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Abstract. In this paper, we prove that the existence of KaÈ hler-Einstein
metrics implies the stability of the underlying KaÈ hler manifold in a suitable
sense. In particular, this disproves a long-standing conjecture that a com-
pact KaÈ hler manifold admits KaÈ hler-Einstein metrics if it has positive ®rst
Chern class and no nontrivial holomorphic vector ®elds. We will also es-
tablish an analytic criterion for the existence of KaÈ hler-Einstein metrics. Our
arguments also yield that the analytic criterion is satis®ed on stable KaÈ hler
manifolds, provided that the partial C0-estimate posed in [T6] is true.

1 Introduction

More than forty years ago, E. Calabi asked if a compact KaÈ hler manifold M
admits any KaÈ hler-Einstein metrics. A metric is KaÈ hler-Einstein if it is
KaÈ hler and its Ricci curvature form is a constant multiple of its KaÈ hler
form. Such a metric provides a special solution of the Einstein equation on
Riemannian manifolds.

Since the Ricci form represents the ®rst Chern class c1�M�, a necessary
condition for the existence of KaÈ hler-Einstein metrics is that c1�M� is de®-
nite. In fact, Calabi conjectured that any (1,1)-form representing c1�M� is
the Ricci form of some KaÈ hler metric on M (the Calabi conjecture). In
particular, the conjecture implies the existence of Ricci-¯at KaÈ hler metrics in
case c1�M� � 0. The Calabi conjecture was solved by Yau in 1977 [Y].
Around the same time, Aubin and Yau proved independently the existence
of KaÈ hler-Einstein metrics on KaÈ hler manifolds with negative ®rst Chern
class [Au1], [Y]. Therefore, it had been known by the middle of 70's that
c1�M� being zero or negative is also su�cient for the existence of KaÈ hler-
Einstein metrics on the underlying manifold.
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Back to early 50's, using the maximum principle, Calabi had proved the
uniqueness of KaÈ hler-Einstein metrics within a ®xed KaÈ hler class for KaÈ hler
manifolds with nonpositive ®rst Chern class. In 1986, Bando and Mabuchi
proved the uniqueness of KaÈ hler-Einstein metrics on compact KaÈ hler
manifolds with positive ®rst Chern class.

What about the remaining case where c1�M� > 0? In this case, the
KaÈ hler-Einstein metric, if it exists, must have positive scalar curvature. Note
that a KaÈ hler manifold M with c1�M� > 0 is called a Fano manifold in
algebraic geometry.

New di�culties and phenomena arise in this remaining case. In 1957,
Matsushima proved that there is a KaÈ hler-Einstein metric with positive
scalar curvature on M only if the Lie algebra g�M� of holomorphic ®elds is
reductive [Mat]. This immediately implies that the positivity of the ®rst
Chern class is not enough for the existence of KaÈ hler-Einstein metrics. For
instance, if M is the blow-up of CP 2 at one or two points, then g�M� is not
reductive, consequently, such an M does not have any KaÈ hler-Einstein
metrics. In 1983, Futaki introduced another analytic invariant±the Futaki
invariant fM [Fu1]. This fM is a character of the Lie algebra g�M�. He
proved that fM is zero if M has a KaÈ hler-Einstein metric. This invariant
plays a more important role in our study here.

Since 1987, inhomogeneous KaÈ hler-Einstein metrics are constructed on
some M with c1�M� > 0 by solving the corresponding complex Monge-
Ampere equation (cf. [T1], [TY], [Di], [Si], [Na]). Previously, only known
KaÈ hler-Einstein metrics are either homogeneous or of cohomogeneity one.
In later case, the problem can be reduced to solving an ODE equation ([Sa]).

Despite of those, the original problem of Calabi had been essentially
untouched in the case of positive ®rst Chern class, i.e., when is there a
KaÈ hler-Einstein metric on a compact manifold M with c1�M� > 0? In 1989, I
solved this problem for complex surfaces. The author proved that any
complex surface M with c1�M� > 0 has a KaÈ hler-Einstein metric if and only
if g�M� is reductive. The solution also yields new insight into geometric
aspects of the Calabi problem, though there are new technical di�culties in
higher dimensions.

A folklore conjecture claims that there is a KaÈ hler-Einstein metric on any
compact KaÈ hler manifold M with c1�M� > 0 and without any holomorphic
vector ®elds. One evidence for this was that all known obstructions came
from holomorphic vector ®elds. Indeed, the conjecture was veri®ed for
complex surfaces in [T2].

However, the conjecture can not be generalized to KaÈ hler orbifolds,
since there is a two-dimensional KaÈ hler orbifold S, such that c1�S� > 0,
g�S� � f0g and it does not admit any KaÈ hler-Einstein orbifold metrics (cf.
[T6]). This orbifold has an isolated singularity, which may be responsible for
nonexistence of KaÈ hler-Einstein orbifold metrics on such an orbifold, like in
the case of the Yamabe problem (cf. [Sc]).

Ding and Tian took a further step in [DT] (cf. Sect. 7). They de®ned
the generalized Futaki invariant fY for any almost Fano variety (possibly
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singular). Using this invariant, we can now introduce a new notion of
stability.

We recall that a degeneration of M is an algebraic ®bration p : W 7!D
without multiple ®bers, such that M is biholomorphic to a ®ber Wz � pÿ1�z�
for some z 2 D, where D is the unit disk in C1. We say that this degeneration
is special if its central ®ber W0 � pÿ1�0� is a normal variety, the determinant
of its relative tangent bundle extends to be an ample bundle over W and the
dilations z 7! kz on D k � 1� � can be lifted to be a family of automorphisms
r k� � of W . Usually, we denote by vW the holomorphic vector ®eld on Y
induced by those automorphisms. More precisely, vW � ÿr0�1�.

A particular case of such degenerations is the trivial ®bration M � D 7!D
for any M with nontrivial holomorphic vector ®elds. In this case, we say that
W is trivial.

For any special degeneration p : W 7!D, the central ®ber W0 � pÿ1�0� is
an almost Fano variety (cf. Sect. 6). Clearly, the associated vector ®eld vW is
tangent to Y0 along the central ®ber Y0. Therefore, we can assign a number
to each of such special degenerations, namely, the generalized Futaki in-
variant fW0

�vW �. Note that fW0
�vW � can be calculated by using a residue

formula of Atiyah-Bott-Lefschetz type, at least in the case that the singu-
larities of W0 are not too bad (cf. [Fu2], [DT1], [T4]). Such a residue formula
depends only on the zeroes of vW .

De®nition 1.1. We say that M is K-stable (resp. K-semistable), if M has no
nontrivial holomorphic vector ®elds, and for any special degeneration W of M ,
the invariant fW0

�vW � has positive (resp. nonnegative) real part. We say that M
is weakly K-stable if Re fW0

�vW �� � � 0 for any special degeneration W , and the
equality holds if and only if W is trivial.

More details on the K-stability can be found in Sect. 6.

Theorem 1.2. If M admits a KaÈhler-Einstein metric with positive scalar cur-
vature, then M is weakly K-stable. In particular, if M has no nonzero holo-
morphic vector ®elds, M is K-stable.

Theorem 1.2 can be used to disprove the long-standing conjecture in the
case of complex dimensions higher than two. A counterexample can be
brie¯y described as follows (see Sect. 6 for details): let G�4; 7� be the complex
Grassmannian manifold consisting of all 4-dimensional subspaces in C7, for
any 3-dimensional subspace P � ^2C7, one can de®ne a subvariety XP in
G�4; 7� by

XP � fU 2 G�4; 7�jP projects to zero in ^2 �C7=U�g

For a generic P , XP is a smooth 3-fold with c1�XP � > 0. I learned these
manifolds from Mukai at Tokyo Metropolitan University, 1990. They were
®rst constructed by Iskovskih (cf. [Is], [Muk]).
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Take Pa to be the subspace spanned by bi-vectors

3e1 ^ e6 ÿ 5e2 ^ e5 � 6e3 ^ e4 �
X

j�k�8
a1jkej;

3e1 ^ e7 ÿ 2e2 ^ e6 � e3 ^ e5 �
X

j�k�9
a2jkej;

e2 ^ e7 ÿ e3 ^ e6 � e4 ^ e5 �
X

j�k�10
a3jkej;

where ei are euclidean basis of C7 and a � faijkg.
Then we can deduce from Theorem 1.2 that

Corollary 1.3. For generic a, XPa has neither nontrivial holomorphic vector
®elds nor KaÈhler-Einstein metrics. In particular, the folklore conjecture is false
for dimensions higher than two.

Previously, in [DT1] Ding and the author proved that a cubic surface has
a KaÈ hler-Einstein orbifold metric only if the surface is K-semistable. There
are many K-semistable, nonstable cubic surfaces, but they all have quotient
singularities. Corollary 1.3 provides the ®rst smooth example.

We still need to understand when KaÈ hler-Einstein metrics exist on
manifolds with positive ®rst Chern class. The following conjecture provides
the right answer to this problem.

Conjecture 1.4. Let M be a compact KaÈhler manifold with positive ®rst Chern
class. Then M has a KaÈhler-Einstein metric if and only if M is weakly K-stable
in the sense of De®nition 1.1.

This is the fully nonlinear version of the Hitchin-Kobayashi conjecture,
which relates the existence of Hermitian-Yang-Mills metrics to the stability
of holomorphic vector bundles. The Donaldson-Uhlenbeck-Yau theorem
provides a solution for the Hitchin-Kobayashi conjecture [Do], [UY].
Theorem 1.2 proves the necessary part of Conjecture 1.4. As we will see, the
proof is much harder than the counterpart for Hermitian-Yang-Mills met-
rics. So is the su�cient part of Conjecture 1.4. In a subsequent paper, we will
consider the su�cient part. We will reduce the su�cient part to a partial C0-
estimate. Such a C0-estimate was stated in [T6] and established in [T2] for
complex surfaces.

Fix any m > 0 such that Kÿm
M is very ample. Then we can embed M as a

submanifold in the projective space P �V �, where V � H0�M ;Kÿm
M ��. Then

considering M as a point in the Hilbert scheme, on which G � SL�V � acts
naturally, we can introduce the CM-stability of M with respect to Kÿm

M . We
refer the readers to Sect. 8 (also [T4]) for details on the CM-stability.

Theorem 1.5 (Theorem 8.1). If M admits a KaÈhler-Einstein metric with pos-
itive scalar curvature, then M is weakly CM-stable with respect to those
plurianticanonical bundles which are very ample. Furthermore, if M has no
nonzero holomorphic vector ®elds, then it is CM-stable.
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In fact, we expect that the converse to this theorem is also true (cf.
Sect. 8).

