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NOTES ON A NET OF QUADRIC. SURFACES:
(IV) COMBINANTAL COVARIANTS OF LOW ORDER

By W. L. EpGe.
[Received 17 January, 1940.—Read 8 February, 1940.]

1. Some of the combinantal covariants of a net % of quadric surfaces
have already been discussed in this series of Notes*; they are all of order
eight or more, those actually of order eight being

R8: the scroll of trisecants of the Jacobian curve;

E?®: the locus of equianharmonic base curves of pencils of quadrics
belonging to N;

and p®: a scroll generated by quadritangent lines of R8.
To these we may add, from an earlier papert, a fourth combinant,
I18: the product of the eight tritangent planes of RS.

There seems to be no record, for a general net of quadrics, of any
combinantal covariant whose order is less than eight; in the present Note
we obtain combinantal covariants of orders four and six. It is not
intended to give a complete list of combinants, but just to register those
which present themselves most readily.

The Note falls into four sections, or rather into three sections to
which an appendix (§§19-23) has been added; in this appendix the
opportunity has been taken of applying some of the considerations of the

* The three preceding Notes appeared as follows: (I) Proc. London Math. Soc. (2),
43 (1937), 302-315; (II) Journal London Math. Soc., 12 (1937), 276-280; (III) Proc.
London Math. Soc. (2), 44 (1938), 466—480.

t Proc. London Math. Soc. (2), 34 (1932), 492-525.
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Note proper to the particular net of quadrics whose eight base points
form a pair of M6bius tetrads. Most of the results for the sake of which
the Note was written appear in the third section (§§14-18). Before
these can be obtained, however, the ground has to be prepared ; hence the
first section (§§2-6) is, except for §4, mostly concerned with explaining
and co-ordinating those results obtained by other writers which are
essential for the prosecution of the work. §4 itself is in the nature of a
digression, in the course of which some remarks are made about com-
binantal invariants of 9t.

One of the quartic surfaces which arises as a combinant of N has the
property of having all the twenty-eight lines of intersection of the pairs
of eight associated planes as bitangents. The second section of the Note
is concerned with establishing this property, the recognition of which is
surely overdue.

I

2. No systematic search for the combinants of three quadrics has yet
been made. Turnbull* and, after him, Williamsont}, have studied the
complete system of concomitants of three quadrics; but the combinantal
forms cannot be selected forthwith from the lists of concomitants that
they obtain, because the algebraic standpoint of these authors gives an
utterly different view of the system from that given by the géometrica,l
standpoint adopted heref. We obtain combinantal covariants a§ surfaces
defined by some geometrical relation to the net of quadrics as a whole;
for us the order to which the coefficients in the equation of a quadric of
the net enter in the equation of such a surface is not so important, though
often enough it could easily be found. Yet, even when we do know the
degrees of the equation of such a surface both in the variables and in these
coefficients, we cannot identify the corresponding combinant with a con-
comitant found by Turnbull or Williamson for which these degrees are
the same. In their work, concomitants which differ only by reducible
terms (reducible, that is, in the usual sense of the theory of algebraic
forms) are considered as equivalent; whereas for us the combinantal

* Proc. London Math. Soc. (2), 20 (1921), 465-489; and 23 (1924), 423—427.

t Proc. Edin. Math. Soc., 43 (1925), 2-16.

t The remarks of Grace and Young in § 229 of their 4lgebra of invariants (Cambridge,
1903) are pertinent
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property is vital, and the rejection of reducible terms may well destroy
the combinantal character of a concomitant.

3. There is no doubt that, from a geometrical standpoint, it is the
combinants which are the more important; we wish to consider surfaces
related to the net of quadrics as a whole, and not to some particular set
of three quadrics on which the net happens to be based. To borrow
Sylvester’s phrase, used when he first wrote about and invented the name
of combinants*, we consider surfaces which are related to the net in its
corporate capacity.

This idea of regarding the net as a whole, though advocated by
Sylvester so long ago, has not been used to sufficient purpose since; and
but for this neglect of combinants it is probable that the net of quadrics
would have been studied to much better advantage than it has been
hitherto. The neglect is doubtless partly due to the manner in which
pencils of conics and quadrics are treated in the text-books on two- and
three-dimensional analytical geometry. These pencils are simple enough
to allow of a large number of concomitants being obtained, and their
geometrical interpretation found, without regard to any combinantal
forms. The influence of this treatment of the concomitants of two conics
is seen, for example, in Salmon’s treatise where}, when he obtains a set
of invariants of three conics, he does not stop to enquire which of them,
or what functions of them, are combinants ; indeed the term ¢ combinant ”’
does not appear in the index of the book! This influence has persisted ;
though, whatever may have been the outlook of those who followed him,
Salmon himself did realise that combinants deserved special attention;
indeed he gave}, and interpreted geometrically, three of the combinantal
invariants of a net of quadrics.

