steps – here 6am and 6pm – representing an additional need of some industrial customer.
We make 4 scenarios, with stripes of width ranking from 1 000 to 4 000 MW.

Each of these perturbations does modify the optimal λ∗, as illustrated on Fig. 3.6.

060 18

Friday

Fig. 3.5. Typical perturbation of the demand
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0 186 0

Fig. 3.6. Corresponding perturbation of λ∗

Table 3.2. Statistics for reoptimization

δd0 (MW) # iters CPU (s) δC instead of
0 123 406 0 0

1 000 89 294 1.7 1.4
2 000 68 224 3.6 2.8
3 000 130 429 5.6 4.2
4 000 111 366 7.9 5.6

Table 3.2 gives the statistics of the re-optimization, comparing the actual and lin-
earized increases of the cost; increases are given in fractions of the nominal max θ

(normalized, as in §3.4).

4. Primal recovery: two possible approaches

As a rule, the dual algorithm of §3 does not produce any primal solution, not even an
approximately feasible one: recovering reasonable schedules calls for appropriate heu-
ristics. The situation is then as follows: we have solved the dual problem associated with
(1.1) and we have on hand

– a number of schedules xk , obtained from (1.2) with λ = λk;
– the last stability center λ̂, which solves (approximately) the dual problem;
– the last pseudo-schedule x̂, which solves (approximately) a convexified form of

(1.1),
– its accompanying pseudo-cost ĉ and pseudo-constraint ĝ of (3.7).

This data is available either from a standard column generation, or from a bundle algo-
rithm2.

Various approaches are possible for primal recovery:

(i) An exploration of the dual space around λ̂ forces (1.2) to answer more fea-
sible schedules; this is used for example in [48, 35]. Along the same lines,

2 Incidentally, we also mention a lesser-known fact: x̂ would also be available from a standard subgradient
algorithm, see [1, 29] or [43, p. 116].
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[3] uses a rather common technique in combinatorial optimization: to append
redundant constraints, which might reduce the duality gap.

(ii) The primal space can also be explored directly. This is proposed in particular
in [16, 15], where the exploration is made around x̂.

(iii) Inspection of the xk’s reveals that many of their components take on the same
value, for all k. Fixing these components drastically reduces the size of X,
and thus allows a direct resolution of (1.1) with standard MIP tools; see [18,
44].

The design of heuristics at EdF is bound by the complexity of the model, in par-
ticular of the Xi’s. The only practical schedules are those issued by (1.3) = (3.1) and
it is hard to perturb them consistently. Pattern (i) is therefore followed, the Lagrangian
being perturbed so that the dualized constraints will be better satisfied. The proposal of
the present paper (§4.1 below) uses the pseudo-schedule x̂ as in [16, 15], an approach
which is probably a key to good heuristics. In §4.2 we present the heuristics currently
used at EdF.

4.1. The primal proximal idea

It is crucial to understand – as in standard column generation – the particular role played
by the pseudo-schedule x̂. A simple example will illustrate it.

Example 41. Consider the problem with one variable and one constraint:

min x , x ∈ X := {−1, 0, +1} , g(x) := x = 0 ,

with solution x∗ = 0. Then L(x, λ) = (1 + λ)x and θ(λ) = −|λ + 1|. We may assume
that the Lagrangian solver (1.2) computes

x(λ) =
{

1 if λ � −1 ,
−1 if λ > −1 ,

so that g(xλ) =
{

1 if λ � −1 ,
−1 if λ > −1 ,

the point being that only a very smart (1.2) could answer x(−1) = 0.
Start the dual algorithm at λ1 = 1, thus obtaining x1 = −1 (so that θ(λ1) = −2

and θ̂ (λ) = −1 − λ). Then come a number of iterations depending on the particular
algorithm chosen. We may assume for simplicity that we are using a bundle method with
s = 2; with λ̂ = 1, we obtain λ2 = −1. Then x2 = 1 is computed, with θ(λ2) = 0.
At this stage, we detect that λ2 is dual optimal: in fact θ̂ (λ) = min{1 + λ, −1 − λ} is
maximal at λ = −1 with value θ̂ (−1) = 0 = θ(−1). At the same time, (3.5) or (3.6)
(with λ̂ = 0) provides x̂ = 1

2 (x1 + x2) = 0, the required primal solution. ��
This naive example reveals the irrelevance of all possible answers xk from the local
solver (1.3): none of them, taken individually, is any good in terms of the dualized con-
straints. By contrast, their convex combination x̂ appears as “better than the others”. The
remark can even be pushed further: X could be any set between {−1, +1} and [−1, +1],
the situation would still be the same. All of the xk’s would look like random points, while
x̂ would somehow be the best possible point computable via duality.
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Therefore, duality would probably give better primal results if the xk’s could some-
how be made closer to x̂. This suggests a simple idea: to add a quadratic term r‖x − x̂‖2

to the cost function c(x), thus forcing the Lagrangian solver in (1.2) to answer better
primal points, in terms of the dualized constraints. Of course, note that the perturbed
dual function

θr(λ) := min
x∈X

Lr(x, λ) , where

Lr(x, λ) := c(x) + r‖x − x̂‖2 + λ�g(x) (4.1)

will no longer bound the primal cost from below. Besides, a dual alogrithm will produce
a new pair (x̂r , λ̂r ), biased by x̂.

