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EXTREMAL METRICS ON TORIC SURFACES:

A CONTINUITY METHOD

S.K. Donaldson

Abstract

The paper develops an existence theory for solutions of the
Abreu equation, which include extremal metrics on toric surfaces.
The technique employed is a continuity method, combined with
“blow-up” arguments. General existence results are obtained, as-
suming a hypothesis (the “M-condition”) on the solutions, which
is shown to be related to the injectivity radius.

1. Introduction

This is the first in a series of papers which continue the study in [7],
[8] of the Kahler geometry of toric varieties. The purpose of the present
paper is to introduce an analytical condition (the “M-condition”) and
show that it controls sequences of extremal metrics on toric surfaces.
To set the scene for our discussion we consider the following data:

• an open polygon P ⊂ R2, with compact closure P ;
• a map σ which assigns to each edge E of P a strictly positive

weight σ(E);
• a smooth function A on P .

The datum σ yields a measure dσ on the boundary ∂P—on each edge E
we take dσ to be a constant multiple of the standard Lebesgue measure
with the constant normalised so that the mass of the edge is σ(E).
Equally, the datum σ specifies an affine-linear defining function λE for
each edge E, i.e., the edge lies in the hyperplane λ−1

E (0). We choose an
inward-pointing normal vector v at a point of E with

|ivdµ| = dσE

where dµ is the fixed standard area form on R2 and we specify λE by
the condition that ∇vλE = 1.

For a continuous function f on P we set

LA,σf =

∫

∂P
fdσ −

∫

P
Afdµ.
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We require our data (P, σ,A) to satisfy the condition that LA,σf van-
ishes for all affine-linear functions f—in other words, that ∂P and P
have the same mass and centre of mass with respect to the measures
dσ and Adµ respectively. Notice that given P and σ there is a unique
affine-linear function Aσ such that (P, σ,Aσ) satisfies this requirement.

Now let u be a convex function on P , smooth in the interior. We say
that u satisfies the Guillemin boundary conditions if

• any point x0 in the interior of an edge E is contained in a neigh-
bourhood Nx0

on which

u = λE log λE + f

where f is smooth in Nx0
∩ P and with strictly positive second

derivative on Nx0
∩ E;

• if x0 is a vertex of P , the intersection of two edges E,E′, then
there is a neighbourhood Nx0

on which

u = λE log λE + λE′ log λE′ + f

where f is smooth in Nx0
∩ P .

(Note that these boundary conditions depend on the weights via the
affine-linear defining functions. Thus we can extend the concept to
unbounded polygons with specified defining functions.)

With this material in place, we can recall that the basic question we
wish to address is the existence of a smooth solution u to the fourth
order partial differential equation (Abreu’s equation)

uij
ij = −A,

in P , satisfying the Guillemin boundary conditions. (Here we use the
summation convention, and uij is the inverse of the Hessian of u. Our
general practice is to use upper indices (x1, x2) for the co-ordinates on
R2, although we switch to lower indices when this is more convenient.)
If such a function u exists, it is an absolute minimum of the functional

F(f) = −
∫

P
log det(fij) + LA,σf,

over all convex functions f on P , smooth in the interior. In [7] we were
led to conjecture that a solution exists if and only if the linear functional
has the property that LA,σf ≥ 0 for all convex f having L1 boundary
values, with strict inequality if f is not affine-linear. We showed in [7]
that this is a necessary condition for the existence of a solution and the
problem is to establish the sufficiency. We will write C(P ) for the set of
pairs (A, σ) which satisfy this positivity condition.

The motivation for this problem stems from the case when P is a
“Delzant polygon”, corresponding to a compact symplectic 4-manifold
X with a torus action. Such a polygon comes with a preferred choice
of σ–we will refer to the pair (P, σ) as a “Delzant weighted polygon”.
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The convex functions u satisfying the Guillemin boundary conditions
correspond to invariant Kahler metrics on X. In general for a strictly
convex smooth function u on a polygon P we let g be the Riemannian
metric on P defined by the Hessian uij and ĝ be its extension to P ×R2

given by

(1) ĝ = uijdx
idxj + uijdθidθj .

This is a Kahler metric, with Kahler form dxidθi, invariant under trans-
lations in the R2 variables. In particular ĝ descends to a metric (which
we denote by the same symbol) on P × R2/2πZ2. If the polygon is
Delzant then, with the preferred choice of σ, this metric extends to a

smooth metric on a compact 4-manifold X. The expression −uij
ij gives

one half the scalar curvature of the metric ĝ, [1]. When A = Aσ our
problem is equivalent to the existence of an extremal Kahler metric (in
the given cohomology class) on X. In particular, if it happens that
Aσ is constant (i.e., if the centre of mass of (∂P, dσ) coincides with the
centre of mass of P ) our problem is equivalent to the existence of a con-
stant scalar curvature Kahler metric. The positivity condition described
above is related to algebro-geometric notions of “stability”.

In [7] we obtained a rather weak existence result by the variational
method applied to the functional F . In the present paper we change our
approach to the continuity method. In Section 2 we set up the frame-
work for this. We show that solutions persist under small perturbations
of the data (P,A, σ). Given any polygon P1 and (A1, σ1) ∈ C(P1) we
show that there is a path (Pt, At, σt) for t ∈ [0, 1] such that (At, σt) ∈
C(Pt) for each t and a solution to our problem exists when t = 0. This
is rather trivial if one allows arbitrary functions At but we show that
if A1 is linear (respectively, constant) we can arrange that the At are
also linear (respectively, constant). Thus in the standard fashion our
problem comes down to establishing closedness with respect to t, that
is to say to establishing a priori estimates for a solution u in terms of
given data (P,A, σ).

In [8] we studied this problem in the interior of the polygon and
showed that, roughly speaking, singularities cannot develop there. The
goal of this paper, and its sequels, is to extend these estimates, in ap-
propriate form, up to the boundary. Now we will introduce the central
notion of this paper. Let u be a smooth convex function defined on
some convex set Ω ⊂ Rn and let p, q be distinct points in Ω. Let ν be
the unit vector pointing in the direction from p to q. We write

(2) V (p, q) = (∇νu) (q) − (∇νu) (p),

where ∇ν denotes the derivative in the direction ν. Thus V (p, q) is
positive by the convexity condition. Let I(p, q) be the line segment

I(p, q) =
{p+ q

2
+ t(p− q) : −3/2 ≤ t ≤ 3/2

}

.
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Definition 1. For M > 0 we say that u satisfies the M -condition if
for any p, q such that I(p, q) ⊂ Ω we have V (p, q) ≤M .

It is easy to see that if the domain is a polygon P as above, and
if u satisfies Guillemin boundary conditions, then u satisfies the M -
condition for some M . Our main result is

Theorem 1. Let (P (α), σ(α), A(α)) be a sequence of data sets con-

verging to (P,A, σ). Suppose that for each α there is a solution u(α)

to the problem defined by (P (α), σ(α), A(α)). If there is an M > 0 such

that each u(α) satisfies the M -condition then there is a solution of the

problem defined by (P,A, σ).

While it is crucial for our continuity method that we do not restrict
attention to Delzant polygons, it is easier to outline the proof of The-
orem 1 in this special situation. In Section 3 we develop a variety of
arguments which ultimately show that the M - condition gives a lower
bound on the injectivity radius of the metric on the 4-dimensional man-
ifold, in terms of the maximal size of the curvature (see Proposition 10
below). If the curvature were to become large, in the sequence, then
after rescaling we are able to obtain “blow up limits” which have zero
scalar curvature. In the special situation when we are actually working
with compact 4-manifolds these limits could be obtained as a conse-
quence of general results in Riemannian geometry but we give proofs
(in Section 4) adapted to our particular circumstances, in order to han-
dle general polygons and also in order to make the paper self-contained.
Then we show that these blow-up limits do not exist. There are es-
sentially two cases to consider. In one case we can appeal to a more
general theorem of Anderson, but we also give an independent proof
for the particular result we need. In the other case we use a maximum
principle argument, based on a result which we prove in the Appendix.
Thus we conclude, from the nonexistence of these blow-up limits, that
in fact the curvature was bounded in the sequence, which leads to the
desired convergence.

The upshot of all this is that we can prove the existence conjecture
of [7] if we can establish an a priori M-condition on solutions. More
precisely, for given data (P, σ,A) and a choice of base point p0 ∈ P we
can define

λ(P, σ,A) = sup

∫

∂P
fdσ,

where the supremum runs over positive convex functions f vanishing at
p0 and with LA,σf = 1. We showed in [7] that, for data in C(P ), this
λ(P, σ,A) is finite and the remaining problem is to show that solutions
to our problem satisfy an M -condition, where M will depend, among
other things, on λ(P, σ,A). This will be taken up in the sequels to the
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present paper (although the author envisages that the actual argument
will be rather more complicated than this outline suggests).

2. The continuity method

2.1. Connectedness. For a given polygon P we have defined C(P ) to
be the set of (A, σ) such that LA,σ is strictly positive on the non-affine
convex functions. Clearly C(P ) is itself a convex set. We now define a
“canonical weight function” σP as follows. Let p0 be the centre of mass
of P , with the standard Lebesgue measure on R2 and for each edge E
of P let cE be the triangle with base E and vertex p0. Obviously, up
to sets of measure 0, the polygon P is decomposed into a disjoint union
of these triangles. Now define

σP (E) = Area (cE).

To simplify notation, and without loss of generality, suppose p0 = 0.
Clearly the mass of the boundary, in the measure dσP , is the same as
the area of P . Further, if q, q′ are the endpoints of an edge E the centre
of mass of cE is 1

3(q + q′) while the centre of mass of E is 1
2(q + q′).

Summing over the edges it follows that the centre of mass of ∂P is
also at 0. Hence the linear function AσP associated to these canonical
weights is the constant function 1.

Lemma 1. The pair (σP , 1) is in C(P ).

This is essentially a result of Zhou and Zhu, (Thm. 0.1 of [19]), but
since the proof is very simple we include it here. Take standard polar
co-ordinates (r, θ) on R2. By elementary calculus one finds that the
measure dσP is given by the 1-form 1

2r
2dθ, restricted to the boundary.

Let f be a convex function on the closure of P . Since L(σP ,1)(f) is
unchanged by the addition of an affine-linear function, we can suppose
without loss of generality that f achieves its minimum value at the
origin, and that the minimum value is zero. Now let the boundary be
given by the equation r = R(θ). Then we have, by convexity,

f(r, θ) ≤ r

R(θ)
f(R(θ), θ).

Thus
∫

P
fdµ =

∫ 2π

0

∫ R(θ)

0
f(r, θ)rdrdθ ≤

∫ 2π

0

∫ R(θ)

0

r2

R(θ)
f(R(θ), θ)drdθ.

Integrating with respect to r,
∫

P
fdµ ≤ 1

3

∫ 2π

0
f(R(θ), θ) R(θ)2dθ,

whereas
∫

∂P
fdσP =

1

2

∫ 2π

0
f(R(θ), θ) R(θ)2dθ.
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So

L(σP ,1)(f) ≥ 1

6

∫ 2π

0
f(R(θ), θ) R(θ)2dθ,

and this is clearly strictly positive if f is not identically zero. The
argument extends immediately to the case when f only has L1 boundary
values.

We define the notion of a “continuous path of polygons” Pt in the
obvious way: the polygons should have the same number of edges and
the vertices should vary continuously. Similarly, there is an obvious
definition of a continuous 1-parameter family of data sets (σt, At) cor-
responding to Pt.

Proposition 1. Let Pt , t ∈ [0, 1] be a continuous path of polygons

and suppose we have (A0, σ0) ∈ C(P0), (A1, σ1) ∈ C(P1). Then these

can be joined by a continuous 1-parameter family with (σt, At) ∈ C(Pt).
If A0, A1 are affine-linear we can suppose that each At is affine-linear,

and if A0, A1 are constant we can suppose that each At is constant.

First, if σ0 = σP0
, σ1 = σP1

, A0 = 1, A1 = 1 we can take σt =
σPt , At = 1 for all t ∈ [0, 1]. These lie in C(Pt) by the preceding lemma,
and obviously form a continuous family. Now, by composing paths, we
can reduce to the case when P1 = P0 and σ0 = σP0

, A0 = 1. Here we
just use the linear interpolation, applying the convexity of C(P0). If A1

is affine-linear (respectively constant) then each At will be affine-linear
(respectively constant), and the proof is complete.

2.2. Openness. Let Pt , t ∈ [0, 1] be a continuous 1-parameter family
of polygons and σt a 1-parameter family of weights. Each edge E of P0

varies in a 1-parameter family E(t) of edges and we have affine-linear
defining functions λE(t) : R2 → R. We can choose a continuous 1-
parameter family of diffeomorphisms χt : P0 → Pt such that, near to
each edge E,

λE(t) ◦ χt = λE .

