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Abstract. In this paper, we prove that the existence of Ké&hler-Einstein
metrics implies the stability of the underlying Kéhler manifold in a suitable
sense. In particular, this disproves a long-standing conjecture that a com-
pact Kéhler manifold admits Kéhler-Einstein metrics if it has positive first
Chern class and no nontrivial holomorphic vector fields. We will also es-
tablish an analytic criterion for the existence of Kdhler-Einstein metrics. Our
arguments also yield that the analytic criterion is satisfied on stable Kdhler
manifolds, provided that the partial C%-estimate posed in [T6] is true.

1 Introduction

More than forty years ago, E. Calabi asked if a compact Kédhler manifold M
admits any Kaéhler-Einstein metrics. A metric is Kéhler-Einstein if it is
Kaihler and its Ricci curvature form is a constant multiple of its Kéhler
form. Such a metric provides a special solution of the Einstein equation on
Riemannian manifolds.

Since the Ricci form represents the first Chern class ¢ (M), a necessary
condition for the existence of Kéhler-Einstein metrics is that ¢; (M) is defi-
nite. In fact, Calabi conjectured that any (1,1)-form representing c; (M) is
the Ricci form of some Kéhler metric on M (the Calabi conjecture). In
particular, the conjecture implies the existence of Ricci-flat Kéhler metrics in
case ¢;(M) =0. The Calabi conjecture was solved by Yau in 1977 [Y].
Around the same time, Aubin and Yau proved independently the existence
of Kihler-Einstein metrics on Kéhler manifolds with negative first Chern
class [Aul], [Y]. Therefore, it had been known by the middle of 70’s that
c1(M) being zero or negative is also sufficient for the existence of Kéhler-
Einstein metrics on the underlying manifold.
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Back to early 50’s, using the maximum principle, Calabi had proved the
uniqueness of Kahler-Einstein metrics within a fixed Kéhler class for Kdhler
manifolds with nonpositive first Chern class. In 1986, Bando and Mabuchi
proved the uniqueness of Kaéhler-Einstein metrics on compact Kaihler
manifolds with positive first Chern class.

What about the remaining case where ¢;(M) > 0? In this case, the
Kaihler-Einstein metric, if it exists, must have positive scalar curvature. Note
that a Kédhler manifold M with ¢;(M) > 0 is called a Fano manifold in
algebraic geometry.

New difficulties and phenomena arise in this remaining case. In 1957,
Matsushima proved that there is a Kéhler-Einstein metric with positive
scalar curvature on M only if the Lie algebra (M) of holomorphic fields is
reductive [Mat]. This immediately implies that the positivity of the first
Chern class is not enough for the existence of Kéhler-Einstein metrics. For
instance, if M is the blow-up of CP? at one or two points, then 5(M) is not
reductive, consequently, such an M does not have any Kéihler-Einstein
metrics. In 1983, Futaki introduced another analytic invariant—the Futaki
invariant fj; [Ful]. This f), is a character of the Lie algebra n(M). He
proved that f, is zero if M has a Kéhler-Einstein metric. This invariant
plays a more important role in our study here.

Since 1987, inhomogeneous Kdhler-Einstein metrics are constructed on
some M with ¢;(M) > 0 by solving the corresponding complex Monge-
Ampere equation (cf. [T1], [TY], [Di], [Si], [Na]). Previously, only known
Kéhler-Einstein metrics are either homogeneous or of cohomogeneity one.
In later case, the problem can be reduced to solving an ODE equation ([Sa]).

Despite of those, the original problem of Calabi had been essentially
untouched in the case of positive first Chern class, i.e., when is there a
Kihler-Einstein metric on a compact manifold M with ¢; (M) > 0? In 1989, I
solved this problem for complex surfaces. The author proved that any
complex surface M with ¢; (M) > 0 has a Kdhler-Einstein metric if and only
if #(M) is reductive. The solution also yields new insight into geometric
aspects of the Calabi problem, though there are new technical difficulties in
higher dimensions.

A folklore conjecture claims that there is a Kdhler-Einstein metric on any
compact Kédhler manifold M with ¢;(M) > 0 and without any holomorphic
vector fields. One evidence for this was that all known obstructions came
from holomorphic vector fields. Indeed, the conjecture was verified for
complex surfaces in [T2].

However, the conjecture can not be generalized to Kéhler orbifolds,
since there is a two-dimensional Kéhler orbifold S, such that ¢(S) > 0,
n(S) = {0} and it does not admit any Kéhler-Einstein orbifold metrics (cf.
[T6]). This orbifold has an isolated singularity, which may be responsible for
nonexistence of Kéhler-Einstein orbifold metrics on such an orbifold, like in
the case of the Yamabe problem (cf. [Sc]).

Ding and Tian took a further step in [DT] (cf. Sect. 7). They defined
the generalized Futaki invariant fy for any almost Fano variety (possibly
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singular). Using this invariant, we can now introduce a new notion of
stability.

We recall that a degeneration of M is an algebraic fibration 7w : W — A
without multiple fibers, such that M is biholomorphic to a fiber W, = n~!(z)
for some z € A, where A is the unit disk in C'. We say that this degeneration
is special if its central fiber Wy = n~!(0) is a normal variety, the determinant
of its relative tangent bundle extends to be an ample bundle over W and the
dilations z+— Az on A (4 < 1) can be lifted to be a family of automorphisms
a(A) of W. Usually, we denote by vy the holomorphic vector field on ¥
induced by those automorphisms. More precisely, vy = —d'(1).

A particular case of such degenerations is the trivial fibration M x A+ A
for any M with nontrivial holomorphic vector fields. In this case, we say that
W is trivial.

For any special degeneration 7 : W+ A, the central fiber W = n~'(0) is
an almost Fano variety (cf. Sect. 6). Clearly, the associated vector field vy is
tangent to ¥, along the central fiber Y. Therefore, we can assign a number
to each of such special degenerations, namely, the generalized Futaki in-
variant fy; (vw). Note that fy;,(vy) can be calculated by using a residue
formula of Atiyah-Bott-Lefschetz type, at least in the case that the singu-
larities of W} are not too bad (cf. [Fu2], [DT1], [T4]). Such a residue formula
depends only on the zeroes of vy .

Definition 1.1. We say that M is K-stable (resp. K-semistable), if M has no
nontrivial holomorphic vector fields, and for any special degeneration W of M,
the invariant fw,(vw) has positive (resp. nonnegative) real part. We say that M
is weakly K-stable if Re(fw,(vw)) > 0 for any special degeneration W, and the
equality holds if and only if W is trivial.

More details on the K-stability can be found in Sect. 6.

Theorem 1.2. If M admits a Kdhler-Einstein metric with positive scalar cur-
vature, then M is weakly K-stable. In particular, if M has no nonzero holo-
morphic vector fields, M is K-stable.

Theorem 1.2 can be used to disprove the long-standing conjecture in the
case of complex dimensions higher than two. A counterexample can be
briefly described as follows (see Sect. 6 for details): let G(4,7) be the complex
Grassmannian manifold consisting of all 4-dimensional subspaces in C’, for
any 3-dimensional subspace P C A2C’, one can define a subvariety Xp in
G(4,7) by

Xp = {U € G(4,7)|P projects to zero in A* (C7/U)}
For a generic P, Xp is a smooth 3-fold with ¢;(Xp) > 0. I learned these

manifolds from Mukai at Tokyo Metropolitan University, 1990. They were
first constructed by Iskovskih (cf. [Is], [Muk]).
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Take P, to be the subspace spanned by bi-vectors

3e; Neg — Sex Nes + 6e3 Aey + Z aijre;,

j+k>8
3e1 Nes —2ex Neg+e3 Nes + E A2jkej,
JHk>9
ey Ne;—e3Nes+eq Nes+ E asjke;,
j+k>10

where ¢; are euclidean basis of C” and a = {aij}.
Then we can deduce from Theorem 1.2 that

Corollary 1.3. For generic a, Xp, has neither nontrivial holomorphic vector
fields nor Kdhler-Einstein metrics. In particular, the folklore conjecture is false
for dimensions higher than two.

Previously, in [DT1] Ding and the author proved that a cubic surface has
a Kéhler-Einstein orbifold metric only if the surface is K-semistable. There
are many K-semistable, nonstable cubic surfaces, but they all have quotient
singularities. Corollary 1.3 provides the first smooth example.

We still need to understand when Kéhler-Einstein metrics exist on
manifolds with positive first Chern class. The following conjecture provides
the right answer to this problem.

Conjecture 1.4. Let M be a compact Kdhler manifold with positive first Chern
class. Then M has a Kdhler-Einstein metric if and only if M is weakly K-stable
in the sense of Definition 1.1.

This is the fully nonlinear version of the Hitchin-Kobayashi conjecture,
which relates the existence of Hermitian-Yang-Mills metrics to the stability
of holomorphic vector bundles. The Donaldson-Uhlenbeck-Yau theorem
provides a solution for the Hitchin-Kobayashi conjecture [Do], [UY].
Theorem 1.2 proves the necessary part of Conjecture 1.4. As we will see, the
proof is much harder than the counterpart for Hermitian-Yang-Mills met-
rics. So is the sufficient part of Conjecture 1.4. In a subsequent paper, we will
consider the sufficient part. We will reduce the sufficient part to a partial C°-
estimate. Such a C%-estimate was stated in [T6] and established in [T2] for
complex surfaces.

