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Decomposition and 
Coordination: A Unified  Approach 

GUY COHEN 

Abszmc-h the general  framework  of inifinitedimemiod convex 
progrsmming, two fundamental principles are demoostrated and wed to 
derive  several bas& algorithms to solve a socalled “master“ (comtraiaed 
optimization) problem. These algorithms comist in solving an infinite 
sequence d “a- problems whose solutions converge to tbe master‘s 
optimal one. By making particular choices  for the. auxiliary problem, one 
can recover  either  classical algorithms (gradient, Newton-Rapbson, 
Umwa) or deampmition-coodhation (two-level) algorithms. 

’Ibe advantages of tbe theory are that it clearly sets the connection 
between classical and two-level algorithms, it  provides a framework for 
clpssirying the two-level algorithms, and it  gives  a  systematic way of 
deriving  new algoritluns. 

I. INTRODUCTION 

algorithms have been related to  some “coordination prin- 
ciples” by their authors, it seems that there is no general 
agreement about the number and the classification of 
these principles. Moreover, it is possible to find examples 
of algorithms which differ from each other only by the 
way the “free variables” are chosen, but which fundamen- 
tally amount to the same principle (e.g.,  see Section 

Such a situation is not satisfactory from the theoretical 
viewpoint  (even if it  may  be relevant to go more deeply 
into details for practical purposes). Moreover, the follow- 
ing question naturally arises when considering this  new 
approach of optimization: is there any original principle 

VII-A). 

Manuscript received  March 7, 1977. 
The author is with the Centre d’Automatique  et  d‘Informatique, two-level algorithms on a new ground. 

ENSMP, Fontainebleau, Cedex, France. We shall distinguish between sequential and parallel 

0018-9286/78/0400-0222$00.75 01978 IEEE 



COHEN: OPTIMIZATION BY DECOMPOSITION AND COORDINATION 
/ 

&(a,u,&) s K(tA)+ & Y ? M u w  223 
+E4 (K) 

decompositions.  While the former  can be considered as a  pending  on some v E % and E > 0: 
more  general  way of describing optimization algorithms to 
be implemented on classical computers, the latter is  per- 
haps the true original feature  of the theory Of ~O-leVel where (' , e )  denotes the duality product between % and 
algorithms Since it allows One to Set rekltively hpOrkUlt its dual space L&* (01 the scalar product in % when  is 
tasks to  be achieved  in asynChrOnOUS parallelism. S O ,  One a Hilbert space canonically identified with %*). The 
must consider the u s e f u h ~ s  of  Such a theory with regard accent denotes the  derivative. Then we have  the funda- 
to the new possibilities  offered  by  microprocessors mental l e m a .  
arranged  into "parallel" computers. Lemma I :  Assume that v is such that 

framework in which  almost  every already existing or G " ( v ) =  min G"(u);  (3) 
forthcoming algorithms can  be situated. This will contrib- #€%f 
Ute to give a clearer, less intricate vision of the theory. then 

The third purpose, and the most important one, is to 
provide the user  with a powerful  tool for designing  new J ( v ) + J 1 ( v ) =  m i n J ( U ) + J , ( U ) .  (4) 
algorithms and systematically  exploring the various  possi- 
bilities. On OUT way,  we  shall  extend  well-known methods pro03 Straightforward from the variational inequal- 
to a larger  class of situations (e.g., the price coordination ity characteking every -ing element u* of a func- 
will be extended  to the nonseparable case). tional J + J,, namely, 

In the process of adapting the following basic algo- 
rithms to practical situations, we do  not, however, intend u* E qf and vu E qf : ( J ! ( ~ * ) ,  - u * )  
to deny the important part played  by  experience  (or art) 
in making  many  choices and in bringing one's problem + J 1 ( u ) - J , ( u * ) > 0 .  ( 5 )  
into a form  amenable  to the use of these  algorithms.  We 
shall  call  this  process  "problem manipulation" (a term  (See, e&, Ekeland-Teman [121.) 0 
that we borrow from Geoffrion [lSD and whose  sigmfi- The  above krnma Says that if 0 happens to be a 
cance will  become more precise hereafter. solution of the problem of minimizing G" on %f [the 

n e  paper is organized as follows. w e  first present the so-called  auxiliary problem (AP)], then it is also a solution 
two  basic  principles in an abstract framework of convex  of the MP.' T O  find  such a V we use a kind of fixed-point 
optimization on Banach or Hilbert spaces. Then we corn- algorithm Starting from Some initial guess U o ,  finding U1, 
bine these two principles in various  ways to build  several  minimizing G"', and SO on. We can  have a functional K as 
abstract algorithms.  However,  the complete study of these  well and a Scalar E depending  on the iteration index k. S O  

basic  algorithms (theorems of convergence and proofs) we  have the first basic algorithm for Some family 
will be published  elsewhere [6]. Here we shall  pay more { K k , E k , k E N ) :  
attention to showing  by  several  examples  how  this ab- Algorithm 1: 
stract material can  be used  in practical situations. This i) Choose u0 @referably in %j). Set k=O. 
does not mean at all that we intend to make a survey of i) Solve the A p :  
the  plentiful literature on two-level  algorithms and  to 
show that all of them can actually be derived from  our min K k ( ~ ) + ( ~ k J ' ( ~ k ) - ( ( K k ) ' ( ~ k ) , ~ ) + ~ k J 1 ( ~ ) .  (6) 
formalism.  We let the reader play the game  by  himself 
with any algorithm he  is aware of and convince  himself Let U k + ~  be a solution. 
whether or  not  our objectives are met. 

