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Abstract. The main result of the paper is an existence theorem for a
constant scalar curvature Kahler metric on a toric surface, assuming the K-
stability of the manifold. The proof builds on earlier papers by the author,
which reduce the problem to certain a priori estimates. These estimates
are obtained using a combination of arguments from Riemannian geometry
and convex analysis. The last part of the paper contains a discussion of
the phenomena that can be expected when the K-stability does not hold
and solutions do not exist.

1 Introduction

This paper continues the series [D1,2,3] in which we study the scalar cur-
vature of Kahler metrics on toric varieties and relations with the analysis
of convex functions on polytopes in Euclidean space. The main result of
the present paper is an existence theorem for metrics of constant scalar
curvature on toric surfaces, confirming a conjecture in [D1].

We begin by recalling the background briefly: more details can be found
in the references above. Let P be a bounded open polytope in Rn and let
σ be a measure on the boundary of P which is a multiple of the standard
Lebesgue measure on each face. Let A be a smooth function on the closure
P of P and consider the linear functional LA,σ on the continuous functions
on P given by

LA,σf =

∫

∂P
f dσ −

∫

P
Af dµ ,

where dµ is ordinary Lebesgue measure on Rn. We define a nonlinear
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functional on a suitable class of convex functions u on P by

M(u) = −
∫

P
log det(uij)dµ + LA,σu ,

where (uij) denotes the Hessian matrix of second derivatives of u.
The Euler–Lagrange equation associated to M is the fourth order PDE

found by Abreu:
∑

i,j

∂2uij

∂xi∂xj
= −A , (1)

where (uij) is the matrix inverse of (uij). (We often use the notation uij
ij

for the left-hand side of (1).) A solution of this equation, with appropriate
boundary behaviour, is a critical point, in fact the minimiser, of M. More
precisely, we require u to satisfy Guillemin boundary conditions, which
depend on the measure σ. We refer to the previous papers cited for the
details of these boundary conditions and just recall here the standard model
for the behaviour at the boundary. This is the function

u(x1, . . . , xn) =
∑

xi log xi ,

on the convex subset {xi > 0} in Rn. For appropriate “Delzant” pairs
(P, σ) a function u with this boundary behaviour defines a Kahler metric
on a corresponding toric manifold XP . This comes with a map π : XP → P
and the scalar curvature of the metric is A ◦ π. Thus when A is constant
the Kahler metric has constant scalar curvature. When A is an affine-linear
function the Kahler metric is “extremal”.

The Guillemin boundary conditions imply that

LA,σ(f) =

∫

P

∑

fiju
ijdµ , (2)

for smooth test functions f . Thus LA vanishes on affine-linear functions.
This just says that (P,Adµ) and (∂P, dσ) have the same mass and moments.
More interestingly, equation (2) tells us that LA,σ(f) ≥ 0 for smooth convex

functions f , with strict equality if f is not affine linear. This can be ex-
tended to more general convex functions f . In [D1] we conjectured that this
necessary condition, for the existence of a solution u, is also sufficient. The
present paper completes the proof of this in the case when the dimension
n is 2 and the function A is a constant. Thus we have

Theorem 1. Suppose P ⊂ R2 is a polygon and σ is a measure on ∂P ,

as above, with the property that the mass and moments of (∂P, σ) and

(P,Adµ) are equal for some constant A. Then either there is a solu-

tion to (1), satisfying Guillemin boundary conditions, or there is a convex

function f , not affine linear, with LA,σ(f) ≤ 0.
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A corollary in the framework of complex geometry of this is

Corollary 1. If a polarised complex toric surface with zero Futaki in-

variant is K-stable it admits a constant scalar curvature Kahler metric.

We refer to [D1] for the terminology and further details. (The converse
is also true and is proved by Zhou and Zhu in [ZZ].)

Two remarks are in order here. First, in the two-dimensional case the
“positivity” condition for the functional LA can be made more explicit. If
λ is an affine-linear function on R2 define

λ+(x) = max
(

0, λ(x)
)

.

Then it follows from the arguments of [D1] that the second alternative in
Theorem 1 is equivalent to the condition that there is some function of the
form λ+, not identically zero on P , with LA,σ(λ+) ≤ 0. Thus to check the
existence of a solution to (1) we only need to check the positivity of LA,σ

on a 2-parameter family of functions of the form λ+, which would be easy
to do with a computer. Second, it was shown in [D1] that the positivity
condition is equivalent to a more useful, quantitative, statement. Fix a
base point p0 and say a convex function f is normalised at p0 if p0 is the
minimiser of f and f(p0) = 0. Then the positivity property holds if and
only if there is some C = CA,σ,p0 > 0 such that

∫

∂P
fdσ ≤ C LA,σ(f) (3)

for all normalised convex functions f .

The main result of [D3] asserts that Theorem 1 follows if one can estab-
lish a certain a priori estimate on solutions u. Suppose that (3) holds and
u is a solution, normalised at p0. Then, taking f = u in (2), we obtain

∫

∂P
u dσ ≤ C LA,σ(u) = 2C Area(P ) . (4)

This immediately gives a priori C1 bounds on the restriction of u to com-
pact subsets of P , which can be applied to bound all derivatives in the
interior, as in [D2]. In [D3] we showed that the estimates could be ex-
tended up to the boundary provided that u satisfies a condition, called
there an “M -condition”. We recall the definition. Let p, q be points in P
and write q = p + d ν where ν is a unit vector. Write V (p, q) for the differ-
ence in the derivative of u in the ν direction evaluated at q and p. Then u
satisfies an M condition if for any pair p, q in P such that the points p−d ν
and q + d ν also lie in P we have V (p, q) ≤ M .
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Roughly speaking, the point of the present paper is to show that the
solutions of our equation satisfy an a priori M -condition. But the detailed
strategy is considerably more complicated and we outline it now.

1. In section 2, we obtain an a priori L∞ bound on the solutions. (Notice
that an M -condition implies such a bound, by an easy argument.)

2. In section 3, we work with points p in the neighborhood of an edge of
the polygon but away from the vertices. We obtain an a priori bound
on a quantity D(p), which is essentially equivalent to the M -condition
for pairs of points p, q not close to the vertices. This is the core of
the paper: we use a “blow-up” argument hinging on the compactness
properties of sets of bounded convex functions.

3. In section 4 we use the arguments of [D3] to obtain bounds on the
curvature tensor of our solution, away from the vertices. This requires
some subsidiary arguments to control the Riemannian distance func-
tion, also using the bound on the quantity D(p) from section 3.

4. In section 5 we study the solutions in neighbourhoods of the vertices.
First, using the maximum principle and our L∞ bound from section 2,
we obtain a two-sided bound on the volume form detuij . We then use
arguments similar to those in section 3 to obtain an a priori bound on
a quantity E(t) which is related to the M -condition near the vertices.

Many steps in this programme apply equally well to the general problem,
with other functions A. The main obstacle in making this extension comes
in the arguments of section 3. Here we use a special estimate, for the case
of constant A, proved in [D2]. If u is any smooth convex function we can
define a vector field V by

V i = −
∑

j

∂uij

∂xj
. (5)

In [D2, Th. 2], we showed that, when the dimension is 2 and the function
A is constant, there is an a priori bound on the Euclidean norm of V ,

|V |Euc ≤ C . (6)

Apart from the use of this estimate in section 3, the only other restric-
tion on A comes when, in two places, we use the fact that A is positive
(in arguments involving the maximum principle). Thus the main result
in this paper extends to positive functions A if one assumes an a priori

estimate (6). However the uses we make of (6) are to overcome some rather
technical difficulties which do not appear to be central to the problem, so
there are good grounds for hoping that the proofs may be extended to other
functions A in time.
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Let us say a little more here about the central argument in section 3 of
the paper. The M -condition is essentially a local C0 bound on a convex
function. Suppose u is a smooth convex function normalised at the origin.
Then we can obviously choose a small scalar ǫ such that u♭ = ǫu satisfies
a fixed C0 bound on a fixed ball about the origin and we have (u♭)

ij
ij =

ǫ−1uij
ij. Then if we have a sequence u(α) such that

(

u(α)
)ij

ij
is suitably

small (in fact o(ǫ)), we can make a sequence of such re-scalings to get a

new sequence u
(α)
♭

, bounded in C0 and with
(

u
(α)
♭

)ij

ij
tending to zero. We

can suppose the u
(α)
♭ converge in C0 over the interior of the ball and the

question is: what can we say about the limit? This is the basic idea used
in section 3, and also (more implicitly) in section 5. The complexities of
the arguments, and the restrictions on the results, are related to our lack of
understanding of this basic local question – what are the possible C0 limits
of solutions to the equation (1)?

The main work of this paper finishes in section 5. However, it is interest-
ing to complement the existence proofs with an understanding of what goes
wrong when the positivity hypothesis is violated. Section 6 is a supplement
in which we discuss an explicit family of complete zero scalar curvature
metrics, generalising the Taub-NUT metric, and explain that these can be
expected to arise as blow-up limits of solutions. We also discuss briefly the
connection with “collapsing” phenomena in Riemannian geometry.

The author is grateful to the referees for their very careful reading of
the paper.

2 The L
∞ Estimate

2.1 An integral inequality. In this subsection we derive a geometric
inequality for solutions of the equation (1). Consider the general case of a
polytope P ⊂ Rn with boundary measure σ and a function A. We suppose
that u is a solution to (1) satisfying Guillemin boundary conditions. Recall
that this implies that for any smooth test function f on P we have

∫

∂P
f dσ =

∫

P
uijfij + Af dµ .

Suppose that u is a weakly-convex smooth function on P and that u = u
on an open subset X ⊂ P . Take f = u − u, so fij vanishes on X. Outside
X we have

uijfij = uij(uij − uij) ≤ uijuij = n ,
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since u is convex. Thus
∫

∂P
u − u dσ ≤ nVol(P \ X) +

∫

P
A(u − u) dµ . (7)

Now start with an open set X ⊂ P , with piecewise-smooth boundary, say.
We define a convex function uX by

uX = max
p∈X∩P

λp ,

where for each p ∈ P we write λp for the affine-linear function defining the
supporting hyperplane of the graph of u. Thus uX = u on X, by convexity,
and an alternative definition is that uX is the least convex function which
restricts to u on X. We claim that the inequality (7) holds, with u = uX .
This is immediate if uX is smooth. In general, we can first reduce to a case
when X lies strictly within the interior of P (by a limiting argument). This
means that uX is defined over all of Rn. Then we introduce a small param-
eter ǫ and let uX,ǫ be the standard mollification of uX , using convolution
with a bump-function supported in the ǫ- ball. Then uX,ǫ is again convex
and is equal to the mollification uǫ of u on the set Xǫ ⊂ X, defined by
removing the ǫ-neighbourhood of the boundary of X. Then we get an in-
equality like (7) involving uX,ǫ but with Vol(P \X) replaced by Vol(P \Xǫ)
and with an extra term involving the integral over Xǫ of uij(u − uǫ)ij . By
our regularity assumption on the boundary of X and by the fact that u is
smooth on X we can take the limit as ǫ tends to zero to derive our result.
So, in sum, we have derived the geometric inequality

∫

∂P
u − uX dσ ≤ nVol(P \ X) +

∫

P
A(u − uX) dµ . (8)

(Notice that this inequality makes sense for arbitrary convex functions u.
We can think of it as a partial “weak form” of the equation (1), and the
boundary conditions.)

2.2 L
∞ estimate: the main idea. In this subsection and the next we

will apply the ideas above to derive an a priori bound for max ũ, when ũ
is a normalised solution of (1), and the boundary conditions, assuming an
L1 bound on the restriction to the boundary. Of course this maximum is
attained at one of the vertices, so we fix a vertex q and seek to bound ũ(q).
We can choose coordinates so that q is the origin and, near to q, the polygon
P is the first quadrant {x1 > 0, x2 > 0}. We write (2l1, 0) and (0, 2l2) for
the coordinates of the two vertices adjacent to q. We can arrange that the
boundary measures on these two edges are standard. Recall that the L1

bound on the boundary values of ũ gives, by very elementary arguments,
bounds on ũ and its first derivative in the interior of each edge of the
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boundary. Let u be the unique function obtained by adding an affine-linear
function to ũ such that

• ∂u/∂x1 = −1 at the midpoint (l1, 0) and ∂u/∂x2 = −1 at (0, l2).
• The minimum value of u on P is 0.

All of these preliminaries are just to provide a convenient setting for the
main arguments. Clearly, the bounds on the derivatives of u at the mid-
points mean that it suffices to obtain an a priori bound on u(0, 0).

The goal of this section is to prove

Theorem 2. There is an H depending only on l1, l2, ‖A‖L∞ and the inte-

gral of u over the boundary of P such that u(0, 0) ≤ H.

To prove the Theorem, we will apply our inequality (8) to a 1-parameter
family of domains X(h) in P . Define a function φ on P by

φ = u − x1
∂u

∂x1
− x2

∂u

∂x2
,

and set
X(h) =

{

x : φ(x) < h
}

.

Thus X(h) is the largest subset with the property that uX(h)(0, 0) ≤ h. As
the parameter h increases the domain X(h) grows and once h ≥ u(0, 0) we
have X(h) = P . We write Ω(h) for the complement P \X(h). We also write
h = u(0, 0) and work with values h < h. Then the closure of Ω(h) meets
the axes in a pair of line segments, from the origin to (ξ1(h), 0), (0, ξ2(h))
respectively, say. We also write h1 = u(l1, 0) + l1 and h2 = u(0, l2) + l2 and
set h = max(h1, h2). Then if h > h we have ξi(h) ≤ li. These definitions
are illustrated in the diagram.

�
�

�
�
�
�

(0, 0)

(0, 2l2)

(2l1, 0)ξ1(h)

ξ2(h)

Ω(h)

$
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Let τ1,h(t) be the affine-linear function of one variable whose graph is
the supporting hyperplane of the restriction of u to the x1-edge at the point
ξ1(h). Thus, by definition, τ1,h(0) = h. It follows from the definition that
the restriction of the function uX(h) to the axis is supported on the interval
[0, ξ1(h)) on which it is equal to the affine-linear function τ1,h. Let

G1(h) =

∫ ξ1(h)

0
u(t, 0) − τ1,h(t)dt ,

and define ξ2(h) and G2(h) similarly. Then
∫

∂P
u − uX(h) dσ = G1(h) + G2(h) .

We can now explain the main idea of our proof. To begin with let us
suppose that for h ≥ h the support of the function A does not meet Ωh.
Our basic inequality (8) becomes

G1(h) + G2(h) ≤ 2Area(Ωh) .