(This implies that χt is affine-linear near each vertex of P0.) Then, for
small t, a function ut on Pt satisfies the Guillemin boundary conditions
for (Pt, σt) if and only if ũt = ut ◦ χt satisfies the boundary conditions
for (P0, σ0). In a 1-parameter family, we say that ut varies continuously
with t if the functions ũt − u0 (which are smooth functions on P0) are
continuous in t, along with all their multiple derivatives.

In this subsection we prove

Proposition 2. Let (Pt, σt, At) be a continuous 1-parameter family

of data and suppose a solution u0 to our problem exists when t = 0.
Then for small t there is a solution ut, and ut varies continuously with

t.
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Of course, this will be proved by linearising and applying the implicit
function theorem. On the face of it, this might seem a substantial
task, in view of the singular behaviour of the solutions required by the
boundary conditions, but we will explain that the superficial technical
difficulties evaporate when the problem is set up in a suitable way.

We begin by reviewing the relation between complex and symplectic
co-ordinates in this theory, and the role of the Legendre transform. In
this Subsection it will be more convenient to use lower indices x1, x2 for
our co-ordinates on the plane. Consider a convex function u on a con-
vex open subset U of [0,∞)2 ⊂ R2 which satisfies Guillemin boundary
conditions along the intersection of U with the axes, so

u = x1 log x1 + x2 log x2 − x1 − x2 + f(x1, x2),

where f is smooth on U . We suppose that the derivative ∇u maps the
set U ∩ (0,∞)2 onto the dual space, in which case the convexity condi-
tion implies that it is a diffeomorphism. Then the Legendre transform
φ(ξ1, ξ2) is defined on the dual space by the formulas

ξa = log xa +
∂f

∂xa
,

and

φ(ξ1, ξ2) =
∑

xaξa − u(x1, x2) = −f(x1, x2) +
∑

xa
∂f

∂xa
.

The basic fact that we need is that there is a 1-1 correspondence between
pairs (u, U) as above and smooth S1 × S1-invariant functions Φ on C2

with i∂∂Φ > 0. This is given by

Φ(z1, z2) = φ(log |z1|2, log |z2|2).
Further, if a family ut varies continously with respect to an additional
parameter (in the sense of C∞ convergence of the functions ft on com-
pact subsets of their domains) then the transforms Φt vary continously
in t (in the sense of C∞ convergence on compact subsets of C2).

Now let (P, σ) be a weighted polygon and q be a vertex of P ; the
intersection of two edges E,E′. The linear parts of the functions λE , λE′

give a preferred set of linear coordinates on R2. If q′ is another vertex
the two sets of coordinates differ by an element G(q, q′) ∈ GL(2,R). We
next review the “standard” case when all theG(q, q′) lie inGL(2,Z), i.e.,
when (P, σ) is a “Delzant” weighted polygon. In this case we construct a
complex surface XC from the data in the following way. For each vertex
q we take a copy C2

q of C2 and we identify points using the G(q, q′)

acting multiplicatively on the open subsets (C∗
q)

2 ≡ (C∗)2. Thus if

G(q, q′) =

(

a b
c d

)

we identify (z1, z2) ∈ C2
q with (z′1, z

′
2) ∈ C2

q′ where

z′1 = za
1z

b
2 , z

′
2 = zc

1z
d
2 .
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In this way we get a complex surface XC, with a (C∗)2-action, contain-
ing an open dense orbit XC

0 which is identified with each of the (C∗
q)

2.

We denote the quotient space XC/(S1 × S1) by X. Any point v in
R2 defines a map χv : XC

0 → R+. In the chart (C∗
q)

2 this is given by

(z1, z2) 7→ |z1|α|z2|β, where v has components (α, β) in the coordinates
λE , λE′ . Suppose we have a function u on P which satisfies Guillemin
boundary conditions. For each vertex q we translate to make q the
origin, and identify P with a convex subset of [0,∞)2 using the maps
λE , λE′ . We take the Legendre transform φq and pass to logarithmic co-
ordinates to obtain a smooth function Φq on C2

q . This yields a collection
of functions (Φq) in our charts which satisfy:

1) i∂∂Φq > 0,
2) Φq is invariant under the action of S1 × S1,
3) Φq − Ψq′ = logχq−q′ on XC

0 .

Conversely, given such a collection Φq, we can recover u, up to the
addition of an affine linear function on P . Further, the derivative of φq

defines a homeomorphism from X = XC/S1 × S1 to P .
Next we move on to the case of a general weighted polygon (P, σ).

While we cannot construct a space XC, we will see that most of the
ideas above extend. We define a space X by taking for each vertex q a
copy [0,∞)2q of [0,∞)2 and identify (r1, r2) in (0,∞)2q with (ra

1r
b
2, r

c
1r

d
2) in

(0,∞)2q′ . Of course we can identify [0,∞)2q with a quotient of C2
q by S1×

S1. This space X has a dense open subset X0 on which there are maps
χv : X0 → (0,∞). A function u on P satisfying Guillemin boundary
conditions again yields a collection of functions Ψq on C2

q , with the same
properties (1), (2), (3) as before, and u defines a homeomorphism from
X to P .

Here we digress to consider a general situation. Suppose we have a
compact topological space Z which is covered by open “charts” Zα ⊂ Z.
Suppose that for each α there is a homeomorphism from Zα to Bα/Gα,
where Bα is the unit ball in some Euclidean space and Gα is a compact
Lie group, acting isometrically on the Euclidean space. We suppose we
have sheaves Lp

k on Z which restrict, in the charts, to the Gα-invariant
locally Lp

k functions on the Euclidean spaces (including k = ∞, with
the obvious interpretation). In the case when the Gα are finite groups
this is essentially the notion of an orbifold, but as far as the author
knows there is not a standard terminology for the general situation. The
usual machinery of global analysis transfers without difficulty to this
situation. Thus if we suppose we have a local linear operator D taking
functions (say) on Z to functions on Z, given in the charts by a collection
of Gα-equivariant elliptic differential operators we can reproduce all
the results of the Fredholm alternative, invertibility on Sobolev spaces
etc. Similarly, for nonlinear operators we can apply the usual implicit
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function theorem arguments, and we will not take the space to formalise
this further.

The point of the preceding remarks is that the space X is equipped
with exactly this kind of structure. It is covered by open sets which
are identified with quotients C2

q/(S
1 × S1), and it is easy to see that

there are unique sheaves Lp
k as above. Thus, while a general weighted

polygon does not define a complex surface XC, it does define a space
X in which we can apply the standard analytical machinery. If we fix
a function u, and hence an identification between X and P , one easily
shows that the “smooth” functions Lp

∞ on X are identified with the
smooth functions on the manifold with corners P , but the situation for
general p, k is not so clear and in any case we can avoid this issue by
working systematically in the equivariant charts.

With all these preliminaries in place, we move on to our deforma-
tion problem. First consider the case where we fix the data (P, σ) and
vary the function A. Of course we need to stay within the class where
the mass and centre of mass of (P,Adµ) agree with those of (∂P, σ).
Working in a chart C2

q , we are in the standard situation, considering
the scalar curvature S(Φ) of the metric determined by a Kahler poten-
tial Φ, with Φ = Φq. It is well known that this is a nonlinear elliptic
differential operator. The linearisation has the form

(3) S(Φ + η) = S(Φ) + D∗D(η) + ∇S.∇η +O(η2).

Here D is the Lichnerowicz operator ∂T∇, where ∂T is the ∂-operator on
vector fields, and D∗ is the formal adjoint. However there is a subtlety
here, because the equation we want to solve is S(Φ) = A and while
A is a prescribed function on the polygon P the identification between
X and P also depends on Φ, so schematically we have an equation
S(Φ) = A(Φ). Simple calculations show that the dependence of A on Φ
precisely cancels out the “extra” term in (3). In other words, if we vary
our function A on P to A+ α then the linearisation of the equation in
the chart C2

q is just D∗Dη = α, where α is regarded as a function on

C2
q via the identification furnished by Φq. This is rather clear from the

“moment map” point of view (compare the discussion in [7]), and we will
not take more space to discuss the calculations here. The upshot is that
we can solve the nonlinear equation, for small variations of A, provided
we avoid the obstructions from the cokernel of the linearisation D∗D,
which is the same as the kernel of D. But this kernel consists exactly
of the pull-back of the affine-linear functions on P and the constraint
is just that the mass and centre of mass of α vanish, which is true by
hypothesis.

The case where we deform the data (P, σ) is a little more complicated.
Consider a 1-parameter family (Pt, σt) of small deformations of (P0, σ0)
(in reality the nature of the parameter space is irrelevant). Choose a
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family of diffeomorphisms χt as above, and let ut = ut ◦ χ−1
t . Then ut

is convex on Pt and satisfies Guillemin boundary conditions, for small
t. Fix a vertex q of P0 where edges E,E′ meet. There is no loss in
supposing that q is the origin and that λE,0, λE′,0 are the standard co-
ordinate functions (x1, x2). The chart C2

q is regarded as a fixed space,

independent of t, and for small t we have a function Φq,t on C2
q ob-

tained from the Legendre transform of ut. Unwinding the definitions,
Φq,t(z1, z2) = φq,t(log |z1|, log |z2|) where ψq,t is the Legendre transform
of a function u∗t on a convex set Ut ⊂ [0,∞)2. The function u∗t has the
form u ◦ W−1

t , where Wt is a diffeomorphism from U0 to U(t) which

we write as W̃ (x1, x2) = (x̃1(x1, x2), x̃2(x1, x2)). This diffeomorphism
has the property that x̃i = xi when xi is small, in particular it is the
identity in a neighbourhood of the origin, so u∗t = u near the origin. It
is clear then that u∗t converges to u as t → 0, in C∞ on compact sets.
Thus the corresponding functions Φq,t converge, in C∞ on compact sets
by the remarks above.

The conclusion of the discussion above is the following. Let Xt be
the space associated with (Pt, σt). For small t and each vertex q of P0

we have an atlas of “charts”

πq,t : C2
q → Xt

covering Xt. In these charts the equation S(Φ) = A we want to solve
is given by a continuously varying family of nonlinear elliptic PDE for
invariant functions. Thus, as before, we can adapt the usual theory
from the manifold case to construct solutions.

2.3. A starting point. It is clear that any two plane polygons with
the same number of edges can be joined by a continuous path. The
next issue we need to address is the existence of some data set for which
a solution to our problem exists. This is trivial if we allow arbitrary
functions A, but for later developments we want to be able to restrict
to the cases where A is constant.

Proposition 3. For each r ≥ 3 there is a polygon P with r vertices

and a set of weights σ such that there is a solution to our problem for

the data (P, σ, 1).

One possible approach to this is to consider the canonical weights σP

associated to any polygon P . In this case a solution to the constant
scalar curvature equation must actually satisfy a second order equation
of Monge-Ampere type, corresponding (in the local complex differential
geometry) to a Kahler-Einstein metric. This equation, expressed on P ,
is

log det(uij) = u− xiui.

Then one can hope to extend the proof by Wang and Zhu [18] of the
existence of Kahler-Einstein metrics on toric Fano varieties to the case of
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a general polygon P . However instead we will outline another approach
by adapting arguments of Arezzo and Pacard [3],[4].

Suppose first that (P, σ) is a Delzant weighted polygon, with Aσ = 1
(which is, in other langauge, the vanishing of the “Futaki invariant”).
One way in which this vanishing condition can occur is if P is symmet-
rical about the origin under the map x 7→ −x, and for simplicity let
us suppose that this is the case. Suppose we know that the polarised
variety X corresponding to P admits a constant scalar curvature met-
ric. Now Arezzo and Pacard study the following general problem: if we
know that a complex surface Z admits a constant scalar metric, find a
constant scalar curvature metric on the blow-up Ẑ of Z at some finite
set of points z1, . . . zq in Z. In this problem there is a positive real pa-
rameter associated to each point: the integral of the class of the Kahler
form on the corresponding exceptional divisor. Arezzo and Pacard show
that one can find such a metric, for small values of these parameters,
modulo obstructions coming from the kernel H of the operator D on Z.
Thus there is a smooth map F : [0,∞)q → H with F (0) = 0 and the
zeros of F in (0, δ)q give constant scalar curvature metrics. Now in our
case we choose a pair of vertices q,−q of P . These correspond to points,
Q and −Q say, in X, which are fixed points of the torus action. Then
the blow up X̂ is another toric surface.

