
An orthogonal  group of order 2~3-3~.5~.7 
by W. L. EDOE (a Edimburg, G-ran Bretagna) 

Summary. - The group of automorphisms of the non-singular quadric consisting of 135 
points in a finite projective space [7] is investigated by using the geometry of the 
figure. 

CONTENTS 

The geometry of the ruled quadric ~ ;  the 960 inscribed enneads and 
the symmetr ic  subgroups,  of degree 9, of the orthogonal group. 

Operat ions of the orthogonal group not belonging to any symmetr ic  
subgroup.  The groups A~. 

The Sylow 2-groups  of A +. 

Introduction 

I. The non-s ingular  quadrat ic  forms in any even number  of variables  
over GFI2 ). or F as this field will be called, are of two types-dis t inc t  in 
that no form of either type can be changed into a form of the other by any 
linear t ransformation whose coefficients all belong to F. When  equated to 
zero a quadrat ic  form in 2n variables gives a quadric  in a project ive space 
[ 2 n - - 1 ] ,  and the root of the above dist inction lies in the fact that such a 
quadrie  may, or may not, contain spaces [ n - - 1 ]  lying wholly on it; it may 
be ruled or non-ruled.  The orders of the groups of automorphisms of the 
ruled quadrics  were calculated by JORDAr~ (10, 244} and by DIo]~sos {3, 206), 
and DICKSON calculates the order for the non-ru led  quadrics  too; but the 
geometry that underl ies  these groups and accounts for their s t ructure  has 
been ignored, even for low values of n, until quite recently. 

It  is, then, proposed to investigate,  describe and exploit  the figure in 
[7] set up by a ruled quadric  ®; the initial  ® of STUDY is used because  
the quadric,  consist ing of 135 points and containing 270 solids that fall 
into two systems of 135, affords an instance, indeed the simplest  instance, 
of his principle of triality {1'2, 477). I ts  group A of automorphisms has a 
subgroup A + of index 2 - the subgroup called F H  (8, 2} by DIOKSON (3, 310); 
automorphisms in the coset of A + transpose the two systems of solids on ® 
whereas those in A + itself do not. 

There are s implexes ~ such that, when any one of them is used as 
simplex of reference, the quadrat ic  form on the le f t -hand side of the 
equat ion of ® is the sum of the 28 products  of pairs of the 8 homogeneous 
coordinates.  The matrices ~-of the automorphisms of this quadrat ic  form can 
be identified, precisely as for the analogous groups iu 6 or 7 variables  
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(6 and 7): the 8 columns of ~ are l inearly independent,  each is the coordi- 
nate vector  of some point m on ~,  and no two of these 8 m can be 
conjugate in regard to ®. In other words:  the columns of ~t are the coordi- 
nate vectors of the vertices of some v. It is helpful, when endeavouring to 
construct  those ~ satisfying supplementary  conditions (e. g. ~t for which the 
points of some subspace are all invariant) to remember  that, in consequence 
of no column being conjugate to any other, each column is conjugate to 
the sum of any even number  of columns exclusive of itself. These defining 
at tr ibutes of ~ are relied upon constant ly;  for instance, if one seeks the 
general form of ~t when certain points are prescr ibed to be invariant,  their 
coordinate vectors being latent column vectors of ~ {§§ 22, 23, 30, 34), or if 
one requires  the general  matr ix form of the normaliser  of some operation 
of A (§§41, 43, 46, 48). But  it is, upon occasion, advisable to use some 
al ternat ive canonical  form for the equation of ~ and then  ~ will be defined 
by quite different  properties.  In invest igat ing the s t ructure  of a SYLow 
2-group of A + one takes the canonical  form to be not (6.1) but  (10.4), and 
bases the discussion on the 2 TM matrices (50.1). 

2. In geometry based on F there is, when a simplex is given, a single 
point of the space that does not lie in any bounding prime of the simplex. 
When  the 8 vert ices of any ~. are so supplemented the ennead Co const i tuted 
by the 9 points is such that, whichever  of its points is omitted, the other 8 
are vertices of a Z. This explains the occurrence of symmetric  subgroups $9 
in A, whose order can be deduced from the geometry, without any allusion 
to JORDA~X'S and DICKSOST'S general formulae, in different  ways (§§ 7, l l) .  
Rich though the geometry is in detail nothing is i r re levant ;  it is summarised 
in Table I, some of which is mere transcript ion of facts ascertained in 
earlier work while those parts which are not are expedit iously compiled 
in §§ 12-14 .  

There follow, in §§ 15 and 16, certain propert ies  of the enneads, and 
then some paragraphs  point contrasts and underl ine affinities between the 
geometry here and that in 9, the paper  wherein MISS HAAtlLL, using a 
different representation,  succeeded in decomposing A into its 67 conjugate 
classes. I-Ier number ing  of these classes will be followed here, and the title 
of this paper  is chosen to echo hers. 

3. There are, in a symmetr ic  group gg, 30 conjugate classes associated 
one with each parti t ion t?,} of 9; when g9 is a subgroup of A these furnish 
members  of 30 of the conjugate classes of A. Each operat ion ~ of A leaves 
certain points of [7] unmoved;  these fill the lcttent space ~ of ~ whose 
dimension is always (§ 19) 9 less than the number  of parts in /).}. But  it is 
not merely the dimension of ~ that one finds; one determines,  in § 20 and 
§ 21, its precise relation to ®. The results  are shown in Table II  on 
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p. 26. All these are accumulated  by setting out from ~ in So and determining 
~; but one can argue oppositely by taking some space ~ and finding those 
operat ions of A for which it is latent. This investigation progresses by 
gradual  descen t :  when seeking those operations for which z is latent one 
presumes known all those whose latent spaces include ~. 

Those operations of A for which e-very point of ~ is invariant  form a 
group A~, with a subgroup A + of index 2. A~ includes all those operations 
whose latent space contains ~ and these, if the space properly contains ~, 
can be discarded if already known. These discarded operations embrace the 
whole of A~ or of its coset according as ~ has odd or even dimension, so 
that the excess of the number  of discards in the exhaus ted  half of A~ over 
the number  in the other half is the number  of operations of A for which 
is latent. In the course of the discussion explicit  matr ix forms for several  
A,  are found- they  depend, of course, on how ~ is chosen in relat ion to the 
simplex of reference of the coordinates;  one may mention, as based on the 
symmetric  canonical form (6.1), the 128 matr ices  (23.3) and, subject  to (34.4), 
the 192 matrices (34.2), as well as sets of 64 matrices,  based on the cano- 
nical form {10.4), occurr ing in §§ 35, 36. 

The details tend inevitably towards greater elaboration as the work 
progresses through decreasing dimensions of ~, and there is abundant  
interest  in the underlying geometry. Of those conjugate classes of A that 
do not intersect  any of its subgroups $~ 29 are encountered,  and represen- 
tatives of many of these are given. This part  of the paper  closes when ~. 
its dimension progressively lessening, has shrunk to a point. This point is 
labelled m or p according as it is on or off ~ ,  and A~ happens to be the 
direct  product  of a cyclic group of order 2 and a group on which much has 
been writ ten already. But A,~, of index 135 in A, is not familiar  and 
Table I I I  on p. 68 gives the numbers  of its 2~=.3~.5.7 members  in those 48 
of the 67 conjugate  classes of A among which they are distributed, as well 
as the mode in which these members  of A permute the 135 m of the 
geometry The analogous information for those A: with a a l i n e - t o  mention 

only those A~ of relat ively high o r d e r - c o u l d  easily be compiled. The orders 
of the various groups A~ are assembled in Table IV on p. 69. 

4. The only classes in ~IIss I~A~ILL'S list of 67 (9, 76-7) whose 
operat ions are devoid of invariant  points and which are therefore not 
encountered here are those numbered  

LVI, LVII ,  LIX, LX, LX[V, LXV, LXVI,  L X V I I  

whose members  have, respectively,  periods 

3, 6, 12, 5, 10, 15, 6, 12. 
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All of these have some power of their  operat ions in e i ther  class LVI  or 
class LX, and class LXV is so subordinated to both these classes. These 
eight outs tanding classes can be brought  within the ambit of the geometry 
once this is enlarged by invoking S~T:D¥' S t r ial i ty  a, nd imposing his semil inear  
t ransformat ions  {l~, 477}: he appropr ia tes  the adject ive semil inear  in full 
awareness of the fact that three successive such t ransformat ions  G may be 
necessary to generate  a coll ineation. ~ imposes an outer  automorphism of 
period 3 on A +, t ransforming d into two other  groups which also have A + 
for a subgroup of index 2. For  example :  the last class L X V I I  falls, in A +, 
into two conjugate classes of 7257600 operat ions;  class XXVII  has also this 
number  of operations, and of the same period 12, and there is an outer  
automorphism of A + which permutes  these 3 classes cyclically.  And this 
same automorphism t ransforms tile members of classes 

IX, XI, IV, I I I  

which are powers of members  of class XXVII,  into the members  of classes 

LXVI,  LXIL  LVI,  LXI  

which are the corresponding powers of members  of class LXVII .  But these 
mat ters  of t r ial i ty  and the geometry  per ta in ing  to them must be postponed 

t o  another  day. 
When  the occasion comes to consider them any facts ascer ta ined in 

this present  paper  will be available.  

5. A SYLOW subgroup $8 of A, and so of A +, is the direct  product  of 
a cyclic group of order  3 and a SYLOW subgroup, of order  81, of a cubic 
surface group, so that nothing fur ther  need be said abou~ $8 here.  But  the 
SYLow subgroups S + of A + are associated with the flags on ~ and this fact  
points one way towards an explora t ion  of their  propert ies .  The last par t  of 
the pape r  (§§ 50-69) is given over to these matters.  The 21~ matr ices  (50.1) 
furnish  an S + and their  law (50.3) of composit ion affords a ready access to 
its upper  central  series and to many other  features  of this group whose 
strueture~ whether  in its broad outl ine or fine detail, lies open to scrut iny 
by examining  the f igure in [7]. 

Table I shows the numbers of subordinate spaces, of different kinds, in any subspaee 
of [7]: ~, with the number of such subspaces in the geometry, heads the column, and 

the symbol for the subordinate space flanks the row, containing the entry. Reciprocating 
in ~ gives the number of spaces, of different kinds, that contain the polar space ~' of ¢; 
these latter numbers being so deducible instantaneously need not be printed and so the 
table is-left triangular. It is, used almost incessantly once it is on record. An entry written 
as a sum indicates that ~ meets ~ in a singular quadric and the different constituents o 
the sum imply subordinate spaces differently related to the vertex of the section. 
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I° 

The geometry  of  the  ruled quadric  ®;  the  960 inscribed enneads and the 
symmet r i c  subgroups, o f  degree 9, o f  the  or thogonal  group. 

6. When  Xo, x~, x2, x~, ~x4. xs,  xo, x~ are homogeneous coordinates in a 
projective space [7] the equation 

(6.11 E ~c~ = O, 

with a sum of 28 products  on left, represents  a quadric  ®. The base field F 
is the GALOIS FIELD GFI2 ) consisting of only two marks 0, 1 with 1-}-1---0;  
every x~ is a. mark of F so that, with two choices for each of the 8 
coordinates which, as coordinates of a point, are debarred from being all 0 
s imultaneously,  there are 2 s -  1 ~ 255 points in [7]. If  a point m is on ® 
the number  of products  x ,x j  that are 1 is even;  the number  of non-zero 
coordinates of m is then one of 1, 4, 5, 8 so that ® consists of 
8 + 70 ~ 56 -}-1---135 points m. The 255 - - 1 3 5  ~ 1 2 0  points off ® will 
be labelled p. The quadr ipar t i te  parti t ioning of 135 is consequent  upon the 
introduct ion of the coordinate system: the first 8 m are the vert ices of the 
simplex of reference Eo, the last single m is the unit  point U. The parti t ioning 
is indeed significant, but  it does not confer  privilege on any m. The 135 m 
all have the same geometrical  a t t r ibutes ;  they are permuted transit ively by 
by the group A of automorphisms of ®. 

Since ~.~x~ is symmetric  the symmetric group 8s is a subgroup of A; 
subgroups ~8 are associated one with each simplex =v in regard to which ® 
has the same equation t6.1) as it has when referred to Eo. Label  that vertex 
of ~'o, all of whose coordinates save x~ are zero, X~. These X~ all lie on ® 
and, moreover,  no two of them are conjugate:  their join is a chord c, not a 
generator,  of ®; the remaining point on c has two non-zero coordinates 
and so is off ®. Any simplex ~ ha~,ing these propert ies  gives, when taken 
as s implex of reference, (6.1) as the equat ion of ~ :  the square of each 
coordinate is absent  because  each ver tex is on ,~, while the product  of 
each pair  of coordinates is present  because no two vert ices are conjugate.  
Descr ibe such a s implex v as eligible. Now not only is it that no two 
vert ices of Eo are conjugate to one another :  none of them is conjugate to 
the unit point U whereat  the tangent prime of ® is the unit prime 

(6.2) 

Thus U completes, with the Xt,  an ennead 6o - a set of 9 m, each the 
sole point of [7] not in any bounding prime of the simplex whose vertices 
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are the others, all of them on ~ and no two conjugate. All 9! permutat ions 
of points of 6o can be imposed by projeetivities that belong to A because 
all transposit ions of pairs in 8o can be so imposed: those of pairs of X~ 
are imposed by permutat ion matrices, and if one requires  to transpose, say, 
Xo with U and yet leave every other Xi unmoved one takes 

(6.3) 

- 1 

1 

1 

1 

1 

1 

_ 1 

1 _ 

as premult ipl ier  of the coordinate column vector of any point. This matr ix  
has the two properties (see 6 for forms in 6, 7 for forms in 7 variables) 
that character ise  the matr ices of A: each colamn is the coordinate vector 
of an~Tm, while no two m whose coordinate vectors so occur in the same 
matr ix  of A can be conjugate:  the columns, indeed, are coordinate vectors 
of the vertices of an eligible simplex Z. 

A has therefore symmetric  subgroups $9. Every eligible v~ provides, by 
the addition to its 8 vertices of the unique  point of [7] that does not lie in 
any of its bounding primes, an ennead ~ whose members  undergo all 9! 
permutat ions under  one of these subgroups. A is transitive on these ~;  
there is a projectivity in A that t ransforms 2o into Z and so U into the 
unique point which, adjoined to Y,, completes ~.  The order of A is 9 ! N  
where N is the number  of ~. 

7. In  order to calculate N one notes, first, that the prime P spanned by 
any 7 members  of an ennead has for its pole the point p on the join of the 
remaining two: for example, v¢~---~0 is spanned by all Xi save X, and is 
the polar of (1, 1, 1, 1, 1, 1, 1 . )  on UXT. Now it was remarked  in 7 that 
there are, in x T = 0 ,  288 simplexes ~ in regard to which the section of ® 
has the equation ~,,x~xj--0 (0 <--i < j  <--6). The 21p which lie one on each 
edge of ~ are all conjugate both to U and to XT; for if nei ther  of two 
points, here vertices of c, is conjugate to a given point O the remaining 
point of their  join has to be, since it is the intersect ion of the .join with the 
polar of O. Hence  the 211o lie in the polar [5] with respect  to ® of UXT. 
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So, in order to construct  ~, one can take any of the 288 ~ in the polar of 
any of the 120 p, ~ being then completed unambiguously  by the two points 
analogous to U and X~ above. Thus, since any of the 36 jo ins  of ~ can 
fulfil this function of completion, 

hr ___ 288 X 120/36 - -  960. 

The order of A is therefore 

960.9!  ---- 213.35.52.7. 

8. The project ivi ty imposed by (6.3) has period 2, and a glance at the 
matrix tells that all" points in x o ~ 0 ,  and only these, are invariant.  The 
join of every two points that are paired with one another passes through the 
third point Yo on UXo; one may therefore, and this is in accord with earl ier  
nomencla ture  (l, 9), describe the project ivi ty  as a project ion ~ and call lye 
its centre. 

The prime of invariant  points is the polar of Yo and includes every 
point of ~oC' other than U and Xo. There are 120 project ions in A, each 
centred at one of the 120 p, every point in the polar of the centre being 
invariant.  The project ion centred on the join of two members  of an ennead 

transposes them while leaving every other member  of ~ invariant.  The 36 
project ions centred on the 36 joins of members  of ~ answer to the 36 
transposi t ions of a subgroup ~9 of A. 

9. The 8 p on the jo ins  of one member  of an ennead to the remaining 
members  form a simplex in regard to which also ® has a symmetric  equa- 
tion. Take~ for example the points Y, on the joins to U of the remaining 
points X~ of ~o. They are l inearly independent,  the matr ix of their column 
vectors (the single zero of each being placed on the diagonal) having I for 
its square.  :None is on ®, so that the square  of every y, is present  in the 
equat ion of 6 ;  nor are any two conjugate,  as is seen by testing Yo and Y1, 
so that every product  y~yj is present  too and the equation of ® referred to 
the simplex whose vertices are Yz is 

to 

7 

E yl~'q- ~ YiYj ~ 0 .  
i ~ o  :,< j 

This quadrat ic  form therefore has its group of automorphisms isomorphic 
A. 

10. There are, over F, two project ively distinct types of non-s ingular  
quadric  in [7]; one is ruled, having solids ¢o on it, the other  not. ~ is ruled. 
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Solids on ® are detected by taking any plane d on ,~ - a plane is on 
if it is spanned by three non-col l inear  m that are mutual ly  conjugate;  d 

lies in its own polar [4] D which, should ,.~ be ruled, meets ® in two solids. 
Take, then, to span d, U and ~ pair of conjugate m in t6.2) that are not 
coll inear with U, say 

(10.1) {1, 1, 1, 1, O, O, O, O) and (0, O, 1, 1, 1, 1, O, 0). 

The equations for D are 

110.2} 

If, in (6.1), one writes 

fO~" Xl~ Xa, Xs, xr respectively the outcome is 

(xo + x~ + x~ + xo) t,r,o -~- x~ + x,  + x~ + ~} = O, 

and ei ther factor determines,  with (10.21, a. solid on .,~. Equa~i(ms for the 
solid determined by the vanishing of the second factor are, for example, 

Xo + x3 + x~ + x7 ---- x2 + xo + x7 ÷ xl = x ,  + x7 + xl  + x~ = 

= xo + xl + x3 + x~ = O, 

and (6.1) admits the corresponding form 

t10.3} (x4 -}- x7 + x~ -}- x.} tx~ + x~ J- x~) + (x~ -}- x~ + x~ -}- x~) (Xo + x~ + x~) ---- 0 

which, the 8 l inear forms occurring' being l inearly independent,  is the stan- 
dard equation 

(10.41 Y~Zl + Y2Z~ + Y~Z~ + Y~Z~ : 0 

of a ruled quadric in [7]. 

Since (6.1) is symmetr ic  any equation derived from 110.3) by permuting 
suffixes is also equivalent  to t6.1) and allows equations for 16 solids m to be 
writ ten down. Had one, however, to give but o-ne instance, set out by 
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spanning d by X7 and the two points (10.1) one would have found that D 
,net ,~ in the two solids 

The solids on ® fall, as is well known (11, 43}, into two systems. It is 
important  to note that these systems are t ransposed by each of the 120 
projections g. For  the prime P of iuvar iant  points of 7, polar of the centre 
of 7, meets ~ in a non-s ingular  quadric  which, belonging to a [6], does 
not contain any solids; thus P meets every solid (o on ~ in a plane d and 
transforms ¢o into another solid ¢o' on ~ through d. But % to' cannot meet 
in a plane if they belong to the same system; they belong therefore to 
o p p o s i t e  systems. 

Since the project ions transpose the systems A has a subgroup A +, of 
index 2, of operations that leave both systems invariant.  The products  of 
even numbers  of ~ belong to A +, which has 960 al ternat ing subgroups  ~9. 

11. One now sets out to describe the figure in detail, obtaining the 
numbers  of the various subspaces and their relations to each other;  the 
geometry will afford much information about  the s t ructure  of A. The 
designations, a lready used on earlier occasions (6, 7), for the subspaces-of  [7] 
in their relation to ~ are retained here:  for example,  a line is labelled 
s, t, c, g according as 0, 1, 2, 3 of its points are on 6 .  

Pr ime sections of ® are of two kinds:  non-s ingular  sections by polars 
P of points p and singular  sections by tangent primes M at points m. The 
former section, a non-s ingular  quadric  in [6], has its kernel  (6, § 9j at p ;  
the 63 lines in P that pass through p are all t while the 64 lines outside P 
that pass through p are either c or s, those that meet  ® (once, and 
therefore twice) being c, the others s. Since there are 1 3 5 - - 6 3  = 72 m 
outside P there are 36c, and so 28s, through p. Hence  the total number  of 

t is 120 X 6 3 / 2 = 3 7 8 0 ,  

c is 1 2 0 X 3 6  - -4320 ,  

s is 120 X 2 8 / 3 =  1120. 

Both the c and the s fall into quarle~s; the four lines of a quar te t  
span the whole [7] and each of them is the polar of the [5] spanned by the 
remaining three. The order of A is, again, quickly found as soon as the 
number  of quarte ts  of either kind is known. That quarte ts  of c occur is 
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shown by (10.4), the vertices of the simplex of reference being intersections 
of ~ with such a quartet.  Conversely: when ® is referred to a simplex 
whose vertices are the intersections of ® with a quartet  of chords its equa- 
tion has the form (10.4); no square can occur because every vertex of the 
simplex is on ®, while all but 4 of the 28 product terms are absent because 
all but 4 of the 28 pairs of vertices of the simplex are conjugate pairs of 
points. A is transitive on the quartets  of chords. Since, once such a quartet  
is chosen, its members can undergo 4I permutations,  and since the two m 
on any member can be transposed, the order of A is 24.4!Nc where N~ is 
the number  of quartets  of c. In order to calculate N~ note that the polar C 
of any of the 4320 c meets ~ in a Klein quadric ~ having' planes on it; g{ 
has (see the last column of Table I in 7) 280 chords each of which has, 
with respect to g ,  a polar solid z containing 18 c, these being paired as 
polars of one another with respect to the section of ® and g{ by :¢. Hence, 
as the quartet  could have been assembled in any order, 

4 ! N. --- 4320. 280.18; 

and the order of A is 

2~ . 4320. 280 .18 ___ 2~.3~.5~.7. 

The discussion of quartets  of s is similar. The polar S of any of the 
1120 s meets ~ in a quadric ~ without any planes on it; ~ has (see the 
last column but one of Table I in 7, or the line of numbers along the top 
of Table II  in 6} 120 lines in S skew to it, each of which has, with respect 
to ~, a polar solid × containing two s, polars of each other with respect to 
the section of ® and ~ by z. Hence, as the quartet  could have been assem- 
bled in any order, 

4! Ns----- 1120.120.2 

where N~ is ~he number  of quartets  of s. If the vertices of the simplex 
of reference consist of two points on each of the four s in a quartet  the 
equation of ® is 

But as the members of a quartet  can undergo 4! permutat ions and as 
there are, having regard to order, 6 choices for the two vertices on each s, 
the order of A is 

6~.4! N, "-- 6+.1120.120.2 - -  218"35"52"7. 
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12. Planes  d and solids o) lie wholly on 6 .  It  will be recalled (6~ § 10) 
that the letters used to indicate the sections of ~ by other planes and solids 
are as follows. 

Planes  Solids 

e: a single line. 

f :  two lines. 

h: a single point. 

j : 3 non-col l inear  points. 

T: a single plane. 

: two planes. 

X: a single line. 

4 :  3 concurrent  non-coplanar  .lines. 

x :  a non-s ingular  ruled quadric.  

