An orthogonal group of order 2%-3°-5%-7
by W. L. Epaee (2 Edimburg, Gran Bretagna)

Summarv. - The group of automorphisms of the non-singular quadric consisting of 136
points in a finite projective space [7] is investigated by using the geomeiry of the
figure.

CONTENTS

The geometry of the ruled quadric &; the 960 inscribed enneads and
the symmetric subgroups, of degree 9, of the orthogonal group.

Operations of the orthogonal group not belonging to any symmetric
subgroup. The groups 4.

The Sylow 2-groups of A+.

Introduction

I. The non-singular quadratic forms in any even number of variables
over GF(2). or F as this field will be called, are of two types-distinet in
that no form of either type can be changed into a form of the other by any
linear transformation whose coefficients all belong to F. When equated to
zero a quadratic form in 2m variables gives a quadric in a projective space
[2rn — 1], and the root of the above distinction lies in the fact that such a
quadric may. or may not, contain spaces [#n— 1] lying wholly on it; it may
be ruled or non-ruled. The orders of the groups of automorphisms of the
ruled quadrics were calculated by Jorpan (10, 244) and by Dickson (3, 206),
and DICKSON calculates the order for the non-ruled quadrics too; but the
geometry that underlies these groups and accounts for their structure has
been ignored, even for low values of n, until quite recently.

It is, then, proposed to investigate, describe and exploit the figure in
[7] set up by a ruled quadric &; the initial & of STuDY is used because -
the quadric, consisting of 135 points and containing 270 solids that fall
into two systems of 133, affords an instance, indeed the simplest instance,
of his principle of triality (12, 477). Its group 4 of automorphisms has a
subgroup A* of index 2 - the subgroup called FH (8,2) by DIcKsoN (3, 310);
automorphisms in the coset of 4* transpose the two systems of solids on &
whereas those in "A+ itself do not.

There are simplexes I sueh that, when any one of them is used as
simplex of reference, the quadratic form on the left-hand side of the
equation of & is the sum of the 28 products of pairs of the 8 homogeneous
coordinates. The matrices p of the automorphisms of this quadratic form can
be identified, precisely as for the analogous groups in 6 or 7 variables
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(6 and 7): the 8 columns of p are linearly independent, each is the coordi-
nate vector of some point m on &, and no two of these 8 m can be
conjugate in regard to &. In other words: the columns of p are the coordi-
nate vectors of the vertices of some X. It is helpful, when endeavouring to
construct those p satisfying supplementary conditions fe.g. w for which the
points of some subspace are all invariant) to remember that, in consequence
of no column being conjugate to any other, each column ¢s conjugate to
the sum of any even number of columns exclusive of itself. These defining
attributes of p are relied upon constantly; for instance, if one seeks the
general form of p when certain points are prescribed to be invariant, their
coordinate vectors being latent column vectors of p {§§ 22, 23, 30, 34), or if
one requires the general matrix form of the normaliser of some operation
of A (8841, 43, 46, 48). But it is, upon occasion, advisable to use some
alternative canonical form for the equation of € and then g will be defined
by quite different properties. In investigating the structure of a SyLow
2-group of A+ one takes the canonical form to be mnot (6.1) but (10.4), and
bases the discussion on the 2" matrices (50.1).

2. In geometry based on F there is, when a simplex is given, a single
point of the space that does not lie in any bounding prime of the simplex.
‘When the 8 vertices of any ¥ are so supplemented the ennead & constituted
by the 9 points is such that, whichever of its points is omitted, the other 8
are vertices of a X. This explains the occurrence of symmetric subgroups S,
in 4, whose order can be deduced from the geometry, without any allusion
to JoRDAN’ S and Dicksox’s general formulae, in different ways (§§ 7, 11).
Rich though the geometry is in detail nothing is irrelevant; it is summarised
in Table I, some of which is mere transcription of facts ascertained in
earlier work while those parts which are not are expeditiously compiled
in §§ 12-14.

There follow, in §§ 15 and 16, certain properties of the enneads, and
then some paragraphs point contrasts and underline affinities between the
geometry here and that in 9, the paper wherein Miss HamILL, using a
different representation, succeeded in decomposing A into its 67 conjugate
classes. Her numbering of these classes will be followed here, and the title
of this paper is chosen fto echo hers.

3. There are, in a symmetric group §,, 30 conjugate classes associated
one with each partition {A} of 9; when §, is a subgroup of 4 these furnish
members of 30 of the conjugate classes of 4. Each operation p of 4 leaves
certain points of [7] unmoved; these fill the lafeni space o of p whose
dimension is always (§19) 2 less than the number of parts in {1}. But it is
not merely the dimension of o that one finds; one determines, in § 20 and
§ 21, its precise relation to &. The results are shown in Table II on
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p. 26. All these are accumulated by setting out from p in §, and determining
o; but one can argue oppositely by taking some space o and finding those
operations of A for which it is latent. This investigation progresses by
gradual descent: when seeking those operations for which o is latent one
presumes known all those whose latent spaces include o.