Elementary calculus gives the identities
dGi

dh
= −1

2
ξi(h) . (9)

In the standard model, where u = x1 log x1 + x2 log x2 + constant
say, it is easy to check that Ωh is exactly the triangle with vertices
(0, 0), (ξ1(h), 0), (0, ξ2(h)), so in this case the area of Ωh is ξ1ξ2/2. Sup-
pose that, in our general situation, we were able to show that Ωh is not too
different from this triangle, in that we have an inequality

Area(Ωh) ≤ κ
2 ξ1(h)ξ2(h) , (10)

for some fixed κ. For example, if we knew that Ωh is contained in the rect-
angle with vertices (0, 0), (ξ1(h), 0), (0, ξ2(h)), (ξ1(h), ξ2(h)) we could take
κ = 2. Under this supposition we have

G1 + G2 ≤ κ ξ1ξ2 ≤ κ

(

dG1

dh
+

dG2

dh

)2

,

where we have used (9). So the positive, decreasing, function Γ = G1 + G2

satisfies the differential inequality

dΓ

dh
≤ −

√

Γ

κ
in the interval h < h < h. This gives

√
Γ(h) −

√
Γ(h) ≥ 1√

κ
(h − h) ,

and thus, since Γ tends to 0 as h tends to h,

h − h ≤
√

κΓ(h) .
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Since Γ(h) is dominated by the integral of u over the boundary of P this
gives the desired bound on h = u(0, 0).

To turn this idea into a complete proof we need to overcome two dif-
ficulties. The first is to incorporate the term involving the function A in
our basic inequality. This is relatively easy. The second, more fundamen-
tal, difficulty is that the author does not know how to obtain a universal
inequality of the form (10) that we used above, although it seems very rea-
sonable to expect this to be true. Thus the actual proof, which we give in
the next section, is more complicated since it is based on a weaker assertion
than (10) (Lemma 2 below).

2.3 The detailed proof. We begin with some elementary calculus as-
sociated to a convex function of one variable. This will be applied to
the boundary values of our function u, but to simplify notation consider
first a strictly convex, smooth, function U(t) on an interval (0, 2l) with
U ′(l) = −1. For h ≥ U(l) + l we define ξ(h) ∈ (0, l) as above, i.e. so
that the affine-linear function τh whose graph is tangent to the graph of
U at ξ has τh(0) = h. Let D(h) be the point where the affine-linear func-
tion τh vanishes. In other words, the line joining the two points (h, 0) and
(0,D(h)) is tangent to the graph of U at the point (ξ(h), U(ξ(h))). Let
z(h) = D(h)/h, so z(h)−1 = −u′(ξ(h)).

Lemma 1. In this situation

ξ(h) =
D2

D − hD′ .

This is a calculus exercise for the reader.

Now return to our function u of two variables. We extend the notation
above in the obvious way, so we have functions Di(h), zi(h) defined for
h ≤ h ≤ h. For these values of h, we let ∆h be the triangle in the (x1, x2)
plane with vertices (0, 0), (D1(h), 0), (0,D2(h)).

Lemma 2. For any h ∈ (h, h) we have Ω(h) ⊂ ∆h.

To see this, consider a point p in Ω(h). Let π be the affine-linear function
defining the supporting hyperplane of u at the point p and write h∗ =
π(0, 0). The condition that p lies in Ωh is the same as saying that h∗ ≥ h.
Consider the restriction of π to the x1-axis. By convexity we have π(t, 0) ≥
u(t, 0) for all t, in particular h∗ ≤ u(0, 0) and so ξ(h∗) is defined. Then τ1,h∗

and the restriction of π are two affine-linear functions of one variable, equal
at the origin. We must have π(t, 0) ≥ τ1,h∗(t) for all t > 0, for otherwise
π(t, 0) ≤ τh∗(t) for all t > 0, which is a contradiction when t = ξ1(h

∗).
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Thus π(D∗
1, 0) = 0 for some D∗

1 < D1(h). Similarly π(0,D∗
2) = 0 for some

D∗
2 < D2(h). Now π(0, 0) > h > 0 so the region in P where π > 0 is the

triangle ∆∗ with vertices (0, 0), (D∗
1 , 0), (0,D∗

2). At the original point p we
have u(p) = π(p). Since u was normalised so that u ≥ 0 we have π(p) ≥ 0
and so p lies in ∆∗. But ∆∗ is contained in ∆h, since D∗

i < Di, so p lies
in ∆h, as required.

Next we look at the term involving the function A. For h ≥ h we write
fh = u − uX(h). So fh is a positive function, supported in the set Ωh. We
have to estimate the term ∫

Ωh

Afh ,

appearing in the inequality (8). Set α = ‖A‖L∞ so
∫

Ωh

Afh ≤ αJ(h) , (11)

where
J(h) =

∫

Ωh

fh . (12)

Lemma 3. With notation as above,
dJ(h)

dh
= −1

3
Area(Ωh) .

This is the two-dimensional analogue of the elementary identity (9).
To prove it we work in polar coordinates, writing u(r, θ). Consider a ray
through the origin, with fixed θ. The restriction of u to this ray is a convex
function of r and there is a unique point r = R(θ) where u−r ∂u

∂r = h. From
the definitions, this is a point on the boundary ∂Ωh and the restriction of
the function uX(h) to the intersection of Ωh and this ray is

uX(h)(r, θ) = h + r
R

(

u(R, θ) − h
)

.

It follows that
∂

∂h
uX(h)(r, θ) = 1 − r

R
.

Thus
d

dh
J(h) =

∫ θ=π/4

θ=0

∫ r=R(θ)

r=0

(

1 − r

R

)

r dr dθ .

Performing the r integral this is

d

dh
J =

1

6

∫ θ=π/4

θ=0
R(θ)2dθ ,

while the area of Ωh is given by the usual formula

Area(Ωh) =
1

2

∫

R(θ)2dθ .

Combining the two lemmas above, we get
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Corollary 2.

J(h) ≤ 1

6

∫ h

h
D1(h)D2(h)dh .

This follows immediately from the co-area formula and the facts that
the area of ∆h is D1D2/2 and that J(h) → 0 as h → h.

Now define I1(h), for h ≤ h < h by

I1(h) =

∫ h

h
D1(h)2dh , (13)

and define λ1(h) by the equation

G1(h) =
λ1(h)

2
D1(h)2 +

α

12
I(h) . (14)

(The reason for the choice of factor α/12 will appear shortly.)
Define I2 and λ2 similarly.

Lemma 4. λi(h) → 0 as h → h.

This is straightforward to check, using the known behaviour of u at the
origin. We omit the details.

Now we can proceed to the core of the proof, which has two parts. The
first is stated in

Proposition 1. Suppose h ≤ h ≤ h and λ1(h), λ2(h) are both positive.

Then
λ1(h)λ2(h) ≤ 1 .

Using Lemma 2, (11) and Corollary 2, our basic inequality (8) gives, for
any h ∈ (h, h),

G1(h) + G2(h) ≤ 1
2D1(h)D2(h) + α

6

∫ h

h
D1(s)D2(s)ds .

Using the inequality D1D2 ≤ D2
1+D2

2
2 and the definition of Ii(h) we get

G1(h) + G2(h) ≤ 1
2D1(h)D2(h) + α

12

(

I1(h) + I2(h)
)

. (15)

So we have, from the equations defining λi,
λ1
2 D2

1 + λ2
2 D2

2 ≤ D1D2 ,

for each h ∈ (h, h). In other words

1
2

(

λ1
D1
D2

+ λ2
D2
D1

)

≤ 1 .

From the arithmetic-geometric mean inequality we see that if λ1(h), λ2(h)
are both positive then λ1λ2 ≤ 1.

For the second part, we derive differential equations involving the func-
tions λi(h), zi(h). For clarity we suppress the suffix i temporarily, and
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denote derivatives with respect to h by a prime symbol. Write c = α/12
and recall that G = λ

2 D2 + cI, where dI
dh = −D2. Thus, using (9),

− ξ
2 = G′ = λDD′ + 1

2λ′D2 − cD2.

By Lemma 1 this gives,

D2

2(hD′ − D)
= λDD′ +

1

2
λ′D2 − cD2 .

Since D = zh, we have

hD′ − D = h2z′ < 0 ,

and our equation becomes
z2

2z′ = λzh(hz′ + z) + λ′

2 z2h2 − cz2h2 .

This leads to
z

2h2
= z′

(

λz′ + z

(

λ

h
− c +

λ′

2

))

.

Recall that z > 0 and z′ < 0. Suppose K is any fixed positive number.
For any A,B > 0 we have K

√
AB ≤ 1

2(K2A + B). We apply this to the
right-hand side of (15), with A = −z′ and B = −(λz′ + z(λ/h − c + λ′/2).
We deduce that

z′(K2 + λ) + z
(

λ
h − c + λ′

2

)

≤ −
√

2K
√

z
h . (16)

Proposition 2. Suppose z(h), λ(h) are functions defined on an interval

(h0, h) with the following properties:

1. z(h) > 0 and z′(h) < 0 for all h.

2. z, λ satisfy the differential inequality (16) above, for some c > 0 and

all K > 0.

3. For some C > 0, and all h, we have

z ≤ C/h2.

4. z(h) and λ(h) tend to 0 as h → h.

Write b= 2
√

2−1. If we fix any K > 2c
√

C and if we set h1 = max
(

h0,
3K

√
C

b

)

,

then we have K2 + λ(h) > 0 for all h ≥ h1 and
∫ h

h1

1

(K2 + λ)3/4

dh

h
≤ 12

bK
z(h1)

1/2
(

K2 + λ(h1)
)1/4

.

We fix K as stated. Multiplying the inequality (16) by 2z, we have

2zz′(K2 + λ) + λ′z2 + 2z2

(

λ

h
− c

)

≤ −2
√

2K

h
z3/2.

This is
d

dh

(

z2(K2 + λ)
)

≤ −2
√

2K

h
z3/2 + 2z2

(

c − λ

h

)

.
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Now the inequalities z ≤ Ch−2 and K > 2c
√

C imply that 2z2c < K
h z3/2

so we have
d

dh

(

z2(K2 + λ)
)

≤ −bK

h
z3/2 − 2λ

h
z2. (17)

Write F = K2 + λ. We want to show that F (h) is positive for h ≥ h1,
so we suppose that F (h2) < 0 for some h2 > h1 and seek a contradiction.
Since F → K2 > 0 as h → h there is an h3 ≥ h2 with F (h3) = 0 and
F ′(h3) ≥ 0. This means that

d
dh(z2F ) = z2F ′ + (z2)′F

is positive when h = h3. So, with λ = λ(h3), z = z(h3) we have

2λ
hz2 ≤ − bK

h z3/2.

But λ = −K2 (since F = 0) and we get

Kz1/2 ≥ b
2 .

Since z ≤ C/h2
3, we have √

C
h3

≥ b
2K .

But this contradicts the assumption that h1 ≥ 3K
√

C/b, since h3 ≥ h1. So
we have established that F (h) > 0 for h > h1.

Now if h > h1 we have

−λ
h ≤ K2

h ≤ K2

h1

and so

−2z2 λ

h
≤ 2

√
CK2

h1

z3/2

h
.

So we obtain from (17) that

d

dh
(z2F ) ≤

(

2K2
√

C

h1
− bK

)

z3/2

h
.

By the choice of h1, this gives,

d

dh
(z2F ) ≤ −bK

3

z3/2

h
.

Write w = z2F so the above inequality is

dw

dh
≤ −bK

3h

w3/4

F 3/4
.

That is
d

dh
w1/4 ≤ −bK

12
F−3/4 1

h
.

We know that w(h) tends to zero at h so we can integrate this with
respect to h to obtain the inequality stated in Proposition 2.

Propositions 1 and 2 are the essential parts of the proof of Theorem 2,
and it remains now to put together the various components. Of course we
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want to apply Proposition 2 to the functions λi, zi associated to the two
edges, with h0 ≥ h. We have to show that there is a bound zi ≤ Ch−2.
Consider the quantity z1h

2/2 = hD1(h)/2. This is the integral of the
affine-linear function τ1,h from 0 to D1(h). The value u(l1, 0) is controlled
by the integral of u over the boundary so there is no loss in supposing that
h0 ≥ 2u(l1, 0). This implies that, for h ≥ h1 we have D1(h) ≤ 2l1 and,
since τ1,h(t) ≤ u(t, 0) for t in the interval [0,D1(h)], we get

1
2hD1(h) ≤

∫

∂P
u .

This gives the desired bound z1 ≤ Ch−2, and similarly of course for z2.
Thus we may apply Proposition 2, with a suitable fixed K determined by
C and c = ‖A‖L∞/12. Now consider the functions wi(h) = z2

i (K2 +λi(h)).
By construction zi(h) ≤ 1 for h ≥ h so wi ≤ K2 + z2

i λi = K2 + λiD
2
i /h

2.
By the definition of λi we have

λiD
2
i = 2(Gi − cIi) ≤ 2Gi .

Obviously the functions Gi are bounded by the integral of u over ∂P . So
we obtain

wi ≤ K2 +
2

h2

∫

∂P
u .

This gives an upper bound on wi(h1), since h1 is determined by C and c.
In sum, Proposition 2 tells us that there are h1, L,K, all determined by the
integral of u over the boundary, such that K2 + λi(h) > 0 if h > h1 and

∫ h

h1

1

(K2 + λi)3/4

dh

h
≤ L .

Change variable by writing h = et and let h = et, h1 = et1 . Then we have
∫ t

t1

1

(K2 + λi)3/4
dt ≤ L .

So the measure of the set in [t1, t ] where λi ≤ 1 is at most L(K2 + 1)3/4.
Thus if t were bigger than t1 + 2L(K2 + 1)3/4 there would have to be a
point where λ1 > 1 and λ2 > 1. But this would contradict Proposition 1.
So we conclude that t ≤ t1 + 2L(K2 + 1)3/4 or in other words

h ≤ h1 exp
(

2L(K2 + 1)3/4
)

,

and we have proved Theorem 2.

3 Edges

3.1 Preliminaries. We now come to the central topic of this paper.
Consider a symplectic potential u on a polygon P and let E be an edge of P .
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Choose an outward-pointing vector ν transverse to E – say the Euclidean
normal. Suppose that p is a point of P such that the ray {p + tν : t > 0}
meets the edge E in a point q = p + sν, for s = s(p). Let λp be the
affine-linear function defining the supporting hyperplane to u at p; so the
difference u − λp vanishes to first order at p. Then we define

D(p) =
u(q) − λp(q)

s(p)
. (18)

The goal of this section is to obtain an a priori bound on D(p), under mild
hypotheses. It is easy and elementary to go from this to an “M -condition”
formulation, as we will explain in section 4. When we want to indicate the
dependence on the function u we write D(u; p).

We will want to have this a priori bound in the context of the continuity
method of [D3]; when we have a sequence

(

P (α), A(α), σ(α)
)

of data sets

and convex functions u(α). In this context the data sets will converge in
the obvious sense as α → ∞. To simplify notation we will often omit the
index α, and just write P,A, σ, where it is clear that the quantities involved
(for example the diameter of P (α)) satisfy a uniform bound in the sequence.
We suppose that u(α) is normalised (in the sense of section 1) at the centre
of mass of P (α). The main result we prove is

Theorem 3. Suppose that the data sets
(

P (α), A(α), σ(α)
)

converge as

α → ∞ and that the sequence u(α) satisfies uniform bounds

maxP u(α) ≤ C0 ,
∣

∣V (α)
∣

∣

Euc
≤ C1 .