When specialized to the unit-commitment problem (2.5), the local problems (3.1)
become

min
p0∈RT

c0(p0) − λ�p0 + r‖p0 − p̂0‖2 ,

min
p−k∈R

T+
c−k(p−k) − µ�

k p−k + r‖p−k − p̂−k‖2 k = 1, 2, 3 ,

min
pi∈P i

ci(pi) − λ�pi − µ�Ri(pi) + r‖pi − p̂i‖2 i ∈ ϑ ,

min
wi∈Wi

ci(wi) − λ�pi(wi) − µ�Ri(pi(wi)) + r‖wi − ŵi‖2 i ∈ H .

(4.2)

The decomposability property is preserved, only the form of the cost has changed;
dynamic programming (i ∈ ϑ) is not affected, and interior-point (i ∈ H) accommo-
dates the quadratic term easily; as for the fictitious problems, they are trivial anyway.

Remark 42. Alternatively, one can penalize the deviation of the (local) constraint values.
With the schematic form (1.1), (1.3), the penalized local problems become

min
xi∈Xi

ci(xi) + λ�gi(xi) + r‖gi(xi) − gi(x̂i)‖2 .

This is probably more sensible, as it gets closer to the augmented Lagrangian idea of
§4.2 below. Note also how this is reminiscent of primal decomposition [17].

With the specific problem (3.1), we obtain

min
pi∈P i

ci(pi) − λ�pi − µ�Ri(pi) + r‖pi − p̂i‖2 + r‖Ri(pi) − Ri(p̂i)‖2 , i ∈ ϑ

for the thermal units, and likewise for the others. However, a difficulty appears for the
hydro-valleys: since the production is a nonlinear function of the control variable, the
quadratic term r‖pi(wi) − pi(ŵi)‖2 results in a nonconvex quadratic program, which
can no longer be conveniently solved.

In what follows, we will content ourselves with the formulation (4.2), which repre-
sents a handy notation for the actual implementation. ��

The schedules computed in (4.2) are technically feasible and easy to compute; due
to their tendency to be closer to the pseudo-schedule, the hope is that some of them
are good in terms of satisfaction of the dualized constraints. In summary, the proposed
algorithm to solve (2.5) is composed of two phases:
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Algorithm 43 (phase 1 - phase 2 for unit-commitment).
Phase 1. Solve (by a bundle method) the dual problem associated with (3.1).

Obtain a dual solution λ̂ and a pseudo-schedule x̂.
Choose a penalty term r > 0.

Phase 2. Solve (by a bundle method) the dual problem associated with (4.2).
During this resolution, record the best schedule computed in (4.2). ��

Best schedules are of course those giving the best real + fictitious cost (remember
Remark 22). They can also be recorded during Phase 1. A reasonable value for r can be
computed: it must simply balance the primal costs and the (squared) constraint violations
obtained during the first phase. The perturbed dual problem is again convex, so the dual
algorithm can be started anywhere in Phase 2 – for example on λ̂. However, in contrast
with §3.5, the old xk’s are of no use to restart the second phase.

It is interesting to relate Algorithm 43 to the so-called (primal) proximal algorithm.
Indeed, for given x̂ ∈ R

n, consider the following perturbation, “more convex” than (1.1):

min c(x) + r‖x − x̂‖2 , x ∈ X , g(x) = 0 , (4.3)

whose optimal solution (assumed unique for simplicity) is called the proximal point of
x̂; we will denote it by pr(x̂). Clearly, if x̂ solves (1.1) then pr(x̂) = x̂. The converse
is also true under general assumptions: [13, Thm 1.4]. To solve (1.1) can therefore be
viewed as to find a fixed point of the mapping pr . This is an incentive for the proximal
algorithm:

Start from some x̂1; repeat
x̂�+1 = pr(x̂�) ,

(4.4)

designed in the 60’s to minimize ill-condtioned quadratic functions: [5].
Interestingly, the idea was used in [6] for nonconvex problems. More precisely,

assume that (1.1) has C2 data, and that standard second-order conditions are satisfied.
Then, for r large enough, the proximal algorithm (4.4) converges to a local minimum
x∗ of (1.1) providing that its initialization x̂1 is close enough to x∗. Note from the stated
assumptions that the perturbed Lagrangian Lr(·, λ) of (4.1) becomes convex and there
is no duality gap: the proximal points can be computed by Lagrangian relaxation.