Fix any m > 0 such that K},;” is very ample. Then we can embed M as a
submanifold in the projective space P(V), where V = H(M,K;;")". Then
considering M as a point in the Hilbert scheme, on which G = SL(V) acts
naturally, we can introduce the CM-stability of M with respect to K,;,”. We
refer the readers to Sect. 8 (also [T4]) for details on the CM-stability.

Theorem 1.5 (Theorem 8.1). If M admits a Kdhler-FEinstein metric with pos-
itive scalar curvature, then M is weakly CM-stable with respect to those
plurianticanonical bundles which are very ample. Furthermore, if M has no
nonzero holomorphic vector fields, then it is CM-stable.
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In fact, we expect that the converse to this theorem is also true (cf.
Sect. 8).

In [Mum], Mumford gives an numerical criterion for his notion of sta-
bility. It is very interesting to compare this numerical criterion with the
generalized Futaki invariant. It is not unreasonable to expect that they are
equivalent, because of Theorem 1.2 and 1.5.

Now let us discuss analytic aspects of the above theorems. Let us fix a
Kihler metric with its Kédhler class w representing ¢ (M). Let P(M, ®) be the
set of smooth functions ¢ satisfying: w + 99¢ > 0. We define a functional
F, on P(M,w)(cf. [Dy]) by

1 1 o
Fw(@) :Jw(ﬁo) *;/M QD(D" log(VA o ¢w>

n—1 .
n—il = ; — i
Jw((p):}():n_’_l?/ﬂlﬁgo/\a(p/\w A (o + 09e)" 1,

where V = [,, 0" = ¢;(M)", and h,, is uniquely determined by
Ric(w) — w = 90h,, and / (" — 1" = 0.
M

One can regard J,,(¢) as a generalized “‘energy” of ¢. An easy computation
shows that the critical points of F,, are Kdhler-Einstein metrics.

We say that F, is proper on P(M,w), if for any C >0 and
{o:;} € P(M, ),

miﬂooEu((pl) = 00,

whenever lim; .., J(¢;) = oo, where P(M,w). consists of all ¢ in P(M,w)
satisfying:

oscyp =sup @ —info < C(1+J(9)).
M M

The properness of F,, is independent of particular choices of Kdhler metrics
in C1 (M)

Theorem 1.6. Let M be a compact Kdihler manifold with positive Chern class
and without any nontrivial holomorphic fields. Then M has a Kdhler-Einstein
metric if and only if F,, is proper.

The sufficient part of this theorem is essentially proved in [DT2], by using
the estimates in [T1]. We will sketch a proof of this in Sect. 2 for the reader’s
convenience. Clearly, Conjecture 1.4 follows from Theorem 1.6, if one can
deduce the properness of F,, from the K-stability of M. However, this is a
highly nontrivial problem.
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The organization of this paper is as follows: in Sect. 2, we discuss a few
basic properties of £, and outline the proof of the sufficient part of Theorem
1.6. Sect. 3 contains a technical lemma needed for proving Theorem 1.6. In
Sect. 4, we prove Theorem 1.6. In Sect. 5, based on the arguments in Sect. 4,
we derive new inequalities involving F;, and the K-energy of T. Mabuchi. In
Sect. 6, we discuss the K-stability in details and prove Theorem 1.2. In Sect.
7, applying Theorem 1.2, we construct a counterexample to the long-stan-
ding conjecture described above. We will also introduce a class of Fano
manifolds with additional structures, so called obstruction triples. We will
show that those are obstructions to the existence of Kédhler-Einstein metrics
with positive scalar curvature. In Sect. 8, we prove the CM-stability of Fano
manifolds which admit Kéhler-Einstein metrics. The basic idea of the proof
was already in [T4] and can be applied to other general cases (cf. [T5]). A
conjecture will be stated concerning the Kihler-Einstein metrics and the
CM-stability. In last section, we discuss the relation between obstruction
triples and Ricci solitons. Two problems will be proposed.

Acknowledgement. 1 would like to thank S.T. Yau for introducing me the problem of Kihler-
Einstein metrics and sharing his insight that they should be related to certain stability. I would
also like to thank L. Nirenberg for his interest in this work. His remarks on the proof of
Theorem 1.6 are useful.
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2 The functional F,,

In this section, we collect a few facts about the functional F,, and prove the
sufficient part of Theorem 1.6.
Recall that for any ¢ € P(M, w), we have

n—1 .
n—il — . — i
F,(p) = —/ Ap Ndp N A (o + dOp)"™!
0= i1, (o0 +99)

1 1
—V/M Q" —log(l—//Meh‘”—“’w”)
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where V = || @, and h, is determined by Ric(w)—w = 80h,, and
Ju(e" = Do = 0. Clearly, F,,(¢ +¢) = Fy (o).
The following identities can be proved (cf. [DT2]):
(1) if @ = o + 8¢ is another Kihler metric, then F,(¢) = —Fy(—);
(2) If o' is as above and " = o' 4+ 90y is a Kihler metric, then

E»(@) + Eu’(w) = Eu((p + lp)a

in particular, it follows that the properness of F,, is independent of the
choice of the initial metric w;

(3) The critical points of F,, correspond to Kéhler-Einstein metrics w with
Ric(w) = w. In particular, the critical points are independent of the initial
metric .

Proposition 2.1. If F,, is proper, then its minimum can be attained, in partic-
ular, there is a Kdhler-Einstein metric on M.

Proof. As we said before, this proposition is essentially known (cf. [DT2]).
For reader’s convenience, we sketch a proof here.

Consider the complex Monge-Ampere equations:
(w+00¢p)" =" 0", w+ddp >0 (2.1),

The solution for ¢ = 1 gives rise to a Kdhler-Einstein metric on M. To find a
solution for # = 1, we only need to prove that J,(¢) is uniformly bounded
for any solution of (2.1), (cf. [BM], [T1], [T2]). By the implicit function
theorem, one can show that the solution of (2.1), varies smoothly with # < 1.

Let {¢,} be a smooth family of solutions such that ¢, solves (2.1),. By a
direct computation, we have (cf. [DT2])

& (100 =5, [ 0in) = ~(uto) - 1o,

where

1olo) = [ 9l0” ~ (w-+ 0B0)),

In fact, J,(p) = fo “C2% 1t is known (cf. [Au2], [BM], [T1]) that
1,(¢,) — Ju(p,) > 0, consequently,

1
Fulp)) < _1og(? /M w)

Using (2.1), and the concavity of the logrithmic function, one can deduce
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1 N 14 o
10g<V/M o= ) §7/M @i(w + 00¢,)

By the Moser iteration, one can show (cf. [T1]) that for some uniform
constant ¢ > 0,

1 _ ,
;/Mmt(eraaq%) SC(1+lﬂr}f<m>,

therefore, we have F,,(¢,) < (1 — t)c < ¢. On the other hand, by the Green
formula and the fact that A,¢, > —n, one has

1
sup ¢, <C(1 +_/ q)zwn)
M V Ju

It follows that ¢, € P(M, ) for some constant C. Then the properness of
F,, implies that J,(¢,), and consequently, || ¢,||c0 is uniformly bounded.
Therefore, there is a Kédhler-Einstein metric on M.

3 A smoothing lemma
Let M be a compact Kdhler manifold with positive first Chern class as
before. For any Kéhler metric w in ¢ (M), we denote by 4, and o, the first

nonzero eigenvalue and the Sobolev constant of (M, w). Note that for any
smooth function u, one has

el
(%/ |u "znlw") <a_;,</ Ou N Ou A " —|—/ |u|2w"). (3.1
M M M

This section is devoted to the proof of the following proposition.

Proposition 3.1. Let w be any Kdhler metric in ¢ (M) >0 with
Ric(w) > (1 —€)w. Then there is another Kdhler metric of the form
o' =o+00¢ satsfying: (1) |oeo<el hollc: () ol <
C(1 + [|ho||70)" " eF, where B=1ie™ C=C(n iuw,00) is a constant de-
pending only on the dimension n, the Poincare constant Ay . and the Sobolev
constant o, of o'.

Consider the heat flow

Ou (w4 00u)"
B = log <T) +u— hy, u|S:0 =0 (3.2)

This is in fact Hamilton’s Ricci flow. This has been used before in [Ca], [Ba],
etc.. We will denote by u; and w; the function u(s,-) and the Kéhler form
w + 00u.
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Differentiating (3.2), we obtain

— (Ou .
88(&) = —Ric(wy) + w;

This implies that A, = —g—'; + ¢4, where ¢g are constants. Since uy = 0, we
have ¢y = 0.

First we collect a few basic estimates for the solutions of (3.2). They are
simple corollaries of the maximum principle for heat equations.

Lemma 3.2. We have |uy||co < € ||hollco, and |34 o < € [lhol|co-

It follows from the maximum principle for heat equations. Here we need

to use the equation
0 (Ou Ou Ou

Lemma 3.3. We have infy; w, > €° infy; Ah,,.

Proof. 1t follows from (3.3)

0 Ou 5 (Ou Ou — (Ou
7o) == (@) +a(3) -7 (3)
Oou Ou
<A =) +A(=
<) +(z)
Then the Ilemma follows from the maximum principle and
he, = —g—g’—i— const.