In [Mum], Mumford gives an numerical criterion for his notion of sta-
bility. It is very interesting to compare this numerical criterion with the
generalized Futaki invariant. It is not unreasonable to expect that they are
equivalent, because of Theorem 1.2 and 1.5.

Now let us discuss analytic aspects of the above theorems. Let us ®x a
KaÈ hler metric with its KaÈ hler class x representing c1�M�. Let P �M ;x� be the
set of smooth functions u satisfying: x� @@u > 0. We de®ne a functional
Fx on P �M ;x��cf : �Di�� by

Fx�u� � Jx�u� ÿ 1

V

Z
M

uxn ÿ log
1

V

Z
M

ehxÿuxn
� �

Jx�u� �
Xnÿ1
i�0

nÿ i
n� 1

1

V

Z
M
@u ^ @u ^ xi ^ �x� @@u�nÿiÿ1;

where V � RM xn � c1�M�n, and hx is uniquely determined by

Ric�x� ÿ x � @@hx and

Z
M
�ehx ÿ 1�xn � 0:

One can regard Jx�u� as a generalized ``energy'' of u. An easy computation
shows that the critical points of Fx are KaÈ hler-Einstein metrics.

We say that Fx is proper on P�M ;x�, if for any C > 0 and
fuig � P �M ;x�C,

limi!1Fx�ui� � 1;

whenever limi!1 J�ui� � 1, where P �M ;x�C consists of all u in P �M ;x�
satisfying:

oscMu � sup
M

uÿ inf
M

u � C�1� J�u��:

The properness of Fx is independent of particular choices of KaÈ hler metrics
in c1�M�.

Theorem 1.6. Let M be a compact KaÈhler manifold with positive Chern class
and without any nontrivial holomorphic ®elds. Then M has a KaÈhler-Einstein
metric if and only if Fx is proper.

The su�cient part of this theorem is essentially proved in [DT2], by using
the estimates in [T1]. We will sketch a proof of this in Sect. 2 for the reader's
convenience. Clearly, Conjecture 1.4 follows from Theorem 1.6, if one can
deduce the properness of Fx from the K-stability of M . However, this is a
highly nontrivial problem.
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The organization of this paper is as follows: in Sect. 2, we discuss a few
basic properties of Fx and outline the proof of the su�cient part of Theorem
1.6. Sect. 3 contains a technical lemma needed for proving Theorem 1.6. In
Sect. 4, we prove Theorem 1.6. In Sect. 5, based on the arguments in Sect. 4,
we derive new inequalities involving Fx and the K-energy of T. Mabuchi. In
Sect. 6, we discuss the K-stability in details and prove Theorem 1.2. In Sect.
7, applying Theorem 1.2, we construct a counterexample to the long-stan-
ding conjecture described above. We will also introduce a class of Fano
manifolds with additional structures, so called obstruction triples. We will
show that those are obstructions to the existence of KaÈ hler-Einstein metrics
with positive scalar curvature. In Sect. 8, we prove the CM-stability of Fano
manifolds which admit KaÈ hler-Einstein metrics. The basic idea of the proof
was already in [T4] and can be applied to other general cases (cf. [T5]). A
conjecture will be stated concerning the KaÈ hler-Einstein metrics and the
CM-stability. In last section, we discuss the relation between obstruction
triples and Ricci solitons. Two problems will be proposed.

Acknowledgement. I would like to thank S.T. Yau for introducing me the problem of KaÈ hler-
Einstein metrics and sharing his insight that they should be related to certain stability. I would
also like to thank L. Nirenberg for his interest in this work. His remarks on the proof of
Theorem 1.6 are useful.
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2 The functional Fx

In this section, we collect a few facts about the functional Fx and prove the
su�cient part of Theorem 1.6.

Recall that for any u 2 P�M ;x�, we have

Fx�u� �
Xnÿ1
i�0

nÿ i
n� 1

1

V

Z
M
@u ^ @u ^ xi ^ �x� @@u�nÿiÿ1

ÿ 1

V

Z
M

uxn ÿ log
1

V

Z
M

ehxÿuxn
� �
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where V � RM xn, and hx is determined by Ric�x� ÿ x � @@hx andR
M�ehx ÿ 1�xn � 0. Clearly, Fx�u� c� � Fx�u�.
The following identities can be proved (cf. [DT2]):

(1) if x0 � x� @@u is another KaÈ hler metric, then Fx�u� � ÿFx0 �ÿu�;
(2) If x0 is as above and x00 � x0 � @@w is a KaÈ hler metric, then

Fx�u� � Fx0 �w� � Fx�u� w�;

in particular, it follows that the properness of Fx is independent of the
choice of the initial metric x;
(3) The critical points of Fx correspond to KaÈ hler-Einstein metrics x with
Ric�x� � x. In particular, the critical points are independent of the initial
metric x.

Proposition 2.1. If Fx is proper, then its minimum can be attained, in partic-
ular, there is a KaÈhler-Einstein metric on M .

Proof. As we said before, this proposition is essentially known (cf. [DT2]).
For reader's convenience, we sketch a proof here.

Consider the complex Monge-Ampere equations:

�x� @@u�n � ehxÿtuxn; x� @@u > 0 �2:1�t

The solution for t � 1 gives rise to a KaÈ hler-Einstein metric on M . To ®nd a
solution for t � 1, we only need to prove that Jx�u� is uniformly bounded
for any solution of �2:1�t (cf. [BM], [T1], [T2]). By the implicit function
theorem, one can show that the solution of �2:1�t varies smoothly with t < 1.

Let futg be a smooth family of solutions such that ut solves �2:1�t. By a
direct computation, we have (cf. [DT2])

d
dt

t�Jx�ut� ÿ
1

V

Z
M

utx
n�

� �
� ÿ�Ix�ut� ÿ Jx�ut��;

where

Ix�u� � 1

V

Z
M

u�xn ÿ �x� @@u�n�;

In fact, Jx�u� �
R 1
0

Ix�su�ds
s . It is known (cf. [Au2], [BM], [T1]) that

Ix�ut� ÿ Jx�ut� � 0, consequently,

Fx�ut� � ÿ log
1

V

Z
M

ehxÿutxn
� �

Using �2:1�t and the concavity of the logrithmic function, one can deduce
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ÿ log 1

V

Z
M

ehxÿutxn
� �

� 1ÿ t
V

Z
M

ut�x� @@ut�n

By the Moser iteration, one can show (cf. [T1]) that for some uniform
constant c > 0,

1

V

Z
M

ut�x� @@ut�n � c 1� inf
M

ut

� �
;

therefore, we have Fx�ut� � �1ÿ t�c � c. On the other hand, by the Green
formula and the fact that Dxut � ÿn, one has

sup
M

ut � c 1� 1

V

Z
M

utx
n

� �
It follows that ut 2 P �M ;x�C for some constant C. Then the properness of
Fx implies that Jx�ut�, and consequently, kut kC0 is uniformly bounded.
Therefore, there is a KaÈ hler-Einstein metric on M .

3 A smoothing lemma

Let M be a compact KaÈ hler manifold with positive ®rst Chern class as
before. For any KaÈ hler metric x in c1�M�, we denote by k1;x and rx the ®rst
nonzero eigenvalue and the Sobolev constant of �M ;x�. Note that for any
smooth function u, one has

1

V

Z
M
juj 2n

nÿ1xn
� �nÿ1

n

� rx

V

Z
M
@u ^ @u ^ xnÿ1 �

Z
M
juj2xn

� �
: �3:1�

This section is devoted to the proof of the following proposition.

Proposition 3.1. Let x be any KaÈhler metric in c1�M� > 0 with
Ric�x� � �1ÿ ��x. Then there is another KaÈhler metric of the form
x0 � x� @@u satisfying: (1) kukC0� e k hx kC0 ; (2) khx0 kC

1
2
�

C�1� khxk2C0�n�1�b, where b � 1
4 eÿn, C � C�n; k1;x0 ; rx0 � is a constant de-

pending only on the dimension n, the Poincare constant k1;x0 and the Sobolev
constant rx0 of x0.

Consider the heat ¯ow

@u
@s
� log

�x� @@u�n
xn

� �
� uÿ hx; ujs�0 � 0 �3:2�

This is in fact Hamilton's Ricci ¯ow. This has been used before in [Ca], [Ba],
etc.. We will denote by us and xs the function u�s; �� and the KaÈ hler form
x� @@us.
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Di�erentiating (3.2), we obtain

@@
@u
@s

� �
� ÿRic�xs� � xs

This implies that hxs � ÿ @u
@s � cs, where cs are constants. Since u0 � 0, we

have c0 � 0.
First we collect a few basic estimates for the solutions of (3.2). They are

simple corollaries of the maximum principle for heat equations.

Lemma 3.2. We have kuskC0 � eskhxkC0 , and k @u
@s kC0 � eskhxkC0 .

It follows from the maximum principle for heat equations. Here we need
to use the equation

@

@s
@u
@s

� �
� D

@u
@s

� �
� @u
@s

�3:3�

Lemma 3.3. We have infM xs � es infM Dhx.

Proof. It follows from (3.3)

@

@s
D

@u
@s

� �� �
� D2 @u

@s

� �
� D

@u
@s

� �
ÿ rr @u

@s

� ����� ����2
� D2 @u

@s

� �
� D

@u
@s

� � �3:4�

Then the lemma follows from the maximum principle and
hxs � ÿ @u

@s � const.
The proof of next two lemmata are due to S. Bando [Ba]. They are more

tricky than previous ones.

Lemma 3.4. We have

@u
@s

����
s

 2
C0

�skr @u
@s

����
s

� �
k2C0 � e2skhxk2C0 ;

in particular, krhx1
kC0� e2 khx kC0 .

Proof. By straightforward computations, we can deduce

@

@s
@u
@s

���� ����2
 !

� D
@u
@s

���� ����2ÿ2 r @u
@s

���� ����2�2 @u
@s

���� ����2
@

@s
r @u
@s

���� ����2
 !

� D r @u
@s

���� ����2ÿ rr @u
@s

���� ����2ÿ rr @u
@s

���� ����2� r @u
@s

���� ����2
�3:5�
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Since s � 0, we have

@

@s
@u
@s

���� ����2�s r @u
@s

���� ����2
 !

� D
@u
@s

���� ����2�s r @u
@s

���� ����2
 !

� 2
@u
@s

���� ����2�s r @u
@s

���� ����2
 !