),: a non-s ingular  n o n - r u l e d  quadric.  

The tangent prime M to ® at m cuts ~ in a cone, vertex re, whose 
section by a [5] in M and not passing through m is a KL]~I~ quadric g .  
The numbers  of subspaces,  and their relation to g{, in the [5] are given in 
the last column of Table I in 7; these are 

28p, 35m; 105g, 210t, 280c, 56s; 30d, 1056 630f, 7Oh, 560j. 

It  follows that there pass through m 

28t, 35g; 105d, 210e, 280f, 56h; 30% 105 T. 630% 70 X, 5604. 

which, at the same time, lie in M. One can deduce immediately the 
numbers  of subspaces  in [7] but, on noting the n u m b e r s  of m in the 
divisors below, one must remark that in f and 4 the ~eontact' is unique 
while in ¢~ it is one of 3 points. Thus the total number  of 

t is 135 X 28 ~-- 3780 

g is 1 3 5 X 3 5 / 3  = 1 5 7 5  

d is t35 X 105/7--~ 2025 

e is 135 X 2 1 0 / 3 =  9450 

f is 1 3 5 X 2 8 0  = 3 7 8 0 0  

h is 135 X 56 = 7560 

w is 135 X 30/15 = 270 

y is 135 X 105/7 ~ 2025 
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is 135 X 630/3----28350 

X is 135 X 70/3 ---~3150 

is 135 X 560 ~ 7 5 6 0 0  

13. The sections of ~ by the spaces just  listed are s ingular;  it remains 
to find how many planes j meet ® in non-s ingular  conics and how many 
solids % )~ meet ~ in non-s ingular  quadric surfaces - ruled and non-ru led  
respectively. Once this has been done the numbers of all types of subspace 
will be known, since a space of dimension exceeding 3 is the polar of one 
of dimension less than 3. 

Any three m, no two of them conjugate, span a j. Choose any of the 
135 m and call it m~. There are 70 others, two on each of 35 g through m~, 
in the tangent prime M~, and so 64 outside M~; it is these 64 that are not 
conjugate to m~. Choose any of these 64, and call it m2. The tangent  
primes M~, M~ meet in the polar C of m~m,; C contains 35 m composing the 
KLEI~ section of ~ therein, so that there are 36 m outside C but in M~, 
another  36 in M2. Hence there are, outside both M~ and -~12, 

1 3 5 - - 3 5 - - 3 6 - - 3 6 - - 2 8  

m; it is these 28 that are not conjugate either to m~ or to m2. 
of these 28 and call it ms. Since m~, m2, m8 could have been 
any sequence the number  of i is 

Choose any 
selected in 

1 3 5 . 6 4 . 2 8 / 6 = 4 0 3 2 0 .  

There are, as explained in § 11, 11200 quartets  of s; any two members of 
such a quartet  span u z, so that each quartet  affords 6m. )Ioreover there 
is one, and only one, way of s p a n n i n g ' a  given z by a pair of s, polars of 
each other with respect to the section of ®: namely by what have been 
called (6, 631) the DAhTDELI~ lines of z. I t  follows that  the number  of 
is 67200. This number  is also obtainable by using the -Yc quartets  of c for 
here, too, any two members of a quartet  span a z and are polars of each 
other with respect to the section of ®. But z can be spanned by any of 9 
polar pairs of c, so that any one z arises from 8t  quartets,  there being 
also 9 choices in the polar of z for the two members of the quartet  outside 
z. I t  follows that the number  of z is 6N~/81. 

A solid )~ includes 5 m no two of which are conjugate;  conversely {take, 
for example, the solid XoX1X2X~) any 4 m, no two being conjugate, span a 
solid ).. Thus each of the 960 4 provides 126 k and so, since each k, 
including 5 sets of 4 mutual ly  non-conjugate  m, arises from 5 different  4, 
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the number  of )~ is 960.126/5 = 24192. They form 12096 pairs of polar 
solids: for instance the polar of XoX~X~Xa is 

herein  are 5 m, no two conjuga{e~ namely those whose coordinates are the 

1 1 1 1 

1 1 ] 1 

1 1 1 1 

1 1 1 1 

1 1 

1 1 

1 1 

1 1 

columns 

14. One can now build Table I, each column showing how many 
subspaces  of different categories lie in the space whose symbol heads the 
column. Save for those columns headed by ¢o, D, G, M the table is largely 
a t ranscr ipt  of earl ier  ones: compare Table I of 7 with its first column, 
and five columns headed by letters with zero suffixes, deleted, its top row 
amalgamated with its second and each row led by a let ter  with zero suffix 
amalgamated with that led by the same let ter  without the suffix. The 
column headed by P consists of the numbers  down the extreme left of 
Table I of 7 (having regard to the amalgamations jus t  prescribedt;  the 
column headed by J consists of the numbers,  correspondingly amalgamated,  
along the top of Table I of 6; that headed by S of the numbers  along the 
top of Table I I  of 6. Capitals now denote spaces that are polars, with respect  
to ®, of those denoted by corresponding small letters. 

If  an entry appears  as a sum it is in a column corresponding to a 
space whose section of ® is singular, the different  components  of the sum 
indicating different  relations o[ the subspaces  to the ver tex  of the section: 
recall  the note to Table I I  of 6; for instance, of the 7 5 g  in T 15 pass through 
the contact of T with ® whereas the other 60 do not. 

The numbers  of spaces through a given subspace are deducible instantly 
by polarising in ®; there are, for instance~ 75 G through t of which 15 
lie in the tangent M to ® at its contact  with t. 

Column D is readily compiled, since D meets ® in two solids % ~o' 
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through its polar plane d. The other solid through d in D is 7. There are 
28 solids in D which do not contain d and which therefore meet ® in two 
planes, one in o) and one in to', intersecting in a line in d. The g in D 
consist of I in d, 28 outside d in ¢o, 28 outside d in co'; the c join the 8 
points of co outside d to the 8 points of ~o' outside d; the p are the 8 points 
of ~, outside d; a plane f i n  D joins one of the 28 lines g in ¢0 outside d 
to one of those 4 lines in (o' that pass through the intersection of g with d 
and yet do not lie in d; and so on. 

The entries in column G follow from the observation that the line cone, 
with vertex the polar g of G, in which G cuts ~ projects from g a non-  
singular ruled quadric, or hyperboloid, in [3]. Let, for definiteness, g join 
the points (10.1), so that G is 

(14.1j 

If, in (6,1), one writes 

for x~, xs, x5 respectivety the outcome is 

(Xo + x~ + x~) (Xo + x~ + x~ + ~) + (xo + ~) (x~ + ~) --= O, 

the canonical form xy-~ z t--O for a hyperboloid. All solids in G that  
are skew to g are ~. There is no )~ in G; every solid in G other than 
these × meets ® in a singular  quadric. 

The number  of solids in G skew to g is quickly found by a standard 
procedure. Such a solid is spanned by taking 

At, any of the 63-3 points in G not on g; 

A2, any of the 63-7 points in G not in the plane gA~; 

A~, any of the 63-15 points in G not in the solid gAlA2: 

A~, any of the 63-31 points in G not in the [4] gA~A2A~. 

But this same solid would have been spanned by taking 

B~, any of its 15 points; 

B~, an~ of its 14 points other than B~; 

B3, any of its 12 points not on the line B1B2; 

B4, any of its 8 points not on the plane BIB2B~. 

Hence there are 

60.56.48.32/15.14.12.8---44=256 
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solids in G skew to g. The discussion has also shown that 
to a given line therein, 64 planes in [4] and 16 lines in [3]. 

Since the subspaces in z consist of 

there are, skew 

9m, 6p; 6g, 18c, 9t, 2s; 9f, 6j; 

it follows that there are, containing g and lying in G, 

9d, each including 4m off g; 

6e, ,, ,, 4p off g; 

6~o, ,, ,, 16g skew to g; 

18% ,, ,, 16c skew to g; 

9y, ,, ,, 16t skew to g; 

2X, ,, ,, 16s skew to g; 

9D, ,, , 64/  skew to g; 

6E, ,, ,, 64j skew to g; 

All these numbers  provide entries in column G; for instance 9 . 6 4 = 5 7 6 f  
and 6 . 6 4 = 3 8 4 j .  The only entries now outstanding are those for spaces 
which nei ther  contain g nor are skew to g, and so meet it at one of its 
3 m. They are quickly found. As instances:  the 96 g skew to g tie 4 in 
each of 24 d jo ining them to any m on g. so that 72 such d occur;  the 
576 f skew to g lie 8 in each of 72 q~ jo ining them to any m on g, so that 
216 such (I) occur;  and so on. 

Since the tangent prime M to ® at m meets ~ in a point cone 
project ing a KLEI~ quadric every [51 in M that does not contain m is a C; 
the last column in the table can thus be disposed of summarily.  For, C 
having the subspaces  

28/9, 35m; 105g, 210t, 280c, 56s; 30d, 105e, 630f, 70h, 560j; 

105% 210~, 280×, 56),; 28J, 35F  
M contains 

28t, 35g ; 105d, 210e, 280f, 56h; 30% 105y, 630% 70X, 560~; 

105D, 210E, 280F, 56H; 28T, 35G 

each of which includes (the m being in addition to the contact while the 
g, l, c do not contain this contact) 

2p, 2m; 4g, 4t, 4c, 4s; 8d, 8e, 8f, 8h, 8j; 16~, 16~;, 16×, i6),; 32J, 3 2 F  

respectively.  
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15. Before passing on to fur ther  matters  a word or two about the 
enneads will be in place. Each pair  of vertices of ~ has for its jo in  a c, 
each set of 3 vert ices spans a plane j ;  hence the number  of ~ having 

a given m for ver tex is 

a given c for edge is 

a given j as plane face is 

960.9/135 --- 64, 

960.36/4320 --- 8. 

960.84/40320 --- 2. 

The solid spanned by 4 vert ices of ~ is a )`, and so contains a single 
m that is not ~ ver tex of ~ .  All 9--k 126 m are accounted for by the 
vert ices of ~ and by these supplementary  m that lie one in each of the 
126), determined by sets of 4 of the 9 vertices. After a vertex of ~ is 
isolated from the other 8 there are 35 ways of part i t ioning these as 42; each 
such bisection affords a pair  of ),, and the two supplementary  m, one in 
each )., are coll inear with the isolated vertex. Thus  all 35 g through this 
ver tex are accounted for. The coll ineari ty is verif ied at once by isolating 
U in t~0. 

Each of the 28 plane faces that contain a given ver tex m of, say, ~1 
provides, as sharing this plane face, one of the 64 ~ having m for vertex.-  
These 28 ~ account, with ~ itself, for all 8 enaeads  sharing any edge of 
~1 through m: if enneads share 2 vertices they share 3. The remaining 
35 that have m for vertex share no other ver tex with t~l; each of them is 
l inked with one of the 35 separat ions  into tedrads ~, z' of the 8 vert ices 
of ~1 other than m. Supplementary  to z is ~, complet ing the section of 
® by the )  ̀ which z spans;  m~ is completed by the supplement  ~' to ~' 
and that tedrad which is in perspect ive with -c from ~' belongs to the new 
ennead, which is completed by the tetrad in perspect ive with z' from }. 
Take, in il lustration, m to be U and ~ to be t$o. The other ennead having 
vertices U, Xo, X~ is given, apart  from U, by the columns 

(15.1) 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

i i i i i 

Annali di Matematica 3 
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The ennead which shares no vertex other than U with $o and which is 
l inked with the separation XoXxX~XJX4X~XoX~ is given, apart from U, by the 
columns 

(15.2) 
I 

1 1 1 1 

1 1 1 1 

i 1 1 1 

i 1 1 1 

1 1 1 1 

1 1 1 1 

1 i 1 1 

1 1 1 1 

1 

Here t~ is (1 1 1 1 . . . .  ) and ~' is ( . . . .  1 1 1 1). 

Arrays in clear analogy with (15.1) give all 28 $ that share with $o U 
and two other vertices; arrays in clear analogy with (15.2) give all 35 
that share only U with $o. 

16. Any 3 vertices of an ~ with their centroid compose a conic with 
its kernel.  I f  the 9 vertices are part i t ioned as 3 ~ the kernels  of the 3 triads 
are collinear. If, for example, $ is ~o and the parti t ion is 

(16.1) UXoX~: X~X3X~: XsX~X~ 

the kernels  are 

(16.21 ( . .  1 1 1 1 1 1), ( . .  1 1 1 . . . ) ,  ( . . . . .  1 1 1). 

The line s of the kernels may be called an axis of ~;  each $ has 
9C~.°C8/3!=280 axes, and each s is an axis of 960 X 280/1120= 2405. 
This number  can be found otherwise. If  So is an axis of ~ there are planes 
j l ,  j~, i8 that meet So at pl, P2, Po and together account for all 9 vertices 
of 6;  in j~ lies s~ which, being the only line in j~ skew to ~ ,  is in the 
polar of every vertex of ~ outside j i .  Thus sl, s2, s~ complete a quartet  
with so. Conversely: let sl, s2, s 3 complete a quartet  with So and let j l ,  
j2, j~ be one of the 6 sets of planes jo ining them to the p on So. Each 
plane includes 3m; no two in the same ji  are conjugate;  nor are any two 
in different  j l  since, were such a pair of m conjugate, it would follow 
that two of the p on So were. The 9m therefore give an $ of which so is 
an axis. Since there are 40 quartets  having So as a member there are 240~ 
having So as an axis. 
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Each tr iad of vert ices of an ennead 8~ is shared by another  8 so that 
the par t i t ioning (of vert ices of 81) leads to 81 , 82 , ~8. One of the partitio- 
nings as 32 of those 6 vert ices of 8~ that it does not share with 81 has both 
its two kernels  on the axis s of ~" l inked to the original part i t ioning.  

Thus  each of 81, ~2 ~a leads, via s, to three 8 one of which is ~i; 
it appears  that these arc always the same 8~, 82, 83. So one obtains a 
closed set of 6 8  falling into complementary  tr iads;  each member  of e i ther  
tr iad shares 3 vert ices with each member  of the other  and s serves as an 
axis for all 68.  It is enough~ by way of proving these facts, to give the 
instance that derives from (16.1). The enneads are as follows, with their  
tr iads of common vert ices bracketed• The coordinate  vector  of the kernel  
of a tr iad is the sum of those of its three members ;  all 6 Co here  displayed 
have 416.2) for an axis. Each triad is labelled by the script  capital  ~ ~ ,  or 
@; tr iads with the same kernel  have the same script label and are 
dis t inguished one from an another  ther by its suffix. 

1 1  

1 

1 

1 

1 

1 

1 

1 

1 

1 .  

• 1 . ° 

. 1  

1 .  

. 1  
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1 1  
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1 1 . 1  1 1 1  
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1 1  1 1 1  

1 . 1  1 1 1  

1 1  1 1 1  

1 1 1  . 1 1  

1 1 1  1 1 
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1 . 1  

1 . . . 1  
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1 1  1 1 1  1 

1 ° • ° • ° ° ° 

1 . 1 . . . . . .  

1 1  1 1 1  1 .  

1 1  1 1 1  1 

1 1  l l l  . 1  

1 1 . . . . .  

1 . 1  . . . .  

1 . 1 
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17. It is inevitable that Table I should have many features in common 
with Table I I  of 9, for both tables relate to representat ions of the same 
group as a group of projectivities in [7], although over different  fields. 
The dict ionary given in § 18 of 6 extends to 

p t s j h x ~. X J H T  S P. 

The relations {9: 57,58) between those spaces labelled ~ and ~. (the 
suffix denoting the number  of dimensions, and c2 being used for ~ ,  y, as 
these planes happen to be identical} accord with analogous relations here. 
That  ~ includes {n Jr-1t~_~ points to there being 

4h in X, 5 X in I4, 6 H i n  T 

and that ~,~ includes 2"y,,_~ points to there being 

4s in h, 8h in X, 16), in H, 32J in T; 

all this is as it should be, allowing the 12h in X to be partitioned. And 
there are, too, 

4s in h, 5h in k, 6). in J 

in agreement  with there being (n + 2}y,,_1 in 'C,,. 

All points in ~ I s s  HAm]~L's geometry are analogues of p, so that the 
top row of her  table corresponds to the second of ours. The few apparent  
discrepancies are easily explained away. That J contains 16 p and ~'4 only 
15 Po is because the 16 include the kernel  of the section of ~ by J ;  the 
same explanat ion reconciles P containing 64 p with m6 containing only 63 Po. 
The section of ~ by T- i s  a point cone project ing a non-s ingular  quadric 
in [4] and so having a ke rne l -genera to r ;  if the two p hereon are omitted 
there remain  30 p which are analogues of the  30 p in ~ .  

Take  now the 28 p in C, and recall,  from § 9 of 7, their  distribution 
among 8 heptagons;  omit one heptagon, and consider the remaining 21 p. 
If  one takes for C, with the coordinates and the heptagons as in §9  of 7, 
the unit [5] and omits bo the remaining p are all those, and only those, 
having 2 of their  7 coordinates non-zero. This fits the duad notation (9, 57) 
for thc vertices of 75 perfectly, and vertices of ~'5 that are polar to each 
other correspond to p that are conjugate with respect  to ®. Thus~C includes 
8 analogues of ~'5, one~ifor each omitted heptagon, and that there are 
4320 C accords with there being 34560 '(6. Take next, from the 21 p in C 
that are not vertices of Do, those 15 for which x o = 0 ;  they are analogues 
of vertices of a 74- But they belong to two sets of 21 p that are analogues 



W. L. EDGe: An o~'thogo~al group of order 2~.3~.5~.7 21 

of vertices of a y~, for one can supp lement  them by 6 vert ices either of 
bo or of D~ (the common vertex of b0 and b~ not permitted). And so, jus t  as 
there are 7 y4 in %, there are 7.8/2 -~ 28 J in C. 

As no analogues of m were available in 9 nei ther  could there be any 
of g, c; d, f; to, ~0; D; fbr the p in such spaces, if existent at all~ are 
inadequate  to span them. The presence of m in the finite space simplifies 

1 
the descript ion of the analogues of %: that of y ,  consists of those ~ ( n ~  1) 

(n-+-2) p that lie one on each join of a pair  of n-~-2 m no two of which are 
conjugate,  of n ~ 2 m, that is, that belong to the same ennead. The eligible sim- 
plexes ~ thus afford the analogues of 8640~.  the enneads ~ those of 960y~. It 
was remarked,  at the first mention of ~',, in 9, that it could "be visualized as the 
general  prime section of a s implex i n n ~  1, though it does not arise in that way 
here" :  but  this, in the finite space, is precisely the way in which it does arise. 
3~Iss I-tAMILL states (9, 60) that there are 135 ~ and 960 'l~, and the clear 
implicat ion that A has permutat ion representat ions of degrees 135 and 960 
must be credited to her, as also must, to go no higher, representat ions  of 
degrees 120 and 1i20. That  there are as many ~ as there are m is because  
the b6p in any M are analogues of the vertices of a ~ .  For let M be the 
unit prime. The p therein are those points either 2 or 6 of whose 8 
coordinates are non-zero. If those having x; --  w~-- 1. with the remaining 
coordinates 0, and x~ ~ xj ~ 0, with the remaining coordi'nates 1, are 
labelled (ij) and tji) one has the non-commut ing  dnads {9, 58) that serve 
to describe ~7 and the differing relations among its vertices. 

Those of the 561 ) for which some definite a~ is equal to one, and only 
one, other coordinate are the 42 vertices ~[ a ~ ,  and so the 8 ~6 in this ~7 
are identified. 

18. Whether  it be the geometrical  definition, or the mere number, of 
any space of the long list displayed along the top of Table I I  in 9 that one 
considers it has its analogue in the finite geometry. Consider some of the 
[5] 's ;  the concordance of ~5, m~, ~'~ with T, S. C has already been verified, 
but  these are only 3 of 11 types of [5] occurr ing in 9. Le tya  @ b denote the 
direct sum of two subspaces a and b, meaning thereby the space spanned 
by skew spaces a, b every point of either of which is conjugate to every 
point of the other. What,  then, is h $ h, and in how many ways "can it be 
thus spanned?  It is, being spanned by skew planes, a [5]; since the section 
of ~ by h is singular, with a point vertex, that by h ~  h is singular, with 
a line ver tex;  this implies G. Conversely, given G, take hi, any of the 
24h  therein;  the polar g of G is jo ined to hi by a solid Y.1 whose polar 
X2 is the intersection of G and the polar //1 of hi; tile second plane b2 
required to span G must  lie in Z2 but must not meet g in the same m 
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as hi does. Thus there are 8 choices for h2~ there being 4h in X2 through 
either of the two points other than ,m on g. 

1 
So G can be spanned as h O h  in 2 (24 X 8) ~--- 96 ways. Even so are 

there 151200-----96 X 1575 spaces c~ X c~ in 9. Or take ),¢ t, a [5] meeting 
® in a point cone and so a T. Given T there are 96k therein;  once one 
of these is chosen t has to be the intersection of T with its polar ),', 
and indeed there are 362880=  96 )< 3780 spaces '(~ X el in 9. Then 
s @s@ t, which is also a T because it meets ® in a point-cone, is the same 
as x@t .  Given T there are 160× therein;  once one of these is chosen t 
has to be the intersection of T with its polar z', and there are 604800 
160X3780  spaces , / ~ X y ~ X e ~  in 9. The section of ® by a [5] ),@s is 
non-s ingula r ;  it is a C wherein )~ and s are poIars, and each C can be so 
spanned in 56 ways. Just  so are there 56X4320--241920 spaces 'tsX~'~ in 9. 
And so forth. 

19. When So is a subgroup of A each of its conjugate classes is part  
of a conjugate class of A. If the ennead of which 89 is the stabiliser is $o 
one can at once write down a matr ix ~ belonging to any of these 30 classes 
of A; its columns are the coordinate vectors of those 8 members of ~o into 
which the vertices of vo, ordered so that their coordinate vectors form the 
unit  matrix,  are transformed. 

A projectivity that permutes the members of ~o among themselves is 
the section by [7] of a projectivity in [8] that permutes the 9 vertices of a 
simplex therein;  one takes the [8] to be spanned by the vertices of Eo with 
a point X8 outside [7]. Any 9-rowed permutation matr ix permutes the 9 X~ 
while leaving the unit  point V in [8] unmoved; it imposes a projeetivity [I 
on the star of lines through V and so induces, in xs---0, one n on the 
points of [7]. This permutes the members of $o, consisting as they do 
of the vertices of ~0 together with the intersection U of VX8 with [7]; all 9! 
permutat ions  of members of (~0 are so obtainable. 

The dimension of the latent space /~ of lI is (cf. 7, 595) less by 1 than 
the number  v of parts in t~,!, the parti t ion of 9 that corresponds to the 
cyclic decomposition of the permutat ion imposed by II; the Iv - -2 ]  in which 
/k meets x s =  0 is latent for ~:. Now it is, a priori, possible for a point a 
to be latent for rc but not for H; it may happen that II transposes a with 
the third point on Va. 

But scrut iny discloses that this ~ occurs when, and only when, every part  
of t),t is even; since this is impossible for any parti t ion of an odd 
number the contingency may here be disregarded. For if t k}--" tkl~ ...t 
consider the effect of II~ on a point a in x s - - 0  that is presumed invariant  
for 7: but not for II. Since II is effeeted by a 9-rowed permutat ion matr ix I] ~1 
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leaves a ce r ta in  ),~ of the 9 coordinates  o[ a unchanged .  Yet II i tself  
adds 1, and so II ~1 adds ),1, to every  coordina te  of a :  hence ~,1 cannot  be 
odd, nor  can any  of )~2, .. . .  Thus  the la ten t  space of any  pro jee t iv i ty  in 
any  subgroup  $9 of A has d imens ion  v - - 2  where  v is the n u m b e r  of cycles 
in the p e r m u t a t i o n  of members  of the appropr ia te  ennead.  