The proof of next two lemmata are due to S. Bando [Ba]. They are more
tricky than previous ones.

Lemma 3.4. We have

in particular, || Vhey, ||c0< € || b || co-

2

(3.4)

Ou

2
Ou
as +S|| V (8—

! I < ol
Cco

s N

Proof. By straightforward computations, we can deduce

2 2

o (|oul? oul? ou ou
&(& >_A$ _2'v& +2f5
0 (| oul’ ouf oo ouf oo dul | oul )
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o 2
ou 2 2
< Al |=— 2
Then the lemma follows from the maximum principle for heat equations.
Finally, we need to bound A(%%). From (3.4) and (3.5), one deduces

d oul? ou
& <‘V& —O(SA<a>>
oul? Ou oul? ou
< = - — —| — — .
< A(‘Vas ocsA(aS)) + (‘v(?s OCSA((9S>> (3.6)
— (ou\|?
vv<g>

The Cauchy-Schwartz inequality implies

Since s > 0, we have

oul?

Ou Ou
Os

s

S ’

2 2

Ou
+S‘Va

Ou

Os

Ou
Os

+S’V

—Ou 2

Ou
\YAY I

2
> |A—
_‘ Os

n

Combining this with (3.6), we obtain

(2-4) <<‘ng(g)>> . A(Z) (38)

Together with Lemma 3.4 and the maximum principle, this implies that for

as < 1,
Ou e’ ) no.
Al ——) < [— d
( 65) - (ocs th||c0+1 - ots)e

Choosing o = 1/2s and using Lemma 3.3, 3.4, one obtains

ou
A
s

Lemma 3.6. We have

, ) , ‘
—nee® < A(— a_:> < (§+2el*|\hw||zco)es, (3.9)

in particular, if s = 1, we have

)
‘Aa—ls“ < max{nee?, ne + 2¢3|| ||}, (3.10)
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where € is given in Proposition 3.1.
We put v to be

1 n
hwl —V/}whw]wl (311)

For simplicity, we denote by 4; and ¢; the Poincare and Sobolev constant of
the metric w, respectively.

Lemma 3.7. We have

n(n—1)
n 2 n b
MMSQ_J @mWO+Z> (3.12)

where b = max{nee?, ne + 2¢3||h,||z0 }.

Proof. We put v; = max{0, £v}. By (3.9), we have

1 2 1 2631
Viu Vo Ju Viu v M

therefore,
M 2 b
F [ wror <3 [ o,

1/ 2 b
— [ ] o} <. 3.13

consequently,

Next we put v; = max{1,v}. Then for any p > 1,

g2 2
Mgﬂﬂﬂ/ﬁq (3.14)
4pV M

Since b > 1 and v; > 1, by the Sobolev inequality, one can deduce from

(3.14),
n—1 1
1 [ ) \ioD L /1 1
(5 [ ot) < o+ 0 ([ vton)

Then the standard Moser iteration yields
n(n—1)
2

supv < supuy < (n> (2ba1)*(1 + ||v]|,2), (3.15)
M M n—1

where ||v]|,» denotes the L2-norm of v with respect to w.
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Similarly, infy, v > (ﬁ) (2bal)%(l + ||vll;2)- Then the lemma follows
from this, (3.15) and (3.13).

Lemma 3.8. We have

n(n—1) n
n T 2nee(201b)? b
ol < () 2 G (147 (3.16)

where ne is the lower bound of Ah,.

Proof. By Lemma 3.3, we have Av + nee > 0, therefore,

Av + nee|w’| = neeV
1
M

[ kot <5, [ 9Pt < dnecll

Then (3.16) follows from (3.12).

It follows that

Proof of Proposition 3.1. First we improve the estimate of v in (3.12). We
may assume that e < 1 and oy > 1.

Using (3.9) and (3.12), we have

l/’vv”“ nS(p+ /| o
VJu

where p > 1. Using the Solobev inequality, we deduce from this

_n—1_ 1 1
1 wpe) |\ D bp+ 1\ \7/1 O\
1 / o0 ) < (o (Jolleo + 22D)Y (L / oo
v )y 2 ay

(3.17)

Substituting p in (3.17) by p; = ;%7 (pi-1 + 1) inductively, where py = 1 and
i > 0, we obtain

supol < I (o (Iolls + 2257 ))) I )

i=0

Simple computations show

1

[ (1425 (25) (48
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Therefore, by Lemma 3.6, we have

oo < €O, a0)(1+ [lolle)" e (3.19)
We will always denote by C(n, 41,01) a constant depending only on n, 1;,0;.

In fact, the constant in (3.19) can be given explicitely.
Since [, €"1 @ = 1, by (3.11) and (3.19), we have

Bl o < C(n, A1, 00) (1 + || ||20)" e (3.20)

Let x,y be any two points in M, and let d(x,y) be the distance between
them with respect to the metric w;. If d(x,y) > 2¢¢" | then it follows from
(3.20),

oy (%) = hoo, ()]
d(x,y)

On the other hand, if d(x,y) < 2", then by Lemma 3.4,
[Vho, | co < €|l o and consequently,

By (X) = Doy, ()]
d(x,y)

Then the proposition follows.

< C(n,}q,al)(] + ||hw|‘2co)n+le%87"'

n

< 262 ||hg || oe®® "

Remark. The estimate in Proposition 3.1 can be improved as follows: let
G be the Green function of the metric ;. Suppose that
0 < G(x,y) < c¢/d(x,y)" * and vol (B,(x)) < ¢ for any x,y € M and r > 0,

where ¢ is some uniform constant. Then by the Green formula,

HUHCO < SUPyem

7 [ 80160010
<sup (55 [ Gn)of) +4, [ 180+ ed()G0x3)080)

C 1 b
< —— — A ” - G n
— y2n-2 (6 + V/]\/[ ‘ v +€6|w1> + SEP<V/B,():) (xvy)wl(y)>

Ce
<

2
< i T Chr

(3.21)

where C always dengtes a constant depending only on c.
Choosing r = (£)* in (3.21), we deduce

n=1 1

1o llco < Ch7er (3.22)
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Therefore,

n—1 1

2 1
ol g < €L+ o) 7 (3.23)

The conditions on G and B,(x) are often satisfied.

4 Proof of Theorem 1.6

By Proposition 2.1, we only need to prove the necessary part of Theorem
1.6, namely, if M has a Kéahler-Einstein metric wgz with Ric(wkg) = wgg
and no nontrivial holomorphic fields, then £, is proper.

Let @ be any Kihler metric in ¢;(M). Using the fact that
Ric(wgg) = wgg, we can find a function ¢, such that wgz = @ + 99¢;, and
o, = ehm*‘/’lwn

KE = .

Lemma 4.1. The first nonzero eigenvalue 1 ., is strictly greater than 1.
This is well-known and follows from the standard Bochner identity.
Consider complex Monge-Ampere equations

(0 + 00p)" = w", o+ 0dp >0, (4.1),

where 0 < ¢ < 1. Clearly, ¢, is a solution of (4.1),. By Lemma 4.1 and the
implicit function theorem, (4.1), has a solution ¢, for ¢ sufficiently close to 1.
In fact, it is known (cf. [BM]) that (4.1), has a unique solution ¢, for any
t € [0,1]. This is because I,(¢,) —Ju(¢p,) is nondecreasing with ¢, and con-
sequently, the C3-norm of ¢, can be uniformly bounded.

Put v, = o + 35(;),. Then w; = wgg. Simple computations show that

hwt = 7(1 - t)qD[ + ¢,
Ric(w,) = to, + (1 — t) o,

where ¢, is determined by

/ (e’“”)"”*"' - 1)60:’ =0.
M

In particular, we have |¢;| < (1 —#)||@,|| 0. Also it follows that
Ahgy, +n(l —¢) >0 (4.2)

We apply Proposition 3.1 to each w, and obtain a Kdahler metric
) = w, + 00u, satistying:

el o < e(1 = 2)[|@e]| o

n , (4.3)
gl 4 < Clny 2 g 00) (14 (1= 0% @l[E0)" (1 = 1)

where ff = %e*". In particular, u; = 0 and @} = wkg.
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We choose , by

/ ehwt_“f+'ulw? =V (44)
M

Then by (4.3), || < e(1 —1)]|o,]|co- _
As before, there are y, such that wxr = o} + 00y, and

Wy = eh“’f_w’cu;” (4.5)
It follows from the maximum principle that

o=@ =Y, — U+ + (4.6)

Hence, ¢, is uniformly equivalent to ¢, as long as y, is uniformly bounded.
Consider the operator @, : sz%(M ) COz:

R e @7)

1

Its linearization at = 0 is —A — 1, so it is invertible by Lemma 4.1. Then
by the implicit function theorem, there is a 6 > 0, which depends only on the
lower bound of 1, — 1, satistying: if the Hélder norm th;HC% with

respect to w; is less than 0, then there is a unique i such that ®,(yy) = 0 and
||lﬁ||c2%< ) < C6. Note that C always denotes a uniform constant.
2w

We observe that

—n—1, n+1
/Il,w’ Z 2 Al wge s 0w S 2 Owke s

whenever Jogr < o' < 20kg.
From now on, we will further assume that

—n—14 1
C Z C(n72 " /Ll‘rukpzmL G(UKE)