Those operations of 4 for which every point of o is invariant form a
group A,, with a subgroup A} of index 2. 4, includes all those operations
whose latent space contains o and these, if the space properly contains o,
can be discarded if already known. These discarded operations embrace the
whole of A} or of its coset according as ¢ has odd or even dimension, so
that the excess of the number of discards in the exhausted half of 4, over
the number in the other half is the number of operations of 4 for which o
is latent. In the course of the discussion explicit matrix forms for several
4, are tound-they depend, of course, on how ¢ is chosen in relation to the
simplex of reference of the coordinates; one may mention, as based on the
symmetric canonical form (6.1), the 128 matrices (23.3) and, subject to (84.4),
the 192 matrices (34.2), as well as sets of 64 matrices, based on the cano-
nical form (10.4), occurring in §§ 35, 36.

The details tend inevitably towards greater elaboration as the work
progresses throngh decreasing dimensions of o, and there is abundant
interest in the underlying geometry. Of those conjugate classes of 4 that
do not intersect any of its subgroups &, 29 are encountered, and represen-
tatives of many of these are given. This part of the paper closes when o.
its dimension progressively lessening, has shrunk to a point. This point is
labelled m or p according as it is on or off &, and A4, happens to be the
direct product of a cyelic group of order 2 and a group on which much has
been written already. But A4,,., of index 135 in A4, is not familiar and
Table III on p. 68 gives the numbers of its 2'*.3%.5.7 members in those 48
of the 67 conjugate classes of 4 among which they are distributed, as well
as the mode in which these members of 4 permute the 135 m of the
geometry The analogous information for those A, with ¢ a line -to mention
only those 4, of relatively high order - could easily be compiled. The orders
of the various groups 4, are assembled in Table IV on p. 69.

4. The only classes in Mrss Hamirr’'s list of 67 (9, 76-7) whose
operations are devoid of invariant points and which are therefore not
encountered here are those numbered

LVI, LVII, LIX, LX, LXIV, LXV, LXVI, LXVII
whose members have, respectively, periods

3, 6, 12, 5, 10, 15, 6, 12.
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All of these have some power of their operations in either class LVI or
class LX, and class LXV is so subordinated to both these classes. These
eight outstanding classes can be brought within the ambit of the geometry
once this is enlarged by invoking Srupy’s triality and imposing his semilinear
transformations (12, 477): he appropriates the adjective semilinear in full
awareness of the fact that three successive such transformations G may be
necessary fto generate a collineation. G imposes an outer automorphism of
period 3 on A+, transforming 4 into two other groups which also have A~
for a subgroup of index 2. For example: the last elass LXVII falls, in 47,
into two conjugate classes of 7257600 operations; class XXVII has also this
number of operations, and of the same period 12, and there is an outer
automorphism of A% which permutes these 3 classes cyclically. And this
same automorphism transforms the members of classes

IX, X1, Iv, IIT
which are powers of members of class XXVII, into the members of classes
LXVI, LXII, LVI, LXI

which are the corresponding powers of members of class LXVII. But these
matters of triality and the geometry pertaining to them must be postponed
to another day.

When the occasion comes to consider them any facts ascertained in
this present paper will be available.

5. A Syrow subgroup S; of 4, and so of A+, is the direct product of
a cyclic group of order 3 and a Syrow subgroup, of order 81, of a cubic
surface group, so that nothing further need be said about S, here. But the
SYLow subgroups Sy of A+ are associated with the flags on & and this fact
points one way towards an exploration of their properties. The last part of
the paper (§§ 50-69) is given over to these matters. The 2% matrices (50.1)
furnish an S and their law (50.3) of composition affords a ready access to
its upper central series and to many other features of this group whose
structure, whether in its broad outline or fine detail, lies open to scrutiny
by examining the figure in [7].

Table I shows the numbers of subordinate spaces, of different kinds, in any subspace
s of [7]: o, with the number of such subspaces in the geometry, heads the column, and
the symbol for the subordinate space flanks the row, containing the entry. Reciprocating
in & gives the number of spaces, of different kinds, that contain the polar space o of o
these latter numbers being so deducible instanfaneously need not be printed and so the
table is’left triangular. It is used almost incessantly once it is on record. An entry written
as a sum indicates that o meets & in a singular quadric and the different coumstituents o
the sum imply subordinate spaces differently related to the vertex of the section.
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I

The geometry of the ruled gquadric &; the 960 inscribed enneads and the
symmetric subgroups, of degree 9, of the orthogonal group.

