1. Motivation

•0000000

Jean-Pierre BOURGUIGNON

(CNRS-Institut des Hautes Études Scientifiques)

Edinburgh 11 January, 2021

Dedicated to Sir Michael ATIYAH for the inspiration and with admiration

Dedication

It a great honour for me to be given the opportunity to deliver the inaugural "Atiyah Lecture" as I owe to **Sir Michael** a lot as a mathematician, but also more generally as a scientist active in the international scientific community in the many capacities **he** held.

I could interact with **him** over a number of years and through numerous encounters, sometimes in conferences, sometimes in **his** various capacities such as Master of Trinity College or President of the Royal Society.

The very last one was in September 2018 at the Heidelberg Laureate Forum. I remember vividly sitting next to **him** for a dinner where I did not have many opportunities to say anything...

The one I chose to name this lecture from refers to **Sir Michael's** contribution to the conference set up in 2013 when I retired as director of the Institut des Hautes Études Scientifiques.

Dedication

It a great honour for me to be given the opportunity to deliver the inaugural "Atiyah Lecture" as I owe to **Sir Michael** a lot as a mathematician, but also more generally as a scientist active in the international scientific community in the many capacities **he** held.

I could interact with **him** over a number of years and through numerous encounters, sometimes in conferences, sometimes in **his** various capacities such as Master of Trinity College or President of the Royal Society.

The very last one was in September 2018 at the Heidelberg Laureate Forum. I remember vividly sitting next to **him** for a dinner where I did not have many opportunities to say anything..

The one I chose to name this lecture from refers to **Sir Michael**'s contribution to the conference set up in 2013 when I retired as director of the Institut des Hautes Études Scientifiques.

Dedication

It a great honour for me to be given the opportunity to deliver the inaugural "Atiyah Lecture" as I owe to **Sir Michael** a lot as a mathematician, but also more generally as a scientist active in the international scientific community in the many capacities **he** held.

I could interact with **him** over a number of years and through numerous encounters, sometimes in conferences, sometimes in **his** various capacities such as Master of Trinity College or President of the Royal Society.

The very last one was in September 2018 at the Heidelberg Laureate Forum. I remember vividly sitting next to **him** for a dinner where I did not have many opportunities to say anything...

The one I chose to name this lecture from refers to **Sir Michael**'s contribution to the conference set up in 2013 when I retired as director of the Institut des Hautes Études Scientifiques.

5. Killing Spinors 6. Perspective

Dedication

1. Motivation

00000000

It a great honour for me to be given the opportunity to deliver the inaugural "Atiyah Lecture" as I owe to Sir Michael a lot as a mathematician, but also more generally as a scientist active in the international scientific community in the many capacities **he** held.

I could interact with **him** over a number of years and through numerous encounters, sometimes in conferences, sometimes in his various capacities such as Master of Trinity College or President of the Royal Society.

The very last one was in September 2018 at the Heidelberg Laureate Forum. I remember vividly sitting next to **him** for a dinner where I did not have many opportunities to say anything...

The one I chose to name this lecture from refers to **Sir Michael**'s contribution to the conference set up in 2013 when I retired as director of the Institut des Hautes Études Scientifiques.

1. Motivation

0000000

Opening the lecture Sir Michael declared: "I spent most of my life working with spinors in one form or another and I do not know [what a spinor is]."

Later in the lecture, **he** did give **his** view on spinors

Opening the lecture Sir Michael declared: "I spent most of my life working with spinors in one form or another and I do not know [what a spinor is]."

Later in the lecture, **he** did give **his** view on spinors:

Opening the lecture Sir Michael declared: "I spent most of my life working with spinors in one form or another and I do not know [what a spinor is]."

Later in the lecture, he did give his view on spinors:

"Spinors as the square-root of Geometry"

$$[i=\sqrt{-1}]$$

► On complex manifold

$$\Omega^* = \sum \Omega^{p,q}$$

- Complex geometry is a square-root of real geometry.
- ▶ But spinors exist without need of complex structures. Spinor analysis is substitute for complex analysis.

00000000

00000000

- brought to Stony Brook in 1972-73 by Jim SIMONS, I attend a seminar on gauge theory initiated by Chen Ning YANG;

1. Motivation

00000000

- brought to Stony Brook in 1972-73 by Jim SIMONS, I attend a seminar on gauge theory initiated by Chen Ning YANG;
- in Stanford in the Summer of 1973, I attend the lecture by Robert GEROCH entitled *General Relativity* suggested by Isadore SINGER for the AMS Summer Institute;
- Sir Michael, whom I used to meet at the Arbeitstagung in Bonn, suggested I learn about spinors from Nigel HITCHIN;
- Blaine LAWSON, with whom I started to collaborate or Yang-Mills theory when he visited IHÉS in 1978-1979;
- visiting Stanford in 1980, I have extended exchanges with Isadore SINGER in Berkeley who brought to my attention an article by Bruno ZUMINO, dealing with the question of how spinors change when the metric changes.

1. Motivation

00000000

- brought to Stony Brook in 1972-73 by Jim SIMONS, I attend a seminar on gauge theory initiated by Chen Ning YANG;
- in Stanford in the Summer of 1973, I attend the lecture by Robert GEROCH entitled General Relativity suggested by Isadore SINGER for the AMS Summer Institute;
- Sir Michael, whom I used to meet at the Arbeitstagung in Bonn, suggested I learn about spinors from Nigel HITCHIN;
- Blaine LAWSON, with whom I started to collaborate on Yang-Mills theory when he visited IHÉS in 1978-1979;
- visiting Stanford in 1980, I have extended exchanges with Isadore SINGER in Berkeley who brought to my attention an article by Bruno ZUMINO, dealing with the question of how spinors change when the metric changes.

1. Motivation

00000000

- brought to Stony Brook in 1972-73 by Jim SIMONS, I attend a seminar on gauge theory initiated by Chen Ning YANG;
- in Stanford in the Summer of 1973, I attend the lecture by Robert GEROCH entitled General Relativity suggested by Isadore SINGER for the AMS Summer Institute;
- Sir Michael, whom I used to meet at the Arbeitstagung in Bonn, suggested I learn about spinors from Nigel HITCHIN;
- Blaine LAWSON, with whom I started to collaborate on Yang-Mills theory when he visited IHÉS in 1978-1979;
- visiting Stanford in 1980, I have extended exchanges with Isadore SINGER in Berkeley who brought to my attention an article by Bruno ZUMINO, dealing with the question of how spinors change when the metric changes.

1. Motivation

00000000

- brought to Stony Brook in 1972-73 by Jim SIMONS, I attend a seminar on gauge theory initiated by Chen Ning YANG;
- in Stanford in the Summer of 1973, I attend the lecture by Robert GEROCH entitled *General Relativity* suggested by Isadore SINGER for the AMS Summer Institute;
- Sir Michael, whom I used to meet at the Arbeitstagung in Bonn, suggested I learn about spinors from Nigel HITCHIN;
- Blaine LAWSON, with whom I started to collaborate on Yang-Mills theory when he visited IHÉS in 1978-1979;
- visiting Stanford in 1980, I have extended exchanges with Isadore SINGER in Berkeley who brought to my attention an article by Bruno ZUMINO, dealing with the question of how spinors change when the metric changes.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator;
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator;
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

1. Motivation

00000000

- I heard about Yvette KOSMANN-SCHWARZBACH's puzzling work on the Lie derivative of spinors in the early 1970s;
- after suggesting the question raised by Isadore SINGER to a student, I realised it was not so easy;
- I asked Sir Michael about it, and he confessed that he did not know how to deal with it;
- the article by Thomas FRIEDRICH Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung made me acquainted with the geometric content of the Dirac operator;
- This was my starting point, and an improved version of the estimate was obtained by Oussama HIJAZI, convincing me that there was room for a systematic study of *spinorial* geometry, and indeed many ramifications appeared.

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

- Basic Facts on Spinors and Dirac Operators
- Spinors in General Relativity
- Varying the Metric
- Killing Spinors
- Perspectives

1. Motivation

Section 1 Basics on Spinors and Dirac Operators

1. Motivation

Spinors

To any n-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel **we will only consider non-degenerate bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over $\mathbb C$ have a 2-fold periodicity:

- if n = 2m, Cl(V, g) is a simple algebra, hence $Cl(V, g) = \operatorname{End}(\Sigma_g V)$;
- if n=2m+1, the $Cl(V,g)=\operatorname{End}(\Sigma_g V)\oplus\operatorname{End}(\tilde{\Sigma}_g V)$

 $\Sigma_g V$ and $\tilde{\Sigma}_g V$ are the spaces of *spinors*; they are 2^m -dimensional.

Clifford algebras over \mathbb{R} have an 8-fold periodicity but we will stick to complex spinors except when we discuss **Lorentzian metrics**.

Spinors

1. Motivation

To any *n*-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel we will only consider non-degenerate **bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over \mathbb{C} have a 2-fold periodicity:

Spinors

To any n-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel **we will only consider non-degenerate bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over $\mathbb C$ have a 2-fold periodicity:

- if n = 2m, Cl(V, g) is a simple algebra, hence $Cl(V, g) = \operatorname{End}(\Sigma_g V)$;
- if n=2m+1, the $Cl(V,g)=\operatorname{End}(\Sigma_g V)\oplus\operatorname{End}(\tilde{\Sigma}_g V)$

 $\Sigma_g V$ and $\tilde{\Sigma}_g V$ are the spaces of *spinors*; they are 2^m -dimensional.