G":u+K(u)+(J'(v)-K'(v),u)+J~(u) (2) 

The  second  purpose of the paper is to give a general 

U E % J  

U€%f 

iii) stop if ~J(U~)+J,(U~)-J(U~+')-~l(u~+' >I or lluk 
- uk+lll is  below  some  threshold.  Otherwise  make k t k +  

11. THE  AUXILIARY PROBLEM PRINCIPLE AND FIRST 1 and return to step ii). 
FAMILY OF BASIC ALGOWHMS At this point, some remarks are of interest. The  above 

auxiliary problem principle is just  a generalization of an 
A. The Auxilialy Problem  Principle idea that  has already appeared elsewhere, e g ,  in the 

following.  Let us mention Ci?a [5] ("auxiliary operator 
Let US consider a functional J on a Banach space % method") (as pointed out to the author by Dr. Mieflou) 

that we assume k c . ,  convex, and differentiable, a func- and Aubin [ 11 who  himself refers to Lions [19] and  Gold- 
tional JI that we assume O d Y  k c -  and convex, and a stein [ 171. The main advantage of  this  principle, at least in 
closed  convex  subset Qf of %. We consider the so-called the  case  when the nondifferentiable part 1, is not present, 
master  problem (MP): rests  in the fact that the main features of the Apk are 

included in the functional K k  (which  we call for this reason 
min J ( u ) + J I ( u ) .  

U € % J  the "core"), since K k  is only affected by linear modifica- 

Now let K be another functional with the same  assump- property may be related to the concept of applicability in 
tions as for J and consider the following functional de- Mesarovic et d [21]. 
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tions (see (6) with JlrO) and that, when making the 
choice for the core, we shall be subjected to rather mild 
restrictions. Thus, we shall be able to ensure existence and 
unicity of the solution of (6), as well as good numerical 
conditioning, and moreover, we shall take care of struc- 
tural properties of %, %f (and possibly J1) to  obtain a 
decomposed A p k .  

As far as convergence of Algorithm 1 is concerned, we 
only mention here that under standard convexity and 
coercivity assumptions on J and the Kk's and Lipschitz 
continuity of the derivatives, the algorithm is convergent 
for sufficiently  small E k ' ~ .  A precise statement and a proof 
can be found in [6]. Notice, moreover, that the sequence 
{ J (u  k ,  + J,( u ')} is monotonically decreasing (except if 
u k =  u* for some k). 

B. Other  Variants 

We shall  briefly describe here some other variants of 
Algorithm 1 .  First, notice that we can divide G" [see (2)] 
by E without changing the Ap. This can be interpreted as 
taking E = 1 in (2), but changing the core K into K / E .  So, 
choosing E small enough amounts  to taking a core coer- 
cive' enough. Essentially the same effect can be achieved 
by changing K into K +  M where M is a quadratic func- 
tional, e g ,  

M :  u+yllu112, y>o.  (7) 

Let % be a Hilbert space. Then this modification in- 
troduces an additional term yllu - uk 1 1 2  into (6). This kind 
of quadratic modification has often been used to ensure 
convergence. In particular, it is akin to the "proximal 
point algorithm" (Rockafellar [24]). 

Another way of introducing the E is by over-(€ > 1) or 
under-(€< 1) relaxation schemes. It proceeds as follows. 
Take E = 1 in (6), but call t j k +  the solution of the corre- 
sponding Apk and take 

u k + l = E k c k + l  + (1 - E k ) U k  (8) 
as the next information to update the &+' (make sure 
that uk+ l  belongs to %f by taking, if necessary, e k  < 1 ) .  
This last algorithm converges under the same conditions 
on the ek's as Algorithm 1 does (see [6l), although. the 
corresponding sequence { u k l  k E N }  is different in  gen- 
eral. 

111. RELAXATION AND RELAXED ALGORITHMS 

The previous principle will hereafter be related to 
parallel decomposition (although, as we have  seen,  it  is 
not intrinsically related to any idea of decomposition). 
The next principle we shall discuss now  is related to the 
idea of sequential decomposition. Let a decomposition 

% = % l x . . -  x%,; 
%{cQi; i = l , . - -  , N ;  

%f=Q{x- . .  x%$ (9) 

*Coercive means that ~ b > ~ : ~ u , o ( ~ ' ( u ) - ~ ' ( u ) , u - o ) ~ b ~ ~ u - u ~ ~ ~ .  

_____ ~ ~ 

be given 
Relaxation3  Algorithm: 
i) Choose u ' = ( u ~ ; - . , u ~ ) .  Set t=O,  i = l .  
ii)  Solve 

min J ( u ~ + l ; . -  , u ~ ~ ~ , u i , u ~ + ~ , . . . , u ~ )  (10) 
u, E 3; 

and let u/+l  be a solution. 
iii) If i = N go to step iv).  Otherwise  make i t i  + 1 and 

return to step ii). 
iv) Either stop if some desired level of accuracy is 

obtained or set i =  1, make t t t +  1 ,  and return to step ii). 
0 

Relaxation is a well-known idea in numerical analysis. 
We now combine the principles of relaxation and of the 
auxiliary problem into one algorithm. For the sake of 
notational simplicity, we drop the nondlfferentiable part 
J, and  do not mention the possible dependence of K and E 

on the iteration index k .  Moreover, we limit  ourselves to a 
decomposition into only component spaces which we call 
Q and T containing the feasible sets %f and ?!?. All 
these restrictions are clearly not fundamental. 

The MP now  is 

min J ( u , c ) .  (1 1) 
(u, c) E a' x 5f 

Algorithm 2 (relaxed cersion of Algorithm 1): 
i) Choose (u0,c9. Set k = 0. 
ii) Solve the A%: 

min ~ ( u , u ~ ) + ( e , ~ , : ( u ~ , ~ ~ ) - ~ , : ( u ~ , g ~ ) , u ) .  (12) 
uEY7f  

Let uk+l  be a solution. 
iii)  Solve the AC: 

min K ( U ~ + ~ , ~ ) + ( E ~ J L : ( U ~ + ' , ~ ~ ) - K ~ ( U ~ + ' , G ~ ) , ~ ) .  
c E =,r 

(13) 

Let uk+'  be a solution. 
iv) Either decide to stop or make k+k+ 1 and go to 

step ii). 0 
Notice we can take different E ,  and e2 since Lemma 1 

can be  generalized to this situation when (9) holds [and 
when J,, if present,  is additive w.r.t. to the decomposition 
(9)]. Notice also that combining the relaxation principle 
with other variants of Algorithm 1 (see Section II-B) 
yields  some other algorithms, appearing in [6]. 