6. When w,, @x,, @, 2, €,. €5, X5, £, are homogeneous coordinates in a
projective space [7] the equation

(6.1) 2 wa; =0,

- i<i
with a sum of 28 products on left, represents a quadric &.The base field F
is the Garois FIELD GF(2) consisting of only two marks 0,1 with 14+1=0;
every «, is a. mark of F so that, with two choices for each of the 8
coordinates which, as coordinates of a point, are debarred from being all 0
simnltaneously, there are 2°— 1 =255 points in [7]. If a point m is on &
the number of products x,x; that are 1 is even; the number of non-zero
coordinates of m is then one of 1, 4 5, 8 so that & consists of
8+ 70+56+4+1=135 points m. The 235 — 135 =120 points off & will
be labelled p. The quadripartite partitioning of 135 is consequent upon the
introduction of the coordinate system: the first 8m are the vertices of the
simplex of reference X,, the last single m is the unit point U. The partitioning
is indeed significant, but it does not confer privilege on any #. The 135 m
all have the same geometrical attributes; they are permuted transitively by
by the group A4 of automorphisms of &. '

Since Xa;x; is symmetric the symmetric group & is a subgroup of 4;
subgroups &; are associated one with each simplex ¥ in regard to which &
has the same equation (6.1) as it has when referred to ¥,. Label that verfex
of %,, all of whose coordinates save wx; are zero, X,. These X, all lie on &
and, moreover, no two of them are conjugate: their join is a chord ¢, not a
generator, of &; the remaining point on ¢ has tWo non-zero coordinates
and so is off &. Any simplex I having these properties gives, when taken
as simplex of reference, (6.1) as the equation of & : the square of each
coordinate is absent because each vertex is on &, while the product of
each pair of coordinates is present because no two vertices are conjugafte.
Describe such a simplex I as eligible. Now not only is it that no two
vertices of 2, are conjugate to one another: nomne of them is conjugate to
the unit point U whereat the tangent prime of & is the unit prime

(6.2) @ 4 01 + X 4 X, 4 20 + 5 + 20 + 2, = 0.

Thus U completes, with the X,, an ennead &, - a set of Y m, each the
sole point of [7] not in any bounding prime of the simplex whose vertices



6 W. L. Enge: An orthogonal group of order 2'%.3%.52.7

are the others, all of them on & and no two conjugate. All 9! permutations
of points of &, can be imposed by projectivities that belong to A because
all transpositions of pairs in &, can be so imposed: those of pairs of X,
are imposed by permutation matrices, and if one requires to transpose, say,
X, with U and yet leave every other X; unmoved one takes

}

1 . . . . . C

(6.3)

g SO S O Sy
[y

as premultiplier of the coordinate column vector of any point. This mafrix
bhas the two properties (see 6 for forms in 6, 7 for forms in 7 variables)
that characterise the matrices of A4: each colomn is the coordinate vector
of an*m, while no two wm whose coordinate vectors so oceur in the same
matrix of 4 can be conjugate: the columns, indeed, are coordinate vectors
of the vertices of an eligible simplex Z.

4 has therefore symmetric subgroups §,. Every eligible & provides, by
the addition to its 8 vertices of the unique point of [7] that does not lie in
any of its bounding primes, an ennead & whose members undergo all 9!
permutations under one of these subgroups. A4 is transitive on these &;
there is a projectivity in A that transforms Z, into £ and so U into the
unique point which, adjoined to Z, completes &. The order of 4 is 9!N
where N is the number of &. \

7. In order to calculate N one notes, first, that the prime P spanned by
any 7 members of an ennead has for its pole the point p on the join of the
remaining two: for example, x,=0 is spanned by all X; save X; and is
the polar of (1, 1, 1, 1, 1, 1, 1 .) on UX,. Now it was remarked in 7 that
there are, in x;,—=0, 288 simplexes ¢ in regard to which the section of &
has the equation Sxw; =0 (0 =<4 <j=<6). The 21p which lie one on each
edge of o are all conjugate both to U and to X;; for if neither of two
points, here vertices of o, is conjugate to a given point O the remaining
point of their join has to be, since it is the intersection of the join with the
polar of 0. Hence the 21p lie in the polar [5] with respect to & of UX;.
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So, in order to construct &, one can take any of the 288 ¢ in the polar of
any of the 120 p, & being then completed unambiguously by the two points
apalogous to U and X, above. Thus, since any of the 36 joins of & can
fulfil this function of completion,

N = 288 x 120/36 = 960.
The order of 4 is therefore

960.9! = 25.3%.5%.7,

8. The projeciivity imposed by (6.3) has period 2, and a glance at the
matrix tells that all’ points in x,=0, and only these, are invariant. The
Jjoin of every two points that are paired with one another passes through the
third point ¥, on UX,; one may therefore, and this is in accord with earlier
nomenclature (1, 9), describe the projectivity as a projection J and call Y,
its cenlre.

The prime of invariant points is the polar of Y, and includes every
point of &, other than U and X,. There are 120 projections in 4, each
centred at one of the 120 p, every point in the polar of the cenfre being
invariant. The projection centred on the join of two members of an ennead
& transposes them while leaving every other member of & invariant. The 36
projections centred on the 36 joins of members of & answer to the 36
transpositions of a subgroup §, of A.

9. The 8 p on the joins of one member of an ennead to the remaining
members form a simplex in regard to which also © has a symmetric equa-
tion. Take, for example the points Y, on the joins to U of the remaining
points X; of &. They are linearly independent, the matrix of their column
vectors (the single zero of each being placed on the diagonal) having I for
its square. Nome is on &, so that the square of every y, is present in the
equation of &; nor are any two conjugate, as is seen by testing Y, and Y,
so that every produnct y,y; is present too and the equation of & referred to
the simplex whose vertices are Y; is

I rda

¥+ 2 yy; =0.
i=o0 1<<J

This quadratic form therefore has its group of automorphisms isomorphic
to 4.