4. Before proceeding, let us add two more combinantal invariants to
the three given by Salmon. The quadrics of 0 have equations of the form

fQo+"7Q1+€Q2 =0,

and we denote by I, a combinantal invariant which is of degree w in the
coefficients of @;; the three invariants given by Salmon may then be
Cal]ed Is, IIO’ 'Ila.

* Cambridge and Dublin Mathematical Journal, 8 (1853), 256-269; Mathematicul
Papers I, 411-422, :

t Conic sections (Dublin, 1879), §389b.
1 Analytical geometry of three dimensions (Fourth Edition, Dublin, 1882), 208-212.
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We now do for i what was done by W. S. Burnside* for a net of conics;
but, whereas Burnside only had to express the combinants which he found
in terms of the two known combinants 7" and M (see §5 below), the
combinants which are found by the analogous procedure for quadrics are
new. The discriminant of the quadratic form £Q,+7@Q,+{Q, is a ternary
quartic in ¢, 9, { whose coefficients are all invariants, but not combinants,
of the three quadrics. But the invariants of this ternary quartic, except
for being multiplied by a power of the determinant of the transformation,
are unchanged when £, 5, { are subjected to a non-singular linear trans-
formation, and so are combinants; the degree of such a combinant in the
coefficients of @, is the weight of the invariant of the ternary quartic.
Now two. invariants of a ternary quartic are well known. The first,
denoted by (abc)* in Aronhold’s symbolism and written out ¢n extenso in
Salmon’s Higher plane curves, is of weight four, and so furnishes a com-
binant I,. The second is the determinant of the coefficients in the six
second polars of the ternary quartic, its vanishing being the condition
that the guartic should be expressible as a sum of five fourth powers;
it-is of weight eight, and furnishes a combinant Ig.

We may therefore add I, and I to the three combinants given by
Salmon.

Let us now take the discriminant of the ternary quartic, not because
it furnishes a new invariant but, on the contrary; because of its relation
" to the known invariants; it is of weight thirty-six, and so gives a com-
binant Iz If Iy vanishes, : must be such that the ternary quartic,
when equated to zero, gives a quartic curve with a node; this node
corresponds to a cone @ of N which counts for two among the four cones
of any pencil of quadrics which includes @ and belongs to :%.. Now this
can happen in two ways. '

(@) N includes a plane-pair . For such a net, I;,=0.

(b) M has two coincident base points; it then includes a cone @

with this base point for vertex. For such a net, I;4=0.

Thus I, contains both I, and I, as factorst; and indeed I is a numerical
multiple of the product 1,2 I4.
This factorisation of I;; may also be seen by the following argument,

* Quart. J. of Math., 10 (1870), 242.
t For the special case when the net has self-polar pentahedra, see Salmon, A'nalytwal
geometry of three dimensions (Fourth Edition, Dublin, 1882), 212-3.

TT0Z ‘ST JoquisnoN uo AseAlun ybinquip3 e /Biosfeulnolpioixoswid//:dny wouy papeojumoq


http://plms.oxfordjournals.org/

1940.] NOTES ON A NET OF QUADRIC SURFACES (IV). 127

wbich is, in-a manner, the converse of Clebsch’s principle and was often
used by Salmon.
Consider not a net but a web of q_uadrics

€848, +18,+78, = 0.

The discriminant of the quadratic form on the left of this equation is a
quaternary quartic in ¢, n, {, 7 which, when equated to zero, gives the
quartic surface known as the Cayley symmetroid. This surface has ten
nodes, corresponding to the ten plane-pairs of the web. Any net belonging
to the web is given by a linear relation between ¢, 7, {, 7, and so corre-
sponds to a plane. If the net is such that I, =0, the curve in which
the plane meets the symmetroid has a node. Thus the nets for which
I,,=0 are found simply by taking the tangential equation of the
symmetroid, and it is well known that this equation contains the squares
of the equations of the nodes. The degree of the residual factor is the
“proper” class of the symmetroid, namely 16.

5. A plane cuts the net N of quadrics in a net of conics; if the plane
is such that this net of conics has some special property, expressed by
some single relation between its invariants, then, by Clebsch’s well-known
principle of transference*, the envelope of the plane is a corresponding
contravariant of 9. .

It was shown by Gundelfingert that all combinantal invariants of a
net of conics are expressible as polynomials in two of them. The first of
these two invariants we denote by 7', and call Sylvester’s invariant; it
was first obtained by him, in the paper already cited, as a commutant of
the line-equation of a general conic of the net. If 7' vanishes the net of
conics has the property, given by Salmon and Gundelfinger, that its
Jacobian curve is apolar to the envelope of lines which are cut in involution
by the net. The second invariant we call M ; its vanishing is a necessary
and sufficient condition for the net to be such that one of its members is
a repeated line. '

The actual expressions for 7' and M are found in Salmon’s Conic
sections; the coefficients in the equation of a conic of the net occur to

* Journal fiir Math., 59 (1861), 28. The principle is also described by Turnbull, The
theory of determinants, matrices and invariants (Blackie, 1929), 287-289, as well as by Grace
and Young, Algebra of invariants (Cambridge, 1903), 265 and 271.

t Journal fiér Math., 80 (1875), 73-85.
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degree two in T' and to degree four in M. It follows that, when 7T is
expressed in Aronhold’s symbolic notation, it must be a sum of products
each of four determinantal factors, since each determinant is of degree
three in the symbols, and the total number of symbols in a term must
be twelve, to account for the second degree in the coefficients of each of
three conics on which the net is based. Hence the envelope of those planes
which cut 9 in nets of conics for which 7' vanishes is a contravariant of
class four. This will be denoted by ¢* and called Gundelfinger’s contra-
variant, since its existence was first established by him*; it is important
for our work.

