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In this paper, we prove that there exists a Kdhler-Einstein metric, abbreviated
as K-E metric, on a m-dimension Fermat hypersurface with degree greater than
m—1. In particular, a Fermat cubic surface admits such a K-E metric. By
standard Implicit function theorem, it also implies that there are a lot of m-
dimension hypersurfaces with degree =m, which admit K-E metrics. The
problem of K-E metric on a Kéhler manifold with definite first Chern class
was raised by Calabi [3] thirty years ago. The most important part of the
problem was solved in the famous paper of Yau [13]. But the problem is still
open in case that the background manifold has positive definite 1** Chern class.
In fact, people only know a few examples of K-E manifolds with 1* Chern
class positive. As for our knowledge, all of them have automorphism groups of
positive dimension. The K-E manifolds shown here only have finite automor-
phisms.

The idea of the proof is to introduce a global holomorphic invariant a(M)

on a Kidhler manifold M with C,(M)>0 and prove that if oz(M)>—m;I, where
m

m=dim M, then M admits a K-E metric (Theorem 2.1). Then we estimate the
lower bound of «(M). In case that M enjoys a group G of symmetries, we can
define ag(M), similar to «(M), and have a version of Theorem 2.1 for a,;(M)

(Theorem 4.1). It turns out that «g5(M)> e if M is a hypersurface mentioned
above. m+1

The invariant a(M) (resp. ag(M)) plays a role in the study of K-E metric
more and less same as the Moser-Trundinger constant does in the study of
prescribed curvature problem on $2. It would be an interesting problem to
determine how large a(M) is. A local problem, which is relevant to «(M), was
considered by Bombieri [2] and Skoda [11]. Precisely, they proved that given
a plurisubharmonic function ¢, if the Lelong number of ¢ is small enough,
then ¢ is locally integrable. a(M) is regarding to the properties of anti-
canonical bundle of M and the families of holomorphic curves of smaller
degree with respect to the polarization given by C,(M). We guess that o(M)
has a lower bound only depending on the dimension m. It is pointed out by

m

Professor Yau that this will result in a upper bound of (—K,,)™.
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The organization of this paper is as follows. In § 1, we formulate briefly the
problem of K-E metric and reduce it to solving a complex Monge-Ampére
equation. We state without proof some theorems on the higher order estimates
derivatives of the complex Monge-Ampére equation on M. They are slight
modifications of some results in S.-T. Yau [13]. Because of those estimates, the
existence of K-E metric on M is reduced to the CC%estimate of solutions of
that complex Monge-Ampére equation. In §2, the invariant «(M) is defined. We
prove that a(M)>0 and the Theorem 2.1, which provides a sufficient condition
to assure the existence of K-E metric. In § 3, we give a lower bound of a(M) by
considering the families of holomorphic curves in M. In particular, if M = CP?

#nCP? 3<n<8, we prove a(M)=1. Unfortunately, so far we are unable to

provide an example where cx(M)>mL+1. We guess that CP?#8 CP? is such an

example for some good reasons. We would like to mention that Theorem 3.1
has its own interest, even though it is a corollary of Hérmander’s L? estimates
of the & operator. Theorem 3.1 suggests a possibility of understanding the
limiting behavior of a sequence of solutions of the complex Monge-Ampére
equations in § 1. Such a situation is quite same as that in the study of Yamabe’s
equation. The difference is that we don’t have a local estimate here as good as
there. In §4, we consider Kdhler manifolds with certain group symmetries. The
constant a;(M) is defined. We have a correspondence of Theorem 2.1, ie.
Theorem 4.1. Based on the same trick used in § 3, we give an estimate of ag(M)
and prove that if M is a Fermat hypersurface of dimension m and degree =m,

then ocG(M)>l. It follows the main result.
m+1

In this paper, M is always a Kdhler manifold, g is a Kdhler metric, in local
coordinates, g=(g,z), where (g,z) is a positive definite hermitian form. w,=
V-1 & 1
= Y, ggpdz*AdZ. — w,~ C,(M) means that they are cohomological.

@, fi=1 TE

§ 1. Preliminaries

Let (M, g) be a Kdhler manifold with C,(M)>0,g, as a Kéhler class, repre-
sents the same cohomology class as Ricci curvature does. Then it is well
known that the conjecture of Calabi can be reduced to solving the following
complex Monge-Ampére equation

0% ¢ ,
= . 4
det (gU+aZlaz_j) det (glj) e
26 (*)
s * R
(g,]+62iaz_j)>0, ¢eC*(M, R)

where Fe C*(M, R) is a given function.
In order to use the continuity method to solve (x), Aubin [1] introduced
the following family of equations
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PP
det (g”+3z‘ 0Z.
ivej

24 )
(gij+aziafj)>o, $eC*(M, R).

) =det(g,)er—r¢
(*),

Define S={te[0, 1]|(x), is solvable for se[0,¢]}. By Yau’s solution for
Calabi conjecture in case C, =0, S is nonempty. Aubin [1] also proved that §

is open by an estimate of first ecigenvalue of Kéihler metric (gi ;
% ¢
02,0z,
closed, which is equivalent to a uniform C? estimate of solutions of (x), by the
standard theory of elliptic equation (cf. [4]).