10. There are, over F, two projectively distinct types of non-singular
quadric in (7]; one is ruled, having solids ® on it, the other not. & is ruled.
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o ~

Solids on & are detected by taking any plane d on & - a plane is on
& if it is spanned by three non-collinear m that are mutually conjugate; d
lies in its own polar {4] D which, should © be ruled, meets S in two solids.
Take, then, to span d, U and a pair of conjugate m in (6.2) that are not
collinear with U, say

(10.1) (1, 1, 1,1, 0,0, 0, 0) and (0, O, 1, 1, 1, 1, O, O).
The equations for D are

(10.2) Lo 4 X1 == Ly 4+ Xg == X4 + %5 == X6 + a7.

If, in {6.1), one writes

w0+gv m2+§7 QZ;—-{—E, ms-l_g

for «,, s, s, x: respectively the outcome is

(g 4 25 + 24 + x5} (o + X2 4= s + 25 + &) =0,

o~

and either factor determines, with (10.2), a solid on &. Equaticns for the
solid determined by the vauishing of the second factor are, for example,

o+ s f s e =w,F s+ % X =ksF 0,0, F+ s =
=as+ 2+ x5 + 2, =0,
and (6.1) admits the corresponding form

(o + @5 + a5 -+ @7) (22 + 20 + 207} + (€2 4 @5 - 207 + 21} (25 + X7 + 2}

{103’ (w4+m7+m1+m3)4x6+mz+w1)+{966+m1+963—l—»8s) (Wo+m1+x7)=0

which, the 8 linear forms occurring being linearly independent, is the stan-
dard equation

{IO*H Y1Z1 + Yzzz + Y3Z3 ‘I‘ Y4Z4 =0

of a ruled quadric in [7].

Since (6.1) is symmetric any equation derived from (10.3) by permuting
suffixes is also equivalent to {6.1) and allows equations for 16 solids ® o be
written down. Had one, however, to give but one instance, set out by
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spanning d by X; and the two points (10.1) one would have found that D

o~

“met & in the two solids
m6+$1+m3+m5={l}o+%3+.’E5:m2—l—m5+w1=m4+xl+w320,
X5+ a0 - Xy - Xy = Xy + Xp - 10y == X5+ Xy o = X5 + X + 2, = 0.

The solids on & fall, as is well known (11, 43), info two systems. If is
important to note that these systems are transposed by each of the 120
projections &. For the prime P of invariant points of &J, polar of the centre
of J, meets € in a non-singular quadric which, belonging to a [6], does
not contain any solids; thus P meets every solid ® on & in a plane d and
transforms o into another solid o’ on & through d. But ®, ' cannot meet
in a plane if they belong to the same system; they belong therefore to
opposite systems.

Since the projections transpose the systems 4 has a subgroup A+, of
index 2, of operations that leave both systems invariant. The produets of
even numbers of J belong to A+, which has 960 alternating subgroups .

11. One now sets out to describe the figure in detail, obtaining the
numbers of the various subspaces and their relations to each other; the
geomelry will afford much information about the structure of 4. The
designations, already used on earlier occasions (6, 7), for the subspaces -of [7]
in their relation to & are retained here: for example, a line is labelled
8, t, ¢, g according as 0, 1, 2, 3 of its points are on &.

Prime sections of & are of two kinds: non-singular sections by polars
P of points p and singular sections by tangent primes M at pojnts . The
former section, a non-singular quadric in [6], has its kernel (6, § 9) at p;
the 63 lines in P that pass through p are all £ while the 64 lines outside P
that pass through p are either ¢ or s, those that meet & (once, and
therefore twice) being ¢, the others s. Since there are 135—63 =72 m
outside P there are 36c, and so 28s, through p. Hence the total number of

{ is 120 X 63/2 = 3780,
¢ is 120 X 36 = 4320,

s is 120 x 28/5 = 1120.
Both the ¢ and the s fall into quarilefs; the four lines of a quartet
span the whole [7] and each of them is the polar of the [5] spanned by the

remaining fhree. The order of A4 is, again, quickly found as soon as the
namber of quartefs of either kind is known. That quartets of ¢ occur is

Annali di Matematice 2
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shown by (10.4), the vertices of the simplex of reference being intersections
of @ with such a quartet. Conversely: when & is referred to a simplex
whose vertices are the intersections of & with a quartet of chords its equa-
tion has the form (10.4); no square can occur because every vertex of the
simplex is on &, while all but 4 of the 28 product terms are absent because
all but 4 of the 28 pairs of vertices of the simplex are conjugate pairs of
points. A4 is transitive on the quartets of chords. Since, once such a quartet
is chosen, its members can undergo 4! permutations, and since the two m
on any member can be transposed, the order of 4 is 2*.4!N, where N, is
the number of quartets of ¢. In order to calculate N, note that the polar C
of any of the 4320 ¢ meets & in a Klein quadric K having planes on it; &
has (see the last column of Table I in 7) 280 chords each of which has,
with respect to H, a polar solid x containing 18 ¢, these being paired as
polars of one another with respect to the section of & and K by x. Hence,
as the quartet could have been assembled in any order,

4! N,=4320.280-18,
and the order of 4 is

2%.4320.280.18 = 2™.3°.5%.7.