Similarly it follows that the envelope of those planes which cut 9t in
nets of conics for which M vanishes is a contravariant of class eight.
From the geometrical interpretation of the vanishing of M which has
already been given it follows, by Clebsch’s principle, that this contra-
variant is simply the envelope of the cones which belong to N ; its existence
was first pointed out by Sturmf, who defined it as the envelope of the
cones and obtained its class. It will be denoted here by o®.

6. The resultant of three conics is a linear combination of 7% and M ;
it was indeed by obtaining the resultant in this form that Sylvester dis-
covered these invariants}. Gundelfinger, by applying Clebsch’s principle,
deduced that the resultant of three quadrics and a plane is a linear
combination of (¢%)? and o%. This resultant, however, consists of the
eight base points of the net determined by the three quadrics, so that
there is an identity

= ($PHAS, (@)

where 78 = 0 is the equation of the eight base points.

This identity was given, possibly in consequence of Gundelfinger’s
paper;, by Fiedler in his German translation§ of Salmon’s Analytic geometry
of three dimensions; it is to be regretted that, through some misplaced

* Loc. cit., 83. ‘

t Journal fir Math., 70 (1869), 236.

 Sylvester, loc. cit. The first explicit method of finding the resultant of three conics
was given earlier by Sylvester, who applied his dialytic process of elimination to the three
conics and their Jacobian, Cambridge and Dublin Mathematical Journal, 2 (1841), 232-6;
Mathematical Papers I, 64-65.

§ Salmon-Fiedler, Analytische Geometrie des Raumes I (Dritte Auflage), (Leipzig, 1879),
319.
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expurgatory zeal, it has been omitted from later German editions of this
work.

IL

7. Consider now those planes, eight in all if they are finite in number,
which belong* to the envelope ¢® and which pass through the join B;B;
of two of the eight base points B; and B; of the net . Since every cone
of M passes through both B; and B;, no tangent plane of such a cone can
pass through B; B, unless B; B; lies entirely on the cone. Now B, B, is
a chord of &, the Jacobian curve of R, and is known to lie on two of the
cones; each of these two cones has one of its tangent planes passing
through B; B;, and these are the only planes through B; B; which can belong
to o®. Wherefore the eight planes of ¢ which pass through B;B; must
consist of these two, each counted four times. Now every plane through
B; B; belongs (doubly in fact) to the envelope #%; it fcllows from (G)
that any plane of ¢* which passes through B; B, must, since its coordinates
cause 7n® and ¢* both to vanish, also be a plane of ¢®. Hence the four
planes of ¢* which pass through B; B, must consist of the above two
planes, each counted twice. Every one of the twenty-eight joins of pairs
of base points has this property.

Just as we speak of a line, two of whose intersections with a surface
coincide, as a tangent of a surface, so we may speak, in the dual sense, of
a line which is so related to an envelope that two of the planes of the
envelope which pass through it coincide as a tangent of the envelope ; and,
dual to a bitangent or double tangent of a surface, we have a double tangent
of an envelope. Gundelfinger’s contravariant ¢* then has the property of
having the twenty-eight joins of the pairs of base points all as double tangents.
This property of ¢ does not appear to have been noticed before; indeed
no.instance seems yet to have been met with of a quartic envelope having
as double tangents the twenty-eight joins of the pairs of eight associated
points, nor has even the a priori possibility of this happening been
considered.

8. This property of ¢* followed from the result that those planes of
¢* which pass through B;B; are also planes of ¢%; this result was itself

* Instead of saying in full *‘ a plane which belongs to the envelope whose equation is
0®=0" we shall, when there is no possibility of ambiguity or misunderstanding, say,
more briefly, ‘‘a plane which belongs to the envelope ¢®”, or ‘‘a plane of the envelope
o®”, or ““a plane of ¢®”. A corresponding procedure will be adopted, as the occasion
serves, for other envelopeé and, dually, for surfaces.

SER. 2. VOL. 47. No, 2297. K
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obtained as an immediate corollary of (G). Let us now give an alternative
way of obtaining it, without appealing to (G). We first use the fact that
#* is the envelope of those planes which meet 0 in nets of conics for which
T vanishes, and then deduce the result by using the form of T given by
Salmon in § 389 of his Conic sections.