+

)dzi®d2f. Hence, to prove (*) solvable, it suffices to show that S is

Theorem 1.1. Suppose that ¢ be the solution of (x),, then
t
0<m+A4¢p=C, exp (C ((b— (1 +m) inf¢>)

where C is the constant such that C+infRyz7>1, {R;z;} is the curvature tensor
i+l

of g, C, depends only on sup (—A4F), sup |inf(R;;;)|, C-m and sup F.
m M i#l M

Proof. A slight modification of Yau’s proof in [13].
Theorem 1.2. Let ¢ be a solution of (x),, then there is an estimate of the
derivatives ¢,y in terms of

Y. 8;d2®dZ, sup|F|, sup|VF|, supsup|F

iLJ M i

and sup sup |Fy,| and sup|¢).
M

M i jk
Proof. Same as Yau did in [13].

Remark. One can use the integral method to obtain a C3-estimate of ¢ only
depending up to second derivatives of F. See [12].

By the above theorems, one sees that the closeness of S follows from the
CO-estimate of solutions of (x),.

§ 2. A sufficient condition for the existence of K-E metric

In case m=1, there is a famous inequality by Trudinger,
[ e dvy,<y for each ¢peC*(M),
M

with
[IvelP<1, [ ¢=0
M M

where o, y depend only on the geometry of M.
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Moser proved that in case M=S?% «=4r is the best constant s.t. the
inequality holds and applied it to the study of prescribed Gauss curvature
problem on S2.

In the following, we introduce a similar constant on Kihler manifold
(M, g), where g is the Kihler metric.

2%¢
0z;0Z

[}

Define P(M,g)={¢eC2(M, R)|g;+ 20, sup¢=0}.
M

Lemma 2.1. Let Bg(0) be the ball of radius R in C" centered at 0, A, a fixed
positive number, then for all plurisubharmonic function  in By, with Y(0)= —1,
Y(2)=<0 in By, one has
A
[ e"#@dx<C, where r<Re 2 1)

lz] <r
where C depends on m, A, R.
Proof. It is a modification of the Lemma 4.4 in Homander [6].

Proposition 2.1. There exist two positive constants «, C, depending only on (M, g),
such that

fe*®dVy<C foreach $pcP(M,g)

M
_1 m B _
where dV,, = (——”2) det(g,)dz, AdZ, A ... Adzy AdE, =0

Proof. Let 2r be the injective radius of (M, g), G(x, y) be the Green function of
the Laplace operator 4 on (M, g). May assume inf G(x, y)=0
MxM

VoeP(M,g), Ad¢p+m=0, ie —A¢dp=m

;J¢ V) avy(y)— JG(X Y) 49 dVy(y)
then

Oug
M

¢() dVy(y) +sup EG(X Y(=4¢)dVy(y)

< l

lIA
<[ -

)
M
o) av,, () +msup | Gx, ) dV O
M

N
Now we fix a g—net {X1,...,xy} of M, s.t. M= (] Br(x;), where Br(x)) is
i=1 4 4

the geodesic ball of M at x; with radius %

_ 1
Vi, by 5 1 60)dVy ()2 —msup | Glx, »)dVy(»)=—C, and $=0
M X€ M

-vc
sup ¢(y)= -

S T 2
et E VoI B () @)
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Let ; be the Kihler potential of (M, g) in B,,(x;), such that ¢,(x;)=0, put C,
=sup sup [|¥;(x)|, then

i Bs,
xe-—r (x1)
Vi(x)+é(x)SC, in B3r(x),
by (2) ’
-VC
3y,eBr(x), suchthat ¢(y)2— 1
HEBLx), such that 02551, (o)
4
min Vol(Br(x;))
put o=C,+— Ve +‘1 , by Lemma 2.1, one obtains
=D+ ID =) J 1 <
By/2(y1)

N
Since Br (x;)< Br(y;), and M = | ) Br(x)), it follows that
4 2 i=1 4

fe*dV,<C, C depending only on (M, g). 1

M
Now we associate a number to (M, g). Define
a(M, g)=sup{a>0]3 C>0, s.t. (1) holds for all peP}>0.

One can easily deduce the following properties of a(M, g).

Proposition 2.2. (i) a(M, g)=a(M, g"), if g, g are in the same Kihler class.
(i) « is invariant under biholomorphic transformation, i.e. if ®: N — M biho-
lomorphic, a(M, g)=o(N, ®* g).

In case that M has the first Chern-class >0, we take g in the class given by
Ricci curvature, then the above proposition says that a(M)=a(M,g) is a
holomorphic invariant. One interesting question is how large «(M) is, and how
to estimate it from below.

Example. M=CP" g=(m-+1) multiple of Fubini-study metric, ie. (m

+1) 08 log(|z|?), where z=[z,, ..., z,] is the homogeneous coordinates. Then
1
M)=—
=(M) m+1

The following theorem is the main result of this section. It provides a
sufficient condition to assure the existence of K-E metric.

1
Theorem 2.1. Let (M, g) be a Kdihler manifold, — w, represents the first Chern
T

class. If oc(M)>mL+1, then M admits a Kdhler Einstein metric.