The discussion of quartets of s is similar. The polar § of any of the
1120 s meets & in a quadric £ without any planes on it; £ has (see the
last column but one of Table I in %, or the line of numbers along the top
of Table II in 6) 120 lines in S skew to it, each of which has, with respect
to €, a polar solid » containing two s, polars of each other with respect to
the section of & and £ by ». Hence, as the quartet could have been assem-
bled in any order,

41 N,=1120.120.2

where N, is the number of quartets of s. If the vertices of the simplex
of reference consist of two points on each of the four s in a quartet the
equation of & is

B b4+ B Eane+ 2+ B+ Gans + 15+ &+ G 0 = 0.

But as the members of a quartet can undergo 4! permutations and as
there are, having regard to order, 6 choices for the two vertices on each s,
the order of A4 is

644! N, = 6%1120.120.2 = 2"%.3°.5%.7.
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12. Planes d and solids o lie wholly on &. It will be reealled (6, §10)
that the lefters used to indicate the sections of & by other planes and solids

are as follows.

Planes Solids
e: a single line, v: a single plane,
f: two lines. ¢: two planes.
h: a single point. y : a single line.
j: 3mnon-collinear points. ¢: 3 concurrent non-coplanar -lines.

x: a non-singalar ruled quadric.

X: a non-singular non-ruled quadric.

The tangent prime M to & at m cuts & 'in a cone, vertex m, whose
section by a [b] in M and not passing through m is a KLEIN quadric oK.
The numbers of subspaces, and their relation to &, in the [5] are given in
the last column of Table I in 7; these are

28p, 30m; 105g, 210¢ 280c, 56s; 30d, 105e, 630f, 70k, 560;.

It follows that there pass through m
284, 3bg; 105d, 210e, 280f, 56h; 30w, 103y. 630¢, 70x, 560 ¢.

which, at the same time, lie in M. One can deduce immediately the
numbers of subspaces in [7] but, on noting the numbers: of m in the
divisors below, one must remark that in f and ¢ the ’contact’ is unique
while in ¢ it is one of 3 points. Thus the total number of

t is 135X 28 = 3780
g s 135 X 35/3 = 15675
d s 135 X 1057 = 2025
e is 185 X 210/3 = 9450
f is 135X 280 = 37800
hoois 135 X 56 = 7560

o is 135 X 30/15 = 270
y s 135 X 105/7 = 2025
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v is 135 X 630/3 = 28350
v is 185 X 70/3 = 38150
is 185 %X 560 = 75600

13. The sections of & by the spaces just listed are singular; it remains
to find how many planes j meet & in non-singular conics and how many
solids %, A meet € in non-singular quadric surfaces - ruled and non-ruled
respectively. Onee this has been done the numbers of all types of subspace
will be known, since a space of dimension exceeding 3 is the polar of one
of dimension less than 3.

Any three m, no fwo of them conjugate, span a j. Choose any of the
185 m and call it m,. There are 70 others, two on each of 30 g through m,,
in the tangent prime M,, and so 64 outside M,; it is these 64 that are not
conjugate to m,. Choose any of these 64, and call it m,. The tangent
primes M,, M, meet in the polar O of mym.; C contains 3D m composing the
KiEIN section of & therein, so that there are 36 wm outside C but in M,,
another 36 in M,. Hence there are, outgside both M, and M,,

135 —356 — 36 — 36 =28

m; it is these 28 that are not conjugate either to m, or to m,. Choose any
of these 28 and call it m,. Since m,, m,, m, could have been selected in
any sequence the number of § is

135.64+28/6 == 40320.

There are, as explained in § 11, 11200 quartets of s; any two members of
such a quartet span a x, so that each quartet affords 6 x. Moreover there
is one, and only one, way of spanning a given » by a pair of s, polars of
each other with respect to the section of &: namely by what have been
called (6, 631) the DaNDELIN lines of = It follows that the number of x
is 67200. This number is also obtainable by using the N, quartets of ¢ for
here, too, any two members of a quartet span a » and are polars of each
other with respect to the section of &. But % can be spanned by any of 9
polar pairs of ¢, so that any one x arises from 81 quartets, there being
also 9 choices in the polar of » for the two members of the quartet outside
%. It follows that the number of = is 6N./81.