20. Once the m a t r i x  ~ is wr i t t en  down the equat ions  of the la ten t  space 
follow: its points  are those whose coord ina te  vectors  are la ten t  for ~t. Thus  
not only  the d imens ion  but  also the ca tegory  of the space in its r e la t ion  
to ® can be de te rmined .  Of the 30 ins tances  a few suff ice  by way of 
i l lus t r a t ion ;  let them be concerned  with  the pa r t i t ions  

1234~ 3 s, P5,  1423, 2~5, 9. 

1534 b~ --" 1 @ 

whose la ten t  vectors  fill  the space 

1 

1 

1 

Xl ~ X 2 - - -  a3 3~ 0~4--- Xs----- X s= X~. 

This  is a p lane  f ;  the only  p there in  are 

(. 1 1 1 . . . .  ) and  (. 1 1 1 1 1 1 1). 

3~ Ix--- 

I 

I_. 

• , • • ° 1 - -  

1 . . . .  1 

• , ° • • 1 

1 1 

l 1 

1 1 

• • , • , 1 

. . . .  1 1 _  

whose la ten t  vectors  are those hav ing  

~ o = X l - - X 2 ~  Xa ~ ~34-----X5~ ~6--- - -X7 = 0 .  
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Th i s  is a. l ine  s. 

145 ~ 1 5 1 @  1 5  

1 

J 

I 1 
[ 1 

_ 1 . . . . . .  I 

for  which the i n v a r i a n t  points  sa t i s fy  x~-~--x+=x5 = x 6 - - x T .  Th is  is a 

sol id )`, i ndeed  XoX1X2U. 

1423 t x = l ( 3 1 ~ l O  [ "1 1 t ® .  1 

for  which  the i n v a r i a n t  poin ts  are  g iven  by x ~ =  x4, x~-.=x+= xT. This  is 

a [4] J, c o n t a i n i n g  XoX1X2U. 

- 1 . . . . .  1 

1 . . . . . .  1 

1 1 

1 . . . .  1 
255 ~ = . . . . . . .  1 

! 
. . . .  1 1 

. . . . .  1 1 

. . . . . . .  1 1 

hav ing  for  i n v a r i a n t  points  those which  sa t i s fy  

a l ine  t. 

9 Here 
Its+ XlI-- 

` . o , , o o 1 

1 ~. . . . . .  1 

1 ~ . + .  . . 1 

1 )` 1 

1 k 1 

. . . .  1 )` 1 

. . . . .  1 )` 1 

. . . . . .  1 1 + ) `  

---- 1 + )` + ),~+ )`~+ )`++ )`++ ) 6 +  )`7+ )̀ 8 
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as is seen bv subtract ing each row, mult ipl ied by k, from the one imme- 
diately above it, beginning the operations from the bottom. Since lt~ + k[! ~ 0 
has no root in F there is no invariant  point. 

21. Once equations determining the latent  space are known the numbers  
of m and p therein are known too. These mere numbers  do not always 
identify the space;  they fail to dist inguish e from j, ~' from ~, E from J. 
But  these distinctions can be real ised on scrut inis ing the distr ibution of the 
points;  in e, for example,  the m are coll inear whereas in j they are not. 
And another cri terion can be appealed to: the latent space for any 
part i t ion f~.} necessari ly includes spaces latent  for any parti t ions to which 
{k t is subordinate.  1423 gave J, not E, because  it is subordinate  to 145 
whose latent space is ),~ and E does no t ' i nc lude  any k. 

Likewise 1324 and 12223 are both subordinate  to 1234 whose latent 
plane is f;  hence their latent solids cannot be ,/ and so, as including S p, 
have to be ~b. And 12~4, subordinate  to 145 with invariant  g, has latent  e, 
not j ;  while 1~6 and 123 ~, subordinate  to 1"-7 and 33 respectively,  have 
latent  j .  

Proceeding on these lines one compiles Table [I. This displays in its 
different columns, reading from the left, 

the parti t ion determining the cycle type of the permutat ion of 9 members  
of an ennead. 

the dimension of the latent  space, 

the number  of invariant  m. 

the number  of invariant  p, 

the category of the latent  space, 

the conjugate class of A to which the group operation belongs in MIss 
]-~AMILL' S enumerat ion.  

The number  of invariant  p has to accord with that in MIss ]-IA~fILL~S 
v-co lumn (97 Table III), and here there is no discrepancy to explain away. 
The period, and the category of the latent space, usual ly  fix the class 
numera l ;  in the few instances where they do not one can, to decide which 
numeral  to attach, note those already at tached to classes whose members  
are powers of those o[ the class in question. For  example:  1232 and 136 
both give classes whose operations have period 6~ and points of a j invariant.  
But  the former class consists of operations Whose squares  are in 
X(l~3 ~) and cubes in II(U2), and so is XVI[,  whereas  the latter, since its 
operations have their squares  in X and their cubes in V(182a), is XXII .  

A s i g n - 4 - i s  affixed to part i t ions having an odd number  of parts to 
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I I  

Operations of  the orthogonal group not belonging to amy symmetric subgronp. 

The groups A~. 

22. Certain spaces do not occur in the penult imate column of Table I I ;  
the absence o[ some is inevitable. In order to see whether M can figure 
as a latent space take the unit  prime (6.2). Since every point having 2 
non-zero coordinates is invariant  

- a-+-i  a a a 

b b-~-i b b 

c c c - 4 - 1  c 

d d dd--~- 

e ~ e e 

f f f f 

g g g g 

h h h h 

i 

b b b b i 
t 
r 

l d  d d d 

e-~-i e e e 

f f + l  f f 

g g g d - l h : i _  
h h h 

where, to forestall l inear dependence of the rows, 

In  order that  each column be the coordinate vector of an m 

~. ab ~ Y . a - - a - - - b ~ c - - - - d - - - e - ~ f  : g - - h ,  

so that, there being an even number of products in the sum, Eab--O. Thus 
cannot belong to A unless ~ / ~  and then M does not exhaust  the inva- 
r iant  points. Nor can a [5] C ever be latent for an operation of A; its 
polar c involves a single p which would be i~lvariant yet  is not in C. 

Certain spaces, then, never occur as latent spaces and are perforce 
absent from Table II. But when a space is present in Table I I  this in no way 

"~ i suggests that there are not other operations of A,~outs de its subgroups $9, 
for which it is latent too. Other conjugate classes in A than those 30 which 
have members in these $9 are encountered by pursuing this matter. 

When  a projectivity has every point of xo ~ xl invariant  its matr ix  must 
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have the form 

I_ 

a + l  a 

b b - b l  

G 

d d 

e e 

f f 
g g 

h h 

1 

1 

_ 

wherein, to forestall singularity, a ~ b. Then, as above, 

(22.1) V, ab + Ea = a : b. 

Now, as ~ belongs to A, the sum of any two of its last 6 columns is, as 
coordinate vector of a point, conjugate to both the first and second columns;  

hence 

p 

c ~ d - - e - - f - - - ~ g  h, --- ~ say, 

so that (22.1) reduces to a b + ~ - - - a ~ - b ,  and so ~ - - 0 .  

There are, then, two operations of A leaving every point in h o a x 1  
invar iant ;  they are I (a ---- b - -  0) and the matr ix  ( a ~ - b - ~  1) of the projection 
centred at the pole of no - -  n~. 

The only operation of A for which a [61 P is latent is the projection 

centred at it pole. 

23. Consider, now, operations o[ A for which all points of some D are 
invariant.  Take, as in (10.2), D to be 

it includes the solid 7 whose equations are 

(23.1) x o - ~ n ~ ,  n ~ n ~ ,  n ~ - - x ~ ,  n 6 ~ n T ,  

and those projeetivities for which every point of 7 is invariant  have 
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matrices 

(23.2) 

b~ b l+  

Ci ~i 

dl dl 

ei ei 

fi fl 

_ g l  g l  

hi hi 

G2 52 (~a 5s aa 5a 

1 b~_ b2 b~ b~ b~ b4 

C2"-~- 1 C2 Ca Ca Ct C~ 

d2 d2~ 1 d3 d8 d~ d4 

e2 e2 ea-{- 1 ea e~ e~ 

f2 A £ £ + 1  f4 f4 

g~ g2 g3 g8 g4~- t g~ 

h2 h2 h~ h~ h~ h4+ 1_ 

Here, to forestall singularity, 

a l i b i ,  c~d~_ ,  e3--fs ,  g ~ h ~ .  

Next, as the sum of any two columns has to be conjugate to each of 
the remaining six, we find, adding the first and second, then the third and 
fourth, and so on, that 

a2=b2 ,  a~------b~, a~=b4;  cl----dl, c 3 ~ d ~ ,  c 4 ~ d ~ ;  

c l e f 1 ,  e2~ /2 ,  e ~ f ~ ;  gl----hl, g2----h2, g~=h~ .  

One has also to prevent any two columns from being conjugate to each 
other; the second and third would be unless a2~---cl, and other pairings 
show that (23.2) must be symmetric. Lastly, as the point whose coordinates 
fill any one column is to lie on ®, 

g~=c~-4-e , ,  g~=a~-{-e~, g ~ = 5 ~ + c ~ .  

The upshot is that any projectivity in A for which every point of 
(23.1) is invariant has a 

- a + l  

5 

h 

h 

g 

g 

g + h  

g ~ h  

a h h g g g ~ h  g ~ h -  

a ~ l  h h g g g ~ h  g ~ h  

h b ~ l  b f f h ~ f  h + f  

h b b + l  f f h + f  h + f  

g f f c + 1  c f + g  f W g  

g f f c c + l  f + g  f W g  

g + h  h + f h T f  f + g  f + g  d + l  d 

g + h  h + f  h + f  f + g  f + g  d d + l  

matrix of the form 

(23.3) 
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The group property, expressible as 

(23.4) (a b c d) (a '  b' c' g' , ~ ( a + a '  b+b '  e'-~c' d+d")  

f g h h' f + f '  g+g '  h~-h '  / 

of such matrices is clear on mult iplying them. 

But it is, as yet, only the points of 7 whose invariance has been 
insisted on. [n order to ensure that  evecy point of D is invariant  it is 
necessary and sufficient to ensure the invarianee of any one point of D 
outside 7, say of (1.  1 .  1 .  1 .}. This demands a - - b - ~ c : d - - O ,  and 
(23.3) becomes 

(23.5) 

- 1 1 

h h 

h h 

g g 

g g 

g + h  g ~ h  

_ g ~ h  g ~ h  

h 

h 

1 

1 

f f 

f f 
h + f h +  

h + f h +  

h g g g + h  g T h  

h g g g + h  g--l-h 

f f h + f  h + f  

f f h + f  h - t - f  

1 f + g  f + g  

1 f + g  f +  g 

[ f + g  f + g  1 

f f + g  f + g  1 

Thus there are 8 projectivities in A for which every point of D is 
invariant.  They include ( f ~ - - g - - h : O J  the identi ty;  the latent spaces of 
the others are the 7G through D, and no D can itself be latent for any 
operation of A. The 7G through (23.1), and the matrices (23.5)associated 
with them, are as follows. 

tv, -i- x~ = ~c~-]- x~ = x~ -t- x, : g = h - -  O, f = l .  

X o + X l = x 4 + x ~ = x , + x T :  h = f = 0 ,  g --" 1. 

xo -4- x~ -:-= x~ --]- x~ = x6 -}- xT : f ---~ g --~- O, h = l. 

Xo-}-xl=x~-]-xs ,  x 4 - ] - x s = x 6 + x T :  f = g - - 1 ,  h = 0 .  

x o + x l = x , + x s ,  x 2 - } - x ~ = x 6 + x , :  h - ~ f - - ~ l ,  g = O .  

~4:. This discussion has shown not only that no operation of A has D as 
its latent space but also that there is one, and only one, operation whose 
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latent space is a given G. The 1575 such operations consti tute class X I I I ;  
note the entry 24, on this level, under  v in Table I I I  of 9; there are, 
indeed, 24 p i u  G. Such operations [over any field) were used by TITS: he 
names them glissements ([2, 39; v, d there are g, G here), so that we 
call them glides. 

The action of a glide is easily described. Every point in G is unmoved. 
Any point outside G lies in one, and only one, of the tangent primes to 
at the three ~n on the polar of G; such a point is t ransposed with the 
remaining point on the line joning it to m. Verification,  using (23.5) with, 
say, f - ~ g - ~ h =  1, is immediate.  "]:heir actions show two glides to be 
permutable  whenever  t he i r  axes g~, g2 intersect ;  should their plane be d 
permutabi l i ty  is a consequence of (23.4). Should it be f, and m the 
intersection of the axes, their polars G~, G2 lie in the polar M of m, and 
the other [5] in M through their intersection F is the polar T of the other 
line through m in f. The action of both glides on any point W that lies 
in T but  not in F is to. t ranspose it with the other point on roW; hence, 
when the two glides act successively W is invariant,  and that whatever  the 
order of succession. So, since both pl:oducts leave every point of T inva- 
riant, they are both the same as the involution for which T is latent 
because,  as will be seen immediately,  there are only four operations in A 
t'or which every point of T is invar iant ;  two of these are project ions which, 
belonging to the coset o[ A +, cannot either of them be a product  of two 
glides. 

25. Table I I  includes 4 types of involution, and the glides furnish a 
a fifth. The operat ions I I  are the 120 project ions ~, a l ready encountered in § 8. 

Operations I I I  are, as the part i t ion 1~2 ~ shows, products  of pairs of 
commuting ~. The discussion in § 25 of 6 proves that 2, ,  22 commute if, 
and only if, the jo in  of their centres is a t, whose polar T is then the 
latent  space of ~2--~-~,3~ 

Conversely:  when T is given its polar contains two p, say p~and P2; the 
product  of those project ions centred at Pl and P2 is an involution whose 
latent  space is T. There are 3780 such involutions in A. Any operation 
for which T is latent  leaves every point of any of the 15 "l in T invariant,  
and (23.3} serves to show that T is latent  for one involution. 

For, taking T to be ~Vo------xl, x2-----x3 so that it contains (23.1}, the 
only matricea (23.3p for which all its points are invariant  have 

c - - d  ----- f -~ g -~ h - - O ;  

these answer to L ~1, ~2, 2122 (this lat ter  having a - ~ b - - 1 )  where ~1 
and 22 are those project ions centred on tl4e polar t of T. 
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W h e n  eve ry  pa i r  of a set of p ro j ec t ions  c o m m u t e  the j o i n  of eve ry  

pa i r  of the i r  cen t re s  is a t. Any 3 such  een t re s  span  an e so that ,  as each  
e ine ludes~4  sets of 3 n o n - c o l l i n e a r  p, there  are  4 x 9 4 5 0 ~ 3 7 8 0 0  invo lu t ions  
in class V, 1~2 ~ be ing  the c o r r e s p o n d i n g  par t i t ion .  The  p r o d u c t  of 4 projec-  
t ions whose cen t r e s  a re  all in the same e is, in fact.  a glide. Take ,  for  
example ,  the pro jec t ions  

(25.~) 

the i r  cen t re s  

span  

(25.2t 

( 1  [ . . . . . .  ) ,  ( . .  1 1 . . . .  ) ,  ( . . . .  1 1 . . )  

(25.3) 

cen t r ed  he re  is 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 

l 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 

1 _  

when  it is mu l t ip l i ed  by the ma t r i c e s  for  125,1) so tha t  its f i rs t  and second,  
th i rd  and four th ,  f i f th  and s ixth rows are  t r ansposed  the p r o d u c t  is (23.5) 

wi th  

y = - ~ q =  h =  L 

the m a t r i x  for  the gl ide assoc ia ted  wit.h 

x l  -Jr Xl ~ X2 -~  X3 == X~ n t- ~c~. 

/-o.-A. al~d each  of the 6 e in any  G mus t  Th i s  is the po la r  of tile g in "o-,) 
give, as the p r o d u c t  of the 4 p ro jec t ions  c e n t r e d  in any  one of them, the 

same glide.  
T h e r e  are  also sets of m u t u a l l y  c o m m u t i n g  ~ whose  cen t r e s  are  not  

c o p l a n a r  bu t  ve r t i ce s  of a tetral.~edrol~; siDce all 6 edges  of such  a t e t r a h e d r o n  
are  t its ve r t i ces  span  a ,~'. T h e r e  are, in "~, 8 . 7 . 6 . 4 / 1 . 2 . 3 . 4 = 5 6  t e t r a h e d r a  

w h e r e i n  the fou r th  p is (1 1 1 t 1 I . . ) .  Th e  m a t r i x  of the p ro j ec t ion  

Xo + x ,  = ~e, + x~ = ~,  + x~ -=  x° = x ,  = 0 
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whose vertices are all p ;  they fall into 28 complementary pairs, each pair 
exhausting, by its vertices, the 8 p in ~l. The product of the 8 projections 
centred in ~l (the order of factors, since they commute, being immaterial) is 
identity. Take, for example, y to be (23.1~ wherein the vertices of one 
tetrahedron are 

(1 I . . . . . .  ), ( . .  1 1 . . . .  ), ( . . . .  1 1 . . ) ,  ( . . . . . .  i I) 

and of its complement 

(.. l 1 1 i 1 i), (I 1.. i 1 1 I), (I I 1 1.. 1 i), (I 1 1 1 1 1..). 

The matrices of the projections centred at the former have product 

[; iI+i; i]o[; i1o[; i] 
The matrices of the projections centred at the latter are (25.3) and-i ts  

analogues;  in fact they are those instances of (23.3t with 

a : g : h ~ O ,  b : c : d : f ~ l ;  b : h : f : O ,  c:: d ~ a ~ g ~ l ;  

c - - f : g ~ O ,  d - ~ a - ~ b : h ~ l ;  d : O ,  a = b : c - - f - - - - g ' - - h ~ l ;  

so that (23.4) shows their product too to be (25.4 b Thus 28 different products 
arise from tetrahedra of p in ~', and class VI I I  consists ef 28 X 2025-----56700 
involutions, l~otice, incidentally,  that while each e in • provides a glide the 
two glides so arising from e whose line g of intersection lies in the d in ~' 
are the same, for both these e lie, with ~'. in the polar G of this g. 

The 8 projections centred in y all commute with one another, and this 
is the maximum number  that can do so. Since their product is identi ty 
they form an elementary abelian 2-group of orde{ ~ 27; when ~" is (23.1) these 
27 operations have matrices 123.3) which all, as (23.4} shows, have period 2 
except for the unit  matrix.  They consist of 

Ident i ty  ; 

8 projections, one for each p in T; 

28 involutions of class III ,  one for each t in $; 

56 involutions of class V, four for each e in y;  

28 involutions of class VIII ,  one for each pair of complementary 
tetrahedra with vertices among the p in y; 

7 glides, one for each pair of e through the same g in ~'. 
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Since all these projectivities leave every point of y invariant  the5 ~ form 
a normal subgroup of the stabiliser of ~' in A. The order of the stabiliser is 

2 ~ • 3 ~ • 5 ~ • 7/2025 ~ 2 ~. 3.7 ; 

its quotient group by the normal subgroup of order 2 ~ has order 

26-3.7 ~ 1344. 

Its members, cosets of the elementary abelian group in the stabiliser, 
impose a group of 1344 permutat ions on the 8 p in ~/ (4 § 19). 

"26. Were every point of each of two polar spaces S, s to be invariant  
under  a projectivity every point of [7], since it completes a transversal  of S 
and s, would be. Thus two differnt  projeetivities leaving every point of S 
invariant  can never impose the same permutat ion on the 3 points of s. Now 
the projections ~ ,  ~2, ~8 whose centres p~, p~, P3 are on s all leave every 
point of S invariant  and, simultaneously,  impose the three possible transpo- 
sitions on the Pi; they therefore, as any two of them generate the $3 on 
these p~, generate the whole of A s - t h e  subgroup of operations of A for 
which every point of S is invariant.  Tile only spaces containing S are its 
joins Pi to the Pi; these are latent one for each ~ and S is latent for the 
pair of inverse operations of period 3 that are products of pairs of these 
(non-commutative) 2~ but not for any other operations of A. 

This corresponds to the sole appearance of S in Table II, and as there 
are 1.120 S there are 224) operations in class IV. 

27. Were every point of each of two polar space J, j to be invariant  
under  a projeetivity so would every point of their join Po be; for through 
any point of Do exterior to both J and j there passes a plane meeting them 
both in lines through their intersection Po. This Po is the kernel of the 
sections of ® by both J and j,  the latter section consisting of non-col l inear  
points ml. m2, ms. If different  operations of A impose the same pro.jeetivity 
in J and the same projeetivity in j it can only be because one is a product 
of the other and the projection 7o centred at Po. 

A projeetivity in j is determined by its action on any three non-col l inear  
points in j. When a projectivity belongs to A it permutes ml, m2, m+ and the 
transpositions of pairs of these are imposed by 21, 22, ~ - the projections 
whose centres p , ,  P2, P~ lie respectively on 'm2ut3, msm~, m~m2. These 
three projections all leave every point of J invariant,, and any opera~ion 
of A that does so must be generated by (any two of) them and So. Thus 
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Aj is found on adjoining 20 to the S~ that includes 2~, 92. 2a; ~o commutes 
with each ~ aud AJ is a dihedra,l groHp D~. The spaces which contain J, 
n a m e l  y 

[7], Pc, P~, P~. P~, I"1, T~, T~ 

and S are respectively latent for 

/, ~o~ 2~, 2~, ,2~, ~'So~, ~o~, 9o'G 

and a pair of inverse operations of period 3. There remain in D~. a pair 
of inverse operations of period 6; they have J for their latent space, and 
no other operation of A can do so. This accords with the sole appearance 
of J in Table II, and as there are 40320 J there are 80640 operations 
in class VI. 

28. When one considers H with a view to identifying those operations 
of A for which it is latent it appears, since Hspans  an M with its polar h, that 
no two operations in A can impose the same projeetivity in H i f  they impose 
the same projectivity in h. Now any operation in A permutes the four s 
ill h, and any projectivity in h is determined when its action on this quadri lateral  
of s is known. The six possible ~ranspositions of pairs of sides of this 
quadri lateral  are imposed by the projections centred at its six v e r t i c e s -  
projections all of which leave every point of H invariant.  

Hence AH is a n s i .  The spaces containino' H afford those latent for all 
operations in this $4 save the six of period 4: these, and only these, have H 
for their latent space, and the 7560H account thereby for the 45360 opera- 
tions of class VII. 

29. D, as was seen in § 23, does not figure as a latent space, so that 
the only [4] 's still to be considered are E and /;. E is quickly dismissed, 
but F will be seen to furnish, as did G, operations not represented in 
Table IT. 

The set AE of operations for which every point of some E is invariant  
is an elementary abelian 2 - g r o u p - c o m m o n  to the three subgroups Ay, each 
elementary abelian and of order 27 , that are associated one with each '( 
in E. Take ~ to be 

so that one y therein is given by (23.1); t23.3) only leaves every point of E 
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and d - - 0 .  The matrices (a,f.,~,f0)/5 r ~ .  , ,  . form an ele- iuvariant when f := g - -  h 

mentary abelian group of order 24; the projections therein are centred at 
the 4 p in the polar e of E - p r o j e c t i o n s ,  it will be recalled, that mutual ly  
commute  and whose product  is a glide. E is latent for the product  of any 
three of them; indeed the sole appearence  of E in Table I I  corresponds to 
the part i t ion 182h Since there are 9450 E there are 37800 members  of 
class V. 