The rest of this section is devoted to the proof of this theorem.
First we introduce two functionals defined by Aubin [1],

~_—1m
1(¢>=MV—) [ bl =0

I(s¢)d
=[O

o]
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where

w0=gaﬂdz"‘/\d?‘, w=w0+05¢. V= -1y f w§, peP(M, g), then Y —1lwz=0,
M
]/jco0>0.
1
Lemma 2.2. m_;_ HG)<HP)<(m+1)J ()

Proof.
J(¢ (l 5d fqﬁ(a)o —(wo+533¢)™)

g " fsgponian (5o ono (5 (0 -4)

2 \k
where
(k)=0 ifj<ks (k):m i jzk,
for j=k, i(r~s)j‘ksk+1ds=%)~!.
Hence
)m m—k—1 k mat k+1
J(¢)= V=" fﬁqb/\@qb/\ Z 7 AW (j;k (}ﬁ'——~+2)(i+1))
it )m [5¢A6¢A(m lgwg—k*uwk)
k=0
m— 1
10 =Y5 T o0 nden (50 aptt o)

¢)+ F)m IB(/)/\GqS/\ Z -—~a)"‘ k=1 A f = J ()

1 _ ~ k
e 0@ =L (0028005, o nat 1612 16)

Lemma 2.3. Let t > ¢, be a curve in }o’(M, 2), then

(1/ PR (w0+ V- (?(7(/6

d

T (I(p)—J (¢
*¢ . ¢

dz 621,) re

Proof. At t=t,, by Taylor expansion, ¢, =@, + @, - (t —1o)+0(jt —t,)).
For simplicity, we assume that ¢=¢, , d=0, .

where A, is the Laplace operator of the metric (galﬁ—

w,=w,+00¢,
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by the above,
V-1 ol k41
16)-06)=07 { (00n20,8 Y g an - nat)

(l/_ [j‘ad) 3(15 mz k+1 m*k—l K

=I(¢)=-J (@) +

A

m-— lk 1
+[opnabn T JL— onk=t A o

+56¢A5¢ z k(k+1) ’g'k‘lAaaqS/\w"‘l]-(t—to)

+o(lt —to)).

It follows that

d (o) —T(¢)
dt

t=to

:(l/ " |:2§6¢>/\5¢ Z BT pgmkmta g

+j6¢>/\5¢ Zﬁ k(k+1) of F A k! /\66(15]

:(1/?1 [—j¢>aa¢5 (Z et ) '{;-"-ka)

Vv & mtl

_jqbaﬁgb Zk(k+1) oy ’A@@(}SAQ)"“I)]

z—(l/V— ) j(baa(ﬁ [ mzl k+1 m—k—l/\wk

- k+1)

-

ey m+1
(.l/ [MAl 2(k+1) m-~k—1 k
:Z‘o o o} A®

+"’z (k(k+1)_( +1)(k+2)) m_k—1 , &

w A Q@
m+1 m+1 °

k m—k k—1
[N N )]

k=1

mm-—1) 2 m—l]
0 —_—w
m+1 m+1

~ m(’ ¢aa¢mw -1

_ (F)mwmm

Now we suppose that ¢, be the solution of (x), for €S, then
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¢,
0z, 0Z;

¢ eP(M,g), det (gij+ )=det(gij) of —toe

Take the differential with respect to ¢ on both sides of the above equation,
one obtains

A, d=—t,—,.

Corollary. For the family {¢,} of solutions of (*),, 1(¢,)—J(¢,) is an increasing
Junction of teS.

Proof. By Lemma 2.3,

d(I(¢)—J(¢)) (V -
di M¢1A¢,¢zw

F)'"

( ¢t¢,+t¢)(d¢t¢)w

* ¢, )
0z,0%; )

L

We compute the Ricci curvature of the new Kdhler metric (g,. it

Ric ()= —33 lo det( L2 )
) g gij aziafj

= —008logdet(g;;) —00F +t08¢,
=Ric(wy) —00F +100¢,=woa+1t00¢,=tw,+(1 —t)wy>tw,.

By the well-known Bochner identity, one sees that the first eigenvalue of
4,, 1s greater than 1. Hence — 4, —t>0. It follows that

d(l(¢)—J () >0
dt =

Proposition 2.3. Let ¢, be the solution of (x),, teS, such that t - ¢, is a smooth
Sfamily. Then

0 Vo 1 (pyors

M

=m sup ¢,+ C, where C is a constant depending only
on (M, g).

(i) V&>0, 3 constant C,, such that

sup ¢, <(m+¢)
M M

Proof. By Lemma 2.3,

(@)~ () _ (V
dt

jd) (A¢,¢)U)m-

Since ¢, is the solution of (x),, 4, ¢, = —tq5, —¢,
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di(¢) —J($) (l/ "

o J o9 tid)or
(l/ )"' j¢ ¢!+f¢)ep e wn
(VV (e g
)
From the identity, [ wj= | o= [ """ wf, we obtain
M M M

. . . 1
feh,+d)e" " wy=0, ie [P "Pwi=—[¢ ol
M by

Hence ]/
dI(¢)—J(¢)) _1 d (i m
dt tdt( j( b )
d —J W -y
WHITCN gy =1 (L [ (—ppor).
M
Integrating it from O to ¢,
: 1y
tI(p) =T (@) — [ (D) —J (D) ds= t(l/ Afl
0