A solid X includes b m no two of which are conjugate; conversely (take,
for example, the solid X,X,X,X.) any 4 m, no two being conjugate, span a
solid . Thus each of the 960 & provides 126 2 and so, since each 2,
including b sets of 4 mutually non-conjugate m, arises from 5 different &,
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the number of A is 960.126/5 = 24192. They form 12096 pairs of polar
solids: for instance the polar of X X, X, X, is

Ly == Xy == Xy == Xy = Ly + ©5 + X5 + X7

herein are 5 m, no two conjugate, namely those whose coordinates are the
columns

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1

1 1

1 1

1 1

14. One can now build Table I, each column showing how many
subspaces of different categories lie in the space whose symbol heads the
column. Save for those columns headed by w, D, G, M the table is largely
a transcript of earlier ones: compare Table I of 7 with its first column,
and five columns headed by letters with zero suffixes, deleted, its top row
amalgamated with its second and each row led by a letter with zero suffix
amalgamated with that led by the same letter withont the suffix. The
column headed by P consists of the numbers down the extreme left of
Table I of 7 (having regard fo the amalgamations just prescribed); the
column headed by J consists of the numbers, correspondingly amalgamated,
along the top of Table I of 6; that headed by S of the numbers along the
top of Table II' of 6. Capitals now denote spaces that are polars, with respect
to &, of those denoted by corresponding small letters.

If an entry appears as a sum it is in a column corresponding to a
space whose section of & is singular, the different components of the sum
indicating different relations of the subspaces to the vertex of the section:
recall the note to Table II of 6; for instance, of the 76 g in 7 15 pass through
the contact of T with & whereas the other 60 do not.

The numbers of spaces throngh a given subspace are deducible instantly
by polarising in &; there are, for instance, 75 G through ¢ of which 15
lie in the tangent M to & at its contact with ¢

Column D is readily compiled, since D meets & in two solids o, o
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through its polar plane d. The other solid through d in D is y. There are
28 solids in D which do not contain d and which therefore meet & in two
planes, one in ® and one in o, intersecting in a line in d. The g in D
consist of 7 in d, 28 outside d in w, 28 outside d in ®’; the ¢ join the 8
points of » outside d to the 8 points of v’ outside d; the p are the 8 points
of y outside d; a plane f in D joins one of the 28 lines ¢ in ® outside d
to one of those 4 lines in o’ that pass through the intersection of g with d
and yet do not lie in d; and so on.

The entries in column G follow from the observation that the line cone,
with vertex the polar ¢ of G, in which G cuts & projects from g a non-
singular ruled quadric, or hyperboloid, in [3]. Let, for definiteness, g join
the points (10.1), so that G is

(14:.1) 960+w1:962+963=w4+M5.

If, in (6,1), one writes

2 +E @48 @+ E

for x;, x;, ®; respectively the outcome is

(900+902+-T4) (xo+902+w4+&)+(906+§) (907""6):0

the canonical form xy -+ 2¢=0 for a hyperboloid. All solids in G that
are skew to g are x There is no A in @; every solid in G other than
these » meets & in a singular quadric.

The number of solids in G skew fo g is quickly found by a standard
procedure. Such a solid is spanned by taking

A, any of the 63-3 points in G not on g;

A,, any of the 63-7 points in G not in the plane g4;;

4y, any of the 65-15 points in & not in the solid gd,4,:

Ay, any of the 63-31 points in G not in the [4] g4,4.4;.
But this same solid would have been spanned by taking

B;, any of its 15 points;

B,, any of its 14 points other than B;

B,, any of its 12 points not on the line B,B;;
By, any of its 8 points not on the plane B,B,B,.

Hence there are
60.56+48.32/15.1412.8 == 4* = 256
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solids in G skew to g. The discussion has also shown that there are, skew
to a given line therein, 64 planes in [4] and 16 lines in [3]
Since the subspaces in % consist of

9m, 6p; 6g, 18, 94, 2s; 9f, 64
it follows that there are, containing g and lying in G,

9d, each including 4m off g;

e, ,, . 4p off g;

6w, » 16g skew to g;
18¢, , . 16¢ skew to g;
9y, . ’s 16¢ skew to g;
2%, ., . 16s skew to g;
9D, |, , 64f skew to g;
6E, ,, ' 647 skew to g;

All these numbers provide entries in column &; for instance 9.64 =576f
and 6.64 = 384j. The only entries now outstanding are those for spaces
which neither contain g nor are skew to g, and so meet it at one of ifs
3 m. They are quickly found. As instances: the 96 ¢ skew to g lie 4 in
each of 24 d joining them to any m on g, so that 72 such d occur; the
376 f skew to g lie 8 in each of 72 ¢ joining them to any m on g, so that
216 such @ occur; and so on.

Since the fangent prime M to & at i meets & in a point cone
projecting a KLRIN quadric every [5] in M that does not contain m is a C;
the last column in the table can thus be disposed of summarily. For, C
having the subspaces

28p, 35m; 103g, 2104, 280c, 56s; 30d, 105e, 630f, 70k, 560j;

10by, 2104, 280x, B6A; 287, 3BF
M contains

28, 35g; 105d, 210e, 280f, 56k; 30w, 105y, 630y, 70y, 560Y;
105D, 210K, 280F, 56H; 28T, 35@

each of which includes (the m being in addition to the contact while the
g, t, ¢ do not contain this contact)

2p, 2m; 4g, 41, 4o, 4s;  8d, 8e, 8f, 8h, §; 169, 16¢, 16%, 16%; 32J, 32F

respectively.
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15. Before passing on to further matters a word or two about the
enneads will be in place. Each pair of vertices of & has for its join a ¢,
each set of 3 vertices spans a plane j; hence the number of & having

a given m for vertex is 960.9/136 =64,
a given ¢ for edge is 960.36/4320 = 8.
a given j as plane face is 960.84/40320 = 2.