30. Does A include operations whose latent space is a given [4 IF?  The 
subgroup AF'~ of operations of A for which all points of F are invariant  
includes 

identi ty 

two project ions 21, 72 whose latent spaces are the two P through F, 

two glides ~1, ~2 whose latent  spaces are the two G through F, and 

the involution ~ 1 ~ 2 - - ' ~ 2 2 1 " - ~ 2 ~ 2 ~  whose latent space is the 
T through F. 

This set, of 6 operations none of which has period 3, cannot be a group; 
yet no other space through /7. is latent for any operation of A because neither 
M nor C can ever be. It is then certain that, despite its n o n - o c c u r r e n c e  
in Table H,  operat ions having F latent do occur in A. Indeed the above 6 
operations belong to a dihedral group @~, and it is the pair  of inverse 
operations of period 4 in ~)s that have /P la tent ;  they belong to class XXII l  
which, as there are 37800 F, has 75600 members. 

Take, as in (14.i), G to be 

The plane jo ining its polar g to p is an f provided that p 
to one of the m on g but  to neither of the other two; if, for 
satisfies 

Xo + z~ = x~ -~- x~ -= x4 ÷ x .  + 1. 

is coDjugate 
example, p 

So one may take (1 . 1 . . . . .  ) for p, when F is 

(30.1) ~o - -  ~2, xl = xs, Xo -[- xl ---- x4 -{- xs. 

The project ion centred at p is xo<-~  w~; when its matrix premult ipl ies  
that of the glide having G latent the product is (23.5) with f : = g - - ~ h = l  and 
its first and third rows transposed. The latent column vectors of this 
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matr ix  are indeed found to consist of thos+ satisfying (30.1), and of no 
others. The other projection for which every point of t30.1) is invariant  
is x~ <--+ x~; the G latchet for the other o'lide is 

31. When polar spaces u, u'  are skew the group of operations of A for 
which every point of u is invariant  is the same as the group of projectivities 
induced by A in u'; the direct product of the groups so associated one 
with u and one with u' is a subgroup of A, as it is too when u, u' intersect 
at m and span M. The simplest instance occurs when, as in § 26, u, u" are 
S, s. Those operations for which every point of S is invariant  compose 
an $8 and impose all 31 permutat ions on the p on s. Those operations for 
which every point of s is invariant  induce in S the 51840 operations of a 
" c u b i c  sur face"  group ~, and A has 1120 subgroups $ 8 ) ~ .  Its SYLOW 
3-groups are each the direct product of Ss and a SYLOW 3-group of ~. One 
may note here a property of the o p e r a t i o n s i n  class IV. verified immediately 
by using the cyclic permutat ion (xox~x2): 

If  a point lies nei ther  in the ]atent S nor on its polar s the plane 
spanned by it and those two points which are its t ransforms under  the 
operation and its square passes through s and meets S. 

32. Take now a polar pair of solids z, 7~'; they meet ® in hyperboloids 
~,  Jr', each having a group of 72 automorphisms with the direct product 
~3X Sa as subgroup of index 2. Those au~omorphisms in the coset of 
8~ X $8 transpose the reguli;  those in S~ X $3 itself do not, and each factor 
of this direct product imposes all 3! permutat ions on the 3 members of the 
appropriate regulus. 

Since x lies in 

6P, 6G, 9T, 2S, 9F, 6J 

the operations for which all its points are invariant  include 

Identity,  6 projections, 6 glides, 9 involutions of class III ,  

4 operations of class IV, 18 of c'lass XXIII~ 12 of class VI. 

The projections are those centred on the two DANDELI~ lines S, S' in 
x' and transpose the reguli on ~'. For  the P whose points are invariant  
under  one of the projections ~ meets x' in a plane j through, say, s and 
meets X' in 3 points which are all invariant  and which constitute a conic 
whose kernel k is the centre of ~7 and is the intersection of j with s'. The 
generators of ~ '  through any one of these 3 points are transposed. For, were 
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they not transposed, the two other points on either would be, whereas their 
.join does not pass through k. All 36 members  of tile coset of 83X $3 
are thus accounted for, namely by 6 projections, 18 operations of class 
X X I I I  and i2 of class VI. 

The operations whose latent space is z belong therefore to $3 X Ss, and 
there do remain, as yet unrecorded in this direct  product,  

4 operations of period 3 and 12 of period 6. 

The former are those of class X recorded in Table I I ;  there are 268800 
such operations in A. The latter belong to a class of 806400 operations and 
impose permutat ions  of periods 2 and 3 on the respect ive reguli  of J~'. Their 
squares impose the identity on one regulus,  a permutat ion of period 3 on 
the other. Now operat ions  of class IV cannot do this, since they permute 
the 9 points of ~ '  in 3 cycles of 3, the plane of each cycle containing 
either s or s'; hence the squares  of the new operations are in class X. 
Their cubes impose identi ty on one regulus and a transposit ion on the other 
and so leave invariant,  with every point of a g in this other regulus,  the 
whole G joining g to z; they are glides. All these facts indicate class XXXIX.  

33. The section of @ by any ), is an ' e l l ipso id"  - over F a set of 5 
points, no 4 coplanar  - whose group of automorphisms is an $5. Since 
lies in 

lOP, 15T, 108, 5H, 10J 

the group of projectivi t ies for which every point of ), is invariant,  and 
which impose automorphisms on the ellipsoid in the polar )J of )., includes 

identity, 10 projections,  15 involutions of class I I I  and pairs of 
inverse operations, 

10 of period 3, 15 of period 4, 10 of period 6. 

These are the exact numbers  and periods of operations in $5, which is 
completed by 24 operations of period 5. These are in class XII, which thus 
has 24 X 24192 = 580608 members.  And A has 12096 subgroups $5 X $5. 

34. Take now a solid X. Since it lies in 

12P, 1G, 18T, 168, 3E, 12H 

the operations of A for which every point of ;( is invariant  include 

identity, 12 projections, 1 glide, 18 involutions of class I I I  

and fur ther  operat ions:  32 in class IV, 12 in class V~ 72 in class VII.  
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Of these 1 + 1 + 1 8 + 3 2  are in A +, the other 1 2 + 1 2 + 7 2  outside 
A+;  hence there must be 9 6 - - 5 2 = 4 4  more operations of A + that leave 
every point of X, but  no further  point, invariant.  That  there are precisely 
this number,  that ~he subgroup A z so associated with X has order 192, can 
also be shown by giving explicit  matr ix forms for them. 

Take X to be spanned by 

(34.1) (1 . . . . . . .  ), (. 1 1 . . . . .  ), ( . .  1 1 . . . .  ), (. 1 1 1 1 . . . ) ;  

a matr ix for which these are all latent column vectors must have the form 

1 

b 

a a a a A, A~ A~ - 

+ 1 b b b B1 B2 B8 

b c +  1 c e C~ C2 Q 

d d d -~ 1 d D1 D2 D~ 

e e e e +  1 E1 E~ E~ 

f f f f F1 F2 F8 

g g g g G1 G~ G~ 

h h h h //1 H~ H ~ _  

This has to belong to A. By requir ing that the sum of any two of the 
second, third, fourth and fifth columns be conjugate to every other column 
one finds immediately 

for i----- t, 2, 3 
to any other, 

b = c = d = e ,  B~- -Ci - -D~--Ei  

and then, prohibit ing the first column from being conjugate 

h - - f + g ,  H I = F ~ + G ~ + I .  

Next, since the columns are coordinate vectors  of m, 

a + b + f + g + f g - - - O ,  A~-FiG~, 

and then, to prevent  any of the last three columns being conjugate to the 
earlier ones, 

b + Be = (f + F~) (g + G~). 
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(34.2) 

The matrix 

- 1  a 

b+ 

b 

b 

b 

f 
g 

- f +  

wherein 

is therefore 

a a a 

1 b b b 

b + l  b b 

b b + l  b 

b b b +  

f f f 
g g g 

g f + g  l + g  f +  

a : b + f + g + f g ,  

B~ B~ B~ 

BI B2 B~ 

B~ B2 B8 

1 B1 B~ B~ 

g F~+ Gz-{- 1 F2+ G2+ 1 F~+ G3+l 

B~ = b + (f + F~) (g + G~). 

The only further  conditions necessary are those which prevent any two 
of the last three columns being conjugate :  

(34 3) (F2+ F3+ lj (G2+ G3+ 1)--- (F~+ FI+  1) (G~+ G~+ 1 ) :  

- - ( F ~ +  F ~ +  1) (GI+ (;~+ 1}___0 

which imply, 

(34.4) 

on addition, 

G~ G~ G~ 

1 1 1 

Not only so; (34.4) implies, conversely, all of (34.3). For  since the 
determinant  is not zero the first two columns cannot be identical ;  hence 
at least one of 

FI + F2, G~+ G2, 

is 1 and the last equation of (34.3) holds; so, likewise, do the others. 

There are 24 choices for /~ ,  Gi that conform to (34.4); if 
(F1, F~, F3} and (G1, G2, Gs} are regarded as points in the 7-point  plane 
the first can be any of the 6 other than the unit point, the second any of 
the 4 not on the join of the unit point to the first. And as each of b~ f, g 
can be either 0 or 1 the number  of matr ices  is 28. 2~ - - 1 9 2 .  This, then, is 
the order of A z. 
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The glide is solitary among the 192 operations. Since the g in X joins  
the first and last of the points (34.1) its polar is 

The glide is determined by st ipulat ing that 2 points of this Gwhose join is skew 
to X are invariant ;  these could be any 2 of those points whose only non-  
zero coordinates are two of x~, x6, xT, points that are not invariant  unless 

f = g = F ~ = F ~ - ' G ~ = G ~ - - O ,  F~ = G2- -  1. 

The resul t ing matrices include, for b~---0; the unit  matr ix;  the glide 
therefore has b~---1. It is found to commute  with all 192 matrices, and so 
is in the centre of A~. 

This group of order 192, with a centre  of order 2, is the one encoun- 
tered by other writers (2, 230; 13, 149) and it was, more recently, found as 
a group of quaternary  subst i tut ions over F (4 § 23). It includes 12 operations 
of period 4 all having the glide for their square. Any such operat ion must 
satisfy, among many other conditions, 

so that 

cannot all be equal  and f, g cannot both be zero. It is found that every 
requisi te  condition holds for each of the following sets of 4 matrices (b being 
free to be either 0 or 1 in each instance). 

(i) F ~ =  G ~ = 0 ,  F 2 =  G I = F  3 = G ~ = l = f - } - g  

(ii) Fa = G2 = Fa = O, F~ = G~ = Ga = l = f. 

(iii) F I  = GI = Gs = O, F2 = G 2 - -  F3 = I = g. 

There is such a set of 12 operations associated with each of the 3150 X, 
and the whole aggregate of 37800 const i tutes class XV. 

These are not the only members  of Az to have X for their latent space;  
the same holds for 32 operations of period 6, each of which has one of the 
32 operations of period 3 for its square.  ~ow the square of (34.2) has, for 
its bot tom r ight-hand corner  of elements, the square  of the corresponding 
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block in (34.2} for, on part i t ioning its 8 rows and 8 columns as 5 + 3, 
the additional contr ibut ion to this block in the square of (34.2} is seen 
to be (over F)  the ,zero matrix. This fact is relevant  because  one S 
through X is x ~ : x G  = x T ,  and those operations for which it is latent have 
matrices 

1 @ 1 @ 1 ~ 1 ~ 1 @  1 

~34.5) and 

1 5 1 ~ 1 5 1 ( 9 t  @ [!' 
1 

Any matrices (34.2) of which one of ~34.5t is the square may have 

either 

o r  

Fa--= G1----- 1, 

FI = F~-~ G~ = G 2 : O  

and it must  also happen that f = g - - O .  Were b = 0  too (34.2) would 
reduce to one of (34.5) which, of course, are squares of each other; but  i[ 
b - - 1  the result ing matrix has period 6 and X for latent  space. As each of 
the 32 operat ions of class IV has one such square root the whole group of 
order 192 is exhausted. These 32 operations of period 6 belong to class XIV, 
with a membership of 100800. 

Through X pass 3 E;  these undergo permutat ions  under  Ax and those 
operations of A X for which one of these E is stabilised consti tute a SYLow 
subgroup of order 64. When X is spanned by (34.1) the E in question are 

The corresponding stabil isers occur for 

(a) F I - { - 1 - - F 2 = F ~ ,  G 2 + G ~ = I ;  

[b) G I - - G 2 + I - - ' G 3 ,  F I + F ~ - ~ I ;  

(e) F~'~ F2--}- I, GI--  G2 + I, F~-[- G3 = F~ + G~ -t-1. 
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They intersect in the group, of order 32, given by 

F1--}-1----Fz = F~, G1-- - -G~q- I - -Gs;  

this includes those 12 operations of period 4 for which X is latent, and it 
is a normal subgroup of A x. 

35. In order to find operations whose latent  space is a solid to it is 
more expedit ious to use (10.4) and find those automorphisms of 

for which every point of 

is invariant.  They must, supposing the coordinates ranged in the order 

have matrices 

where A, B, I are square with 4 rows; 
only when 

A = I ,  B--~ 

Since 

c b 

C C~ 

b a 

a '  5' C' 

but the quadratic form is unaltered 

b' 

C' 

. 

I [;1 ;][;2 ;1 
every such operation that is not itself identi ty has period 2; A.  is an 
elementary abelian 2-group whic , since each of a, b, c, a', b', c' can be 0 
or 1, has order 64. I t  includes 35 glides, one for each G through to; there 
remain 28 involutions for which to is the latent space and so, with 28 for 
each of 270 % one finds the 7560 involutions of class LXI. 
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The rank of 

;]÷[: :} 
is the rank of B, and so is 4 or 2 according as ac~ '~-bb '+cc '  is 1 or 0; 
the invariant  points fill a space of 5 or 3 dimensions to correspond, and the 
numbers, 35 and 28, are as they should be (4, 325). 

36. The canonical form (10.4) is the more expeditious also in yielding 
information about operations having ~ for their latent  space. For 

is such a solid, and the general form of a matr ix  which leaves every point 
therein invariant  can be writ ten down; four of its columns are empty save 
for units on the main diagonal. But (10.4} is not automorphic under  the 
result ing projec,tivity unless the matr ix has one of the two following aspects, 
in both of which e + f - - a d +  be: 

L- 1 

1 

a b 1 

1 

ctv e a 1 c 

f b d b  1 d 

c d 1 

_ 

- 1  

ctC e 

f bd 

c d 

_ _  • 

1 

b 1 

1 

C 

d 

Ct 

b 

1 

1 _ -  

Now the rank of t~1~ I cannot, because of the restriction e ~ - f - - a d ~  bc, 
exceed 3; hence all 25 matrices 1~1 have their latent  space of dimension 
at least 4; this space includes % but ~ is not the whole of it. The rank 
of 1~2--~/~ on the other hand, is 4 unless a d ~ b c - ~ O .  Hence if a d o b e - - - - 1  
the latent space of 1~2 has dimension 3 and so is ¢p itself. The number  of 
solutions a~ b, c, d of ad ~-bc--"  1 is 6 (recall that there are 6 points not 
lying on a hyperboloid) and since there remains a choice of e and f subject 
to e-l-. f - - -1  there are 12 operations for which ¢p is latent. 

The square of t~2 depends only on ad ~ bc; if ad -~ bc "-- O, f~~, - -  I ;  but if 

ad ~ bc - -  1, 
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p~ has period 4 and p~ imposes the t ransformation 

Z ~ - ~  Z I +  Y~, Z~< > Z ~ +  Y,, 

all other coordinates being unchanged. Thus all 12 operations for which cp 
is latent have the same square, namely the glide associated with the polar, 
here I71 = Y2 ~ 0, of the line of intersection of the two planes in which 
meets ~ .  As there are 28350 ~ there is a class of 340200 conjugate opera. 
tions in A; it is numbered XXXVI  in 9. 

37. The only type of solid yet to be considered is 4; through it pass 

8P ;  3G, 16/", 4S;  3E, 1H, 3F~ 8 J  

that are latent for operations of A. These account  for 

8 +  12 -b 6 + 6  -b 16--~48 

members  of the coset of A ÷, but  only for 

1--b 3 + 16-b  8 = 28 

members  of A + itself (identity included). Hence  ,$ is latent for 20 members  
of A + and A~ has order 96. 

If t~, ~' are polar spaces A+ X A~, is a subgroup of A, and there are 
37800 such subgroups. 4' is invariant  as a whole under  A+, and each of 
the 3g therein is invariant for 32 operations of A+; these are its SYLOW 
2-groups and their intersection, for which all g in 4' are invariant,  is normal 
in A~, of order 16, and will be seen to be e lementary  abelian. 

In 4' are three concurrent  g: 

gl =-- mmlm'~, gz -~ m m2m'~, g~ ~- rams're'8 ; 

each pair  spans a plane wherein a third line passes through m. these liaes 
being 

where ti is coplanar  with the two g other than g~. The seventh line through 
m in 4' is t~-mpop'o .  Denote by 2i, 2~ the projections centred at p~, Pl; 
any two ~ with the same suffix commute, and both 2o and 2'o commute 
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wi~h all the others. Then every g~ is invariant  under  

(37.1) 

as well as under  

t r ~ ! t ~o ~ o ~  ~ o ~  ~ o ~  
(37.2) 

in all 16 operations and all, s a v e / ,  of period 2. They exhaust  those members  
of A+ for which gl, g2, gs are all invariant  and form an e lementary  abelian 
2-group, normal in A+: (37.1) belong to A -e, {37.2} to the coset. Each S: of 
A+ consists of (37.1), (37.2) and 16 further operations of which 8 are in A'e; 
the aggregate of 32 operations composed of 8 in each $2 "e supplementing 
(37.l} does not, since each of its const i tuents  has a power of 2 for its period, 
include any of those 8, among the 28 operations listed above, of period 3. 
It  then includes 3 2 - - 2 0 ~  12 new operations, and these belong to class 
XI  (see Table II) which therefore has 907200 members.  There now remain 
2 0 - - 1 2 - - - 8  further operations for which + is latent;  they belong to class 
IX which has 604800 members.  

The S~ of operations for which every point of the H through ~ is inva- 
riant is, since H is unique, a normal subgroup of A+. It  intersects the 
elementary abelian normal subgroup in the 4 group, consisting of identi ty 
and three glides, that occupies the lowcr row in (37.1}. 

38. The detection, of operations with a given latent space ~, by catalo- 
guing operat ions for which every point of ~ is invariant  and discarding 
those, all known from antecedent  enquiries, whose latent spaces strictly 
include v is now a matter  of routine. The operations in question belong 
wholly to A + or to its coset according as the dimension of ~ is odd or 
e v e n -  and that whether or not ~ figures in the penul t imate column of 
Table IL If ~ has even dimension the discarded operations account  for the 
whole intersection A+ of A + with A~, and the order of A: is double the 
number  of discards from A +. T h e  other discards are in the coset of A "e 
and they fall shor~ of half the order of A~ by the number  of operations for 
which ~ is latent. Some, possibly all. of this deficiency may be made up by 
entries in Table I I ;  when it is not all so made up the residue consists of 
operations in classes not encountered heretofore. 

Take for ~ a plane d. Operations of A + for which its points are all 
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invariant  have latent spaces of odd dimension that contain d; these are, in 
addition to the whole [7], 

63G, 28T: 2(0, 28~, 17 

so that the number  of operat ions of A + for which every point of d is 
invariant  is 

1 + 63 -{- 28 + 56 -~ 336 -~- 28 ----- 512 

and Aa has order 1024. But the spaces of even dimension containing 
d are 

8P ;  14E, 112F 

which yield only 8 ~- 56 --~ 224---- 288 operat ions in the coset. Hence  d is 
the latent space of 5 1 2 - - 2 8 8 : 2 2 4  operations. As there are 2025 d one 
thus accounts  for 453600 operat ions;  their period is a power of 2, they are 
in the coset, have not been previously  encountered,  and are devoid of inva- 
ria.nt p ;  they consti tute class LII I .  

A a permutes  the 8 p in the ~" through d. Those 128 operations (see § 23) 
for which every point of 7 is invariant  form a normal subgroup of Aa, the 
quotient  group of order 8 being elementary abelian 14, 336~. 

39. The analogous facts for e are that it lies in 

19G, 72T, 16S; 3~, 3% 1 X, 24~ 

so that all its points are invariant  for 

1 ~- 19 + 72 + 32 -~ 84-~  36 + 44 + 4 8 0 =  768 

operations of A+; whereas, lying as it does in 

16P; 40E, 12H, 36F, 64J  

there occur only 

16 ~ 160 + 72 -]- 72 -{- 128 - -  448 

operat ions of the coset. Hence  there are 320 operations, all of them in the 
coset~ having e for their latent space. They include~ according to Table II, 
members  of classes XVI  and XVIII .  

Class X V I I I  consists, says the Table, of operations that permute  the 
vert ices of some ennead according Go the parti t ion 1254. It the ennead is ~o 
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one such operation leaves U unmoved and imposes the permutat ion 

IXoXl) 4x~x~l (x~x~xoxo; 

its latent e is 

and this same e is latent for six permutations,  any cyclic permutat ion of 

X~, X~, X~, X~ 

being permissible.  To span e take 

the third point on XoX~, 

the third point on X2Xs, 

the point (el. § 15} supplementary  to X4, X~, X6, X~. 

Suppose then that a plane e is given, and let m~t~' be the g therein. 
Let  8 be any of the 64 enneads of which m is a vertex;  its other vertices 
are automatical ly separated (see § 15) into tetrads x, "c' supplemented respec- 
tively by ~, ~'. There is a second eunead 81, sharing m but  no other vertex 
with 8, whose other vertices are likewise separated into tetrads zl, :; supple- 
mented by ~, ~'. If  8 is 5o and m is U then 81 could include (15.2t. 

Through ~ pass transversals  t~ one to each pair  of opposite edges of z; 
since no 5 vertices of 8 can lie in a solid g cannot lie in the plane of any 
two of these t. Through ~' pass transversals  t' one to each pair of opposite 
edges of x'; as the solids spanned by "~ and ":' are skew it is not possible 
for any t to intersect any t', Thus the six lines t, t' are jo ined  to g by the 
six e which contain g. Here  e is among the data;  suppose it then to contain 
a t ransversal  t. Transpose the pairs of vert ices of z on those of its edges 
that meet t, and impose any cyclic permutat ion on x'; the consequent  permu. 
tation of vertices of 8 is of type t2~4 and the result ing project ivi ty has e for 
its latent space. Since there are, on g, 3 choices for m and then 2 for ~t, 
and since 6 cyclic permutat ions  of ~' are available, there are 36 operations 
in A which leave 8 invariant  and have e for their latent space;  the number  
of operat ions in class X V I I [  for which e is latent is therefore 36v where v 
is the number  of enneads, including 8 itself, into which 8 cau be transfor- 
med by these operations. 

One finds v--~4 by taking, again~ 8 to be 8o., m to be U; the other 
enneads into which 5o can be t ransformed are 8 ~, defined by sharing U, Xo, XI 
with 5o, 8", defined by sharing U, X2, X~ with 5o and 8~. sharing only U 
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with ~o and given by (15 .2) . ) Ia t r i ces  of cor responding  project ivi t ies  ave 

- 1  

- -  o 

1 1 1 1 1 

1 1 1 1 1 
and 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 . 

1 1 1 l 1 

1 l 1 1 1 -  

1 1 1 1 1 

1 1 1 1 1 

1 1 l 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

_ 1  1 1 1 1 . _ .  

Since each of the 9450 e is la tent  for 144 operat ions of class X V I I I  
this class has 1360800 members .  