Clifford algebras over \mathbb{R} have an 8-fold periodicity but we will stick to complex spinors except when we discuss **Lorentzian metrics**.

1. Motivation

Spinors

To any *n*-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel we will only consider non-degenerate **bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over \mathbb{C} have a 2-fold periodicity:

- if n = 2m, Cl(V, g) is a simple algebra, hence $CI(V,g) = \operatorname{End}(\Sigma_{\sigma}V);$
- if n = 2m + 1, the $Cl(V, g) = \operatorname{End}(\Sigma_{\sigma}V) \oplus \operatorname{End}(\tilde{\Sigma}_{\sigma}V)$.

1. Motivation

To any n-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel **we will only consider non-degenerate bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over $\mathbb C$ have a 2-fold periodicity:

- if n = 2m, Cl(V, g) is a simple algebra, hence $Cl(V, g) = \operatorname{End}(\Sigma_g V)$;
- if n = 2m + 1, the $Cl(V, g) = \operatorname{End}(\Sigma_g V) \oplus \operatorname{End}(\tilde{\Sigma}_g V)$.

 $\Sigma_g V$ and $\tilde{\Sigma}_g V$ are the spaces of *spinors*; they are 2^m -dimensional.

Clifford algebras over \mathbb{R} have an 8-fold periodicity but we will stick to complex spinors except when we discuss **Lorentzian metrics**.

1. Motivation

To any n-dimensional vector space V endowed with a symmetric bilinear form g one attaches its Clifford algebra

$$CI(V,g) = \otimes V/\langle x \otimes x + g(x,x)1 \rangle$$
.

Of course the Clifford algebra (V,0) coincides with the exterior algebra ΛV . In the sequel **we will only consider non-degenerate bilinear forms** g. If we work over \mathbb{C} , they are all equivalent. Over \mathbb{R} , they are classified by their signature.

Clifford algebras over $\mathbb C$ have a 2-fold periodicity:

- if n = 2m, CI(V, g) is a simple algebra, hence $CI(V, g) = \operatorname{End}(\Sigma_g V)$;
- if n = 2m + 1, the $Cl(V, g) = \operatorname{End}(\Sigma_g V) \oplus \operatorname{End}(\tilde{\Sigma}_g V)$.

 $\Sigma_g V$ and $\tilde{\Sigma}_g V$ are the spaces of *spinors*; they are 2^m -dimensional.

Clifford algebras over \mathbb{R} have an 8-fold periodicity but we will stick to complex spinors except when we discuss **Lorentzian metrics**.

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1$$

which holds true for $n \ge 3$

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g
- ullet through the adjoint representation, Spin(V,g) acts on V
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_{\sigma}^+ \oplus \Sigma_{\sigma}^-$.

1. Motivation

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \textit{Spin}_n \longrightarrow \textit{SO}_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g ;
- through the adjoint representation, Spin(V, g) acts on V;
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_g^+ \oplus \Sigma_g^-$.

1. Motivation

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1 ,$$

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g
- through the adjoint representation, Spin(V,g) acts on V;
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_\sigma^+ \oplus \Sigma_\sigma^-$.

1. Motivation

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \geq 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathit{Spin}_n \longrightarrow \mathit{SO}_n \longrightarrow 1 \ ,$$

which holds true for n > 3.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside CI(V,g) and satisfying a certain normalisation condition;

1. Motivation

Spinors (continued)

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1 ,$$

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g ;
- ullet through the adjoint representation, Spin(V,g) acts on V
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_{\sigma}^+ \oplus \Sigma_{\sigma}^-$.

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1 ,$$

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g ;
- through the adjoint representation, Spin(V, g) acts on V;
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_g^+ \oplus \Sigma_g^-$.

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1 ,$$

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g ;
- through the adjoint representation, Spin(V, g) acts on V;
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_g^+ \oplus \Sigma_g^-$.

1. Motivation

Spinors are vectors in a fundamental representation space of the group $Spin_n$, the universal cover of the group SO_n for $n \ge 3$.

A key ingredient in the theory is the exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin_n \longrightarrow SO_n \longrightarrow 1$$
,

which holds true for $n \ge 3$.

- the group Spin(V,g) is realised as the multiplicative subgroup of the Clifford algebra stabilising the image of V inside Cl(V,g) and satisfying a certain normalisation condition;
- Spin(V,g) acts irreducibly on Σ_g ;
- through the adjoint representation, Spin(V, g) acts on V;
- a key property of spinors in even dimensions is their *chirality*, i.e. the fact that the volume element acts as an involution and gives rise to the decomposition $\Sigma_g = \Sigma_g^+ \oplus \Sigma_g^-$.

If one insists in not specifying a metric, this means working with another exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{\textit{GI}}_n \longrightarrow \textit{GI}_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- indeed, it does not have any finite dimensional representation besides the ones that descend to Gl_n ;
- its representations, called Bandor representations, have been described by Yuval NE'EMAN in the late 1970s in an attempt to studying the gravitational interaction of hadrons;
- he constructs them using the theory of Harish-Chandra modules.

If one insists in not specifying a metric, this means working with another exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{GI}_n \longrightarrow GI_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- indeed, it does not have any finite dimensional representation besides the ones that descend to Gl_n ;
- its representations, called Bandor representations, have been described by Yuval NE'EMAN in the late 1970s in an attempt to studying the gravitational interaction of hadrons;
- he constructs them using the theory of Harish-Chandra modules.

If one insists in not specifying a metric, this means working with another exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{\mathit{GI}}_n \longrightarrow \mathit{GI}_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- indeed, it does not have any finite dimensional representation besides the ones that descend to Gl_n ;
- its representations, called Bandor representations, have been described by Yuval NE'EMAN in the late 1970s in an attempt to studying the gravitational interaction of hadrons;
- he constructs them using the theory of Harish-Chandra modules.

1. Motivation

Non-metric Spinors?

If one insists in not specifying a metric, this means working with another exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{\mathit{GI}}_n \longrightarrow \mathit{GI}_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- indeed, it does not have any finite dimensional representation besides the ones that descend to Gl_n ;
- its representations, called Bandor representations, have been described by Yuval NE'EMAN in the late 1970s in an attempt to studying the gravitational interaction of hadrons;
- he constructs them using the theory of Harish-Chandra modules.

If one insists in not specifying a metric, this means working with another exact sequence of groups

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{\mathit{GI}}_n \longrightarrow \mathit{GI}_n \longrightarrow 1 \ ,$$

which holds true for $n \ge 3$.

- indeed, it does not have any finite dimensional representation besides the ones that descend to Gl_n ;
- its representations, called Bandor representations, have been described by Yuval NE'EMAN in the late 1970s in an attempt to studying the gravitational interaction of hadrons;
- he constructs them using the theory of Harish-Chandra modules.

1. Motivation

- spinors appeared unexpectedly in 1913 in Elie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- In his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he
 writes: "But in almost all these works, spinors are introduced
 in a purely formal manner, without any intuitive geometrical
 significance; and it is this absence of geometrical meaning
 which has made the attempts to extend Dirac's equations to
 general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension" to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he
 writes: "But in almost all these works, spinors are introduced
 in a purely formal manner, without any intuitive geometrical
 significance; and it is this absence of geometrical meaning
 which has made the attempts to extend Dirac's equations to
 general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension" to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he
 writes: "But in almost all these works, spinors are introduced
 in a purely formal manner, without any intuitive geometrical
 significance; and it is this absence of geometrical meaning
 which has made the attempts to extend Dirac's equations to
 general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension" to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he
 writes: "But in almost all these works, spinors are introduced
 in a purely formal manner, without any intuitive geometrical
 significance; and it is this absence of geometrical meaning
 which has made the attempts to extend Dirac's equations to
 general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension" to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he writes: "But in almost all these works, spinors are introduced in a purely formal manner, without any intuitive geometrical significance; and it is this absence of geometrical meaning which has made the attempts to extend Dirac's equations to general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension" to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he writes: "But in almost all these works, spinors are introduced in a purely formal manner, without any intuitive geometrical significance; and it is this absence of geometrical meaning which has made the attempts to extend Dirac's equations to general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension", to specify the "dimension" of a spinor is much trickier.

1. Motivation

- spinors appeared unexpectedly in 1913 in Élie CARTAN's work classifying representations of the orthogonal Lie algebras;
- this probably prevented them from playing a central role in Mathematics immediately;
- in his book Leçons sur la théorie des spineurs published in 1937 (and translated into English only in 1966), Élie CARTAN is concerned with a geometric view on them;
- after acknowledging their use and further work on them, he writes: "But in almost all these works, spinors are introduced in a purely formal manner, without any intuitive geometrical significance; and it is this absence of geometrical meaning which has made the attempts to extend Dirac's equations to general relativity so complicated...";
- indeed, when differential *k*-forms have a specific "dimension", to specify the "dimension" of a spinor is much trickier.