Fix any δ > 0. There are Dδ, sδ with the following property. If p is a point

in P (α) with s(p) ≤ sδ and the distance of p + s(p)ν from the vertices of

P (α) is greater than δ then D(p) ≤ Dδ.

Here V (α) is the vector field associated to u(α) by the formula (5).
Strictly speaking we should write sα(p) etc., since these quantities depend
on P (α), but we hope that the meaning is clear. The arguments in this
section do not depend strongly on the L∞ bound on u, as opposed to a
L1 bound on the boundary value. The former is only used once, in the
proof of Proposition 3, and could be avoided with a little extra work. Of
course, we showed in the previous section that the two conditions are in
fact equivalent.

We will now explain the main idea of the proof of Theorem 3. We sup-
pose, on the contrary, that there is a sequence of points pα and D(pα) = Dα

tends to infinity. Let us also suppose that pα is the “worst” point, max-
imising the function D for each fixed α and that the sequence pα stays a
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definite distance from the vertices. Then by performing a sequence of affine
transformations, adding suitable affine-linear functions and multiplying by

D−1
α we can obtain a sequence of convex functions u

(α)
♭ defined on large

convex subsets of a half-plane {x1 ≥ 0} with u
(α)
♭ (0, 0) = 1 and u

(α)
♭ attain-

ing its minimum 0 at the point (1, 0). Our overall strategy is to obtain a

contradiction by showing that the u
(α)
♭ have a C0 limit and making various

arguments with this, using the fact that pα is the “worst” point. Two of
the issues we have to deal with are

• In reality we need to use a more complicated definition of “worst”
point, because of the constraint involving δ.

• We have to contend with the affine invariance of the problem, in

choosing the affine transformations to define u
(α)
♭ appropriately. This

is the choice of the parameter λ below.

The vector field V associated to the convex function u comes in to
our arguments at a number of places and we will now recall two relevant
points of the theory. The first is that the vector field encodes the boundary
conditions. Expressed in terms of coordinates, this says that the normal
component of V at a point of an edge is fixed by the given measure σ. The
second is that if we write L = log detuij and introduce Legendre transform
coordinates ξi = ∂u/∂xi then

V i =
∂L

∂ξi
. (19)

This leads to a basic principle which will be important in our arguments.
Suppose we have a bound on one component of the vector field: |V 2| ≤ C
say. Then if, over a portion Γ of a contour {ξ1 = constant} the partial
derivative ∂ua/∂x2 varies by a bounded amount b say, then the ratio

det uij(γ)

detuij(γ′)

is bounded by eCb for any γ, γ′ ∈ Γ.

It is useful to have in mind a standard model for the boundary behaviour
given by the function

u0(x1, x2) = x1 log x1 + x2
2 ,

on the half-plane {x1 > 0}. The associated vector field V has components
V 1 = 1, V 2 = 0, and the function satisfies (1) with A = 0. Then in this
case D(p) is equal to 1 for all p. Now apply an affine transformation and,
for a ∈ R, set

ua(x1, x2) = x1 log x1 + (x2 − ax1)
2.
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This also satisfies (1) with A = 0, and the same boundary conditions.
At the point p = (1, 0) we have D(p) = a2 + 1. Since a can be made
arbitrarily large, this shows that there is no way to derive an a priori

estimate for D(p) using only “local” information. However in this example
we have V 1 = 1, V 2 = a, so the parameter a is detected by the tangential
component of the vector field. This may help in understanding our main
proof below, which uses the bound on V – obtained in our application by
global arguments – to help control the quantity D(p).

With this outline of the strategy in place, we now proceed in more
detail. We suppose the polygon P has an edge given by

E =
{

(x1, x2) : x1 = 0 , a ≤ x2 ≤ b
}

,

and that P lies in the half-plane {x1 > 0}. We can suppose that the measure
dσ on this edge is the standard Lebesgue measure dx2. We consider a
solution u of our equation (1) , where |A| ≤ C2. We fix a δ > 0 and
consider points p = (s, t) with s ≤ sδ and a + δ ≤ t ≤ b − δ. We assume
a bound on the boundary integral, as in the statement of Theorem 3. It is
then easy to see that we can choose sδ such that all such points p lie in P
and that sD(p) satisfies a fixed bound

sD(p) ≤ C3 . (20)

Similarly we have an elementary bound on the derivatives in the “tangential
direction”: for any two points p, p′ satisfying the conditions above

∣

∣

∣

∣

∂u

∂x2
(p) − ∂u

∂x2
(p′)

∣

∣

∣

∣

≤ C4 . (21)

Given s, t as above, we define the convex function u∗ by normalising u
at p = (s, t). That is, u∗ is given by adding an affine-linear function to u
and u∗ attains its minimum value 0 at p. Then, by definition,

D(p) = s−1u∗(0, t) .

Recall that the Guillemin boundary conditions around a vertex imply that
the integral of the second derivative u22 = ∂2u/∂2

x2
, evaluated along the

edge, diverges at each end point. Let λ0 = min(t − a, b − t) and for λ < λ0

define

I(λ) =

∫ t+λ

t−λ
u22(τ, 0)dτ .

Then I(λ) is an increasing function, equal to 0 when λ = 0 and tending to
infinity as λ → λ0. The same is true of λI(λ) so there is a unique λ such
that

λI(λ) = sD(p)/2 .

The reason for this choice will appear presently.
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The next proposition will be used to handle the potential “end-point”
difficulties alluded to above.

Proposition 3. There is a constant c, depending only on δ, C0, C2, C3, C4,
‖A‖L∞ and the geometry of the polygon P , such that s(p) ≤ cλ−2.

We need an elementary lemma.

Lemma 5. There exists κ > 0 with the following property. Let f be any

positive convex function on [−1, 1] with f(0) = 1 and with
∫ 1
−1 f ′′(t)dt = 1.

Let Cf be the set of affine-linear functions σ such that

• σ(t) ≤ f(t) for all t ∈ [−1, 1];
• either σ ≤ 0 on [−1/2,∞) or σ ≤ 0 on (−∞, 1/2].

Define g(t) = supσ∈Cf
λ(t). Then

∫ 1

−1
f − g dt ≥ κ .

We leave the proof as an exercise.

To prove the Proposition we claim first that if D(p) is large then s/λ is
small. For if λ ≤ δ/2, then

I(λ) ≤
∫ t+λ

t−λ
u22(0, τ)dτ ≤ C4 .

So sD(p) = λI(λ) ≤ λC4 and s/λ ≤ C4/S.
On the other hand if λ > δ/2 then

s/λ < 2s/δ ≤ 2C3/D(p) .

Now let W be the wedge-shaped region

W =
{

(x1, x2) : |x2 − t| ≤ λ
2s(x1 − s)

}

,

and let X be the intersection of P with W . It is clear that, when s/λ is
small the centre of mass of P lies in X. Since X is convex, this implies that
uX ≥ 0, where uX is the function defined in section 2. So |u−uX | ≤ u and

∫

P\X
(u − uX)A ≤ ‖A‖L∞ maxu Area(P \ X) . (22)

Using our bound on maxu we see that this integral is bounded by a multiple
of the area of P \ X. So (8) gives

∫

∂P
u − uX ≤ c1 Area(P \ X) ,

for some fixed c1. It is also clear that the area of P \ X is bounded by a
multiple of s/λ, with the multiple depending only on the geometry of P .
So we have ∫

∂P
u − uX ≤ c2

( s

λ

)

. (23)
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We now make a similar argument to that in Lemma 2. Let q be a point
of X, not equal to the centre of mass of P , and let π be the affine-linear
function defining the supporting hyperplane to u at q. Thus the zero set of
π is a line in the plane. Since π(q) > 0 and π(p) < 0 this line separates the
points q and p. It follows that the restriction of π to the x2 axis is negative
on either the interval (−∞,−λ/2] or on the interval [λ/2,∞). Lemma 5
(after suitable rescaling) implies that

∫ t+λ

t−λ
(u − uX)(0, τ)dτ ≥ κD(p)sλ .

So from (23) we obtain
κD(p)λ ≤ c2

s
λ ,

which gives
D(p) ≤ c2

κ λ−2,

as required.

For t in the interval (a + δ, b − δ) define

Λ(t) = min
(

|(a + δ) − t|, |(b − δ) − t|
)

.

Set
µ = max

s,t
Λ(t)2D(s, t) ,

where t runs from a + δ to b − δ and s runs from 0 to sδ. Choose a point
(s0, t0) where the maximum is attained. Of course, this is the concept of the
“worst point” alluded to above. Write λ0 = λ(s0, t0) and D0 = D(s0, t0).
By the preceding proposition we have

λ0 ≤ c
√

µΛ(t0) . (24)

In other words if, as we suppose, µ is large the “scale” λ0 in the x2 direction
is small compared with the distance to the end points a + δ, b− δ. Also for
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any fixed R we have

D(s′, t′) ≤ D0
1

1 − R
√

c/
√

µ
(25)

for any t′ with |t0 − t′| ≤ Rλ0.

We now define a new convex function u♭ by rescaling. We set

u♭(x1, x2) =
1

D0s0
u∗(s0x1, t0 + λ0x2) . (26)

Thus u♭ is defined on a polygon P♭ in the half-space {x1 > 0}, which
depends on P, s0, t0, λ0. This polygon contains a rectangle

Q =
{

0 < x1 < cs−1
0 , |x2| < cλ−1

0

}

for some fixed c depending on P and δ. Since we are supposing that D0

is large, both λ0 and s0 are small (by (20) and Proposition 3). Thus the
rectangle is very large. By construction u♭ attains its minimum value 0
at the point (1, 0) and u♭(0, 0) = 1. The choice of λ transforms into the
condition that ∫ 1

−1
(u♭)22(0, t)dt = 1/2 . (27)

The function u♭ satisfies an equation
∑ ∂2uij

♭

∂xi∂xj
= −A♭ ,

in P♭, where A♭(x1, x2) = D0s0A(s0x1, t0 + λ0x2). Thus, by (20),

|A♭| ≤ C3‖A‖L∞ . (28)

The function u♭ satisfies Guillemin boundary conditions along the edge
{x1 = 0} but with the measure D0dx2. This means that the normal com-
ponent V 1

♭ of the vector field associated to u♭ is −D0 on the edge. Our
overall goal is, roughly speaking, to show that this is impossible if D0 is
very large.

We finish this subsection with an observation which will be crucial in
our proofs below. For any two points in Q the ratio of the determinant
det(u♭)ij evaluated at these two points is the same as the ratio of det uij at
the corresponding points in P . By (21) and the observation above we see
that

for any two points q, q′on the intersection of any contour
{∂u♭

∂x1
=

constant} with the large rectangle Q we have
det(u♭)ij(q)

det(u♭)ij(q′)
< exp(C1C4) . (29)

In the same vein, taking account of the rescaling, we get

(V♭)2(x1, x2) =
D0s0

λ0
V 2(s0x1, t0 + λ0x2) ,
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so

|V 2
♭ | ≤

D0s0

λ0
C1 .

By the definition of λ0 and (27) we have

D0s0

λ0
=

∫ t0+λ0

t0−λ0

u22(τ, 0)dτ ≤ C4 ,

so we have a uniform bound on V 2
♭ .

3.2 Boundedness. Applying the procedure above we obtain a sequence

of convex functions u
(α)
♭ defined on large polygons in the half-space. In this

subsection we show that these are bounded on compact subsets. As before,
we usually omit the index α from the notation. Also, since we are only
concerned with compact subsets we can be rather vague about the precise
domains of definition of the functions.

The first point is that, by (25), and the scalings chosen we have, for any
fixed compact subset, a bound

D(u♭; p) ≤ k (30)

for points in the set, where we can suppose k is as close to 1 as we please.

Consider the restriction of u♭ to the x1-axis, and set f(x) = u♭(x, 0).
The maximising condition translates into the condition that

xf ′(x) − f(x) + 1 ≤ kx .

By construction, f(1) = f ′(1) = 0 and we can integrate the differential
inequality to obtain

f(x) ≤ kx log x .

This discussion is valid for x less than sδ/s0, which we know is large. The
normalisation conditions u♭(0, 0)=1 and (27) easily imply that u♭(0, x2)≤10
(say), for −1 ≤ x2 ≤ 1. Now the convexity of u♭ yields a upper bound

u♭(x1, x2) ≤ U(x1, x2) ,

say, for a suitable fixed function U and all points (x1, x2) in the triangle

with vertices (0, 1), (0,−1), (sδ/s0, 0). When we take our sequence u
(α)
♭ the

apex sδ/s0 of this triangle tends to infinity.

It is less easy to obtain bounds on u♭ outside the triangle above, and for
this we use the bound on the vector field V♭. As above, it suffices to bound
the function u♭(0, x2). We prove

Proposition 4. There is an η > 0 such that if for some σ > 0 we

have a uniform bound u
(α)
♭ (0,±σ) ≤ Uσ then there is a uniform bound

u
(α)
♭ (0, x2) ≤ Uσ+η for all |x2| ≤ σ + η.
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Since η is fixed we can use this to bound the function u♭ on any compact
subset of the half-plane.

Write ξi for the partial derivatives ∂u♭/∂xi. The first step in the proof
of Proposition 4 is an elementary lemma. We consider a disc ∆ of small
radius r centred on the point (1/4, 0).

Lemma 6. We can fix small r and a Z > 0 such that on the disc ∆ we have

ξ1 < −1
2 , −Z < ξ2 < Z ,

for large enough α.

We can choose the disc to lie well inside the triangle on which we have
bounds on u♭, and this gives bounds on the derivatives ξi, by convexity.
Thus the only thing is to arrange that ξ1 < −1/2 on ∆. For this we begin
by choosing r so small that if |x2| < r we have

u♭(0, x2) ≥ .99 , u♭(1, x2) ≤ .01 .

This is clearly possible. Consider a point (a1, a2) with |a2| < r and a1 < 1
at which ξ1 = −1/2. We show that a1 cannot be too small. By (25) we
have

u♭(0, a2) ≤ u♭(a1, a2) + a1/2 + ka1 ,

where k can be made as close to 1 as we like. So

u♭(a1, a2) ≥ .99 − (k + .5)a1 .

On the other hand, convexity implies that

u♭(1, a2) ≥ u♭(a1, a2) − (1 − a1)/2 ,

so
u♭(a1, a2) ≤ .5 + .01 − a1/2 .

We deduce from these inequalities that a1 ≥ .48k−1 so, taking k close to 1
and r small, such a point cannot lie in ∆. This establishes the lemma.

We now fix the disc ∆ and the number Z, as above. Let τt be the flow
by translations on R2

τt(ξ1, ξ2) = (ξ1, ξ2 + t) ,

and let Ψt be the corresponding flow on the polygon P♭. That is

Ψt = (Du♭)
−1 ◦ τt ◦ (Du♭) .

We consider the images Ψt(∆), for parameters t ∈ [0, T ]. Our general
principle tells us that, if these are all contained in the large rectangle Q,
then the area of each such image is at least a fixed multiple of the area
of ∆. (Using the fact that the Jacobian of Du♭ is det(u♭)ij .)