Class XVI consists of operat ions pe rmu t ing  the vert ices of some ennead  
according to the par t i t ion 283; for example,  all those project ivi t ies  belong 
to it which  impose the pe rmuta t ion  

( UXoX~) (x~x~) (x~xs) (xoxT) 

on the vertices of 50, and the latent  e is spanned  by the p which  lie one 
on each of 

X,X~ , X4Xo , X . X , .  

The n u m b e r  of ~ from which a given e so arises, t ransversal  to 3 
mutua l ly  skew edges, is 

(960.36.21.10) / (9450.3 l) : 128; 

the r emain ing  p in e is the kernel  of the conic const i tu ted by the trio of 
cyclically pe rmuted  vert ices of ~. Now each such trio is shared by two 
of the 128 ~, which thus fall into 64 pai rs ;  for instance,  U, Xo. X~ are 
shared by ~o with $', the ennead  inc lud ing  (15.1); the p on 

X~X3 , X4Xs  , x o x ~  

also lie one on each of three jo ins  of pairs of vert ices of $'. and the 
project ivi ty  that  imposes 

imposes a pe rmuta t ion  of this type too on the vertices of ~'. Since U, Xo. X1 
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admit two cyclic permutations there are 12S members o[ class XVI having 
for their latent plane 

Xo- - -x l :O~  X~:X2,  X 4 : X ~ ,  X6--"~X7 

and so the class has 1209600 members. 

£s each e is latent for 128 operations of class XVI and 144 of class 
XVIII there remain, to complete Ae, 320 --128 --144 ~ 48 new operations. 
They belong to class XXI. 

Since there is a unique X containing e the corresponding group A z, of 
order 192, is a normal subgroup of A+, of order 1536. The glide in the 
centre of A~ is also in the centre of Ae. It can be shown that all 48 opera- 
tions of class XXI in Ae have this glide for their square. 

40. Through a given f pass 

33G, 422, 8S; 99, 6~, 16x 

so that all its points are invariant for 

1 + 3 3 + 4 2 +  1 6 + 1 0 8 + 1 2 0 + 2 5 6 - - - 5 7 6  

operations of A+; there pass also through f 

12P; 9E, 2H, 9OF, 485 

yielding 

12 + 36 + 12 -{- 180 -~- 96 ---- 336 

operations of the coset. Hence f is the latent space for 240 operations, and 
these, according to Table II, include members of class XIX. Members of 
this class permute the vertices of some ennead according to the partition 
1234; for iustanee~ the projectivity determined by the permutation 

(40.1) (UI(XoI(X1X2X3)(X~XsX6X~) 

of the vertices of ~o has for its latent plane 

and, there being two cyclic permutations of X~, X2, Xs and six of 
X4, Xs, X6, X~, the same latent f occurs for 12 operations in the sta- 

biliser of 50. 
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The g in f join tile supplement ~ of X4, X~, X+, X7 to U and Xo 
respectively;  the kernel k of XIX2X~ is that p in f which does not lie 
on UXo. The 8 ~ that share both U and Xo with go each yield the same f, 
with the same ,~ and k; note, as instances, those ~ whose other vertices 
than U have for their  coordinate vectors the columns (so ordered inten- 
tionally) of 

(40.3) 

- 1  

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 _  

- ! - 1  

I 

a n d  , 

1 1 1 1 

1 1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 

1 

1 1 

1 

1 1 

1 1 

1 1 _  

Under the projectivity that imposes (40.1) these other g move, with 
vertices of go, in cycles of 3 and 4; none of them is stable. But the 
stabiliser of each furnishes, as does that  of go, 12 operations of class XIX 
for which (40.2) is la tent ;  hence there are certainly 96 distinct members of 
this class having (40.2)for their latent f, and so 3628800 members in the 
whole class. 

There are 36.35f obtainable from any g by taking two of its vertices 
and the kernel of the conic consti tuted by three others; the number  of g 
from which a given f so arises is therefore 

960.36.35/37800 = 32. 

It was seen above that (40.2) so arises from those 8 $ which include 
both U and Xo; each f contains 4 c, each of which is associated in this way 
with 8 g, and so all 32 g are accounted for. 

The matr ix  on the left in (40.3} is a representative of class XIX;  it has 
period 12, its cube being a permutat ion matr ix  of period 4. But the matr ix 
on the right, which also imposes a projectivity having (40.2) for its latent 
space, does not stabilise any ~; it has period 8 and so represents one of 
the 240 -- 96 ---- 144 operations still outstanding- These can only belong, in 
MISS HA~ILL'S enumeration,  to class L¥ .  Because only the analogues of p 
occur as points in her geometry only the 2p on the t in f will be recorded 
in the penul t imate column, and labelled el in the final column, of Table 
I I I  in 9; since these operations are in the coset of A + L ¥  is the only 
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class eligible. The 144 operations so associated with each of the 37800 f 
exhaust the 5443200 members of the class. The fourth power of the matrix 
on the right in (40.3) imposes the glide whose latent G is 

and indeed this same glide is the fourth power of all those 144 operations 
in class LV for which (40.2) is the latent plane. 

41. Through a given j pass 

affording 

15G, 60T, 20S; 15~, 10×, 6), 

1 + 15 + 60 + 40 -]- 300 + 160 + 144-- 720 

operations of A + for which every point of ]" is invariant. There are, too, 

providing 

16P; 15E, 15H, 45F, 80J 

1 6 + 6 0 + 9 0 + 9 0 + 1 6 0 - - 4 1 6  

operations in the coset of A +. A~ is of order 1440 and j is latent for 
720 - -  416 ~ 304 operations. These, in fact, are all accounted for by the 
classes XVII, XX and XXII which Table II registers as having latent j. 

The number of members in any of these classes can be obtained by 
finding the order of the normaliser. As this process has already been used 
elsewhere (6 § 21; 7§§ 15--17)  it will be sufficient to apply it here to one 
of the classes, say to XX, and give the corresponding results for x v I i  and 
XXII without detailed substantiation. Members of class XX impose a permu- 
tation of type 1225 on the vertices of some ~, so one seeks the order of the 
normaliser in A of 

(4i . i )  1 ~ 
1 

1 

1 

1 
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The general form of any matrix that commutes  with 141.1) is 

a a' a' A A A A A -[ 

b b' d B B B B B i 

b c' b' B B B B = B  I 
I 

d d' d' C D E F G 

d d' d' G C D E iF 

d d' d' F G C D E 

d d' d' E F G C D 

d d' d' D E .F G C __, 

and one now has to impose those 
First,  to forestall  singularity, 

conditions necessary for it to belong to A. 

c ' = b ' +  1; 

columns cannot then be coordinate vectors of points 

A + B + e ~ - -  l = a e ~  + dA. 

the second and third 
on ® unless 

a ' = d ' - - O ,  

nor can the first colamn unless b - - a d .  Tile same condition, when imposed 
on any of the last five columns, gives 

A e l +  B + e ~ = O  
where 

e~=  C + D +  E +  F +  G, 

e~ -= CD d- CE -4- CF -d- CG d- DE -4- D F  -d- DG -I- E F  + EG d- FG. 

The prohibition that no two of these last five columns be conjugate 
provides the restr ict ions 

el d- CD d- GC -4- FG d- EF- t -  D E - -  1, 

e~ + CE + GD @ F C - ~  EG + DF_= I, 

which combine to give e 2 - - 0 - -  a condition also obtainable by noting that 
the sum of any four of the last five columns has to be the coordinate ~eetor 
of an m. Further ,  as none of these last columns is permit ted to be conju- 
gate to ei ther of the first two, 
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The matrices of the normaliser  therefore have the form 

a A A A A A - 

ad b' b'-}-1 Ae~ Ae~ Ae~ Ae~ Ae~ 

ad b' + 1 b' Ae~ Ael Ae~ Ae~ Ae~ 

d C D E F G 

d G C D E F 

d F G C D E 

d E F G C D 

d D E F G C _ 

with e 2 - - 0 .  It is not possible for all of C, D, E, F, G to be 1 if the 
matr ix is not s ingular;  hence, as e ~ = 0 ,  the number  which are 1 is either 
4 or 1 and the discussion bifurcates  accordingly. In the former case e~---0; 
hence d - - ' A - - 1  while a, b' stay free;  there are 20 matrices. In the 
la t ter  ease e~---1; hence a - - - 1  d - d A  while A, b', d stay free;  there are 
40 matrices. The normaliser  of (41.1) is of order 60, a n d  the conjugate class 
in A to which (41.1) belongs has 

960.9 !/60 - -  16.9 ! -" 5806080 

members.  Each of the 40320j  is latent for 144. 
So much for class XX. There are also 40 members  of class XVII  and 

120 of class XXI I  for which j is latent. 

42. The spaces of odd dimension that pass through a plane h are, in 

addition to the whole (7], 

5G, 70T, 40S;  5X, 104, l(ik 

so that every point of h is invariant  for 

1 -}- 5 -]- 70 q- 80 -~ 220 -k 200 -}- 384 --  960 

operat ions in A +. 

yielding 

There are also, containing h, 

20P ;  15E, 50//,  10F, 80J  

20 + 60 + 300 + 20 + 160 = 560 
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operations of the coset:  Ah is of order 1920 and h is latent for 400 opera- 
tions. These belong, since h never occurs in Table II, to classes not yet 
encountered.  

There are, passing through the single m in an h, 5 g lying in the polar  
H ;  the jo in  of each of these g to h is a X. If t~ has h latent and tran- 
sposes the two points on g outside h bt 2 leaves every point of the correspon- 
ding X invariant  and, indeed, bt can be such that X is the latent space of 
~ .  Take, so that X is spanned by (34.1), h to be 

(4.9.1) oC t ~ -  X e  -~- X a ----- '~4 - -  °cs " - -  ;C6 - -  X7 - -  0 

and g to jo in  

( .  1 1 1 1 . . . )  to (1 1 1 1 1 . . . ) .  

The conditions that these lat ter  two points be transposed,  that every point 
satisfying (42.1) be invariant,  and that bt belong to A impose restr ict ions on 
the first 5 columns of bt. These, coordinate veetors of 5 m in the same $, 
are f lanked by others, coordinate vectors  of 3 of the 4 remaining members  
of ~; but these lat ter  must be chosen and ordered so that the latent  space 
of bt is h itself, not a space of larger dimension containing h. One 
instance is 

- 1  1 

1 

1 1 l I - 1  

1 

1 

1 1 1 1 1 

1 1 1 1 1 1 

1 . 

1 

1 

1 1 

1 1 ° _ 

I 

1 1 1 1 1 

1 

1 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 1 

1 

1 

1 

1 

1 

The matr ix on the right is one of 12 found in § 34 .to belong to class 
XV (it occurs under  the second of three headings, with 

t r  - -  G~ - -  F ~  - -  O, t r ,  - -  G~ = G~ - -  1 - -  f ) ,  

it has period 4 and its latent  X is (34.1). The matr ix on the left, which is 
at once seen to have (42.1) for its latent  plane, has therefore period 8. It  
permutes  the remaining 4 of the 5 g in one cycle, and the m (apart from 
Xo) thereon in a cycle of 8. 
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Since each X includes 12 h, and since an operat ion of period 8 has 
the same square as does its fifth power, each operation in class XV is the 
square of 24 of the new operat ions which therefore fill a class, XXV, of 
1814400 members.  Each of the 7560 h is latent for 240 of them. 

The 5 X which contain a given h join it to those 5 g  that pass through 
the m in h a n d  lie in its polar H. The 10~ in H a r e  spanned each by 3 of 
these 5 concurrent  g, and their polars are the 10 4 containing h. An 
operation ~t having h latent and transposing the two points outside h on a g 
in one of these lat ter  has for its square an operation leaving every point 
of ~ invariant,  and enquiry  shows there to be ~ such that ~ is t h e - l a t e n t  
space of ~t :. When  h is (42.1) one ~ containing it is 

(42.2) x~ + % + x~ = x~ -~- % = xo --- x~ = O. 

One therefore demands that ~ leaves every point satisfying (42.1) inva- 
riant, t ransposes through premult ipl icat ion the columns 

( . .  1 1 1 1 . .)' and (1 . 1 1 1 l . . ) '  

and does not leave invar ian t  any point not satisfying (42.1). A general  form 
for the first six columns of I~ can be writ ten down at once, and one then 
imposes the condit ions for ~ to belong to A. The details intervening may 
be suppressed;  among the eligible matrices is 

- 1  1 1 1 1 1 -  

1 1 1 1 1 

1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 

1 

1 1 _  

with (42.1) for its latent space. The latent space of ~ is (42.2),.that of ~t ~ 
is the F 

has period 12 and ~ ,  of period 6, is (§37) oue of the 604800 members  of 
class IX. Since ~ is also the square of ~ ,  a , d  ~ includes only a single h, 
there are 1209600 members  in this new class XXIV.  
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48. The spaces of even dimension that contain a given c include 

2 8 P ;  105E. 7OH, 630F, 560J; 28j,  35f 

and operations of A for which such spaces are latent afford 

2 8 - p 4 2 0 + 4 2 0 + 1 2 6 0 + 1 1 2 0 + 8 5 1 2 + 8 4 0 0 = 2 0 1 6 0  

for which every point of c is invariant.  On the other hand, in correspon- 
dence with the whole [71 and the 

105G, 210T, 56S; 105~, 210~, 280z, 56k 

that contain c, there are only 

1 - } - 1 0 5 + 2 1 0 + 1 1 2 ~ - 1 2 6 0 + 4 2 0 0 - } - 4 4 8 0 - } - 1 3 4 4 - - 1 1 7 1 2  members 

of A + that  leave every point of c invariant .  Tht~s c is latent for 8448 
members of A +. 

The column of latent spaces in Table II  enters c for those classes 
answering to 127 and 135; these classes are representable by 8-rowed 
permutat ion matrices whose normalisers, in the whole l inear group, have 
the respective forms 

(43.1) 

- A  q q q q q q q -  

p a b c d e f g 

p g a b c d e f 

p f g a b c d e 

p e f g a b  e d 

p d e f g a  b c 

p c d e f g a b 

_ p b c d e f g a _ i  

- A  B C q q q q q - 

C A B q q q q q 

B C .4 q q q q q 

19 p p a b c d e 

p p p e a b c d 

p p p d e a b c 

p p p c d e a b 

_19  p p b c d e a _  

When the conditions are imposed which ensure that these matrices 
belong to A it is found that, so far as the le f t -hand  one is concerned, 
A : I ,  q----0 and only one of a, b, c, d, e, f. g, is non-zero. As there 
are 7 choices for this non-zero mark, and as p may be either 0 or l, the 
normaliser  in A is of order 14 and there is a conjugate class of 

960 .9 ! /14- -24883200  members. 

Annali di Matematica 8 
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This is class X X X I V ,  and each of the 4320 c is latent for 5760 of its 
operations. Then, taking the matr ix  on the right, it is found that p = = 0  
while two of A, B, C are zero; and, further,  that only one of a, b, c, d, e 
is non-zero. As there are 5 choices for this non-zero mark and 3 for that 
among A, B, C, and as q may be either 0 or 1, the normaliser  i n A  is of 
order 30 and there is a conjugate class of 

3 2 . 9 ! = 1 1 6 1 2 1 6 0  members. 

This is class XXX, and each ot the 4320 c is latent for 2688 of its operations. 
All 8448 operations for which c is latent are thus acconnted for. 

The normalisers (43.1) anticipate representatives of two classes that have 
a single point latent. For  while the permutat ion matr ix chosen above as 
representative of class XXXIV leaves Xo and U invariant  its normaliser  2/ 
includes, with p - - 1 ,  operations of A that transpose Xo and U. Indeed 
N ~  C1~ and those 6 of its operations that have period 14, having themselves 
2/ for their  normaliser,  belong to a class XLV with the same number  of 
members as XXXIV; it occurs in Table II.  Again:  the permutat ion matr ix  
chosen above as representat ive of class XXX leaves U and ( . . .  1 1 1 1 1) 
invariant~ but its normaliser  2/' includes, with q ~ 1, operations of A that 
transpose them. In fact 2 / ' ~ 0  and those 8 of its operations that have 
period 30, having themselves N' for their normaliser, belong to a class 
X L I I I  with the same number  of members as XXX. 

44. Those operations of A for which every point on s is invariant  form 
a cubic surface group of order 51840; its subgroup of order 25920 consists 
of those operations whose latent spaces contain s and have odd dimension. 
Such spaces, apart from s itself, include the whole [7] together with 

45G, 270T, 120S; 45;~, 270~, 120z, 216;~ ; 

they account for 

1 - ~ - 4 5 - ~ 2 7 0 - ~ - 2 4 0 - t - 1 9 8 0 - ~ 5 4 0 0 + 1 9 2 0 + 5 1 8 4 = 1 5 0 4 0  

operations, leaving 10880 for which s is the latent space. These induce in 
the polar S of s operations of a cubic surface group that are devoid of 
invariant  points ;  but one wishes to describe their effect on the whole [7]. 

Table I I  records that s is latent for permutations,  according to the 
parti t ion 38 , of the vertices of any of those 2405 of which s is an axis 
(cf. § t6). Each triad of vertices of $ whose kernel is on s can undergo two 
cyclic permutat ions so that there are~ if ~ is the number of 6 which not 
only share s as an axis but whose vertices are permuted in 3 triads, with 
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ke rne l s  on s, 
X X X V I I I  fo r  which  
ver t ices  of ~';o in 3 

(44.1) ~ : 

u n d e r  some g iven  
s is la tent .  

cyc les  of 3, 

- 1 1 

1 

1 

1 1 

1 

1 

1 

_ 1  

the ke rne l s  a re  on 

(44.2) x 0 : x~ = 

and each  po in t  of [7] t r aces  

ope ra t ion  o[ A, 240.8/~ member s  of class 
In o rde r  to f ind ~ take, as p e r m u t i n g  the 

X2 Xo ÷ X4 

X 3 Xo ÷ X2 

~4 88o ÷ X8 

~5 ~o ÷ X7 

1 

i .e .  w h e n e v e r  they  lie in S. Othe rwise  they  span  a p lane  in one of 

These  are  the P which ,join S to the  poin ts  of s, so tha t  the p l a n e  of 
each  cycle  meets  S in a l ine. E a c h  of these  P inc ludes  6 3 - - 2 7 - - - 3 6 m  

The  po in t s  of 

(44.3) 

X i 

x0 ÷ ~ wi th  cen t ro id  

x, ÷ ~3 x0 ÷ x, ÷ % + x~ ÷ x, 4 

x, + x o x0 + x, ÷ % + x 0  + x ~  

x, + %  x0 + ~, + x 5 + %  + x~ 

x~ + x~ x0 + x, + % ÷ x0 + x~ 

the  cyc le  co inc ide  if on s; they  are  co l l inea r  if 

Xo + x ,  : ~ + x~ + x. : % + xo + % ,  

0, X2 : 9C3 - -  Xa , ~5 - -  ~6 : X7 

a cycle  
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outside S which, under  ~, run in 12 cycles of 3; each cycle has its centroid 
on s and is the set of common vertices of two $ which, as they cannot be 
transposed by an operation of period 3, are both invariant  under  ~t. Since 
no point is invariant  that is not on s each of these invariant  $ has its 
vertices permuted  in 3 cycles and has s for an axis; thus ~ ~ 24, and there 
are 80 members  of class XXXVIII  for which s is latent. The whole class 
musters 89600, each of the 1120 s contr ibut ing 80. 

A cubic surface group includes, with its conjugate class ~ of 80 opera- 
tions of period 3, certain other classes powers of whose members  belong 
to ~; these are (5, t46) classes of 720, 4320, 5760 members  of respective 
periods 6, 12, 9. One therefore expects, with these same periods, classes 
in A of 

806400, 4838400, 6451200 

members ;  and Table I I I  of 9 lists such classes, namely XL, XLII ,  XLI. It 
will suffice to to give the matr ix  of one member  of each of these classes, 
and to describe the action of the projectivity imposed thereby. 

45. The above 24 5 invariant  under  ~ must consist of 4 such sets of 6 
as were encountered in § 16. One set, there fully recorded, consists of 

(45.1) 

The 6 5 consist each of 3 triads labelled by the script capitals in a row 
or in a column;  labels Et, ~ ,  ~ indicate triads with the respective kernels  

(45.2) ( . .  1 1 1 1 1 1), ( . .  1 1 1 . . . ) ,  ( . . . . .  1 1 1). 

The 80 members  of class XXXVIII  for which (44.2) is latent leave every 
one of the 9 triads invar iant ;  yet one may allow, while keeping the latent  
space the same, operations of A to permute  the triads. But any permissible 
permuta t ion  has to replace everj~ 3 collinear triads in (45.1) by collinear 
triads (this is simply to in'sist that, under  A, enneads remain enneads) and, 
moreover,  it must  replace every triad by one labelled by the same let ter  
(this is to insist that the centroid of each triad, being on (44.2), is unmoved). 

If ~1~ ~t~, ~a are all invariant  so is every tr iad;  ~z,  for example,  is 
the only one of ~ , ,  ~z,  ~3 that is aligned in (45.1) both with ~ and ~8.  
[f ~1, ~ ,  ~3 are cyclically permuted the permutat ion that they undergo 
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determines that undergone by the other tr iads;  one has 

and its inverse. A matr ix that imposes this must have two of the three 
coordinate vectors  of ~2 for its first two columns, followed by those of ~2 
for its next  three and then by those of ~2 for its last three columns;  the 
columns must, within this prescription, be so ordered that no point off (44.2) 
is invariant,  and any such ordering gives an admissible matrix. One example,  
whose cube is ~ and which has therefore period 9~ is 

- 1 1 - 

1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 1 

_ 1 1 1 1 1 1 _  

One may also permit  ~ and ~ to be t ransposed while ~1 is invariant;  
this, by the restr ict ions above, implies the permutat ion 

(Cti) (~251~)(~)(~3~1) (~)(~l~:). 

A matr ix  that imposes it has for its first two columns the coordinate 
vectors of two members  of ~1; ~3 provides the following three and @~ the 
las~ three cohunns;  nor must  any point be invaria~Jt unless it satisfies (44.2). 
One such matrix, whose square  is ~ and which has therefore period 6~ is 

(45.3) 

- -  1 . - -  

1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

] 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

_ 1 1 1 1 1 i _  
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Classes XL and XLI  have been accounted for without subst i tut ing 
another scheme for (45.1); but operations in class XLII  are only detected 
through permit t ing (45.1) to be replaced by another of the 4 schemes that 
are, as wholes, invariant  under  yr. There are, and they have been displayed 
in § 16, 27 m involved in the 9 triads of (45.1); in order to obtain another 
scheme one takes an m not included among these 27 yet which does not lie 
in (44.3). This m is one of a tr iad ~'~ cyclically permuted by t~ and having 
its centroid on (44.2); two ~, O'~o~'~'~ and ~'~'8@% include ~'~ among 
their  vertices and furnish  the scheme. For example 

1 . 1  1 1  1 1  1 1  1 1  1 . 1  1 1  1 1  1 . 1  

. 1 1  1 . 1  1 . 1  1 . 1  1 1 . 1 1  1 1  1 . 1  . 1 1  

. 1 1 1 1  1 . 1 1 1 1 1  1 . 1 1 . 1 

1 1 1  . 1  1 1  . 1  1 1 1  . 1 1  1 . 1  

1 . i . . 1 1 1 . I 1 . 1 I 1 1 1 i 1 

. 1 i . i 1 1 1 1 1 1 1 1 i 1 . . . .  I 

I 1 1 i i . 1 . I . 1 i 1 1 1 1 1 

1 . . . . .  1 . 1 1 . 1 1 1 1 1 1 1  1 1 1 

Each triad, it will be noted~ has its centroid or kernel at the appropriate 
point (45.2) according as its label is ~ , ~  or @. The two other schemes 
analogous to (45.1} involve those $ derived from the above by cyclic permu- 

tation of the three bottom rows. 