We choose ¢, such that

i 2 2 \n
(1= 1) (1 + (1= 10)*[l @, I o)™

= sup (1 =P (1 + (1 =02, ||>)" !
mggl( (14 (1= 8)7 @l o) (48)

0
o 4C(I’l7 27"71/11,0)1(57 2n+l O-(UKE)

We may assume that C5 <1 We claim that for any 7€ [f,1],

|\¢t||cz_%(“) < 1. Assume that this is not true. Since y; = 0, there is a ¢ in
0]
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[to, 1] such that ||l//,||czé( )= 1. Tt follows that fwkp < @] < 2wkg, so the
[}
above arguments show that ||(//t\|cz_% < Co <1 a contradiction. Thus the
)
claim is established. It follows from (4.6) that for all # > max{z, 1 — 2

—- 5,
lodlco = (1 =3e(T = )l|@rflco = 1 (4.9)
Since 1,,(¢;) — Ju(@,) is nondecreasing (cf. [T1]), we have

FwKE(_(pl) = _Fw(q)l)

1
_ /0 (I(@,) = Ju(,))dt
>min{1 - fo,%e}(lw(q)to) —Ju(®y))
> min{l — to,i}(lm((pl) = Jo(¢1)) —20(1 - to)2||(/7z0||co -2
(4.10)

By the choice of #, in (4.8), one can deduce from (4.10) that

1
EUKE(_(,DI) Z mln{l — t0’4_}']wk[-(_(pl) - C (411)
e

If 1 — ¢y >, then by (4.11),

1
EUKE(_(PI) > %Jmkg(_(pl) - C,

if 1 — 19 < 4, then by (4.8), (4.11) and the fact that [|¢, |« < oscy o,

1

1 P 2+ 2+p Jw '(_q)l)

Fw'(QD)Z—( ) = = — C (4.12)
KE 1 2 4C(7l) (1 + OSCM(pI)Z’?“iﬁ

Thus we have proved

Theorem 4.3. Let (M, wkg) be a Kdhler-Einstein manifold without any holo-
morphic vector fields. Then F,,, is proper.

Clearly, Theorem 1.6 follows from Proposition 2.1 and Theorem 4.3.

Theorem 1.6 also has the following generalization. Let G be a maximal
compact subgroup in the identity component of Aut(M). Let  be a G-
invariant Kdhler metric in ¢;(M) > 0. Define Ps(M,w) to be the set of
smooth, G-invariant functions ¢ satisfying: @ + 99¢ > 0. Then we have

Theorem 4.4. Let (M, ®) be given as above. Then M has a G-invariant Kdhler-
Einstein metric if and only if F,, is proper on Pg(M, ).

Its proof is exactly the same as that of Theorem 1.6, so we omit it.
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5 New inequalities

In this section, we derive some nonlinear inequalities on Kéhler-Einstein
manifolds. They generalize the Moser-Trudinger inequality on S2.

First let us give a corollary of (4.12). We define P(M, w, €) to be the set of
all ¢ in P(M, ®) such that ¢,,, < 1/¢, where w, = o + 0.

Theorem 5.1. Let (M,wgg) be a Kdhler-Einstein manifold without holo-
morphic vector fields. Then for any ¢ in P(M, wgg, €),

]
FwKE((/)) > al,GJUJKE((p)ZHZHg — A2 (51)

where a\ ¢, as . are constants, which depend only on n, € and the lower bound of
Aoy — 1 from 0.

Proof. We will adopt the notations in (4.1)—(4.12), and use C to denote a
constant depending only on n and e.

By (4.12), we need to prove only that
oscy @y < C(1+ I (@) — Ju(@1)), (52)

where o = wxz + 00¢. We note that ¢ = —¢,.
Notice that —A, (¢, — infy; @) < n. By the Moser iteration and the fact
that o,, <1, one can derive

1 : 2\

oscyp < C| 1+ (;/M((pllﬁfq;l) a))
1 . "
V €01—1A1}f€01 w

Since Ap, < n, where A is the laplacian of wgg, we have

(5.3)

ol—

[

< C(l + (oscy o))

1 . " n .
V/M<<p1 _1]{1;491)@1(5 < sgp<V/M Acol(y)G(x,y)wKE(y))

where G(+,-) denotes the Green function of wgg with inf G(x,y) = 0. Hence,
1 , ]
;/ o1 —inf o ke <I,(p)+C (5.4)
M M

Though we do not know yet if C is independent of M, it implies (5.1) with
constants possibly depending on M.

To make sure that a;, ax. are independent of M, we need a uniform
bound on G(:,-). This uniform bound follows from Cheng and Li’s heat
kernel estimates in [CL] (also see [BM]).
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Clearly, (5.2) follows from (5.3) and (5.4), so the theorem is proved.

Example. Since c¢;(M) >0, one can embed M into CPY by a basis
H°(M,K,;™) for m sufficiently large. Then there is a natural family of metrics
%G*w}qg, where wpy is the Fubini-Study metric on CPY and ¢ € SL(N + 1, C).
The Sobolev inequality holds uniformly for these metrics, since o(M) is a
complex submanifold (cf. [Sim]). Let PX(M, wkz), where L = K;;™, be the set
of ¢ satisfying:

1 _
%a*wpg = wgg + 00¢, for some g € SL(N + 1,C).

Then this set is contained in P(M, wgg, €) for some € = e(m).

In general, if (M, @) is a K&hler-Einstein manifold, nonzero holomorphic
fields X correspond in one-to-one to the eigenfunctions y with eigenvalue 1,
namely, Ay = —y, and ggg(X,Y) = Y (i) for any vector field ¥, where ggg is
the Kédhler-Einstein metric.

Theorem 5.2. Let (M, wgg) be as above, and A, be the space of the eigen-
functions of wxg with eigenvalue 1. Then for any function ¢ € P(M, wkg, €)
(€ > 0) perpendicular to Ay, ie., [, ¢ Yok =0 for any y € Ay, we have

8

E/)KE((p) 2 al,é JwKE(q))ZHHﬁ — A2 (55)

where ay ., ay. are constants. They may depend only on n, € and the lower
bound of 21wy, — 1 from 0. Here A, denotes the first nonzero eigenvalue of
wgg, which is greater than one.

Proof. Since ¢ is perpendicular to A, by the following proposition, there is
a smooth family of ¢, such that ¢, = ¢ and ¢, solves (4.1),. Then Theorem
5.2 follows from the same arguments as in the proof of (4.12).

Proposition 5.3. For any ¢ € P(M, wgg) perpendicular to Ay, there is a unique
family {@,}o<;<c1 such that ¢, = —@ + c, where c is some constant, and ¢,
solves

(0 +009)" =" ?w", -+ ddp >0, (5.6),,
where o = wgg + 00¢.

Proof. In [BM], Bando and Mabuchi proved this under slightly stronger
conditions on ¢. Their result is good enough for proving uniqueness of
Kihler-Einstein metrics, but not sufficient in our case. Nevertheless, their
arguments can be modified to prove this proposition. For the reader’s
convenience, we outline a proof here.

Put ¢; = —¢ + ¢, where ¢ is chosen such that |, e "“w}, = V. Then ¢,
solves (5.6),. It is known that any solution ¢, of (5.6), for # < 1 can be
deformed into a family of solutions {¢,},.,, where ¢, solves (5.6).. This is
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because I(¢,) — J(¢,) is nondecreasing in s and dominates ||¢,||~ (cf. [BM],
[T1]). Therefore, we only need to show that (5.6), has a solution near ¢, for
1 — ¢ sufficiently small. For this purpose, naturally, we apply the implicit
function theorem.

Write y = ¢ — ¢,. Then (5.6), becomes

og (LY — (1~ g, (57)

Wkg

Let P, be the orthogonal projection from L? (M, wgr) onto Ay, and A’ be the
orthogonal complement of A;. By the assumption, ¢, € A’
Consider the equation

(1 - ) (1og (122 +00(0+ PEY) = =o, - (s8)

Wgg

where 0 € Ay and ' € A’. Its linearization at t=1 and 0=0 is
(1 — Py)(A + 1), which is invertible on A". Therefore, by the implicit function
theorem, for any 0 small and # close to 1, there is a unique , , such that
0+, 5 solves (5.8),.

For any automorphism ¢ of M, ¢*wgg is a Kéhler-Einstein metric, so
there is a unique function u, solving (5.7),. One can easily show that any 0
in A; is of the form Py(u,) for some o, in particular, we may write
us =0+ .

Following [BM], we put ¢, = ¥/ 4 + (1 — £)&4. Then (5.7), is equivalent

to
%PO (log<(wm+aé(0+f’l,o+ (1 —))i)ét,e))”» Lo=0 (59,

(CL)KE + 68(9 + Wllg

Let us denote by I'(z,0) the term on the left side of (5.9),. Then I'(1,0) =0
and

I'(1,0) = Ry (As10) — 0, (5.10)

where Ay is the Laplacian of wgz + 09(0 + Wlﬁ).
Differentiating (5.8), on 7 at =1 and 6 = 0, we have

Aég+¢10=0. (5.11)

Using (5.11) as in [BM], one can compute

LI(1,0)( :f—/ (1+ Agol) 00 ' (5.12)
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If this derivative D,I'(1,0) is invertible, then (5.9), is solvable for ¢ suffi-
ciently close to 1. Therefore, there is a family of solutions ¢, of (5.6), such
that ¢, = —¢ + ¢ for some constant c.