We desire, then, to obtain those planes which belong to ¢* and pass
through B;B,;. Such a plane meets N in a net of conics which has two
base points and for which Sylvester’s invariant vanishes. Now, when a
net of conics has two base points it may, by taking these as two of the
three vertices of the triangle of reference, be based on three conics whose
equations have the forms

a, 2% +2 f, y2+ 29, 2x+4-2hy 2y = 0,
@y 22+ 2 f Y2+ 29, 20+ 2hy 2y = 0,
a3 2242 f 3 yr+2g5 22+ 2hy 3y = 0.

For such a net of conics, all the terms in Salmon’s expression for 7' vanish
except the last; and the condition 7' = 0 reduces, for this special net, to
the vanishing of the determinant (f,g,hs). This, however, is precisely
the condition for the net to include the conic x% = 0, which is the repeated
line joining the base points. Hence the plane must touch a cone of 0
along B; B;, and we have again the result that any plane through B; B,
which belongs to ¢* must belong also to ¢8. It may be remarked in
passing that the invariant 7' for the above net of conics is a numerical
multiple of the square of (f;g,hs), and this implies that the two planes of
o% which pass through B; B, count doubly as planes of ¢4.

9. There are, of course, properties dual to the above for a net of quadric
envelopes, and a corresponding identity

IS = (F4p-4 S, ()
where I8 is the product of the eight base planes,

S® is the surface generated by the conics—quadric envelopes with
vanishing discriminants—belonging to the net,

F4is a quartic surface, dual to Gundelfinger’s contravariant.

This quartic surface has the twenty-eight lines of intersection of the pairs
of base planes all as double tangents.
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An immediate consequence of (I') is that S8 touches each of the eight

base planes along the quartic curve in which this plane meets F4; these
quartic curves are the loci of the points of contact of the respective base
planes with the conics belonging to the net of quadric envelopes.

10. The above derivation of the property of ¢* and F* of having
twenty-eight bitangent lines which are, for ¢ joins of pairs of eight
associated points, and, for F4, intersections of pairs of eight associated
planes, rests primarily on the work of Sylvester and Gundelfinger.
This work is algebraic; we now give an alternative derivation of the
property, which rests on some work, of a more geometrical character,

of Aronhold and Frobenius. It is a matter of choice whether we prove

the property for ¢¢ or for F'*; once it is proved for either, the principle of
duality establishes it for the other. We shall, however, prove the
property for F4, as we are thereby able to appeal more dire~tly to known
results.

11. The six points of contact of three bitangents of a non-singular
plane quartic curve may lie on a conic, in which case the three bitangents
are said to be syzygetic; or they may not. If any set of eight, or more,
of the twenty-eight bitangents is taken, it always includes at least one
syzygetic triplet; the maximum number of bitangents which can be chosen
in such a way that it does not include a syzygetic triplet is seven. Such
a set of seven bitangents is called an Aronhold set. If seven lines of
general position are given in a plane, it is known that there is a unique
quartic curve for which these seven lines are an Aronhold set of bitangents*.

Take now eight associated planes II,, I, ..., IIg; thereisa net of quadric
envelopes to which they belong, and this net includes oo! envelopes which
degenerate into conics. We quote, concerning this .configuration, two
results due to Frobeniust:

(i) The locus of the points of contact of the conics with the plane II;
is a quartic curve C;. This is the curve which has the seven lines
in which II; is met by the remaining seven planes as an Aronhold
set of bitangents.

(ii) C, and C, touch my, the line common to II; and II,, in the same
two points.

* Aronhold, Berliner Monatsberichte (1864), 499.
t Journal fér Math., 99 (1886), 278-280.
K2
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12. We now prove that the eight quartic curves C; lie on a quartic surface.

One way of proving this would be to take a general quartic surface,
and so restrict the coefficients in its equation by linear conditions that it
contains first one, then another, of the curves C;. Proceeding in this way
we should find that, at a certain stage, all those curves C; through which
the surface has not already been made to pass would lie on the surface
automatically. We will, however, marshal the argument somewhat
differently; we take four of the curves and prove that they lie on a quartic
surface other than that formed by the four planes in which they lie. From
this the desired result easily follows.

Take the four curves C, C,, C;, C, lying in the planes I1,, II,, II,, II,.
The line m,, is touched by C, and C, in the same two points; in order that
a quartic surface should touch 7, at these points it must be subjected to
four linear conditions. Similarly four linear conditions must be imposed
to ensure the two proper contacts with ,;, and four more to ensure them
with 75;. The quartic surface, now subjected to twelve linear conditions,
has the three concurrent bitangents myy, 7y, m5;; We next proceed to
make the surface touch my,, 7y, 73, in the requisite pairs of points. A new
feature here appears in the argument; for, if a plane quartic has each of
three lines for bitangents, any quartic curve which passes through the
six points of contact and touches the given quartic at five of them must
also touch it at the sixth—this being a particular instance of the theorem
that the twelve points in which a quartic meets a cubic curve are deter-
mined when eleven of them are assigned. Hence the quartic surface,
already having m,, 7y, 7y, as bitangents, need only be subjected to three
further linear conditions in order that it should touch, say, s, at the
two requisite points; similarly three further linear conditions are sufficient
to ensure the proper contacts with w,, and three more to ensure them
with my,.