The matrices 

- 1  t 1 1 1 

1 1 1 l 

k k 1 k 

1 1 k + l  k 1 

1 k + l  1 k W 1  k + l  

k k k 

I 1 1 1 k + l  k 

_ . 1 k + l  k + l  k + l  

1 

k 

k + l  k 

k ~ - i  

k 1 
I 

k ~ l  k I 

1 k - -~ l  ' 

impose on the triads the permutat ions 

(~,~'~)(/i$t~'~)(~@'~) for k - -  1, 

! t ! ( ~ i ~ , ) ( ~ , ~ ) ( ~ l C ~ )  for k - -  0. 
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Each matrix is the product of the other by the glide that is the cube 
of (45.3), and beth have (45.3) for their  square. Each of the two other schemes 
eligible to replace (45.1) affords a pair of matrices of class XLII  with each 
member  of a pair the product of the other by the glide that is the cube 
of (45.3). Thus 
4 are given by 

- 1 

1 

1 

and 

- t 

1 

_ 1 

6 matrices arise having (45.3} for their  square;  the other  

1 1 1 1 1 -- 

1 1 1 1 

1 k k ~ l  k k + l  1 I 

1 1 k k k k 

k ~ l  1 k ~ l  k ~ l  k ~ l  

1 k k + l  1 k k ~ l  

1 k k 1 k k 

k ~ l  k + l  k + l  1 k + l  _ 

1 1 l 1 1 - 

1 1 1 1 

1 k k 1 k k 

1 k + l  k + l  k + l  k + l  

1 k + l  k k + l  1 k 

1 k k k k 1 

k + l  k + l  1 k + l  k + l  , 
I 

k + l  1 k k + l  k _] 

46. The spaces of even dimension containing g consist of 

24P;  114E, 24H, 792F, 384J;  48/', 6e, 9d;  

hence the coset of Ag + consists of 

24 + 456 ~ 144 ~ 1584 -F 768 + 41520 -t- 1920 -t- 2016 --  18432 

operations. Bu~, apart  from the whole 
dimension that contain it include 

[7] and g itself, the spaces of odd 

151G, 180T, 328;  6~o, 9,I, 234~, 2X, 144~, 256x; 
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hen ce  the re  occu r  

1 + 151 ~- 180 + 64 -[- 168 + 252 + 2808 -~- 88 + 2880 -~- 4096 --- 10688 

ope ra t ions  of A + l eav ing  7744 for  which  g is la tent .  g ~  

Tab le  I I  r eg i s t e r s  ope ra t ions  of class X X V I I I  as hav ing  g l a t e n t ;  they  
p e r m u t e  the ve r t i ces  of some e n n e a d  accord ing  to the p a r t i t i o n  142 and so 
a re  e x e m p l i f i e d  by  those  which  p e r m u t e  the 8 ve r t i ce s  of 2o in two cyc les  
of 4. The  size of this  class can  be d e d u c e d  f rom the o rde r  of the n o r m a l i s e r  

of any  one of its members .  T h e  p e r m u t a t i o n  m a t r i x  

(46.1) 

. 1 . 1 

1 1 

1 1 

1 1 

has. in the gene ra l  l i nea r  group,  a n o r m a l i s e r  of the fo rm 

(46.2) 

- a  b c d e f g h - 

d a b c h e f g 

c d a b g h e f 

b c d a f g h e 

a '  b' c' d' e' f '  g' h' 

d' a '  b' c' h' e' f '  g' 
! 

c' d' a' b' g' h' e' f '  

_ b' c' d' a' f '  g' h' e' _ 

This~iis to be long  to A. W r i t e  

s = a - + - b + c + d ,  t - -  e + f + g +  h 

s ' - - a ' + b ' + c ' + d ' ,  t ' - - e ' - [ - f ' + g ' - [ - h ' .  

Since  the f irs t  and th i rd  c o l u mn s  of (46.2) are  not to be con juga t e  
s - 4 - s ' - ~ l ;  one of s, s' is 0 and the o the r  1, and l ikewise  with t, t'. Bu t  
st : s ' t '  because  the sum of the las t  4 c o l u mn s  has  to be con juga t e  to a n y  

of the o the r  4;  hence  

(46.3) s -= 1 + s' - -  1 + t =- t ' .  
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Each column therefore has an odd number of units, and so either 1 
or 5. Each of t, he first 4 columns has the same number,  as does each of 
the last 4; but, indeed, every column has the same number  of units. For 
were either the left or right hand half of (46.2} to consist of columns with 
a single unit  and the other half to have 5 units in its columns one at least 
of these latter would, as coordinate ~,ector of a point, be conjugate to one 
of the former. 5low the first 2 columns of (46.2) are not to be conjugate;  
this in conjunct ion with (46.3), demands 

(a --[- c)(b "4- d) = (a' -4- c')(b' + d') -- O. 

t h e  zero on the right being necessary because 1 would contradict  s ~ 1 -{- s'. 
Hence there are the mutual ly  exclusive al ternat ives:  

either a -f- c = b + d, a' ~- d - -  b' -~ d' -~ l ,  

o r  a ~ - c - - b + d A - 1 ,  a ' ~ - c ' = b ' + d ' .  

We can confine at tent ion to the former;  the latter is then allowed 
by reflecting in its horizontal bisector any matr ix  that occurs. 
There are 4 possibilities: 

for 

(i) a - - c - - O ,  b - -  d - -  O. (ii) a = c - - 1 ,  b = d = l .  

(iii) a = c = l ,  b = d = O .  (iv) a = c - - O ,  b - - d - - 1 .  

Each allows the first column, which has to include either 1 or 5 units, 
to be filled in 4 ways. It is then found that, in each instance, the last 
column, which has to include the same nmnber  of units as the first and is 
prohibited from being conjugate to it, can also be filled in 4 ways. Thus 
64 matrices occur. They form, when taken with the reflections in the 
horizontal bisector, the group of order 128 that normalises (46.1). Thus (46 1) 
belongs to a coujugate class of 

28.35.52-7 - -  2721600 

members. Each of the 1575 g is latent  for 1728 of these. 

The other classes than XXVIII  whose members have latent  g are 
XXXI, XXXII,  LXII ,  LX [ I I ;  this is seen from the second column of 
Table I I I  registering the cyclic decompositions of permutat ions of the 
135 m under  the subgroup A + of a stabiliser Am. The dimension of the 

Annali  di Matematica 9 
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space latent  for an operations of A + is always odd; if the space contains 
3 m it is either X or g and, as found in §34, 7, occurs for classes XIV 
and XV. )[embers  of class LXI[  are al luded to again in § 53 below; each 
g is latent for 1152 of them. 

47. The spaces of even dimension containing t comprise 

32P;  180E, 140//, 420F, 640J;  32g, 10f, 6h, 15e 

so that the coset of A + consists of 

3 2 + 7 2 0 + 8 4 0 + 8 4 0 + 1 2 8 0 + 9 7 2 8 + 2 4 0 0 + 2 4 0 0 + 4 8 0 0 - - 2 3 0 4 0  

operations. But the [7] itself and 

75G, 256T, 80S; 45% 157, , 320~, 160~, 96),, 57 

only provide 

1 + 75 + 256 + 160 + 540 + 660 + 6400 + 2560 + 2304 -{- 420 --  13376, 

leaving a fur ther  9664 operations of At to be accounted for. Table I I  
discloses that classes XXVH, XXIX, XXXIH contribute;  their  contributions 
of 1920, 2304, 1920 can be found by constructing the normalisers  of their  
respective members  in A. The other classes which contr ibute the remaining 
3520 operations are seen, on appealing again to the second column of 
Table I I I  below, to be XXVI, XXXV, XXXVII.  

The two latter classes will be encountered again in §52 ;  each of 
them includes 1440 operations of At. This leaves 640 operations to belong 
to class XXVI, which therefore has 640.3780 ~ 2419200 members.  

48. Consider now the stabiliser A, of a point p;  it includes the 
projection ~ centred at p and has, indeed, the ~2 generated by 2p for a 
direct  factor. For let ~ be any operation of A~. Any point in the polar P 
of p is t ransformed by l~ into a point also in P, so that every point of P 
is t ransformed by both ~ p  and ~1~ into the same point as that into which 
it is t ransformed by t~; thus (~t~p)(~) -1, imposing the identity projectivity 
in P, is ei ther I or 2~. 

But t~p and 3ptz both belong ei ther to A + or to its coset, so that 
(~t~)(~p[~) -1 belengs to A + and cannot be ~ .  Thus ~ commutes with ~t~ and 
A ~ 2  X A+~. This subgroup A+p is the group "of the bitangents",  and is 
well enough known (9, Table V; 7 passim) to be spared fur ther  comment  
here save for a brief mention of which fur ther  classes in A have represen- 
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tatives in A v. Just  as, in § 43. one encountered classes X L I H  and XLV by 
permit t ing the transposftion of the 2 m on c so one encounters fur ther  
classes by permit t ing the transposit ion of any 2 of the 3 p on s. Thus one 
finds, as representat ives of classes XLIX and LII ,  

m • 1 

1 1 
i 

! 1 

I 1 

l 

1 1 

1 

• 1 

1 

1 

1 

1 

1 

and 

- .  1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 

I 1 1 t 1 

1 1 1 l 

1 1 1 1 

1 1 1 1 1 

/ _ .  1 1 1 1 

whose squares are, respectively, (44.1) and (45.3). There also occur in Ap 
representatives of a class L I ;  they are of period 18 with their cubes belon- 
ging to class XLIX. 

49. While A, ,  as the direct product of ~,  and a well-known group, can 
be summari ly  dispatched A,, merits, as a group of low index in A, more 
formal recognition. Its order is 218.32.5.7 and it has a subgroup A + of 
index 2; it does not share with Ap the prestige of being an exceptional 
Lie group and may not have been examined heretofore. So we display in 
tabular  form the distribution of its operations among the conjugate classes 
of A. The number  in any class is the quotient, by 135, of the product of 
the number  of operations of A in the class and the number  of m invariant  
under  any one of these operations;  it is therefore obtainable once this 
number  of invariant  m is known. The second and fifth columns of Table l I I  
show the cyclic decomposition of the permutat ion imposed on the 135 m by 
the operations of each class of A. For operations of prime period this 
decomposition is known, being determined by the latent  space; for example, 
a projection in class II  leaves invariant  all 63 m in its latent i ° and tran- 
sposes in pairs the 72 m outside P; a glide in class XI I I  leaves invariant  
all 39 ra in  its latent G and transposes in pairs the 96 m outside G; an operation 
of period 5 in class XII  leaves invariant  the 5 m in its latent ), and permutes 
the 130 m outside ~ in cycles of 5, and so on. The decomposition of a 
permutat ion imposed by an operation ~ whose period is not prime is then 
deduced from those of the permutat ions imposed by the powers of ix. 

The le f t -hand half  of the table appertains to A +, the r igh t -hand  half  
to its coset which includes representatives of the classes XLVI, XLVII ,  
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L I V  not  e n c o u n t e r e d  before .  T h e  th i rd  and  s ix th  c o l u m n s  bo th  sum to 
1290240_--21~.3~.5.7,  

I 1185 

I I I  181253 

I V  12~3 ~6 

V I I I  1~26~ 

I X  172103861~ 

X 19342 

X I  1~21~4~ 

XII i~5 ~6 

XIII 136246 

X I V  1~21~31~612 

X V  1821~4 ~ 

X X V I  112~31°61~' 

X X V I I  112~324563127 

X X V I I I  1322482 

X X I X  1122561010 

X X X  P315~15 ~ 

X X X I  1~2631~6 ~5 

X X X I I  1~4666126 

X X X I I I  11243~6~° 

X X X I V  12719 

X X X V  112146812 

X X X V I  111214424 

X X X V I I  112~4~8 TM 

X X X V I I I  3 ~5 

X X X I X  19316616 

L X I  1152 ~° 

L X I I  18264 ~° 

L X I I I  1~263~6~  

T A B L E  I I I  

T h e  g r o u p  A.,  

1 

868 

448 

2940 

31360 

17920 

47040 

21504 

455 

2240 

84O 

17920 

53760 

60480 

64512 

172032 

35840 

26880 

53760 

368640 

40320 

27720 

40320 

53760 

840 

40320 

107520 

I I  16~28~ 56 

V 1152 ~° 4200 

V I  11526316610 8960 

V I I  1112164 ~6 3690 

X V I  1 ~21234616 26880 

X V I I  182~326611 35840 

X V I I I  la21~4~6 30240 

X I X  1~213~456312 ~ 134400 

X X  1~21512107 129024 

X X [  1~2164 ~ 10080 

X X I I  152834618 107520 

X X I I I  11028428 10640 

X X I V  P2~3°456112 ~ 8960 

X X V  11214981~ 13440 

XLIII 21315~10115330 -~ - -  

X L I V  1 1 4 ~ 5 ~ 1 0 ~ 2 @  129024 

X L V  2~7~145 

X L V I  11364~6212 ' 35840 

X L V I I  11218612324 ~ 107520 

X L V I I I  113141818 161280 

X L I X  3~16 TM - -  

L 356 ~° - -  

L I  9~18 ~ - -  

L I I  3~6612 ~ - -  

L I I I  1721~4 ~6 23520 

L I V  P3~4~6~12 s 107520 

L V  16284~81~ 201600 
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TABLE IV 

The groups A~ 

T h e  table shows, in addition to their orders, classes not oceuring in 

Table I I  that have representat ives  in these groups. 

(3 (3 

[7] 1 

M 1 

P 2 

C 2 

G 2 X I I I  

T 4 

S 6 

D 8 

F 8 X X I I I  

J 12 

E 16 

H 24 

z 72 XXXIX 

). 120 

to 64 LXI  

64 X X X V I  

96 

7 128 

X 192 XIV, XV 

d 1024 L I I I  

f 1152 LV 

j 1440 

e 1536 XXI 

h 1920 XXIV, XXV 

g 36864 XXXI,  XXXII ,  LXII ,  L X I I I  

c 40320 

t 46080 XXVI,  XXXV, XXXVII  

s 51840 XL, XLI,  X L I I  

m 2580480 XLVI,  XLVII ,  LIV 

p 2903040 XLIII, XLIX, LI, L I I  
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I I I  

The Sylow 2-groups of  A + 

50. The groups Am are of order 21~.3~.5.7. Any one of them acts as a 
transit ive permutat ion group on the 35 g through m, each of which is 
invar iant  for 21s.3 * of the permutations.  These latter act as a transitive 
permutat ion group on the 9 d through g, each of which is invariant  for 2 ~ 
of them. Thus one comes upon the $2. SYLow subgroups of order 2 *3 , in 
A; each is associated with a flag m < g  < d  on ®. $2 can, since the 
projections centred in the "( through d belong to it, transpose the two solids 
on ® through d; hence a complete flag m ~ g ~ d < t O -  complete in 
that it cannot be extended without involving points off ® - is invariant  
for an $2 + of A +. Since there are 2025 d, each containing 7 g on each of 
which lie 3 m, there are 42525 $2 in A and $2 + in A +. 

Take ® to have the equation (10.4) and the spaces of the flag ~, with 
their polars, to be 

too: Y , ' - - Y ~ - - ~ Y s = Y ~ = Z i = Z e = Z s  = 0 ,  211o: Y~=O, 

go: Yl= Y,= Ys= Y , = Z , = & = O ,  Go: Y , = 0 ,  

do: Do:  

too: Y , = Y ~ = Y ~ = I T , = 0 .  

Any matr ix ~ for which too,go, do,tOo are all invariant  mus thave  every 
element above its main diagonal in each of the last 4 columns zero. If  ® 
is invariant  too so must each of Mo, Go, Do be; these requirements  imply 
certain zeros below the main diagonal in the first three columns, and the 
presence of the zero in the fifth row and first column is then demanded 

by the invariance of 

tO'o: z , - - -  = = Y,  = o 

or of 
~o: Y t + Z i = = Y ~ - - - - - Y s : Y 4 = 0 "  

Detailed examinat ion then discloses that, if 
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is to be unchanged ,  

• 1 

(50.1) ~ - -  

where  

n m, l' 

1 l m'  

1 n' 

1 

c b a' 1 

c cn a b' n 1 

b ~ - c l  a ~ - A  a i ' ~ b m  c' m ~ n l  1 

= a ' + A '  b ' - t -B '  c ' q - C '  R l ' -[ -L '  m ' + n ' l  

1 

_ 

A = bn ~- c(m + nl), A' = bn' ~- c(m' + n'l), 

B' -~ a'n -[- c(l' -b re'n) + n'(a + A), C' - -  am' ~- bl' -{- a'm + b'l, 

R = a'l' ~ b'm' ~- c'n', L ' =  m'n  -[- n'(m ~ nl). 

Since  each  of 
l, m, n, l', m', n'~ a, b, v, a'~ b', c' 

can be e i ther  0 or 1 there  are  2 ~ !~ff'~; they represent ,  and can  be r ega rded  
as composu~g, an S + in A +. They  have  the group  p rope r ty  

l a~ b~, c~; a'~, b'~, c'~ \ a~ ,  b~, c~; a'  b' ' , 2~ 2 ,  ~ 2  

(50.:~) 

where  

(50.3) 

__ [ ) , ,  ~t~ V; )J, ~t', V' ~ 

k ] 

~- = /1 -~- /2 ,  

~ ' =  a'~ --~ a'~ + b~n'~ + c~m'~, 

aln'2 -~ nla'2 
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In 

(50.4) 

=( 
where 

par t icular  

, nl, 

nb + (m + nl)c, cl, 

] a b, c; a', b', c' 

ran' --]- nm ~, In t, • 

/ bn' -[- cm', c(nm' T l') + an' ~ ha', P 

(50.5) = a(ln' + m') + b(mn' + nm' -b l') q- c(ll' + ram' + 

nhn') ~- a'(nl -~ m) -[- b'l. 

A repeated application of (50.4) shows that all save one of the 12 marks 
which determine the fourth power of any operation of S~ + are zero; the one 
that may not be zero corresponds to c' and is cl~nn '. Hence there are 2 s 
operations of per!od 8 in $2 +, namely those having 

and no operation of S~ has a higher period. All these 2 s operations have 
the same fourth power - the gilde 

(50.6) z :  - -  Y4 + z~, z ,  - -  y: + z~ 

associated with Go. This glide is that operation of S + for which all 12 
marks  save c' are zero; the relations (50.3) show that it commutes with 
every operation of $2 +- These relations also suffice to show, on scrutiny, 
that no operation save (50.6) and identi ty commutes with every operation 
of S~+; the centre of S + has order 2. 

So far as c, l, n, n' are concerned the effect of mult iplying two matrices 
(50.1) is to add the corresponding marks;  hence those operations of S~ for 
which any one of c, l, n, n' is zero form a maximal subgroup of index 2. 
These subgroups can be defined geometrically. For  the re  are 

(i) two points m~ m 2 other than mo on go. These are transposed if 
n ' - - 1 ;  the subgroup having n ' z  0 leaves them both invariant,  and is of 

index 9 in Ao +. 

(ii) two lines g~, g2 other than go that pass through mo and lie in do. 
These are transposed if l = 1; the subgroup having 1-----0 leaves them 
both invariant.  
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(iii) two planes d, ,  d~ other than do that pass through go and lie 
in <%. These are t ransposed if n :  l :  the subgroup having n - - 0  leaves 
them both invariant.  

(iv) two solids ~o+, t% other than ~oo, and belonging to the same system, 
that pass through go and lie in Go. These are t ransposed if c~--~ 1; the 
subgroup having c - - -0  leaves them both invariant.  

To verify, say~ (iii) one takes 

when the column vector  of coordinates of a point m in d~ is premult ipl ied 
by ~ that component  which answers to Z~ in the result ing vector  is n ~ ,  
where  ~ is the Z~-coord ina te  of m. To verify (iv) one takes 

, 

51. The 2 ~ operations of period 8 in S + are precisely those not 
belonging to any of the above four maximal  subgroups.  No operat ion of 
period 8 in A can belong to more than one S~. For suppose the contrary: that 

~:  m o ~ g o < d o < ( O o  and ~: m ' < g ' < d ' < ~ o '  

both afford the same such operat ion ~t. The glide ~ shows immediately that 
g'~--go, and as p, t ransposes two of the points on this line its invariant  
m ' ~  too. Were  d' distinct from do it could not, being invariant,  be either 
dl or d2 since ~ transposes these;  it could not, therefore, lie in (oo and so 
would lie in to1 or ~%-and  so in both o)1 and +2 because  ~ transposes them; 
this is impossible. Hence  d ' ~  do, and ¢o'~ ¢Oo. As there are 2 s operations 
of period 8 in each of 42525 S~ + 10886400 such operations in A + are hereby 
accounted for. 

52. Any column vector  that is latent for 
satisfies 

Y~ =  Y~-- Y4 = 0 

as well as 

and 

~ L  with c : l = n - - n ' - - - - 1  

Z~-~ Y~, Z2.-~(m + b)Y~, Z3--  {(m.4- b) (m-l-1)_]_ a'_l_ l,} y ~ 

These conditions determine a line, one of the 4 l that pass through mo 

lie in Do; each such t is latent for 2 6 operations of period 8 in S +. 

Annali  di Matematlca 10 
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Table I tells that any t lies in 15D;  the polar d of any such D accompanies 
the m on t in 3 flags, one for each g in d through m. Thus t is latent for 
26X 45----2880 operations of period 8 in A+: they belong to classes XXXV 
and X X X V I I ,  and indeed are equally distributed between them. l%r the 
latent  space of the square of (50.1) is found, on using (50.4), to be, when 
c - - l = n - - = - n ' - - ~ l ,  the solid 

i52.1) Z 2 =: (b --[- m) Yt  -[- (a q- a' + l' q- bm q- bin' -[- ram') Y~. 

This is ¢~ or 7~, and so the square belongs to class XXXVI or class 
XV, according as the coefficient of Y2 in (52.1) is 0 or 1. 

53. There are in $2 + operations whose latent space is go; they must 
have n ' - - 0  and, in order that no point off go shall be invariant,  satisfy 
(when n ' - - 0 )  the fur ther  condition that ~ has no latent column vector 
save those with 

The five top rows show that other latent vectors might occur unless 

(53.1) 1 

c b 

m' : 1 ; 

then, as this condition ensures that Y~--~ Y ~ =  Y4- -O ,  the three bottom 
rows produce the same condition again to ensure that Y~-- Z ~ = Z .  2 - ' 0 .  
Since, in (53.1), one has, in succession, 3 choices for the first, 6 for the 
central  and 4 for the last column there are 72 non-vanishing determinants ;  
and since a~ b', c' are left free there are, in S, +, 576 operations with go 
for their  latent  space. These, as is seen by squaring them, are not all of 
the same kind. (50.4) shows that, when n ' = 0 ,  points invariant  under  the 
square of (50.1) satisfy 

n(lY.~ + re'Y,) = c(1Y~ + re'Y,) = 0 

{nb + (m --~ nl)c } Y~ --~ { c(nm' + l') -~- nct' t Y 4 " 
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Since, by (53.l), n and c are not both zero, l l ~  m'Y4----O and since, 
also by (53.1), 

(53.2) m' t n b +  (m -1- nl) c t + 1 t c(nm' -t- l') + na' } - -  1 

it must be that Y 3 ~  Y, ~ 0 .  The fur ther  conditions to be satisfied by 
invariant  points are 

clY,  q- inb -q- (m --[- nl)c} Y~-q- n lZ , - - -O,  

cm'Y~ + t c(nm' + l') + na' t Y~ + nm'Z~ ----- O, 

which, noting (53.2), combine to give 

Y~ ~ c Y,  q- nZ~ -= 0 

since, again by (53.1), it is impossible for 1 and m' to be both zero. Now 
the solids 

c y , = n z , ,  ] z _ - r - - r ~ - - o  

are (Oo(C-----1, n-----0), tO'o(C=0, n ~ l ) ,  and ~ ' o ( C ~ n = l ) ,  so that those 576 
operations of $2 + for which go is latent fall into 3 sets of 192. The square 
of each operation has a latent solid, and the operation itself belongs to one 
or other set according as this is (a)~Oo, (b)¢o'o, (c)yo. The 192 operations (c) 
belong to class XXVII I ;  the others are in class LXII.  It was proved in 
§ 46 that each g is latent for 1728 members of class XXVII I ;  since g lies 
in 9 7 and 6 to it follows that it is latent for 1152 members of class LXII .  
This last class therefore embraces 1152 X 1575 = 1814400 operations of A +. 