The solid spanned by 4 vertices of & is a X, and so contains a single
m that is not a vertex of &. All 9+ 126 m are accounted for by the
vertices of & and by these supplementary w that lie one in each of the
1262 determined by sets of 4 of the 9 vertices. After a vertex of & is
isolated from the other 8 there are 35 ways of partitioning these as 4?; each
such bisection affords a pair of A, and the two supplementary m, one in
each J, are collinear with the isolated vertex. Thus all 35 g through this
vertex are accounted for. The ecollinearity is verified at once by isolating
U in &.

Each of the 28 plane faces that contain a given vertex m of, say, &,
provides, as sharing this plane face, one of the 64 & having m for vertex.-
These 28 & account, with &, itself, for all 8 enneads sharing any edge of
&, through m: if enneads share 2 vertices they share 3. The remaining
35 that have m for vertex share no other vertex with &,; each of them is
linked with one of the 33 separations into tedrads <, v of the 8 vertices
of &; other than m. Supplementary to © is p, completing the section of
€ by the A which t spans; mp is completed by the supplement p' fo <’
and that tedrad which is in perspective with t from u' belongs to the new
ennead, which is completed by the tetrad in perspective with v from p.
Take, in illustration, m to be U and &, to be &,. The other ennead having
vertices U, X,, X; is given, apart from U, by the columns

1
1
1 1 1 1 1
(15.1) 1 t o1 1 1
11 111
11 1 11
1 1 1 1 1
11 1 1 1

Annali di Matematica
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The ennead which shares no vertex other than U with &, and which is
linked with the separation X, X;X,X /X, X;X,X; is given, apart from U, by the
columns

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
(15.2) 11 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
Here pis(1 111....) and p is (... 111 1)

Arrays in clear analogy with (15.1) give all 28 & that share with &, U
and two other vertices; arrays in clear analogy with (15.2) give all 30 &
that share only U with &,

16. Any 3 vertices of an & with their centroid compose a conic with
its kernel. If the 9 vertices are partitioned as 3° the kernels of the 3 triads
are collinear. If, for example, & is &, and the partition is

(16.1) UXX,: X, X.X,: X:X:X;
the kernels are

(16.2) (111111, (L111..0 (.... 11 1)

The line s of the kernels may be called an axis of &; each & has
°C,+%04/3!' =280 axes, and each s is an axis of 960 X 280/1120 = 240&.
This number can be found otherwise. If s, is an axis of & there are planes
J1, Jo. s that meet s, at p;, p., p. and together account for all 9 vertices
of &; in j; lies s; which, being the only line in j; skew to &, is in the
polar of every vertex of & outside j;. Thus s;, 8, S, complete a quartet
with s,. Conversely: let s,, 8., s, complete a quartet with s, and let j,
jz, js be one of the 6 sets of planes joining them to the p on s,. Each
plane includes 3m; no two in the same j; are conjugate; nor are any two
in different j, since, were such a pair of m conjugate, it would follow
that two of the p on s, were. The 9m therefore give an & of which s, is
an axis. Since there are 40 guartets having s, as a member there are 2408
having s, as an axis,
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Kach triad of vertices of an ennead &, is shared by another & so that

the partitioning (of vertices of &) leads to &', &% &°. One of the partitio-
nings as 3* of those 6 vertices of &' that it does not share with &, has both
its two kernels on the axis s of &; linked to the original partitioning.

Thus each of &', &°, & leads, via s, to three & one of which is &;;

it appears that these are always the same &,, &, &. So one obtains a
closed set of 6 & falling into complementary triads; each member of either
triad shares 3 vertices with each member of the other and s serves as an
axis for all 6&. It is enough, by way of proving these facts, to give the
instance that derives from (16.1). The enneads are as follows, with their
triads of common vertices bracketed. The coordinate vector of the kernel
of a triad is the sum of those of its three members; all 6 & here displayed
have {16.2) for an axis. Hach ftriad is labelled by the script capital & &, or
@; triads with the same kernel have the same script label and are
distinguished one from an another ther by its suffix.