In general, one can use a trick in [BM]. For any small §, define
ws = (1 = d)w + dwgg. Then ws = wgg + (1 — 5)85@. Let T's(¢, 0) be the left
side of (5.9), with ¢ replaced by (1 — 6)¢. Then

D>T5(1,0) = (1 — 8)DoI(1,0) — Id

This implies that D>I's(1,0) is invertible on A; for J # 0 sufficiently small.
Therefore, there are qof solving (5.6), with o replaced by ws and satisfying
@’ = —(1 — 8)¢ + cs for some constant c;.

On the other hand, because of the monotonicity of /,, — J,,, we have

[(0(5 ((Pf) - JUJ& ((Pf)

< 1(/)(; (@?) _Jwa‘ ((p(l))
= Jo (1 =9)p) < C.

Note that C always denotes a uniform constant. Hence, as mentioned at the
beginning of Sect. 4, the C3>-norm of ¢° can be uniformly bounded. It
follows that (pf converges to a solution of (5.6), as ¢ goes to zero. The
proposition is proved.

Corollary 5.4. Let (M, wgg), Py and Ay be as above. For any ¢ € P(M, wgg),
there is_a unique "¢ +u,, where o€ Auty (M), such that o*wgg =
kg + 00ug, [,(6°¢ +us)wiy =0, and Py(c* ¢ + us) = 0.

This follows from Proposition 5.3 and the fact that the solution of (5.6),
is unique for any ¢ < 1.
The inequality (5.5) is not sharp. In fact, we expect

Conjecture 5.5. If M has a Kdhler-Einstein metric wgg with positive scalar
curvature, then there is an 6 > 0 such that

Foe(9) 2 / (@l — (wxz +000)") — Cs (5.13)
M

for any ¢ € P(M,wkg) perpendicular to Ay, where Cs is a constant, which
may depend on 0.

This can be regarded as a fully nonlinear generalization of the Moser-
Trudinger inequality. In the case M = S2, if we choose w to be the canonical
metric, the inequality becomes

/ e " < C:se(%fé) Jo00r9o= [, 0
SQ

This was proved by Aubin (cf. [Au2], [OPS], [CY]).
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A weaker form of Conjecture 5.5 will follow, if one can show that there is
a 1y € (0, 1) such that for any ¢ > f, |[{,||c0 < 3|l@[lco + C for any solution
Y, of (4.5).

Finally, we derive an inequality involving the K-energy. We will use this
inequality in the following sections.

Let us first recall the definition of Mabuchi’s K-energy v,: let
{¢,}9<1<1 C P(M,w) be any path with ¢, =0 and ¢, = ¢, then

VU) = ——/ / (pt RIC wt wt) n lAdt

where o, = 0, = o + d0¢,. Mabuchi proved [Ma] that the above integral
depends only on ¢. In fact, it was observed in [T3] that

vl = [ (1022}t +hofor ~ 1)) =L 1afo) ~ulo)) - (514

A simple computation shows (cf. [DT2]):

E})((P) :Vw /hu)q,w /hu)(}) (515)

Smce fie ‘”ww =V, by the concavity of the logrithmic function, we have
7 fM hwwa) < 0 Hence, we deduce from Theorem 5.3,

Theorem 5.5. Let (M, wgg) be as above, and Ay be the space of the first
nonzero eigenfunctions of wgg. Then for any function ¢ € P(M, wgg,€) per-
pendicular to Ay, we have

B
vaE((p) > ale JwKE(QD)z’HHﬁ — A2 (516)

where ay ¢, ar, are as above.
Similarly, there is an analogue of Theorem 1.6 by replacing F,, by the K-
energy of Mabuchi.

6 Proof of Theorem 1.2

In this section, we introduce the notion of K-stability, which appeared in
Definition 1.1. We will then prove Theorem 1.2. The proof here is the
refinement of that for the main theorem in [DTT1].

An almost Fano variety Y is an irreducible, normal variety, such that for
some m, the pluri-anticanonical bundle K™ extends to be an ample line
bundle over Y, where Y, is the regular part of Y.

Obviously, if ¥ is smooth, then Y is almost Fano if and only if ¢;(Y) > 0.
There are two important cases of almost Fano varieties: (1) Y has a reso-
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lution Y, such that the anticanonical bundle K- ! is nef and ample outside
the exceptional divisor; (2) Y is an irreducible, normal subvariety in some
CPY, which is the limit of a sequence of compact Kéhler manifolds ¥; in CPY
with c1( ) > 0.

Let Y be an almost Fano variety. We recall the definition of the gener-
alized Futaki invariant fy as follows: let L be the ample line bundle over Y,
which extends K e (Y) for some m, where Reg (Y) is the regular part of Y,
then for / sufﬁc1ently large, any basis of H°(Y,L') gives rise to an embedding
¢ of Y into some CP", and consequently, the Fubini-Study metrlc wgs on
CP" induces an admissible metric w (cf. [DT1], p317), i.e., v = m/ O wrs.

If 7: Y~ Y is any smooth resolution, then det(n)” induces a section of
n*L ® K, which does not vanish on 7~ "(Reg(Y)). It follows that

K;" = 'L +E,

where E supports in exceptional divisors of Y. Therefore, there is a function
h,, such that in the weak sense,
V-1

Ric(w) —w = 788%, onY (6.1)

We denote by 5(Y) the Lie algebra of all admissible holomorphic vector
fields on Y. A vector field v is called admissible, if it generates a family of
automorphisms ¢,(¢) of Y such that ¢,(¢)"'L = L.

It is shown in [DT1] that the integral

fr(6) = [ oo,

is well defined, where v € 5(Y) is any admissible holomorphic field on Y.
Following Futaki’s arguments in [Ful], they prove in [DT1] that fy is in-
dependent of particular choices of w and a character of the Lie algebra 5(Y)
of holomorphic vector fields.

In fact, fy(v) can be calculated by using a residue formula of Atiyah-
Bott-Lefschetz type, at least in the case that singularities of Y are not too
bad. Such a residue formula depends only on the fixed-point set of v (cf.
[Fu2], Theorem 5.2.8 and [DT1], Proposition 1.2).

Now let n: W— A be a special degeneration of a Fano manifold M.
Then Y = W is an almost Fano variety with an admissible holomorphic
field vy. We need to study fy(vw).

Since W is special, there is an embedding of W into CPY x A, such that
niH extends det(7 js) over the regular part of W, where J 5 is the
relative tangent bundle of Reg(W) over A, H is the hyperplane bundle over
CPN and m; is the projection onto the i"-factor. For simplicity, we may
assume that W C PY x A. The vector field vy induces a one-parameter al-
gebraic subgroup G = {a(#)},c« C SL(N + 1, C), such that o(¢)(M) = W, for
0<ltf<1and a(t)(Y)=7Y.
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Let v be the holomorphic vector field associated to G, i.e., v = —d'(1).
Then v € n(CPY) and v|, = vy. Since d(i(v)wps) =0, there is a smooth
function 0, on CPY such that 90, = Li(v)wps.

We put w; = #wFS|W, Then w, induces a Kédhler metric g; on W,. Let V,
be the (1,0)-gradient of oy, i.e., g/(Vy,u) = Oy (u) for any function ¥ and
tangent vector u on X;.

Now we can start to prove Theorem 1.2. Let wgg be the metric on M with
Ric(wgg) = wke, there are ¢, and automorphisms 7(¢) of M, such that

() 0(0) 0 = oxp + 000, s = e Tl(t)o(t) o, @ L A,

where A; is the eigenspace of wgy with eigenvalue one.

Lemma 6.1. Assume that W is non-trivial. Then ||¢,||~ diverges to the infinity
as t tends to zero.

Proof. We prove it by contradiction. If ||¢,|| - are uniformly bounded, then
a(t) - t(t) : M — W, converges to a holomorphic map ¥ : M — W. For any
we W, if ¢! (w) is of complex dimension greater than zero, then for any
small neighborhood U of w, ¢(¢)(¥~'(w)) C U so long as ¢ is sufficiently
small. This is impossible, since ¥ is projective. Similarly, using the fact that
W, is a fiber of W of simple multiplicity, one can show that ¥~!(w) has at
most one component. Therefore, ¥ is a biholomorphism, and consequently,
W is trivial, a contradiction! The lemma is proved.

Remark. In the above proof, we do not assume that W, is irreducible, but I
need each component of W, has multiplicity one.

As in last section, let v, be the K-energy of Mabuchi. First we observe
that all these ¢, are in P(M, wkg,€) for some small € > 0 (cf. the example
after Theorem 5.1). This implies that J,,, (¢,) dominates ||¢,|| 0. Therefore,
by Theorem 5.5 and Lemma 6.1, v,,,(¢,) diverges to the infinity when ¢
tends to zero.