The general quartic surface has now, by the imposition of twenty-one

linear conditions been caused to have as bitangents the six edges of the-

tetrahedron whose faces are II,, IT,, II,, II,; the two points of contact
with each edge are the points where this edge is touched by two of the
curves C;. We now impose further linear conditions on the surface so as
to make it contain the curves C;, C,, Cs;, C, entirely, and three conditions
are required for each of the four curves. For, when a quartic curve passes
through the twelve intersections of a second quartic with a cubic, its four
remaining intersections with this second quartic are collinear; therefore,
if it is constrained to pass through three arbitrary points of this second
quartic it must contain it completely. Hence a general quartic surface
can, by the imposition of thirty-three linear conditions, be made to contain
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the four curves C,, C,, C;, C,. This leaves one free constant in the
equation of the surface, and so a pencil of quartic surfaces through the
four curves, if the thirty-three conditions are independent. Were they
not independent, there would be a linear system, of freedom greater than
one, of quartic surfaces containing the four curves; but the total order of
the four curves is. 16, so that this latter contingency cannot arise. Thus
C,, C,, C,, C, together constitute the base of a pencil of quartic surfaces*,
one surface of the pencil of course being the product of the four planes
In,, II,, II,, I1,.

There is one quartic surface belonging to this pencil which contains
the four remaining curves C;, Cg, C;, Cq. For the base curve of the
pencil meets C, say, in sixteen points, namely the contacts with its four
bitangents 5, s, 7s5, 7 ; through any further point of Cj there passes
one surface of the pencil, and this contains Cy entirely. This particular
surface also contains Cg, C,, Cy; for it already has twenty intersections
with each of them at their points of contact with five of their bitangents.

13. We have now obtained a quartic surface J'* which contains the
eight curves C;. It has therefore the twenty-eight lines m; for bitangents.
It is the same surface F'* as that which appears in the identity (I'); for
both these quartic surfaces F* contain the eight curves C;, and so must
be one and the same surface. We are not, however, going to appeal to
the identity (I'), but to obtain it anew by continuing the present argument.

The surface S8 which is generated by the conics which belong to the net
of quadric envelopes touches, by Frobenius’ result, IT; along C;. Hence,
if F4 is the surface, just obtained, on which all the curves C; lie, every

octavic surface which belongs to the pencil (F4)2+4-AS88 touches each of the .

planes II; along the corresponding curve C;. There is one surface of this
pencil which contains the whole of the plane II;; this surface not only
touches any other, II; say, of the eight planes along C;, but it meets it
further in the line =; hence it contains the whole of the plane IT,. It
must therefore be the product of the eight planes, so that we have an
identity

M8 = (F4)2-+AS8. (T)

* The same argument, with the few necessary verbal alterations, establishes the same
result for four plane quartics which are such that any two meet the line of intersection of
their planes in the same four (distinct) points.
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III.

14. It has, then, been known, since the publication of Gundelfinger’s
paper, that a net of quadric surfaces possesses a combinantal contravariant
of class four. It will now be shown that it also possesses a combinantal
covariant of order four. The existence of such a covariant, indeed the
existence of several, follows immediately from the theory of algebraic
forms; this will be explained below. But let us obtain one geometrically
first.

The net N has a Jacobian curve &, whose trisecants generate a scroll
R®; this scroll has eight tritangent planes. It was shown by W. P. Milne*
that these eight planes are associated. Denote by v the net of quadric
envelopes to which these eight planes belong. Then any combinantal
concomitant of either of the nets M or v must be a combinantal
concomitant of M; in particular, any covariantt of v must also be
be a covariant of M. But v certainly has a combinantal covariant F4,
namely the dual of Gundelfinger’s contravariant. So we have obtained,
in the surface F4, a quartic surface which is a combinantal covariant
of N.

15. Milne, starting from a canonical form for 9, obtains equations for
v and observes that this ¢ net of quadric envelopes is obviously combinantal
in character” with respect to . Obvious geometrically it certainly is;
but algebraically it is perhaps not quite so obvious as Milne appears to
believe. The coefficients in any combinant of three quadrics must be
functions of the 120 determinants, of three rows and columns, of the
3x 10 matrix formed by the coefficients in the equations of the three
quadrics; the coefficients in Milne’s equations (19) have not this property
as they standi. They do, however, acquire the property if they are
multiplied throughout, in Milne’s notation, by %°. This, at first sight
small, criticism is important algebraically; for it means that the equation

* Journal London Math. Soc., 8 (1933), 211-2186.

1+ The quadrics of N are quaternary forms in the point coordinates, those of » quaternary
forms in the plane coordinates. Here the term covariant will denote always a concomitant
which is a quaternary form in the point coordinates. Thus we speak below of forms as
covariants of ¢* although the variables (namely the point coordinates) which they contain
are contragredient to those in ¢*.