Then the lemma follows from the maximum principle for heat equations.
Finally, we need to bound D�@u

@s�. From (3.4) and (3.5), one deduces

@

@s
r @u
@s

���� ����2ÿasD
@u
@s

� � !

� D r @u
@s

���� ����2ÿasD
@u
@s

� � !
� r @u

@s

���� ����2ÿasD
@u
@s

� � !
�3:6�

ÿ aD
@u
@s

� �
ÿ �1ÿ as� rr @u

@s

� ����� ����2
The Cauchy-Schwartz inequality implies

n rr @u
@s

���� ����2� D
@u
@s

���� ����2 �3:7�

Combining this with (3.6), we obtain

@

@s
ÿ D

� �
eÿs r @u

@s

���� ����2ÿasD
@u
@s

� � ! !
� ÿ 1ÿ as

n
D
@u
@s

���� ����2ÿaD
@u
@s

� �
�3:8�

Together with Lemma 3.4 and the maximum principle, this implies that for
as < 1,

D ÿ @u
@s

� �
� e2s

as
hxk k2C0� na

1ÿ as

� �
es

Choosing a � 1=2s and using Lemma 3.3, 3.4, one obtains

Lemma 3.6. We have

ÿn�e2s � D ÿ @u
@s

� �
� n

s
� 2e2skhxk2C0

� �
es; �3:9�

in particular, if s � 1, we have

D
@u
@s

���� ���� � maxfn�e2; ne� 2e3khxk2C0g; �3:10�
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where � is given in Proposition 3.1.
We put v to be

hx1
ÿ 1

V

Z
M

hx1
xn
1 �3:11�

For simplicity, we denote by k1 and r1 the Poincare and Sobolev constant of
the metric x1, respectively.

Lemma 3.7. We have

kvkC0 � n
nÿ 1

� �n�nÿ1�
2 �2r1b�

n
2 1� b

k1

� �
; �3:12�

where b � maxfn�e2; ne� 2e3khxk2C0g.
Proof. We put v� � maxf0;�vg. By (3.9), we have

1

V

Z
M
jrv�j2xn

1 �
�e2

V

Z
M

v�xn
1;

1

V

Z
M
jrvÿj2xn

1 �
ne� 2e3khxk2C0

V

Z
M

vÿxn
1;

therefore,

k1
V

Z
M
jvj2xn

1 �
b
V

Z
M
jvjxn

1;

consequently,

1

V

Z
M

vj j2xn
1 �

b2

k21
: �3:13�

Next we put v1 � maxf1; vg. Then for any p � 1,

1

V

Z
M
rv

p�1
2

1

��� ���2xn
1 �
�p � 1�2b
4pV

Z
M

vp
1x

n
1 �3:14�

Since b � 1 and v1 � 1, by the Sobolev inequality, one can deduce from
(3.14),

1

V

Z
M

v
n�p�1�

nÿ1
1 xn

1

� � nÿ1
n�p�1�
� �r1b�p � 1�� 1

p�1
1

V

Z
M

vp�1
1 xn

1

� � 1
p�1

Then the standard Moser iteration yields

sup
M

v � sup
M

v1 �
�

n
nÿ 1

�n�nÿ1�
2

�2br1�
n
2�1� kvkL2�; �3:15�

where kvkL2 denotes the L2-norm of v with respect to x1.

KaÈ hler-Einstein metrics with positive scalar curvature 11



Similarly, infM v � ÿ� n
nÿ1�

n�nÿ1�
2 �2br1�

n
2�1� kvkL2�. Then the lemma follows

from this, (3.15) and (3.13).

Lemma 3.8. We have

kvk2L2 �
n

nÿ 1

� �n�nÿ1�
2 2ne��2r1b�

n
2

k1
1� b

k1

� �
�3:16�

where n� is the lower bound of Dhx.

Proof. By Lemma 3.3, we have Dv� ne� � 0, therefore,Z
M
jDv� ne�jxn

1 � ne�V

It follows that

k1
V

Z
M
jvj2xn

1 �
1

V

Z
M
jrvj2xn

1 � 2ne�kvkC0

Then (3.16) follows from (3.12).

Proof of Proposition 3.1. First we improve the estimate of v in (3.12). We
may assume that � � 1 and r1 � 1.

Using (3.9) and (3.12), we have

1

V

Z
M
rv

p�1
2

��� ���2xn
1 �
�p � 1�2b
4pV

Z
M
jvjpxn

1;

where p � 1. Using the Solobev inequality, we deduce from this

1

V

Z
M
jvjn�p�1�nÿ1 xn

1

� � nÿ1
n�p�1�
� r1 kvkC0 � b�p � 1�

2

� �� � 1
p�1 1

V

Z
M
jvjpxn

1

� � 1
p�1

�3:17�
Substituting p in (3.17) by pi � n

nÿ1 �piÿ1 � 1� inductively, where p0 � 1 and
i � 0, we obtain

sup
M
jvj �

Y1
i�0

r1 kvkC0 � b�pi � 1�
2

� �� � 1
pi�1kvk

Q1
i�0

pi
pi�1

L1 �3:18�

Simple computations show

Y1
i�0

pi

pi � 1
� 1Q1

i�0
1� �nÿ1n �i
ÿ � � eÿn;

Y1
i�0

r1 kvkC0 � b�pi � 1�
2

� �� � 1
pi�1� 2n

nÿ 1

� �n�nÿ1�
2 b�1� kvkC0�

2

� �n
2

12 G. Tian



Therefore, by Lemma 3.6, we have

kvkC0 � C�n; k1; r1��1� khxk2C0�n�1�12eÿn �3:19�

We will always denote by C�n; k1; r1� a constant depending only on n; k1; r1.
In fact, the constant in (3.19) can be given explicitely.

Since 1
V

R
M ehx1xn

1 � 1, by (3.11) and (3.19), we have

khx1
kC0 � C�n; k1; r1��1� khxk2C0�n�1�12eÿn �3:20�

Let x; y be any two points in M , and let d�x; y� be the distance between
them with respect to the metric x1. If d�x; y� � 2�

1
2e
ÿn
, then it follows from

(3.20),

jhx1
�x� ÿ hx1

�y�j�������������
d�x; y�p � C�n; k1; r1��1� khxk2C0�n�1�14eÿn

:

On the other hand, if d�x; y� < 2�
1
2e
ÿn
, then by Lemma 3.4,

krhx1
kC0 � e2khxkC0 and consequently,

jhx1
�x� ÿ hx1

�y�j�������������
d�x; y�p � 2e2khxkC0�

1
4e
ÿn
:

Then the proposition follows.

Remark. The estimate in Proposition 3.1 can be improved as follows: let
G be the Green function of the metric x1. Suppose that
0 � G�x; y� � c=d�x; y�2nÿ2 and vol �Br�x�� � crn for any x; y 2 M and r > 0,

where c is some uniform constant. Then by the Green formula,

kvkC0 � supx2M
1

V

Z
M

Dv�y�G�x; y�xn
1�y�

���� ����
� supM

e�
V

Z
M

G�x; y�xn
1�y� �

1

V

Z
M
jDv� e�j�y�G�x; y�xn

1�y�
� �

� C
r2nÿ2 �� 1

V

Z
M
jDv� e�jxn

1

� �
� sup

M

b
V

Z
Br�x�

G�x; y�xn
1�y�

 !

� C�
r2nÿ2 � Cbr2

�3:21�

where C always denotes a constant depending only on c.
Choosing r � �

b

ÿ � 1
2n in (3.21), we deduce

khx1
kC0 � Cb

nÿ1
n �

1
n �3:22�

KaÈ hler-Einstein metrics with positive scalar curvature 13



Therefore,

khx1
k

C
1
2
� C�1� khxk2C0�nÿ1n �

1
2n �3:23�

The conditions on G and Br�x� are often satis®ed.

4 Proof of Theorem 1.6

By Proposition 2.1, we only need to prove the necessary part of Theorem
1.6, namely, if M has a KaÈ hler-Einstein metric xKE with Ric�xKE� � xKE

and no nontrivial holomorphic ®elds, then FxKE is proper.
Let x be any KaÈ hler metric in c1�M�. Using the fact that

Ric�xKE� � xKE, we can ®nd a function u1, such that xKE � x� @@u1, and
xn

KE � ehxÿu1xn.

Lemma 4.1. The ®rst nonzero eigenvalue k1;xKE is strictly greater than 1.

This is well-known and follows from the standard Bochner identity.
Consider complex Monge-Ampere equations

�x� @@u�n � ehxÿtuxn; x� @@u > 0; �4:1�t
where 0 � t � 1. Clearly, u1 is a solution of �4:1�1. By Lemma 4.1 and the
implicit function theorem, �4:1�t has a solution ut for t su�ciently close to 1.
In fact, it is known (cf. [BM]) that �4:1�t has a unique solution ut for any
t 2 �0; 1�. This is because Ix�ut� ÿ Jx�ut� is nondecreasing with t, and con-
sequently, the C3-norm of ut can be uniformly bounded.

Put xt � x� @@ut. Then x1 � xKE. Simple computations show that

hxt �ÿ�1ÿ t�ut � ct;
Ric�xt� � txt � �1ÿ t�x;

where ct is determined byZ
M

eÿ�1ÿt�ut�ct ÿ 1
� �

xn
t � 0:

In particular, we have jctj � �1ÿ t�kutkC0 . Also it follows that

Dhxt � n�1ÿ t� > 0 �4:2�

We apply Proposition 3.1 to each xt and obtain a KaÈ hler metric
x0t � xt � @@ut satisfying:

kutkC0 � e�1ÿ t�kutkC0 ;

khx0tkC
1
2
� C�n; k1;x0t ; rx0t��1� �1ÿ t�2kutk2C0�n�1�1ÿ t�b; �4:3�

where b � 1
4 eÿn. In particular, u1 � 0 and x01 � xKE.
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We choose lt by Z
M

ehxtÿut�ltxn
t � V �4:4�

Then by (4.3), jltj � e�1ÿ t�kutkC0 .
As before, there are wt such that xKE � x0t � @@wt and

xn
KE � e

hx0t
ÿwtx0t

n �4:5�

It follows from the maximum principle that

ut � u1 ÿ wt ÿ ut � lt � ct �4:6�

Hence, ut is uniformly equivalent to u1 as long as wt is uniformly bounded.
Consider the operator Ut : C2;12�M� 7!C0;12:

Ut�w� � log
�x1 ÿ @@w�n

xn
1

� �
ÿ hx0t ÿ w �4:7�

Its linearization at w � 0 is ÿDÿ 1, so it is invertible by Lemma 4.1. Then
by the implicit function theorem, there is a d > 0, which depends only on the
lower bound of k1;xKE ÿ 1, satisfying: if the HoÈ lder norm khx0tkC

1
2�x1�

with

respect to x1 is less than d, then there is a unique w such that Ut�w� � 0 and
kwk

C2;1
2�x1�
� Cd. Note that C always denotes a uniform constant.