Putt=e7", then t =1 when s =0, and 1+— 0 as s — + co. We define v
by

a(t) o = oxp + 0N, @y = el Vg(t) Wl

Then, using the invariance of the K-energy under automorphisms (cf. [BM]),
we have

1 S .
V(UKE(Q)I) = V(UKE(lpS> = _;/O du/Mlﬁ(RIC((Z)u) - (Du) A (I)Z_l?

where 1 = ™5, &, = o(e ") w,« and | denotes the derivative 35{.

By the definition of ,, one can deduce that y = a(r)*Re(0,) + ¢ for
some constant c. It follows that
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d 1 ,
5 0onst) = Re(5; [ w007 ) (62)
It is proved in [DT1] that
.1 .
lim = [ (V,0,)(ho, )0} = f, (vw), (6.3)
—00 V W,

consequently, Re(fw, (vw)) > 0 (cf. [DT1]).
The following proposition provides an estimate on the convergence rate
in (6.3).

Proposition 6.2. Let W, W, and o(t) be as above. Then there are positive
numbers C, v, which may depend on W, such that

1 o )
tim . [ (9,00 (h)o ~ fn (o) < Clf (64)
W,

—00

Proof. Let p: W— W be a smooth resolution. Then p~!(};) is boholo-
morphic to W, for any ¢ # 0. Let £ be the extension of the relative pluri-
anticanonical bundle #";/;. Then

K;"=p'Z+E,

where E supports in the exceptional divisors of the resolution p : W — W.

As above, we may assume that W C CPY x A and miH = %, where H is
the hyperplane bundle over CPY. Then for any fixed Kihler metric & on W,
there is a hermitian norm || - || on E, such that

. ~ 1 ¥ % o)
Ric(o) = - (p s — 001og ||S||2), (6.5)

where S is the defining section of E.

We define
2
S|~
h=1 — . 6.6
8 (p*n*l‘w}s/\dt/\d? (66)

Then by (6.5), we have that h‘W, = hg, + ¢, where ¢, is some constant.
Clearly, & descends to be a smooth function on the regular part of W.
Moreover, one can easily show that A[y, is uniformly L*-bounded with
respect to wy.
It follows from (6.6) that there is a § > 0 such that

Vh|(x) < |12, foranyxe | |J W |\B,s(Sing(W)),

l1<I4
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where B,(F) denotes the r-neighborhood of the subset F in W with respect to
the metric wgg. Therefore, we have

1 n 1 7
‘V~/W, V.:0,(he, ) o] —Rfe(V/W0 UW(th)wO)‘
1

1
o
Viw 1w

Adyo] = / B, Ao,
Wy
C (I + vol(B,+(Sing(10)))")

IN

Then the proposition follows.
Now we can finish the proof of Theorem 1.2: if Re(fw,(vw)) = 0, then by
Proposition 6.2,

< Ce™,

d
‘g Vg (lps)

it follows that v, (¢, ) = Ve (¥,) is bounded as s goes to +oo. This
contradicts to what we have shown before, i.e., vy, (@, ) diverges to the
infinity as s goes to +oo. Therefore, Re(fy,(vw)) >0, Theorem 1.2 is
proved.

Remark 6.3. If M admits continuous families of automorphisms, the lifting
holomorphic vector field vy is not unique. However, the generalized Futaki
invariant fp, (vw) is independent of liftings, whenever M has a Kéhler-
Einstein metric.

Remark 6.4. In fact, the above arguments show that v, is proper on the
family {¢,}oj,<; if and only if Re(f, (vw)) > 0. Similar statement can be
made for F,,,. This indicates that Conjecture 1.4 should be true.

Remark 6.5. 1 expect that the K-stability can be also defined in terms of
subsheaves of K;,”. Choose m such that K" is very ample. Given any basis
s0,+++,sy of H'(M,K;;"), we have an embedding of M into PH®(M,K;;")".
Let {o(r)} be the one-parameter subgroup of SL(N + 1,C) defined by
a(t)(s;) = t¥s;, where /g < - < Ay. Assume that the limit M, of a(¢)(M) is
normal. Then, in principle, fi, (—d’(1)) can be calculated in terms of 7,
and 4; (0 <i < N), where &, is the subsheaf of K" generated by s, - - -, s;.
But I do not have an explicit formula yet.

7 Counter examples

In this section, we study a family of special Fano 3-folds and construct a
counterexample to the long-standing conjecture stated in Sect. 1. I learned
from Mukai the construction of those 3-folds during a conference on al-
gebraic geometry in Tokyo, 1990. They were first constructed by Iskovskih.



26 G. Tian

Those 3-folds have the same cohomology groups as CP? does. One of those
3-folds was studied by Mukai and Umemura in [MU], this particularly
interesting manifold is a compactification of SL(2,C)/I', where I is the
icosahedral group.

Let us recall Mukai’s construction of those manifolds. The complex
Grassmannian G(4,7) consists of all 4-subspaces in C’. For any 3-dimen-
sional subspace P in A2C7, we define a subvariety Xp as follows:

Xp = {E € G(4,7)|mp(P) = 0}, (7.1)

where 7z denotes the orthogonal projection from A2C’ onto A2E’, and E' is
the orthogonal complement of £. We say that Xp is non-degenerate if no
sections of H°(G(4,7), Q) vanish identically on Xp. This is true for generic Xp.

When Xp is smooth and non-degenerate, the normal bundle of Xp in
G(4,7) is the restriction of A2Q ® A2Q @ A?Q to Xp, where Q denotes the
universal quotient bundle over G(4,7). It follows that ¢|(Xp) = c1(Q)ly,
consequently, ¢ (Xp) > 0.

Again we assume that Xp is smooth and non-degenerate. Then one can
show that H'(Xp, NVQ) =0 for any i > 1 and j = 1,2. Hence, by the Ri-
emann-Roch Theorem, 4°(Xp, Q) = 7 and h°(Xp, A>Q) = 18. Now we can
identify the Lie algebra 5(Xp) of holomorphic vector fields on Xp. Any v in
n(Xp) induces a one-parameter family of automorphisms @, of Xp. Using
non-degeneracy of Xp, one can show that H(Xp, Q) = H(G(4,7),0) = C'.
Therefore, @, corresponds to a linear transformation on C’. Clearly, this
linear transformation induces an action on AXC’ which preserves P.
Therefore, we can identify #(Xp) with the set of matrices in s/(7,C) whose
induced action on A2C’ preserves P. Note that for any 4 in s1(7,C), the
induced action on A2C” is given by

Alei Nej) = A(er) Nej+ei NAle)), 1F ),

where e; are euclidean basis of C’.
Take Py to be the subspace spanned by bi-vectors
u; =3e; Neg — Sex Nes + 6es A ey,
uy =3e; Ne7 —2ey Neg+ ez Aes,
uz =ey; Ne; —e3 Neg+ eq N es.

It is easy to check that P is invariant under the group, whose Lie algebra
is generated by matrices
Ay = dlag(3727 1,0,-1,-2, _3)5
Ay = {bZij}lgi.jgv where by;; =1 for j —i =1 and 0 otherwise ,
A3 = {bsij}1<; <7, Where by = bize = 3,b330 = b3es = 5,b343 = b3ss = 6,

all other b3ij = 07
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These three matrices generate a Lie algebra which is isomorphic to
s1(2,C).

To see that Xp, is smooth, we notice that for any E € Xp,, o(¢)(E) con-
verges to one of the following 4-subspaces:

{er,ex,e3,es}, {er,e3,e4,e5},

{63,65786787}, {64565766767}5

where o(t) = diag (r3,¢72,+7,1,4,2,£') is the one-parameter subgroup
generated by 4. It is straightforward to check that Xp, is smooth at these
points. It follows that Xp, is smooth. Similarly, one can show that Xp, is non-
degenerate. Hence, #(Xp,) = s/(2,C). This Lie algebra is semi-simple, so the
Futaki invariant is identically zero.

Now we take P, be the subspace generated by u; + 3, 457
where i = 1,2,3, and a = {a; }. Clearly, lim,_ o(t)(P,) = Po.

For any a, we have a special degeneration W, = {J|,<, o(t)(Xp,) of Xp,. In
particular, each X, is smooth and non-degenerate.

Obviously, for a generic a, n(Xp,) = {0}. However, by Theorem 1.2, Xp,
does not admit any Kéhler-Einstein metric. This disproves the long-standing
conjecture (Corollary 1.3).

Let us discuss more on X = Xp . Recall that ¢(f) acts naturally on the
space H'(X,Ty) of infinitesimal deformations. For each small a, Xp, cor-
responds to a point, say &, in H'(X,Ty). Then X, corresponds to
a(t)(&,), which converges to 0 as ¢ goes to zero. Let v be the holomorphic
vector field on X associated to a(¢), i.e., v = —d’(1), then the Lie bracket
[E,,v] lies in the positive part E(ad(v)) of ad(v) in H'(X,Ty), where
ad(v)(¢) = [¢,v] for any ¢ in H'(X,Ty). Note that for any linear auto-
morphism 7 of a vector space V, the positive part £, (7T) is the subspace
generated by those vectors ¢ in V satisfying: for some i > 0, T°¢ # 0 and
(T — A)T'¢ =0 for some A with Re(1) > 0.

Thus we have a triple (X,v,&) such that o€ HY(X,Ty),
¢, € E (ad(v)) C H'(X, Ty) and the Futaki invariant Re(fy(v)) < 0.