1. Motivation

- Roger PENROSE, in his monumental 2004 book The Road to Reality, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I
 was mystified by spinors as they turn out to be square roots of
 vectors, and I could not understand how you could do that."

1. Motivation

- Roger PENROSE, in his monumental 2004 book The Road to Reality, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I
 was mystified by spinors as they turn out to be square roots o
 vectors, and I could not understand how you could do that."

1. Motivation

- Roger PENROSE, in his monumental 2004 book The Road to Reality, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I
 was mystified by spinors as they turn out to be square roots of
 vectors, and I could not understand how you could do that."

1. Motivation

- Roger PENROSE, in his monumental 2004 book The Road to Reality, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I
 was mystified by spinors as they turn out to be square roots of
 vectors, and I could not understand how you could do that."

1. Motivation

- Roger PENROSE, in his monumental 2004 book *The Road to Reality*, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I was mystified by spinors as they turn out to be square roots of vectors, and I could not understand how you could do that."

1. Motivation

- Roger PENROSE, in his monumental 2004 book *The Road to Reality*, asks the question: "What is a spinor?"
- his answer is: "Essentially it is an object with turns into its negative when it undergoes a complete rotation through 2π . This may seem like an absurdity, because any classical object of ordinary experience is always returned to its original state under such a rotation, not to something else."
- he continues: "The very notion of a 'spinorial object' is somewhat confusing and non-intuitive, and some people prefer to resort to a purely (Clifford) algebraic approach to their study. This certainly has its advantages... but I feel that it is important also not to lose sight of the geometry..."
- in an interview with Andrew HODGES in 2014, he said: "I was mystified by spinors as they turn out to be square roots of vectors, and I could not understand how you could do that."

1. Motivation

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a $Spin_n$ -invariant flag $S_0 \subset S_1 \subset S_2 \subset$ where S_0 are the pure spinors. For n even, the projectivisation of S_0 corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms"

1. Motivation

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a $Spin_n$ -invariant flag $S_0 \subset S_1 \subset S_2 \subset$ where S_0 are the pure spinors. For n even, the projectivisation of S_0 corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms"

1. Motivation

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a Spin_n-invariant flag S₀ ⊂ S₁ ⊂ S₂ ⊂ where S₀ are the pure spinors. For n even, the projectivisation of S₀ corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms"

1. Motivation

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a Spin_n-invariant flag $S_0 \subset S_1 \subset S_2 \subset$ where S_0 are the pure spinors. For n even, the projectivisation of S_0 corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms."

1. Motivation

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a Spin_n-invariant flag $S_0 \subset S_1 \subset S_2 \subset$ where S_0 are the pure spinors. For n even, the projectivisation of S_0 corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms."

Final Comments on Spinors

1. Motivation

I end this review of visions about spinors by quotes from H. Blaine LAWSON and Marie-Louise MICHELSOHN, authors of the very influential book *Spin Geometry* published in 1989:

- "One of the great insights of Atiyah and Singer was their construction of the Dirac operator on any spin manifold."
- "This was the key to their proof of the Index Theorem. It also related the Riemannian geometry of a spin manifold in very subtle ways to the global topology."
- "How else do we think about spinors? At any given point, they are not all the same, as is true of differential forms. There is a Spin_n-invariant flag $S_0 \subset S_1 \subset S_2 \subset$ where S_0 are the pure spinors. For n even, the projectivisation of S_0 corresponds to the orthogonal almost complex structures on the tangent space."
- "In some sense one can think of spinors as a square-root of the bundle of exterior forms."

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book:
- "With the geometric sense we have given to the word "spinor it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book:
 - "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

1. Motivation

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book: "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book: "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

1. Motivation

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book: "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

1. Motivation

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book: "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

1. Motivation

- the fact that spinors make sense only after a metric has been chosen was recognised by Hermann WEYL in a 1929 article and prompted Élie CARTAN to state at the end of his book: "With the geometric sense we have given to the word "spinor" it is impossible to introduce fields of spinors into the classical Riemannian technique..." meaning by that one cannot use general changes of coordinates when dealing with spinors;
- this was in a sense misinterpreted, e.g., Leopold INFELD and Bartel VAN DER WAERDEN proposed in 1933 that, in a space-time with a general metric, spinors should be related to a background Minkowski metric;
- in his article on bandors, Yuval NE'EMAN takes the pain of observing what it means in terms of changes of coordinates, addressing the question alluded to by Élie CARTAN.

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$. The set up goes as follows:

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

1. Motivation

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

1. Motivation

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_n$ -principal bundle Γ covering the SO_n -bundle of oriented orthonormal frames determines the spin structure;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\operatorname{Spin}_n} \Sigma_n$;
- a spinor field is of course a section of the bundle $\Sigma_{\gamma} M \longrightarrow M$
- the bundle in Clifford algebras $Cl_g(M) \longrightarrow M$ acts on the spinor bundle via pointwise Clifford multiplication.
- $\Sigma_{\gamma} M \longrightarrow M$ inherits a natural connection form from the Riemannian connection on the Riemannian frame bundle. Hence one can speak of covariant derivatives of spinor fields

1. Motivation

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_n$ -principal bundle Γ covering the SO_n -bundle of oriented orthonormal frames determines the spin structure;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\operatorname{Spin}_n} \Sigma_n$;
- a spinor field is of course a section of the bundle $\Sigma_{\gamma} M \longrightarrow M$
- the bundle in Clifford algebras $Cl_g(M) \longrightarrow M$ acts on the spinor bundle via pointwise Clifford multiplication.
- $\Sigma_{\gamma} M \longrightarrow M$ inherits a natural connection form from the Riemannian connection on the Riemannian frame bundle. Hence one can speak of covariant derivatives of spinor fields

1. Motivation

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_n$ -principal bundle Γ covering the SO_n -bundle of oriented orthonormal frames determines the spin structure;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\operatorname{Spin}_n} \Sigma_n$;
- a *spinor field* is of course a section of the bundle $\Sigma_{\gamma}M \longrightarrow M$;
- the bundle in Clifford algebras Cl_g(M) → M acts on the spinor bundle via pointwise Clifford multiplication.
- $\Sigma_{\gamma} M \longrightarrow M$ inherits a natural connection form from the Riemannian connection on the Riemannian frame bundle. Hence one can speak of covariant derivatives of spinor fields

Spinor Fields

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_p$ -principal bundle Γ covering the SO_p -bundle of oriented orthonormal frames determines the *spin structure*;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\text{Spin}_{-}} \Sigma_{n}$;
- a *spinor field* is of course a section of the bundle $\Sigma_{\gamma}M \longrightarrow M$;
- the bundle in Clifford algebras $Cl_g(M) \longrightarrow M$ acts on the spinor bundle via pointwise Clifford multiplication.

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_n$ -principal bundle Γ covering the SO_n -bundle of oriented orthonormal frames determines the spin structure;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\operatorname{Spin}_n} \Sigma_n$;
- a *spinor field* is of course a section of the bundle $\Sigma_{\gamma}M \longrightarrow M$;
- the bundle in Clifford algebras $Cl_g(M) \longrightarrow M$ acts on the spinor bundle via pointwise Clifford multiplication.
- $\Sigma_{\gamma} M \longrightarrow M$ inherits a natural connection form from the Riemannian connection on the Riemannian frame bundle. Hence one can speak of covariant derivatives of spinor fields.

Going to manifolds, the solution comes naturally in the language of principal and associated bundles.

Lifting usual constructions from the bundle of orthonormal bases to that of spinorial bases can be done if and only if $w_2(M) = 0$.

- choosing a $Spin_n$ -principal bundle Γ covering the SO_n -bundle of oriented orthonormal frames determines the spin structure;
- the bundle of spinors associated to the spin structure is the associated bundle $\Sigma_{\gamma} M = \Gamma \times_{\operatorname{Spin}_n} \Sigma_n$;
- a *spinor field* is of course a section of the bundle $\Sigma_{\gamma}M \longrightarrow M$;
- the bundle in Clifford algebras $Cl_g(M) \longrightarrow M$ acts on the spinor bundle via pointwise Clifford multiplication.
- $\Sigma_{\gamma} M \longrightarrow M$ inherits a natural connection form from the Riemannian connection on the Riemannian frame bundle. Hence one can speak of covariant derivatives of spinor fields.