We observe that

k1;x0 � 2ÿnÿ1k1;xKE ; rx0 � 2n�1rxKE ;

whenever 1
2xKE � x0 � 2xKE.

From now on, we will further assume that

C � C�n; 2ÿnÿ1k1;xKE ; 2
n�1rxKE�

We choose t0 such that

�1ÿ t0�b�1� �1ÿ t0�2kut0k2C0�n�1

� sup
t0�t�1

�1ÿ t�b�1� �1ÿ t�2kutk2C0�n�1

� d
4C�n; 2ÿnÿ1k1;xKE ; 2

n�1rxKE�

�4:8�

We may assume that Cd < 1
4. We claim that for any t 2 �t0; 1�,

kwtkC2;1
2�x1�

< 1
4. Assume that this is not true. Since w1 � 0, there is a t in
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�t0; 1� such that kwtkC2;1
2�x1�
� 1

4. It follows that
1
2xKE � x0t � 2xKE, so the

above arguments show that kwtkC2;1
2�x1�
� Cd < 1

4, a contradiction. Thus the

claim is established. It follows from (4.6) that for all t � maxft0; 1ÿ 1
4eg,

kutkC0 � �1ÿ 3e�1ÿ t��ku1kC0 ÿ 1 �4:9�

Since Ix�ut� ÿ Jx�ut� is nondecreasing (cf. [T1]), we have

FxKE�ÿu1� � ÿ Fx�u1�

�
Z 1

0

Ix�ut� ÿ Jx�ut�� �dt

�min 1ÿ t0;
1

4e

� �
Ix�ut0� ÿ Jx�ut0�
ÿ �

�min 1ÿ t0;
1

4e

� �
Ix�u1� ÿ Jx�u1�� � ÿ 20�1ÿ t0�2kut0kC0 ÿ 2

�4:10�

By the choice of t0 in (4.8), one can deduce from (4.10) that

FxKE �ÿu1� � min 1ÿ t0;
1

4e

� �
JxKE�ÿu1� ÿ C �4:11�

If 1ÿ t0 � 1
4e, then by (4.11),

FxKE�ÿu1� �
1

4ne
JxKE�ÿu1� ÿ C;

if 1ÿ t0 � 1
4e, then by (4.8), (4.11) and the fact that ku1kC0 � oscMu1,

FxKE�ÿu1� �
1

2

d
4C�n�
� � 1

2n�2�b JxKE�ÿu1�
�1� oscMu1�

2n�2
2n�2�b

ÿ C �4:12�

Thus we have proved

Theorem 4.3. Let �M ;xKE� be a KaÈhler-Einstein manifold without any holo-
morphic vector ®elds. Then FxKE is proper.

Clearly, Theorem 1.6 follows from Proposition 2.1 and Theorem 4.3.
Theorem 1.6 also has the following generalization. Let G be a maximal

compact subgroup in the identity component of Aut�M�. Let x be a G-
invariant KaÈ hler metric in c1�M� > 0. De®ne PG�M ;x� to be the set of
smooth, G-invariant functions u satisfying: x� @@u > 0. Then we have

Theorem 4.4. Let �M ;x� be given as above. Then M has a G-invariant KaÈhler-
Einstein metric if and only if Fx is proper on PG�M ;x�.

Its proof is exactly the same as that of Theorem 1.6, so we omit it.
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5 New inequalities

In this section, we derive some nonlinear inequalities on KaÈ hler-Einstein
manifolds. They generalize the Moser-Trudinger inequality on S2.

First let us give a corollary of (4.12). We de®ne P �M ;x; �� to be the set of
all u in P �M ;x� such that rxu � 1=�, where xu � x� @@u.
Theorem 5.1. Let �M ;xKE� be a KaÈhler-Einstein manifold without holo-
morphic vector ®elds. Then for any u in P�M ;xKE; ��,

FxKE�u� � a1;� JxKE�u�
b

2n�2�b ÿ a2;�; �5:1�

where a1;�, a2;� are constants, which depend only on n, � and the lower bound of
k1;xKE ÿ 1 from 0.

Proof. We will adopt the notations in (4.1)±(4.12), and use C to denote a
constant depending only on n and �.

By (4.12), we need to prove only that

oscMu1 � C 1� Ix�u1� ÿ Jx�u1�� �; �5:2�

where x � xKE � @@u. We note that u � ÿu1.
Notice that ÿDx�u1 ÿ infM u1� � n. By the Moser iteration and the fact

that rx � 1
�, one can derive

oscMu1 � C 1� 1

V

Z
M

u1 ÿ inf
M

u1

� �2

xn

 !1
2

0@ 1A
� C 1� oscMu1� �12 1

V

Z
M

u1 ÿ inf
M

u1

� �
xn

� �1
2

 ! �5:3�

Since Du1 � n, where D is the laplacian of xKE, we have

1

V

Z
M

u1 ÿ inf
M

u1

� �
xn

KE � sup
x

n
V

Z
M

Du1�y�G�x; y�xn
KE�y�

� �
;

where G��; �� denotes the Green function of xKE with infG�x; y� � 0. Hence,

1

V

Z
M

u1 ÿ inf
M

u1

� �
xn

KE � Ix�u1� � C �5:4�

Though we do not know yet if C is independent of M , it implies (5.1) with
constants possibly depending on M .

To make sure that a1;�, a2;� are independent of M , we need a uniform
bound on G��; ��. This uniform bound follows from Cheng and Li's heat
kernel estimates in [CL] (also see [BM]).
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Clearly, (5.2) follows from (5.3) and (5.4), so the theorem is proved.

Example. Since c1�M� > 0, one can embed M into CP N by a basis
H 0�M ;Kÿm

M � for m su�ciently large. Then there is a natural family of metrics
1
m r�xFS , where xFS is the Fubini-Study metric on CP N and r 2 SL�N � 1;C�.
The Sobolev inequality holds uniformly for these metrics, since r�M� is a
complex submanifold (cf. [Sim]). Let P L�M ;xKE�, where L � Kÿm

M , be the set
of u satisfying:

1

m
r�xFS � xKE � @@u; for some r 2 SL�N � 1;C�:

Then this set is contained in P �M ;xKE; �� for some � � ��m�.
In general, if �M ;x� is a KaÈ hler-Einstein manifold, nonzero holomorphic

®elds X correspond in one-to-one to the eigenfunctions w with eigenvalue 1,
namely, Dw � ÿw, and gKE�X ; Y � � Y �w� for any vector ®eld Y , where gKE is
the KaÈ hler-Einstein metric.

Theorem 5.2. Let �M ;xKE� be as above, and K1 be the space of the eigen-
functions of xKE with eigenvalue 1. Then for any function u 2 P �M ;xKE; ��
�� > 0� perpendicular to K1, i.e.,

R
M u � wxn

KE � 0 for any w 2 K1, we have

FxKE�u� � a1;� JxKE�u�
b

2n�2�b ÿ a2;�; �5:5�

where a1;�, a2;� are constants. They may depend only on n, � and the lower
bound of k1;xKE ÿ 1 from 0. Here k1;xKE denotes the ®rst nonzero eigenvalue of
xKE, which is greater than one.

Proof. Since u is perpendicular to K1, by the following proposition, there is
a smooth family of ut such that u1 � u and ut solves �4:1�t. Then Theorem
5.2 follows from the same arguments as in the proof of (4.12).

Proposition 5.3. For any u 2 P �M ;xKE� perpendicular to K1, there is a unique
family futg0�t�1 such that u1 � ÿu� c, where c is some constant, and ut
solves

�x� @@u�n � ehxÿtuxn; x� @@u > 0; �5:6�t;

where x � xKE � @@u.

Proof. In [BM], Bando and Mabuchi proved this under slightly stronger
conditions on u. Their result is good enough for proving uniqueness of
KaÈ hler-Einstein metrics, but not su�cient in our case. Nevertheless, their
arguments can be modi®ed to prove this proposition. For the reader's
convenience, we outline a proof here.

Put u1 � ÿu� c, where c is chosen such that
R

M eÿu�cxn
KE � V . Then u1

solves �5:6�1. It is known that any solution ut of �5:6�t for t < 1 can be
deformed into a family of solutions fusgs�t, where us solves �5:6�s. This is
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because I�us� ÿ J�us� is nondecreasing in s and dominates kuskC0 (cf. [BM],
[T1]). Therefore, we only need to show that �5:6�t has a solution near u1 for
1ÿ t su�ciently small. For this purpose, naturally, we apply the implicit
function theorem.

Write w � uÿ u1. Then �5:6�t becomes

log
�xKE � @@w�n

xn
KE

� �
� �1ÿ t�u1 ÿ tw: �5:7�t

Let P0 be the orthogonal projection from L2�M ;xKE� onto K1, and K0 be the
orthogonal complement of K1. By the assumption, u1 2 K0.

Consider the equation

�1ÿ P0� log
�xKE � @@�h� w0��n

xn
KE

� �� �
� �1ÿ t�u1 ÿ tw0; �5:8�t

where h 2 K1 and w0 2 K0. Its linearization at t � 1 and h � 0 is
�1ÿ P0��D� 1�, which is invertible on K0. Therefore, by the implicit function
theorem, for any h small and t close to 1, there is a unique w0t;h such that
h� w0t;h solves �5:8�t.

For any automorphism r of M , r�xKE is a KaÈ hler-Einstein metric, so
there is a unique function ur solving �5:7�1. One can easily show that any h
in K1 is of the form P0�ur� for some r, in particular, we may write
ur � h� w01;h.

Following [BM], we put w0t;h � w01;h � �1ÿ t�nt;h. Then �5:7�t is equivalent
to

1

1ÿ t
P0 log

�xKE � @@�h� w01;h � �1ÿ t�nt;h��n
�xKE � @@�h� w01;h��n

 ! !
ÿ h � 0: �5:9�t

Let us denote by C�t; h� the term on the left side of �5:9�t. Then C�1; 0� � 0
and

C�1; h� � P0�Dhn1;h� ÿ h; �5:10�

where Dh is the Laplacian of xKE � @@�h� w01;h�.
Di�erentiating �5:8�t on t at t � 1 and h � 0, we have

Dn1;0 � n1;0 � u1: �5:11�

Using (5.11) as in [BM], one can compute

D2C�1; 0��h�h0 � ÿ 1

V

Z
M

1� 1

2
Du1

� �
hh0xn

KE �5:12�
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If this derivative D2C�1; 0� is invertible, then �5:9�t is solvable for t su�-
ciently close to 1. Therefore, there is a family of solutions ut of �5:6�t such
that u1 � ÿu� c for some constant c.