Dividing ¢ on both sides,

Ty [
(I/_V‘l)— (=) or=1(d)~T () — g(I(qSS) —J($)ds

by Lemma 2.2, ;}L—T I@)S1(@)~I(B) <" (). Since 1(p)—J(B) is in-
creasing,

Vo gpons

H m+1
_om /= n
. =i 7 Aj{(ﬁx(wo—w,)—(l(%)—-/(%))
A__Tm —1)ym
VoI 5 gparsm Vo gap -0 —Io)
M M
On the other hand, put ¢' = s
m—1+e

F)'"

1 t—¢
f(=¢)ofz(1—€)(g)— J(@))-; [NUCAEMCN)
0

1 t—¢
2(1=0) o 1) =y | (U@) =T @) ds
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[ oy or 16,16, ).
M

Hence, in order to prove the proposition, we only need to show that

(V~ "

sup d)r— 5‘ ¢t

M

which appeared in the proof of Proposition 2.1 simply as an application of
Green formula.

0
Lemma 24. Let g,;;=g;;+ e (,‘l;_ , then for t=¢>0, there exists two constants

C,, C,, depending on ¢, V, such that VfeCY(M, R),
m—1

2m
Cu(JIP=Tav) ™ —C, [P AV [ 191y,
M M M

Proof. As we said, Ric, 2t2¢>0, and the volume is fixed, then the lemma

follows from a combination of resuits in Croke [7] and Li [8].

The proof of Theorem 2.1. It suffices to prove that there exists a sequence {t;},
such that t;—teS\S as i > + o0, and [|@, [0 is uniformly bounded.
May assume that t;,=¢>0, since 0€8, S is open.

and a(M), such that

. m
By the assumption, 3« between
m+1

I e—a(¢:1~—sll‘llp¢r,)dVM_<—- C
M
ie.
1 - ~F ..
[l TP T gy < C where C is independent of ;.
M

By the concavity of log,

[ (1—2) ¢, —asup g, —F) V12"
. M i Vv

M

slog

(f oL~ Db —asup b ~F (_@) <logC.
M v -

Hence, sup ¢, < ) EOVL+ C. By the Proposition 2.3,
M

VAR L P
M |4 M

<m l—aI )4 ‘;w‘)m+c
M

- dv,
. m ’ '_'m( °‘)<1, it follows that I (—¢,.) t< C.
m+1 o
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Proposition 2.3 also implies that sup ¢, =<C. It remains to show that
—1nf ¢, =C.

For this, we use the standard iteration. Rewrite the equation

o’ ¢, Foto
det (g”+6z,. 6Zj) =det(g;) e

) ¢
rif - 1 —
& (g"+02-62j) "

i

as

2

0z, 0%,

where (g'7) is the inverse of (g,.j+ ) Hence, 4'¢, <m, where A4'=4,,, set

Y =max{—¢,, 0}, then for p>0,

p+l|2
(p+12 j'V A RCE A C
M
By Lemma 2.4,
P+ 1) e 2;,}1 m(p+1) » pt1
flﬁ tdy, =—4p——y‘/’ av,+C, j‘/’ v, (4)

take p, =1, p,=(p,_, +1) am—1—1 for 22,

If there exist infinity number of p,, s.t.

1

(fyrrtdv et <max{({ *dV,)'%, 1}
M M

then sup ¢ <max {([ ¥*>dV,)"/?, 1} by taking the limit on p,.
M M

So we may assume that

1
21, st Vizl, (Jyrtidy,)prizmax {([ y2dV,)"V2 1}
M M

The inequality (4) implies that for {21,

1

Culfymr ) S <mp (14 V) 4 Cy) [ ynd,
M

1.e.
1 1 1

(I Yt ldy, et é(sz)"'T(f S A

1 1 1

sup(p__llm(j' (//1"+1+1dV)P1+1+1< H (Cp) l+1(j ¢P10+1dV)p,0 1+1

I M i=lo

1 ot k 1 & m—1y m
(Cp)P1+1<Cp10+1 z ( 1) emgo (~m—) (log(p,n+1)—klogm~1)
m

Io k=0

s

1

[
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is bounded and

1 1
(f yPot1dV, o1 < m’zf’“l [ yro-rdy, +— M"'o ‘“dV)P'o i+t
M 1

1
mpo 1+C2 p _+1d mpl—lV) i+ 1
e 2 ig-1 Vv _flom 1l )Pt
( AL )

_1* 1
mp10—1+cz)p,0 (+1 ( przo 1+1dV)p,o_1+1
C,

1
+ (mplo—l V>p10¥1+1)
Cl

<Cmax{(fy?*dV)"2 1}.
M

A

ftA

Therefore, we always have

supy < Cmax {(§ y>dV,)'"? 1}.
M M

On the other hand, | |V'y|*dV, <m [ ydV,.
M

M
The first eigenvalue of (M, 4,) is greater than the lower bound of Ric
curvature, i.e. Ric(g)=t=¢>0. Hence

jl[/de <(j" I,DdV)2+ j"tpd =C

It follows that —inf¢, =supy <C. O
M M

§3. A lower bound of a(M)

In this section, we fix a Ki&hler manifold (M,g) with C,(M)>0 and
1
— w,~C;(M), although almost all of the discussions are available to the
T

general Kiahler manifold. First we want to study the limiting behavior of a
sequence of functions in P(M, g).