Inspired by this, we give a general definition.

ajkej N e,

Definition 7.1. An obstruction triple (X,v,&) consists of a manifold X with
c1(X) > 0, a holomorphic vector field v on X with Re(fx(v)) <0 and an in-
Sfinitesimal deformation & in E (ad(v)) C H'(X, Ty).

One can also define more general obstruction triples by only assuming
that X is an almost Fano variety.

It follows from Theorem 1.2 that

Theorem 7.2. Let Wi A be a special degeneration of M. Let & be the cor-
responding infinitesimal deformation at Wy. If (Wo,vw, &) is an obstruction
triple, then M has no Kdhler-Einstein metrics.

Therefore, in order to find M without any Kéhler-Einstein metrics, we
only need to look for obstruction triples.
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It is easy to check that there are no 2-dimensional obstruction triples.
Here the dimension of (X, v, ) is defined to be dimc X. The above Xp, gives
rise to an example of 3-dimensional obstruction triples. In general, let X be
any Kadhler-Einstein manifold with a holomorphic vector field v, if the ac-
tion ad(v) on H'(X, Ty) is nontrivial, then we can construct an obstruction
triple of the form (X, v, &), consequently, the deformation of X along ¢ has
no Kihler-Einstein metrics.

8 CM-stability

In this section, we show the connection between the existence of Kéhler-
Einstein metrics and the CM-stability on algebraic manifolds. The basic
ideas have been presented in [T3], [T4]. Here we confine ourselves to the case
of Fano manifolds.

Let n: 2'+—Z be a SL(N + 1, C)-equivariant holomorphic fibration be-
tween smooth varieties, satisfying:

(1)  C Z x CP" is a family of subvarieties of dimension n, moreover,
the action on % is induced by the canonical action of G = SL(N + 1,C) on
CPV;

(2) Let L be the hyperplane bundle over CPY, then Knil, 0 = ,uL|,r](z> for
some rational number u > 0, and each z € Z,, where Z is the subvariety of Z
consisting of those smooth fibers with positive first Chern class. Clearly, Z,
is G-invariant;

Consider the virtual bundle

£= (A =)@ (BL— L) —mu(msL —mL )™ (81)

where " = Ky ® K, ! is the relative canonical bundle, and =; is the re-
striction to ' of the projection from Z x CP" onto its i”-factor.
We define Lz to be the inverse of the determinant line bundle det(&, ).
A straightforward computation shows:

chyi (n+ 1)(AH ™ =AY @ (L — LY — np(myL — L)
=2 ((n+ ey (A mser (L)' = numyer (L)) (8.2)

Therefore, by the Grothendick-Riemann-Roch Theorem,

ei(Ly) = 2", ((n + Der(A) e (L) + numser (L)"+1) (8.3)

We also denote by ,,Sﬁgl the total space of the line bundle L,! over Z. Then
G = SL(N + 1,C) acts naturally on £, '. Recall that X, = n7!(z2) (z € Z) is
weakly CM-stable with respect to L, if the orbit G - Z in JEI is closed, where
z is any nonzero vector in the fiber of Lgl over z; If, in addition, the stablizer
G, of z is finite, then X, is CM-stable. We also recall that X, is CM-semi-
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stable, if the O-section is not in the closure of G - Z. Clearly, this G-stability
(resp. G-semistability) is independent of choices of Z.

Theorem 8.1. Let n : &' — Z be as above. Assume that X, has a Kdhler-Einstein
metric, where z € Zy. Then X, is weakly CM-stable. If X, has no nontrivial
holomorphic vector fields, it is actually CM-stable with respect to L.

Remarks. 1) Similar results hold for manifolds with nef canonical bundle (cf.
[T5]); 2) If Lz is ample over Z, then Z can be embedded into PH®(Z,L%)" for
some m > 0. The group G acts naturally on this projective space. Then the
CM-stability is the same as the stability of zin PH°(Z, L%)" with respect to G
(cf. [Mum)]); 3) One can generalize Theorem 8.1 slightly. More precisely, if
n: X Zisa SL(N + 1,C)-equivaraint fibration as above, except that some
fibers may have dimension higher than n. Define JEI and G as in Theorem
8.1. Put Z, to be the subvariety of Z consisting of all fibers with dimension
> n. Clearly, Z, has codimension at least 2. By the same arguments as in the
proof of Theorem 8.1, one can show that the orbit G - Z is closed in Z\Z; if X,
has a Kéihler-Einstein metrics. Under further assumptions on Z, one can
deduce the CM-stability of X; in this more general situation. This general-
ization is not substantial, but often useful (see the following example).

Example 8.2. Let us apply Theorem 8.1 to giving an alternative proof of
Corollary 1.3. We will adopt the notations in Sect. 7.

Recall that W = G(4,7) consists of all 4-subspaces in C’. Let Q be its
universal quotient bundle.

Let m; (i = 1,2) be the projection from W x G(3, H°(W,A?Q)) onto its
i"-factor, and let S be the universal bundle over G(3,H°(W,A*Q)). Then
there is a natural endomorphism over W x G(3, H(W, A*Q))

O:mS—m A2Q, B(v)]p) = v € A’Q. (5.4)

Naturally, one can regard @ as a section in ©5S* ® 7} (A'Q).
We define

X ={(x,P) € W x G(3,H' (W, N*Q)) |®(x,P) = 0}.

One can show that % is smooth.

If L = det(Q), then ¢ (L) is the positive generator of H>(W,Z).

Consider the fibration © = 7|, : 4 +— Z, where Z = G(3,H*(W,A?Q)).
Its generic fibers are smooth and of dimension 3. Then Z; parametrizes all
Fano 3-folds Xp (cf. Sect. 7).

Using the Adjunction Formula, one can show

c1(A) = —njei (L) — 3myei (S).

Therefore, it follows that
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al(lz) = 1671*(12@01(5*)%’1‘01@)3 - n’{cl(L)4).

One can show that Ly is ample.

By the definition of P,, one can show that none of G - P, is closed in Z\ Z,.
Therefore, by the above Remark 3), any generic Xp, admits no Kihler-
Einstein metrics, so Corollary 1.3 is reproved.

Now we prove Theorem 8.1. For simplicity, we assume that X; has no
nontrivial holomorphic vector fields. The general case can be proved simi-
larly without difficulities. We will start with an analytic criterion for sta-
bility.

Lemma 8.3. Let || - ||, be any fixed hermitian metric on L;". Given any z in Zy.
We define a function on G by

Fo(o) =log(le@@)llz), o€G (8.4)

where z is any lifting of z in Egl. Then X, is CM-stable if and only if Fy is
proper on G.

The proof of this lemma is simple and is left to readers (cf. [T4]).

Let w be the Kéhler form of the Kéhler-Einstein metric on X;. Then the
K-energy v,, (cf. (5.15)) induces a functional D, on G: let wgs be the Fubini-
Study metric on CPV, for any z/ € Z,, we put w. to be the restriction of wgg
to Xz, then Dy,(0) = vy (0™ (w4()))-

Let 4 be the pull-back metric on n5L over # from the standard hermitian
metric on the hyperplane bundle over CP". Then the curvature mjwg of h
restricts to the Kdhler metric w, on each X, and consequently, a hermitian
metric kz on the relative canonical bundle .#" over n~'(Z)). We denote by
Ryz the curvature form of ky.

Lemma 8.4. [T4] Define GX to be the variety {(a,x)|x € a(X)} in G x CPN.
Then for any smooth 2(dim¢ G — 1)-form ¢ with compact support in G,

- / Do (0)09¢ / <—ij%-z —ﬂn;m> Aol AT, (8.5)
G GX n—+ 1

where p. is the map: GX — 2, assigning (0,x) to x in a(X) C Z.
Proof. For the reader’s convenience, we outline its proof here.

Define W :G x X+ GX by assigning (0,x) to (0,0(x)). We have
hermitian metrics 7 = W*h on W*niL and k = W*ky on n3Ky. Then (8.5)
becomes

Db — Cpepy M 7 \n -
- [ pucreie = [ (<Rt~ " RE) ARG A6 (56)

where R(-) denotes the curvature form.
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Let 4y be a hermitian metric on L|, with w = R(h). Define functions ¢,
on G x X by

h(o,x)
ho(x)

¢,(0,x) = tlog( ) and  h; = e”hy

Then hy = h and hy = m5ho. Notice that the curvature R(h) restricts to a
Kihler metric on ¢ x X for each ¢. Therefore, h, induces a hermitian metric
k, on mjKy such that ky = k and ky is independent of o.

We have
- [ utcr080
Y T E——
[ D (R ma ) ARG B
/ /GxX”MM@a( ¢t> (=nR (k) — nuR(h)) AR(R)"™" A dt
- [ mion (<G ARG~ DR ) nat

= [ mion (R0 R ) ARG
+/01 /Gxx ﬂT‘M%R(iﬂ) AR(R)" A dt

(8.7)

However,

%R(l},) (a7x) = 85<Ao‘.t(pt) (O"x)’

where A, denotes the Laplacian of the Kidhler metric induced by R(ilt)|a>< X
so the last integral in (8.7) vanishes by integration by parts. Then (8.5)
follows from (8.6), (8.7).