Iv. FIRST EXAMPLES OF 
DECOMPOSITION-COORDINATION ALGORITHMS 

Before going to decomposed schemes,  let us briefly 
show the connection of the  previous principles with  classi- 
cal algorithms. If Q is a Hilbert space and K is  merely 

3This is a classical but rather confusing terminology since it has a 
completely  different meaning than in expressions such as over-or-under 
relaxation used previously. 

~~ ~ ~ ~~ ~ 
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then the solution of (6) (with J,=O) is 

u k + l = J J  ( U k  - E kJ’( u ‘)) (15) 

where II denotes the  projection onto %f. Hence, Algorithm 
1 amounts  to the classical  projected gradient algorithm in 
this  case. If 

K k  : u - + ~ ( u , J ” ( u k ) - ~ )  (16) 

and Qf= %, then we recover  the  Newton-Raphson  algo- 
rithm. 

A .  General Remarks on the Use in the Decomposition- 
Coordination Approach 

Consider the decomposition (9). Algorithm 2 allows  a 
sequential decomposition of the MP. This scheme can  be 
implemented on a  classical computer (single  processor). It 
has the advantage of reducing the amount of information 
present at the same time  in the core memory of the 
computer.  Consider now Algorithm  1  with  cores K k  of the 
form 

k 
K k  (u)= 2 qk (ui). (17) 

i =  1 

If the nondifferentiable part J ,  is indeed present in (l), we 
must also assume that it is  additive.  However, no particu- 
lar form of J is needed  and (17) suffices to make the Apk 
break up into N independent problems,  yielding  a struc- 
ture of (asynchronous) paraIiel decomposition. This struc- 
ture is  well suited to computers  made up of many  smaller 
(micro?)  processors. 

It is  worth mentioning a  special technique to define the 
Kk’s.  Let  us  first introduce the symbolic notation ‘3,; for 
some  given u k :  

i.e., only uj remains free. Then we  may take 

Notice in this case that taking e k  = 1 in (6) yields null 
linear modification terms (of course,  convergence  must be 
ensured by,  say, quadratic modifications). 

A way of comparing relaxed and  nonrelaxed algorithms 
for some  given core K is the following. In Algorithm 2, we 
use the core K and in  Algorithm 1 we use an additive core 
(17) where we define Kp by 

We shall  refer to the former as  a Gauss-Seidel scheme 
and to the latter as a Jacobi scheme,  borrowing  well- 
known  terms from  numerical analysis. In general, 
Gauss-Seidel algorithms converge faster (in number of 
iterations), but Jacobi algorithms allow  time  savings 

since parallel computations are possible (but, of course, 
one must  have the ad  hoc  computing tool at one’s dis- 
posal).  Let  us also mention more general schemes of 
computation, namely, “chaotic algorithms”  with  time  lags 
as studied by  Miellou [22]. 

B. Connection with the Interaction Prediction and Interac- 
tion Operator Principle 

In [21], Mesarovic et al. proposed the so-called interac- 
tion prediction principle and showed  a technique to mod- 
ify the “natural” objective function of the subproblems  by 
the  so-called  linearized interaction operator in order to 
coordinate these subproblems, i.e., to force their solutions 
towards the overall optimal. In [7], we have made use of 
this technique in the framework of optimal control theory. 

We  shall  briefly imbed this  work in the above theory, 
refemng the reader to [A for details. 

Let the following optimal control problem  be given: 

m i n p ( x ( T ) ) + I ‘ L ( x , u ) d t  
f0 

with 

i = F ( x , u ) ;  x ( f O ) = a E R ”  (21) 

s.t. u ( t ) E % f ( t ) c R m  for a.e. t E [ t ,  TI, (22) 

Under mild assumptions, (22) defines  a  closed  convex 
subset of % = L2([to, TI; R”). 

Expressions (20) and (21) define  a functional J on %, 
and the MP amounts  to minimizing J ( u )  submitted to 
(22). Assume that decompositions of Rm and R” into N 
component subspaces Rml and R“; are given, and notice 
that the ith  part of (21) can always be written as 

~ i = ~ ( x , u ) = ~ ( x j , u i , h j ( x , u ) )  (23) 

at least  by  defining 

hi(x,U)=(xl,...,xi-l,x;+I,...,xN, 
A 

X ~ I , . . . , ~ i - l , u i + l , . . . , u N ) .  (24) 

Of course, in practical situations, more concise  expres- 
sions of hi may be chosen.  Let us introduce the interaction 
variables 

ui = hj(x,u);  i =  1; * * , N .  

Then (23) can  be interpreted as the model of the ith 
subprocess and (25) as the interconnection equations. 

We  now define the core K k  in additive form [see (17)] 
as follows. For any given control history uk( - ) and the 
corresponding trajectories x k (  * ) [through (21)] and uk 
[through (25)], consider the expression 

A 

(25) 

and define Kk (ui) as the value of that expression  where xi 
is  derived from ui through the differential equations 
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2z==f,(xj ,ui,u;);  xi(rO)=a;.  (27) 

Then, applying the previous theory to compute the linear 
modifications terms (see  below) to be added to the core 
(see (6) with e k  = l), we finally find, after rather lengthy 
calculations (see [7]) 

[ (h , (xk , ,u“) ) ;u i+(h , (xk ,uk)) ;x i ]dr  (28) 

in which hk ( ) is  given  by 

X k ( T ) = [ c p ) ( x k ( T ) ) l T .  (29) 

Hence, we define the ith subproblem as that of minimiz- 
ing the sum of (26) and (28) submitted to (27) and 
u,(t)E%{(t) .  Keeping up fixed during this minimization 
process  [see (231 is what Mesarovic et al. call the interac- 
tion prediction principle and (28) is the so-called lin- 
earized interaction operator, while computing (29) is the 
coordination task. 

We shall later on derive a so-called  generalized 
Takahara algorithm which  looks  like this one but with 
differences  which make it  more adapted for off-line com- 
putation. 

However, we have  shown in [7] that the above algo- 
rithm has nice properties, and in particular, robustness in 
case of subproblem failures, when  used  on-line,  i.e.,  when 
each control history u k (  ) is actually implemented on 
the interconnected processes and the real state trajectory 
is  fed  back to the coordination level. 