Theorem 3.1. Let {¢,} be a sequence of functions in P(M,g), A be a positive
number. Then there exist a subsequence {i,} of {i} and a subvariety S of M with
dim S <m —1, such that

(i) VzeM-=S§, 3r>0, C>0, s.t.
[ e *uMdV.(w)SC  forall k.

Br(z)

(i) YzeS, lim | e **™dV (w)=+oco for all r>0.

k=40 B.(z)

Proof. We need the following proposition, which is basically the Theorem 5.2.4
in Homander’s book [6].
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Proposition 3.1. Let U be a stein manifold, then there exists an exhausting
Sfunction p satisfying; for every plurisubharmonic function  on U, (1, 0)-form h

with [ |h|* e=%*? dV and 8h=0, there exists a function u such that 8u=h
U

[lul?e=¥+0av, <[ |h2 e~ ¥+ dV,
U U

We continue the proof of the theorem. Let x,e M, sup ¢,(x)=¢,(x,). Without
M

losing generality, may assume that x;»>XeM as i— +co. U is a Zariski open
neighborhood of X and U is stein. Furthermore, we may assume all x; in U.

Let 6 be the Kidhler potential of g in U with #(X)=—73, ie. 800=0w,.
Choose R; >0, s.t. —1Z6(X)<0in B, (X).

For i large enough, B, (x;)=Byg, (%), B, (X)=B,, (x;) where r, is given in
Lemma 2.1.

By Lemma 2.1, there exists a constant C independent of i,

[ e=*0+¢1qy, <C for all i. (5)

Be (%)

Let 1 be the cut-off function in B, (X).

Take >0, s.t. (0 —A)8+7nlogl|z™ is plurisubharmonic in U, where z is the
local coordinate near X with z=0 at X.

By (5), if h=207, then 8h=0 and

j‘ lhlz e—(a0+qlog|z|m+1¢,+p)dVU§ C
U
where C is independent of i.
By Proposition 3.1, Ju;, s.t. du;=h and
_“”i|2 e—(a0+nloglzlm+z¢.+p)dVU§j"Ihlz e—(zz0+r,log]z)"‘+i¢,+p)dVU§ C.
U U

Since ¢, <0,
j‘ |ui|2 e—(a0+n loglzl'"+p)dVU § C.
U

It follows that u;(x)=0, ¥ i.
Define f;=n—u,, then 3f;=0in U, f;(X)=1.
[1f1Fe-@+PaV, < C. (6)
U
Moreover, by (5},
[1fi|2e- @it gy, < C. (7
U

Hence, there exists a subsequence {i,} of {i}, such that f; —»f in L} (U), then

loc
of=0, f(x)=1.
Put S, ={zeU\ f(2)=0} U(M\U), then dim S, Em—1, §, is a subvariety.

VzeM\S,, zeU, f(z)%£0, then Ix>0, k;>0, s.t.
Vk=ky,, weB,(2), |f,(WIZ3f(2)>0.
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By (7),
2C sup (a8 -+ p)(w)
e tudV, £——— ™ for i=i,,
Brf(z) Tifr °
1.e. ze M satisfies the property stated in (i).
If 3zeS§,, s.t. (ii) does not hold at z by taking the subsequence, we may

assume that 3r>0, C>0,st. [ e *?@dV, < C for all k.
B,(z)
Replacing {i} by {i,}, repeat the above procedure, one finds a subvariety S,

s.t. it enjoys the same property as S; does and does not contain a point zeS§,.
Put §,=5,nS,, then S, is a subvariety‘ S,€S,, and every point z in M—52
satisfies (i). Continuing such arguments, one obtains a filtration of S; by
subvarieties Sy&ESy_1E ... 5, ES,;. Since the length of such a filtration must
be finite, one will finally find the subvariety S as required in the statement of
the theorem.

Remark. This theorem suggests to us that even if the solutions ¢, of (), do not
converge as t—t, ¢,—sup¢, still converge outside a subvariety, then the
M

limiting function would be a solution of the degenerate complex Monge-
2

Ampére equation det (giﬁ— )=0 and provide certain special structures

0z, 0z,
on M, such as holomorphic foliations, etc. This situation is quite the same as
that in the study of harmonic mappings and Yamabe problem (cf. [9, 10]). The
difficulty here is that the local estimate of complex Monge-Ampére equation is
missing. Moreover, the limiting function only satisfies a degenerate elliptic
equation so that it is much harder to study its behavior.

Lemma 3.1. Let >0. For each ¢>0, 6>0, R>0, there exist y=y(¢, R), C
= C(9, B), such that ¥V subharmonic function  in Bg(0)<=C!, satisfying ¢ <0 and
| Ay dz<p, where dz stands for the volume form of C'.

lz]| <R
Then { e“(iﬂz-a)wmdzsCRze_(HE)(%‘a)"’(O).
lzi<r B
02
Proof. Note the Laplace here is the real one, ie. dy=4 e (;/IE By Green
formula,
={l —|zf?
2ny(z)= | log (x| 4¥()d{+ | Riz—1° Y()dl
Br(0) lR _fé_l 9B (0) RI 4
R

In particular,

~2mp(0)= | (-log B sty | v

Br(0) Br(0)

Since

V<0, AP0, 0S—— [ (—¥(Q)dL<—¥(0).