In general, one can use a trick in [BM]. For any small d, de®ne
xd � �1ÿ d�x� dxKE. Then xd � xKE � �1ÿ d�@@u. Let Cd�t; h� be the left
side of �5:9�t with u replaced by �1ÿ d�u. Then

D2Cd�1; 0� � �1ÿ d�D2C�1; 0� ÿ Id

This implies that D2Cd�1; 0� is invertible on K1 for d 6� 0 su�ciently small.
Therefore, there are ud

t solving �5:6�t with x replaced by xd and satisfying
ud

t � ÿ�1ÿ d�u� cd for some constant cd.
On the other hand, because of the monotonicity of Ixd ÿ Jxd , we have

Ixd ud
t

ÿ �ÿ Jxd ud
t

ÿ �
� Ixd ud

1

ÿ �ÿ Jxd ud
1

ÿ �
� JxKE �1ÿ d�u� � � C:

Note that C always denotes a uniform constant. Hence, as mentioned at the
beginning of Sect. 4, the C3-norm of ud

t can be uniformly bounded. It
follows that ud

t converges to a solution of �5:6�t as d goes to zero. The
proposition is proved.

Corollary 5.4. Let �M ;xKE�, P0 and K1 be as above. For any u 2 P �M ;xKE�,
there is a unique r�u� ur, where r 2 Aut0�M�, such that r�xKE �
xKE � @@ur;

R
M�r�u� ur�xn

KE � 0, and P0�r�u� ur� � 0.

This follows from Proposition 5.3 and the fact that the solution of �5:6�t
is unique for any t < 1.

The inequality (5.5) is not sharp. In fact, we expect

Conjecture 5.5. If M has a KaÈhler-Einstein metric xKE with positive scalar
curvature, then there is an d > 0 such that

FxKE�u� � d
Z

M
u�xn

KE ÿ �xKE � @@u�n� ÿ Cd �5:13�

for any u 2 P �M ;xKE� perpendicular to K1, where Cd is a constant, which
may depend on d.

This can be regarded as a fully nonlinear generalization of the Moser-
Trudinger inequality. In the case M � S2, if we choose x to be the canonical
metric, the inequality becomesZ

S2

eÿ'!n � C0�e�
1
2ÿ��
R
S2
@'^@'ÿ

R
M
'!n
:

This was proved by Aubin (cf. [Au2], [OPS], [CY]).
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A weaker form of Conjecture 5.5 will follow, if one can show that there is
a t0 2 �0; 1� such that for any t � t0, kwtkC0 � 1

2 kukC0 � C for any solution
wt of (4.5).

Finally, we derive an inequality involving the K-energy. We will use this
inequality in the following sections.

Let us ®rst recall the de®nition of Mabuchi's K-energy mx: let
futg0�t�1 � P �M ;x� be any path with u0 � 0 and u1 � u, then

mx�u� � ÿ 1

V

Z 1

0

Z
M

_ut�Ric xt� � ÿ xt� ^ xnÿ1
t ^ dt

where xt � xut
� x� @@ut. Mabuchi proved [Ma] that the above integral

depends only on u. In fact, it was observed in [T3] that

mx�u� � 1

V

Z
M

log
xn
1

xn

� �
xn
1 � hx xn ÿ xn

1

ÿ �� �
ÿ 1

n
�Ix�u� ÿ Jx�u�� �5:14�

A simple computation shows (cf. [DT2]):

Fx�u� � mx�u� � 1

V

Z
M

hxux
n
u ÿ

1

V

Z
M

hxxn �5:15�

Since
R

M ehxu xn
u � V , by the concavity of the logrithmic function, we have

1
V

R
M hxux

n
u � 0. Hence, we deduce from Theorem 5.3,

Theorem 5.5. Let �M ;xKE� be as above, and K1 be the space of the ®rst
nonzero eigenfunctions of xKE. Then for any function u 2 P �M ;xKE; �� per-
pendicular to K1, we have

mxKE �u� � a1;� JxKE�u�
b

2n�2�b ÿ a2;�; �5:16�

where a1;�; a2;� are as above.
Similarly, there is an analogue of Theorem 1.6 by replacing Fx by the K-

energy of Mabuchi.

6 Proof of Theorem 1.2

In this section, we introduce the notion of K-stability, which appeared in
De®nition 1.1. We will then prove Theorem 1.2. The proof here is the
re®nement of that for the main theorem in [DT1].

An almost Fano variety Y is an irreducible, normal variety, such that for
some m, the pluri-anticanonical bundle Kÿm

Yreg extends to be an ample line
bundle over Y , where Yreg is the regular part of Y .

Obviously, if Y is smooth, then Y is almost Fano if and only if c1�Y � > 0.
There are two important cases of almost Fano varieties: (1) Y has a reso-
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lution ~Y , such that the anticanonical bundle Kÿ1~Y
is nef and ample outside

the exceptional divisor; (2) Y is an irreducible, normal subvariety in some
CP N , which is the limit of a sequence of compact KaÈ hler manifolds Yi in CP N

with c1�Yi� > 0.
Let Y be an almost Fano variety. We recall the de®nition of the gener-

alized Futaki invariant fY as follows: let L be the ample line bundle over Y ,
which extends Kÿm

Reg �Y� for some m, where Reg (Y) is the regular part of Y ,
then for l su�ciently large, any basis of H 0�Y ; Ll� gives rise to an embedding
/ of Y into some CP N , and consequently, the Fubini-Study metric xFS on
CP N induces an admissible metric x (cf. [DT1], p317), i.e., x � 1

ml /
�xFS .

If p : ~Y 7! Y is any smooth resolution, then det�p�m induces a section of
p�L
 Km

~Y
, which does not vanish on pÿ1�Reg(Y)�. It follows that

Kÿm
~Y � p�L� E;

where E supports in exceptional divisors of ~Y . Therefore, there is a function
hx such that in the weak sense,

Ric�x� ÿ x �
�������ÿ1p

2p
@@hx; on Y �6:1�

We denote by g�Y � the Lie algebra of all admissible holomorphic vector
®elds on Y . A vector ®eld v is called admissible, if it generates a family of
automorphisms /v�t� of Y such that /v�t��L � L.

It is shown in [DT1] that the integral

fY �v� �
Z

Y
v�hx�xn;

is well de®ned, where v 2 g�Y � is any admissible holomorphic ®eld on Y .
Following Futaki's arguments in [Fu1], they prove in [DT1] that fY is in-
dependent of particular choices of x and a character of the Lie algebra g�Y �
of holomorphic vector ®elds.

In fact, fY �v� can be calculated by using a residue formula of Atiyah-
Bott-Lefschetz type, at least in the case that singularities of Y are not too
bad. Such a residue formula depends only on the ®xed-point set of v (cf.
[Fu2], Theorem 5.2.8 and [DT1], Proposition 1.2).

Now let p : W 7!D be a special degeneration of a Fano manifold M .
Then Y � W0 is an almost Fano variety with an admissible holomorphic
®eld vW . We need to study fY �vW �.

Since W is special, there is an embedding of W into CP N � D, such that
p�1H extends det�TW jD� over the regular part of W , where TW jD is the
relative tangent bundle of Reg�W � over D, H is the hyperplane bundle over
CP N and pi is the projection onto the ith-factor. For simplicity, we may
assume that W � P N � D. The vector ®eld vW induces a one-parameter al-
gebraic subgroup G � fr�t�gt2C� � SL�N � 1;C�, such that r�t��M� � Wt for
0 < jtj < 1 and r�t��Y � � Y .
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Let v be the holomorphic vector ®eld associated to G, i.e., v � ÿr0�1�.
Then v 2 g�CP N � and vjY � vW . Since @�i�v�xFS� � 0, there is a smooth
function hv on CP N such that @hv � 1

m i�v�xFS .
We put xt � 1

m xFS jWt
. Then xt induces a KaÈ hler metric gt on Wt. Let rt

be the (1,0)-gradient of xt, i.e., gt�rtw; u� � @w�u� for any function w and
tangent vector u on Xt.

Now we can start to prove Theorem 1.2. Let xKE be the metric on M with
Ric�xKE� � xKE, there are ut and automorphisms s�t� of M , such that

s�t��r�t��xt � xKE � @@ut; xn
KS � ehs�t��r�t��xtÿuts�t��r�t��xn

t ; ut ? K1;

where K1 is the eigenspace of xKE with eigenvalue one.

Lemma 6.1. Assume that W is non-trivial. Then kutkC0 diverges to the in®nity
as t tends to zero.

Proof. We prove it by contradiction. If kutkC0 are uniformly bounded, then
r�t� � s�t� : M 7!Wt converges to a holomorphic map W : M 7!W0. For any
w 2 W0, if Wÿ1�w� is of complex dimension greater than zero, then for any
small neighborhood U of w, r�t��Wÿ1�w�� � U so long as t is su�ciently
small. This is impossible, since W is projective. Similarly, using the fact that
W0 is a ®ber of W of simple multiplicity, one can show that Wÿ1�w� has at
most one component. Therefore, W is a biholomorphism, and consequently,
W is trivial, a contradiction! The lemma is proved.

Remark. In the above proof, we do not assume that W0 is irreducible, but I
need each component of W0 has multiplicity one.

As in last section, let mxKE be the K-energy of Mabuchi. First we observe
that all these ut are in P�M ;xKE; �� for some small � > 0 (cf. the example
after Theorem 5.1). This implies that JxKE�ut� dominates utk kC0 . Therefore,
by Theorem 5.5 and Lemma 6.1, mxKE�ut� diverges to the in®nity when t
tends to zero.

Put t � eÿs, then t � 1 when s � 0, and t 7! 0 as s 7! �1. We de®ne ws
by

r�t��xt � xKE � @@ws; xn
KE � ehr�t��xtÿwsr�t��xn

t :

Then, using the invariance of the K-energy under automorphisms (cf. [BM]),
we have

mxKE�ut� � mxKE�ws� � ÿ
1

V

Z s

0

du
Z

M

_w Ric� ~xu� ÿ ~xu� � ^ ~xnÿ1
u ;

where t � eÿs, ~xu � r�eÿu��xeÿu and _w denotes the derivative @ws
@s .