Now suppose we have a σ > r for which we have obtained an a priori

bound u♭(0, a2) ≤ U , for all |a2| ≤ σ. Consider a point (x1, x2) where
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ξ1 ≤ −1/2. We first treat the case when |x2| ≤ σ. Then we have, by
convexity and the positivity of u♭,

U ≥ u♭(0, x2) ≥ u♭(x1, x2) + x1/2 ≥ x1/2 . (31)

Second we treat the case when x2 = σ + t where 0 ≤ t ≤ η, and η will be
chosen shortly. By convexity we have

u♭(x1, σ + t) − (x1ξ1 + tξ2) ≤ u♭(0, σ) ≤ U . (32)

By (25) we have

u♭(0, σ + t) ≤ u(x1, σ + t) − ξ1x1 + kx1 .

The two together give

u♭(0, σ + t) ≤ U + tξ2 + kx1 . (33)

On the other hand, the first inequality gives

u♭(x1, σ + t) ≤ U + (x1ξ1 + tξ2) ,

and since u♭(x1, σ + t) ≥ 0 we have

x1ξ1 ≥ −(U + tξ2) . (34)

Since ξ1 ≤ −1/2 we obtain

x1 ≤ 2(U + tξ2) . (35)

Substitute back into (33) to get

u♭(0, σ + t) ≤ (1 + 2k)(U + tξ2) . (36)

Now let ρ be the minimum value of ξ2 on the set where x2 = σ + η and
ξ1 ≤ −1/2. By the above we have

u♭(0, σ + η) ≤ (1 + 2k)(U + ηρ) ,

so we want to show that ρ is not too large. Let S be the union of the
rectangle {0 ≤ x1 ≤ 2U, −r ≤ x2 ≤ σ} and the rectangle {0 ≤ x1 ≤
(1 + 2k)(U + ηρ), σ ≤ x2 ≤ σ + η}. We assume the hypothesis that S lies
in the large rectangle Q. By the inequalities (30),(35) above; for any t with
0 ≤ t ≤ ρ − Z the image Ψt(∆) under the flow lies in S. If |t − t′| ≥ 2Z
the images Ψt(∆),Ψt′(∆) are disjoint. Since the area of each of these is at
least a fixed multiple of the area of ∆ we deduce that

ρ ≤ κArea(S) ,

for some κ which does not depend on U . (This constant κ depends only on
r, Z,C1, C4.) Writing down the area of S, we get

ρ ≤ κ
(

2(r + σ)U + η(1 + 2k)(U + ηρ)
)

. (37)

Choose η so that (1 + 2k)κη2 < 1/2, say. Then we can rearrange (37) to
get an upper bound on ρ, which then gives by (36) a bound on U(σ + η).
(Of course, we use a symmetrical argument for negative values of x2.) The
final detail to add in the argument concerns our hypothesis that S lies in
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the large rectangle. But, assuming this hypothesis, the set actually lies in
a smaller rectangle (because of the bound on ρ) so we can easily establish
the truth of the hypothesis, for large α, by a continuity argument.

3.3 The blow-up limit. Let us review the argument of this section
thus far. We suppose we have a sequence u(α) of solutions corresponding to
data sets P (α), Aα), σ(α), satisfying the conditions of Theorem 3 and with
µα tending to infinity. We want to obtain a contradiction. We rescale

to get convex functions u
(α)
♭ defined on a sequence of domains P

(α)
♭ which

exhaust the half-plane {x1 > 0} and we have shown that these are bounded
on compact subsets of the closed half-plane. After taking a subsequence,

we can suppose that the u
(α)
♭ converge uniformly on compact subsets of

the open half-plane to a limit u
(∞)
♭ , which is a continuous, weakly convex,

function on the half-plane. The main idea of our proof is to obtain a
contradiction by an analysis of this limit. First, in the next proposition, we
show that it cannot be strictly convex anywhere. The proof we give uses
the assumed bound on the associated vector fields. The author knows of
other arguments, for this step, which avoid that assumption, but which are
longer.

Recall that a convex function v is called strictly convex at a point p if
there is an affine-linear support function π such that v − π has a unique
minimum at p.

Proposition 5. The limit u
(∞)
♭ is not strictly convex at any point of the

half-plane.

Suppose the contrary, so there is a small disc D in the half-plane centred

at a point p and an affine-linear function π such that u
(∞)
♭ −π vanishes at p

but is strictly positive on the boundary of D. The smooth functions u
(α)
♭

satisfy elliptic equations
(

u
(α)
♭

)ij

ij
= −A(α)

with a fixed bound on
∥

∥A(α)
∥

∥

L∞
. Also u

(α)
♭ (p) − λ(p) → 0 and u

(α)
♭ − λ ≥

δ > 0 say on ∂D, once α is sufficiently large. Now these facts give complete

control of the functions u
(α)
♭ in the interior of D. We can apply Theorem 5

from [D3] to obtain upper and lower bounds on the Jacobians det
((

u
(α)
♭

)

ij

)

over the interior of D and arguing as in [D2], using the theory of Cafarelli
and Gutierrez, bootstrap to control all higher derivatives. In particular the

vector fields V
(α)
♭ defined by

(

V
(α)
♭

)i
= −

(

u
(α)
♭

)ij

j
,

are uniformly bounded on a small neighbourhood of p.
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To obtain a contradiction, suppose p = (p1, p2) and consider a rectangle

S =
{

(x1, x2) : |x2 − p2| ≤ η , 0 < x1 < p1

}

,

with η small. Since the divergence of V
(α)
♭ is bounded the total flux of V

(α)
♭

through the boundary of S is small. The flux through the two edges where
x2 = p2 ± η is bounded, by our bound on the x2 component of v(α) and the
flux through the edge where x1 = p1 is bounded by the argument of the
previous paragraph. But the boundary conditions, after rescaling, imply
that the x1 component of V♭(α) along the remaining edge, in the boundary
of the half-plane, is Dα, so the flux through this edge is 2ηDα which tends
to infinity by hypothesis.

For a ∈ R let Γa denote the set of points (x1, x2) where x1 > 0 and
x1 = 1 + ax2. This is either a half-line or, in the case when a = 0, a line.

Corollary 3. The limit u
(∞)
♭ vanishes on a set Γa for some a 6= 0.

To see this let Z be the zero set of u
(∞)
♭ in the open upper-half plane.

Recall that u
(α)
♭ is normalised to achieve its minimum at the point p0 =

(1, 0). Thus Z is a convex set containing p0. Proposition 5 implies that Z
has no extreme points and it follows immediately that there must be a line
through p0 whose intersection with the upper-half plane is contained in Z.

We know that u
(α)
♭ (t, 0) is bounded below by t log t− t+1 for 0 < t < 1 and

it follows that Z cannot contain the line segment {x2 = 0, x1 > 0}. Thus
Z contains Γa for some a and it only remains to rule out the possibility
that a = 0. To do this, recall that we chose our normalisation so that the

x2 derivative of u
(α)
♭ differs by 1 at the two points (0,±1). This obviously

implies that we can find some fixed c such that u
(α)
♭ (0, c) > 2 say. Suppose

that Z contains Γ0, so u
(α)
♭ (1, c) tends to zero as α tends to infinity. It

follows that there must be some sequence bα tending to 1 such that the x1

derivatives of u
(α)
♭

evaluated at (c, bα) converge to 0. But then these points
contradict (30), once k < 2.

3.4 The final contradiction. We again pause for discussion. Chang-
ing our coordinates slightly, we may without real loss of generality suppose

that a = 1 and u
(∞)
♭ vanishes on the ray {x1 = x2 + 1, x1 > 0}. The

essential case to have in mind is when u
(∞)
♭ = max(x2 − x1 + 1, 0) so let

us momentarily assume that we have this case. It is tempting to try to
argue as follows. For any large C and large enough α we can find a point p′

near to (C + 1, C) such that D(p′, u(α)
♭ ) is very close to 1. In other words,
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transferring back to the original functions u(α) there are points much fur-
ther from the edge than the “worst point” but which are “almost as bad”.
So this strongly suggests that if D becomes large close to the boundary
of P it must also become large in the interior, which is ruled out by our
hypotheses. Indeed if we were to drop the hypothesis on the integral over
the boundary then we would see exactly this phenomenon, as we discuss
further in section 6. However, while it is suggestive, it seems hard to turn
this line of argument into an actual proof. The proof we give below is rather
different and hinges on our general principle that J = det(uα

♭ )ij changes
by a bounded factor on the parts of the contours {ξ1 = constant} in the
large rectangle Q. We will show that this leads to a contradiction. The
argument is similar to that used to prove Proposition 4 above.

Lemma 7. The boundary values u
(α)
♭ (0, x2) converge to x2 − 1 uniformly

for x2 in any closed interval [−1, R].

For given x2 > −1 we can find a sequence x
(α)
1 converging to 1 + x2

such that the values u
(α)
♭ and the partial derivatives ∂u

(α)
♭ /∂x1 evaluated

at
(

x
(α)
1 , x2

)

converge to 0 as α → ∞. Then we obtain from (30) that

u♭(0, x2) ≤ kα(x2 + 1) + ǫα

where ǫα → 0, kα → 1. By construction, u
(α)
♭ (0, 0) = 1 and it follows from

convexity that u♭(0, x2) tends to x2 + 1, uniformly for x2 in any compact
subset of (−1,∞). However the functions are bounded on a neighbourhood
of the point (0,−1) and it follows again from convexity that the convergence
is uniform up to x2 = −1.

Given a small number r consider the region

Ω =
{

(x1, x2) : x1 > 0 , r <
√

|x1|2 + |x2 + 1|2 < r−1
}

.

We consider first the points in Ω where the partial derivative ξ1 of u
(α)
♭ is

−1/2 (say) and ξ2 is 1/10 (say). To simplify the exposition imagine first
that u♭ = uα

♭ vanishes on the intersection of Ω with the ray. Thus ξ1, ξ2

also vanish on this set. Suppose ξ1 = −1/2 and x2 > −1. Then we must
have x1 < x2 + 1 and

0 = u♭(1 + x2, x2) ≥ u♭(x1, x2) − 1
2(1 + x2 − x1) .

On the other hand

(x2 + 1) − ǫα ≤ u♭(0, x2) ≤ u♭(x1, x2) + (kα + 1
2)x1 ,

where ǫα → 0. These imply that
1
2 (x2 + 1) − kx1 ≤ ǫα .

On the other hand, just from the fact that u♭(x1, x2) ≥ 0 we have

0 ≤ u♭(0,−1) +
(

x1ξ1 + (x2 + 1)ξ2

)

.
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So if ξ1 = −1/2, ξ2 = 1/10 we have

x1 ≤ 2u♭(0,−1) + (x2 + 1)/5 .

If u♭(0,−1) and ǫα are sufficiently small then these inequalities have no
common solution in Ω. It is clear from a continuity argument then that
the point where ξ1 = −1/2, ξ2 = 1/10 must lie in the small half-disc D of
radius r about the origin.

Now obviously the same argument applies to values of ξ1, ξ2 close to
−1/2, 1/10. Further, it is easy to extend the argument to the case when
u♭ is C0 close to a function vanishing along the ray, over the fixed annulus.
So we conclude that there is a small rectangle R ⊂ R2 of the form

R =
{

(ζ1, ζ2) : |ζ1 + 1/2| < η, |ζ2 − 1/10| < η
}

with the following property. For any given r and all large enough α all
points (x1, x2) for which which (ξ1(x1, x2), ξ2(x1, x2)) ∈ R are contained
in D.

Now for fixed large α take a point (ζ1, ζ2) in R and consider the contour
ξ1(x1, x2) = ζ1. This contour meets the line x2 = 0 at some point (a1, 0).
As in the proof of Proposition 4 we have a1 > c for some fixed c > 0. Then
using the estimate in Theorem 5 of [D3] we have an upper bound on the
determinant function at this point. It is obvious that when x1 > −1 the
contour cannot move out of the large rectangle Q. We conclude from our
principle that the determinant is bounded at all points whose derivative
lies in R, say J ≤ C. But the inverse of the derivative maps R into D so

∫

R
J−1dζ1dζ2 ≤ Area(D) = πr2/2 .

Thus 4C−1η2 ≤ πr2. But since r can be made arbitrarily small, with η
fixed, this gives our contradiction.

4 C
∞ Limits away from the Vertices

In the previous section we obtained a uniform bound on the quantity D(p;u)
along the interior of each edge. We now use this to get complete control
of the solution away from the vertices. This is straightforward, given the
results from [D3], if we have a lower bound on the Riemannian distance
function determined by the solutions, and we explain this argument in
subsection 4.1. The main work of the section goes into establishing this
lower bound. For this we derive various estimates on the solution, near to
an edge, and particularly on detuij . These estimates may have independent
interest.
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4.1 The proof, assuming a lower bound on the Riemannian dis-

tance. We begin with the relation between the quantity D(p;u) and the
“M -condition”. Recall that in [D3] we said that u satisfies an M condition
if V (p, q) ≤ M for any pair p, q of points in P such that the line segment
{tp + (1 − t)q : −1 ≤ t ≤ 2} lies in P . Here V (p, q) is the variation of the
derivative of u in the direction of the unit vector ν = (p−q)/|p−q| between
the two points. For brevity we will call such pairs p, q “admissible pairs”.

Proposition 6. Suppose u is a normalised function on the polygon P and

we have

• A bound on the integral of u over ∂P ;

• For each δ > 0 a bound on D(p;u) for points p whose Euclidean

distance to all vertices of P exceeds δ.

Then for any δ′ > 0 the variation V (p, q) is bounded for all admissible pairs

p, q where the Euclidean distance from p to the vertices exceeds δ′.

This is very elementary, so we will use rather informal language. The
first hypothesis controls V (p, q) when p is not close to the boundary, so the
relevant case is when p is close to a unique edge. We suppose, as in the
previous section, that this edge is a segment a ≤ x2 ≤ b of the x2-axis and
p = (p1, p2) with a + δ < p2 < b − δ. Let up be the function obtained from
u by normalising at p. As in Proposition 4, the bound on D(p′), for points
p′ on the segment {p′2 = p2}, gives a bound

up(p
′
1, p2) ≤ Cp1 , (38)

for 0 ≤ p′1 ≤ 3p1, say. With this point p, the points q we need to consider
in the definition of the M -condition range over some quadrilateral Q. Two
of whose edges are segments in the lines {x1 = p1/2}, {x1 = 2p1} and the
other two are determined by the other edges of P . But these other two
edges are a definite distance from the rest of the boundary of P . We can
choose a slightly larger quadrilateral Q+, two of whose edges are segments
in the lines {x1 = 0}, {x1 = 2p1} and whose other two edges are again a
definite distance from the rest of the boundary of P . For each unit vector
ν there are unique h, h+ such that q = p + hν lies in the boundary of
Q and q+ = p + h+ν lies in the boundary of Q+. We can suppose that
h ≤ (1 − ǫ)h+ for some fixed ǫ > 0. Then if q = p + hν we have

V (p, q) ≤ up(q
+)

ǫh+
.