T2nR 45500
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Put
1 2 6 op
p=ge [ @ (T-d)ar=(5-5) | avars2-L<2
2m [l<R B g 2n |§|'\;R
By the convexity of exp,
4
__5)
exp ——£— log 12 =¢| Ay d{
2% e R—ﬁ
R
4
N
=ex —ulog
P |§|j<R R—ig 2rp
R
£4n—6ﬂ lz—{| #Al//dC.
T 2nfu jger| | 7L
R
eR
Take r =————, then for |z|<r
147 14¢
R? —|z)?
| s VO dt|s2m(+0y )
kitr RIC—z]
Therefore
f e_(-"_é)'“z)dz<e*(1+s)(k_é)'“0)max il
lz} <r ISR |z)5r R___ig
R
§R2e“““’(%“’)""°’max Z—C‘{_“dz
=1 gzl —2¢

4r
—C(R?e IO
Lemma 3.2. By ' x By, « C"~ ' x C'. Let

={peC*(By ' x Bg,)|VzeBR - ¢, =(z,)
is subharmonic, $ <0, | A, ¢, (w)dw< B}
BRZ
For each €, 6 >0, there exist r,=r,(g, R,)>0, C= C(8, ), such that ¥ PpeS,,

2

_(4r_ zZ, W CR - B an zZ, W
if e (G=2)o0ew 4 qw< =22 e~ I 4o gy

|z} <Ry ry |z] <Ry
|wl<ra raS|wjg2r,
. . R 1 . R
Proof. Let r be given in Lemma 3.1 for R=72. =y mm{r, Z}’ then

V(z, wo)e B! X Bg,, |wo| <2r,, by the assumption on ¢ and Lemma 3.1,
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47 4n
eG4 1y < CR2 &1 I ~ptewo)
|w—wol<r
~(Er-5) oz w 2~ F-s) iz, wo)
[ e %5 "Mdw< CR3 e ] o

lwl<ra

In particular

47
71:7‘% j e*(—a_é)d)(z W)d <CR2 j e_(1+£)(7_6)¢(z,W)dW.

fw| <r2 r2<lw|§2r2
Integrating it on z, we are done.

Theorem 3.2. Let the Kahler manifold (M,g) have N families of curves {Cl},
{C2},...,{C}}, where ac CP™~ ! is the parameter, and N subvarieties S, ..., Sy
such that
@) S,... ASy=0,
(i) N-S;={J(CIn(M=S8)), CinCjn(M —S)=0 and Cin(M-S) is
Smooth for each a.
(il) V zeM — U S, {T, CJ,,| C} ez} spans T, M; ¥ z€S,, either

{T, Ci} leCa{Jm(M =S}

spans T, M, or there exists C] , s.t. ze Cj n(M —8), CI " S,={finite points}.
(iv) Vi, 2, 4Vol (C)<B.

Then oc(M)>477E

. . 0 :
Proof. Fix an arbitrary 6>0. Set J, = We will prove that

[ Fam,<c, VpeP, g) ®)
M

where C is independent of ¢. Clearly, it implies: oz(M)> since J is arbi-
trary. B

To prove (8) it suffices to show that for any sequence {¢;} =P(M, g), there
1s a subsequence {¢, } and a constant C such that (8) holds for ¢, .

0
Put 8, =—. Applylng Theorem 3.1, one may assume that there be sub-

varieties EO,...,E st.VzeE, lim | e ——5‘1)4”"”511/ =400 for allr>0
k- +© B,(z)

4n
VzeM\E, 3r>0, C>0, st [ ¢ G 20593y <C  forall k.
B,.(z)

Obviously E,=...2E,, dimE,<m—1. That (8) holds for all ¢, is equiva-
lent to that E,=9. Since dimE,<m—1, it suffices to prove that dimE, ,
—dimE, = 1.
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Take a smooth point z,€E,_,, by (i), 3/, s.t. z,e M —S§, let CJ pass through
Z9-

If C’ is transversal to E, , at z,, then by (ii) we can find a special
coordlnate chart B~ ' x By cM s.t.

20=(0,0),  E,_;n(BR; ' x Bg)=Br ! x {0}

and
VzeBR~', zxBg <=Cj for certain o,e CPm~".
Now
§ @+4,¢, (zw)dw=2 | Quo,+37¢,)(w)=2 f2wg+85¢ik)(w)
zx Br, zx Br, az
4 [ w,=4Vol,(C])Sp.

Ca:
o, B

By Lemma 2.2 with e= 0=16,, one sees that z,¢E,. To show

dn—18, 8
that dim E; ;| —dim E, 2 1, it suffices to show that for each smooth point z; of
E, ., there is a point z close to z, such that zeE, | —E,. We assume that it
doesn’t hold and will derive a contradiction. By our assumption, there is a
smooth point z,€E,_;, a neighborhood U of z, in E, ,, st. UcE,. By the
above arguments, {T, C] |zeC] n(M ~S))} cannot span T, M for every zeU.