C. Example of a Relaxed Scheme on Two Lewls 

This example aims at showing that in some algorithms 
which can be considered as falling under the type of 
Algorithm 2, the A% [see  (13)] in fact constitutes the 
coordination task  while the A E  breaks up  into N parallel 
minimizations. This kind of coordination is called “primal 
coordination” by Findeisen [13]. Moreover, we shall see 
how the process of imbedding known algorithms in our 
framework provides a straightforward extension of these 
algorithms. 

Let us consider the problem (1 1) where we assume that 
(9) holds and  that J has the particular structure 

J :  ( u , u ) t ‘ k ( J ,  (UhU),. * - ,J,v (UN,D)) (30) 

with \E being a strictly order-preserving function from R N  
to R and Ji a functional on Qi X ‘Ir. This kmd of problem 
has been considered in [13], but we here simplify the 
situation by assuming that the %{’s are independent from 
u. Such a restriction can be dropped (see  Section VI-C), 
but this needs results that wiU be gven later on. 

The problem considered here can be reformulated by 

introducing the functional 

cp:u+ min J ( u , u ) = J ( l i ( u ) , ~ ) .  (31) 

Then, the upper level  must  minimize cp on V‘ while the 
lower  level is in charge of computing the minimizing 
li(c>’s, a task  which  splits up into N independent problems 
thanks to (30). The upper-level problem can be  solved by 
a projected gradient algorithm. Under various assump- 
tions of continuity, continuous differentiability in u of the 
functionals involved, and mainly uniciry of ti(u) (see 
Danskin [IO]), cp is Frechet-differentiable with 

U € % f  

cp’( u )  = J,’ (ti (u) ,  c). (32) 

Uk+l=~(Ck-€E2Jo((Uk+’,uk)) (33) 

Thus, the coordination task turns  out to be 

where II is the projection on ?* and u k + l  = ti(uk). 

(30)] and we consider a core of the form 
We  now drop the assumption on the structure of J [see 

N 
K k : ( u , c ) +  x K:(ui)+fllt.II2. (34) 

i =  I 

For example, one may choose (for ( u k ,  u k )  given) 

K; : u;+J (%;u, u k ) .  (35) 

Anyway,  we can now apply Algorithm 2 which  yields 

min K , k ( ~ i ) + ( e l J ; ( ~ k , v k ) - ( K , ~ ) ’ ( ~ ~ ) , u j )  (36) 
U, E ,u,r 

for i = 1,. . . , N at the lower  level and exactly (33) at the 
upper level.  With the particular choices  (35) and el = 1, the 
linear modification in (36) disappears and, moreover, 
when assuming (30), we again obtain Findeisen’s algo- 
rithm (with the simplification previously underlined). 
Thus, we have shown that assumption (30) can  be 
dropped while still obtaining a decomposition algorithm. 
However, we do not mean that (30) does not play a  part 
in motivating such a coordination stucture and, maybe, in 
convergence of the algorithm. 

Notice that in our approach, the “problem manipula- 
tion” which  consists of introducing the functional 9; (and 
consequently which needs to know  Danskin’s theorem) is 
avoided. This illustrates the fact  that this approach pro- 
vides systematic guidelines. The cleverness in manipulat- 
ing the problem is here somewhat shifted  onto the choice 
of a particular core, of a relaxed  scheme, and so on. 

V. THE AUXILIARY PROBLEM PRINCIPLE M 
OPTIMIZATION PROBLEMS WITH EXPLICIT 

COUPLING CONSTRAINTS 

Until now,  when dealing with  implicit constraints such 
as u E uz1/ and with decomposition, we have been assum- 
ing that these constraints were decomposed (i.e., (9) 
holds). We shall now drop this assumption, but this  re- 

~ ~ ~ ~~ ~ 
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quires that coupling constraints be explicitly formulated 
as equality or inequality constraints in Hilbert spaces. So 
we consider 

min J ( u )  (37) 
U E W  

s.t. @(u)=O or O ( ~ ) E  - C  (38) 

where 0 is a  mapping  from % into the Hilbert space e 
and C is a closed  convex cone in C? with nonempty 
interior e. Notice that, at least formally, we can, simulta- 
neously, deal with both cases of equality and inequality 
constraints by setting C= (0) in the former case. Then, 
from the definition of the  positive conjugate cone C* of C 
in C?* (see,  e.g., Luenberger [201), we find {O}* = e*. 

We  shall  keep on dealing  with the convex  case,  i.e., J is 
convex, %’ is too, and 0 is  convex  in the following  sense: 

Vu,wE%,VaE[O,l], a O ( u ) + ( l - a ) @ ( w )  

- @ ( a u + ( l - a ) w ) E C .  (39) 

Notice  that in the case C = {0}, this amounts to saying 
that 0 is affine. The classical  so-called Lagrangian is 

JqW) = J + (P, @ ( u ) )  (40) 

with p E C* (i.e., p E e * in the case C= { 0}, which  is  well 
suited to the equality constrained case).  We  recall  (see 
[20]) that solving (37)-(38) is equivalent to finding a 
saddle-point of L on %’ X C*, provided that some so- 
called constraint qualification condition holds  (in the in- 
equality  case a simple one is that there  exists  some i7E %f 
such that 0(G) E - 6). We  shall  assume that this condi- 
tion  holds for the MP (37)-(38). 

Thus, we focus our attention to searching for a saddle- 
point of L on %f X C*. With the convexity assumptions 
we have made and with  obvious differentiability assump- 
tions,  this  is  equivalent to solving the two variational 
inequalities: 

u * ~ % f  and VUE%’, (LL(u*,p*),u-u*)>O (41) 

p * E C *  and V p E C * ,  (G(u*,p*) ,p-p*)<O.  (42) 
We can also  replace  (41)  by 

( J ; ( U * ) , U - U * ) + ( ~ * , @ ( U ) - @ ( U * ) ) > ~  (43) 

when dealing with ( p * , O ( u ) )  as we did with the nondif- 
ferentiable part J ,  [see (5)J. 