Here, the assumptions of [6] are far from satisfied. However we retain that a good ini-
tialization is important. From this point of view, Phase 2 of Algorithm 43 can be viewed
as the first iteration of the proximal algorithm, initialized on the pseudo-schedule com-
puted by Phase 1: x̂1 = x̂. Phase 2 terminates with some x̂2 (probably different from
x̂) and can be repeated if necessary. We have not implemented this possilibity: in our
experiences, one execution of Phase 2 has always been sufficient.

4.2. An approach via augmented Lagrangian

A known technique to cancel the duality gap is the augmented Lagrangian [23, 38, 40,
41, 7]. Consider the equivalent form of (1.1)

min c(x) + π‖g(x)‖2 , x ∈ X , g(x) = 0 . (4.5)
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The corresponding dual function is

θπ (λ) := min
x∈X

Lπ(x, λ) , where

Lπ(x, λ) := c(x) + λ�g(x) + π‖g(x)‖2 .

Under mild assumptions (certainly satisfied by the unit-commitment problem, see [24,
Thm. XII.5.2.2]), there is no duality gap: for π large enough, sup θπ is the optimal value
of (1.1). Unfortunately, the method is only theoretical, as Lπ(·, λ) is “impossible” to
minimize: cross-products of the type xixj destroy the decomposability property.

Remark 44. When (1.1) is convex, the above augmented dual function satisfies

θπ (λ̂) = max
λ∈Rm

θ(λ) − 1

4π
‖λ − λ̂‖2

(see [25, Prop. XII.5.2.3]). Comparing with (4.3), a dual method using augmented
Lagrangian appears as a dual proximal algorithm to maximize the dual function θ :
the proximal term ‖λ − λ̂‖2 occurs in the dual space. Compare also with the bundle
approach (3.4). ��

The method currently in operations at EdF is based on augmented Lagrangian; it is
made implementable via a mechanism due to [12], which works as follows; see [39].
First linearize the trouble-making term ‖g(x)‖2; denoting by x̃ the linearization point,
the augmented Lagrangian becomes

L̃π (x, λ, x̃) = c(x) + λ�g(x) + 2πg(x̃)
∂g

∂x
(x̃)(x − x̃) .

Then the local problems can cope with this Lagrangian, to compute the iterates xk . How-
ever, the whole beneficial effect of augmented Lagrangian heavily relies on a quadratic
term (to stabilize the xk’s); L̃π is therefore modified further to the “augmented-linear-
ized-proximized” Lagrangian

L̃rπ (x, λ, x̃) = L̃π (x, λ, x̃) + r‖x − x̃‖2

= c(x) + λ�g(x) + 2πg(x̃)
∂g
∂x

(x̃)(x − x̃) + r‖x − x̃‖2 .

Its minimization (for given λ = λk and x̃ = x̃k) by the local problems gives the iterate
xk . Then λ is updated according to the standard scheme in augmented Lagrangian (see
[7, §4.2] for example)

λk+1 = λk + π
∂L̃rπ

∂λ
(xk, λk, x̃k) = λk + πg(xk) .

As for x̃, it is simply set to the current iterate: x̃k+1 = xk .
The quadratic term ‖x−x̃‖2 introduces the proximal mechanism; the above approach

resembles Algorithm 43, but with a number of differences:
– the insertion of the linear term 2πg(x̃)

∂g
∂x

(x̃)x,
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– a “diagonalized” update of λ and of the primal stability center: here they are updated
simultaneously, a strategy à la Arrow-Hurwicz [2]; by contrast, Algorithm 43 uses a
strategy à la Uzawa [46], updating x̂ (or x�, to follow the notation of (4.4)) only after
having performed a full optimization on λ.

EdF’s implementation has two more differences:
– the stability center x̃0 is initialized on the last xk computed during Pase I (but our

example at the beginning of §4 suggests that this is not a sound idea),
– the approach is actually applied to a Lagrangian decomposition form of (2.5), with a

duplication of the primal variables (see [21, 22] and [33, §4.3]):

min c(x) , x ∈ X ⊂ R
n , g(y) = 0 ∈ R

m , x = y

and it is the constraints x = y that are dualized.

5. Primal recovery: comparative illustrations

The two techniques described described in §4 – namely PS (pseudo-schedule) of §4.1
and AL (augmented Lagrangian) of §4.2 – have been extensively compared on real
instances. Invariably the comparison turned to the advantage of PS, mainly in terms of
robustness. The present section illustrates on a few concrete examples the typical results
observed.