The translation of the blow-up construction to the language of poly-
gons is well-known. Choose coordinates, as in the previous subsection,
so that q is the origin and λE , λE′ are the standard coordinate functions
x1, x2. Then for small ǫ we form a new polygon by removing the triangle

{(x1, x2) : x1 > 0, x2 > 0, x1 + x2 ≥ ǫ}

from P . This operation corresponds to blowing up the point Q, and ǫ
to the blow-up parameter mentioned above. The boundary measure on
the new polygon is fixed as follows. On the portion of the boundary
which coincides with the boundary of P the measure is the same as
the original one. On the “new” piece of boundary, corresponding to
x1 + x2 = ǫ in the coordinates above, the measure is chosen so that the
mass of the new edge is the same as each of the portions of the original
edges which were removed. Of course when we blow up both points
Q,−Q we “cut off” two triangles, one with a vertex at q and one with
a vertex at −q. If we choose the blow-up parameters to be equal then
the new polygon Pǫ has the same symmetry under x 7→ −x. In this
situation the obstructions arising from the kernel of D—i.e., from the
affine-linear functions on P , are forced to vanish by the symmetry and
it follows directly from the results of Arrezzo and Pacard that there is a
solution of our problem on Pǫ, for small enough ǫ and suitable weights.

This argument comes close to solving our problem. We can start
with the square, corresponding to the manifold S2×S2 with a standard
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constant scalar curvature metric. Then cut off two opposite corners to
get a solution for a hexagon, symmetric about the origin. Then cut off
two opposite corners of this to get a solution for an octagon, and so on.
Thus we find r-gons admitting solutions for any even value of r.

Perhaps this argument can be extended by some elementary trick to
cover odd values of r but, lacking this, we go back to appeal to the core
idea underlying Arezzo and Pacard’s construction, adapted to the toric
situation. They take the standard zero scalar curvature “Burns metric”
on the blow up of C2 at the origin, which is asymptotically Euclidean,
scale this by a small factor and glue it to the original metric on Z to
obtain an “approximate solution” on the blow up. Then the heart of the
matter is to study the problem of deforming this to a genuine solution,
via an implicit function theorem and analysis of the linearised equation.
Just as in the previous subsection, in the toric case the the space XC

itself plays no real role here and everything can be formulated in terms of
corresponding operations on the space X, using identical local formulae
in our equivariant charts. Further, also as in the previous subsection,
the obstructions to finding a solution can be completely understood in
terms of the centre of mass of the measure σ.

Let P be a polygon with at least 4 vertices and centre of mass at the
origin. Let q be a vertex of P and let F, F ′ be two edges of P which do
not contain q. Let σ be a weight function on ∂P such that Aσ = 1 and
suppose that there is a solution u of our problem for the data P, σ, i.e.,
a constant scalar curvature metric. Take two positive real parameters
λ, µ and consider the family of weight functions σ(λ, µ) on ∂P with

σλ,µ(F ) = λσ(F ) , σλ,µ(F ′) = µσ(F ′)

and with σλ,µ equal to σ on all the other edges. Then the centre of
mass of (∂P, σλ,µ) yields a map from R+ ×R+ to R2, and it is easy to
see that the derivative has rank 2 at the point λ = µ = 1. Now take
another small parameter ǫ and define a polygon Pǫ by cutting off a small
triangle at q, using this parameter, in the manner discussed above. For
each λ, µ we get a weight function σ̂λ,µ for Pǫ. Let v(λ, µ, ǫ) ∈ R2 be
the difference of the centre of mass of Pǫ and (∂Pǫ, σ̂λ,µ). The implicit
function theorem implies that there are smooth functions λ(ǫ), µ(ǫ) such
that λ(0) = µ(0) = 1 and

v(λ(ǫ), µ(ǫ), ǫ) = 0.

(Of course, what is involved here is just elementary geometry, and one
could write these functions down explicitly if desired.) This means that,
when λ = λ(ǫ), µ = µ(ǫ) the data (Pǫ, σ̂λ,µ) satisfies the obvious neces-
sary condition to have a constant scalar curvature metric, i.e., Aσ̂λ,µ

is
constant. Adapting the proof of Arrezzo and Pacard one can show that
there is indeed a solution, for small enough ǫ. Using this repeatedly we
get r-gons admitting solutions for all r ≥ 4. When r = 3 we can use the
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standard solution coming from the Fubini Study metric on CP2 and
thus complete the proof of Proposition 3.

3. Geometric estimates

3.1. Riemannian geometry in the polygon. Throughout this sec-
tion we consider a function u on a polygon P ⊂ R2 as before, satisfying
Guillemin boundary conditions determined by a weight function σ. We
consider the Riemannian metric g on P defined by the Hessian uij , along
with its extension ĝ to P × R2. Then P can be regarded as a totally
geodesic submanifold of P × R2. Suppose, momentarily, that the data
(P, σ) is Delzant, so corresponds to a genuine 4-manifold XC, a com-
pactification of P × T 2. Then there is an isometric involution of XC

(given by θi 7→ −θi) with fixed set a smooth surface Σ which can be
obtained by gluing 4 copies of P along suitable edges, and the metric
g extends smoothly to Σ. It is easy to see from this that, in any case,
the metric g extends to a Riemannian metric on P , equipped with a
suitable smooth structure (as a 2-manifold with corners), and that the
edges are geodesics. Thus P is geodesically convex, in that any two
points can be joined by a minimal geodesic, and any geodesic can be
extended until it reaches the boundary. A main theme of this subsection
is to relate the Riemannian geometry and the Euclidean geometry in P .
We write Distg for the distance function defined by g and DistEuc for
the Euclidean distance. Recall from [8], Sec. 5.2 that the tensor

F ij
kl = uij

kl =
∂2uij

∂xk∂xl

defined by the function u is equivalent to the Riemann curvature tensor
of the metric ĝ. We define

|F |2 = F ij
klF

ab
cd uiaujbu

kculd.

Then the absolute value of the sectional curvatures of ĝ are bounded
by |F |. In this section we will explore the interaction between the M -
condition and a bound on |F |. A crucial fact that we will use later in

the paper is that if uij
ij = −A then

(4)

∫

P
|F |2dµEuc −

∫

P
A2dµEuc

is an invariant of the data (P, σ), see [8], Corollary 5.

Lemma 2. Suppose u satisfies the M -condition. Let I be a line

segment in P with mid-point p and let p′ be an end point of I. Then the

Riemannian length of the segment pp′ is at most

1

(
√

2 − 1)

√
M
√

|p− p′|Euc.
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We can suppose that p′ is the origin and that p is (L, 0), so |p −
p′|Euc = L and the segment of the x1-axis from 0 to 2L lies in P . We
apply the definition of the M -condition to the pair of points p, q, where
q = (L/2, 0). This gives

∫ L

L/2
u11(t, 0)dt ≤M.

The Riemannian length of the straight line segment from q to p is
∫ L

L/2

√
u11(t, 0)dt,

which is at most

√

(L/2)

(

∫ L

L/2
u11(t, 0)dt

)1/2

;

hence the Riemannian length of this segment is at most
√

LM/2. Re-
placing p by 2−rp and summing over r we see that the Riemannian
length of the segment from 0 to p is at most

√

(ML)

∞
∑

r=1

(

1√
2

)r

,

from which the result follows.

Corollary 1. Suppose that u satisfies the M condition and that p is

a point of P . Then

Distg(p, ∂P ) ≤ 1√
2 − 1

√
M
√

DistEuc(p, ∂P ).

To see this we take p′ to be the point on ∂P closest to p, in the
Euclidean metric. If p′′ = 2p − p′ then the segment p′p′′ lies in P and
we can apply the Lemma above.

Next we derive a crucial result which relates the restriction of u to
lines and the curvature tensor F .

Lemma 3. At each point of P ,
(

∂

∂x1

)2
(

u−1
11

)

≤ |F |.

One way of approaching this is to observe that the restriction of the
function u to a slice {x2 = constant} represents the metric on a sym-
plectic quotient, and then to exploit the fact that curvature increases in
holomorphic quotient bundles. However we will not explain this further
and instead give a direct proof. Observe that the quantity

(

∂

∂x1

)2
(

u−1
11

)
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is unchanged by rescaling x1. This means that, by rescaling x1 and
making a different choice of x2, we can suppose that at the point p0 in
question uij is the standard Euclidean tensor. Then the square of the
norm of the curvature tensor at this point is

|F |2 =
∑

i,j,k,l

(

uij
kl

)2
,

and so u11
11 ≤ |F |. Now, at a general point of P we have

u11 =
u22

u11u22 − u2
21

,

which gives

u11 − u−1
11 =

u2
12

u11(u11u22 − u2
12)

.

Since u12 vanishes at the point p0 we have
(

∂

∂x1

)2
(

u11 − u−1
11

)

= 2
(u121)

2

u2
11u22

= 2(u121)
2 ≥ 0

at p0. So
(

∂

∂x1

)2

u−1
11 ≤ u11

11 ≤ |F |.

Lemma 4. Let p be a point of P and ν = (νi) a unit vector. Suppose

the segment {p + tν : −3R ≤ t ≤ 3R} lies in P , that |F | ≤ 1 in P and

that u satisfies the M -condition. Then

uijν
iνj ≤ Max

(

2M

πR
, 2

(

M

π

)2
)

.

We can suppose that ν is the unit vector in the x1 direction and that
p is the origin. Let H(t) = u11(t, 0). We apply the definition of the
M -condition to obtain

∫ R

−R
H(t)dt ≤M.

By the previous Lemma,

d2

dt2
H(t)−1 ≤ 1.

Suppose H(0)−1 = ǫ. Then for any t ∈ [−R,R] we have

H(±t) ≤ ǫ± Ct+ t2/2

where C = H ′(0). Since H(±t) > 0 we must have ǫ ± Ct + t2/2 > 0.
Then, adding the two terms, we have

H(t) +H(−t) ≥ 1

ǫ+ Ct+ t2/2
+

1

ǫ− Ct+ t2/2
≥ 2

ǫ+ t2/2
.
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This gives
∫ R

−R
H(t)dt ≥

∫ R

−R

dt

ǫ+ t2/2
= 2ǫ−1/2

∫ Rǫ−1/2

0

dt

1 + t2/2
.

So we have

M ≥ 2
√

2√
ǫ

tan−1

(

R√
2ǫ

)

.

Now use the fact that
4

π
tan−1(z) ≥ Min(1, z)

and a little manipulation to obtain the stated bounds on ǫ−1 = u11(0, 0).

The results in the rest of this subsection depend upon a special feature
of the Riemannian metric g, and its relation to the metric ĝ. Consider
the 1-forms ǫi = dxi on P × R2. Under the isomorphism between
cotangent vectors and tangent vectors defined by the symplectic form
these correspond to the Killing fields ∂

∂θi
. These two Killing fields span

a covariant constant subspace of the tangent space, on the other hand
they are Jacobi fields along any geodesic in P . Thus we conclude that
the 1-forms ǫi = dxi satisfy a Jacobi equation of the schematic form

∇2
t ǫi = F ∗ ǫi,

along any geodesic. Expressed in different notation, if e1, e2 is a parallel
frame of cotangent vectors along a geodesic and if we write ǫi =

∑

Gijej ,
then the matrix G(t) satisfies an equation of the form

d2

dt2
G = −RG,

where R is a symmetric matrix with | (Rij) | ≤ |F |. If we express things

in terms of the vector fields ∂
∂θi

on the 4-manifold this is almost the same

as the standard discussion, as in [11], of the Fermi fields associated to
the orbits of the isometric action.

We need a simple comparison result for Jacobi fields.

Lemma 5. Suppose that R(t) is a symmetric k × k matrix-valued

function on an interval (0, a) with R(t) ≥ −1. Suppose that ǫ1(t), . . . ,
ǫk(t) are k-vector solutions of the Jacobi equation ǫ′′ = −Rǫ which are

linearly independent at each point in the interval and with (ǫ′i, ǫj) =

(ǫi, ǫ
′
j). Then

|ǫ1(t)|
sinh t is a decreasing function of t.