Then, we use the same idea as previously, that is, we 
choose a core Q(u,p) and we add  to it linear modifica- 
tions in order to have an extension of Algorithm 1 to this 
case.  However, due to the  presence of two groups of 
variables, we shall  consider  two different kinds of algo- 
rithms: one when the successive AP’s consist of saddle- 
point problems (i.e., u and p are dealt with simulta- 
neously) and the other when  minimization and maximiza- 
tion problems  are solved alternately [i.e.,  we have a re- 
laxed  scheme  in (u,p)] .  It is worth noticing that, corre- 
sponding to each case, we shall  make particular choices of 
the form of the core 9 in order to recover already known 
algorithms. Hence, we have  the  feeling that we are  far 

from having exhausted all the possibilities  offered by  such 
a general way of thinking. 

The two kinds of algorithms we have just mentioned 
will be referred to as one-level and two-level algorithms in 
the  following for reasons that will become clearer later on. 

A .  O n e - h e i  Algorithms 

We choose a core assuming a Lagrangian form, namely, 

Q : (u ,p)+K(u)  + ( p ,  Q(u)> (44) 
where K and D are mappings of the same  kind as,  respec- 
tively, J and 0. Then, for given (uk,pk)  the A P k  consists 
of finding the saddle-point on Qf X C* of the functional 

K ( u ) + ( d ‘ ( u k ) - K ’ ( u k ) , u )  

+(p”(EO’(uk)-Q’(uk)) .u)  

+ ( p , Q ( u ) + p O ( u k ) - D ( u k ) ) .  (45) 

The positive real numbers E and p correspond  to the linear 
modifications, respectively,  in u andp. From the sufficient 
part of  the Lagrangian saddle-point theorem (see [20D, 
solving the above Apk gives the solution of the con- 
strained optimization problem: 

min K ( u ) + ( ~ ’ ( u ~ ) - K ‘ ( u ~ ) , u )  
U€%’ 

+ ( p k , ( ~ O ‘ ( ~ k ) - ! d ’ ( ~ k ) ) * ~ )  (46) 

s.t. Q(u)+pO(uk) -Q(uk)E-C .  (47) 

The problem of the  existence of a saddle-point of (45) or 
of a strictly feasible solution of  (47) for every uk will not 
be considered in detail. From the practical viewpoint, 
notice that K and Q must be chosen if possible for that 
purpose. 

Algorithm 3: 
i) Choose (uo,po). Set k=O. 
ii)  Solve the problem (46)-(47). Let (u“+l ,pk+’)  be  a 

iii)  Either stop  or make k e k +  1 and return to step ii). 
0 

In [6] and also  in [9] we have  shown conditions of 
convergence  in  the restricted case  where J and K are 
quadratic, 0 and Q are linear, C= {0}, and %’ = Q.4 
One feature which  must be strongly underlined is the fact 
that, unlike  previous or  forthcoming algorithms, these 
conditions of convergence cannot  be met  merely by 
choosing a sufficiently  small E (and p = E ) .  To have such  a 
property, the following condition must be satisfied.  Let A 
be  the  Hessian operator associated with J ;  then @A 
+QA-’@* must  be  coercive. This latter operator is a kind 
of measure of resemblance  between 0 and Q. The  above 

solution. 

uniqueness of both ( u k + l , p k + ’ )  and (u*,p*), the master solutions. 
4Notice that in this case we are able to guarantee existence and 
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condition interferes with structural conditions on Cl (e&, 
!d must be block-diagonal) in the context of decomposi- 
tion in a way  which  is not perfectly understood at the 
present stage. 

B. T w o - k i  Algorithms 

We  now choose a core assuming a form 

+:(u,P)+K(u)-$IIPII’ (48) 

and, as previously indicated, we use a relaxation principle 
between variables u and p. Moreover, we can deal with 
the part ( p , O ( u ) )  as we did with the nondifferentiable 
part J, in (6)  [see (43)]. This yields 

Algorithm 4: 
i) Choose (uo,po). Set k=O. 
ii)  Solve the A C :  

min ~ ( u ) + ( ~ ~ ’ ( u ~ ) - - ‘ ( ~ ~ ) , u ) + € ( p ~ , O ( u ) )  (49) 
U€%’ 

Let  uk+’  be a solution. 
iii) Update p after 

p k + ’ = P ( p k + p O ( u k + I ) )  (50) 

where P is the projection onto C*. (P = I if C = { O } . )  
iv) Either stop or make k t k +  1 and return to step ii). 

I7 
Notice that (50) gives the solution of the because 

of the particular dependence of 9’ on p. We have been 
able to prove the convergence of this algorithm under 
classical assumptions (see [6])  for sufficiently small E and 
P- 

It must be pointed out that, under these assumptions, 
u k +  is unique, as is u*. However, p* may be nonunique. 
Consequently, we can only  prove that the sequence { p k }  
is bounded, unless further assumptions are required. 

We  now consider a variant when 0 is assumed to be 
differentiable and when the part (p,O(u)) is included in 
the differentiable  part of the MP.  However, in order to  be 
able to prove the convergence in this case,  we shall change 
the feasible  set C* of p into C* n BR where BR is the set 
{p€(?*l llpll < R}. This yields 

A Igorithm 5: 
In Algorithm 4, change (49) into 

U E Q J  

min K ( u ) + ( ~ ’ ( u k ) - - ‘ ( u k ) , u ) + ~ ( p k , ~ ’ ( u k ) . u )  

(5  1) 

pk+l=PR(pk+pO(Uk+’)) (52) 

and (50) into 

where PR is the projection onto C* n BR. 0 
Notice that step (52) can be implemented by first apply- 

ing (50) and then reducing the norm of the resultingpk+’ 
to R by a normalizing factor if necessary. The conver- 
gence  is proved under the assumption that R be chosen 
large enough so that there exists at least one  optimalp* in 
BR. In this  case, changing the feasible set C* into C* n BR 

____ ~ 

does not modify the master solution. A kind of Lipschitz 
continuity of 0‘ is also assumed (see [6] for a precise 
statement). 