N
Hence, Uc () S;. Let z,€S;,, then 3C] , st C] nS;={linite points,
i1

Zy€ C’ (M —- S) Shrinking U if necessary, we may assume that UM —§,

and VzeU 3 CJ passing through z and intersecting S, at finite points. Smce
UcE,, the above arguments imply that C; is tangentlal to E, , at zeU, so
UncCj ,EE._,. Since Cl. ,NS; = {finite pomts} 3z,€E,_,nU, 21¢S Replac-
ing z, by z,, U by Um(M S) and repeating the above arguments, we will find
z,eUNE,_,, z,¢5,US,;, (iFi). In this way, after finite times, we will finally

find a point zyeUUE, |, 4N¢US A contradiction. Therefore, dimE,_,
—dim E; 2> 1. We are done. =t

1
Corollary 1. Under the assumptions of Theorem 3.2 and C,(M)>0, Oy is

1 4
cohomological to C,(M), (%), is solvable for t<if . _n_
m

B
Proof. 1t follows from Theorem 3.2 and the proof of Theorem 2.1.

In case m=2, any irreducible Kihler manifold with C,>0 must be of

form CP?#nCP? (n<8), i.e. the manifolds produced by blowing up CP? at n
generic points, where the “generic” actually means that no three points are
colinear, and no six points are in one quadratic curve in CP? This is the
consequence of classification theory of algebraic surfaces (Griffith and Harris

(5]

Corollary 2. Let M=CP?*4#nCP?, 3<n<8, then o(M)21. In particular, (¥), is
solvable for t<32.
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Proof. Suppose that M be the blowing-up of CP? at x,,...,x,, and F,, ..., F,
be the exceptional divisors.

{C.} ={quadratic image in M of lines in CP? passing through x;}, S,=(JF.

i J

It is trivial to verify that assumptions (i), (ii), (iii) are satisfied. A

Now C,(M)=p*(3H)—[F,]1—...—[F,], where p: M —» CP? is the natural
projection, H is the hyperplane line bundle of CP2.

Because

—w,~C,(M), Volg(c;',)=C§ wg=ncj C,(M)

=nC,(M)-[C}]  (Griffith and Harris [5], p. 141)
= C,(M)- (p*(H) - [F]) =2

..p=8m. The corollary follows.

Remark. One can prove that outside a finite set of points in CP248CP?2, for
a <1, e~ has locally uniform bounds for each ¢cP(M, g). Moreover, one can

locate that finite set. We know that CP? 48 CP? has a pensil of elliptic curves
having intersection number one with each exceptional divisor, only singular
curves in the pensil is either a rational curve with an ordinary node, or a
rational curve with a cusp. The finite set consists of those cusps.

§ 4. Kihler-Einstein metrics on Fermat hypersurfaces

So far, we have not known an example with a(M)>T, but if we restrict ¢
m

to a proper subset P, of P(M, g) and define o (M) with respect to P, as we do

for P(M, g), a, (M) might be greater than m?— T A natural subset P, is F,(M, g)

={¢peP(M, g)| ¢ is invariant under G}, where G is a compact subgroup in

1 .
Aut(M). — w,~ C;(M), we may assume that g is invariant under G. Then we
have

Theorem 4.1. (M, g), G stated as above. If aG(M)>L1, then M admits a
Kdihler-Einstein metric. m+
Proof. Same as Theorem 2.1.

The following theorem gives an estimate of ag(M).
Theorem 4.2. Let (M, g), G as above. Furthermore, assume that (M, g) have N
families of curves {C,},...,{C}}, aeCP™~', and N subvarieties S, ..., Sy sat-
isfying (i), (i), (iil) in Theorem 3.2 and (iv)': Let G;=G be the subgroup preserv-
ing the fibration of M —S; by {Cin(M —S )}, then S is invariant under G,,

4Vol (CJ)
— e cpm-t
ord (G =B Vae
h d(G;)= mi 1G] Th M >4
where ord ( j)_zennllfls,- m. en, og( )=7.
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Proof. Almost same as the proof of Theorem 3.2. We adapt the notations there,
z,€E,_,, a smooth point. We may find j such that zoéS z,eCl .

If Ci is transversal to E,_, at z,, BR ' xBg, is taken exactly as in the
proof of Theorem 3.2.

Put u= , u2ordG;. By (iv), one can choose R,, R, so small that

o(BR; ! X Bg,)nBR ! x B, = for at least u elements o of G;.
Since w,, ¢, are invariant under G,

VzeBy 1, | @+4,¢)dw= | Qo,+00¢,)

szR2 szR2
- 4 4Vol (CJ)
g (2 i P Q- =8 T8 <
= { wg+aa¢”‘)—ord(Gj) Cj;owg ord(G) =B
)
By Lemma 3.2 with ¢ by L, o by 10,, z,¢E,, the rest is same as in
4n—16, B

the proof of Theorem 3.2.
Now we consider Fermat hypersurfaces

X, ={[Z¢y -1 Zp, ]eCP"F | 2B+20+. .. +28, =0}, p=m+l,

m, p
g=(m+2—p) multiple of the restriction of Fubini-study metric of CP"*!
ie. _
(m+2—p)ddlog(lzel*+... + 2,1 1)y, -

G: the group generated by permutations
Gij (205 s Zis s Zjo ooes Zmg 117 (205 o005 Zjs ooe s Ziy ooy Zpy 1]

and

T [Z0s > Zps oe s Zmy 1] 2 [Z0s s €5 255 ooy Zppy 4]
(Zn]/ —1)
P .