The author does not find precisely this result stated in standard text-
books, so we give a proof, although this follows familiar lines. Fix a
point t0 ∈ (0, a) and consider the derivative of |ǫ1(t)|/ sinh t at t = t0.
Clearly we can suppose that ǫi(t0) is the standard orthonormal frame
for the k-vectors. In particular |ǫ1(t0)| = 1 and we want to show that
(ǫ′1, ǫ1) ≤ cosh t0/ sinh t0 at t = t0. Express ǫi(t) in terms of the fixed
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orthonormal frame by ǫi =
∑

Gj
iej so G is a solution of the matrix

equation G′′ = −RG with G(t0) = 1. Set S = G′G−1 so that S
satisfies the Ricatti equation S′ + S2 = −R. The hypothesis that
(ǫ′i, ǫj) = (ǫi, ǫ

′
j) implies that S(t) is symmetric for all t. At t = t0

we have (ǫ′1, ǫ1) = S11, the (1, 1) entry of the matrix S, so it suffices to
prove that S(t0) ≤ cosh t0/ sinh t0, or equivalently that all the eigenval-
ues of S(t0) are bounded above by cosh t0/ sinh t0. Now each eigenvalue
λ(t) of S(t) satisfies a scalar Ricatti differential inequality

λ′ + λ2 ≤ 1

(see [11], [13]: by standard arguments we may ignore the complications
that might occur from multiple eigenvalues). Suppose that λ(t0) >
cosh t0/ sinh t0. Then we can find τ ∈ (0, t0) such that λ(t0) = cosh(t0−
τ)/ sinh(t0−τ). Now the function µ(t) = cosh(t−τ)/ sinh(t−τ) satisfies
the equation µ′ + µ2 = 1. So λ′ + λ2 ≤ µ′ + µ2 in the interval (τ, t0]
and λ(t0) = µ(t0). It follows that λ(t) ≥ µ(t) for t ∈ (τ, t0) and since
µ(t) → ∞ as t tends to τ from above we obtain a contradiction.

Notice that Lemma 5 contains as a special case the familiar Rauch
comparison result: if |ǫ1| ∼ t as t → 0 then |ǫ(t)| ≤ sinh t for all
t < a. Notice also that the hypothesis (ǫ′i, ǫj) = (ǫi, ǫ

′
j) is satisfied in

our situation, as one sees by a standard manipulation involving the Lie
brackets of the ∂

∂θi
.

Lemma 6. Let E be an edge of the polytope P and suppose that

the defining function λE (determined by σ) is x1. Then if u satisfies

Guillemin boundary conditions and |F | ≤ 1 throughout P , we have

u11(p) ≤ sinh2 Distg(p,E)

for any p in P .

To see this we consider a geodesic parametrised by t ≥ 0, starting
at time 0 on the boundary component E. Near the boundary we can
describe the geometry in terms of a 4-manifold with a group action in
the familiar way. The vector field ∂

∂θ1
is smooth in the 4-manifold and

vanishes at t = 0. The condition that x1 is the normalised defining
function just asserts that this vector field is the generator of a circle
action of period 2π. It follows that

lim
t→0

t−1| ∂
∂θ1

| ≤ 1

(with equality when the geodesic is orthogonal to the edge E). Then,

by the above,
√
u11 = | ∂

∂θ1
| ≤ sinh t and the result follows.

Corollary 2. Let E be an edge of P with defining function λE. Then

if |F | ≤ 1 we have

λE(p) ≤ cosh(Distg(p,E)) − 1.
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Notice that this is an affine-invariant statement. There is no loss in
supposing that, as above, λE = x1. Then for a geodesic starting from a
point of E, parametrised by arc length, we have

|dx
1

dt
| ≤ |dx1|g =

√
u11 ≤ sinh t;

hence x1 ≤ cosh t− 1.

Lemma 7. Suppose that |F | ≤ 1 and that p is a point in P with

distg(p, ∂P ) ≥ α > 0. Then if q is a point with Distg(p, q) = d, we have

(

uij(q)
)

≤ sinh2(α+ d)

sinh2 α

(

uij(p)
)

.

If d < α, we have

(

uij(q)
)

≥ sinh2(α− d)

sinh2 α

(

uij(p)
)

.

(Here the notation
(

Aij
)

≤ λ
(

Bij
)

means that for any vector νi

we have νiνjA
ij ≤ λνiνjB

ij .) To prove the Lemma, observe that it
suffices by affine invariance to prove the corresponding inequalities for
the matrix entry u11 = |ǫ1|2. For the first inequality we consider a
minimal geodesic γ from p = γ(0) to q = γ(d) and extend it “backwards”
to t > −α. Then replacing t by t+α we are in the situation considered
in Lemma 5 and we obtain

|ǫ1(p)|
sinhα

≥ |ǫ1(q)|
sinh(α+ d)

.

For the second inequality we extend the geodesic “forwards” to the
interval [0, α] and argue similarly.

Suppose that p = (p1, p2) is a point of P and r > 0. Put

Ep,r = {(x1, x2) ∈ R2 : uij(p)(x
i − pi)(xj − pj) ≤ r2}.

So E(p, r) is the interior of the ellipse defined by the parameter r and
the quadratic form uij(p).

The Euclidean area of E(p, r) is πr2 det(uij(p))
−1/2.

Lemma 8. Suppose that |F | ≤ 1 and that p is a point in P with

distg(p, ∂P ) ≥ α > 0. Then for any β < α the β-ball in P , with respect

to the metric g satisfies

E(p, cβ) ⊂ Bg(p, β) ⊂ E(p, Cβ),

where c = sinh(α−β)/ sinhα and C = sinh(α+β)/ sinhα. In particular,

the Euclidean area of the β ball for the metric g is bounded below by

AreaEucBg(p, β) ≥ πc2β2 det(uij)(p)
−1/2.
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There is no loss in supposing that the matrix uij(p) is the identity
matrix, so we have to show that the ball Bg(p, β) defined by the metric
g contains a Euclidean disc of radius cβ, and is contained in a Euclidean
disc of radius Cβ. We know by Lemma 7 that on the ball Bg(p, β) we
have

c2 ≤ (uij) ≤ C2.

Thus C−2 ≤ (uij) ≤ c−2, and the Euclidean length of a path in
Bg(p, ρ) is at least c−1 times the length calculated in the metric g, and
at most C−1 times that length. The second statement immediately tells
us that Bg(p, β) lies in E(p, Cβ). In the other direction, suppose q is
a point in the Euclidean disc of radius cβ centred on p. We claim that
q lies in the (closed) g ball Bg(p, β). For if not there is point q′ in the
open line segment pq such that the distance from q′ to p is β and the
line segment pq′ lies in Bg(p, β). But the Euclidean length of this line
segment is strictly less than cβ so the length in the metric g is less than
β, a contradiction.

3.2. The injectivity radius. We continue to consider a convex func-
tion u, satisfying Guillemin boundary conditions, on a polygon P , as
in the previous subsection. The present subsection has two purposes.
In one direction we discuss coordinates in neighbourhoods of boundary
points obtained from geodesic coordinates in four dimensions. In an-
other direction, we want to relate these ideas to the standard notion of
the injectivity radius. Since we will want sometimes to work with in-
complete manifolds we should clarify our definitions. By the statement
that “the injectivity radius at a point p is at least r” we mean that
the exponential map at p is defined on tangent vectors of length r, and
yields an embedding of the Euclidean r-ball. In fact the discussion of
the injectivity radius need only enter our main proof in a rather minor
way, but it is useful to explain how the arguments fit into the wider
world of Riemannian geometry.

First we consider the vertices. Let q be a vertex of P , so we have an
Riemannian 4-manifold Xc

q , which is not complete. The torus action on
Xc

q gives a constraint on the exponential map.

Lemma 9. If |F | ≤ 1 in P then the injectivity radius of Xc
q at q is

at least π/2.

The exponential map is equivariant with respect to the standard torus
action on the tangent space at q. Suppose the exponential map is defined
for some r′ < r and let ξ be a unit vector in the Lie algebra of the torus,
corresponding to a vector field vξ on Xc

q . Then the length of the vector
field vξ is bounded below on the boundary of the r′ ball. However, if the
exponential map is not defined on the r ball then as we let r′ approach
its maximal possible value there is some choice of ξ such that the length
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of vξ goes to zero on the boundary (since the corresponding points in P
must be approaching another edge).

Now suppose that the r ball is not embedded by the exponential
map. Then there is a nontrivial geodesic starting and ending at q, of
length less than π. But the vector fields ∂

∂θi
give Jacobi fields along

this geodesic, vanishing at the endpoints. By a standard comparison
theorem these vector fields must vanish identically along the geodesic
which means that the initial tangent vector of the geodesic is fixed by
the torus action. Since there are no such fixed tangent vectors we have
a contradiction.

Now we note a general fact of Riemannian geometry.

Lemma 10. Let gij = δij + ηij be a Riemannian metric on the Eu-

clidean ball B of radius π in Rn, with sectional curvature bounded in

absolute value by 1. Suppose that | (ηij) | ≤ ǫ (δij), for some ǫ < 1. Then

the injectivity radius at the origin is at least
√

1 − ǫ.

First, the g-distance from the origin to the boundary of the ball B
is at least π

√
1 − ǫ, so the exponential map is defined as stated. Since

the curvature is less than 1, we only need to check that there are no
geodesic loops starting and ending at the origin, of length less than
2
√

1 − ǫ. Suppose γ is a geodesic loop, of length L, and for s < 1 let γs

be the loop γs(t) = sγ(t). Then the length of γs is at most L′ =
√

1+ǫ
1−ǫL.

For small s the loop γs can be lifted to a loop over the exponential map.
The argument on page 100 of [6] (proof of a Theorem of Klingenberg)
shows that this is true for all s, provided that L′ < π, which will be the
case if L < 2

√
1 − ǫ. But, as in the argument cited, γ itself lifts to a ray

under the exponential map, giving a contradiction.

Now we consider an interior point q of the polygon. We can think of
this as a point in the Riemannian 4-manifold P × R2, with the metric
ĝ and we write I(q, ĝ) for the injectivity radius at that point. We can
also consider q as a point in the quotient space P ×R2/Z2 and we write
I ′(q, ĝ) for the injectivity radius there.

Lemma 11. Suppose |F | ≤ 1 in P .

1) For any α > 0 there is an i(α) > 0 such that if Distg(q, ∂P ) ≥ α
then I(q, ĝ) ≥ i(α).

2) If u satisfies an M condition then there is an i(α,M) > 0 such

that if Distg(q, ∂P ) ≥ α then I ′(q, ĝ) ≥ i′(α,M).

To prove the first item we apply Lemma 8. We can suppose that the
Hessian uij at the point q is the standard form δij . Then Lemma 8 tells
us that that the metric ĝ is close to Euclidean—in the given coordinates
xi, θj—over a ball of a definite size determined by α. Then we can apply
Lemma 10. To prove the second item we just need to check that the
quotient by Z2 does not create any short loops. Since the metric in the
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fibre direction is given by uijdθidθj , this is the same as showing that for
any non-zero integer vector νi the quantity uijνiνj is not small. But we
know, by combining Lemmas 2 and 4, that uij ≤ C, where C depends
on M,α. This implies that uijνiνj ≥ C−1(ν2

1 + ν2
2) ≥ C−1.

To take stock of our progress so far, consider the case when P corre-
sponds to a compact 4-manifold Xc. Then Lemmas 9 and 11 give lower
bounds on the injectivity radius at points of Xc which correspond to
either vertices or to interior points of P . Our remaining task is to con-
sider the points which lie on the boundary edges. For this we introduce
a numerical invariant of a weighted polygon (P, σ). Let q be a point in
the interior of an edge E and let d be the Euclidean distance from q to
the end points of E. Set

µ(q) = min
E′

λE′(q)

d
,

where E′ runs over the set of edges not equal to E. Now let µ = µP,σ

be the minimum of µ(q) over all such boundary points q. It is easy to
see that µP,σ > 0.

For each (open) edge E of P we define a Riemannian 4-manifold Xc
E

as follows. We choose coordinates such that the defining function λE

is x1 and take the quotient of P × R2 by Λ, where Λ is the copy of Z

embedded as Z × {0} in R2. This gives a manifold with an action of
S1×R. Then, just as in the construction of the manifolds Xc

q associated
to vertices q, we can adjoin a copy of E×R, fixed under the circle action,
and the metric extends smoothly. If q is a point on the interior of E we
write I(q, ĝ) for the injectivity radius about the corresponding point in
Xc

E . If (P, σ) is Delzant we can also consider q as a point in the compact
manifold Xc and we write I ′(q, ĝ) for the injectivity radius there.

Lemma 12. Suppose that |F | ≤ 1 in P and that u satisfies an M
condition. Then for any α > 0 there is an i(α, µ,M) > 0 such that

I(q, ĝ) ≥ i(α, µ,M) if the distance in the metric g from q to the set of

vertices is at least α. If (P, σ) is Delzant then there is an i′(α, µ,M) > 0
such that I ′(q, ĝ) ≥ i′(α, µ,M).