Notice, at last, that when 0 is affine, problem (51) is 
equivalent to problem (49) so that Algorithm 4 will be 
preferably used in this  case. 

VI. USING ONE-LEVEL ALGORITHMS IN 
DECO~OSITION 

A. General Remarks on the Use in Decomposition 

Before considering some decompositon of the AP, we 
must consider decompositions of the spaces and the im- 
plicit constraints involved, i.e., %., e*, %f, and C*. For 
the pair (%. , G2Lf) we assume that a decomposition as (9) is 
gven. We turn now towards the decomposition of e*. 
This, in fact, amounts  to saying that the constraint space 
(? is decomposed, that is, the constraints are distributed 
among the subproblems. Moreover, in the case when 
C#{O}, we must  assume that the positive cone can be 
written as the product of cones Ci’s in the ei’s. 

Then, in order to obtain a parallel decomposition of the 
AP,  we  must choose additive cores  [see (44)], namely, 

N 
qk( U,P) = 2 ( Kk (Ui) + ( p ; ,  q u i ) ) ) .  (53) 

i= I 

As previously, we may choose Kk by (19) and, in the same 
way, Clf by 

S2f : Ui+Oi( 9 ; u >  (54) 

where 0; maps G2L onto e,. 
Notice that e may be decomposed in less than N 

components. This amounts to saying that some of the 
subproblems will not receive  (explicit) constraints. On the 
other hand,  one must not allocate too many constraints to 
some of the subproblems. In the finite dimensional case, 
one obvious condition is that dim “21; > dim Ci. 

Sequential decomposition can, of course, be considered 
also, and is advisable for implementation on a single 
processor. It is obtained by introducing a relaxation 
scheme between the variables (ui,pi)’s, yielding an exten- 
sion of Algorithm 2 to saddle-point problems. A numeri- 
cal comparison of sequential and parallel decomposition 
is done in [9]. 

B. Generalized Takahara  Algorithm as a Special Case of a 
Quasilinearization Algorithm 

We again consider the optimal control problem 
(20)-(22) with the additional final state constraint 

~(x(T))=OER‘ (Tgiven). (55 )  

However, as compared to Section IV-B, we here adopt a 
different viewpoint  by considering u( . ) and x( * ) as 
“free” variables submitted to two constraints, namely, (21) 
and (55). The  state trajectory x (  ) is considered as an 

~ ~ ~ ~~~ 
~ ~~ ~ 
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element in the Sobolev space H '([to, TI; R") and the con- 
trol history u( - ) as belonging to L2([to, TI; R"). Hence, 
the former constraint is formulated in L2([to, T ] ; R " )  and 
the latter in R'. Thus, (? is the product of this two spaces 
and so is (?* which p belongs  to. We have the following 
lemma. 

Lemma 2: In the above-mentioned topology, the opti- 
mal  multiplier p* is (X*( ) ,v*) given  by  Pontryagin's 
minimum  principle,  namely, 

A* = - [ F' (x* ,  u * ) ]  T X *  - [ Li (x* ,  u*) ]  I- (56a) 

h*(T)= [ rp'(x*(T))IT+ [ B'(x*(T))]'v* (56b) 

where (x*( - ) ,u*( . ) )  are the optimal trajectories. See,  e.g., 
Bensoussan [2] for a  proof of this  result. 0 

We  now  make  use of Algorithm 3 by identifying the 
pair (x ,u )  with the variable u in the general formalism. 
We  choose the following K and a: 

K ( x , u )  A f(~~Sx),=,+f~~'(x~Qx+u~~u)dl (57) 

Q(x,u) =k 
i = A n + B u ;  x(to)=O (58 )  

C x ( T ) = O € R '  (59) 

where A, B, C, Q, R, S are matrices of appropriate 
dimensions,  with Q and S positive semi-definite and R 
positive  definite. 

Then, knowing x ', uk, X k ,  v k ,  one  can  compute the 
modifications  given  in  (46)-(47). Taking ~ = p =  1, this 
yields the following Apk after straightforward calcula- 
tions: 

(60) 
s.t. i = A ( x - x k ) + B ( u - u k ) + F ( x k , u k ) ;  x ( t 0 ) = a  

(61) 
and 

[ c ( X - x ~ ) + B ( x k ) ] t = T = O .  (62) 

In the  case  when (ilLf(t)= R", Vt, the solution of the AP is 
analytic (see, e.g., Bernhard [31), yielding x k + ' ,  uk+' ,  

One  may think to take A=F:(xk ,uk) ,   B=F; (xk ,uk)  
and so on  at step k,  which, in particular, simplifies  expres- 
sion  (60).  However, it is not advisable to  do so, from the 
practical viewpoint at least, as pointed out in [3],  since the 

~ k + l  v k + l  , 

resolution of the AP involves  a Riccati equation which 
can  be solved once and for all if the data A, B, C . .  . are 
kept  fixed. 

This remark  does not take into account the question of 
convergence. As briefly  discussed  previously,  a part of the 
conditions of convergence can  be satisfied  by adding  to 
(60)  some  sufficiently  positive quadratic modification, 
namely, 

+ ~ ~ ~ ' ( u - ~ ~ ) ~ ~ ( u - u ~ ) d t .  (63) 

As for the remaining  part of the conditions of conver- 
gence, it tells  us  whether the auxiliary linear dynamics and 
linear final constraint approximate the master nonlinear 
ones  sufficiently  closely. 

Notice that, once the convergence  occurs, it can  be 
proved to be not only in the topology L2, but also in that 
of the uniform convergence  over [to, TI. 

This quasilinearization algorithm has  been discussed 
somewhat  in detail because it directly  yields  a  decomposi- 
tion algorithm by  merely adding  some further remarks. 
Assume that some decompositions of R", R", R' into N 
(or  less than N )  parts are given.  Choose  block-diagonal A, 
B, C, Q, R, S, R, S with  respect to those decomposi- 
tions. Then the AF' breaks up  into N independent prob- 
lems. This decomposition algorithm appears as a  generali- 
zation of the earlier algorithm proposed  by  Takahara in 
1964  [26]. It was  limited to linear-quadratic problems 
without coupling constraints (except through the dy- 
namics).  Moreover,  a correct proof of convergence  was 
missing. 