Natural Operators on Spinor Fields

On the space of spinor fields only two first order differential operators are universally defined, and combinations thereof:

- $T^*M \otimes \Sigma_{\gamma}M$ decomposes into exactly two invariant subspaces: a copy of $\Sigma_{\gamma}M$ and another space $\Sigma_{\gamma}^{3/2}M$
- the Dirac operator $\mathcal D$ maps spinor fields to spinor fields, and is defined, for a spinor field ψ , by

$$\mathcal{D}\psi = \sum_{i=1}^n e_i.D_{e_i}\psi$$

where (e_i) denotes an orthonormal basis of the tangent space;

• the Penrose twistor operator \mathcal{P} , which maps spinor fields to sections of the bundle $T^*M \otimes \Sigma_{\gamma}M$, is defined as follows:

$$(\mathcal{P}\psi)(X) = D_X\psi + \frac{1}{n}X.\mathcal{D}\psi$$

Natural Operators on Spinor Fields

On the space of spinor fields only two first order differential operators are universally defined, and combinations thereof:

- $T^*M \otimes \Sigma_{\gamma}M$ decomposes into exactly two invariant subspaces: a copy of $\Sigma_{\gamma}M$ and another space $\Sigma_{\gamma}^{3/2}M$;
- the Dirac operator $\mathcal D$ maps spinor fields to spinor fields, and is defined, for a spinor field ψ , by

$$\mathcal{D}\psi = \sum_{i=1}^{n} e_i . D_{e_i} \psi$$

where (e_i) denotes an orthonormal basis of the tangent space;

• the Penrose twistor operator \mathcal{P} , which maps spinor fields to sections of the bundle $T^*M \otimes \Sigma_{\gamma}M$, is defined as follows:

$$(\mathcal{P}\psi)(X) = D_X\psi + \frac{1}{n}X.\mathcal{D}\psi$$

Natural Operators on Spinor Fields

On the space of spinor fields only two first order differential operators are universally defined, and combinations thereof:

- $T^*M \otimes \Sigma_{\gamma}M$ decomposes into exactly two invariant subspaces: a copy of $\Sigma_{\gamma}M$ and another space $\Sigma_{\gamma}^{3/2}M$;
- the Dirac operator $\mathcal D$ maps spinor fields to spinor fields, and is defined, for a spinor field ψ , by

$$\mathcal{D}\psi = \sum_{i=1}^n e_i.D_{e_i}\psi ,$$

where (e_i) denotes an orthonormal basis of the tangent space;

 the Penrose twistor operator P, which maps spinor fields to sections of the bundle T*M ⊗ Σ_γM, is defined as follows:

$$(\mathcal{P}\psi)(X) = D_X\psi + \frac{1}{n}X.\mathcal{D}\psi$$

On the space of spinor fields only two first order differential operators are universally defined, and combinations thereof:

- $T^*M \otimes \Sigma_{\gamma}M$ decomposes into exactly two invariant subspaces: a copy of $\Sigma_{\gamma}M$ and another space $\Sigma_{\gamma}^{3/2}M$;
- the Dirac operator $\mathcal D$ maps spinor fields to spinor fields, and is defined, for a spinor field ψ , by

$$\mathcal{D}\psi = \sum_{i=1}^n e_i.D_{e_i}\psi ,$$

where (e_i) denotes an orthonormal basis of the tangent space;

• the *Penrose twistor operator* \mathcal{P} , which maps spinor fields to sections of the bundle $T^*M \otimes \Sigma_{\gamma}M$, is defined as follows:

$$(\mathcal{P}\psi)(X) = D_X\psi + \frac{1}{n}X.\mathcal{D}\psi ,$$

On the space of spinor fields only two first order differential operators are universally defined, and combinations thereof:

- $T^*M \otimes \Sigma_{\gamma}M$ decomposes into exactly two invariant subspaces: a copy of $\Sigma_{\gamma}M$ and another space $\Sigma_{\gamma}^{3/2}M$;
- the Dirac operator $\mathcal D$ maps spinor fields to spinor fields, and is defined, for a spinor field ψ , by

$$\mathcal{D}\psi = \sum_{i=1}^{n} e_i.D_{e_i}\psi ,$$

where (e_i) denotes an orthonormal basis of the tangent space;

• the *Penrose twistor operator* \mathcal{P} , which maps spinor fields to sections of the bundle $T^*M \otimes \Sigma_{\gamma}M$, is defined as follows:

$$(\mathcal{P}\psi)(X) = D_X\psi + \frac{1}{n}X.\mathcal{D}\psi ,$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication
- it is self-adjoint
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality i preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + \frac{1}{4}\operatorname{Scal}_g\psi.$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication
- it is self-adjoint
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + rac{1}{4}\operatorname{\mathit{Scal}}_g\psi$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication;
- it is self-adjoint
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + \frac{1}{4}\operatorname{Scal}_g\psi ,$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication;
- it is self-adjoint;
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2 \psi = D^* D \psi + rac{1}{4} \operatorname{\mathit{Scal}}_{\mathsf{g}} \psi$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication;
- it is self-adjoint;
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + \frac{1}{4}\operatorname{Scal}_g\psi$$

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication;
- it is self-adjoint;
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- ullet for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + \frac{1}{4}\operatorname{Scal}_g\psi ,$$

irac Operators

Here are the important properties of the Dirac operator:

- it is a square root of the Laplace-Beltrami operator, hence an elliptic operator in a Riemannian setting;
- its principal symbol is given by Clifford multiplication;
- it is self-adjoint;
- in even dimensions, it exchanges chirality, i.e. it maps positive spinor fields to negative ones and vice versa; indeed chirality is preserved by the covariant derivative, and Clifford product by a vector changes chirality; this is key to relate the Dirac operator to topology via the Atiyah-Singer Index Theorem;
- for a spinor field ψ , the Schrödinger-Lichnerowicz formula holds

$$\mathcal{D}^2\psi = D^*D\psi + \frac{1}{4}\operatorname{\mathit{Scal}}_{\mathsf{g}}\psi \; ,$$

3. Spinors in General Relativity

5. Killing Spinors

6. Perspective

Lorentzian Metrics

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-,+,+,+):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4 , m) with $m=-c\ dt^2+dx^2+dy^2+dz^2$ with coordinates (t,x.y.z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;
- this led him to look for matrices satisfying the fundamental identity defining the Clifford algebra for *m*, and hence to realise that wave functions could not just be functions, but elements in a vector space on which these matrices operate!
- this brought radically new objects purely in Theoretical Physics from the consideration of a necessary symmetry;
- later, this was also connected with the consideration of the spin of particles providing the right setting to deal with it, hence the name spinors given to them.

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-,+,+,+):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4, m) with $m = -c dt^2 + dx^2 + dy^2 + dz^2$ with coordinates (t, x.y.z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;

Lorentzian Metrics

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-,+,+,+):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4 , m) with $m=-c\ dt^2+dx^2+dy^2+dz^2$ with coordinates (t,x.y.z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;
- this led him to look for matrices satisfying the fundamental identity defining the Clifford algebra for *m*, and hence to realise that wave functions could not just be functions, but elements in a vector space on which these matrices operate!
- this brought radically new objects purely in Theoretical Physics from the consideration of a necessary symmetry;
- later, this was also connected with the consideration of the spin of particles providing the right setting to deal with it, hence the name spinors given to them.

Lorentzian Metrics

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-, +, +, +):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4 , m) with $m = -c dt^2 + dx^2 + dy^2 + dz^2$ with coordinates (t, x, y, z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;
- this led him to look for matrices satisfying the fundamental identity defining the Clifford algebra for m, and hence to realise that wave functions could not just be functions, but elements in a vector space on which these matrices operate!
- this brought radically new objects purely in Theoretical Physics from the consideration of a necessary symmetry;

Lorentzian Metrics

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-, +, +, +):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4 , m) with $m=-c\ dt^2+dx^2+dy^2+dz^2$ with coordinates (t,x.y.z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;
- this led him to look for matrices satisfying the fundamental identity defining the Clifford algebra for *m*, and hence to realise that wave functions could not just be functions, but elements in a vector space on which these matrices operate!
- this brought radically new objects purely in Theoretical Physics from the consideration of a necessary symmetry;
- later, this was also connected with the consideration of the spin of particles providing the right setting to deal with it, hence the name *spinors* given to them.

Lorentzian Metrics

Both Special Relativity and General Relativity rely on the use of a non-degenerate metric g with signature (-,+,+,+):

- it was in the setting of the Minkowski space-time (\mathbb{R}^4 , m) with $m=-c\ dt^2+dx^2+dy^2+dz^2$ with coordinates (t,x.y.z) on \mathbb{R}^4 , that Paul-Adrien-Maurice DIRAC wanted to formulate a first-order operator invariant under the group preserving m whose square would be the Klein-Gordon operator;
- this led him to look for matrices satisfying the fundamental identity defining the Clifford algebra for *m*, and hence to realise that wave functions could not just be functions, but elements in a vector space on which these matrices operate!
- this brought radically new objects purely in Theoretical Physics from the consideration of a necessary symmetry;
- later, this was also connected with the consideration of the spin of particles providing the right setting to deal with it, hence the name spinors given to them.

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRODINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermann WEYL and Vladimir FOCK:
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

1. Motivation

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRODINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermani WEYL and Vladimir FOCK:
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

1. Motivation

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRODINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermann WEYL and Vladimir FOCK:
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

1. Motivation

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRÖDINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermann WEYL and Vladimir FOCK;
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

1. Motivation

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRÖDINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermann WEYL and Vladimir FOCK:
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

1. Motivation

- Paul-Adrien-Maurice DIRAC extended the formulation in Minkowski space to a number of models of space-time, De Sitter and anti-De Sitter spaces for example;
- in 1933 Erwin SCHRÖDINGER published an article entitled Dirac equation in the gravitational field in which he generalises the Dirac equation to a curved space-time, something later rediscovered by André LICHNEROWICZ as mentioned earlier, hence the name 'Schrödinger-Lichnerowicz' given to the key identity for the square of the Dirac operator;
- the notion of a 'spin connection' was debated in the physics community around this time with contributions from Hermann WEYL and Vladimir FOCK:
- Élie CARTAN makes explicit references to such considerations towards the end of his book.