Not surprisingly, the proof of this Lemma–for an edge point–is a
combination of the arguments used in the cases of vertices and interior
points. The first thing is to see that the exponential map at q in Xc

E
is defined on a ball of a definite size (depending on α, µ,M). This is
the same as showing that the distance in the metric g from q to any
other edge E′ of P is not small. But we know by Lemma 2 that the
Euclidean distance d from q to the end points of E is not small, hence
by the definition of µ, λE′(q) is bounded below by a quantity depending
on µ,M,α.Then Corollary 2 implies that the distance in the metric g
from q to E′ is not too small. The remaining task is to show, as in
the proof of Lemma 9, that there are no short geodesic loops in Xc

E
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starting at q. Now there is a circle action on Xc
E which fixes the point

q and the argument used in the proof of Lemma 9 shows that any short
geodesic loop must lie in the fixed set of the action, which is E × R.
The Riemannian metric on E × R is defined by the restriction of u to
E. The arguments used in the proof of Lemma 11 apply, in an obvious
way, to give a lower bound on the injectivity radius in E×R, so we see
that there are no short geodesic loops and the proof of the lower bound
on I(q, ĝ) is complete.

In the case when (P, σ) is Delzant a neighbourhood of q in Xc is
quotient of Xc

E by an action of Z and we again we need to show that
this does not create any short loops. This just comes down an upper
bound on the second derivative of u along the edge, which is furnished
by Lemma 4 and the M-condition.

Proposition 4. Suppose that (P, σ) is Delzant, that u satisfies an M
condition and |F | ≤ 1 in P . Then there is an r, depending only on M
and µP,σ, such that the injectivity radius of the Riemannian 4-manifold

Xc is at least r.

By applying Lemma 10 it suffices to show that for any κ > 0 there is
an r′ such that for each point p of Xc we can find another point p′ such
that the injectivity radius at p′ is at least r′ and the distance from p to
p′ is at most κr′. If p is close to a vertex we take p′ to be the vertex
and use Lemma 9. If p is close to an edge but not close to any vertex
we take p′ to be a nearby point on the edge, and use Lemma 12. If p is
not close to any edge we take p′ = p and use Lemma 11.

We conclude this section with another simple observation, similar to
Lemma 9, which will be useful later.

Lemma 13. Suppose that q is a point on an edge E of P and γ is a

geodesic starting at q which is orthogonal to E at q. If p is the point a

distance d from q along the geodesic, where d < π/2, then Distg(p,E) =
d.

In the case when (P, σ) is Delzant this is essentially a standard re-
sult. By the same argument as in Lemma 9, a geodesic segment with
endpoints on E of length less than π must lie in E. This means that the
exponential map on the normal bundle of the 2-sphere corresponding
to E is an embedding on vectors of length less than π, from which the
assertion follows. The reader can easily check that the proof works in
just the same way for a general (P, σ).

4. Convergence of sequences

4.1. Elliptic estimates. In this subsection we assemble some results of
a rather standard nature, the general theme being that the derivatives of
the scalar curvature of a Kahler metric control those of the full curvature
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tensor. Similar, but more sophisticated, results are contained in [2],
[14].

Throughout this subsection we suppose that (M, g, J) is a Kahler sur-
face with scalar curvature S and let p be a point of M . We suppose
that the exponential map at p is defined on the unit ball and for ρ ≤ 1
let Bρ be the ρ ball in centred at p.

We begin with a simple result, which will be the essential thing we
need for our main argument

Proposition 5. Suppose that |Riem| ≤ 1 on B1. Then for any α ∈
(0, 1) and ρ < 1 there is a Holder bound, for points p′ with d(p, p′) ≤ ρ,

| |Riem(p′)| − |Riem(p)| | ≤ Cα,ρ(1 + ‖∇S‖L∞)d(p, p′)α.

By pulling back the metric we can suppose that the exponential map
is an embedding on the unit ball. By a covering argument it suffices to
prove the result for some ρ and then by rescaling we can suppose that
|Riem| is as small as we please.

Various approaches to the proof are possible. We will base our ar-
gument on a general perturbation result for linear elliptic equations.
Suppose that D0 is a constant-coefficient first order elliptic operator
over Rn (i.e., with injective symbol) and E is a perturbation term,
defined over the unit ball, of the form

E(f) =
∑

ǫi
∂f

∂xi
+ Tf.

(Here we are considering operators on vector-valued functions, so the
coefficients will be matrices in general.) Fix an exponent p > 1 and
suppose that

• ǫi are sufficiently small;
• we have Lq bounds on T

where q and the allowable size of the ǫi depend on D0 and p. Then
by considering D0 + E as a perturbation of D0 we obtain an elliptic
estimate of the form

‖f‖Lp
1
(B1/2) ≤ C

(

‖(D0 + E)f‖Lp(B) + ‖f‖Lp(B)

)

,

where C depends on the Lq bounds on the coefficients T . The proof is
essentially the same as [9] Theorem 9.11, together with the remark on
p. 241.

To apply this we work in geodesic coordinates on our Kahler surface.
A bound on the curvature gives a C1 bound on the metric coefficients
gij in these co-ordinates. Since the metric is Kahler the almost-complex
structure J is covariant constant, hence, when written as a tensor in
these coordinates, the coefficients are also bounded in C1. We use
the following identities connecting the curvature tensors, written in a
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schematic form

∂Riem = 0 , ∂
∗
Riem = π(∇Ric),

∂Ric = 0 , ∂
∗
Ric = π(∇S).

Here π denotes certain natural contractions on tensors of the appro-
priate type. Then we can apply the discussion above to the elliptic
operator ∂ ⊕ ∂

∗
defined by the Kahler metric. We express this, in ge-

odesic coordinates, as a perturbation of the constant coefficient model.
When the curvature is small the relevant terms ǫi, T are small in L∞.
Now the general elliptic estimate above yields

‖Riem‖Lp
1
(B1/2) ≤ C(‖∇S‖Lp + 1),

and we get a Cα bound on |Riem| from the Sobolev embedding theorem.

Next we extend this to higher derivatives.

Proposition 6. With notation as above suppose that |Riem| ≤ 1 on

B1. Then for any l ≥ 1 there are constants Cl,ρ such that

|∇lRiem| ≤ Cl,ρ(‖∇l+1S‖L∞(B) + 1),

on Bρ.

We only outline a proof, since this is somewhat standard. We can
apply the perturbation argument as above to the ∂+∂

∗
- operator map-

ping from Lp
k+1 to Lp

k provided we know that the coefficients ǫi, T are

controlled in Lp
k. (Here p is chosen sufficiently large.) Since T depends

on the first derivatives of the metric tensor g and the complex structure
J , in coordinates, we need g, J ∈ Lp

k+1. To achieve this we work in

harmonic coordinates [12], in which the Lp
k+1 norm of the metric tensor

is controlled by the Lp
k−1 norm of the curvature tensor. Since the tensor

J is covariant constant we also get an Lp
k+1 bound on its representative

in these coordinates. Now we bootstrap, starting from the Lp
1 bound on

the curvature tensor which was already obtained in the proof of Propo-
sition 5. In harmonic coordinates we can consider the ∂ ⊕ ∂

∗
operator

mapping Lp
3 to Lp

2 and obtain Lp
3 bounds on the curvature tensor, in

terms of derivatives of the scalar curvature, and so on.

Now consider a more specialised situation in which we have a pair of
holomorphic vector fields v1, v2 on an embedded ball B1 in the Kahler
manifold X. Suppose that the Riemannian gradient of the scalar curva-
ture can be expressed as ∇S = A1v1 +A2v2 where A1, A2 are functions
on the manifold. Suppose in turn that all derivatives of A1, A2 can be
expressed in a similar way:

∇Ai =
∑

Aijvj ,

∇Aij =
∑

Aijkvk,
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and so on.

Proposition 7. In this situation, if |Riem| ≤ 1 on B1 then we have

|∇lRiem| ≤ Cl,ρ on B(ρ), where Cl,ρ depends on the L∞ norms of the

vector fields v1, v2 and the functions Ai1...ik over the ball B1, for k ≤ l+1.

To prove this we exploit the first order elliptic equation ∂vi = 0 for
the vector fields and build this into our bootstrapping argument. First,
the L∞ norm of ∇S is obviously controlled by the L∞ norms of Ai, vi.
So in harmonic coordinates we control the Lp

3 norm of the metric and

obtain elliptic estimates for the ∂-operator mapping Lp
3 to Lp

2 and we
get an Lp

3 bound on vi. Now we can write

∇2S =
∑

Aijvi ⊗ vj +
∑

Ai∇vi

and we get an Lp
2 bound on ∇2S and so on.

4.2. Bounded curvature. Now we show that to prove Theorem 1 it
suffices to bound the curvature tensors of the solutions.

Proposition 8. Suppose that (P (α), σ(α), A(α)) are data-sets converg-

ing to a limit (P, σ,A) and that u(α) are solutions. If there are fixed

M,K such that u(α) satisfies the M -condition and |F (u(α))| ≤ K, for

all α, then there is a solution u(∞) for the data (P, σ,A).

Of course, the solution u(∞) will be obtained as a limit of the u(α),
provided that these are suitably normalised with respect to the addition
of affine-linear functions. Although the domains of definition P (α) are
different, it obviously makes sense to talk about a subsequence of the
u(α) converging on compact subsets of P , and this is what we show
first. (In fact we already have this interior convergence from the results
of [8]—without assuming the curvature bound—but we will give an
independent argument since it will be pave the way for the proofs in
4.4 below.) To simplify the presentation we just consider the case when

the P (α), σ(α) are all the same (P, σ) and only A(α) varies with α. The
reader will easily see that the general case is not essentially different.
We simplify notation by sometimes writing u and A for u(α) and A(α).

By Lemma 2, there is some fixed D such that for any point p in P
there is a vertex q such that the Riemannian distance from p to q is less
than D. Then Lemma 6 gives a universal bound

uij ≤ C.

On the other hand Lemma 4 gives a bound

uij ≤ C/dEuc,

where dEuc is the Euclidean distance to the boundary of P . So we deduce
that uij is bounded above and below on compact subsets of the interior.

On such sets the definition of the curvature tensor uij
kl immediately gives
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a C2 bound on the uij , so we can suppose that the uij converge in C3,α.
From this it is entirely straightforward to deduce the C∞ convergence,
on compact subsets of P . Thus the essential issue is to show that the
limit satisfies the Guillemin boundary conditions. To see this, fix a point
q on the boundary of P . There are two cases to consider, either q is a
vertex or lies on the interior of an edge E.

Case 1 : q is a vertex.

The function u = u(α) defines an S1×S1-invariant metric onXq
∼= C2.

By Lemma 9, the geodesic ball of some fixed small radius about the
origin is embedded. This geodesic ball maps to neighbourhood of q in
P which is contained in a Euclidean neighbourhood of one fixed size, and
contains a Euclidean neighbourhood of another fixed size. We are in the

framework of Proposition 7, with vi = I ∂
∂θi

and Ai = ∂A
∂xi , Aij = ∂2

∂xi∂xj

and so on. Thus the norm of vi in the Riemannian metric is
√
u11 and

this is bounded. Similarly for v2. All the derivatives of A are bounded
so we can apply Proposition 7 to deduce that all covariant derivatives
of the curvature tensor are bounded in this ball. We pass to geodesic
coordinates in which we have data (g(α), J (α)). Then in these geodesic
coordinates all derivatives of the metric tensors are bounded and we
can suppose that the metrics converge in C∞, likewise for the complex
structures since these are covariant constant. The limit is a smooth
Kahler metric (g∞, J∞) on a small ball in R4, invariant under the fixed,
standard, action of S1×S1. For each α, the functions x1

α, x
2
α which map

the ball to neighbourhoods of q in P are characterised as moment maps
for the action with respect to the symplectic forms ω(α) determined
by (g(α), J (α)). It follows that these also converge. By Guillemin’s
analysis of the structure of invariant Kahler metrics we know that the
limit (g∞, J∞) corresponds to a function u∞ on a neighborhood of q in
P , satisfying Guillemin boundary conditions, and it is clear from the
convergence of the data (g(α), J (α), x1

α, x
2
α) that the second derivative of

this coincides with the limit we have already found on the interior. Thus
we see that this interior limit satisfies Guillemin boundary conditions
in a neighbourhood of the vertex q.

Case 2 : q is in the interior of an edge.

We suppose that P is defined near q by the equation x1 > 0. The
argument is similar to that above. By Lemma 12 we get exponential
coordinates on balls for the ĝ metric on Xc

E whose image in P contains
a fixed Euclidean neighbourhood of q. Arguing just as in the previous
case, we get bounds on the covariant derivatives of the metric tensors
and can suppose that in geodesic coordinates these converge, along with
the complex structures. So we have (gα, J (α)) → (g∞), J∞) say. For

each α we have a pair of J (α)-holomorphic, commuting vector fields

v
(α)
1 , v

(α)
2 and Iv1 is a Killing field generating a circle action fixing q.
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Just as in the previous case, the exponential map is equivariant for this
action so the limiting metric g(∞) is also preserved by the same fixed

circle action. For the other sequence of vector fields v
(α)
2 we have to

argue differently. We know that these are bounded in L∞ so it follows
from the ellipticity of the ∂-operator that we can suppose (after perhaps
taking a subsequence) that these converge. What we have to see is that

the limit v
(∞)
2 is not a multiple of v1. But this is the case, since v1

vanishes at q while the length of v2(q) is u22 which is bounded below
by Lemma 4. So we obtain, in the limit in geodesic coordinates over a
small neighbourhood of q

• a Kahler metric g(∞), J (∞);
• a pair of linearly independent, commuting, holomorphic vector

fields v
(∞)
1 , v

(∞)
2 such that Iv

(∞)
1 generates the standard circle ac-

tion.