Write the x2 coordinate of q+ as p2 + t. When t = 0 then (38) states that
up(q

+) ≤ Cp1. When q+ lies on one of the other two edges of Q+ (not
parallel to the x2-axis) we have a bound up(q

+) ≤ C, since these edges are
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a definite distance from the other edges of P . Convexity of up yields an
inequality of the form up(q

+) ≤ C(p1 + |t|). On the other hand we have
h+ ≥ C

√

p2
1 + t2 so

up(q
+)

h+
≤ C

p1 + |t|
√

p2
1 + t2

,

which is bounded. This completes the proof.

Let Ω ⊂ P be the set obtained by deleting fixed small Euclidean discs
about the vertices and let ∂∗Ω be that part of the boundary of Ω which
is not contained in the boundary of P . An admissible convex function u
on P defines a Riemannian metric uijon P , regarded as a 2-manifold with
corners. For p, q ∈ Ω we write distu(p, q) for the Riemannian distance
defined by this metric, and

distu(p, ∂∗Ω) = inf
q∈∂∗Ω

distu(p, q) .

Locally, we may also associate a 4-dimensional Riemannian manifold
to this data and we let |F |2 be the square of the Riemannian norm of
the curvature tensor as in [D2,3]. Now consider a sequence u(α) as in
Theorem 3. We claim

Proposition 7. There is a fixed bound |Fα|2dist( , ∂Ω)2 ≤ C for all α.

Of course here, strictly speaking we have a sequence of polygons P (α)

so we need to fix a sequence of domains Ω(α), but the meaning should be
clear.

The proof of Proposition 7 is a straightforward modification of the ar-
guments of [D3], which we only outline. We proceed by contradiction and
suppose there is a sequence of points pα for which Kα = |F |2dist( , ∂∗Ω)2

tends to infinity. Then we rescale the metric so that after rescaling the
curvature has norm 1 at the chosen points. After this rescaling the dis-
tance to the boundary ∂∗Ω is Kα which becomes large by hypothesis, and
the curvature is bounded on balls of a fixed size about the chosen points.
This means that we can take the blow-up limit just as in [D3] and the extra
boundary “disappears” in the limit. Then the analysis of the blow-up limits
in [D3] gives the desired contradiction. We have to use the M -condition a
number of times in these arguments, but only at points in Ω, and we have
this by Proposition 6.

Now fix a subset Ω0 ⊂ Ω, for example removing larger Euclidean discs
about the vertices. We will show

Proposition 8. There is an η > 0 such that, for all α

distu(α)(∂∗Ω0, ∂∗Ω) ≥ η .
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Assuming this, Proposition 7 gives an upper bound on the size of the
curvature tensor over Ω0 and the arguments of [D3] apply without change
to give C∞ convergence of the u(α), in the same sense as in [D3]. Since we
can make Ω,Ω0 as large as we please, we conclude that the uα converge in
C∞ on compact subsets of P minus the vertices. The proof of Proposition 8
takes up the remainder of this section.

4.2 Lower bound on Riemannian distance: strategy. By the re-
sults of [D2] we know that over any compact subset of the open polygon
P the Riemannian length of paths compares uniformly with the Euclidean
length. Also we know that, given a bound on the quantities D(p), the
Riemannian length of line segments meeting edges in interior points is
bounded below ([D3, Lem. 2]). Using these facts, it is elementary to re-
duce the proof of Proposition 8 to the following. Given any two points
q, q′ in the interior of an edge, there is a lower bound on the Riemannian
length of paths from q to q′. We can take the edge to be a segment in
the x2-axis and q = (0, α), q′ = (0, β), with α < β. The same elementary
arguments show that it suffices to consider paths which lie in a rectangle
{(s, t) : 0 ≤ s ≤ s0, α ≤ t ≤ β}, for arbitrarily small s0.

Remarks. 1. Of course we fix s0 so that this rectangle is well away from
the other edges of P .

2. It is not hard to avoid appealing to the results of [D2] here, at the
cost of some extra arguments.

3. The obvious path, given by the line segment in the x2-axis, between
these points is a geodesic and we expect that this will be the length min-
imising path. If we knew this then the proof of Proposition 8 would be
substantially simpler – we could avoid Proposition 10 below – but the au-
thor has not found a argument to establish this fact so we have to work
more.

Our basic idea is to consider the function ξ2 = ∂u/∂x2 on P . For a pair
of points (0, t1), (0, t2) on the edge, with t1 < t2, write

∆(t1, t2) = ξ2(0, t2) − ξ2(0, t1) =

∫ t2

t1

u22 dt .

One step in the proof is to establish that ∆(α, β) is not small (Corollary 4
below). To see the relevance of this consider, for this exposition, the linear
path along the x2-axis. The Riemannian length of this path is

∫ β

α

√
u22 dt ,
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while

∆(α, β) =

∫ β

α
u22 dt .

Informally, we expect that if ∆(α, β) is not small then u22 should not be
small at typical points and so the Riemannian length should not be small.
But of course this argument does not suffice, as it stands, because of the
square-root in the integral for the Riemannian length. Much the same issue
arose in [D2], deriving estimates in the interior of the polygon. The anal-
ogous difficulty there was to obtain lower bounds for the Riemannian dis-
tance to the boundary given a “strict convexity” condition. The approach
in [D2] was to replace Riemannian balls with “sections”of the convex func-
tion, using deep results of Caffarelli. The problem at hand is that we are
working up to the boundary, where these results do not apply.

To proceed with our outline of the strategy, consider the square of the
Riemannian norm of its derivative ∇ξ2 which is

|∇ξ2|2 = uij
∑ ∂ξ2

∂xi

∂ξ2

∂xj
= uiju2iu2j = u22 .

So along any path in P with the given end points the change in ξ2 is
bounded by

∫ √
u22 dσ, where dσ denotes Riemannian arc length along the

path. Thus if we have an upper bound u22 ≤ C along the path, we have

∆(α, β) ≤ L
√

C ,

where L is the length of the path; so we have a lower bound L≥C−1/2∆(α, β),
as desired. This upper bound on u22 is given in Proposition 10 below. The
proof of this, and the lower bound on ∆(α, β) goes through estimates for
the determinant J = detuij . We emphasise that in all of these arguments
we make much use of the result of section 4; D(p;u) ≤ D say, for all relevant
points p, and the various constants in our statements depend on D.

4.3 Lower bound on Riemannian distance: detailed proofs.

Lemma 8. Let t1 < t2 be two points in the interval [α, β] and τ = (t1+t2)/2.
There are constants c,c

′ such that if for some s ≤ s0 we have ∆(t1, t2) ≤
c s

t2−t1
then J(s, τ) ≤ c′(t2 − t1)

−2.

The proof is sufficiently like Lemma 14 in [D3] that we leave this to
the reader. (Elementary arguments give bounds on the first derivative in
a suitable neighbourhood of (s, τ), then we apply the maximum principle
result Theorem 5 of [D3].)

Corollary 4. For any µ > 1 there is a constant Cµ such that

∆(t1, t2) ≥ Cµ(t2 − t1)
µ.

In particular ∆(α, β) is bounded below.
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To see this use Theorem 5 in [D2] which states that for any a < 1 the
function J satisfies a lower bound J(s, t) ≥ Cs−a. Then the statement
follows immediately after re-arranging the inequalities. Note that if we
could take µ = 1 we would be in a strong position – u22 would then be
bounded below on the edge – but the author has not been able to achieve
this directly.

The next step is to find a sharp upper bound on the function J .

Proposition 9. There is a constant C such that J(s, t) ≤ Cs−1 for all

t ∈ [α, β].

We choose nested intervals (α, β) ⊂ (α′, β′) ⊂ (α′′, β′′) so that the
rectangle (0, s0] × [α′′, β′′] is well away from the other edges of P . We
have an upper bound ∆(α′′, β′′) ≤ ∆′′ say. We can suppose that the result
of Lemma 8 applies in the larger interval [α′′, β′′]. We have an upper bound,
J(s0, t) ≤ J0 say, if α′′ < t < β′′. Set η0 = J−1

0 s−1
0 and consider some η

with 0 < η ≤ η0.

Consider the function F = J−1. This satisfies the equation uijFij =
−AF < 0 (see (14) in [D2]). Thus the function G = F − ηx1 has no
interior minima. We have G = 0 on the axis {x1 = 0} and G > 0 on
the parallel segment {x1 = s0, α′′ < x2 < β′′}. Let Q be the rectangle
(0, s0) × (α′, β′) and Σ be the subset of Q on which G < 0. Suppose
Σ contains a point p = (p1, p2) with α < p2 < β. Then the connected
component of Σ containing p must meet the boundary of Q, since there
are no interior minima and by construction this can only occur on the
boundary components x2 = α′, β′. So there is a continuous path in S from
p to either the boundary x2 = α′ or to x2 = β′. Without loss of generality
suppose the former. Then for each τ ∈ (α′, α) there is a point (s, τ) in Σ,
i.e. where J(s, τ) > η−1s−1. Now let λ =

√
c′ηs/2, with c′ as in Lemma 8.

We suppose η is chosen so that
√

c′ηs0/2 < α′ − α′′ thus λ < α′ − α′′ and
the interval [τ − λ, τ + λ] is contained in [α′′, β′′]. By Corollary 4 we have

∫ τ+λ

τ−λ
u22 dt ≥ c

s

λ
=

(

4c

c′η

)

λ . (39)

Let f be the restriction of the second derivative u22 to the interval
[α′′, β′′] in the edge, extended by zero to a function on R. Thus ‖f‖L1 ≤ ∆′′.
Let mf be the maximal function of f ;

mf (σ) = max
µ>0

1

2µ

∫ σ+µ

σ−µ
f(t)dt .
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Thus
1

2λ

∫ τ+λ

τ−λ
u22 dt ≤ mf (τ) .

and (39) gives mf (τ) ≥ 2c/2c′η for each τ ∈ [α′, α]. Now the weak type
bound for the maximal function tells us that there is a constant C such
that for all b the measure of the set on which mf exceeds b is at most
C‖f‖L1b−1. Thus

(α − α′) ≤ C∆′′c′

2c
η .

If we choose η sufficiently small we get a contradiction, so there can be no
such point p. In other words J(s, t) ≤ η−1s−1 for t ∈ [α, β], s ≤ s0.

It is easy to see, from the Guillemin boundary conditions, that the limit
of sJ(s, t) as s → 0 is the second derivative u22, evaluated at the point (0, t).
So a corollary of the result above is that u22 is bounded on the interval [α, β]
in the edge. This then gives us a lower bound on the Riemannian length of
this interval and, as in the third remark at the beginning of section 4.1, we
strongly suspect that this actually realises the minimal length. However,
lacking a proof of this, we go on to prove

Proposition 10. There is a constant C such that u22 ≤ C at all points

(s, t) with s ≤ s0, α ≤ t ≤ β.

This result completes the proof of Proposition 8, as we explained in 4.1.

The proof of Proposition 10 is roughly speaking to argue that if u22 is
large then J would violate the bound of Proposition 9.

Lemma 9. Given D > 0 there are positive κ, ζ1, ζ2, R > 1 with the following

property. Suppose v is a smooth convex function on the rectangle {0 ≤
x1 ≤ R,−R ≤ x2 ≤ R}, whose derivative is a diffeomorphism to its image.

Write vi for the partial derivatives ∂v/∂xi. Suppose that v1(x1, x2) → −∞
as x1 → 0. Suppose that v satisfies a bound D(p; v) ≤ D for all points

p. Suppose that v is normalised at the point (1, 0), that v(1, x2) ≤ 2D for

−1 ≤ x2 ≤ 1 and v(1, 1) = 2D. Then any point (x1, x2) where v1 ≤ −ζ1

and ζ2 < v2 < 2ζ2 has |x1|, |x2| ≤ κ.

The proof of this is similar to the arguments in Proposition 4 and
Lemma 7. All the steps are entirely elementary so we will use informal lan-
guage. Given ζi, let S be the set of points with v1 ≤ −ζ1 and ζ2 < v2 < 2ζ2.
We choose ζ2 ≤ 1/2 so the hypotheses imply that for any ζ ∈ [ζ2, 2ζ2] there
is an x2 in (0, 1) such that v2 = ζ at the point pζ = (1, x2). We consider the
contour Γ on which v2 = ζ and x1 ≤ 1. This cuts each line {x1 = constant}
exactly once (so long as the intersection point does not move out to the
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boundary x2 = ±R). We have v(x1, 0) ≤ D for 0 ≤ x1 ≤ 1. Then convexity
implies that no point (x1, x2) with 0 ≤ x1 ≤ 1 and x2 very negative can lie
in Γ. Given a large positive ρ we consider the line through the points (1, 2)
and (0, ρ). We have an upper bound on the value of v at the intersection
of this line with the x1 axis while v(1, 2) = 2D by hypothesis. Convexity
implies that at a point (x1, x2) on this line with 0 ≤ x1 ≤ 1 the value of
v must be approximately 2Dx2. For suitable choices of the parameters we
see that the contour Γ cannot meet this line segment. In particular, Γ is
confined to lie in a bounded region Q = {0 ≤ x1 ≤ 1,−ρ ≤ x2 ≤ ρ} say.
(We can suppose R > ρ so we do not have any difficulties with the domain
of definition.) As we move along the contour Γ, with x1 decreasing, the
derivative v1 tends to −∞ so whatever the value of ζ1 the point on the
contour eventually lies in S. On the other hand if we choose ζ1 large then
the bound on the D(p) implies that pζ is not in S. The hypotheses imply
that S is connected and it follows that S is contained in the bounded set Q,
which completes the proof.

We now prove Proposition 10. Given a point p = (s, t), we let up be the
function obtained by normalising u at p. By applying Theorem 5 in [D3]
together with lower bound on J , much as in the proof of Lemma 8, we see
that there is a small positive number µ such that either up(s, t + µ) = Ds
or up(s, t − µ) = Ds. Without loss of generality suppose the former, and
that µ is the least possible such value. Write µ = r

√
s. Now rescale to

define
u♭(x1, x2) = s−1up(sx1, r

√
sx2 + t) . (40)

Then u♭ satisfies the hypotheses on the function v of Lemma 9 (and we can
suppose R is as large as we please, since we are only concerned with small s).
We write ξ♭

1, ξ
♭
2 for the derivatives of u♭. We see that from Lemma 9 that

points with ξ♭
1 < −ζ1 and ζ2 < ξ♭

2 < 2ζ2 lie in a fixed bounded set.
Now write V♭ for the vector field associated to u♭, as in section 4. Cal-

culating the transformation under rescaling (40) we find that V♭ is bounded.
Let φ be the Legendre transform of u♭ and consider the rectangle

Q =
{

(a1, a2) : −(ζ1 + 1) ≤ a1 ≤ a2 , ζ2 ≤ a2 ≤ 2ζ2

}

.