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context;
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context;
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

1. Motivation

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context;
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

1. Motivation

- he in particular discusses the representation in spinor terms of the various irreducible components of the Riemann curvature tensor, the Weyl conformal part corresponding to a fully symmetric traceless 4-spinor χ and the Ricci traceless tensor to another 4-spinor Φ with specific symmetries: he quotes a 1959 article by Louis WITTEN for the algebraic background;
- he of course discusses the Einstein equations in this context;
- note that these representation theoretic considerations underpin what lies behind the Schrödinger-Lichnerowicz formula, namely why only the scalar curvature appears and not the other pieces of the curvature;
- this allows him to draw a remarkable parallel between the electromagnetic and gravitational fields.

4. Varying the Metric

The question of varying the metric has several sides to it.

The first one is algebraic

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs,* opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de Dirac et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

The question of varying the metric has several sides to it.

The first one is algebraic.

The second one is geometric as one has to move to manifolds and the Riemannian context.

I will be following the point of view taken in the article *Spineurs*, opérateurs de *Dirac* et variations de métriques, which I wrote with Paul GAUDUCHON and which appeared in Communications in Mathematical Physics in 1992.

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as b ∘ O where O ∈ O_n, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g=g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as $b \circ O$ where $O \in O_n$, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g = g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

g-orthonormal and h-orthonormal bases:

Let $g, h \in \mathcal{M}etV$, where V is an n-dimensional vector space. The first step is to establish a natural correspondence between

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as $b \circ O$ where $O \in O_n$, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g = g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as $b \circ O$ where $O \in O_n$, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g = g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as $b \circ O$ where $O \in O_n$, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g = g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

Correspondence between Bases

- it will be useful to think of a g-orthonormal basis b as a linear invertible map from \mathbb{R}^n to V so that $(b^{-1})^*(e) = g$, where e denotes the standard scalar product on \mathbb{R}^n ;
- the other g-orthonormal bases can be obtained from b as $b \circ O$ where $O \in O_n$, the group of e-isometries;
- an explicit correspondence can be built using a square root of the linear map $H_g = g^{-1}.h$;
- To get to the spinorial setting, one needs to exploit the geometry of the bundle $Inv(\mathbb{R}^n, V) \longrightarrow \mathcal{M}et V$ and take a horizontal lift along a curve from g to h;
- this path can then be lifted to the spinorial bases for spinorial metrics γ and η sitting above g and h.

The Conformal Situation

Among the simplest changes of metrics one of course has the conformal ones:

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$:
- in such a situation to any g-orthonormal basis $(e_i)_{i \leq i \leq n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i \leq i \leq n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is:

$$a^{\frac{n+1}{2}} \, \widetilde{\mathcal{D}}(\widetilde{\psi}) = \widetilde{\mathcal{D}(a^{\frac{n-1}{2}} \psi)} \; ,$$

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i \leq i \leq n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i \leq i \leq n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is:

$$a^{\frac{n+1}{2}} \, \widetilde{\mathcal{D}}(\widetilde{\psi}) = \widetilde{\mathcal{D}(a^{\frac{n-1}{2}} \psi)}$$

ie Conformal Situation

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i \leq i \leq n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i \leq i \leq n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is

$$a^{\frac{n+1}{2}}\,\tilde{\mathcal{D}}(\tilde{\psi})=\widetilde{\mathcal{D}(a^{\frac{n-1}{2}}\psi)}\;,$$

Among the simplest changes of metrics one of course has the

conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i < i < n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i < i < n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;

$$a^{\frac{n+1}{2}}\widetilde{\mathcal{D}}(\widetilde{\psi}) = \widetilde{\mathcal{D}(a^{\frac{n-1}{2}}\psi)}$$

The Conformal Situation

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i \leq i \leq n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i \leq i \leq n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is

$$a^{\frac{n+1}{2}}\widetilde{\mathcal{D}}(\widetilde{\psi}) = \widetilde{\mathcal{D}(a^{\frac{n-1}{2}}\psi)}$$

The Conformal Situation

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i < i < n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i < i < n}$ defined by $\tilde{e}_i = a^{-1}e_i$:
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is:

$$a^{\frac{n+1}{2}} \, \widetilde{\mathcal{D}}(\widetilde{\psi}) = \widetilde{\mathcal{D}(a^{\frac{n-1}{2}}\psi)} \; ,$$

The Conformal Situation

1. Motivation

Among the simplest changes of metrics one of course has the conformal ones:

- two metrics g and \tilde{g} are conformally related if there exists a positive function a such that $\tilde{g} = a^2 g$;
- in such a situation to any g-orthonormal basis $(e_i)_{i \leq i \leq n}$ one can associate the \tilde{g} -orthonormal basis namely $(\tilde{e}_i)_{i \leq i \leq n}$ defined by $\tilde{e}_i = a^{-1}e_i$;
- it is therefore easy to create a map between spinorial bases for two conformally related metrics;
- by using appropriate weights, it is possible to construct spinors attached to a conformal class of metrics, a construction due to Nigel HITCHIN;
- under a conformal change the Dirac operator's behaviour is:

$$a^{\frac{n+1}{2}}\widetilde{\mathcal{D}}(\widetilde{\psi})=\widetilde{\mathcal{D}(a^{\frac{n-1}{2}}\psi)}$$
 ,

Comparing Spinors and Dirac Operators

One can map spinorial bases for two spinorial metrics γ and η subordinated to the same spin structure still denoted by c_{γ}^{η} :

- the Spin_n-principal bundles associated with γ and η being mapped to one another in a $Spin_n$ -equivariant way, this gives rise to a map still denoted c_{γ}^{η} between the bundles $\Sigma^{\gamma} M \longrightarrow M$ and $\Sigma^{\eta} M \longrightarrow M$:

$$^{\gamma}\mathcal{D}^{\eta}=(c_{n}^{\gamma})^{-1}\circ\mathcal{D}^{\eta}\circ c_{n}^{\gamma}$$
 .

Comparing Spinors and Dirac Operators

One can map spinorial bases for two spinorial metrics γ and η subordinated to the same spin structure still denoted by c_{γ}^{η} :

- the Spin_n-principal bundles associated with γ and η being mapped to one another in a $Spin_n$ -equivariant way, this gives rise to a map still denoted c_{γ}^{η} between the bundles $\Sigma^{\gamma} M \longrightarrow M$ and $\Sigma^{\eta} M \longrightarrow M$:
- there is one case which allows an easier description, namely when the two metrics are conformally related, i.e. $h = a^2 g$. Then c_{σ}^{h} and c_{γ}^{η} are just multiplication by a^{-1} ;

$${}^{\gamma}\mathcal{D}^{\eta}=(c^{\gamma}_{\eta})^{-1}\circ\mathcal{D}^{\eta}\circ c^{\gamma}_{\eta}$$
 .

Comparing Spinors and Dirac Operators

One can map spinorial bases for two spinorial metrics γ and η subordinated to the same spin structure still denoted by c_{γ}^{η} :

- the Spin_n-principal bundles associated with γ and η being mapped to one another in a $Spin_n$ -equivariant way, this gives rise to a map still denoted c_{γ}^{η} between the bundles $\Sigma^{\gamma} M \longrightarrow M$ and $\Sigma^{\eta} M \longrightarrow M$:
- there is one case which allows an easier description, namely when the two metrics are conformally related, i.e. $h = a^2 g$. Then c_{σ}^{h} and c_{γ}^{η} are just multiplication by a^{-1} ;
- \bullet of course γ and η have different covariant derivatives as they come from the D^g and D^h :

$${}^{\gamma}\mathcal{D}^{\eta}=(c_{\eta}^{\gamma})^{-1}\circ\mathcal{D}^{\eta}\circ c_{\eta}^{\gamma}$$
 .

One can map spinorial bases for two spinorial metrics γ and η subordinated to the same spin structure still denoted by c_{γ}^{η} :

- the Spin_n-principal bundles associated with γ and η being mapped to one another in a Spin_n-equivariant way, this gives rise to a map still denoted c_{γ}^{η} between the bundles $\Sigma^{\gamma} M \longrightarrow M$ and $\Sigma^{\eta} M \longrightarrow M$;
- there is one case which allows an easier description, namely when the two metrics are *conformally related*, i.e. $h=a^2\,g$. Then c_g^h and c_γ^η are just multiplication by a^{-1} ;
- of course γ and η have different covariant derivatives as they come from the D^g and D^h ;
- the proper formula to compare the Dirac operators for the spinorial metrics γ and η introduces a transmuted Dirac operator ${}^{\gamma}\mathcal{D}^{\eta}$ defined as

$$^{\gamma}\mathcal{D}^{\eta}=(c_n^{\gamma})^{-1}\circ\mathcal{D}^{\eta}\circ c_n^{\gamma}$$
.