Then just as before it follows from Guillemin’s analysis that this data
corresponds to a function satisfying Guillemin boundary conditions on
a neighbourhood of q in P .

4.3. Rescaling. It is standard practice in Riemannian geometry to
rescale a metric in order to obtain a fixed bound on the curvature.
We want to implement this idea in our special situation. Suppose u is
a convex function on a polygon P which satisfies Guillemin boundary

conditions defined by weights σ, with uij
ij = −A. Let λ be a positive

real number. Define a function ũ on the polygon P̃ = λP by

ũ(x1, x2) = λu(λ−1x1, λ−1x2).

Proposition 9.

• The function ũ satisfies Guillemin boundary conditions for the

weights σ̃(λE) = λσ(E).

• The curvature F̃ of ũ satisfies

|F̃ |(λp) = λ|F |(p).

• The scalar curvature Ã = ũij
ij is

Ã(λp) = λA(p).

• If u satisfies an M -condition then so does ũ (with the same value

of M).
• µP̃ ,σ̃ = µP,σ.

All of these are very easy to check. Notice that the second item
implies that

(5)

∫

P̃
|F̃ |2dµEuc =

∫

P
|F |2dµEuc.
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If (P, σ) is Delzant, so also is (P̃ , σ̃). There is then a canonical diffeo-

morphism from Xc(P, σ) to Xc(P̃ , σ̃) and under this the Riemannian
metric ĝ is scaled by a factor λ. In this case (5) is just the standard fact
that the L2 norm of the curvature tensor is scale invariant in four real
dimensions.

Using this rescaling we can transfer the results of Section 3, under
the hypothesis that |F | ≤ 1, to the general case. In fact we have the
following refinement of Proposition 4.

Proposition 10. Let (P, σ) be Delzant and let ĝ be a metric on

Xc = Xc(P, σ) determined by a convex function u on P . Suppose u
satisfies an M -condition. There is a c > 0, depending only on M and

µ(P ), with the following property. For any ρ > 0 and point x ∈ Xc:

either there is a point x′ ∈ Xc with Distg(x, x
′) ≤ ρ and |F (x′)| ≥

ρ−2,

or |F (x′)| ≤ ρ−2 for all x′ with Distg(x, x
′) ≤ ρ and the exponential

map at x is an embedding on the ball of radius cρ

This follows from Proposition 4 after rescaling and the observation
that the hypothesis |F | ≤ 1 in Proposition 4 is only used on points
within a fixed distance of x.

4.4. Blow-up limits. Now suppose that, in our sequence u(α) as con-
sidered in Theorem 1, the curvature |F | does not satisfy a uniform
bound. For each α choose a point pα where the modulus of the cur-
vature achieves its maximal value Kα and suppose that Kα → ∞. We
want ultimately to derive a contradiction. By translation we can sup-
pose that each pα is the origin. We dilate by a factor Kα so we get a
new sequence of data (P̃ (α), σ̃(α)) and functions ũ(α). It is clear that,
perhaps after taking a subsequence, one of three cases must occur.

• The limit of the P̃ (α) is the whole of R2;
• The limit of the P̃ (α) is a half-plane;
• The limit of the P̃ (α) is a quarter-plane (i.e., a nontrivial intersec-

tion of two half-planes).

(Here by the statement that “the limit of P̃ (α) is G” we mean that point

of G is contained in P̃ (α) for all large enough α and any point not in
the closure of G is in the complement of P̃ (α) for all large enough α.)

The main result of this subsection is

Proposition 11. If the limit of P̃ (α) is G, for one of the three cases

above, then after taking a subsequence and adding suitable affine linear

functions the ũ(α) converge to a smooth convex function Ũ on G which

satisfies the equation Ũ ij
ij = 0. The limit Ũ satisfies an M condition in

G. In the case when G is a quarter plane, the limit satisfies Guillemin

boundary conditions and defines a complete, non-flat, zero scalar cur-

vature Kahler metric on R4 with curvature in L2.
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We give the proof in the three cases.

Case 1 : The limiting domain is the whole plane.

We can apply the results from Section 3 to the functions ũ = ũ(α).
We want to show that on any compact subset K ⊂ R2 we have upper
and lower bounds

C−1
K ≤ ũij ≤ CK .

The upper bound follows immediately from Lemma 4 (since on com-

pact sets the Euclidean distance to the boundary of P̃ (α) tends to infinity
with α). Let J = J (α) be the function det(ũij). The crucial thing is
to get a lower bound on J(0). Corollary 2 implies that the distance in
the metrics g̃α corresponding to ũα from the origin to the boundary of
P̃α tends to infinity. By construction, |F̃ (α)| is equal to 1 at the ori-
gin. We want to apply Proposition 5. Notice that when we rescale the
derivatives of the scalar curvature function decrease, so are certainly
uniformly bounded in the sequence. Thus by Proposition 5 we can find
a fixed small number δ such that |F (α)| ≥ 1/2 on the g̃α ball of radius
δ about the origin. On the other hand Lemma 8 implies that this ball
contains a Euclidean ellipse of area at least cJ(0)−1/2δ2, for some fixed
c. Thus

∫

P̃ α

|F̃α|2dµEuc ≥ cδ2J(0)−1/2.

Since, from (4) and (5), the integral on the left is bounded, we obtain a
lower bound on J(0), as required. Combined with the upper bound on
ũij this lower bound on J(0) yields an upper on ũij at the origin. Now
Lemma 7 gives an upper bound on ũij at points of bounded g̃ distance
from the origin. The upper bound on ũij implies that on compact
subsets of the plane the g̃ distance to the origin is bounded. So we
conclude that ũij is bounded above on compact subsets of the plane,
which is the same as the lower bound on ũij . Once we have these
upper and lower bounds on ũij the convergence of a subsequence is
straightforward, just as in the proof of Proposition 8, and the fact that

the limit Ũ has Ũ ij
ij = 0 follows from the third item of Proposition 9.

Case 2 : The limiting domain is a half-plane.

The proof is similar to the first case. The upper bound on uij on
compact subsets of the limiting half-plane is obtained just as before.
Let dα be the distance from the origin to the boundary of P̃ (α) if dα is
bounded below we can argue just as before. The only difficulty comes
when dα → 0, which is the same as saying that the origin is on the
boundary of the limiting half-plane. Fix a parameter τ < π/2. For each
α we take a point qα on the boundary of P

α
which minimises the gα

distance to the origin and let pα be the point of P̃α a distance τ from
qα along the geodesic emanating from qα orthogonal to the boundary
of P̃α. Then by Lemma 13 the distance from pα to the boundary of
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P̃α is at least τ (once α is sufficiently large). Here we use the fact that

the distance from the origin to all but one of the edges of P̃α tends
to infinity with α. Now by applying Proposition 5 to a geodesic ball
centred at qα we see that we can fix τ so that |F | ≥ 1/2, say, on the ball
of radius τ/2 about pα. Now the argument goes through just as before.

Case 3 : The limiting domain is a quarter-plane.

The proof in this case is much like that of Proposition 8. Let qα be
the vertex of P̃α close to the vertex of the limiting quarter-plane and
let Eα

1 , E
α
2 be the edges of P̃α meeting in qα with defining functions

λi,α = λEα
i
. Observe that the definition of the σ̃α implies that that

these λi,α converge as α tends to infinity to defining functions for the
edges of the quarter plane. We obtain the lower bounds on ũij , or
equivalently the upper bound on ũij , by applying Lemma 6, using the
geodesics emanating from qα, and the upper bounds on uij using the M -
condition and Lemma 4. Just as in the proof of Proposition 8 we show
that the limit satisfies Guillemin boundary conditions along the edges
of the quarter plane, and it is clear that the corresponding 4-manifold
is diffeomorphic to R4. The completeness of the limiting metric follows
from general principles or more directly from our estimate

λi,α ≤ cosh(Distg(qα, p)) − 1.

The fact that the curvature of the limiting metric is in L2 follows from
(4), (5) and Fatou’s Lemma. Of course, the fact that the limiting metric

is not flat follows from the normalisation that |F̃α| is equal to 1 at the
origin, and the C∞ convergence.

With Proposition 11 in place the desired contradiction (to the hy-
pothetical blow up of the curvature in the sequence) follows from the
following two results.

Theorem 2. There is no convex function U on a half-plane which

satisfies an M -condition and the equation U ij
ij = 0.

Theorem 3. If U is a convex function on a quarter plane which sat-

isfies an M -condition and which defines a complete zero scalar curvature

metric on R4 with curvature in L2 then the metric is flat.

We will give one proof of Theorem 3 now. This uses a result of
Anderson [2], which we quote.

Theorem 4 (Anderson). Let g be a complete self-dual Riemannian

metric on R4 with zero scalar curvature. Suppose that the curvature

of g is in L2 and that the volume V (r) of the ball (in the metric g) of

radius r about the origin satisfies V (r) ≥ cr4 for some c > 0. Then g is

flat.

To see that this applies to our case, recall first that scalar-flat Kahler
metrics in two complex dimensions are self-dual. Thus the only thing we
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need to establish is the volume growth. This uses the M -condition. We
can suppose the quarter plane in question is the standard one defined
by xi ≥ 0 and that the boundary conditions correspond to the defining
functions xi. For τ > 0 let Ω(τ) be the triangle {(x1, x2) : xi ≥ 0, x1 +
x2 ≤ τ} and let Xc(τ) be the corresponding subset of Xc. By Corollary
1 we have Distg(p, 0) ≤ C

√
τ for p ∈ Ω(τ), where C depends on M .

So Xc(τ) is contained in the ball of radius Cτ2. On the other hand
the volume of Xc(τ) is equal to (2π)2 times the Euclidean area of Ω(τ)
which is τ2/2. So we deduce that

V (C
√
τ) ≥ 2π2τ2,

from which the statement follows.

5. Nonexistence of blow-up limits

5.1. The case of the half-plane. Throughout this section we will,
contrary to our general convention, use lower indices for our coordinates
(x1, x2) on the Euclidean plane.

We will first indicate the proof of Theorem 2 in the case of a convex

function u satisfying the zero scalar curvature equation uij
ij = 0 and an

M -condition on the whole plane. While this is subsumed in the harder
case below the proof is substantially simpler. We suppose u is nor-
malised to achieve its minimum at the origin. Then an easy elementary
argument (see the proof of Lemma 14 below) shows that an M condi-
tion implies a uniform bound on the first derivative, |∇u| ≤M ′, say, on
R2. Now we apply Theorem 5 of the Appendix to the restriction of u
to a large Euclidean disc of radius R centred at the origin. This yields
det(uij)(0) ≤ CR−2, and we get a contradiction by letting R tend to
infinity.

Now we give the proof for the case when the function is only defined
on a half-plane.

Lemma 14. Suppose (p1, p2) is fixed and u is a convex function on

a neighbourhood of a rectangle {x1, x2 : |x1 − p1| ≤ L1, |x2 − p2| ≤ L2}
which satisfies the zero scalar curvature equation uij

ij = 0. Let

V1 = V ((−L1, 0), (L1, 0)), V2 = V ((0,−L2), (0, L2))

and set ∆ = Max(V1L1, V2L2). Write J for the function det(uij). Then

there is a universal constant κ such that

J(0, t) ≤ κ∆2

L2
1L

2
2

,

for |t| ≤ L1/4,

(Recall that the function V (p, q) is defined in (2) in Section 1.)
Obviously we can suppose (p1, p2) = (0, 0). It is elementary to check

that the statement is invariant under dilations of the co-ordinates, so
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we can reduce to the case when L1 = L2 = 1. We can also suppose that
u is normalised so that it vanishes, together with its first derivatives,
at the origin. So u is positive and, by convexity and the definition of
V1, the modulus of the partial derivative ∂u

∂x1
is bounded by ∆ on the

interval {(t, 0) : −1 ≤ t ≤ 1}. Similarly for the x2 variable. Thus u ≤ ∆
at the four points (±1, 0), (0,±1). By convexity, u ≤ ∆ on the square
K formed by the convex hull of these four points. Let D be the disc of
radius 1

2 about the origin. So D is contained in the interior of K and

the distance from D to the boundary of K is d = (1/
√

2) − 1
2 . By an

elementary property of convex functions we have |∇u| ≤ ρ = ∆/d on
D. Then by Theorem 5 of the Appendix there is a universal constant C
such that J ≤ Cρ2 on the interior disc of radius 1

4 centred on the origin.