By the de®nition of ws, one can deduce that _w � r�t��Re�hv� � c for
some constant c. It follows that
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d
ds

mxKE�ws�� � � Re
1

V

Z
Wt

rthv�hxt�xn
t

� �
: �6:2�

It is proved in [DT1] that

lim
t!1

1

V

Z
Wt

�rthv��hxt�xn
t � fW0

�vW �; �6:3�

consequently, Re�fW0
�vW �� � 0 (cf. [DT1]).

The following proposition provides an estimate on the convergence rate
in (6.3).

Proposition 6.2. Let W ; Wt and r�t� be as above. Then there are positive
numbers C; c, which may depend on W , such that

lim
t!1

1

V

Z
Wt

�rthv��hxt�xn
t ÿ fW0

�vW �
���� ���� � Cjtjc �6:4�

Proof. Let p : ~W 7!W be a smooth resolution. Then pÿ1�Wt� is boholo-
morphic to Wt for any t 6� 0. Let L be the extension of the relative pluri-
anticanonical bundle Kÿm

W jD. Then

Kÿm
~W � p�L� E;

where E supports in the exceptional divisors of the resolution p : ~W 7!W .
As above, we may assume that W � CP N � D and p�1H �L, where H is

the hyperplane bundle over CP N . Then for any ®xed KaÈ hler metric ~x on ~W ,
there is a hermitian norm k � k on E, such that

Ric� ~x� � 1

m
p�p�1xFS ÿ @@ log kSk2
� �

; �6:5�

where S is the de®ning section of E.
We de®ne

h � log
kSkÿ2

m ~xn�1

p�p�1x
n
FS ^ dt ^ dt

 !
: �6:6�

Then by (6.5), we have that hjWt
� hxt � ct, where ct is some constant.

Clearly, h descends to be a smooth function on the regular part of W .
Moreover, one can easily show that hjWt

is uniformly L2-bounded with
respect to xt.

It follows from (6.6) that there is a d > 0 such that

jrhj�x� � jtjÿ1
2; for any x 2

[
jt0 j�jtj

Wt0

0@ 1A�Bjtjd�Sing�W0��;
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where Br�F � denotes the r-neighborhood of the subset F in W with respect to
the metric xFS . Therefore, we have

1

V

Z
Wt

rthv�hxt�xn
t ÿRe

1

V

Z
W0

vW �hx0
�xn

0

� ����� ����
� 1

V

Z
Wt

h

���� ����
Wt

Dthvx
n
t ÿ

1

V

Z
W0

h W0
D0hvx

n
0

�� ��
� C jtj12 � vol�Bjtjd�Sing�W0���

1
2

� �
Then the proposition follows.

Now we can ®nish the proof of Theorem 1.2: if Re�fW0
�vW �� � 0, then by

Proposition 6.2,

d
ds

mxKE�ws�
���� ���� � Ceÿcs;

it follows that mxKE �ueÿs� � mxKE�ws� is bounded as s goes to �1. This
contradicts to what we have shown before, i.e., mxKE�ueÿs� diverges to the
in®nity as s goes to �1. Therefore, Re�fW0

�vW �� > 0, Theorem 1.2 is
proved.

Remark 6.3. If M admits continuous families of automorphisms, the lifting
holomorphic vector ®eld vW is not unique. However, the generalized Futaki
invariant fW0

�vW � is independent of liftings, whenever M has a KaÈ hler-
Einstein metric.

Remark 6.4. In fact, the above arguments show that mxKE is proper on the
family futg0<jtj�1 if and only if Re�fW0

�vW �� > 0. Similar statement can be
made for FxKE . This indicates that Conjecture 1.4 should be true.

Remark 6.5. I expect that the K-stability can be also de®ned in terms of
subsheaves of Kÿm

M . Choose m such that Kÿm
M is very ample. Given any basis

s0; � � � ; sN of H 0�M ;Kÿm
M �, we have an embedding of M into PH0�M ;Kÿm

M ��.
Let fr�t�g be the one-parameter subgroup of SL�N � 1;C� de®ned by
r�t��si� � tki si, where k0 � � � � � kN . Assume that the limit M1 of r�t��M� is
normal. Then, in principle, fM1�ÿr0�1�� can be calculated in terms of Fi

and ki (0 � i � N ), where Fi is the subsheaf of Kÿm
M generated by s0; � � � ; si.

But I do not have an explicit formula yet.

7 Counter examples

In this section, we study a family of special Fano 3-folds and construct a
counterexample to the long-standing conjecture stated in Sect. 1. I learned
from Mukai the construction of those 3-folds during a conference on al-
gebraic geometry in Tokyo, 1990. They were ®rst constructed by Iskovskih.
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Those 3-folds have the same cohomology groups as CP 3 does. One of those
3-folds was studied by Mukai and Umemura in [MU], this particularly
interesting manifold is a compacti®cation of SL�2;C�=C, where C is the
icosahedral group.

Let us recall Mukai's construction of those manifolds. The complex
Grassmannian G�4; 7� consists of all 4-subspaces in C7. For any 3-dimen-
sional subspace P in ^2C7, we de®ne a subvariety XP as follows:

XP � fE 2 G�4; 7�jpE�P � � 0g; �7:1�

where pE denotes the orthogonal projection from ^2C7 onto ^2E0, and E0 is
the orthogonal complement of E. We say that XP is non-degenerate if no
sections of H 0�G�4; 7�;Q� vanish identically on XP . This is true for generic XP .

When XP is smooth and non-degenerate, the normal bundle of XP in
G�4; 7� is the restriction of ^2Q� ^2Q� ^2Q to XP , where Q denotes the
universal quotient bundle over G�4; 7�. It follows that c1�XP � � c1�Q�jXP

,
consequently, c1�XP � > 0.

Again we assume that XP is smooth and non-degenerate. Then one can
show that H i�XP ;^jQ� � 0 for any i � 1 and j � 1; 2. Hence, by the Ri-
emann-Roch Theorem, h0�XP ;Q� � 7 and h0�XP ;^2Q� � 18. Now we can
identify the Lie algebra g�XP � of holomorphic vector ®elds on XP . Any v in
g�XP � induces a one-parameter family of automorphisms Ut of XP . Using
non-degeneracy of XP , one can show that H0�XP ;Q� � H 0�G�4; 7�;Q� � C7.
Therefore, Ut corresponds to a linear transformation on C7. Clearly, this
linear transformation induces an action on ^2C7 which preserves P .
Therefore, we can identify g�XP � with the set of matrices in sl�7;C� whose
induced action on ^2C7 preserves P . Note that for any A in sl�7;C�, the
induced action on ^2C7 is given by

A�ei ^ ej� � A�ei� ^ ej � ei ^ A�ej�; i 6� j;

where ei are euclidean basis of C7.
Take P0 to be the subspace spanned by bi-vectors

u1 �3e1 ^ e6 ÿ 5e2 ^ e5 � 6e3 ^ e4;

u2 �3e1 ^ e7 ÿ 2e2 ^ e6 � e3 ^ e5;

u3 �e2 ^ e7 ÿ e3 ^ e6 � e4 ^ e5:

It is easy to check that P0 is invariant under the group, whose Lie algebra
is generated by matrices

A1 � diag�3; 2; 1; 0;ÿ1;ÿ2;ÿ3�;
A2 � fb2ijg1�i;j�7; where b2ij � 1 for jÿ i � 1 and 0 otherwise ;

A3 � fb3ijg1�i;j�7; where b321 � b376 � 3; b332 � b365 � 5; b343 � b354 � 6;

all other b3ij � 0;
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These three matrices generate a Lie algebra which is isomorphic to
sl�2;C�:

To see that XP0 is smooth, we notice that for any E 2 XP0 , r�t��E� con-
verges to one of the following 4-subspaces:

fe1; e2; e3; e4g; fe1; e3; e4; e5g;
fe3; e5; e6; e7g; fe4; e5; e6; e7g;

where r�t� � diag �tÿ3; tÿ2; tÿ1; 1; t; t2; t3� is the one-parameter subgroup
generated by A1. It is straightforward to check that XP0 is smooth at these
points. It follows that XP0 is smooth. Similarly, one can show that XP0 is non-
degenerate. Hence, g�XP0� � sl�2;C�. This Lie algebra is semi-simple, so the
Futaki invariant is identically zero.

Now we take Pa be the subspace generated by ui �
P

j�k�7�i aijkej ^ ek,
where i � 1; 2; 3, and a � faijkg. Clearly, limt!0 r�t��Pa� � P0.

For any a, we have a special degeneration Wa �
S
jtj�1 r�t��XPa� of XPa . In

particular, each Xa is smooth and non-degenerate.
Obviously, for a generic a, g�XPa� � f0g. However, by Theorem 1.2, XPa

does not admit any KaÈ hler-Einstein metric. This disproves the long-standing
conjecture (Corollary 1.3).

Let us discuss more on X � XP0 . Recall that r�t� acts naturally on the
space H1�X ; TX � of in®nitesimal deformations. For each small a, XPa cor-
responds to a point, say na, in H 1�X ; TX �. Then Xr�t��Pa� corresponds to
r�t��na�, which converges to 0 as t goes to zero. Let v be the holomorphic
vector ®eld on X associated to r�t�, i.e., v � ÿr0�1�, then the Lie bracket
�na; v� lies in the positive part E��ad�v�� of ad�v� in H 1�X ; TX �, where
ad�v��n� � �n; v� for any n in H 1�X ; TX �. Note that for any linear auto-
morphism T of a vector space V , the positive part E��T � is the subspace
generated by those vectors n in V satisfying: for some i > 0, T in 6� 0 and
�T ÿ k�T in � 0 for some k with Re�k� > 0.

Thus we have a triple �X ; v; na� such that v 2 H0�X ; TX �,
na 2 E��ad�v�� � H 1�X ; TX � and the Futaki invariant Re�fX �v�� � 0.

Inspired by this, we give a general de®nition.

De®nition 7.1. An obstruction triple �X ; v; n� consists of a manifold X with
c1�X � > 0, a holomorphic vector ®eld v on X with Re�fX �v�� � 0 and an in-
®nitesimal deformation n in E��ad�v�� � H 1�X ; TX �.

One can also de®ne more general obstruction triples by only assuming
that X is an almost Fano variety.

It follows from Theorem 1.2 that

Theorem 7.2. Let W 7!D be a special degeneration of M . Let n be the cor-
responding in®nitesimal deformation at W0. If �W0; vW ; n� is an obstruction
triple, then M has no KaÈhler-Einstein metrics.