One can map spinorial bases for two spinorial metrics γ and η subordinated to the same spin structure still denoted by c_{γ}^{η} :

- the Spin_n-principal bundles associated with γ and η being mapped to one another in a Spin_n-equivariant way, this gives rise to a map still denoted c_{γ}^{η} between the bundles $\Sigma^{\gamma}M\longrightarrow M$ and $\Sigma^{\eta}M\longrightarrow M$;
- there is one case which allows an easier description, namely when the two metrics are *conformally related*, i.e. $h=a^2\,g$. Then c_g^h and c_γ^η are just multiplication by a^{-1} ;
- of course γ and η have different covariant derivatives as they come from the D^g and D^h ;
- the proper formula to compare the Dirac operators for the spinorial metrics γ and η introduces a transmuted Dirac operator ${}^{\gamma}\mathcal{D}^{\eta}$ defined as

$$^{\gamma}\mathcal{D}^{\eta}=(c_{\eta}^{\gamma})^{-1}\circ\mathcal{D}^{\eta}\circ c_{\eta}^{\gamma}$$
 .

Varying the Metric: the Dirac Operator

One can apply the previous constructions to the case of a curve of metrics $t\mapsto g_t\in \mathcal{M}et\,M$, and consider infinitesimal variations for which one can take $g_t=g+tk$, for k a symmetric 2-tensor field.

One can apply the previous constructions to the case of a curve of metrics $t \mapsto g_t \in \mathcal{M}et M$, and consider infinitesimal variations for which one can take $g_t = g + tk$, for k a symmetric 2-tensor field.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given for a γ -spinor field ψ by the formula

$$\left(\frac{d}{dt}^{\gamma} \mathcal{D}^{\gamma_t}|_{t=0}\right) \psi = \frac{1}{2} \sum_{i=1}^n e_i ..._{\gamma} \mathcal{D}^{\gamma}_{K_g(e_i)} \psi + \frac{1}{4} (\delta^g k + d \operatorname{Trace}_g k) ..._{\gamma} \psi.$$

One can apply the previous constructions to the case of a curve of metrics $t \mapsto g_t \in \mathcal{M}et M$, and consider infinitesimal variations for which one can take $g_t = g + tk$, for k a symmetric 2-tensor field.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given for a γ -spinor field ψ by the formula

$$\left(\frac{d}{dt}^{\gamma}\mathcal{D}^{\gamma_t}|_{t=0}\right)\psi = \frac{1}{2}\sum_{i=1}^n e_i._{\gamma}D^{\gamma}_{K_g(e_i)}\psi + \frac{1}{4}(\delta^g k + d\operatorname{Trace}_g k)._{\gamma}\psi.$$

One can apply the previous constructions to the case of a curve of metrics $t \mapsto g_t \in \mathcal{M}et M$, and consider infinitesimal variations for which one can take $g_t = g + tk$, for k a symmetric 2-tensor field.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given for a γ -spinor field ψ by the formula

$$\left(\frac{d}{dt}^{\gamma}\mathcal{D}^{\gamma_t}|_{t=0}\right)\psi = \frac{1}{2}\sum_{i=1}^n e_i._{\gamma}D^{\gamma}_{K_g(e_i)}\psi + \frac{1}{4}(\delta^g k + d\operatorname{Trace}_g k)._{\gamma}\psi.$$

One can apply the previous constructions to the case of a curve of metrics $t \mapsto g_t \in \mathcal{M}et M$, and consider infinitesimal variations for which one can take $g_t = g + tk$, for k a symmetric 2-tensor field.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given for a γ -spinor field ψ by the formula

$$\left(\frac{d}{dt}^{\gamma}\mathcal{D}^{\gamma_t}|_{t=0}\right)\psi = \frac{1}{2}\sum_{i=1}^n e_i._{\gamma}D^{\gamma}_{K_g(e_i)}\psi + \frac{1}{4}(\delta^g k + d\operatorname{Trace}_g k)._{\gamma}\psi.$$

We give the infinitesimal variation of the eigenvalues of \mathcal{D}^{γ} in the case where M is compact and the eigenvalue λ simple.

or the metric g is given by the formula $\left(\frac{d\lambda_t}{dz}\right) = -\frac{1}{2}\int g^{-2}(k,Q_\psi)\,v_g\;,$

where Q_ψ is the symmetric covariant 2-tensor field defined as

for ψ a unit vector in the eigenspace for the eigenvalue λ .

Several geometric aspects of this formula need to be discussed

Varying the Metric: Eigenvalues of \mathcal{D}

We give the infinitesimal variation of the eigenvalues of \mathcal{D}^{γ} in the case where M is compact and the eigenvalue λ simple.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the eigenvalue λ of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given by the formula

$$\left(\frac{d\lambda_t}{dt}_{|t=0}\right) = -\frac{1}{2} \int_M g^{-2}(k, Q_\psi) v_g$$

where Q_{ψ} is the symmetric covariant 2-tensor field defined as

$$Q_{\psi}(X,Y) = \frac{1}{2} \operatorname{\mathcal{R}e}((X._{\gamma}D_{Y}^{\gamma}\psi,\psi) + (Y._{\gamma}D_{X}^{\gamma}\psi,\psi))$$

for ψ a unit vector in the eigenspace for the eigenvalue λ

Several geometric aspects of this formula need to be discussed.

Varying the Metric: Eigenvalues of \mathcal{D}

We give the infinitesimal variation of the eigenvalues of \mathcal{D}^{γ} in the case where M is compact and the eigenvalue λ simple.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the eigenvalue λ of the Dirac operator at a spinorial metric γ for an infinitesimal deformation kof the metric g is given by the formula

$$\left(rac{d\lambda_t}{dt}_{|t=0}
ight) = -rac{1}{2}\int_M g^{-2}(k,Q_\psi)\,v_g\;,$$

where Q_{ψ} is the symmetric covariant 2-tensor field defined as

$$Q_{\psi}(X,Y) = rac{1}{2}\,\mathcal{R}e((X._{\gamma}D_{Y}^{\gamma}\psi,\psi) + (Y._{\gamma}D_{X}^{\gamma}\psi,\psi))$$

for ψ a unit vector in the eigenspace for the eigenvalue λ .

Varying the Metric: Eigenvalues of \mathcal{D}

We give the infinitesimal variation of the eigenvalues of \mathcal{D}^{γ} in the case where M is compact and the eigenvalue λ simple.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the eigenvalue λ of the Dirac operator at a spinorial metric γ for an infinitesimal deformation kof the metric g is given by the formula

$$\left(rac{d\lambda_t}{dt}_{|t=0}
ight) = -rac{1}{2}\int_M g^{-2}(k,Q_\psi)\,v_g\;,$$

where Q_{ψ} is the symmetric covariant 2-tensor field defined as

$$Q_{\psi}(X,Y) = rac{1}{2}\,\mathcal{R}e((X._{\gamma}D_{Y}^{\gamma}\psi,\psi) + (Y._{\gamma}D_{X}^{\gamma}\psi,\psi))$$

for ψ a unit vector in the eigenspace for the eigenvalue λ .

Varying the Metric: Eigenvalues of \mathcal{D}

We give the infinitesimal variation of the eigenvalues of \mathcal{D}^{γ} in the case where M is compact and the eigenvalue λ simple.

Theorem (JPB-P. GAUDUCHON)

The infinitesimal variation of the eigenvalue λ of the Dirac operator at a spinorial metric γ for an infinitesimal deformation k of the metric g is given by the formula

$$\left(rac{d\lambda_t}{dt}\Big|_{t=0}
ight) = -rac{1}{2}\int_M g^{-2}(k,Q_\psi)\,v_g\;,$$

where Q_{ψ} is the symmetric covariant 2-tensor field defined as

$$Q_{\psi}(X,Y) = rac{1}{2}\,\mathcal{R}e((X._{\gamma}D_{Y}^{\gamma}\psi,\psi) + (Y._{\gamma}D_{X}^{\gamma}\psi,\psi))$$

for ψ a unit vector in the eigenspace for the eigenvalue λ .

Several geometric aspects of this formula need to be discussed.

Comments on the Variation of the Eigenvalues

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_g Q_{\psi}$ must be orthogonal to all vector fields;
- one easily sees that $\operatorname{Trace}_g Q_{\psi}$ is exactly $\lambda ||\psi||^2$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called *Killing* spinors, a notion that found its origin in Physics.

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_g Q_{\psi}$ must be orthogonal to all vector fields;
- one easily sees that $\operatorname{Trace}_g Q_{\psi}$ is exactly $\lambda ||\psi||^2$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called *Killing* spinors, a notion that found its origin in Physics.

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_g Q_{\psi}$ must be orthogonal to all vector fields;
- one easily sees that $\operatorname{Trace}_g Q_{\psi}$ is exactly $\lambda ||\psi||^2$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called Killing spinors, a notion that found its origin in Physics.

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_g Q_{\psi}$ must be orthogonal to all vector fields;
- one easily sees that $\operatorname{Trace}_{g} Q_{\psi}$ is exactly $\lambda ||\psi||^{2}$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called Killing spinors, a notion that found its origin in Physics.

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_{\sigma} Q_{\psi}$ must be orthogonal to all vector fields;
- ullet one easily sees that $\mathrm{Trace}_{\mathbf{g}} Q_{\psi}$ is exactly $\lambda ||\psi||^2$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called *Killing* spinors, a notion that found its origin in Physics.