The bound on V♭ means that the determinant of the Hessian of φ varies by
a bounded factor over Q. Since this derivative maps Q into a bounded set
we get an upper bound on this determinant at each point of Q. Further,
for any given ρ we get an upper bound on the Hessian over the whole ball
|a| ≤ ρ. Now the choice of scaling, and the bound on D(p, ), gives bounds
on the derivative of u♭ over a disc of radius 1/4, say, centred at (1, 0).
Since the determinant of the Hessian of φ is the inverse of det(u♭)ij , at the
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corresponding point, we obtain a lower bound on det(u♭)ij over this disc.
But we also have an upper bound on this determinant, by Lemma 14 of
[D3]. Then we deduce, just as in [D2], bounds on all derivatives of u♭ on a
small neighbourhood of the point (1, 0). In particular

∣

∣

∣

∣

∂2u♭

∂x2
2

∣

∣

∣

∣

≤ c

and
det
(

(u♭)ij
)

≥ c−1

say. Now we have the transformation relations, from (40),

(u♭)22 = r2u22 , det
(

(u♭)ij
)

= r2s det(uij) .

Since s det(uij) ≤ C by Proposition 9, we deduce that

u22 ≤ c2C

as required.

5 The Vertices

Let us again take stock of our progress. We are considering a convergent
sequence of data sets

(

P (α), A(α), σ(α)
)

with solutions u(α) normalised at the

centre of mass of P (α). Our original hypothesis is that the integrals of u(α)

over ∂P (α) are bounded, and we showed in section 2 that the u(α) satisfy an
L∞ bound. Then we saw in sections 3 and 4 that the u(α) converge away
from the vertices. Our task in this section is to show that the solutions
converge in neighbourhoods of the vertices. We can fix attention on a
single vertex and we choose coordinates so that this vertex is the origin,
that P = P (α) is equal to the quarter plane {x1, x2 > 0} near the vertex
and the measures on the two edges {x1 = 0}, {x2 = 0} are standard. As
before we usually omit the index α. For sufficiently small positive t we
write

E(t) = t−1
(

u(2t, 0) + u(0, 2t) − 2u(t, t)
)

. (41)

Our strategy is to prove

Proposition 11. There is a bound E(t) ≤ E0 for all t, α.

Of course, this is only of interest for small values of t. Given this, it is
not very difficult to deduce the desired convergence around the vertex, see
subsection 5.5.

Our proof of Proposition 11 is complicated, so we will first give some
discussion to motivate the constructions. The bound is similar in character
to the bound on the quantity D which we obtained in section 3, and some
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of the same difficulties emerge in the proof. For each α choose a value t0
which maximises the function E and set Emax = E(t0). Define a function

u♭ = u
(α)
♭ by

u♭(x1, x2) = E−1
maxt

−1
0

(

u(t0x1, t0x2) + π(x1, x2)
)

where π is the affine-linear function chosen so that u♭ is normalised at the
point (1, 1). We suppose that, in the sequence (α), the maxima Emax =

E
(α)
max tend to infinity and seek a contradiction. It is not hard to show that

the u♭ converge to a convex function u
(∞)
♭ but the main difficulty is to rule

out the possibility that

u
(∞)
♭ (x1, x2) = 1

2 |x1 − x2| .
Compare with the discussion in subsection 3.4 above, for the quantity D.
To get around this we consider also the determinant function J = det uij

and make various arguments with this. A crucial point is that, using the
L∞ bound from section 2, we obtain sharp upper and lower bounds on J
in terms of the Legendre transform coordinates ξi (Proposition 12 below).
Then we consider a “perturbation” of the function E and maximise this to
obtain, ultimately, the desired contradiction. (In fact we do not explicitly

pass to the limit u
(∞)
♭ in our actual proof, making all our arguments with

the smooth functions u(α), but the reader may find it helpful to have this
in mind when following the arguments.)

5.1 Volume Bound We continue with the same notation reviewed
above, focussing on a vertex (0, 0) and, given u, we set ξi = ∂u/∂xi. We
write J = det uij. Notice that for the flat model we have

J = (x1x2)
−1 = e−(ξ1+ξ2). (42)

Proposition 12. There is a constant B such that

B−1e−(ξ1+ξ2) ≤ J ≤ Be−(ξ1+ξ2)

in a fixed neighbourhood of the vertex.

Fix some standard reference sympletic potential function u0 (so really

we have a convergent sequence u
(α)
0 ). Let φ, φ0 be the Legendre transforms

of u, u0 respectively. We have an elementary identity

‖φ − φ0‖L∞ = ‖u − u0‖L∞ .

Clearly the u0 are bounded and so by Theorem 2 the difference φ − φ0 is
bounded. Now take complex coordinates z1, z2 and set ξi = log |zi|, so we
regard φ, φ0 as functions of the zi. Fix a neighbourhood N of the vertex
in P . Under the Legendre transform, this corresponds to some neighbour-
hood U of the origin in C2. The results of the previous section give upper
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and lower bounds on the difference log J − (ξ1 + ξ2) over the boundary
of U . Since the origin is a vertex of the polygon, these functions extend to
smooth functions on C2. The function φ0 satisfies some fixed bound on the
unit ball B4 ⊂ C2 so, by the above, φ does also.

The results of the previous sections give us C∞ bounds on φ over com-
pact subsets of the punctured ball B4 \ {0}. Let V be the volume element
of the metric in these complex co-ordinates, that is V = det(∂2φ/∂zi∂zj).
So we have an upper and lower bounds on V away from the origin in B4.
The prescribed scalar curvature equation is

∆ log V = A ,

where A is thought of as a function on C2 via the Legendre transform and
∆ is the usual Laplace operator of the Kahler metric. Thus |∆ log V | ≤ C
say. Since ∆φ = 2 we have

∆
(

log V + C
2 φ
)

≥ 0 , ∆
(

log V − C
2 φ
)

≤ 0 .

Thus, by the maximum principle and our bound on φ, the function log V
over the entire ball is controlled by its values on the boundary, so we have
upper and lower bounds on V over B4. Now the chain rule gives

det uij = V −1 exp
(

−(ξ1 + ξ2)
)

and our result follows.

Next we have a simple lower bound on the determinant det uij.

Lemma 10. There is a constant c > 0, depending only on B above , such

that J ≥ c(x1 + x2)
−2.

To see we argue in the same manner as in Lemma 3. We consider a
point p = (p1, p2) in the quadrant {x1, x2 > 0} and let up be the function
obtained from u by normalising at p. Let Q be the square consisting of
points (ξ1, ξ2) with |ξi + 1| ≤ 1/10 (say) and let S be the set of points
(x1, x2) at which the derivative of u lies in Q. The previous result implies
that over S J differs by a bounded factor from J(p). So we have

Area(S) =

∫

Q
J−1dξ1 dξ2 ≥ cJ(p)−1. (43)

Let y be a point of S and π be the affine-linear function defining the sup-
porting hyperplane at y. The zero set of π is a line which separates y
and p and it follows from this that y lies in the triangle with vertices

(0, 0),
(

p1 + 11
9 p2, 0

)

,
(

0, p2 + 11
9 p1

)

. So the area of S is not more than
(p1 + p2)

2. Rearranging (43) then gives the result.
Notice that, comparing with (42), the bound in Lemma 10 is in a sense

sharp when p1, p2 are approximately equal.
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5.2 Proof on the diagonal. Recall the definition of E(t) in (41). In
this subsection, and the next two, we prove Proposition 11, which gives an
a priori upper bound on E(t).

Notice that E(t) is not changed if we add an affine-linear function to u
and that E(t) is preserved by the rescaling

ũ(x1, x2) = λ−1u(λx1, λx2) .

Under this rescaling the function A transforms to λA. Making this rescal-
ing, with small λ, and changing notation in the obvious way, we can suppose
that u is defined on a large region in the quarter-plane {xi > 0}. It seems
simplest to take this rescaling as understood, without bringing in explicit
notation. By the scaling behaviour, we can suppose that ‖A‖L∞ is as small
as we please: let us suppose it is less than 1. It will often be convenient to
work in the co-ordinates

t = 1
2(x1 + x2) , s = 1

2(x1 − x2) .

Recall that we set Emax = maxt>0E(t). We also write J(t) for the deter-
minant det(uij) evaluated at (t, t) and we write u(t) for the function of one
variable u(t, t). For integers n ≥ 0 let

δn = u′(2−n+1) − u′(2−n) .

Proposition 13. There is a constant c such that then δn ≤ 2 log Emax + c
for all n.

To prove this we observe that E(1) controls the variation in the partial
derivative ∂u/∂s over an interval in the line t = 1. Then we can use
Lemma 14 in [D3], much as in Lemma 8, to get

√

J(1) ≤ cmax
((

u′(2) − u′ (1
2

))

, Emax

)

. (44)

Now J(1) ≥ B−2J(2) exp(u′(2)− u′(1)) = B−2J(2) exp(δ0) by Proposi-
tion 12 and so, using our lower bound of Lemma 10, J(1) ≥ c exp(δ0). If
exp(δ0) is large compared with E2

max we must have
√

J(1) ≤ c(u′(2) − u′(1
2

)

= c(δ0 + δ1), so we get
eδ0 ≤ c(δ0 + δ1) . (45)

Thus δ1 ≥ f(δ0) where f is the function

f(δ) = c−1eδ − δ .

We can obviously choose a δ > 1 such that if δ ≥ δ we have

f(δ) ≥ δ2 ≥ δ ≥ δ .

Then if δ0 ≥ δ we have δ1 ≥ δ2
0 ≥ δ0. Now the whole set-up is invariant

under rescaling by a power of 2, so we also have δn+1 ≥ δ2
n. hence δn ≥ δ2n

0 .
But by an easy argument this would imply that u(t) is unbounded as t → 0,
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contrary to what we know. So we deduce that in fact either δ0 ≤ δ or
exp(δ0) ≤ cE2

max. Now the statement for all n follows by rescaling.

Now set

∆(t) = t2 max
{

J(x1, x2) : x1 + x2 = 2t ; |x1 − x2| ≤ t/10
}

. (46)

Note that the factor t2 in the definition makes this invariant under rescaling.
We introduce a parameter ǫ ∈ (0, 1), to be fixed later, and consider the

function
Fǫ(t) = E(t) + ǫ∆(t) . (47)

After scaling we can suppose this achieves its maximal value Fmax at t = 1,
we write E = E(1), ∆ = ∆(1). Now using the bound from Proposition 13,
and (44) we get

√
∆ ≤ cmax(E, log Emax) so

Emax ≤ Fmax ≤ E + (E + log Emax)
2.

This gives
Emax ≤ c

(

E2 + (log Emax)
2
)

.

Thus
Emax ≤ cE2. (48)

We can suppose that E is large (for otherwise Emax is not too large) then
we get

δn ≤ 4 log E . (49)

We normalise u, under the addition of affine-linear functions, at the
point (1, 1). Then summing the δn, using the bound (49) and integrating
the resulting bound on the ∂u/∂t we see that the variation of u over compact
subsets of the diagonal {s = 0} is O(log E), which is small compared with
the variation across the orthogonal line {t = 1}, since the latter is at
least E, by definition. More generally we have

Lemma 11. For any t2 > 1 and σ with |σ| ≤ 1/2 the variation of u on the

intersection of the line {x1 − x2 = 2σ} with the triangle {x1 + x2 ≤ 2t2} is

bounded by c log E, where c depending only on t2.

We know that u is O(log E) on the diagonal and it follows from the
definitions that u is O(Emax) on the triangle {x1 + x2 ≤ 3t2}, say. This
means that the size of the derivative of u is O(Emaxd

−1) where d is the
distance to the boundary. Then by applying Theorem 5 of [D3] we deduce
that

J ≤ cE2
maxd

−4. (50)

Consider the line {x1 − x2 = 2σ}, where we can suppose σ ≥ 0, and
parametrise this line by x1 = 2σ + τ, x2 = τ . By applying Proposition 12
and the lower bound of Lemma 10 we see that

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

≤ c log(cE4τ−4) ,
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where we have used (48) to replace Emax by E. Integrating this we obtain
the result.

In the next two subsections we prove the following two propositions.

Proposition 14. There is a k0, independent of ǫ, and a function µ(ǫ)
such that if at a interior maximum point for F we have ∆ ≥ k0M then

Emax ≤ µ(ǫ).

Proposition 15. For any k there is an ǫ(k) and ν(k, ǫ) such that if ǫ ≤
ǫ(k) and if at an interior maximum point for F we have ∆ ≤ kM then

Emax ≤ ν(k, ǫ).

These two propositions complete the proof of Proposition 11. For we
fix ǫ = ǫ(k0) and then at an interior maximum we have

Emax ≤ max
(

µ(ǫ(k)), ν(k0, ǫ(k0))
)

.

We will use a simple principle in the proofs of both of these propositions.
Write ξs, ξt for the partial derivatives of u with respect to the variables
s, t. Given a point p and real numbers α, β1, β2 with β1 < β2, let S =
S(p;α, β1, β2) be the set of points x = (x1, x2) where

β1 ≤ ξs(x) ≤ β2 , ξt(x) ≤ α + ξt(p) . (51)

Lemma 12. We have

B−2(β2 − β1)J(p)−1 ≤ Area(S) ≤ B2(β2 − β1)J(p)−1.

For the area of S is

Area(S) =

∫

Π
J−1dξs dξt , (52)

where Π is the region in the (ξs, ξt) plane defined by the inequalities (51),
and we have abused notation by regarding J as a function of ξs, ξt in the
obvious way. Now the volume bound of Proposition 12 gives

B−2J(p)eξt(p)−ξt ≤ J(ξs, ξt) ≤ B2J(p)eξt(p)−ξt , (53)

and the result follows by integrating the exponential function over Π.

5.3 Proof of Proposition 14. We fix values t0, t1, t2, say for definite-
ness t0 = 1/5, t1 = 1/4 and t2 = 2. Let R be the rectangle {|s| ≤ 1/10, t0 ≤
t ≤ t2}.

Recall that the definition of ∆ involves maximising over an interval
|s| ≤ t/20. Suppose that the maximum is achieved at a point p, where
t = 1 and s = s0. (Of course, we can suppose t = 1 by rescaling.) So
|s0| ≤ 1/20 and p lies inside R.

Now the proof proceeds by the following steps.
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Step 1. Claim: There is a c1 such that |∂u/∂s| ≤ c1E on R.

For on the line segment {t = 1, |s| ≤ 1} we have a bound |u| ≤ E|s|.
Using Lemma 11, this gives an O(E) bound on u over the interior region
|s| ≤ 1, t ≤ 2. Since R lies within the interior of this set, convexity gives
an O(E) bound on the derivative over R.

Now we consider the set S = S(p;α,−c1E, c1E), with c1 as above. The
curve {∂u/∂t = α} is the graph of a function t = τ(s). By Step 1 above
the intersection S ∩ R is just the set defined by the three conditions

−1/10 ≤ s ≤ 1/10 , t0 ≤ t ≤ t2 , t ≤ τ(s) .
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Step 2. Claim: We can choose α > 0, depending only on B, so that

for any point q on the graph t = τ(s) and any point p′ with s = s0, t ≤ 1
we have

J(q) <
t2 − t1
1 − t1

J(p′) .

For, since the partial derivative ∂u/∂t is monotone on the line s = s0

we have
J(p′) ≥ B−1J(p) ,

whereas, by the inequality of Proposition 12,

J(q) ≤ Be−αJ(p) .