Thus we can take κ = Cd−2.

Lemma 15. Suppose u is a convex function on the half–plane

{(x1, x2) : x1 > 0} which satisfies the M condition and the zero scalar

curvature equation uij
ij = 0. Write J = det(uij). Then

1) For any η > 0 there is an h0 such that J(x1, x2) ≤ ηx−1
1 if x1 ≥ h0.

2) For any ǫ > 0 and 0 < h1 < h2 there is a T > 0 such that

J(x1, x2) ≤ ǫ if |x2| ≥ T and h1 ≤ x1 ≤ h2.

To prove the first item we consider a point p = (p1, p2) with p1 > 0
and consider the rectangle {(x1, x2) : |x1 − p1| ≤ p1/2, |x2 − p2| ≤ p1}.
We can apply Lemma 14, where L1 = p1/2, L2 = p1. The M condition
implies that V1 ≤ 2M,V2 ≤ M , so ∆ ≤ Mp1. Then we obtain J(p) ≤
4κM2(p1)

−2 and the result follows (with h0 = 4κM2η−1).
To prove the second item we first consider the case when h1 =

3h
4 , h2 = 5h

4 for some h. It obviously suffices to show that the state-

ment is true for x2 ≥ T , once T is suitable large. The M condition
implies that

∫ ∞

−∞
u22(h, t)dt ≤M <∞,

so given any δ we can find a large S such that

(6)

∫ ∞

S
u22(h, t)dt ≤ δ.

Now, for L2 > 0 consider a rectangle

{(x1, x2) :
h

2
≤ x1 ≤ 3h

2
, |x2 − p2| ≤ L2}

as before. Suppose that p2 − L2 ≥ S. Then (6) implies that V2 ≤ δ.
Suppose that δL2 ≤ V1L1 = Mh. Then ∆ = Mh and Lemma 14 gives
J(x1, p2) ≤ 4κ2M2/L2

2 for 3h/4 ≤ x1 ≤ 5h/4. So, given ǫ > 0 we first
choose a large L2 such that 4κ2M2/L2

2 ≤ ǫ. Then we choose a small δ
such that δL2 ≤Mh. Then we choose S as above and set T = S + L2.
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Finally, for general h1 < h2, we cover the interval [h1, h2] with a finite
number of intervals of the form above and take the maximum value of
the corresponding T ’s.

Now we can prove Theorem 2. Suppose that u satisfies the M -

condition on the half-plane and uij
ij = 0. We consider the function

F = det(uij)
−1 on the half-plane. This satisfies the equation

uijFij = 0.

(See [8], Sec. 2.1.) So, for any constant λ, the function G = F − λx1

satisfies uijGij = 0, hence can have no local minumum or maximum.
Suppose, without loss of generality, that F (1, 0) = 1, and take λ = 2,
so G(1, 0) = −1. Clearly G(x1, x2) ≥ −1

2 if x1 ≤ 1
4 . By the first item in

Lemma 15 we can choose h0 so large that F (x1, x2) ≥ 10x1 if x1 ≥ h0.
This implies that G(x1, x2) ≥ 8x1 > 0 if x1 ≥ h0. By the second item of
Lemma 15 we can choose T so large that F (x1, x2) ≥ 10h0 if |x2| ≥ T
and 1

4 ≤ x1 ≤ h0. This implies that G(x1, x2) ≥ 8h0 > 0 if |x2| ≥ T and
1
4 ≤ x1 ≤ h0. So G(x1, x2) ≥ −1

2 if (x1, x2) lies on the boundary of the
rectangle

Q = {(x1, x2) : |x2| ≤ T,
1

4
≤ x1 ≤ h0}.

Since G takes the value −1 on the interior point (1, 0) of Q it must have
an interior minumum, which is the desired contradiction.

One point worth noting here is that in the case of a function defined
on the whole plane the argument can be made entirely effective. There
is no need to take the limit as α tends to infinity of the sequence ũ(α) in
Proposition 11. The same argument can be used to obtain an explicit
a priori estimate of the form

|F | ≤ CDistg( , ∂P )−2.

In the case of the half-plane it seems to be necessary to pass to the limit,
and the proof does not yield an explicit a priori estimate in general.
However if one considers the case when A(α) ≥ 0 then this can be done,
and one gets an explicit estimate of the form

|F | ≤ CDistg( , V )−2,

where V is the set of vertices.

5.2. The case of the quarter-plane. Here we give a second, self-
contained, proof of Theorem 3. The general strategy of the proof is in
part similar to Anderson’s, in that we show that the curvature tensor
vanishes by applying an integral formula for its L2 norm, and the crux
of the matter is to establish that the relevant boundary term vanishes in
the limit. We will first state the relevant integral formula, in our special
situation.
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Let u be a convex function on R+ × R+ with uij
ij = 0, as in the

statement of the Theorem, and for R > 0 let Ω(R) be the triangle formed
by the intersection of the quarter plane with the half-space {x1 + x2 ≤
R}. Let ∂Ω(R) denote the ordinary boundary of the triangle, made up
of three line segments and ∂0Ω(R) be the single segment lying on the
line {x1 + x2 = R}. (Recall that Ω(R) corresponds to a differentiably
embedded ball in the 4-manifold Xc and ∂0Ω(R) corresponds to the
boundary of this ball. The other two segments in ∂Ω(R) correspond to
fixed points for the two basic circle actions on Xc.) Now we have

(7)

∫

Ω(R)
|F |2dµ =

∫

∂0Ω(R
νi

where

(8) νi = F ij
abu

ab
i − F ia

ib u
bj
j .

The integrand on the right hand side of the formula (7) is written as
a vector field but this can be viewed as a 1-form using the canonical
identification furnished by the Euclidean area element dµ = dx1dx2.
We leave the verification of this identity as an exercise for the reader
(see also the similar discussion in [8], Sec. 5.2). The overall strategy
of our proof is to show that the integral on the right hand side of (7)
tends to zero as R→ ∞, which implies that F is identically zero.

We begin by establishing that the curvature decays as a function
of the Riemannian distance from the origin. To fit in with the wider
literature we will phrase this discussion in terms of the Riemannian
4-manifold Xc, although of course it can be translated into the two-
dimensional language. The crucial thing is that this Riemannian man-
ifold has the property stated in Proposition 10. (The discussion there
assumed a compact manifold but it is easy to see that the proofs work
equally well in the present situation.) Moreover if (in the notation of
Proposition 10) |F | ≤ ρ−2 on the ball of radius ρ about a point x in Xc

we have, by applying Proposition 5,

|F (x)|2 ≤ Cρ−4

∫

B(cρ,x)
|F |2dV

for some fixed C, where dV is the Riemannian volume element. Now
we recall a general fact:

Lemma 16. Let X be a complete, noncompact, Riemannian manifold

with base point x0. Let K be a continuous, non-negative, L2 function on

X with the following property. There are constants c, C > 0 such that

for any x ∈ X and ρ > 0, either there is a point x′ ∈ X with d(x, x′) ≤ ρ
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and K(x′) > ρ−2 or

K(x)2 ≤ Cρ−4

∫

B(cρ,x)
|K|2.

Then K(x)d(x, x0)
2 → 0 as x tends to infinity in X.

To see this, let E > 0 and let XE ⊂ X be a compact set such that
∫

X\XE

K2 ≤ C−1E.

Define a function ρE , taking values in (0,∞], by

ρE(x)−4 =
K(x)2

2E
.

It is convenient to work with this and one can check step-by-step in
the argument below that, with the obvious interpretations, there are no
problems from the zeros of K. The crucial thing is that ρE is bounded
below by a strictly positive number on any compact set in X. Now
suppose x is a point in X with ρE(x) ≤ ǫd(x,XE) where ǫ < c. Then
the ball of radius cρE(x) about X does not meet XE so the second
alternative in the hypothesis (taking ρ = ρE(x)) would give K(x)2 ≤
1
2K(x)2. Since ρE(x) is finite K(x) is nonzero and we conclude that the
first alternative must hold; that is, there is a point x′ with

d(x, x′) ≤ ρE , K(x′) > ρE(x)−2 = K(x)/
√

2E.

So now we have ρE(x′) ≤ 2−1/4ρE(x). We also have

ǫd(x′, XE) ≥ ǫd(x, ZE) − ǫd(x, x′) ≥ (1 − ǫ)ρE(x).

Thus

ρE(x′) ≤ ǫ

(1 − ǫ)21/4
d(x′, ZE).

Suppose ǫ is so small that 21/4(1 − ǫ) > 1. Then ρE(x′) ≤ ǫd(x′, XE).
Thus x′ satisfies the same hypothesis as x did. We continue in this way
to generate a sequence xn with

d(xn, xn+1) ≤ ρE(xn),

and

ρE(xn+1 ≤ 2−1/4ρE(xn).

Thus xn is a Cauchy sequence in X and ρE(xn) tends to zero, a contra-

diction. So we conclude that for ǫ < Min(c, 1 − 2−1/4) we have

ρE(x) ≥ ǫ−1d(x,XE)

for all x in X. This says that

K(x)d(x,XE)2 ≤ 2E/ǫ,

and the result follows, since we can take E as small as we please.
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So in our case we know that the function |F | on the quarter-plane
decays faster than than the inverse square of the Riemannian distance
to the origin. The next step is to relate this distance to the Euclidean
distance in the quarter-plane. For this we use another integral identity.
Change Euclidean coordinates by setting y = x1 − x2, z = x1 + x2 and
denote derivatives with respect to the new coordinates by uyy etc.

Lemma 17. If u satisfies uij
ij = 0 in the quarter plane and Guillemin

boundary conditions then for any R > 0
∫ R

y=−R
uzz(y,R)dy = R2.

(The notation is slightly ambiguous here, so we should emphasise that
in the formula above we are regarding u = u(y, z) as a function of y, z.
The region of integration is exactly ∂0ΩR, as considered above.)

To see this, let f(y, z) be the function f(y, z) = R − y on the region
ΩR. The zero scalar curvature condition takes the same form in the new
coordinates, so we write it as uαβ

αβ = 0, where α, β run over the labels

y, z. So we have
∫

ΩR

uαβ
αβf = 0.

Now we integrate by parts twice. Since f is linear we have fαβ = 0 and
there is no contribution from the interior so we get the identity

∫

∂ΩR

uαβ
α f =

∫

∂ΩR

uαβfα.

The function f vanishes on ∂0Ω(R) and the Guillemin boundary condi-

tions imply that uαβ
α has normal component 1 along the axes. Thus
∫

∂Ω(R)
uαβ

α f = 2

∫ R

0
R− t dt = R2.

On the other hand the boundary conditions imply that the normal com-
ponent of uαβfα vanishes along the axes, so

∫

∂Ω(R)
uαβfα =

∫

∂0Ω(R)
uαβfα,

and the result follows.
Now for any fixed z > 0 let s(z) be the Riemannian distance from

the origin to the interval ∂0Ω(z) = {x1 + x2 = z}. Suppose for the
moment that this distance is realised by a unique minimal geodesic γ
and that there is no Jacobi field along γ which vanishes at the origin
and is tangent to this interval at the other end point. Then s is smooth
around this value of z and

ds

dz
= |dz|−1

g = (uzz)−1/2 ,
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where uzz is evaluated at the distance-minimising point of the interval.
In any case, s(z) is a Lipschitz function and if we define

φ(z) = maxuzz,

where the maximum is taken over this interval, then we have

(9)
ds

dz
≥ φ(z)−1/2,

interpreted in an appropriate generalised sense.
We want to go from the integral identity of Lemma 17 to a pointwise

bound on uzz, and hence on φ(z). For this we use

Lemma 18. Suppose f and σ are positive functions on an interval

[0, R], where R ≥ 1, with

|f ′′(t)| ≤ f(t)σ(t),

and for any λ > 0 we have
∫ λ

λ/2
σ(t)dt ≤ 1.

Then for any t0 in [0, R] we have

f(t0) ≤ 18

∫ R

0
f(t)dt.

To simplify notation we will give the proof in the case when f attains
its maximum at t0 = 0. It will be clear that this is the “worst” case and
that the argument applies to all points. Set

I =

∫ R

0
f(t)dt.

For h > 0 use the formula

f(0) = f(h) − hf ′(h) −
∫ h

0
tf ′′(t)dt.

Using the assumption that f attains its maximum at 0, and the given
differential inequality |f ′′| ≤ fσ, we have

∣

∣

∣

∣

∣

∫ h

h/2
tf ′′(t)dt

∣

∣

∣

∣

∣

≤ f(0)h

2

∫ h

h/2
σ(t)dt ≤ f(0)h

2
.