Comments on the Variation of the Eigenvalues

Several comments on this formula are in order:

- eigenvalues are of course invariant when the metric is replaced by a diffeomorphic image of it; this is reflected in the formula in the fact that the symmetric 2 -tensor field Q_{ψ} is divergence free provided ψ is an eigenspinor;
- the reason is that Q_{ψ} must be orthogonal to the tangent subspace at g to the space of metrics consisting of Lie derivatives of g with respect to vector fields; hence integrating by parts, $\delta_g Q_{\psi}$ must be orthogonal to all vector fields;
- one easily sees that $\operatorname{Trace}_g Q_{\psi}$ is exactly $\lambda ||\psi||^2$, hence is non-negative as soon as $\lambda \neq 0$;
- looking for metrics for which a given eigenvalue is critical is of course a natural geometric problem;
- a typical case is given by metrics admitting so-called *Killing* spinors, a notion that found its origin in Physics.

5. Killing Spinors

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a Killing vector field, i.e. an infinitesimal isometry;

Killing Spinors

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for $\mathcal D$. Its characteristic equation is, for some $\lambda \in \mathbb C$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a *Killing vector field*, i.e. an infinitesimal isometry;
- \bullet other components of $\psi\otimes\bar{\psi}$ also satisfy interesting conditions;
- a definition of a supersymmetric transformation can go as follows: one maps fermionic fields (such as spinor fields) φ to bosonic fields (such as 1-forms) by $\varphi \mapsto \Re(X, \varphi, \psi)$;
- the curvature tensor of D^{γ} acting on ψ is very special, namely, for all $X, Y \in TM$, $R_{X,Y}\psi = \lambda^2/n^2(X.Y Y.X).\psi$;
- it follows that $Ric_g = 4 \lambda^2 (n-1)/n^2 g$

Killing Spinors

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for $\mathcal D$. Its characteristic equation is, for some $\lambda \in \mathbb C$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a *Killing vector field*, i.e. an infinitesimal isometry;
- \bullet other components of $\psi\otimes \bar{\psi}$ also satisfy interesting conditions;
- a definition of a *supersymmetric* transformation can go as follows: one maps *fermionic fields* (such as spinor fields) φ to bosonic fields (such as 1-forms) by $\varphi \mapsto \Re(X.\varphi, \psi)$;
- the curvature tensor of D^{γ} acting on ψ is very special, namely, for all $X, Y \in TM$, $R_{X,Y}\psi = \lambda^2/n^2(X.Y Y.X).\psi$;
- it follows that $Ric_g = 4 \lambda^2 (n-1)/n^2 g$.

Killing Spinors

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of \mathcal{P} and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a *Killing vector field*, i.e. an infinitesimal isometry;
- \bullet other components of $\psi\otimes \bar{\psi}$ also satisfy interesting conditions;
- a definition of a *supersymmetric* transformation can go as follows: one maps *fermionic fields* (such as spinor fields) φ to bosonic fields (such as 1-forms) by $\varphi \mapsto \Re(X.\varphi, \psi)$;
- the curvature tensor of D^{γ} acting on ψ is very special, namely, for all $X, Y \in TM$, $R_{X,Y}\psi = \lambda^2/n^2(X.Y Y.X).\psi$;
- it follows that $Ric_g = 4 \lambda^2 (n-1)/n^2 g$

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of \mathcal{P} and an eigenspinor for \mathcal{D} . Its characteristic equation is, for some $\lambda \in \mathbb{C}$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a *Killing vector field*, i.e. an infinitesimal isometry;
- ullet other components of $\psi\otimes ar{\psi}$ also satisfy interesting conditions;
- a definition of a *supersymmetric* transformation can go as follows: one maps *fermionic fields* (such as spinor fields) φ to bosonic fields (such as 1-forms) by $\varphi \mapsto \Re e(X.\varphi, \psi)$;
- the curvature tensor of D^{γ} acting on ψ is very special, namely, for all $X, Y \in TM$, $R_{X,Y}\psi = \lambda^2/n^2(X.Y Y.X).\psi$;
- it follows that $Ric_g = 4\lambda^2 (n-1)/n^2 g$.

Definition (R. PENROSE)

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of $\mathcal P$ and an eigenspinor for $\mathcal D$. Its characteristic equation is, for some $\lambda \in \mathbb C$,

$$\forall X \in TM, \ D_X \psi + \frac{1}{n} \lambda X. \psi = 0.$$

- the 1-form ξ_{ψ} defined on $X \in TM$ by $\xi_{\psi}(X) = (X.\psi, \psi)$ is dual to a *Killing vector field*, i.e. an infinitesimal isometry;
- ullet other components of $\psi\otimes ar{\psi}$ also satisfy interesting conditions;
- a definition of a *supersymmetric* transformation can go as follows: one maps *fermionic fields* (such as spinor fields) φ to bosonic fields (such as 1-forms) by $\varphi \mapsto \Re e(X.\varphi, \psi)$;
- the curvature tensor of D^{γ} acting on ψ is very special, namely, for all $X, Y \in TM$, $R_{X,Y}\psi = \lambda^2/n^2(X.Y Y.X).\psi$;
- it follows that $Ric_{\sigma} = 4\lambda^{2}(n-1)/n^{2}g$.

It is useful to discuss cases according to the eigenvalue λ :

- if λ = 0, then the Killing spinor is parallel, and hence the metric has reduced holonomy;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$:
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM:
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

Killing Spinors (continued)

1. Motivation

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BAR, goes as follows:

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on *M* are mapped to parallel fields on *CM*.

Killing Spinors (continued)

1. Motivation

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BAR, goes as follows:

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BÄR, goes as follows:

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BÄR, goes as follows:

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on M are mapped to parallel fields on CM.

It is useful to discuss cases according to the eigenvalue λ :

- if $\lambda = 0$, then the Killing spinor is parallel, and hence the metric has *reduced holonomy*;
- if $\lambda \in i \mathbb{R}^*$, then M is non compact;
- if $\lambda \in \mathbb{R}^*$, then the Ricci curvature is uniformly positive, and by Myers' Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BÄR, goes as follows:

- construct the cone $CM = M \times \mathbb{R}^{+*}$ over M and endow it with the cone metric $\bar{g} = dr^2 + r^2 g$;
- then, through an identification of an action of the group $Spin_{n+1}$ within the Clifford algebra $Cl_g(M)$, map spinor fields on M into spinor fields on CM;
- through this identification, Killing spinors on *M* are mapped to parallel fields on *CM*.

1. Motivation

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of R with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved
- for $2 \le n$ the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;
- in even dimensions other than 6, only standard spheres carry Killing spinors; in dimension 6, one also finds the manifolds endowed with a nearly Kähler non Kähler metric.

1. Motivation

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of R with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved
- for $2 \le n$ the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;
- in even dimensions other than 6, only standard spheres carry Killing spinors; in dimension 6, one also finds the manifolds endowed with a nearly Kähler non Kähler metric.

1. Motivation

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of $\mathbb R$ with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved;
- for $2 \le n$ the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;
- in even dimensions other than 6, only standard spheres carry Killing spinors; in dimension 6, one also finds the manifolds endowed with a nearly Kähler non Kähler metric.

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of \mathbb{R} with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved;
- for $2 \le n$ the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;

1. Motivation

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of $\mathbb R$ with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved;
- for $2 \le n$ the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;
- in even dimensions other than 6, only standard spheres carry Killing spinors; in dimension 6, one also finds the manifolds endowed with a nearly Kähler non Kähler metric.

1. Motivation

- manifolds with parallel spinors have reduced holonomy; a classification is due to Nigel HITCHIN: SU_m , G_2 and $Spin_7$;
- manifolds with imaginary Killing spinors (actually the case if the manifold is complete and non compact) have been classified by Helga BAUM: hyperbolic spaces or special warped products of \mathbb{R} with a manifold with a parallel spinor;
- the classification for real Killing spinors is a bit more involved;
- for 2 < n the standard sphere has only one spin structure; for the standard metric, the bundle of spinors is trivialized by Killing spinors that are induced by parallel spinors in \mathbb{R}^{n+1} ;
- in even dimensions other than 6, only standard spheres carry Killing spinors; in dimension 6, one also finds the manifolds endowed with a nearly Kähler non Kähler metric.

- in dimension 5, Thomas FRIEDRICH and Ines KATH proved that one finds only manifolds with an Einstein-Sasaki metric; this was generalized by BÄR in all dimensions 4q + 1;
- In dimensions 4q + 3 (for $2 \le q$), BAR showed that one has to add the Sasaki 3-manifolds, as shown by Andrei MOROIANU.
- in the remaining dimension 7, the extra family to add corresponds to manifolds for which the cone built over them carries a metric with Spin₇ holonomy.
- the so-called squashed 7-sphere is a very interesting metric on the sphere S^7 as one can come to it from a purely Riemannian point of view (an exotic Einstein metric on the sphere besides the standard one) or from a supergravity point of view; it corresponds to squeezing appropriately the S^3 -fibres of the fibration over S^4 .