So we just need to choose α > 0 and bigger than log
(

B2 t2−t1
1−t1

)

.

Now we fix α as above. By Lemma 12, the area of S is at most
cE/J(p) = cE/∆. So, by choosing k0 large (as allowed in the statement of
Proposition 14), we can suppose the area of S is as small as we please. Fix
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a suitably small number δ – for definiteness we can take δ = 1/100 – and
choose k0 so that the area of S is less than δ(t1 − t0).

Note that, since α > 0, we have τ(s0) > 1, by monotonicity of the
partial derivative.

Step 3. Claim: There are s−, s+ with |s±− s0| ≤ δ and s− < s0 < s+

such that τ(s±) ≤ t1.

If there is no such s+ then S contains the rectangle t0 ≤ t ≤ t1, s0 ≤ s ≤
s0+δ. (Notice that our choices imply that this rectangle lies inside R.) But
this contradicts the fact that the area of S is less than δ(t1 − t0). Similarly
for s−.

To sum up so far we have shown that the set S must contain a very thin
“finger”, extending out from the region {t ≤ t1} and containing the point
p where t = 1.

Let s+ be the least among the values satisfying the conditions of the
claim above and s− be the largest. Then τ(s±) = t1 and τ > t1 on the
open interval (s−, s+).

Let Ω be the set where s− ≤ s ≤ s+, t1 ≤ t ≤ t2 and t ≤ τ(s). For
t′ ∈ [t1, t2] let It′ be the intersection of Ω with the line t = t′ and let j(t′)
be the maximum of J over It′ . Thus j(1) ≥ ∆. Let G ⊂ [t1, t2] be the set
of values t∗ such that for all t′ ∈ (t1, t

∗] the maximum j(t′) is attained at
an interior point of It′ (i.e. not at points in the graph of τ).

Step 4. Claim: 1 is contained in G.

This follows from the claim in Step 2, since for t′ ≤ 1 the point p′ with
co-ordinates t = t′, s = s0 lies in It′ and J(p′) is strictly less than the value
of J at any point on the graph.

Now the crucial idea in the proof is to show that this thin “finger” must
actually extend to meet the line {t = t2}.

Step 5. Claim: If t∗ ≥ 1 and t∗ ∈ G then j−1 is a concave function

on the interval [t1, t
∗].

This is similar to the proof of Proposition 9. The function F = J−1

satisfies the linear equation uijF
ij = −AF and A ≥ 0. Then the assertion

follows from the maximum principle applied to F − ct for suitable values
of c.

Step 6. Claim: t2 is in G.

This follows from a continuity argument. From its definition, G is open.
So long as t∗ lies in G we have
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j(t∗)−1 ≤ t∗ − t1
1 − t1

j(1)−1 ≤ t∗ − t1
1 − t1

J(p)−1 ,

by convexity. Suppose 1 ≤ t∗ ≤ t2. Recall that we arranged that for any
point q on the graph of τ

J(q)−1 >
t2 − t1
1 − t1

J(p)−1.

The strict inequality implies that G is closed.

Step 7. Claim: There is a point p′′ with co-ordinates s′′ ∈ (s−, s+)
and t = t2 such that J(p′′) > 1−t1

t2−t1
J(p).

This follows from the concavity of j−1, as above.

Now by the choice of δ we have |s′′| ≤ t2/20 so the point above is one
of those considered in the definition of ∆(t2) and we have

∆(t2) ≥
1 − t1
t2 − t1

t22∆ .

Now with the definite choices of ti made above this inequality is ∆(t2) ≥
(1 + σ)∆ with σ = 5/7 > 0.

We can now complete the proof. From Lemma 11 we know that u(0, 0)
is O(log E) and the convexity of u on the boundary implies that

u(2t2, 0) ≥ t2u(1, 0) − c log E , u(0, 2t2) ≥ u(0, 1) − c log E .

Also u(t2, t2) is O(log E), again by Lemma 11, so from the definition of
E(t) we have

E(t2) ≥ E − c log E .

So

Fǫ(t2) ≥ E + ǫ(1 + σ)∆ − c log E ≥ Fǫ(1) + ǫσk0E − c log E .

Proposition 14 follows from (48) and the fact that Fǫ(t2) ≤ Fǫ(1).

5.4 Proof of Proposition 15. Recall from the statement of the propo-
sition that we are supposing that ∆ ≤ kE. The main idea in the proof will
be in part complementary to that of Proposition 14, in that we invoke a
lower bound on the area of a suitable set S. As before we suppose that
the maximum of Fǫ is attained at t = 1, and let p be the point on the line
{t = 1} where the maximum in the definition of ∆ is achieved. Our ar-
gument again employs certain parameter values t0, t2 for the t-coordinate,
but this time we will choose t0 < 1 very small, so that

1

2
t20 ≤ 1

100B2k
, (54)

and t2 > 1 very large, so that

t22 ≥ 100B4k . (55)
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For any t we have

E(t) ≤ Fǫ(t) ≤ Fǫ(1) = E + ǫ∆ ≤ (1 + ǫk)E .

Write U(t) = u(2t, 0) + u(0, 2t), so E = U(1). Over the fixed range, t ≤ t2,
our bound in Lemma 11, on the diagonal, gives U(t) ≤ tE(t) + c log E.
Hence

U(t) ≤ t(1 + ǫk)E + c log E = t(1 + ǫk)U(1) + c log E . (56)

When ǫ is small, convexity of the function U forces E−1U(t) to be close
to the linear function t (assuming of course that E is large), over the range
t ≤ 1. Further, each summand u(2t, 0), u(0, 2t) is positive and convex and
this forces

u(2t, 0) = tu(2, 0) + O(log E + ǫE) , u(0, 2t) = tu(0, 2) + O(log E + ǫE) .

To express this differently, write u(2, 0) = λ1E, u(0, 2) = λ2E, so λi ≥ 0
and λ1 + λ2 = 1. Define

V (x1, x2) = 1
2 max

(

λ1(x1 − x2), λ2(x2 − x1)
)

.

Then on compact subsets of the boundary of the quarter-plane the function
E−1u differs from V by O(E−1 log E + ǫ). But now Lemma 11 implies that
E−1u differs from V by O(E−1 log E + ǫ) over the whole region {t ≤ t2} in
the quarter plane. Set

β1 =
(

1
2(λ1 − λ2) − 1

4

)

E , β2 =
(

1
2 (λ1 − λ2) + 1

4

)

E .

(The reader may find it easiest to think first of the symmetrical case when
λ1 = λ2 = 1/2.) We consider the set S = S(p;α, β1, β2), where α > 0 and

eα ≥ 10B2k . (57)

(The reason for these choices will emerge presently.) The crucial observa-
tion is

Lemma 13. The intersection of S with the set {t0 ≤ t ≤ t2} is contained

in a strip |s| ≤ η where η = cǫ, once E is sufficiently large.

The proof is straightforward, using the preceding discussion. (Only the
constraint β1 ≤ ξs ≤ β2 is relevant here: the statement is valid for any α.)

Now we proceed with the following steps.

Step 1. Claim: If E is sufficiently large, the variation of ∂u/∂s on

the line t = 1 across the strip |s| ≤ η is at least E/2.

We know that ∂u/∂s varies from −∞ to ∞ across the whole interval
t = 1, |s| ≤ 1 and by the Lemma 13 the points where values β1, β2 are
attained must lie in this strip. Then the claim follows from the fact that
β2 − β1 = E/2.
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Step 2. Claim: There is a k′ ≥ 1/10, such that, if E is sufficiently

large, there is a point p′ in the segment |s| ≤ η, t = 1 with β1 ≤ ξs(p
′) ≤ β2

and J(p′) ≥ k′E.

To see this we use an integral identity just as in [D3, Lem. 17]. This
gives a formula, in terms of A, for the integral over the line segment t = 1,
|s| ≤ 1 of utt (in an obvious notation). Using the formula for the inverse of
a 2 × 2 matrix, we can write this as

∫

J−1dξs ,

where ξs = ∂u/∂s is regarded as a parameter on the line segment |s| ≤ 1,
t = 1. From this formula one sees that the integral is at most 5, when
|A|L∞ ≤ 1, as we are supposing. In particular the same integral over the
sub-segment |s| ≤ η, t = 1 is bounded above by k′/2 ≤ 5 say. Since the
variation in ξs over this subsegment is at least E/2 there must be a point
where J ≥ k′E, with k′ ≥ 1/10.

Step 3. Claim: If ǫ is sufficiently small and E is sufficiently large

then ∆ ≥ k′E.

We just choose ǫ so that η < 1/20 and the point p′ is one of those
considered in the definition of ∆.

Step 4. Claim: If ǫ is sufficiently small, and E sufficiently large, the

set S intersects the line segment {t = t2, |s| ≤ η}.
First, since J(p′)/J(p) ≥ (10k)−1 it follows from the choice of α and

Proposition 12 that p′ lies in S. By Lemma 12, the area of S is at least
E/2∆B2 ≥ (2kB2)−1 and by the choice of t0 this is more than twice the
area of the triangle {t ≤ t0}. Suppose S does not intersect the line segment
as claimed. Since p′ lies in S and S is connected it follows from Lemma 13
that S is contained in the union of the triangle {t ≤ t0} and the strip
{t0 ≤ t ≤ t2, |s| ≤ η}. So the area of this strip must be at least half the
area of S. But the area of strip is 2(t2 − t0)η = 2c(t2 − t0)ǫ, so this is
impossible when ǫ is sufficiently small.

Step 5. Claim: ∆(t2) ≥ 2∆.
Consider the point p′′ whose existence is established in the previous

step. Using Proposition 12, J(p′′) ≥ B2e−αJ(p) = B2eα∆. We can assume
that η is small, so p′′ is a point considered in the definition of ∆(t2) and
∆(t2) ≥ t22J(p′′). Now the claim follows from the choice of t2.

Now we can complete the proof. By the convexity of the function U
and the fact that U(0) is O(log E) we have

U(t2) ≥ t2E − c log E .
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From the bound on u(t2, t2) we deduce that

E(t2) ≥ E − c log E .

So
Fǫ(t2) ≥ E + ǫ∆(t2) − c log E ≥ E + 2ǫ∆ − c log E .

Now the fact that Fǫ(t2) ≤ Fǫ(1) gives

E + 2ǫ∆ − c log E ≤ E + ǫ∆ ,

so ǫ∆ ≤ c log E. Now by Step 3, ∆ ≥ k′E so

ǫk′E ≤ c log E ,

which gives the required bound on E.

5.5 Completion of proof of main theorem. We need to control a
solution u(α) in a neighbourhood of a vertex, and we can take standard
co-ordinates around the vertex as in the previous section. For each point
p = (p1, p2) we define D1(p) as in (3.2)

D1(p) =
1

p1

(

u(0, p2) − u(p1, p2) −
∂u

∂x1
(p1, p2)

)

.

Of course we have a similar quantity D2(p) defined by interchanging the
co-ordinates. We prove

Proposition 16. There is an a priori bound D1(p),D2(p) ≤ D, valid for

all solutions u = u(α) in our sequence, and all points p near to a vertex.

Given this it is straightforward to adapt the proofs of Proposition 6 to
deduce Theorem 1, arguing just as in subsection 4.1.

When p1 = p2 a bound on Di(p) follows immediately from what we have
proved in the previous section. More generally, the only new issues arise
when p1 is much less than p2. We adapt the argument of section 3. We
choose a point where D1(p) is maximal and by rescaling we can suppose
that p2 = 1. If u is normalised at (1, 1), as in the previous subsection, then
we have a priori L∞ bounds on u over compact subsets. The only difficulty
in applying the argument of section 3 would occur if the “scale” λ is not
small. Then the limit u♭ would still be defined only on a quarter plane and
the problem would come when, taking the limit in seeking a contradiction,
the u♭ converge to an affine-linear function on the boundary. To rule this
out we need an a priori “strict convexity” bound on the restriction of u to
the x2-axis. Thus the crucial thing is to prove

Proposition 17. There are r > 1 and η > 0 such that
∂u

∂x2
(0, r) − ∂u

∂x2
(0, 1) ≥ η ,

for every function u obtained by rescaling one of the u(α), as above.
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Given this proposition it is very easy to adapt the arguments of section 3
to prove Proposition 16, on the lines indicated above.

To prove Proposition 18, we begin by considering the derivative ξt =
∂u/∂t on the diagonal. We have upper and lower bounds on the determi-
nant J at the point (1, 1) and, under rescaling, these give

c′t−2 ≥ J(t, t) ≥ ct−2.

Then Proposition 12 gives

ξt ≥ 2 log t − c

for t ≥ 1. Now write ∂u/∂x2 = ξt − ξs so
∂u

∂x2
(t, t) ≥ 2 log t + ξs(t, t) − c .

The L∞ bound on u implies a bound on ∂u
∂x2

(1, 1) − ∂u
∂x2

(0, 1). By con-

sidering the rescaling behaviour we get a fixed bound on ∂u
∂x2

(t, t)− ∂u
∂x2

(0, t)
for all t. So

∂u

∂x2
(0, t) ≥ 2 log t +

∣

∣ξs(t, t)
∣

∣ − c . (58)

Thus it suffices to show that |ξs(t, t)| is small, for large t, compared with
2 log t. To this end we first define

T = T (u) =
∣

∣ξs(2, 2) − ξs(1, 1)
∣

∣ .

(In fact u has been normalised so that ξs(1, 1) = 0, but it is clearer to write
the definition this way.) By our L∞ bounds we have T ≤ C0 say.

For integer µ > 1 let Ωµ be the region {2−µ ≤ t ≤ 4} in the quarter-
plane. Let Eµ(u) be the integral of the quantity |F |2 (as defined in [D2,3])
over Ωµ. (This is essentially the square of the L2 norm of the Riemann
curvature tensor over the corresponding piece of a 4-manifold.) Given a
positive number C, let AC be the set of convex functions u on the closed
triangle {t ≤ 4}, normalised at (1, 1) such that

1. u satisfies equation (1), with ‖A‖C2 ≤ C;

2. ‖u‖L∞ ≤ C;

3. det(uij) ≥ C−1 everywhere;

4. ‖V ‖L∞ ≤ C, where V is the vector field associated to u;

5. u satisfies Guillemin boundary conditions, with the standard measure,
along the xi-axes;

6. det(uij) ≥ C−1t−2 at the point (t/2, t/2).

Then we have

Lemma 14. For any C, ǫ > 0 there is an integer µ and a δ > 0 such that if

u ∈ AC and Eµ ≤ δ we have T (u) ≤ ǫ.
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For our application we fix ǫ < 2 log 2.

Assuming this lemma for the moment, we complete the proof of Propo-
sition 17. For integers n ≥ 1 set

Tn =
∣

∣ξs(2
n, 2n) − ξs(2

n−1, 2n−1)
∣

∣ .

Thus, rescaling by a factor 2n, we can apply our bounds on T to give bounds
on Tn. For suitable C, all of the conditions defining AC hold for our u(α),
so Tn ≤ C0 for all n, and either Tn ≤ ǫ or the integral of |F |2 over the
region {2n−λ ≤ t ≤ 2n+1} exceeds δ. Now use the fact that we have a fixed
bound on the L2 norm of F over the whole polygon, so we can find a large
integer M such that

∫

P
|F |2 ≤ Mδ .