Lemma 8.5. Let gy and gz be hermitian metrics on canonical bundles K and
K7, respectively. Then

Ryiz = R(gx) —R(gz) + 009 on Z\[xIm(dn(x)) # TxoZ}  (8.8)

where W is a smooth function on X\{x|Im(dn(x)) # TyxZ} satisfying
sup iy < oo.
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Proof. For any x such that Im(dn(x)) = Ty Z, we will define /(x) as fol-
lows: choose sz in Ky |, and sz in Kz\n(x), such that gy (sy,s2)(x) =1 and
9z(sz,52)(n(x)) = 1. Since dn|, : T.Z +— Ty Z is surjective, there is a unique
vector s of A’y such that s-(dn)"(sz) =sy. We simply define
W(x) = —logky(s,s)(x). Clearly, supy < oo and ¥(x) diverges to —oo as x
tends to any point where drn is not surjective.

We can also write

o) = —tog (M2 (89)

ga

Then (8.8) follows easily.

Corollary 8.6. For any smooth 2(dime G — 1)-form ¢ with compact support in
G, we have

N /G D00 + /G Y,00¢ (8.10)

nu * * N *
- / “R(gs) + R(gz) — M woops | il A b
GX n+1

where \y, is a smooth function on Zy, moreover, \y, is bounded from above and
for any z € Z,

o) = | ok

consequently, \ extends to a continuous function outside the set of points
where X, contains a component of multiplicity > 1. Furthermore, if X, contains
a component of multiplicity > 1, y,(2') diverges to infinity as z' — z.

This follows directly from Lemma 8.4, 8.5.

Let @ be the push-forward current

n * * _n
Ty ((R(gr) +R(9z) — ﬁnzwm> A nza)FS)

Then 2"+!(n + 1)@ represents the Chern class of L;!. Therefore, there is a
function 0z, which is smooth in Z;, such that in the weak sense,

= ! R(|-l,) +000;, on Z (8.11)
~ (n+1)27t1 z o '
Lemma 8.7. The function 07 is Holder continuous.

Proof. First we prove the following: there are uniform constants 6, C > 0,
such that for any point 2 € Z, and r < 1,
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b
V=1
p>2b / |tre, @ | ——wz | < Crf (8.12)
B,.(z’) 27'[

where b = dim¢ Z, wy is a fixed Kéhler metric on Z, and B,(Z’) is the ball of
wz with radius r and center at . Using the definition of ®, one can deduce
(8.12) from the following: for any r < 1 and 2 € Z\Z,,

— n+l — b1
r2’2b/ ( 2;1 Q)FS) /\( 2;1 n*wz> <o (8.13)
I(B

To prove this, we choose local coordinates ¢,---,f such that
Z =(0,---,0). Without loss of the generality, we may further assume that
wy is just the euclidean metric on B,.(z') C C*. We denote by Bi(Z) the
intersection of B,(z') with the hyperplane {#; =0} (i=1,---,b). Then

+1 b—1
2-2b v —1 ' v -1 *
v —— WFs AN T Wz
B\ 2T n
b \/jf n+l
< CZSUPM\S;-J;&{ /n‘({z-—a-})( o wm) )

where C is a uniform constant. Hence, it suffices to show (8.13) in the case of
b=1.

When b = 1, m is a holomorphic function on n~!(B,(Z')). Since each fiber
7~ !(z) is a compact variety of CPY of degree d, there is a uniform 6 < 1 such
that

7 (B.(Z)) C B (X2). (8.14)

Then (8.13) follows.

Now the lemma can be easily deduced from the standard Green formula
and (8.12).

By Corollary 8.6 and Lemma 8.7, we have

B 1 liz\olz
86<(Dw — Y, +07)(0) — ()2 log(” i |.\ ”(Z((Z)))>> =0

namely, the function (D, — + 07)(5) — (n+1 P 10g<|\‘I‘ZH )))) is of the form
log|f]* for some holomorphic function f on SL(N + 1 C)

Let us denote by {z;}oc; <y, W the homogeneous coordinates of
CPV+1 | then SL(N + 1,) can be naturally identified with the affine sub-
variety W N{w # 0}, where

W = {[{zi/hoci jen- Wlldet(z) = w1}
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Then by using the definition of D, and straightforward computations, one
can show

Lemma 8.8. The function f has at most polynomial growth near W\SL
(N+1,C), ie., there are constants £ >0, C >0, such that f(o) < Cd
(o, W\SL(N + 1,C))", where d(a, W\SL(N + 1,C)) denotes the distance from
o to W\SL(N + 1, C) with respect to the standard metric on CPV+1"

Therefore, f extends to be a meromorphic function on W. Notice that W
is normal and W\SL(N + 1, C) is irreducible. It follows that f has to be an
nonzero constant ¢, and consequently, we have

1
| TN TTET_ | 2 vitorse) unte) (5.15)
- 1l2(2) ’
or equivalently,
2—(n+1)
o) Fy(0) = Dy(0) + 02(0) — ¢ ,(0) — C. (8.16)

Note that C > 0 always denotes some uniform constant.

By Lemma 6.1, Corollary 8.6 and Theorem 5.5, y,(a) + D, (o) diverges
to infinity as o goes to W\G. It follows from Lemma 8.7 that F;(-) is proper
on G, then Theorem 8.1 follows from Lemma 8.3.

Remark. Theorem 8.1 can be also proved by using the functional F,, directly.
In that case, we start with & = (4" — A" )"H instead. However, its deter-
minant line bundle det(¢&, ) coincides with L, ! considered above. We used
the K-energy in the above proof because it works for more general cases
where the Kéhler class may not be canonical.

For any ¢ € G, we can define a function ¢, by
uo*ops = w + 00¢,, / P 0" =0.
X

Let PL(X., ) be the set of all these ¢,. The proof of Theorem 8.1 also yields

Theorem 8.9. Assume that X, has no nonzero holomorphic vector fields. Then

Ve is proper on PL(X,, w) if and only if X, is CM-stable with respect to L.
Similarly, one may have

Theorem 8.10. Assume that X, has no nonzero holomorphic vector fields. Then

the functional F,, is proper on PL(X,,w) if and only if X, is CM-stable with
respect to L.

The general case where X, has nontrivial holomorphic vector fields can
be treated identically, involving weakly CM-stability in place of the CM-
stability.
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Finally, these results motivate us to propose

Conjecture 8.11. Let M be a compact Kdihler manifold with ¢;(M) > 0. Then
M admits a Kdhler-Einstein metric if and only if M is weakly CM-stable with
respect to Ky,” for m sufficiently large.

The necessary part of this conjecture follows from Theorem 8.1. The
other part follows from Theorem 8.9 or 8.10 if one can establish the partial
CY-estimates posed in [T6]. We plan to discuss these in details in a subse-
quent paper.

If Conjecture 8.11 is affirmed, then moduli spaces of Kéhler-Einstein
manifolds with positive scalar curvature are quasi-projective.

9 Further remarks

Let (M, w) be a compact Kéhler manifold with the Kéhler class ¢ (M) > 0.
In order to construct a Kédhler-Einstein metric on M, we need to solve the
complex Monge-Ampere equations in (2.1), for 0 < ¢ < 1. By the continuity
method (cf. [Au], [BM], [T1]), one can show that either M admits Kéhler-
Einstein metrics, i.e., (2.1); is solvable, or for some # € (0, 1], (2.1), is
solvable if and only if ¢ < #). The main issue is to understand when the
second case occurs. In previous sections, we approach this by using the
K-stability or the CM-stability.

Here we want to make a few remarks on the differential geometric ap-
proach. More precisely, when the second case occurs, we would like to
characterize the limit (M, w,), where o, = @ + 00, and g, solves (2.1),.

Conjecture 9.1. By taking subsequences if necessary, one should have that
(M, w;) converges to a space (My,, ), which is smooth outside a subset of
real Hausdorff codimension at least 4, in the Cheeger-Gromov-Hausdorff
topology. Furthermore, (My, ) can be expanded to be an obstruction
triple (Mwo, v, &) (possibly singular) satisfying:

Ric(ww) — W = —Ly(ws), on the regular part of M, 9.1)

where L, denotes the Lie derivative in the direction of v. In particular,
(Ms, ws0) is a Ricci soliton if ws is not Kdhler-Einstein.

Here by the Cheeger-Gromov-Hausdorff topology, we mean that
1) (M, o,) converges to (Ms, W) in the Gromov-Hausdorff topology; 2)
For any {x;} C M with lim,_,, x; = x., in M, there are C' diffeomorphisms
®, from B,(x) onto B,(x;) for some small » > 0, such that @;w, converges
to ws in the C%-topology on B, (x4).

The singularities of M, should be very mild. One may even guess that
M, is actually smooth, but there are no convincing evidences for this.

Similar things can be said for the Ricci flow (3.2), i.e.,
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) (w + 00¢)"
R e K S T S N5

It is known (cf. [Ca]) that (9.2) is solvable for all > 0. To prove the exis-
tence of Kédhler-Einstein metrics on M, we need to show that ¢ has a limit in
the CP-topology as t goes to infinity. We believe that (M,w + 30(¢|,))
converges to (M, my ) described in Conjecture 9.1. Previously, R. Hamil-
ton thought that the limit (M., w.) should be a Ricci soliton. Our new
observation here is that w,, may be Kéhler-Einstein, and otherwise, it is a
special Ricci soliton.
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