- in dimension 5, Thomas FRIEDRICH and Ines KATH proved that one finds only manifolds with an Einstein-Sasaki metric; this was generalized by BÄR in all dimensions 4q+1;
- in dimensions 4q + 3 (for $2 \le q$), BAR showed that one has to add the Sasaki 3-manifolds, as shown by Andrei MOROIANU.
- in the remaining dimension 7, the extra family to add corresponds to manifolds for which the cone built over them carries a metric with Spin₇ holonomy.
- the so-called squashed 7-sphere is a very interesting metric on the sphere S^7 as one can come to it from a purely Riemannian point of view (an exotic Einstein metric on the sphere besides the standard one) or from a supergravity point of view; it corresponds to squeezing appropriately the S^3 -fibres of the fibration over S^4 .

- in dimension 5, Thomas FRIEDRICH and Ines KATH proved that one finds only manifolds with an Einstein-Sasaki metric; this was generalized by BÄR in all dimensions 4q+1;
- in dimensions 4q + 3 (for $2 \le q$), BAR showed that one has to add the Sasaki 3-manifolds, as shown by Andrei MOROIANU.
- in the remaining dimension 7, the extra family to add corresponds to manifolds for which the cone built over them carries a metric with Spin₇ holonomy.
- the so-called *squashed 7-sphere* is a very interesting metric on the sphere S^7 as one can come to it from a purely Riemannian point of view (an exotic Einstein metric on the sphere besides the standard one) or from a supergravity point of view; it corresponds to squeezing appropriately the S^3 -fibres of the fibration over S^4

1. Motivation

- in dimension 5, Thomas FRIEDRICH and Ines KATH proved that one finds only manifolds with an Einstein-Sasaki metric; this was generalized by BÄR in all dimensions 4q + 1;
- in dimensions 4q + 3 (for $2 \le q$), BAR showed that one has to add the Sasaki 3-manifolds, as shown by Andrei MOROIANU.
- in the remaining dimension 7, the extra family to add corresponds to manifolds for which the cone built over them carries a metric with Spin₇ holonomy.
- the so-called squashed 7-sphere is a very interesting metric on the sphere S^7 as one can come to it from a purely Riemannian point of view (an exotic Einstein metric on the sphere besides the standard one) or from a supergravity point of view; it corresponds to squeezing appropriately the S^3 -fibres of the fibration over S^4 .

1. Motivation

- in dimension 5, Thomas FRIEDRICH and Ines KATH proved that one finds only manifolds with an Einstein-Sasaki metric; this was generalized by BÄR in all dimensions 4q + 1;
- in dimensions 4q + 3 (for $2 \le q$), BAR showed that one has to add the Sasaki 3-manifolds, as shown by Andrei MOROIANU.
- in the remaining dimension 7, the extra family to add corresponds to manifolds for which the cone built over them carries a metric with Spin₇ holonomy.
- the so-called squashed 7-sphere is a very interesting metric on the sphere S^7 as one can come to it from a purely Riemannian point of view (an exotic Einstein metric on the sphere besides the standard one) or from a supergravity point of view; it corresponds to squeezing appropriately the S^3 -fibres of the fibration over S^4 .

6. A more Global Perspective

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the A-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the A-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the A-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the A-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the Â-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the Â-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

1. Motivation

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the Â-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

Spinor fields proved to be subtle objects that play an absolutely fundamental role in present models in Theoretical Physics.

- using the fact that the Â-genus is the index of the Dirac operator operating on chiral spinors in dimension 4k André LICHNEROWICZ showed, using the Schrödinger-Lichnerowicz formula, that compact spin manifolds with a non-vanishing Â-genus do not admit metrics with positive scalar curvature;
- this has been sophisticated in many ways, starting with work by Misha GROMOV and H. Blaine LAWSON on appropriately twisted Dirac operators after some geometric constructions;
- they obtain the non-existence of metrics with positive scalar curvature on tori, a result that was obtained initially with a restriction on the dimension by Richard SCHOEN and Shing Tung YAU using minimal surfaces techniques.

Using Spinors in Geometry (cont.)

- iany more results have been obtained.
- by using more subtle topological invariants than the \bar{A} -genus, Nigel HITCHIN could show that, for $n \ge 9$, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist;
- we already touched on the links of special spinor fields with special geometries. In a series of remarkable papers, Reese HARVEY showed that many calibrations could be defined by the square of some special spinors;
- Edward WITTEN provided a proof of the Positive Mass
 Conjecture using spinors and the fact that the mass appears in
 the Schrödinger-Lichnerowicz formula as boundary-at-infinity
 contribution; recently Marc HERZLICH showed that such a
 feature is not specific to spinors but at the expense that other
 terms besides the scalar curvature appear.

- by using more subtle topological invariants than the \hat{A} -genus, Nigel HITCHIN could show that, for $n \ge 9$, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist
- we already touched on the links of special spinor fields with special geometries. In a series of remarkable papers, Reese HARVEY showed that many calibrations could be defined by the square of some special spinors;
- Edward WITTEN provided a proof of the Positive Mass
 Conjecture using spinors and the fact that the mass appears in
 the Schrödinger-Lichnerowicz formula as boundary-at-infinity
 contribution; recently Marc HERZLICH showed that such a
 feature is not specific to spinors but at the expense that other
 terms besides the scalar curvature appear.

Using Spinors in Geometry (cont.)

- by using more subtle topological invariants than the \hat{A} -genus, Nigel HITCHIN could show that, for n > 9, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist;

6. Perspective

Using Spinors in Geometry (cont.)

Many more results have been obtained:

1. Motivation

- by using more subtle topological invariants than the \hat{A} -genus, Nigel HITCHIN could show that, for $n \ge 9$, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist;
- we already touched on the links of special spinor fields with special geometries. In a series of remarkable papers, Reese HARVEY showed that many calibrations could be defined by the square of some special spinors;
- Edward WITTEN provided a proof of the Positive Mass
 Conjecture using spinors and the fact that the mass appears in
 the Schrödinger-Lichnerowicz formula as boundary-at-infinity
 contribution; recently Marc HERZLICH showed that such a
 feature is not specific to spinors but at the expense that other
 terms besides the scalar curvature appear.

Using Spinors in Geometry (cont.)

- by using more subtle topological invariants than the \hat{A} -genus. Nigel HITCHIN could show that, for n > 9, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist;
- we already touched on the links of special spinor fields with special geometries. In a series of remarkable papers, Reese HARVEY showed that many calibrations could be defined by the square of some special spinors:
- Edward WITTEN provided a proof of the *Positive Mass* Conjecture using spinors and the fact that the mass appears in the Schrödinger-Lichnerowicz formula as boundary-at-infinity contribution; recently Marc HERZLICH showed that such a feature is not specific to spinors but at the expense that other terms besides the scalar curvature appear.

Using Spinors in Geometry (cont.)

- by using more subtle topological invariants than the \hat{A} -genus. Nigel HITCHIN could show that, for n > 9, a number of exotic spheres do not admit metrics with positive scalar curvature;
- from further works by several people, it is possible to decide when Riemannian metrics with positive scalar curvature exist;
- we already touched on the links of special spinor fields with special geometries. In a series of remarkable papers, Reese HARVEY showed that many calibrations could be defined by the square of some special spinors:
- Edward WITTEN provided a proof of the Positive Mass Conjecture using spinors and the fact that the mass appears in the Schrödinger-Lichnerowicz formula as boundary-at-infinity contribution; recently Marc HERZLICH showed that such a feature is not specific to spinors but at the expense that other terms besides the scalar curvature appear.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds;
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin ¹/₂; spinors with spin ³/₂ should be investigated with the Rarita-Schwinger operator that acts on them.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds;
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin $\frac{1}{2}$; spinors with spin $\frac{3}{2}$ should be investigated with the Rarita-Schwinger operator that acts on them.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds;
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin $\frac{1}{2}$; spinors with spin $\frac{3}{2}$ should be investigated with the Rarita-Schwinger operator that acts on them.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds;
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin $\frac{1}{2}$; spinors with spin $\frac{3}{2}$ should be investigated with the Rarita-Schwinger operator that acts on them.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds;
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin ¹/₂; spinors with spin ³/₂ should be investigated with the Rarita-Schwinger operator that acts on them.

1. Motivation

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds:
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin $\frac{1}{2}$; spinors with spin $\frac{3}{2}$ should be investigated with the Rarita-Schwinger operator that acts on them.

- as the existence of a spin structure is very constraining, one should investigate the broader class of manifolds admitting a spin_c-structure, that includes all complex manifolds:
- a link to the Ricci curvature, as to the one that appeared in presence of a Killing spinor should be considered;
- generalisations of Killing spinors have been considered by Andrei MOROIANU and others who studied the equation satisfied by the restriction of a parallel spinor to a hypersurface that involves its second fundamental form;
- mathematicians focused their attention on spinor fields of spin $\frac{1}{2}$; spinors with spin $\frac{3}{2}$ should be investigated with the Rarita-Schwinger operator that acts on them.

Jean-Pierre BOURGUIGNON
Institut des Hautes Études Scientifiques
35, route de Chartres
F-91440 BURES-SUR-YVETTE
(France)

IPR@ihes fr

I thank you for your attention.

1. Motivation

Jean-Pierre BOURGUIGNON
Institut des Hautes Études Scientifiques
35, route de Chartres
F-91440 BURES-SUR-YVETTE
(France)

JPB@ihes.fr