The salient fact of our convergence  analysis, although it 
is limited to the linear-quadratic case, is that the conver- 
gence cannot  be systematically obtained by using a 
sufficiently large quadratic modification [see  (63)], as 
sometimes admitted in the literature. There is some 
threshold in the coupling  intensity  by the dynamics and 
constraints. The time interval length is also involved in 
this  analysis, as expected  by Takahara. 

Notice  that the subproblems we have obtained are not 
only of lower  dimensions than the MP, but  can also be 
solved analytically. If some component of R' is  missing, 
this means that the corresponding subproblem is uncon- 
strained. If this  is the case for R", some subproblem is 
reduced to static optimization (without state variables). 
Finally, if this occurs for R", some subproblem is without 
control variables and reduces to computation of differen- 
tial equations. 

The  fundamental feature that distinguishes this algo- 
rithm from  that of Section IV-B is that x and X k  in- 
volved  in the latter are  computed by  global calculations 
(at the coordination l e ~ e l ) , ~  whereas  they are exchanged 

- - _  

'Or recorded from the real process, as far as X" is concerned. 



230 E E E  TRANSACTIONS ON AUTOMATIC  CONTROL, VOL. AC-23, NO. 2, APRIL 1978 

between the subproblems in the former. This is more 
extensively explained in [9]. This feature justifies our 
terminology of one-level algorithm for the former since 
the coordination level  is  clearly  missing  in that kind of 
algorithm. The algorithm of Section IV-B has on-line 
properties, whereas the generalized Takahara algorithm is 
an off-line computational scheme. These differences 
illustrate nicely  how we can obtain different algorithms by 
considering either u alone or u and x as the free variables, 
a choice  which falls under the concept of problem 
manipulation. 

C. A Resource Allocation Coordination Method or How 
One-h-el  Algorithm Can Split Up Into Two b e l s  

Resource-Allocation Coordination Algorithm: 
i) Choose Y O  E 5 T  [see  (66)].  Set k = 0. 
ii)  Solve the AP"y,p, for i =  1; , N :  

min J ( U i )  s.t. O ; ( u ; ) = q  k . 
u, € %{ 

Let ( u  ' , p  k +  I )  be a solution. 
iii)  Solve the A C :  

min f 1 1 t ' 1 1 ~ - ( t ' ~ + € ~ ~ ~ + ' , ~ ) .  (72) 
C € V  

Let uk+l  be the solution. 
iv) Either stop  or make k c k +  1 and return to step ii). 

0 
Let II denote the projection onto 5'; then (72) is  solved 

bY 
Let us consider the problem t ' k + l = I I ( u k + c * p ~ + l ) @  

N 

N 
s.t. 2 O;(u;)=DETr (65) 

i =  1 

whxh can be interpreted as the optimization of N inde- 
pendent units sharing a common resource E. The problem 
maniiulation step consists of introducing N new variables 
ci E 'T, in setting 

and in reformulating the problem (64)-(65) as 

(73) 
This way  of updating the resource allocation has a nice 
economic interpretation (see Bernhard [3]), and it has 
already been proposed as an heuristic in [SI. A proof of 
convergence  is not available at the present time. Notice 
that the functional in (64) is not coercive  when considered 
as depending on ( u , ~ ) .  Two other technical difficulties lie 
in the possible nonuniqueness of p (and p*), except in 
some special situations (e.g., the linearquadratic case), 
and in the possible nonexistence of a feasible solution to 
(7llfor some values of t'; (unless we assume ai from %{ 
to rf to be onto). 

However, our purpose here has been to show the two 
steps of problem manipulation and of imbedding a well- 
known coordination principle ( see  Geoffrion [16]) in our 
formalism. Notice also that we could have let the Ji's 
depend on t' as we did in Section IV-C, and that we could 
have dropped the structural assumptions as in that para- 
graph. 

s.t. O,( ui) = q ;  i = 1, * - , N .  VII. PRICE COORDINATION 

We intend to use a decomposition-coordination scheme 
looking like that of Section IV-C, but now  we have 
coupling constraints (68). Thus, we need a relaxed version 
of Algorithm 3. We shall allocate the constraints (68) to 
the subproblems in u 2 ( u l ,  - * , uN) only. So let p = 
( p l ;  . - ,pN)  be the multiplier associated with  these con- 
straints. The relaxation will take place between (u,p)  on 
the one  hand  and t' on the other hand. At last, we leave it 
to the reader as an exercise to derive the following, 
so-called resource-allocation coordination algorithm by 
using the core 

Before  going to considerations on decomposition, let us 
show  how to recover  well-known algorithms from Algo- 
rithms 4 and 5. Taking K= J and E = l in Algorithm 4 
yields the Uzawa algorithm. Considering Algorithm 5 with 
K given  by (14) yields a solution uk+'  of (51) which 
verifies 

uk+l=rI(u~-EL:(uk,pk) )  (74) 

where 11 is the projection onto 9,'. 

A. Price Coordination in the Nonseparable Case 

N 

K: (u , t ' )+  x J;(u;)+fllt$ 
Probably the most famous decomposition principle is 

(69) the so-called price coordination principle (also known as 
the "interaction balance principle" [21] or dual coordina- 

!d : (u ,  u)+( 0, ( u l )  - 01,. * ,ON ( uN)  - cN) E 5'. (70)  tion as opposed to primal coordination). It fundamentally 

i= I 
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rests on the assumptions of separability of the cost func- 
tional and of the coupling constraints. More  specifically, 
let us consider again the problem  (64)-(65) and let us  set 
V = O  without loss of generality. The  Lagrangian (40) can 
be  written as 

N N 

L(u,P)= 2 Li(ui,P> = X [ Ji (ui) + <P, Oi(ui)>] (75) 
i =  1 i =  1 

so that, when  assuming the existence of a saddle-point, 
and when  using the Uzawa  algorithm,  the  minimizing step 
splits up into N independent problems. 