1 Incidentally, in the third of these three equations, the first term should have a minus
sign and, in the last term, n is a misprint for m.
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of a quadric envelope of v contains the coefficients of the equations of the
quadrics of % each to degree fwo, not merely to degree one.

16. We now have, as combinantal concomitants of 9, the covariant

F4, which is the dual of Gundelfinger’s contravariant for v, and the contra-
variant ¢, which is Gundelfinger’s contravariant for . The whole of the
.simultaneous system of concomitants of F¢ and ¢* must consist of com-
binantal concomitants of ®. This system includes all the covariants of
¢* and so, when once the existence of ¢* is known, we can obtain a quartic
covariant of 9t forthwith. For every covariant of ¢* is necessarily a
covariant of ¢, and ¢* certainly has a quartic covariant, namely the form
which, when ¢* is written symbolically as a,%, is given by (afyz)t. This
is all that needed to be said, at any moment since the publication of
Gundelfinger’s paper sixty-five years ago, to establish the existence of a
"quartic surface combinantally covariant for a net of quadric surfaces.

But there is more to be said; for ¢* has-other covariants of the fourth
order. The best known of these is obtained as follows*. Take the ten
second polars of ¢% which are quadric functions of the four plane
coordinates, and the matrix of their coefficients. The determinant of
this matrix is an invariant of 4%, whose vanishing is a necessary and
sufficient condition for ¢* to have an outpolar quadric, or to be expressible
as a sum of nine fourth powers. [If ¢¢ was expressible as a sum of £ <9
fourth powers, it would have a linear system of % outpolar quadrics,
and the determinant would be of rank k.] If, now, this matrix is bordered
by a row and column whose elements are the squares and products of the
point coordinates, the determinant of this bordered matrix is the quartic
covariant in question. It is of degree nine in the coefficients of ¢4, and
would vanish identically if ¢* happened to be expressible as the sum of
eight (or less) fourth powers.

We have thus found three quartic surfaces which are combinantal
covariants of MN; namely F* and the two quartic covariants that we
have obtained from ¢ We also have, by dual reasoning, three quartic
envelopes which are combinantal contravariants; namely ¢* and the two
quartic contravariants that are correspondingly derived from F4,

17. The processes by which the two quartic covariants of ¢* were
derived also furnish, when generalized, for any form of even degree 2q,
two concomitants, also of degree 2¢, in the contragredient variables; if

* Reye, Journal fiir Math., 78 (1874), 123-129,
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there are p variables*, the degrees of these concomitants in the coefficients
of the original form are p—1 and {(¢+p—1)!/g! (p—1)!}—1 respectively.
In the special case when ¢ =1, however, the two concomitants coincide,
and we have the well-known process of obtaining the tangential equation
of a quadric by bordering the matrix of its discriminant with a row and
column of prime coordinates. Another known example occurs when the
original form is a ternary quartic in the point co-ordinates, for the second
concomitant is then Clebsch’s contravariant Q. Though Clebsch did not
actually obtain Q by bordering the invariant determinant, the expression
which he gives for itt shows clearly that it is obtainable in this way.
Geometrical interpretations of Q have been given by other writers}; by
dualizing these, and generalizing them so that they refer to quaternary
instead of to ternary forms, geometrical interpretations of the corresponding
covariant of ¢4 can be found.

18. When a combinantal covariant CP, of order p, of Rt has been
found, another one, of order p+2, is at once obtained as the Jacobian of
C? and three linearly independent quadrics of N—at least unless this
Jacobian happens to vanish identically, as it would if C? was a polynomial

* Binary forms (p = 2) are exceptional, in that the variables contragredient to (z,, %,)
are (—a,, ;). The two processes do, of course, furnish covariants, but the first of them is
merely a multiple of the binary form itself. The second, however, is a genuine covariant,
of degree g in the coefficients, whenever ¢ > 1, and is the penultimate member of a scale
of covariants found by Sylvester, Mathematical Papers I, 297. For the binary quartic

(9, b, ¢, d, eQay, @,)¢ it is

a b R
b ¢ d —x,7,
¢ d e z,? ’

2,2 -z, 2, 0

the Hessian; for the binary sextic it is, with us,

a b c d —zd

b c d e ERYA

c d e f ~2,%,%],
a € S gz

—z3 Pz, —z,7° z,® 0

and, with Sylvester,
az, 3+ 2b@, xy+cx? bz P4 20z, Byt dag®  cxy®+ 2dz, y+exy®
bz, 202, xy+dxg? 02,04 2dm 2y texy®  doy 426w, 20+ f 740 |,
ez 24 2dz, Ty +ex,?  dx i 2ex, Ty +fr?  ex,®4 2fx, 2y + gyt
t Journal fiér Math, 59 (1861), 139.
1 Encyklopidie der Math. Wissenschaften, I1I, C5, 524,
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of degree 1p in the three quadrics. The covariant C?*2 so obtained will
be spoken of simply as the Jacobian of C?. In virtue of its character as
a Jacobian, the surface C?*2 always passes through &, the Jacobian curve
of M.