Summing over a geometric series, as in the proof of Lemma 2, we
obtain

∣

∣

∣

∣

∫ h

0
tf ′′(t)dt

∣

∣

∣

∣

≤ hf(0).

So if h ≤ 1
2 , say, we have

(10) f(0) ≤ 2(f(h) − hf ′(h)).



426 S.K. DONALDSON

Let t1 > 0 be a point in the interval [0, 1
3 ] where f attains its minimum.

Then

I ≥
∫ 1/3

0
f(t)dt ≥ f(t1)

3
.

If t1 <
1
3 the derivative f ′(t1) vanishes and, taking h = t1 in the in-

equality above, we have

f(0) ≤ 2f(t1) ≤ 6I.

Suppose, on the other hand, that t1 = 1
3 . Let g be the affine-linear

function with g(1
3) = f(1

3) and g(1
2) = f(1

2). If f ′(1
3) < g′(1

3) then there

is a point h in the interval (1
3 ,

1
2) where f ′(h) = g′(h) and f(h) < g(h).

If f ′(1
3) ≥ g′(1

3) we take h = 1
3 . In either case

f(h) − hf ′(h) ≤ g(0) =
1
2f(1

3) − 1
3f(1

2)
1
2 − 1

3

≤ 3f

(

1

3

)

.

Then applying the inequality (10) above with this value of h we obtain

f(0) ≤ 6f(1/3) ≤ 18I.

Corollary 3. Suppose that u satisfies uij
ij = 0 in R+ × R+ and

Guillemin boundary conditions. Suppose that u satisfies the M condition

with M = 1 and that, for some R > 1, |F | ≤ 1 on ∂ΩR. Then

uzz ≤ 18R2

on ∂0ΩR.

To see this, observe that

|uzz
yy| ≤ |F |uzz uyy.

Then the result follows from Lemmas (17) and (18), taking f(t) =
uzz(t+R,R) and σ(t) = uyy(t+R,R).

Lemma 19. There is a constant C such that z ≤ Cs(z)2 for all z.

For z > 0 define λ(z) = z
s(z)2

. We know, by Corollary 2, that s(z) →
∞ as z → ∞. Further, we know that |F | = o(s−2), so it follows that for
any ǫ > 0 we can find an R0 such that

|F | ≤ ǫ
λ(R)

R
,

on ∂0ΩR, once R ≥ R0. For a fixed R ≥ R0, suppose that λ(R) ≥ ǫ−1

and set

η =
ǫλ(R)

R
,

so by hypothesis η ≥ R−1. Now rescale using this factor η, so we de-
fine ũ(x1, x2) = ηu(x1/η, x2/η). Set R̃ = ηR and consider the rescaled

solution on the triangle Ω(R̃), which corresponds to the original so-

lution on the triangle Ω(R). The curvature tensor F̃ of ũ satisfies
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|F̃ | ≤ η−1|F | ≤ 1 on ∂0ΩR′ and so we can apply Corollary 3 to ũ
to get

ũzz ≤ 18η2R2

on ∂0ΩR̃. Transforming back, this becomes

uzz ≤ 18η−1η2R2 = 18ǫλ(R)R

on ∂0ΩR. In other words we have the following: for R ≥ R0 if λ(R) ≥
ǫ−1 then φ(R) ≥ (18ǫλ(R)R)−1/2. Now consider the derivative of λ.
Using (9) we have

dλ

dz
= s(z)−2

(

1 − 2zs′(z)

s

)

≤ s(z)−2

(

1 − 2zφ(z)

s(z)

)

.

If z ≥ R0 and λ(z) ≥ ǫ−1 then we have

dλ

dz
≤ s(z)−2

(

1 − 2z

s
√
ǫλz

)

= s(z)−2

(

1 − 2√
18ǫ

)

.

Now we fix ǫ < 2/9 = 4/18 so that (1 − 2/
√

(18ǫ) < 0 and we see that
once z ≥ R0 and λ > ǫ−1 the function λ is decreasing. It follows then
that λ(z) is bounded.

Combining Lemma 16 and Lemma 19, we have

(11) |F | = o(z−1).

For R > 1 we now rescale by R, so we define ũ(R) (which we sometimes
just denote by ũ) to be

ũ(R)(x1, x2) = R−1u(Rx1, Rx2) + L(x1, x2),

where L is an affine-linear function chosen so that ũ(R) and its first
derivatives vanish at the point x1 = 1

2 , x2 = 1
2 . We consider the restric-

tion of ũ(R) to the fixed quadrilateral

Q =

{

(x1, x2) :
1

2
< x1 + x2 < 2, x1, x2 > 0

}

.

We write F̃ (R) for the curvature tensor corresponding to ũ(R). The
decay condition (11) implies that |F̃ (R)| tends to zero on Q, as R→ ∞.
As usual, we obtain an upper bound on the Hessian ũij over compact
subsets of the interior of Q. Now Corollary 3 gives an upper bound on
ũzz over Q. Lemma 3 gives

∂2

∂y2

(

ũ−1
yy

)

≤ 1,

say overQ.The boundary conditions fix the values of ∂
∂y

(

ũ−1
yy

)

on y = ±z
and this gives lower bound on ũyy,

ũ−1
yy ≤ C(z − |y|).
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Now
ũzz = ũyy/det(ũαβ),

so we obtain a lower bound on the determinant

det(ũαβ) ≥ C−1(z − |y|)−1.

Combining with our upper bounds on the components of uαβ we obtain
upper bounds ũyy ≤ C, |ũyz| ≤ C on Q. Then, just as before, we can

conclude that as R → ∞ the ũ(R) converge on compact subsets of the
interior of Q to a smooth limit ũ(∞) with F̃ (∞) = 0. Now the boundary
term in (7) is scale invariant, so we get the same computing with ũ(R)

and integrating over the fixed interval ∂0Ω(1) in the interior of Q. It is
then straightforward to check that this tends to zero with R.

6. Appendix: applications of the maximum principle

In this appendix we use the maximum principle to derive upper and
lower bounds on the determinant of the Hessian of a solution to Abreu’s
equation. The results and their proofs are similar to those in [8], Sect. 4,
but differ in being specific to the two-dimensional case. The inspiration
for these results comes from the work of Trudinger and Wang in [15],
[16] and, particularly, [17], Remark 4.1.

Theorem 5. Suppose that u is a convex function on the closed disc

of radius R in R2, smooth up to the boundary and with ∇u = 0 at the

origin. Let A(x) be the function A = −(∂uij)ij and let

A+ = max(max
x

(A(x), 0)), A− = −min(min
x
A(x), 0).

• If the derivative ∇u maps the R-disc to the disc |ξ| ≤ ρ then on

the interior disc {|x| ≤ 1
4} we have

det(uij) ≤
( ρ

R

)2
(

c1 + c2R
2ρ2(A−)2

)

.

• If the derivative ∇u maps the R-disc onto the disc |ξ| ≤ ρ then on

the set where |∇u| ≤ 1
4 we have

det(uij) ≥
( ρ

R

)2
(

c3 + c4R
2ρ2(A+)

)−2

for universal constants c1, c2, c3, c4.

Rescaling the domain and multiplying u by a constant, we can assume
that R = ρ = 1. We begin with the first item. Here we consider the
function

f = −L+ F − αgabuaub,

on the open disc, where L = log det(uij), F is a smooth function which
tends to +∞ on the boundary of the disc, to be specified shortly, α
is an arbitrary strictly positive constant and gij denotes the standard
Euclidean metric tensor. (Thus gabuaub is another notation for |∇u|2.)
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The function f attains its minimum in the disc and at this point we
have fi = 0 which gives

(12) Li = Fi − 2αgabuaiub.

We also have

fij = −Lij + Fij − 2αgabuaijub − 2αgabuaiubj ,

and at the minumum point uijfij ≥ 0. Hence, at the minimum point,

2αgabuab ≤ −uijLij + uijFij − 2αgabLauq,

where we have used the identity

La = uijuaij .

The defining equation uij
ij = −A leads to the formula

uijLij = uijLiLj +A,

(see [8],Sect. 2.1) so we get

(13) 2αgabuab ≤ A− − uijLiLj + uijFij − 2αgabLaub.

Now we use (12) to write

uijLiLj = uij(Fi − 2αgpqupiuq)(Fj − 2αgrsurjus),

and expand this out to get

uijLiLj = uijFiFj − 4αuijFig
rsurjus + 4α2gpqgrsuijupiuqurjus.

This simplifies to

(14) uijLiLj = uijFiFj − 4αFrusg
rs + 4α2gpqgrsuqusurp.

Next we use (12) again to write

gpqLpuq = gpq(Fp − 2αgrsurpus)uq,

so

(15) 4α2gpqgrsuqusurp = 2αgpqFpuq − 2αgpqLpuq.

Combining (13), (14) and (15) we obtain

2αgabuab ≤ A− + uij(Fij − FiFj) + 2αFrusg
rs.

Now take F to be the function F (x) = −2 log(1 − |x|2). If E = e−F

we have

Fij − FiFj = −E−1Eij

and E = (1− |x|2)2, so the matrix (Eij) is bounded. Using the formula
for the inverse of a 2 × 2 matrix we get

uij(Fij − FiFj) ≤ c
gabuab

(|1 − |x|2)2 det(uij)
,
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for an easily-computable constant c. Similarly the derivative ∇F is
bounded by a multiple of (1 − |x|2)−1 so we obtain, at the minimum
point of f ,

(16) 2αgabuab ≤ A+ +
c

det(uij)(1 − |x|2)2 g
abuab +

αc

1 − |x|2 ,

using the fact that |∇u| ≤ 1.
Now suppose that, at this minimum point,

(1 − |x|2)2 det(uij) ≥ α−1.

Then we can rearrange to obtain

αgabuab ≤ A+ +
αc

(1 − |x|2) .

Since 4 det(uij) ≤ (gabuab)
2 we have

(1 − |x|2)2 det(uij) ≤
1

4α2

(

A+(1 − |x|2) + αc
)2 ≤

(

A+ + αc

2α

)2

.

So we conclude that, in any event, at the minimum point of f ,

(1 − |x|2)2 det(uij) ≤ C

where

C = max

(

α−1,

(

A+ + αc

2α

)2
)

.

Taking logarithms, at the minumum point of f we have −L + F ≥
− logC, so f ≥ −α− logC since gabuaub = |∇u|2 ≤ 1. So at any point
of the disc −L + F ≥ −α − logC and in particular when |x| ≤ 1

4 we

have det(uij) ≤
(

16
15

)2
Ceα. This gives our first result, taking any fixed

value of α.

The proof of the second item is very similar. Now we restrict attention
to the open subset U of the unit disc on which |∇u| < 1 and consider
the function on U

f = log det(uij) − α|x|2 + F (∇u)
where F is a function on the unit disc |ξ| < 1 which tends to infinity
on the boundary. The easiest way to present the proof, in analogy with
preceding case, is to take the Legendre transform φ of u, although it is
not necessary to do so. The point is that the quantity detuijwe want
to estimate can also be written as the inverse the determinant of the
Hessian of φ. We calculate with respect to dual coordinates ξi. (There is
a clash of notation here, in that we would often write these coordinates
with lower indices, to fit in with the previous xi, but that would not
be convenient for the calculations we want to perform.) Our function
becomes

f = − log detφij − αgabφaφb + F (ξ),
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thought of as a function on the unit disc, in ξ coordinates. We write L =
log detφij , although we should keep in mind that this corresponds under
the Legendre transform to the negative of the function we considered
before. The defining equation for A yields

φijLij = −A.
With these preliminaries in place we can proceed with the argument.

At the minimum we have Li = Fi − 2αφiaφbg
ab just as before, and

φabfab ≥ 0. This leads to

(17) 2αgabφab ≤ A+ + φabFab − 2αgabFaφb + 4α2φiaφbφjg
abgij ,

(at the minimum point). Now since |∇φ|2 ≤ 1 we have

φiaφbφjg
abgij ≤ φabg

ab.

(To see this, observe that, after rotating coordinates, we can suppose
that φ2 = 0 at the point in question: then the left hand side of the
expression above is φ11 and the right hand side is φ11 + φ22.) So this
time we choose α < 1/4, in order that the last term in (17) is bounded
by αgabφab, and we obtain

αgabφab ≤ A+ + φabFab − 2αgabFaφb.

We use the same function F as before: F (ξ) = −2 log(1 − |ξ|2). The
matrix Fab is bounded by a multiple of (1 − |ξ|2)−2; the first derivative
∇F by a multiple of (1− |ξ|2)−1 and the argument proceeds exactly as
before.
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