,54. The subgroup qb, of order 2 s, of S~ that is common to the four 
maximal  subgroups of § 50 belongs also to six other maximal  subgroups, 
namely to those subgroups for whose operations some two of c, l, n, n' are 
equal. These maximal  subgroups will have geometrical character isat ions;  
for instance, if n ~ c. the two X in Go are not transposed, for these solids 
in Y3= Y 4 : 0  are 

×o: y , + z , = y ~ = z ~ ,  X'o: Y,=z,=Y~+Z2.  

~P and its cosets in S + are, as (50.3) shows, determined by c, l, n, n' in the 
sense that these marks are the same for all 28 operations in an~ T coset. The 
group S~'/cD of these cosets is thus elementary abelian - as always (15, 141) 
with the FRATTI~I subgroup of a p-group - of order 16. 
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55. When c - - l : n - - - - n ' = 0  the expression I ~ of (50.5) reduces to 
"~ ~ a m ' q - b l ' ~ - a ' m ;  those operations of (I)for which ~ : 1 have period 4 
while all its other operations save identity have period 2. Since b', c' are 
not restricted, and since there are 28 points off a KL]~I~ quadric  in [5], 
there are 112 operations of period 4 in (I). 

The top six rows of ~ supply, when c : l = n : n ' : 0 ,  as equat ions 
of its latent space z, 

m Y:~ q- l 'Y ,  = re 'Y,  = b Y  3 4t- a ' Y  4 ~--- a ¥  3 44- b 'Y  4 --= 0 

of which two l inear combinations are ~ Y s ~  0 and ~ Y ~ : 0 ;  so, if ~ = 1, z is 
in Go. The bottom rows of ~ supply further  equations of ~ which reduce, 
when Y s ~  Y 4 ~ 0 ,  to 

(55.1) 

Since 

t b Y ~ + a Y  2 + m Z ,  = 0  

a'Y~ + b')~ + l'Z~ + re'Z,2 = 0 

b ~J$ 41 - ~t * 

~--~---1 
a r l '  b '  m '  

(55.1) can be solved either for ]I1 and Z~ or for Yz and Zz as l inear combi- 
nations of the others. The expression Y~Z~ ~- Y2Z2 thereby becomes a binary 
quadrat ic  q and the solid z is "~, X, q~ according as q is a perfect  square, 
i r reducible o r  faetorisable over F. But  "C does not occur;  the product  term 
is always present  in q. Consider now the al ternatives.  

(i) (55.1) can be solved for Y1, ZI; a 'm + b l ' -~  1, am'~-~ O. This allows 
6 tetrads of marks a', m, b, l' and 3 duads a, m'; 18 sets of marks in all. 
Thus, b', c' being free, 72 operations of period 4 come under  this head. W e  
have 

q ~ (al' + b'm) (aa' -~- bb') Y~ q- Y2Z2 -t- bmm'2Z~ • 

The only i rreducible form is Y ~ +  Y2Z2 ~ Z ~" hence, if q is irreducible,  
v "2 '  

(55.2) b - - ~ m ~ - - m ' ~ l ,  a ~ 0 ,  b ' - - 1 ,  a ' q - l ' = l .  

This permits,  c' being free, 4 operations. 

(ii) (55.1) can be solved for Y~, Z2; 

a ==- m' -= 1, bl' = a'm. 
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This allows 10 tetrads of marks a', b, l', m ;  thus, b', c' being free. 40 
operat ions of period 4 come under  this head. We have 

q = b(a'+ bb')Yl + Y~Z~ + m( l '+  b'm)Z~ 

which factorises unless b - - m - -  1, a ' =  l ' : b ' +  1. This permits, c' being 
free, 4 operations. It  thus.  appears  that, of the 112 operations of period 4 
in q), 8 have a latent solid 7, and so belong to class XV while the remaining 
104 have a latent  solid q~ and belong to class XXXVI.  These latent  solids 
are all in Go. If one subst i tutes  from (55.2)in (55.1) the outcome is the 
set of equations for X0' which is therefore latent for the 4 corresponding 
operations; as 7.0 is, likewise, for the 4 operations under  (ii). 

56. When  all of c, l. n, n', whatever  their suffix, are zero all the 
equations (50.3) except  the last become symmetric  in the suffixes;  so, in 
order that operat ions in ~ commute, it is sufficient  that 

a~m'~ + b~l'~ -~ m~a'2 ---- a2m't + b~l'~ + m~a'~ , 

a polarised version of ~ ~ 0 .  Now all operat ions of q5 save those 4 
for which a - - a ' = : b - - ~ l ' ~ - - m - - m ' = 0  are mapped by the points of a [5]; 
each point, because of the non-occur rence  in its coordinates of b' and c', 
maps 4 operations, and they are of period 2 or 4 according as their map is 
on or off a KLEI~ quadric ~2. And operations commute or do not commute 
according as their maps are conjugate or not in the null polari ty set 
up by O.. 

The operations that avoid the mapping, and only they, commute with 
every member  of ¢P; they form the centre of ,(I), a 4-group z2. But any of 
the other 252 operations commutes  only with the members  of z2 and with 
the 124 mapped 4 by each point in the polar prime, with respect  to Q, of the 
point that maps the operation in question. Thus each operation of (1) outside 
z2 has a normaliser  of order 128 ~nd so belongs, in ~, to a conjugate class 
of only 2 members.  The polar [4] 's with respect  to ~, of the 63 points 
in [5] correspond to 63 maximal  subgroups (the above n o r m a l i s e r s ) o f  (I). 
Each of the 30 planes on ~ corresponds to an e lementary  abelian subgroup, 
containing z2 and of order 32. 

The operations of z2 must  of course be closely linked to ~ ;  indeed one 
of them has already been noted, in (50.6), as the glide having Go latent: The 
other two involutions in z2 are, as can easily be verified, those glides for 
which the other G, which contain Do and lie in Me, are latent. 
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57. The 12 equations (50.3) provide, on st ipulat ing that they are all 
symmetric  in the suffixes, 8 conditions, for two operations in S + to com- 
mute. When  these conditions are invoked to discover which operations of 
S~  commute with every operation of the group it is found, as remarked in 
§ 50, that all 12 marks save c' are zero; the centre z~ of S + has order 2. 
One can now proceed with the upper, or ascending, central series (15, 50); 
the next stage is to identify the centre of S+/z~. Each element of S+/z~ is 
a coset of zz in S +, i.e. a pair of operations differing only in their mark 

t .  c ,  the rule of mult ipl icat ion iu S+/zl is therefore given by (50.3) without 
the last of its equations. Hence the centre of S+/z~ is found by insisting 
that, so far as (50.3) minus  its last equation is concerned, an operation 
commutes with all others. There is no condition on b', but all other marks 
than b' and c' are found to be zero. Thus z2, the subgroup of S +2 such that 
z2/z~ is the centre of S+/z~, is the 4-group whose operations have all their 
12 marks zero save b' and c'; it has been encountered already as the centre 
of O. Next, in order to find the centre of S+/z2, one ignores the last two 
equations in (50.3); the remaining conditions for commutat ion are then 
satisfied so long as l, m, n, m', n', b, c all vanish. 

' l '  Since a, a ,  now share the freedom of b', c' the centre z~/z2 of S+/z~ 
is of order 8 and z8 is that subgroup of S~ + for which 

1 ~ m - -  n - -  m'--- n ' ~  b ~ c ~ 0 .  

It is, as (50.3) shows, elementary a belian and its order is 32. Next, in seeking 
the centre of S~/za, only those equations for ),~ ~t, v, ~', v', ~, 7 in (50.3) 
are relevant and the only conditions necessary to ensure their symmetry are 

n l l ~  ~ n ~ l l  , l l n ' z  - -  12n' t  , c112 - -  c z l l .  

These only hold for alt values of nl,  11, n'~, cl if 

n2 ~ 12 - -  n'2 ~ c2-~- 0; 

hence the subgroup z4 of S + such that z4/z ~ is the centre of S+2/z3 is (I). 
And as S+2/gP is abelian it is its own centre. The ascending central  series 

for ,~-2 is therefore 

(57.1) Zo-~I~ zL~ z.2, z3~ z4--~c~ , z ~ - ~ S ~ .  

One can derive the lower, or descending, central series (15, 156)too 
from (50.3). The 12 marks of the inverse of ~ are found on replacing 
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every Greek letter by 1 and solving the result ing 12 equations (50.3) for 
the marks with either suffix in terms of those with the other;  the marks 
()f ~5~-1~)~'52 -~ are those of the inverse of !~](l!~)~2 with the two suffixes 
t ransposed:  another appeal  to (50 .3 ) then  yields, by a straightforward if 
if somewhat laboured process, those of 

This commutator  is known (15, 144) to belong to (I); here it proves to 
be the whole of (I). The mutual  commutator  group ((I), $2 +) then turns out 
to be z~, and indeed the descending central  series is simply (57.1) read from 
right to left. The coincidence of the two central  series of a group is perhaps 
a consequence of such a dis tr ibut ion of zeros, in the matrices of some 
representat ion,  that it may here be a consequence of (50.1). 

The character is t ic  subgroup z 3 of S + can be identified by its effect on 
~. Those operat ions of S + that leave every point of do invariant  have 

l ---- m' = n ' - ~  O. 

They permute the points of Do among themselves, and if one demands 
that every point in Do but outside do is either invariant  or t ransposed with 
the other point on its join  to mo one finds the necessary conditions to be 

m - - n ~ b ~ c - = - O .  

58, If one disregards, for the moment, the centre zl of $2 + (it consists 
of identity and the glide (50.6)) the necessary and sufficient conditions for 
an operation to have period 2 are, by (50.4) and (50.5), 

(58.1.) 

t n l  ~ cl - -  ln' .-= O, r a n ' - -  nm' ,  bn ' , - -  cm', nb ~ me, 

e(nm' -k- l') --~ an'  --}- ha', 

I am'  --}- bl' --[- a~m + b'l - -  cram'. 

They are completely fulfi l led if 

(58.2) c --~ n ----- n' ~ 0 ---- am'  -{- bl' ~ a 'm ~ b'l, 

equations which have 135 solutions - the number  of points on  S T U D ¥ ' S  

quadric. Since, as will be explained immediately,  the other solutions of 
(58.1) fall 16 under  each of 7 heads there are 1 3 5 - } - 1 1 2 ~ 2 4 7  in all, so 
that, since c' is not subjected to any constraint,  there are, in addition to 
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(50.6), 494 operations of period 2 in $2 +. The 7 heads are 

(~) c = n = / = O ,  n ' = l ;  c ~ = b = m = O .  

(~) c = W = l . = O ,  n = l ;  a ' = b = m ' - = O .  

(T) n ~ n ' - ~ - l = 0 , ,  c - - - l ;  l ' - - -m- - - - -m '=0 .  

(~) c = n = l ,  n ' = l - - 0 ;  m ' = 0 ,  r e = b ,  l ' = a ' .  

(~) c - - - - n ' = l ,  n=l-----O; r e = O ,  m ' ~ b ,  l ' = a .  

(~) n = n ' : l ,  c = l = 0 ;  b = 0 ,  m = m ' ,  a ~ a ' .  

(~) c - - = n - - n ' = l ,  / = 0 ;  m = m ' = b ,  l ' = a 4 - a ' + b .  

Operations of cp cannot occur under  any of these heads, but only under  
(58.2) and then only when 1 = 0. They are, excepting (50.6), mapped two by 
each point on the section of a Study quadric bv one of its tangent primes;  
the contact B' of the prime maps those two members  of the centre  z2 of ¢p 
that do not belong to z~, and the remaining 140 operations of period 2 are 
mapped two by each of 70 points coll inear in 35 pairs with B'. Each of 
the 70 points maps a coset of z~. in (P, and the two cosets so mapped by 
points collinear with B' form a coset of z2: the projection from B' gives 
the mapping already encountered  in § 56. 

59. Consider now the solutions of (58.2). When c = n = n ' = 0  the 
latent vectors of ~ satisfy 

(59.1) m Y  3 = I ' Y 4 ,  lY3 = re'Y4, 

(59.2) 1 

= b ' r 4 :  

b Y1 4- a Y2 4- (al -{- bin) Y3 4- c' Y4 - -  mZ,  + IZ~ 

ct' YI 4- b' Y2 4- c'Y3 4- (aT 4- b'm'~ Y4 = l'Z l 4- re'Z2 

(59.3) 
b a m 1 

Ct' b r l' m' 

is either 1 or 2, and the discussion bifurcates accordingl3". 

Since one is disregarding the special c i rcumstance o[ all 8 marks being 
zero the rank r of 
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Suppose  that r = 1 

The, re are 3 mutual ly  exclusive possibil i t ies:  

(i) c t = : b - - l - - m ~ - - - O ,  (ii) a ' - - - b ' = l ' - - m ' = O ,  

(iii) Each column consists of equal  marks,  and in at least one column 
these are 1. 

Take these possibili t ies in turn. 

(i) The latent  space is 

(59.4) Y~ ---~ a ' Y , -b b ' Y2 -4- c ' Y3 'b  l' Z ~ 44- m ' Z.2 --- O , 

the polar  of the ,join of mo to (l', m', O, O, a', b', c', 0), a point on or off ® 
according as a T - [ - b ' m '  is 0 or 1, but in any event conjugate to mo. So 
there occur [8 G and 12 T, the polars of those 18 g (other than go) and 
12 t that pass through mo and lie in Go; the associated 30 operations of S + 
all, since 1 - - 0 ,  belong to ¢P. 

(ii) Here  too there occur 18 G and 12 T, the polars of those 18 g 
(other than go) and 12 t that lie in Go and pass now through m~. Those 18 
operations having a latent  G occur when al  ~- bm- -~O:  l - - 0  for 10 of 
these. Those 12 operations having a latent  T occur when a l ~ -  bm ~ ~; 
l ~ - 0  for 4 of them. Hence  14 of the 30 operations belong to (I); their 
latent spaces are the polars of those 10 g (other than go) and 4 t which pass 
through ~nl and lie not merely in G O but  in Do. 

(iii) The latent  space is 

Y3 - -  Y4 , b Yj ~- a Y2 44- (al 44- bm ~- c') Y4 - -  mZ~ Jr 1Z 2 . 

The results  are precisely as in (ii) - 30 operations of which 14 are 
in (I) - with ml replaced by m2. 

60. Suppose  now that r ~--2: not all of 

p ,  - -  la' Jr bin' P2~ ~ lb' A- am'  P84 -~  ll' Jr ram' 

p ~  --:- al'  ~- ,rob' p ~  - -  bl' -[- ma '  p ~  - -  aa '  ~ bb' 

are zero and, by (58.2), P24----PI~. Thus one may take these p~j to be 
PLilCKER coordinates of the lines in a screw (4, § 8) or l inear complex in a 
project ive 3-space  P over F.  Since a screw comprises 15 lines, and since 
a line over F provides 6 ordered pairs of points, one obtains 90 matrices 
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(59.3) and, c' being free as usual, 180 matrices !~V~. These, with the 3 sets 
of 30 found when r = 1, make up the whole set of 270 operat ions of period 
2 that are permit ted by (58.2). 

The number  of operations among the 180 that belong to (1) is found by 
requir ing that l = 0 .  If (~, ~, ~, x) are coordinates in P one has to take a 
point-pair ,  on a line A of the screw, whose first  member  is the intersection 
of A with ":----0 - except  that, in the event of A lying wholly in "c--0,  any 
ordered pair  on A is eligible. Since there are (4, § 9) 3 of the 15 lines of 
the screw in any plane the number  of ordered point -pai rs  available is 
12.2 + 3 . 6 - - 4 2 ;  of the 180 ~ 5  84 belong to (I). And so we find again that, 
apar~ from (50.6), there are in (I) 30 + 14 + 14--[- 8 4 =  142 operations of 
period 2. 

When  r - - 2  (59.1) and (59.2) reduce to Y3 = Y 4 =  0 and 

(60.1) 
i bY~+aY2--mZ,+lZ2 

a' Y~ 'b b' Y2 --  l'Z~ + re'Z2 

which, r being 2, can be solved for at least one pair  of Y1, Y~, ZI, Z2 as 
l inear combinations (possibly zero) of the others; each of the 180 operations 
has a latent solid o in Go. (60.1) is interpretable as equat ions of a line A ~ 
in a project ive 3-space  P*, and z is % ~', ~ or X according as A* lies on, 
touches, is a chord of or is skew to 2 ,  the hyperboloid Y1Z1-- I~Z2 in P*. 
But, by (58.2), A* satisfies Pl*--'P2* and the null polarity for this screw is 
also that for ~f. The 15 lines A* are therefore the 6 generators  and 9 
tangents  of :~f, and there are 6~o and 9~"- those passing through go and 
lying in Go - each latent  for 12 operations of S~. 

Among those 6(o and 9~" there occur, passing through do and lying in 
Do, ~oo, %' and I'o; they give l - - r e ' - - - 0  in (60.1) so that the 36 operations 
for which they are latent belong', all of them, to Up. But  any other of the 
60) and 9~' corresponds to a A* not containing Y I =  Y2--'--Z~ = 0; one then 
takes the first equation (60.1) to be the plane joining A* to this point. 
thereby ensuring that l ' - - 0 ,  and the second to be either of the other two 
planes through h*. Of the i2 operations of S + having the solid for latent 
space only 4 belong to (I). And so one again obtains the 3 . 1 2 +  1 2 . 4 = 8 4  
operations of period 2 already found. 

61. These discussions in §§ 58-60, involving as they do all the operat ions 
of period 2 in qb, cover the whole of z 3 and enable one to define, in relation 
to ~, all the operat ions of this important  and characterist ic subgroup of 
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S +. That identi ty and the glides with axes go, g~, g~, compose % is 
already known;  those operat ions of z~ that are not in z~ and have latent 
spaces of dimension 5 are 

4 involutions, the polars of whose latent T are those t which pass 
through qUo and lie in Yo; 

8 glides~ whose axes are those g]  through mo that lie in Do but 
not in do; 

4 glides, whose axes are those g in do that do not pass through n~,o. 

For  such operations only occur when (59.3), here specialised to 

[° ] 
a' b' l' 

has rank 1. This is so when ( i ) a - - O ,  and then the latent space is the 
polar of the join of mo to (l', O, O, O, a', b', c', 0). The jo in  is in Do; it is 
not in do unless a ' - - l ' - - O ,  but  this relegates the operation to z2. The 
4 t in ~'o occur when a'------l'---1; otherwise the jo in  is in ~%(a'---- 1, l'~---0) or 
~%'(a'--0, l ' ~ 1 ) .  If  a----1 the rank of (61.1) is 1 when (it) a ' - - - - -b ' : l ' . -=O,  
giving those two glides whose axes lie in do~ pass through ml and are 
dist inct  from go; and when (iii) a' ~ l ' - -O ,  b ' :  1, giving those two glides 
whose axes lie in do, pass through m2 and are distinct from go. 

W h e n  (61.1) has rank 2, a-----1 and a', l' cannot both be zero; the 
latent  solid is 

7o when a' - -  l' - -  1 ; 

(% when a ' - - -1 ,  l ' = 0 ;  (Oo' when a ' = 0 ,  l ' = l .  

Since b', c' both stay free 4 operat ions occur for each solid; the 12 
complete  z 3 . 

I t  remains, in order to describe z 3 fully, to explain how to identify, in 
each of the 3 instances, the 4 among those 28 operations in A + for which 
the solid is latent. That each of the 28 operations for which ~'o is latent  is 
the product  of 4 commuting project ions centred at the vert ices of ei ther of 
two te t rahedra  was seen in § 25; the te t rahedra together account  by their 
vert ices for all 8 p in 7o and are in perspect ive from a point of do. Each 
of the 7 m in do is the centre of perspect ive for 4 such pairs of tetrahedra,  
and it is when this m is +no that an operation in z 3 results. 
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62. The identification of operations of z 3 having ~Oo or coo' latent uses a 
mode of generating them, jus t  as above a mode of generat ing operations 
having Yo latent was essential to their description. One must therefore first  
expound this e lementary  topic. 

It was seen in § 24 that glides commute when their axes meet;  but  
they commute also when their axes gl, g2 are skew and the solid [glg2] is 
an ~o. Since G~. G2 both contain ~o every point of ¢o is invariaut  for 
both glides. 

Take any point A outside both G1 and G2. Let  m~, m2 be the inter- 
sections of g~, g~ with the polar  prime of A; A~, A2 the remaining points 
on Am~, Am2; A~ the intersection of A~m2 and A2m~. The first glide, as 
remarked in §24, t ransforms A into A~; since m2 is conjugate both to m~ 
and to A it is conjugate to A~, so that the second glide transforms A~ into 
A~; the two glides combined (in this order) t ransform A into A~2. But  so 
they do, by similar reasoning, when combined in the opposite order :  the 
two products  have the same effect on any point which lies either in both or 
in neither of G~ and G~. Indeed they have the same effect on every point 
in [7]. If  A lies, say, in G~ but  not in ¢o its t ransform A~ under  the second 
glide lies in the plane Ag2 and so, with A and g2, in G~; the first glide 
leaves both A and A~ invariant  and both products  transform A into A2. 

A is dist inct  from A~2; it is only points of ¢o that are invariant  under 
the product  of the glides, and so the product  of any two glides whose axes 
are skew lines in to is an involution of class LXI. But whereas there are 
only 28 such involutions with ¢o latent there are 

~.35.16 - - 2 8 0  

pairs of skew lines in ~o; each involution is expressible  as the product  
of glides with skew axes in 10 different  ways. The explanat ion is that there 
are in ~o (4, § 9) 28 screws each having 10 pairs of polar lines; products  of 
pairs of glides with skew axes in ~o are the same involution when the pairs 
of axes are polars in the same screw. 

To return,  now, to z 3. Of the 28 screws, whether  in ¢Oo or in (Oo', 4 
provide involutions - products  of glides whose axes are polars in the screw 
- that belong to z 3. The 4 screws are those to which go, gl, g2 belong;  i.e. 
those in which the null  plane of mo is do. 

63. The preceding paragraphs do not merely calculate numbers  of ope. 
rations of period 2 in S~- and (i): they identify such operations by their 
latent space ~ a n d ' i t s  relat ion to ~. Each of the 7 heads of § 58 provides 
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32 operations of period 2 that can be similarly identified, and these heads 
are now taken seriatim. None of these 224 operations belongs to (I). 