This principle  has  been  used  by many authors, e.g., 
Lasdon-Schoeffler  [18]  in static situations and  Pearson 
[23] and  Tamura [25]  in dynamic ones. It is interesting to 
compare Pearson's and Tamura's approaches. Dealing 
with  the control problem  (20)-(22) and making the struc- 
tural assumptions  on the cost (rp,L) and the interconnec- 
tion equations (25)  [namely, hi(x, u)  = Xjhij(xj, 2.91, Pear- 
son  takes (u,c) as the free variables  [i.e., u in  (75)  is 
identified  with  the pair (u,  u)] and identifies  (25)  with  (65). 

. As for Tamura, he does not introduce the interaction 
variables vi explicitly, but  he takes the (ui,xi)'s as the free 
variables and the dynamics as the dualized constraint, so 
that the corresponding multiplier is the co-state. In  doing 
so, he obtained both space and time  decompositions.  We 
see, once again, the importance of problem manipulation. 

However, our main purpose in this  section is to point 
out that Algorithm 4  can be  used  in the case  when J is not 
separable (or additive) by  choosing an additive core K 
[e.g., after (17) and (19)]. As a matter of fact, problem (49) 
does break  up  into N independent problems  provided that 
0 is additive. If 0 is not additive (but differentiable), then 
one  must  use  Algorithm 5 [see  (51)].  We have thus ob- 
tained an extension of the price method to the nonsepar- 
able case, and all the previous algorithms related to this 
method  could be  revisited  by dropping the structural 
assumptions. 

This possibility of using  price coordination in the non- 
separable case appeared in some papers, e.g., Gabay- 
Mercier [14]. Moreover, it allows one to deal  with so- 
called augmented Lagrangians, including a term  which  is 
the square of O(u) (in  the equality case) and which  is not 
additive even if 0 is so. 

B. Mixing Price Coordination and the Interaction Predict- 
ion Principle 

Our  purpose in  this  section  is to show that we could  go 
on combining the two  basic  principles  (auxiliary problem 
and relaxation) to obtain more and more abstract algo- 
rithms.  However, one  should have practical motivations to 
play  this  game.  We just give an additional example. 

Consider once again (20)-(22)  with the final constraint 
(55). One may  wish to obtain subproblems which  will be 
optimal control problems, but without final constraints. 
So one must  keep a (decomposed) dynamic constraint at 
the  lower  level, but dualize the final constraint. As we did 

in Section VI-B, let  us identify the pair (u ,x )  with the 
general free variable u and consider the problem 

min J ( u )  (76) 
#€%f 

s.t. O,(u)=OELZ([ t* ,T];R") (77) 

O2(u)=O€R' (78) 

where  (77)  represents the dynamics (21) and (78) the final 
constraint (55). Then let p 1  and p z  denote the multipliers 
respectively associated with  (77) and (78); in order to find 
the saddle-point of the Lagrangian of problem (76)-(78), 
we choose a core  assuming the form 

[compare  it to  both (44) and (48)] and we used a relaxed 
scheme  between the variables (u ,p l )  on the one  hand  and 
p 2  on the other hand. This yields the following algorithm. 

i)  Choose uo,pp,p$ Set k =O. 
ii)  Solve the qU9,): 

min K ( u ) + ( J ' ( u k ) - - K I ( u k ) , u )  
U€%' 

+<pl",[€O;(Uk)-S22;(uk)].u)+E(PZk,02(u)) (80) 

s.t. S 2 1 ( u ) + p , ~ l ( u ~ ) - S 2 2 , ( u ~ ) = 0 .  (81) 

Let (uk+',p:+') be a solution. 
iii)  Solve the which amounts  to making 

iv) Either stop or make k t k +  1 and return to step ii). 
0 

We  leave it as an exercise to the reader to write  down 
the  explicit algorithm and make  choices for K, GI,  a2 in 
the context of a decomposition of the control problem we 
have considered (following, in particular, the develop- 
ments  in  Section  VI-B). 

Convergence of the above abstract algorithm has not 
yet  been  considered. 

VIII. CONCLUSIONS 

Perhaps the most striking feature of the above theory is 
that the main  principle,  namely, the auxiliary problem 
principle, has no particular link with the idea of decom- 
position and with separability assumptions  on the MP. 
The decomposition aspect results from special  choices for 
the core. From this viewpoint, any gradient algorithm is a 
decomposition-coordination algorithm, but the lower  level 
task is quite trivial because of the special form (14). By 
elaborating the principle and choosing more  complicated 
cores, the lower  level  task can become  more  effective, 
while  still  being  achieved  by parallel computations. With 
regard to the new computers that may arise in the near 
future, this  is probably the most important aspect of the 
theory, and a promising avenue for future research  which 
must  involve both  mathematicians and computer scien- 
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tists. It may open  the possibility of on-line computations 
in applications to automatic control, thanks to the time 
savings resulting from parallel computations. 

However, one must not underestimate the usefulness of 
these algorithms when implemented on classical com- 
puters. Then, the sequential (Gauss-Seidel) decomposition 
is more adapted. Since the whole problem is broken up 
into a sequence of nontrivial smaller subproblems, one 
can solve either big  problems  with a small computer or 
huge problems with a big computer. 

The question of knowing whether computational 
savings occur when  using  Gauss-Seidel decomposition 
algorithms instead of classical algorithms is irrelevant in 
the case of huge problems, since we mean by  “huge” that 
these  problems cannot be solved  even  with the biggest 
computers. In the case of big problems, the savings are 
questionable since the sequence of subproblems is  theore- 
tically infinite. However, it can be effective in the case 
when the amount of computations increases at  an ex- 
ponential rate with the problem size  (e.g., dynamic pro- 
gramming).  Moreover, one must take other considerations 
into account (e.g., numerical stability or “controllability”). 
Finally, one cannot give a definitive answer to this ques- 
tion of computational savings since, as we have  seen, there 
is no difference of nature between  classical and two-level 
algorithms, but only a difference of degree in the distribu- 
tion of tasks between the two  levels. 

The possibility of solving  bigger problems with  smaller 
computers is actually the true advantage of sequential 
decomposition. 
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