0<i, j<m+1,

O G
S;=X, ,n{[z¢,..-,0...0...2,,,]eCP"*1,

[0,..., 1, ..., et*40...0], k=0, 1,...,p~1}.

where

e,=exp

CY=the closure of
{[zo. 225 2 1 1€X,, =81 [2g .- 81 2) 0 2, =€ CP7 1Y,

where [«,, ..., a, ,]=acCP™ .

Obviously,
Cl=04;- ”U(Ca?l)

S;j=00:-01}(Soy), dimS§;=m-2.

We claim that {C¥}, S;; satisty the assumptions (ii), (iii), (iv) of Theorem 4.2.
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It is clear that (1) S;;=#, ie. (i) is satisfied. For (ii),

i

mp—Sii={Z0s s Zmy 116X o1 205 s 20 2 20 1]

eCP™—1, |zi|2+|zj|2#0}
:( U Ccixj)m(Xm, p_Sij)’

aeCPm-1
L ¢ 0
CinCji={[0,...,0 et L 01} eS,;,  a%p
Ci={[ogt, e, 01,2 e, Zj 05 e g £]]

(ef+...+ab_ ) tP+2P +28=0}.

Hence, if a§+...+af 0, CY is smooth. If

. 4
B+ ... +of =0, C;f=kU1{[oc0t, Oy b Zgy e 2 0

is a union of p rational curves with a singular point

@) (0]
Lotgs s vves o1, 050, ooy 5, 0,0y oo, €S

Therefore, (i1) is verified.

For (iii), take [z, ..., 2z, ,] in X, ,, may assume that

(25 oo Zmeid=[L24, ..., 2,0, ..., 0],
where i21, z;#0 for 1<j<i, in particular, z, 0, so [z,,

k=2. Define HOk {[wgs s W m+1]eCP’"“]wk—zka} for

m+ 1
k;Z, C[lz’; z1.4.zAk...zm+1]=Xm,pm(IOZ HOl)’
1%k
m+ 1
m(kﬂzHOk)={[t,zls,zzt,..., Z LIIN X, ,
={tP(1+25+...+z5 )+ 24 sP=0}
— (24" —17) =0}
by z,#+0, X,, ,

m+ 1
isone,so (T, ., X, p)m( N HOk) ={0}, it follows that
k=2

1k
Span {[20 Zm+1]C[ZO,f1~-~fk~-~zm+1]}
2gksm+1

m+ 1
= span {TZX,M/\ ( N H0,>}
25k=m+1 1=2

1k
= ’Tz Xm, r
Hence, (iii) is satisfied.

G. Tian

bl _]5 J_1t 5(xm_1t]}

s a1 ]FE S, for

m+ 1
( N HOk) {p finite points} and multiplicity at [z, ..., 2, {]
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Now we consider (iv). G;;={a;;, 7;, 7;}, obviously, G,; preserves C/ and §,;.
For the estimate of ord(G,)), because of symmetry, we may assume =0, j=1.
Take zeX,, ,~So;, z-[zo, eees Zyo 1] 12,%0, for i22, we may assume z;=1,
then k¢! [zo, v Ze =205 --es m+1]—2 if and only if k_O(modp),
G,

IStab !>p2 for such z.

[=0mod(p) when z,z, %0, hence
If zy=0, z, =1, then

ot [2gs ---» 2y 1]=2 il and only if k=0 (mod 2)

I=0(mod3)
hence
|Gl

Stab,| =7

G
If z, =0, z,=1, we have also ||St2(1)g|

:|

Therefore ord(Gq,)=2p.
Theorem 4.3. If m+12p=m, then X, , admits a Kiihler-Einstein metric.

m

Proof. By Theorem 4.1, we only need to show that o, (X, p)>m.

Using the notations of above,

Vol (C))= | w,=n(C,(X,, ,)- C)

cuy

=(m+2—-p)pn
ij —_
...ﬁ:4Volg(Ca) _<_4(m+2 T
2p = 2

m <4n _ 2
m+l  p m+2-p
Now this theorem follows from Theorem 4.2. []

. . 2.
is equivalent to say p>m——ie. p=m.
m

Corollary. For m+12p2m, there exists an open subset U, , in the moduli space
of m-dimension hypersurfaces with degree p in CP™*', such that any Me Un »
admits a K-E metric.

Proof. Tt follows from the previous theorem and the application of Implicit
function theorem to the equation (x) in Sect. 1.

Note that the existence of K-E metric on a m-dimensional hypersurface of
degree p=m+2 follows from [13].
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Oblatum 15-VIII-1986

Note added in proof

Various estimates of the lower bound of the holomorphic invariant (M) are given by S.T. Yau
and me in a joint paper, which is to appear in Comm. in Math. Phys. These estimates are applied
there to produce Kiéhler-Einstein metrics on complex surfaces with C, >0, for example, we prove
that there are Kihler-Einstein structures with C,>0 on any manifold of differential type CP?

#nCP? (3£n<8). We were also informed that Prof. Y.T. Siu had independently produced results
on the existence of Kihler-Einstein metrics on certain Kahler manifolds with C, >0. His approach
in completely different from ours.

Note that the proof of Theorem 2.1 also impties: if a(M) has a lower bound depending only on
the dimension of M, then there is a constant C(m) such that each compact Kihler manifold with
C,>0 admits a Kidhler metric with Ricci curvature = C(m). An upper bound of C (M)" will
follow from this and a volume comparison. This is pointed out to us by Yau