5.1. Standard situations

We start our comparison with the three datasets of §3.4. For each example, we compare
in Table 5.1 the schedules obtained, in terms of their cost and actual constraint violations.
The column “cost” records the excess of the total cost (real + fictitious) over the lower
bound max θ obtained in Phase 1; and see (3.8) for the notation B, Rk .

The table also shows the iteration number where the best schedule has been obtained,
and the number of iterations until termination (remember that AL has no reliable stop-
ping criterion). An important advantage of PS is to find its best solution before AL – in
addition to the availability of a stopping criterion.

5.2. A difficult case

In Case D, used in this section, the power load reaches a peak at 70 000 MW, thus pro-
viding a suitable test to illustrate the robustness of PS. Phase 2 becomes substantially

Table 5.1. Statistics for three standard examples

Data Alg. cost |B| (R2)− (R3)− Iteration #
% megawatts best stop

A AL 1.27 44.0 12.7 0.8 155 200
PS 0.56 36.4 3.7 0.4 28 65

B AL 0.22 22.5 6.1 0.0 95 200
PS 0.14 21.6 6.4 0.0 8 33

C AL 0.26 17.6 11.8 0.0 163 200
PS 0.16 29.7 10.9 0.0 11 36



A primal-proximal heuristic applied to the french unit-commitment problem 149

harder to solve, as is suggested by the iteration numbers reported in Table 5.2; note
also how expensive is the schedule found by AL (8.1% more than the lower bound).
On the other hand, the average mismatches of the linking constraints seem acceptable.
However, the maximal shortage in power, reached at a certain time t̄ , is unacceptable
for AL (1 659 MW – remember from (3.8) B < 0 means an insufficient production; this
schedule is totally useless) and very bad for PS. We note for future use that there is also
a shortage of tertiary reserve at t̄ .

Obviously, both algorithms should have started an additional unit at t̄ , but they failed
to find such a solution. Actually, the blame is on the fictitious generator: at t̄ , the magni-
tude of λ becomes comparable to the slopes of c0 (see Fig. 2.2). Then the algorithms use
an unduly large amount of fictitious power: this is cheaper than starting an additional
unit (probably most expensive, otherwise it would already be on!), and keeping it on for
a possibly long time (because of technological constraints).

Table 5.3 therefore reports on an experiment with a more brutal and simple c0
t (x) :=

103|x|. Because c0 can hardly be given a sensible economic interpretation, the table also
records real costs, excluding the fictitious ones. Observe the reasonable discrepancies
for PS, which proposes a cheaper schedule than AL. Actually, the latter again failed to
converge. Note in particular that there is now an (unacceptable) overproduction at t̄ ; and
it is accompanied by an underproduction of tertiary reserve; this is nonsense: shifting
some of the power to the tertiary reserve would do only good.

5.3. Inserting primary reserve

Finally, two cases – E and F – consider the three reserves altogether. Table 5.4 gives the
statistics, as before. Only real costs are considered, the cost of AL being normalized to
1. Again, PS finds faster more economic schedules.

As a general conclusion to all of these experiments, we summarize the advantages
of the PS algorithm of §4.1.
– In normal situations, the best solution is generally found earlier in the iterative process.
– It has an implementable stopping criterion; and it can be iteratively repeated if neces-

sary.
– Its solutions are statistically cheaper than the solutions obtained with theAL algorithm.
– Mismatches of the linking constraints are smaller.

Table 5.2. Case D: an unusual peakload

Alg. cost |B| (R2)− (R3)− Bt̄ R3
t̄

Iter. #
% megawatts megawatts best stop

AL 8.1 118.1 3.8 2.0 -1659 -5 200 200
PS 1.5 105.6 6.7 2.3 -786 -12 195 200

Table 5.3. Case D with increased c0

Alg. cost cost |B| (R2)− (R3)− Bt̄ R3
t̄

Iter. #
% (real) megawatts megawatts best stop

AL 33 -0.21 79.2 15.2 50.4 1301 -727 200 200
PS 12 -1.14 31.6 18.8 8.1 -42 -56 8 200
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Table 5.4. Two cases with primary reserve

Data Alg. cost |B| (R1)− (R2)− (R3)− best
megawatts iter

E AL 1 45.7 0. 15.3 0. 199
PS 0.98 29.8 0.2 9.0 0. 37

F AL 1 47.5 2.2 9.0 0.3 198
PS 0.99 46.7 1.5 9.0 0.1 72

– It is easier to tune and more robust, especially with respect to the fictitious cost.
– It is less sensitive to the addition of new linking constraints.
– More generally, it only uses standard duality, which makes it more satisfactory from

a theoretical point of view.
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