Thus there arises a sextic covariant F®, combinantal for %, which
is the Jacobian of F* and which contains #. This surface is the locus of
points whose polar planes with respect to F* and all the quadrics of 0
are concurrent; or, expressing the same statement slightly differently, it
is the locus of a point O which is such that its polar plane with respect to
F* passes through O’, the point which, in the manner fully described in
Note I, is conjugate to O with respect to %. The curve of intersection
of F4 and F¢ is the locus of points where quadrics of 3 touch F4.

Similarly, the other two quartic covariants give rise to sextic covariants
as their Jacobians.

Consider, next, combinantal covariants of order eight. It was men-
tioned at the outset that these include RS, E8, p8 and I18; we may add to
these S8, the locus of conics which belong to v. Further, we also have
the Hessians of the three quartic covariants and the Jacobians of the
three sextic covariants, making eleven octavic covariants in all. These
may not all be distinct ; and it would certainly be of interest to investigate
what linear relations connect them with one another and with the squares
of the quartic covariants. One such relation is given by the identity (I").

For covariants of order ten we may take the Jacobians of covariants
of order eight; though the Jacobian of K8 vanishes identically. Having
found all the non-vanishing Jacobians, we may add those surfaces which
are conjugate, in the sense of Note I, to the three sextic covariants; these
three surfaces of order ten have & for a nodal curve. And then it may be
investigated what linear relations exist between these covariants and
between the nine products, such as F'4 Fé, of a quartic and a sextic covariant.
And so on.

IV.—The Mobius Net as an example.

19. When properties of a general net of quadrics. have been found, it
is of interest to verify them for some particular net that has been studied
previously ; though it must be borne in mind that a special net will have,
merely in consequence of the specialization, properties which are not
possessed by the general net. Suppose, then, that 9t is a net whose eight
basge points are a pair of Mobius tetrads 7', 7"; it may fittingly be called
a Mobius Net. We obtain the corresponding net v of quadric envelopes,
and the identity (I'). The Mobius Net has been described in detail in a
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previous paper*; we shall refer to this paper as M.T., and use here the
same symbols as there.

If T is taken as tetrahedron of reference for a system of homogeneous
co-ordinates z, y, 2, ¢, the faces of 7’ are found (M.T. p. 338) by equating
to zero the linear forms 2/, ¥, 2, t’ given by

' - m =] i
y' n . -1 —-ml\ly
Z2 17\ —m I . —n z
t I m ¢

Here I, m, n are any three numbers, subject only to the condition
that the above square matrix is non-singular; thus /24-m?+n? must not
be zero. We describe the eight vertices of the two tetrahedra as
the base points, and of the eight faces of the two tetrahedra as the base
planes of the Mobius configuration. The base points of the configuration
are also the base points of N; it will be seen that the base planes of the
configuration are also the base planes of ».

A general net of quadrics may be based on any three of its members
which are linearly independent; save for this condition of linear
independence it is immaterial which three are chosen, the net having no
peculiarity that enables us to pick out one set of quadrics rather than
another. But when the net is specialised this may no longer be so, as the
specialization may well throw into prominence certain particular quadrics
of the net. This happens for the Mobius Net; and, moreover, it happens
very conveniently for the algebraical treatment, for the net can be based
symmetrically on three particular quadrics. These are (M.T., p. 341):

Qi=yy +22'=—xx'—t' =0,
Qo=z2z'Fax'=—yy' —it' =0,
s=2x' +yy = —z2' —tt' = 0.

20. In order to obtain the net v of quadric envelopes which corresponds
to the Mobius Net 9%, we have to discover its eight base planes; these are,
as was said in §14, tritangent planes of RS, the scroll generated by the
trisecants of the Jacobian curve of . The Mobius Net, however, includes
the four plane-pairs

2x’'=0, yy'=0, z2'=0, #'=0,

* «The net of quadric surfaces associated with a pair of Mébius tetrads ™, Proc, London
Math, Soc. (2), 41 (1936), 337-360,
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whose vertices are, respectively, four skew lines @, b, ¢, d; the Jacobian
curve of the net consists (¢f. M.T., p. 343) of these four lines and their
two transversals ¢, f. Hence, if the regulus generated by the transversals
of a, b, ¢ is denoted by {abc}, the scroll R® now consists of the four quadrics
on which lie, respectively, {abc}, {bcd}, {cda} and {dab}.