Therefore, in order to ®nd M without any KaÈ hler-Einstein metrics, we
only need to look for obstruction triples.
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It is easy to check that there are no 2-dimensional obstruction triples.
Here the dimension of �X ; v; n� is de®ned to be dimC X . The above XP0 gives
rise to an example of 3-dimensional obstruction triples. In general, let X be
any KaÈ hler-Einstein manifold with a holomorphic vector ®eld v, if the ac-
tion ad�v� on H 1�X ; TX � is nontrivial, then we can construct an obstruction
triple of the form �X ;�v; n�, consequently, the deformation of X along n has
no KaÈ hler-Einstein metrics.

8 CM-stability

In this section, we show the connection between the existence of KaÈ hler-
Einstein metrics and the CM-stability on algebraic manifolds. The basic
ideas have been presented in [T3], [T4]. Here we con®ne ourselves to the case
of Fano manifolds.

Let p : X 7! Z be a SL�N � 1;C�-equivariant holomorphic ®bration be-
tween smooth varieties, satisfying:

(1) X � Z � CP N is a family of subvarieties of dimension n, moreover,
the action on X is induced by the canonical action of G � SL�N � 1;C� on
CP N ;

(2) Let L be the hyperplane bundle over CP N , then Kÿ1pÿ1�z� � lLjpÿ1�z� for
some rational number l > 0, and each z 2 Z0, where Z0 is the subvariety of Z
consisting of those smooth ®bers with positive ®rst Chern class. Clearly, Z0
is G-invariant;

Consider the virtual bundle

E � �n� 1��Kÿ1 ÿK� 
 �p�2Lÿ p�2L
ÿ1�n ÿ nl�p�2Lÿ p�2L

ÿ1�n�1; �8:1�

where K � KX 
 Kÿ1Z is the relative canonical bundle, and pi is the re-
striction to X of the projection from Z � CP N onto its ith-factor.

We de®ne LZ to be the inverse of the determinant line bundle det�E; p�.
A straightforward computation shows:

chn�1�n� 1��Kÿ1 ÿK� 
 �p�2Lÿ p�2L
ÿ1�n ÿ nl�p�2Lÿ p�2L

ÿ1�n�1

� 2n�1��n� 1�c1�Kÿ1�p�2c1�L�n ÿ nlp�2c1�L�n�1� �8:2�

Therefore, by the Grothendick-Riemann-Roch Theorem,

c1�LZ� � 2n�1p1� �n� 1�c1�K�p�2c1�L�n � nlp�2c1�L�n�1
� �

�8:3�

We also denote by Lÿ1Z the total space of the line bundle Lÿ1Z over Z. Then
G � SL�N � 1;C� acts naturally on Lÿ1Z . Recall that Xz � pÿ1�z� (z 2 Z0) is
weakly CM-stable with respect to L, if the orbit G � ~z inLÿ1Z is closed, where
~z is any nonzero vector in the ®ber of Lÿ1Z over z; If, in addition, the stablizer
Gz of z is ®nite, then Xz is CM-stable. We also recall that Xz is CM-semi-
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stable, if the 0-section is not in the closure of G � ~z. Clearly, this G-stability
(resp. G-semistability) is independent of choices of ~z.

Theorem 8.1. Let p : X 7! Z be as above. Assume that Xz has a KaÈhler-Einstein
metric, where z 2 Z0. Then Xz is weakly CM-stable. If Xz has no nontrivial
holomorphic vector ®elds, it is actually CM-stable with respect to L.

Remarks. 1) Similar results hold for manifolds with nef canonical bundle (cf.
[T5]); 2) If LZ is ample over Z, then Z can be embedded into PH 0�Z; Lm

Z �� for
some m > 0. The group G acts naturally on this projective space. Then the
CM-stability is the same as the stability of z in PH 0�Z; Lm

Z �� with respect to G
(cf. [Mum]); 3) One can generalize Theorem 8.1 slightly. More precisely, if
p : X 7! Z is a SL�N � 1;C�-equivaraint ®bration as above, except that some
®bers may have dimension higher than n. De®ne Lÿ1Z and G as in Theorem
8.1. Put Zh to be the subvariety of Z consisting of all ®bers with dimension
> n. Clearly, Zh has codimension at least 2. By the same arguments as in the
proof of Theorem 8.1, one can show that the orbit G � ~z is closed in ZnZh if Xz

has a KaÈ hler-Einstein metrics. Under further assumptions on Z, one can
deduce the CM-stability of Xz in this more general situation. This general-
ization is not substantial, but often useful (see the following example).

Example 8.2. Let us apply Theorem 8.1 to giving an alternative proof of
Corollary 1.3. We will adopt the notations in Sect. 7.

Recall that W � G�4; 7� consists of all 4-subspaces in C7. Let Q be its
universal quotient bundle.

Let pi (i � 1; 2) be the projection from W � G�3;H0�W ;^2Q�� onto its
ith-factor, and let S be the universal bundle over G�3;H 0�W ;^2Q��. Then
there is a natural endomorphism over W � G�3;H0�W ;^2Q��

U : p�2S 7! p�1 ^2 Q; U�v�j�x;P � � vx 2 ^2Q: �5:4�

Naturally, one can regard U as a section in p�2S
� 
 p�1�^lQ�.

We de®ne

X � f�x; P� 2 W � G�3;H 0�W ;^2Q�� jU�x; P � � 0g:

One can show that X is smooth.
If L � det�Q�, then c1�L� is the positive generator of H 2�W ;Z�.
Consider the ®bration p � p2jX : X 7! Z, where Z � G�3;H 0�W ;^2Q��.

Its generic ®bers are smooth and of dimension 3. Then Z0 parametrizes all
Fano 3-folds XP (cf. Sect. 7).

Using the Adjunction Formula, one can show

c1�K� � ÿp�1c1�L� ÿ 3p�2c1�S�:

Therefore, it follows that
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c1�LZ� � 16p� 12p�2c1�S��p�1c1�L�3 ÿ p�1c1�L�4
� �

:

One can show that LZ is ample.
By the de®nition of Pa, one can show that none of G � Pa is closed in ZnZh.

Therefore, by the above Remark 3), any generic XPa admits no KaÈ hler-
Einstein metrics, so Corollary 1.3 is reproved.

Now we prove Theorem 8.1. For simplicity, we assume that Xz has no
nontrivial holomorphic vector ®elds. The general case can be proved simi-
larly without di�culities. We will start with an analytic criterion for sta-
bility.

Lemma 8.3. Let k � kZ be any ®xed hermitian metric on Lÿ1Z . Given any z in Z0.
We de®ne a function on G by

F0�r� � log kr�~z�kZ� �; r 2 G �8:4�

where ~z is any lifting of z in Lÿ1Z . Then Xz is CM-stable if and only if F0 is
proper on G.

The proof of this lemma is simple and is left to readers (cf. [T4]).
Let x be the KaÈ hler form of the KaÈ hler-Einstein metric on Xz. Then the

K-energy mx (cf. (5.15)) induces a functional Dx on G: let xFS be the Fubini-
Study metric on CP N , for any z0 2 Z0, we put xz0 to be the restriction of xFS

to Xz0 , then Dx�r� � mx�r��xr�z���.
Let h be the pull-back metric on p�2L over X from the standard hermitian

metric on the hyperplane bundle over CP N . Then the curvature p�2xFS of h
restricts to the KaÈ hler metric xz0 on each Xz0 , and consequently, a hermitian
metric kX on the relative canonical bundle K over pÿ1�Z0�. We denote by
RXjZ the curvature form of kX.

Lemma 8.4. [T4] De®ne GX to be the variety f�r; x�jx 2 r�X �g in G� CP N .
Then for any smooth 2�dimC Gÿ 1�-form / with compact support in G,

ÿ
Z

G
Dx�r�@@/

Z
GX
ÿp�z RXjz ÿ nl

n� 1
p�2xFS

� �
^ p�2x

n
FS ^ p�1/; �8:5�

where pz is the map: GX 7!X, assigning �r; x� to x in r�X � � X.
Proof. For the reader's convenience, we outline its proof here.

De®ne W : G� X 7!GX by assigning �r; x� to �r; r�x��. We have
hermitian metrics ~h � W�h on W�p�2L and ~k � W�kX on p�2KX . Then (8.5)
becomes

ÿ
Z

G
Dx�r�@@/ �

Z
G�X

ÿR�~k� ÿ nl
n� 1

R�~h�
� �

^ R�~h�n ^ p�1/ �8:6�

where R��� denotes the curvature form.
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Let h0 be a hermitian metric on LjX with x � R�h0�. De®ne functions ut
on G� X by

ut�r; x� � t log
~h�r; x�
h0�x�

 !
and ~ht � eut h0

Then ~h1 � ~h and ~h0 � p�2h0. Notice that the curvature R�~ht� restricts to a
KaÈ hler metric on r� X for each r. Therefore, ~ht induces a hermitian metric
~kt on p�2KX such that ~k1 � ~k and ~k0 is independent of r.

We have

ÿ
Z

G
Dx r� �@@/

�
Z

G
@@/ r� � ^

Z 1

0

Z
X

@

@t
ut r; x� � ÿnR ~kt

ÿ �ÿ nlR ~ht
ÿ �ÿ � ^ R ~ht

ÿ �nÿ1^dt

�
Z 1

0

Z
G�X

@

@t
ut ÿnR ~kt

ÿ �ÿ nlR ~ht
ÿ �ÿ � ^ R ~ht

ÿ �nÿ1^@@p�1/ ^ dt

�
Z 1

0

Z
G�X

p�1/ ^ @@
@

@t
ut

� �
^ ÿnR ~kt

ÿ �ÿ nlR ~ht
ÿ �ÿ � ^ R ~ht

ÿ �nÿ1 ^ dt

�
Z 1

0

Z
G�X

p�1/ ^ ÿR ~kt
ÿ � ^ @

@t
R ~ht
ÿ �nÿ nl

n� 1

@

@t
R ~ht
ÿ �n�1

� �
^ dt

�
Z

G�X
p�1/ ^ ÿR ~k

ÿ �ÿ nl
n� 1

R ~h
ÿ �� �

^ R ~h
ÿ �n

�
Z 1

0

Z
G�X

p�1/ ^
@

@t
R ~kt
ÿ � ^ R ~ht

ÿ �n ^ dt

�8:7�

However,

@

@t
R ~kt
ÿ ��r; x� � @@ Dr;tut

ÿ ��r; x�;
where Dr;t denotes the Laplacian of the KaÈ hler metric induced by R�~ht�jr�X ,
so the last integral in (8.7) vanishes by integration by parts. Then (8.5)
follows from (8.6), (8.7).