It follows that there are at most M(λ+1) values of n for which Tn exceeds ǫ.
Thus

∣

∣ξs(2
n, 2n) − ξ2(1, 1)

∣

∣ ≤ M(λ + 1)C0 + nǫ . (59)

Combining (59) (with t = 2n ) with (58) we establish Proposition 17.

It only remains to prove Lemma 14. Arguing by contradiction, we
suppose we have a sequence of functions u(β) ∈ AC with the integral of
|F |2 over Ωp tending to zero, for a sequence p tending to infinity, and
the sequence of quantities T (u(β)) does not tend to zero. Using the first
three conditions in the definition of AC and the arguments of [D2] we
see that, taking a subsequence, we can suppose the sequence converges
in C4 on compact subsets of the interior. The limit clearly has F = 0,
i.e. describes a flat metric. The vector field V associated to this limit is
constant and a straightforward Stokes’ theorem argument (similar to that
in Proposition 5), using the boundary conditions and the fourth condition
before taking the limit, shows that V∞ is the vector field ∂

∂x1
+ ∂

∂x2
. There

is a simple classification of locally-defined functions u∞ with F = 0 and
it is easy to read off from this that in the limit ξs is constant along the
diagonal, which gives the desired contradiction. (The point here is that the
fifth condition forces the limit to blow up at the origin.)

6 Blow-up Limits

6.1 The Joyce construction. We recall a construction, due to Joyce,
of explicit solutions of equation (1), with A = 0, that is, metrics of zero
scalar curvature. The original reference is [J], but we follow the approach
of Calderbank and Pedersen in [CP]. An elementary derivation of this
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construction (and a generalisation to other equations) from the point of
view of this paper is given in the note [D4].

Consider the linear PDE for a function ξ(r,H), where r > 0,

∂2ξ

∂H2
+ r−1 ∂

∂r

(

r
∂ξ

∂r

)

= 0 . (60)

This is familiar as the equation defining axi-symmetric harmonic functions
in cylindrical co-ordinates on R3. Given a pair of solutions ξ1, ξ2 to (60),
we set

Pi =
∂ξi

∂H
, Qi =

∂ξi

∂r
.

and write ∆ = P1Q2 − Q1P2. We assume that ∆ > 0 everywhere. We
introduce two further angular co-ordinates θ1, θ2 and consider the four di-
mensional Riemannian metric

g =
r∆

2
(dH2 + dr2)

+
r

2∆

(

(P 2
2 + Q2

2)dθ2
1 − 2(Q1Q2 + P1P2)dθ1dθ2 + (P 2

1 + Q2
1)dθ2

2

)

.

The main result is that this is a Kahler metric of zero scalar curvature. To
relate this to the equation (1), we introduce another linear equation

∂2x

∂H2
+ r

∂

∂r

(

r−1 ∂x

∂r

)

= 0 . (61)

Given a solution ξ(r, h) to (60), the first order system
∂x

∂r
= r

∂ξ

∂H
,

∂x

∂H
= −r

∂ξ

∂r
,

is consistent and has a solution x, unique up to a constant. Furthermore,
x satisfies the equation (61). So starting with a pair of solutions ξ1, ξ2 to
(60) we get a pair of solutions x1, x2 to (61), but we introduce a sign and
interchange of labels so that

∂x1

∂r
=

∂ξ2

∂H
,

∂x2

∂r
= −∂ξ1

∂H
,

etc. Then xi and ξj give the co-ordinates we are familiar with in this paper:
the equations imply that the 1-form

∑

ξi dxi is closed, so there is, at least
locally, a function u with du =

∑

ξi dxi. If we regard u as a function of
(x1, x2) then we get a solution of (1), with A = 0. Conversely any solution
arises in this manner away from the critical points of det(uij). In fact the
construction gives r = det(uij)

−1/2.
An important special case occurs when log J is an affine-linear func-

tion of ξ1, ξ2. In differential geometric terms, our metric is then Ricci-flat.
Making an affine change of variable we may suppose that ξ2 = log r. So
P2 = 0 and Q2 = r−1. It is easy to check that the metric g is the same
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as that given by the well-known Gibbons–Hawking construction, using the
harmonic function ∂ξ1/∂H on R3.

With this background in place, we can move on to consider the partic-
ular metrics we are interested in. Consider first the case of flat space, so

u = x1 log x1 + x2 log x2

on the quadrant {x1, x2 > 0}. Then one finds that

ξ1 = log F−(H, r) , ξ2 = log F+(H, r) ,

where
F±(H, r) = 1

2

(

± H +
√

H2 + r2
)

.

The harmonic function log F− is the potential associated to a uniform
charge distribution on the half-line r = 0, H > 0 and log F+ to the half-line
r = 0, H < 0. So, as we see from the formulae, F± has a logarithmic
singularity along the corresponding half-line and

F+ + F− = 2 log r .

The corresponding functions xi are just x1 = F−, x2 = F+.
Now given a1, a2 > 0 set

ξ1 = log F−(r,H) − a2H + 1 , ξ2 = log F+(H, r) + a1H + 1 .

(The addition of the constant 1 makes no change to the geometry but
will be convenient later.) These are obviously harmonic functions and the
corresponding functions xi are

x1 = F− +
a1r

2

4
, x2 = F+ +

a2r
2

4
.

We want to find the “symplectic potential” u(x1, x2) which describes this
solution. Set y1 = F−, y2 = F+ so that y2 − y1 = H and y1y2 = r2/4. Thus

x1 = y1 + a1y1y2 , x2 = y2 + a2y1y2 ,

and

ξ1 = log y1 + a2(y1 − y2) + 1 , ξ2 = log y2 + a1(y2 − y1) + 1 .

The defining condition for u is du = ξ1 dx1 + ξ2 dx1 which, after some
cancellation using the fact that

dxi = dyi + ai(y1dy2 + y2dy1) (62)

is the differential

(log y1 dx1 + log y2 dx2) + dx1 + dx2 + (y1 − y2)(a2dy1 − a1dy2) .

Set V = x1 log y1 + x2 log y2 so

dV = log y1 dx1 + log y2 dx2 + x1
y1

dy1 + x2
y2

dy2 .

Then

du−dV = dx1+dx2+(1−a1y2)dy1+(1−a2y2)dy2+(y1−y2)(a2dy1−a1dy2) .
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Using (62), expanding and cancelling terms, one finds that

du − dV = a2y1dy1 + a1y2dy2 ,

so we can take
u = V + 1

2(a2y
2
1 + a1y

2
2) .

So far, we have been working rather formally – ignoring the precise
domains of our functions – and now we return to a global point of view.
One can verify that, for any ai > 0, the map

(y1, y2) 7→ (y1 + a1y1y2, y2 + a2y1y2)

yields a diffeomorphism from the quadrant {yi ≥ 0} (regarded as a manifold
with a corner) to itself. So we have an inverse diffeomorphism given by
functions yi = yi(x1, x2), which can be given by explicit formulae, as below.
Now define

u(x1, x2) = x1 log y1 + x2 log y2 + 1
2(a2y

2
1 + a1y

2
2) . (63)

Then u is a convex function on the quarter-plane, satisfying Guillemin
boundary conditions along the axes and uij

ij = 0.

Multiplying a1, a2 by the same non-zero factor does not change the
metric up to isometry. When a1 = a2 we have ξ1 + ξ2 = log r + 2 and
the metric is Ricci flat, given by the Gibbons–Hawking construction using
the harmonic function 1

|r| + 1 on R3. (We need to make a linear change of

co-ordinates to ξs, ξt to fit in with the discussion above.) This is a standard
description of the Taub-NUT metric on R4, which is well known to be
complete, with curvature in L2. When a1 6= a2 the metric is not Ricci-flat.
It is easy to see that it is complete: the author expects, but has not yet
checked in detail, that the curvature is in L2. (The definitions above make
sense when one of the ai is zero, and we still get a metric on R4. But in
this case the curvature is definitely not in L2, so we exclude it.)

We want to discuss the asymptotic behaviour of one of these solutions
for large x = (x1, x2). It is convenient to make a linear change of variable

σ = a2x1 − a1x2 , τ = a1x2 + a2x1 .

(So in the Taub-NUT case, when a1 = a2 = 1/2 these coincide with the
co-ordinates s, t we used in section 5.) Then we can solve for yi to find

2y1 = (σ − 1) +
√

σ2 + τ
a2

+ 1 , 2y2 = (1 − σ) +
√

σ2 + τ
a1

+ 1 . (64)

We consider the behaviour when τ is large in the three sectors σ > ǫτ ,
|σ| ≤ τ , σ < −ǫτ , for fixed ǫ. If σ > ǫτ we have y1 ∼ σ and y2 = O(1)
while if σ < −ǫτ we have y1 = O(1) and y2 ∼ σ. The asymptotics in a
sector −ǫτ ≤ σ < ǫτ are more complicated, but on the line σ = 0 we have
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yi = O(
√

τ). Now substituting in the formula (63) for u we find that when
σ = 0, u = O(τ log τ). This is the same growth rate as in the Euclidean
case. When σ > ǫτ we have u ∼ a1

2 σ2 while if σ < −ǫτ we have u ∼ a2
2 σ2.

Thus u grows much faster away from the line σ = 0 than it does along this
line, but the growth rates in the two regions ±σ ≥ ǫτ are different.

6.2 Discussion. Suppose we have a convergent sequence of data sets
(P (α), σ(α), A(α)), with solutions u(α) but the limit (P (∞), σ(∞), A(∞)) does
not satisfy the positivity condition on L = LA(∞),σ(∞) discussed in the

Introduction. How do the solutions u(α) behave as α → ∞? By the results
of [D1], there is an affine-linear function λ which changes sign on P , such
that L(λ+) = 0, where λ+ = max(λ, 0). Suppose for the moment that
this is the unique function with this property, up to a factor. The line (or
“crease”) {λ = 0} divides P into two pieces. What we expect is that on
the interior of each piece the u(α) converge, after suitable normalisation,
but the normalisations required are different, and if we normalise uα on the
region {λ < 0} then on the other region {λ > 0} the functions blow up as

uα ∼ nαλ+

with scalars nα → ∞.
We can easily write down explicit examples of this behaviour, which is

essentially a one-dimensional phenomenon. Fix a family of even functions
fǫ on the interval [−1, 1], parametrised by ǫ ∈ [0, 1], with fǫ(x) = x2 + ǫ2

for |x| ≤ 1/2, with fǫ(x) = 1 − |x| for |x| close to 1 and with fǫ(x) > 0
except when |x| = 1 or x = ǫ = 0. We can obviously do this in such a way
the family is smooth in both variables. Set aǫ = f ′′

ǫ . Then for ǫ > 0 the
one-dimensional version of (1), which is

(

1

U(x)′′

)

= −aǫ , (65)

has a solution Uǫ which is smooth in (−1, 1) and satisfies the Guillemin
boundary condition at ±1. We just take Uǫ to be the solution of the
elementary equation

U ′′
ǫ = f−1

ǫ ,

normalised to Uǫ(0) = U ′
ǫ(0) = 0, say. Equally obviously, the family Uǫ is

unbounded on any neighbourhood of 0, as ǫ → 0, because the derivative
U ′

ǫ has limit |x|−1 which is not integrable. If, on the other hand, we define
U+,ǫ to be the solution of (65) with U+,ǫ(1/2) = U ′

+,ǫ(1/2) = 0, then the
U+,ǫ converge as ǫ → 0 on the interval (0, 1]. Similarly there is a family
U−,ǫ normalised at −1/2 and converging over [−1, 0). For ǫ > 0 we have

U+,ǫ(x) − U−,ǫ(x) = nǫx ,
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where nǫ → ∞ (and in fact nǫ ∼ log ǫ−1). To get a two-dimensional example
we can simply take P to be the square [−1, 1]2 ⊂ R2 and Aǫ(x1, x2) = aǫ+1.
Then for ǫ > 0 there is a solution uǫ(x1, x2) = Uǫ(x1) + V (x2), where V is
the symplectic potential for the round metric on the 2-sphere. In terms of
Riemannian geometry in four-dimensions described by this family: in the
region corresponding to [−1/2, 1/2]× [−1, 1] the 4-manifolds have the form

Hǫ × S2

with the product of the round metric of curvature +1 on S2 and a metric
of curvature −1 on Hǫ, approaching a pair of “cusps” as ǫ → 0. The
curvature of these metrics is bounded, uniformly in ǫ, but the diameter
tends to infinity and the injectivity radius to 0.

This gives a model, albeit somewhat conjectural, for the behaviour near
a “crease” {λ = 0} in the general case, provided that this crease does not

pass through a vertex of P . Suppose on the other hand that we are in
this situation, and take the standard model with the vertex the origin and
P coinciding locally with the quarter-plane {xi > 0}. The crease is a line
x2 = bx1, where b > 0. What seems likely to be true is that, near the origin,
the solutions u(α) are modelled on the zero scalar curvature metric discussed
above with parameters a1 = 1, a2 = b, then scaled down by a factors rα,
with rα → 0 as α → ∞ (which is the same as taking parameters a1 = rα,
a2 = brα). In other words, we expect these model solutions to appear as
the “blow-up” limits. This picture is consistent with the discussion in the
preceding subsection of the asymptotics of the model solutions. Notice that
(if this picture is correct) then in this situation the curvature of the u(α) is
not bounded uniformly in the family, in contrast to the previous case.

Of course we can envisage somewhat more complicated situations in
which we have several “creases”, dividing the polygon into more parts. This
is discussed in [D1], and taken much further by Szekelyhidi in [S]. Szekely-
hidi’s work also suggests very strongly that a similar picture holds for the
limiting behaviour of the Calabi flow. Notice also that this (conjectural)
picture is quite in line with the more general situation, in four-dimensional
Riemannian geometry, described by Anderson in [A].

These models are also useful in understanding the issues involved in
the existence proofs. Consider the first “product” example, but apply an
affine transformation so the domain P is now a parallelogram, say 2 >
x1 > 0, |x1 − x2| ≤ 1, and the crease is the line x1 = x2. Then it is clear
that, in the family parametrised by ǫ, the quantities D(p) are not uniformly
bounded, for p in an arbitrarily small neighbourhood of the origin. As we
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explained in section 3, the essential difficulty in the proof of Theorem 3 is
to show that we cannot have a family behaving in this way close to (0, 0)
unless the D(p) are also large for some large p. The same discussion applies
at the vertices. It is clear from our description of the asymptotics of the
model solutions that for them the quantity E(t) is unbounded as t → ∞.
Thus, in the setting of section 5, we cannot obtain an a priori bound on
Emax by “local” considerations around the vertex. The essential difficulty
in the proof in section 5 is to show that we cannot have a situation where
E(t) is large for some range of t but nevertheless E(t) is bounded for very
large t: in particular we cannot have a blow-up of the curvature, modelled
on our explicit solutions, unless the u(α) are already unbounded in the
interior of P .
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