Any plane through a meets b, ¢, d in points B, y, §; the lines 3, 88, By
belong respectively to {cda}, {dab}, {abc}; hence the plane contains three
generators of R8. Similarly, any plane through b, or ¢, or d contains three
generators of R®. Thus, for the Mobius Net, R® has not merely eight
but an infinite number of tritangent planes, and so the base planes of »
cannot be found merely by using their property of being tritangent planes
of R®. Some further property which they possess must be invoked in
order to identify them. Such a property is known*: those trisecants of
of the Jacobian curve of a general net of quadrics which lie in tritangent
planes of R8 are also generators of cones belonging to the net. Now none
of y3, 8B, By can meet either e or f; hence they cannot possibly be generators
of cones of the net with point-vertices. The only possibility of their being
generators of cones of the net with line-vertices is for their plane to be
one of the two planes which make up the plane-pair with vertex a. So
it is seen that the eight base planes of v are precisely the eight base planes
of the Mobius configuration. Incidentally, Milne’s result that, for a
general net of quadrics, the eight tritangent planes of R® are associated,
includes as a special case the well-known result that the eight base planes
of a Mobius configuration are associated.

- 21. Consider now the identity (I'); it contains three terms. Of these
II® is the product of the eight base planes of v, and so is a multiple of
16 zz'yy'22'tt’, t.e. of :

Q1+ Q4 +Q50—20,% @, —2Q,° @,2— 20,2 @,%

As for 88, it was explained in M.T. (pp. 344-5) that the locus of the conics
which touch the eight base planes of a Mobius configuration consists of a
pair of Pliicker surfaces U and V; the equation of U was given (p. 343)
and that of V is obtained from it by changing the sign of . From this
it is found that S® is a multiple of

(P +mP (P2 @yt 2(mnd Xm0 Q2 Q%)

* Proc., London Math, Soc. (2), 34 (1932), 513-514.
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where T denotes the sum of the three terms obtained by permuting cyclically,
and simultaneously, the letters I, m, n and the suffixes 1, 2, 3; and

12 4-m24-n2+4p2=0.

The expressions for both II® and 8% being now known, that for F4 is
found from the fact that its square must be of the form I18—A88, Since
I® and 8% are both homogeneous quartic polynomials in @, @,, @; it is
already clear, before the actual expression for F* is found, that it must
be a homogeneous quadratic polynomial in @,, @,, @;. Hence, for the
Mobius Net, F4 is an octadic surface with nodes at the eight base points;
this property of F* is due to the specialization of the net, and does not
hold for a general net of quadrics. An incidental consequence is that,
for the Mobius Net, the Jacobian F® of F4 vanishes identically. The actual
identity (I") is found to be

42 m2n? p?{Q4 + Qo + @yt — 2Q,% Q2 —2Q42 Q2— 20,2 @,
= {(m2n2+12p?) Q2+ (212 +-m2 p?) Q.2+ (12 m2+n2 p?) Q)2
~ Bt Q4 2(mt -+ nd)e(ment+p?) Qg Q).

22. The equation of the quartic surface F' is therefore
(mB 2 1p%) Q-+ (w2 I ) Qg2+ (B n?p) @t = 0

like any other octadic surface it can be generated by base curves of pencils
of quadrics belonging to the net, and a geometrical interpretation of the
surface can be given. For the conic whose line equation is

(22 412 p%) A2+ (2 124+-m2 p?) A2+ (Bm24-n2p2) A2 = 0

is seen to be the ®-couic of the pair of conics % and v whose point equations
(¢f. M.T. p. 342) are

(m24-n2)2 k24 (Im~+np)2 k2 + (nl—mp)2 kg2 = 0
and (m24-n2)2 k24 (Im—np)? k24 (nl +mp)2 ke = 0.

Hence we have the following. Any pencil of quadrics belonging to the
net includes two pairs of cones; the cones of one pair have their vertices
on ¢ and are enveloping cones of U, those of the other pair have their
vertices on f and are enveloping cones of V. If these two pairs of cones

TT0Z ‘ST JoquisnoN uo AseAlun ybinquip3 e /Biosfeulnolpioixoswid//:dny wouy papeojumoq


http://plms.oxfordjournals.org/

1940.] NOTES ON & NET OF QUADRIC SURFACES (IV). 141

are harmonically conjugate to one another within the pencil, then the
base curve of the pencil lies on F4, and F4 is generated by such base curves*.

23. We conclude by verifying, for the Mobius Net, that F has all the
lines of intersection of pairs of base planes of v as bitangents. It is a
known property of the Mobius configuration that, of the 28 intersections
of pairs of base planes, 24 are also joins of pairs of base points; but the
base points are all nodes of F4, so that these 24 lines may certainly be
reckoned as bitangents. It only remains to verify that those four lines
are bitangents of F'* which are intersections of pairs of base planes but
not joins of pairs of base points. These are the lines denoted above by
@, b, ¢, d; and it is easily shown, using the equation of F'* and the algebra
of the first three pages of M.T., that each of these four lines touches F
at a point on e and at a point on f.

Mathematical Institute,
16 Chambers Street,
Edinburgh, I.

* It was shown in Note II that the locus of harmonic base curves for a general net of
quadrics is a surface of order 12 with sextuple points at 1he base points. For the M&bius
Net this surface consists of F* and a surface F'® having quadruple points at the base points.
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