Lemma 8.5. Let gX and gZ be hermitian metrics on canonical bundles K and
KZ , respectively. Then

RXjZ � R�gX� ÿ R�gZ� � @@w on XnfxjIm�dp�x�� 6� Tp�x�Zg �8:8�

where w is a smooth function on XnfxjIm�dp�x�� 6� Tp�x�Zg satisfying
supw <1.
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Proof. For any x such that Im�dp�x�� � Tp�x�Z, we will de®ne w�x� as fol-
lows: choose sX in KXjx and sZ in KZ jp�x�, such that gX�sX; sX��x� � 1 and
gZ�sZ ; sZ��p�x�� � 1. Since dpjx : TxX 7! Tp�x�Z is surjective, there is a unique
vector s of Kx such that s � �dp���sZ� � sX. We simply de®ne
w�x� � ÿ log kX�s; s��x�. Clearly, supw <1 and w�x� diverges to ÿ1 as x
tends to any point where dp is not surjective.

We can also write

w�x� � ÿ log kXp�gZ

gX

� �
�8:9�

Then (8.8) follows easily.

Corollary 8.6. For any smooth 2�dimC Gÿ 1�-form / with compact support in
G, we have

ÿ
Z

G
Dx@@/�

Z
G

wZ@@/

�
Z

GX
ÿR�gX� � R�gZ� ÿ nl

n� 1
p�2xFS

� �
p�2x

n
FS ^ p�1/

�8:10�

where wZ is a smooth function on Z0, moreover, wZ is bounded from above and
for any z 2 Z0,

wZ�z� �
Z

Xz

wxn
FS ;

consequently, w extends to a continuous function outside the set of points
where Xz contains a component of multiplicity > 1. Furthermore, if Xz contains
a component of multiplicity > 1, wZ�z0� diverges to in®nity as z0 7! z.

This follows directly from Lemma 8.4, 8.5.
Let U be the push-forward current

p� ÿR�gX� � R�gZ� ÿ nl
n� 1

p�2xFS

� �
^ p�2x

n
FS

� �
Then 2n�1�n� 1�U represents the Chern class of Lÿ1Z . Therefore, there is a
function hZ , which is smooth in Z0, such that in the weak sense,

U � 1

�n� 1�2n�1 R�k � kZ� � @@hZ ; on Z �8:11�

Lemma 8.7. The function hZ is HoÈlder continuous.

Proof. First we prove the following: there are uniform constants d;C > 0,
such that for any point z0 2 Z, and r � 1,
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r2ÿ2b
Z

Br�z0�
jtrxZ Uj

�������ÿ1p

2p
xZ

 !b

� Crd �8:12�

where b � dimC Z, xZ is a ®xed KaÈ hler metric on Z, and Br�z0� is the ball of
xZ with radius r and center at z0. Using the de®nition of U, one can deduce
(8.12) from the following: for any r � 1 and z0 2 ZnZh,

r2ÿ2b
Z

pÿ1�Br�z0��

�������ÿ1p

2p
xFS

 !n�1
^

�������ÿ1p

2p
p�xZ

 !bÿ1
� Crd �8:13�

To prove this, we choose local coordinates t1; � � � ; tb such that
z0 � �0; � � � ; 0�. Without loss of the generality, we may further assume that
xZ is just the euclidean metric on Br�z0� � Cb. We denote by Bi

r�z0� the
intersection of Br�z0� with the hyperplane fti � 0g (i � 1; � � � ; b). Then

r2ÿ2b
Z

pÿ1�Br�z0��

�������ÿ1p

2p
xFS

 !n�1
^

�������ÿ1p

2p
p�xZ

 !bÿ1

� C
Xb

i�1
supjajj�r;j6�i

Z
pÿ1�ftj�ajg�

�������ÿ1p

2p
xFS

 !n�1
;

where C is a uniform constant. Hence, it su�ces to show (8.13) in the case of
b � 1.

When b � 1, p is a holomorphic function on pÿ1�Br�z0��. Since each ®ber
pÿ1�z� is a compact variety of CP N of degree d, there is a uniform d < 1 such
that

pÿ1�Br�z0�� � Brd�Xz0 �: �8:14�

Then (8.13) follows.
Now the lemma can be easily deduced from the standard Green formula

and (8.12).
By Corollary 8.6 and Lemma 8.7, we have

@@ �Dx ÿ wZ � hZ��r� ÿ 1

�n� 1�2n�1 log
k � kZ�r�z��
k � kZ�z�

� �� �
� 0

namely, the function �Dx ÿ w� hZ��r� ÿ 1
�n�1�2n�1 log

k�kZ�r�z��
k�kZ �z�

� �
is of the form

log jf j2 for some holomorphic function f on SL�N � 1;C�.
Let us denote by fzijg0�i;j�N , w the homogeneous coordinates of

CP �N�1�
2

, then SL�N � 1; � can be naturally identi®ed with the a�ne sub-
variety W \ fw 6� 0g, where

W � f�fzijg0�i;j�N ;w�jdet�zij� � wN�1g
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Then by using the de®nition of Dx and straightforward computations, one
can show

Lemma 8.8. The function f has at most polynomial growth near W nSL
�N � 1;C�, i.e., there are constants ` > 0, C > 0, such that f �r� � Cd
�r;W nSL�N � 1;C��`, where d�r;W nSL�N � 1;C�� denotes the distance from
r to W nSL�N � 1;C� with respect to the standard metric on CP �N�1�

2

.

Therefore, f extends to be a meromorphic function on W . Notice that W
is normal and W nSL�N � 1;C� is irreducible. It follows that f has to be an
nonzero constant c, and consequently, we have

k � kZ�r�z��
k � kZ�z�

� � 1

2n�1�n�1�� jcj2eÿwZ �r��hZ�r�eDx;m�r�; �8:15�

or equivalently,

2ÿ�n�1�

n� 1
F0�r� � Dx�r� � hZ�r� ÿ wZ�r� ÿ C: �8:16�

Note that C > 0 always denotes some uniform constant.
By Lemma 6.1, Corollary 8.6 and Theorem 5.5, wZ�r� � Dx�r� diverges

to in®nity as r goes to W nG. It follows from Lemma 8.7 that F0��� is proper
on G, then Theorem 8.1 follows from Lemma 8.3.

Remark. Theorem 8.1 can be also proved by using the functional Fx directly.
In that case, we start with E � �Kÿ1 ÿK�n�1 instead. However, its deter-
minant line bundle det�E; p� coincides with Lÿ1Z considered above. We used
the K-energy in the above proof because it works for more general cases
where the KaÈ hler class may not be canonical.

For any r 2 G, we can de®ne a function ur by

lr�xFS � x� @@ur;

Z
Xz

urx
n � 0:

Let P L�Xz;x� be the set of all these ur. The proof of Theorem 8.1 also yields

Theorem 8.9. Assume that Xz has no nonzero holomorphic vector ®elds. Then
mx is proper on P L�Xz;x� if and only if Xz is CM-stable with respect to L.

Similarly, one may have

Theorem 8.10. Assume that Xz has no nonzero holomorphic vector ®elds. Then
the functional Fx is proper on P L�Xz;x� if and only if Xz is CM-stable with
respect to L.

The general case where Xz has nontrivial holomorphic vector ®elds can
be treated identically, involving weakly CM-stability in place of the CM-
stability.

34 G. Tian



Finally, these results motivate us to propose

Conjecture 8.11. Let M be a compact KaÈhler manifold with c1�M� > 0. Then
M admits a KaÈhler-Einstein metric if and only if M is weakly CM-stable with
respect to Kÿm

M for m su�ciently large.

The necessary part of this conjecture follows from Theorem 8.1. The
other part follows from Theorem 8.9 or 8.10 if one can establish the partial
C0-estimates posed in [T6]. We plan to discuss these in details in a subse-
quent paper.

If Conjecture 8.11 is a�rmed, then moduli spaces of KaÈ hler-Einstein
manifolds with positive scalar curvature are quasi-projective.

9 Further remarks

Let �M ;x� be a compact KaÈ hler manifold with the KaÈ hler class c1�M� > 0.
In order to construct a KaÈ hler-Einstein metric on M , we need to solve the
complex Monge-Ampere equations in �2:1�t for 0 � t � 1. By the continuity
method (cf. [Au], [BM], [T1]), one can show that either M admits KaÈ hler-
Einstein metrics, i.e., �2:1�1 is solvable, or for some t0 2 �0; 1�, �2:1�t is
solvable if and only if t < t0. The main issue is to understand when the
second case occurs. In previous sections, we approach this by using the
K-stability or the CM-stability.

Here we want to make a few remarks on the di�erential geometric ap-
proach. More precisely, when the second case occurs, we would like to
characterize the limit �M ;xt�, where xt � x� @@ut and ut solves �2:1�t.
Conjecture 9.1. By taking subsequences if necessary, one should have that
�M ;xt� converges to a space �M1;x1�, which is smooth outside a subset of
real Hausdor� codimension at least 4, in the Cheeger-Gromov-Hausdor�
topology. Furthermore, �M1;x1� can be expanded to be an obstruction
triple �M1; v; n� (possibly singular) satisfying:

Ric�x1� ÿ x1 � ÿLv�x1�; on the regular part of M1; �9:1�

where Lv denotes the Lie derivative in the direction of v. In particular,
�M1;x1� is a Ricci soliton if x1 is not KaÈhler-Einstein.

Here by the Cheeger-Gromov-Hausdor� topology, we mean that
1) �M ;xt� converges to �M1;x1� in the Gromov-Hausdor� topology; 2)
For any fxtg � M with limt!t0 xt � x1 in M1, there are C1 di�eomorphisms
Ut from Br�x1� onto Br�xt� for some small r > 0, such that U�t xt converges
to x1 in the C0-topology on Br�x1�.

The singularities of M1 should be very mild. One may even guess that
M1 is actually smooth, but there are no convincing evidences for this.

Similar things can be said for the Ricci ¯ow (3.2), i.e.,
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@u
@t
� log

�x� @@u�n
xn

� �
� uÿ hx; ujt�0 � 0: �9:2�

It is known (cf. [Ca]) that (9.2) is solvable for all t > 0. To prove the exis-
tence of KaÈ hler-Einstein metrics on M , we need to show that u has a limit in
the C0-topology as t goes to in®nity. We believe that �M ;x� @@�ujt��
converges to �M1;x1� described in Conjecture 9.1. Previously, R. Hamil-
ton thought that the limit �M1;x1� should be a Ricci soliton. Our new
observation here is that x1 may be KaÈ hler-Einstein, and otherwise, it is a
special Ricci soliton.
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