(e) The equat ions of ~ are 

~ = a'Y, + b'Y~+ c'g3+ l'z, + m'Z~ + z~=O;  

it is the polar [5] of the line joining mo to (l', m', 1, 0, a', b', c', 0). This 
is one of those 32 lines through mo which lie in 3/o but  outside Go: the 
line is g if c'--~ a'l '+ b'm', t otherwise. The 32 operations under  this head 
have therefore as latent spaces those 16 G and 16 T in Mo that contain mo 
but not go. 

(~) The equat ions of ~ are 

Y~ + mY3 + rY, = o ,  

Z, + aY3 + b'Y4--O , 

mZ~ + a Y2 + c'Y, = O, 

~'z~ + b'Y~ + c'Y~ +o, 

whose rank is 4 or 2 according as a l ' +  b'm is c ' +  1 or c'. In the former 
instance ~ is ¢o'o, latent for 16 operations. In the latter a is the [5] 

Y~---mY3 +I 'Y4,  Z , - - - a Y 3 + b ' Y  4. 

This is one of those 16 G whose polar g lie in OJo though not in do: 
moreover  the intersection of g with do is one of the 4 points not on go. 

(y  The situation is as in (~). Of the 32 operat ions 16 have % for their 
latent space. The other 16 have each a latent G; the polars of these G 
are those 16 g, 4 through each point of do not on go. that lie in % but  
not in do. 

(~) The equations of ~ are 

1~ + b Y:~ -[- a ' l~ = O, 

z~+ Y~+ Y ~ + a Y ~ + b ' g ~ = o ,  

b(Z, + ~) + a Y~ + b'Y,~ + c'Y~ = O, 

a'(Z~ + Y~) + b' Y~ + c' )~ + a'Y,:----- O. 
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so that ~ is the solid 

a + r , =  Y,= y , =  Y~ =o,  

i.e. ?o, when c'--- aa' + bb',-{- a'b + 1 ; this accounts for 16 operations. The 
others have each a latent  [5] 

Y~=bY3 + a'Y4, Y, -[- Z~-~(a-[-b)Y3-[-(a' + b')Y 4 . 

These 16 [5]'s are T, being 
at each of the 4 points off go. 

(~) The equations of o are 

polars of those 16 t in 70 that meet do 4 

r , = a L ,  Y ~ = b r ~ ,  Y,=O, 

Z~ = aZ~ + bZ~ q- (aa' + bb' + c')Y~, 

a solid which is ¢o' or y according as c' is a a ' +  bb' or not; each solid is 
latent for 4 of the 32 operations. For  there are 4 solids ¢o'~ namely those 
meeting o)o in the planes other than do containing either g~ or g2, and 4 
solids % one through each of these same planes. 

(4) The situation is as in (s); but  now the 4 planes, other than do, 
through either g~ or g~ are in (O'o instead of in (Oo. 

(~}) The equations of o are 

Y 4 ~ 0 ,  Y~=bY3 ,  Z~--  Y, + ( a + b ) Y 3 ,  

Z~ -[- bZ~ - -  (a -t- b)Z, -[- (aa' -[- ba' -t- bb' + b -[- d) Y~ ; 

these provide, where the marks  take different  values, 8 solids 7, each latent  
for 4 of the 32 operations. Yo and ~ meet in the plane 

~ + z ,  = r.~ = ~ = y~ = o, z~ + bZ~ - -  (a + b)Z~ ; 

this can be any o[ those 4 e, two (b- ' -0)  through gl and two ( b -  1) through 
g,, that lie in yo. Since, in addition to ?o, there are 27 through each e the 
latent  solids are identified. 

64. All operations of S + belong to A + and have for their period some 
power of 2; they are distr ibuted among the classes 

I, I II ,  VIII ,  XI, XIII ,  XV, XXVII1, XXXV, XXXVI,  XXXVII ,  LXI, LXI I  
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with respect ive periods 

1, 2. 2, 4, 2, 4, 4, 8, 4, 8, 2, 4 

and latent spaces 

[7], T, % ,~, G, 7~, g, t, % t, ~o, g. 

Those of periods l, 2, 8 have all been accounted for, the contr ibutions 
to the classes being 

1 to I, 68 to III ,  188 to VIII ,  103 to XIII ,  128 to XXXV, 

128 to XXXVII ,  136 to LXI.  

There remains a total of 3344 operations of period 4, dis tr ibuted among 
classes XI, XV, XXVII I ,  XXXVI, LXII .  

Some of these have been encountered too; for instance the 192 in 
class XXVII I  and 384 in class LXI I  for which go is latent. One might now 
enquire  whether  operat ions of S~ + have latent some g other than go but, 
since ~ is to be invariant,  no space can be latent for any operation of S + 

v 2 

unless it includes too. Take, then, ei ther of those g other than go which 
pass through mo and lie in do; say 

g~: Y~ - -  Y~--~ :F3 ~ iF4-~ Z, ~ Z s - - O  , 

and demand that a point on g~ other [han mo is invariant  when the column 
vector of its coordinates is premult ipl ied by ~ .  Then l ~  m ' :  0. Further-  
more, since m~ and m: on go have to be transposed, n ' ~  1. Next, in order 
that the latent space be g~ itself and not a space of higher dimension, the 
rank of ~ + I  must be 6, which it is seen to be if, and only if, with 
l~m'~-~ .  0 and n ' - ~  l, b n - ~ c m ~  1. The remaining 5 marks are unrestr icted,  
so that 6.2~-- ~ 192 operations are obtained. An argument  similar to, though 
ra ther  shorter than, that of §53  shows each of ¢oo, ~o'o, To to be latent for 
the squares  of 64 of these operations. Since g2 could have served as latent 
space jus t  as g, has done one accounts for 128 members  of class X X V I I I  
and 256 of class LXII .  

The line 

Y, - -  Y~ -"  Y~ = Y4 ~ Z~ --~ Z~ = O, passing through mo and lying in Do, 

does not lie in do; it is one of 8 such g, 4 in ~oo and 4 in ~Oo '. Its points 
are all invariant  under  ~ L  when l'~---m--~ n ~-- 0 and then ~ ~ I has 
rank 6 if, and only if n'----1 = ~ = 1. These restr ict ions allow 64 ~ which, 
again by arguing as in § 53, belong 32 to each of the classes XXVII I  and 
L X I I ;  so one accounts for 256 more of each class. 
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65. This procedure,  of using latent spaces and their relation to ~ to 
determine operations in $2 +, calls on the geometry to classify these 
operations and dist inguish them from each other. The main outlines of 
some instances will now be given, although one does not probe matters 
down to the least detail. 

Take the latent space to be ~; it meets ® in 3 g concurrent  at an 
apex.  This apex may, or may not, be too; if it is not, its join  to mo is one of the 
3 g; if it is. go may, or may.not ,  lie in ~. There are 75600/135 - -  560 ~ with 
a given m as apex;  of these, 560 X 3/35---- 48 include a given g through m. 
There are (the dual s tatement is registered in Table I) 24 ~ through a plane 
e, aud each of the 3 m  in e is the apex of 8 of them; hence, as there 
pass through go two e in ~lo, there are, among those 48 ~ having apex mo 
and containing go, 16 that meet Yo in planes. The other 32 meet To in go 
only. Alternatively:  take mo to be the apex, so that ~ lies in Y4-----0. Each 
g in ~ meets Z 4--  0 and no two of these 3 intersections are conjugate.  If it 
is also st ipulated that 9o belongs to ~ the solid is spanned by 4 points 

(65.1) 

!/' 

Yi' Y~' l z t ~ za 

where 

z 3 " -  y ,z ,  --]- y.2z.2, z~' - -  y,'z~' -]- y:'z'~, 

implying 

y,z,'  ~ y~'z~ ~ y2z2' -l- Y3'Z: - -  z3 ~ z3' -+" 1, 

(65.2) (Y, + Yt ')(~ '{- z,') -[- (y~ --]- Y2')(z~ + z.,') = 1. 

Thus y , ,  y~, z , ,  z~ can eaeh~ be either 0 or 1 and z~ is then known; 
(65.2) then allows 6 sets of marks for y,', y./, z,', z./ and so z 8' is determined.  
Hence  there are 2 4 . 6 = 9 6  ways o[ filling the two bottom rows in (65.1) 
and, as these can be transposed without changing the solid, there are 48 
eligible ~. There is a single e in ¢, and containing go; it joins go to 

yl ~ Y(, Y~ -t- Y2', z, -I- zl '  , z~ -~- z~', z 3 ~ -  z3' , 

which is not in To unless y ~ ' = y ~ .  It then follows from (65.2) that Y I ' ~ Y , ~ - 1  
and z , ' = z ~  ~ 1; only 2 of the 6 ways of satisfying (65.2), and so only 16 
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of the 48 + are  now ava i lab le .  Two among  these  16 ~ occu r  on p u t t i n g  

s - - O ,  i in Y , + Z ~ - - ~ Y ~ - ' Y ~ - - O ,  Z ~ - - ~ Z ~ .  

The  r e q u i r e m e n t  tha t  e v e r y  poin t  of this sol id be i n v a r i a n t  d e m a n d s  

a --~ b - -  c' = l - -  m = n' = 0, 

and  the f u r t h e r  r e q u i r e m e n t  tha t  no poin t  ou ts ide  the sol id be i n v a r i a n t  
d e m a n d s  

- -  n - -  m' = 1, l' - -  a '  -4- a. 

So one accounts ,  4 ~ 2  be ing  ava i lab le  for  each  4, for  64 ope ra t ions  of 
class  XI.  

T h e r e  are  16 ~ h a v i n g  mo for  a p e x  wh ich  mee t  do in g, and  Yo in a 
p l a n e ;  one is 

Y i  "~- Z l  - -  ~Y3 ----- Z 3  - -  Y 4  - - -  0 .  

The  cond i t ions  for  it to be the 
$2 + are  

gt  - -  b '  - -  v - -=  l - - -  m '  " - "  n - - -  0~  

l a t eu t  solid of an ope ra t i on  (50.1) of 

b - -  m = n ' - - -  ],  ( t ' - - -  l', 

so tha t  4 !3[L are  permiss ib le .  T h u s  64 ope ra t ions  occur,  and  the re  is 
a n o t h e r  set of 64 r e l a t ed  to g2 as this set is to g~ 

Next ,  sti l l  r e t a i n i n g  mo for  apex ,  take  a n y  of the 4 g outs ide  do in too 
and  any  of the 4 g outs ide  do in tOo'. A f u r t h e r  g, j o i n e d  to bo th  the 
se lec ted  ones by p lanes  f ye t  ly ing  in Go, can  be chosen  in 2 ways ;  for  
example ,  if the g in ¢0o and too' j o i n  mo to ( . . . .  1 . . .) and  (1 . . . . . . .  ) 
the  f u r t h e r  g j o in s  mo to (1 1 . . 1 1:~ .) w h e re  ~ can be e i the r  0 or 1. 
Th ese  g lie in 

the cond i t ions  on ~ c  are  

a ' - - - b - - . c - = l ' - - m - - - n - - ~ O ,  a - . ~ l - - - n ' - - 1 ,  m ' - - -b '+c¢ 

so tha t  4 ma t r i c e s  are  pe rmi t t ed .  Th i s  type  of + t h e r e fo r e  accoun t s  for  
4 .4 .2 .4"- -128 ope ra t ions  of S +. 

I f  m~ is the apex  ~ n e c e s s a r i l y  inc ludes  go; among  such  ~ are  16 whose  
i n t e r sec t i on  wi th  Yo is a p lane.  Two of these  ~ o c c u r  on p u t t i n g  ~¢--0 ,1  in  

Y1-4- Z1 = Y2 ---- Y~ = O, Z~ = ~ZI ; 

Annal i  di Matematica 12 
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this solid is found to be latent when, in ~DVC, 

a':b'--=c'~l'-~m'-----n'~O, c - ~ n - - l - - 1 ,  b .-~:d+m; 

since a and m stay free there are 4 such ~qL. Since m2 could have filled 
the role of apex just  as m~ has done the number  of operations of S~ 1hat 
fall under  this head is 2.16.4-----128. 

This discussion, occupying § 65, shows there to be (at least, though in 
fact the number  is exact) 448 members of class XI in S [ .  

66. I t  was shown in § 55 that each of Xo, Xo' is latent  for 4 operations 
of (I). In order to find how many operations of $2 + have Xo for their latent 
space one notes that 

(~, ~ + ~ ,  O, O, ~, ~ + ' ~ ,  ~, ~), 

which traces Xo as ~, ~, ~, z vary, has to be invariant,  under  premultipli- 
cation by ~ ,  for all ~, ~, ~, • in F ;  this is not so unless 

c - - n : n ' - - O ,  l '~a--kb, l'--~a', m---b, m'=-=n'+b'. 

Further ,  in order that no point outside Xo be invariant  it is necessary 
that an'+ bb'--~ 1. As this equation has 6 solutions, and c' is free, 12 ope- 
rations of S ;  ~- have Xo for the,ir latent space. Those for which l = 0 ,  and 
so a = b ,  are the ones in (P. The same holds for Xo'. 

The solid Y~-[-Z~=Ya~---Za,  Y ~ = I z  4~--0 is one of the two X through 
g~; it provides 4 operations of S~ + for which it is latent, namely those with 

both b' and c' s taying free. Since 4 operations are so associated with each X 
through gl and each X through g2 there are 16 operations of class XV 
whose effect on ~ is different  from that of the 24 having Xo and X0' as their 
latent solids. 

67. The class to afford, geometrically speaking, the most diverse ope- 
rations of S ~  is XXXVI. The latent solid ¢~ meets ® in 2 planes whose 
common line V can be called the hinge; if mo is not on ]/ its join to V 
lies on ~ and is one of the two planes const i tut ing the section. I f  mo does 
lie on V this hinge may be go, or one of gl and g2, or one of those Sg  in 
Do but not in do, and so on; and after V is chosen there remains some 
freedom of choice fol" the two planes. To span ¢~ one requires two points 
on V and then two fur ther  points on ® not coniugate to one another but 
both conjugate to both points on V. 
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Suppose  - an obvious first choice - V to be go. One sees, on observing 
the section ~ of ® by a solid × in Go skew to go, that ~ can belong to 
any of 4 categories. For ~ consists of 6 lines, 3 in each of its comple- 
mentary reguli ;  those passing through the intersect ion of z with do belong 
one to ~Oo and the other to too', and the ¢~ hinged on go join it to the 
chords of ,~. They arc dis tr ibuted as 

(a) 4 which contain do; 

(b) 4 containing one plane in too and another in ~O'o; 

(c) 8 whose 2 planes of intersection with ® lie one in either ¢ooor (Oo', 
the other in ne i ther ;  

(d) 2 meeting ~ in planes nei ther  of which is in either o~0 or ¢oo'. 

Each of these 18 ~ is found to be latent for 12 operat ions;  it will appear  
that these 216 operat ions of S + include the 104 that were seen in § 55 to 
belong to (I), the categories respectively contr ibut ing 48, 16, 32, 8. Ins tances  
are as follows. 

18 

(a) Y~ ---- Y3 : Y4 == Z, == 0, latent  for those 12 91~ wherein 

a - = - - c - ~ l = n = b ' - - - - - m ' - ~ n ' - - - O ,  a ' m + b l ' = l  

(b) Y2=Y~-----Y4----Z~--'=0, latent for those 1 2 ~  wherein 

a' = b : c - -  l' --- m - ~  n = n '  - -  O, a m '  + b'l --~ 1. 

(c) Y~ - ~  Y~., Y3 ~ Y4 "-- Z2 - -  O, latent for those 12 915 wherein 

c = m - - ~ n = l ' - - n ' - - O ,  a - ~ b ,  a ' = b ' ,  a ' l + b m ' = l .  

(d) Y~ + Y ~ - ~ Z ~ ,  Y 3 " -  Y4 = Z2 ~ O, latent for those 12!~q'5 wherein 

c ~ n = n ' = O ,  a ~ b = m ,  a ' ~ - b ' = l ' ,  l l ' + m m ' =  1. 

Every operation under  (a) belongs to O; of the other sets of 12 those 
4 members  of the set having l = 0  belong to (I). 

The same 4 categories apply to those 18 :~ hinged either on gl or on 
g.~; but  now, while under  ( a ) ~  is again latent for 12 operations, it is 
latent for only 4 under  the other headings. Instances,  with gl as hinge, as 
as follows. 

(a) Yl=Y.2--- -Y4=Zl-- - - -0 ,  latent for those 1 2 ~ w h e r e i n  

a = b -~- c' = l --~ m - ~  m '  - -  n '  = O, n a '  + c l ' - - 1 .  
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(b) 3(2 = Y3 = Y4 -"  Z3 = 0, latent for those 4 !3l~; wherein 

a ' - - = b = c - - l = - m - - n - = l ' = m ' = O ,  ce = n ' =  1. 

(c) Yt-=Y3,  Y ~ = Z ~ - - Z  3--~0, latent  for those 4~]L wherein 

b - - l = : m - - n - - l ' - - - m ' - = 0 ,  a -= n' = l,  c -= a, d - -  a'. 

(d) Y ~ - ~ - Y ~ Z ~ ,  Y~-=Y4=Z3~---0~ latent for those 4~)]~ wherein 

b - - ~ l = m - - m ' = - O ,  c - - a - - n - - n ' - - ~ l ,  c ' - - a ' - - l ' .  

The total number  of operations of S + 2 with a latent ~ hinged on g~ is 
therefore 

4.12 -b 4.4 A- 8.4 -1- 2.4 = 104, 

and, since there is an equal number  with a latent ~ hinged on g2,208 opera- 
tions of $2 + are accounted for. 

One of those 8 g  through mo which lie in Do though outside do is 

g i  - "  Y~ = Y3 - -  Y4 - -  Z.o = Z 3 = 0 ;  

this, which is in COo, can serve as a hinge. If  one of the two planes through 
it that compose the section of ® by ~ lies in ~oo this plane meets do in one 
of go, g~, g2; in any e v e n t  there are 4 choices for the companion plane, 
and each ~ is latent for 4 operations of $2 +. If  ~ contains go it can be any 
of the 4 solids which arise on taking either 0 or 1 for a, ~ in 

Y~ - -  Y4 - -  0, Y~ - -  ~Y~, Z.~ = ~Y~, 

a solid which is latent for those 4 ~)~ having 

a - - b - - l ' - ~ - m - - n = n ' - - ~ - O ,  c = m ' = l ,  b - - a ,  c ' - - ~ b ' + ~ .  

If ~ contains g~ it can be any of 

Iz~ ---- Y4 --'---- 0, Y3 - -  :¢Y:, Z~ " -  ~Y2, 

latent  for those 4 !~tl5 having 

a = l - = m = n = l ' - - m ' - - = O ,  b - - - n ' - - = l ,  c---o~, 

And analogously if ~ contains g2. As there are 8 choices for 
one accounts for 8 .3 .4 .4--384 operations of S +. 

b ' -"  ~¢ + ~. 

the hinge 
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Given any of the 8 g through mo that lie in Go but outside Do there 
are, among the 18 go having g for hinge, 4 such that, of the two planes 
consti tuting the section of ® by % one meets (Oo and the other meets (Oo' in 
a line. As each such ~ is latent  [or 4 operations of S~ a fur ther  128 ope- 
rations arc accounted for. I f  the hinge is 

Yl - -  Y3 - -  Y4 = Z,  = Z~ --" Z~ = 0 

the 4 relevant ~ have equations 

Y 3 - - Y ~ = Z ~ O ,  Z ~ = ~ Y ~ W ~ Z , ;  

and this is latent for those 4 ~)~ having 

a = b - - - c = m - - n = b ' . . - ~ O ,  n ' = / = l ,  a'-----~, l ' = I ~ .  

68. Suppose now that the hinge does not pass through too, but that it 
is one of those 4 g  not passing through mo that lie in do. Then ~ must 
contain do, and there are 4 possibilities. I f  the hinge is 

the 4 ~ are found by taking a, ~ to be either 0 or 1 in 

Y~ : Ya : O, -Yi : a]:74, ZI : ~Y4' 

This solid is latent for the 12 OT~ having 

a ' = l = l ' - - ~ m ' - - -  ~ n ' = 0 ,  b '=~c - i - ,~n ,  c ' = : ¢ b + ~ m ,  b n - l - c m = l .  

As there are 4 eligible hinges 192 operations of S + are accounted for. 

Among g which neither pass through mo nor lie in do are 16, 8 through 
each of m~ and m2, that meet go and lie in Do. One of them is 

Y, ~- Y~ --- Y 3 = Y 4  = Z ~  = Z ~ - - O  

and if ¢p has this hinge and contains mo it is one of the 4 solids 

Yt~-~Y3=O, Y~--aY4~ Z.~-----~Y4. 

This is latent for those 4 OF(: having 

~re ---~ n -~ l' --- m' --- ~$' --- b' ~ O, c - - ' l - ' l ,  a'-.~ ~, c'----- ~a + ~, 
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and one thereby aecouuts  for 256 operations of S~. The aggregate of ope- 
rations in S~ + that have, in these §§ 67, 68, been recognised as belonging to 
class XXXVI  is 

2 1 6 - ~ 2 0 8 - } - 3 8 4 + 1 2 8 + 1 9 2 + 2 5 6 ~ 1 3 8 4 .  

The 3344 operations of period 4 that, as remarked in § 64, belong to $2 + 
have all been found;  the classes 

XI, KV, X X ¥ I I I ,  XXXVI,  LXI I  

contribute,  respectively,  

448, 40, 576, 1384, 896. 

69. The 4096 operation of S + can now, when the relation of each l~ltent 
space to ~" is known, be part i t ioned into sets:  not necessarily, at a first 
essay, into the conjugate classes of S + but  certainly into sets each of 
which is a union of conjugate classes, no two operations being conjugate 
in S + unless theft belong to the same set. Should any further  ref inement  
of these sets, separat ing conjugate classes from each other, be desired (50.3) 
enables one to find the normaliser  in $2 + of any chosen operat ion;  the 
index of this normaliser  is the number  of operations in the conjugate class 
to which the chosen operation belongs. The number  in any conjugate class 
must, of course, be a power of 2. 

It is natural  to carry out the part i t ioning by ascending the upper  central  
series. Each of the two members  of zl is itself a conjugate class, and a 
third set consists of the two members  of z~ outside zl. As for the 28 
members  of z~ outside z2, the discussion in §§ 61, 62 parti t ions them into 
7 sets of 4; a glide whose axis is in (Oo but  not in do cannot be conjugate 
in S~  to one whose axis is in O)o'. 

There are 112 operations of period 2 in (I) that are not in z a. Of those with 
a latent [5] 16, 8 of them glides, come under  (i) of § 59 while 12; including 
4 glides with axes in ~oo and 4 with axes in O)o', come under  each of (ii) 
and (iii); as these lat ter  heads  include operations that are conjugate in 
$2 + the 40 operat ions of up, of period 2, outside z 3 and with latent [5]'s, 
fall into 5 sets of 8. Nex t :  each of O)o, ¢%'~ 7o is latent for 8 operations 
of (I) not in zj, and the argument  at the end of § 60 serves to part i t ion the 
remainder  as 8-4-8  with latent ¢o and 8--l--8-4-16 with latent ~,. So the 
11.2 operations fall into 12 sets of 8 and one of 16. As for the operations 
of period 4 in (I) 8 of them have a latent X and the other 104 fall, by §67  
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and the fact that ~oo and +o' cannot be t ransformed 
under  $2 +, into sets of 

48, 8, 8, 16, 16, 8. 

either into the other 

It can then be shown, using (50 3), that one of the set of 48 has a 
normaliser of order 2 s, so that lhe set is the Imion o[ 3 conjugate classes 
with 16 members in each. And so on. 
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