11 11 . ... .1

1.1 O T

1.1 1 AU T IS U R NS 111
1., .1 1 f.1 101 | .11 1. 111
1. 1 1 11. 111 11 . .1 111
1. 1. 11 1111 1 111 .11
1. 1 11 111 .1 | 111 1.1
A | 11 111 ..t | 1.. 111 11
o w e & & @ | e @ 8
11 11 11

1.1 R I 1.1

1., .11 111 |1 | 11 111 1.
.. 1.1 111 |1 1 11 111 .1
L., 11 . 111 |t 1 11 111 1
.. 111 .11 11 111 1 .. 1

.. 111 1.1 11 111 .1 1. 1
RS T U TS U T ERVO A U U N NS S N SRS T
a e 8 &% & e | & & &
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17. It is inevitable that Table I should have many features in common
with Table II of 9, for both tables relate to representations of the same
group as a group of projectivities in [7], although over different fields.
The dictionary given in § 18 of 6 extends to

Po €1 Y1 YaXPo C2 Y1 XY1 Vs @3 Y4 §4 Bs s Hig
pts j hw AxJHTS P

The relations (9: 57,58 between those spaces labelled 8 and y (the
suffix denoting the number of dimensions, and ¢, being used for B, y. as
these planes happen to be identical) accord with analogous relations here.
That §,, includes (1# 4 1)8,_. pvints to there being

4h in y, by

~

in H, 6H in T
and that 3, includes 2"y, _, points to there being

4s in h, 8h in yx, 16X in H, 32J in T;

all this is as it should be, allowing the 12k in yx to be partitioned. And
there are, too,

ds in h, Bk in A, 6X in J

in agreement with there being (n 4 2)y,_, in v,.

All points in Miss HAMILL'S geometry are analogues of p, so that the
top row of her table corresponds to the second of ours. The few apparent
discrepancies are easily explained away. That J contains 16 p and y, only
15 p, is because the 16 include the kernel of the section of & by J; the
same explanation reconciles P containing 64 p with m, containing only 63 p,.
The section of & by T-is a point cone projecting a non-singular quadric
in [4] and so having a kernel-generator; if the two p hereon are omitted
there remain 30 p which are analogues of the 30 p in ;.

Take now the 28 p in C, and recall, from §9 of 7, their distribution
among 8 heptagons; omit one heptagoh, and consider the remaining 21 p.
If one takes for O, with the coordinates and the heptagons as in §9 of 7,
the anit [5] and omits B, the remaining p are all those, and only those,
having 2 of their 7 coordinates non-gzero. This fits the duad notation (9, 57)
for the vertices of v, perfectly, and vertices of y, that are polar fo each
other correspond to p that are conjugate with respect to &.Thus,C includes
8 analogues of y;, onelfor each omitted heptagon, and that there are
4320 C accords with there being 34560 y,. Take next, from the 21 p in C
that are not vertices of b,, those 15 for which «,=0; they are analogues
of vertices of a y,. But they belong to two sets of 21 p that are analogues
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of vertices of a y;, for ome can supplement them by 6 verfices either of
b, or of H; (the common vertex of b, and b, not permitted). And so, just as
there are 7 vy, in y;, there are 7.8/2=28J in C.

As no analogues of m were available in 9 neither could there be any
of g, ¢; d, f; w, 9; D; for the p in such spaces, if existent at all, are
inadequate to span them. The presence of m in the finite space simplifies

, 1.
the description of the analogues of v,: that of y, consists of those 5 n+1)

(n - 2) p that lie one on each join of a pair of n+ 2 m no two of which are
copjugate, of » 4 2 m, that is, that belong to the same ennead. The eligible sim-
plexes ¥ thus afford the analogues of 8640y,. the enneads & those of 960y,. If
was remarked, at the first mention of vy, 1mm 9, that it counld “be visnalized as the
general prime section of a simplex in %+ 1, though it does not arise in that way
here”: but this, in the finite space, is precisely the way in which it does arise.
Miss HaMILL states (9, 60) that there are 135 §; and 960 y., and the clear
implication that 4 has permutation represeuntations of degrees 135 and 960
must be credited to her, as also must, to go no higher, representations of
degrees 120 and 1120. That there are as many §, as there are m is because
the D6p in any M are analogues of the vertices of a §;. For let M be the
unit prime. The p therein are those points either 2 or 6 of whose 8
coordinates are non-zero. If those having ;= x;=1. with the remaining
coordinates 0, and »;, =x,=0, with the rémaining coordinates 1, are
labelled (if) and (ji) one has the non-commuting duads (9, 58) that serve
to describe f; and the differing relations among its vertices.

Those of the B6p for which some definite @, is equal to one, and only
one, other coordinate are the 42 vertices of a §,, and so the 8 B¢ in this B,
are identified.

18. Whether it be the geometrical definition, or the mere number, of
any space of the long list displayed along the top of Table Il in 9 that one
considers it has its analogue in the finite geometry. Consider some of the
(5] ’s; the concordance of B85, m,, v; with 7T, S. C has already been verified,
but these are only 3 of 11 types of [5] occurring in 9. Let’a © b denote the
direct sum of two subspaces a and b, meaning thereby the space spanned
by skew spaces a, b every point of either of which is conjugate to every
point of the other. What, then, is h @ , and in how many ways “can it be
thus spanned? It is, being spanned by skew planes, a [B]; since the section
of @ by & is singular, with a point vertex, that by h@ h is singular, with
a line vertex; this implies @. Conversely, given @, take h,, any of the
24} therein; the polar g of G is joined to %, by a solid y, whose polar
¥z is the intersection of G and the polar H, of h,; the second plane h,
required to span G must lie in x, but must not meet ¢ in the same m
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as h, does. Thus there are 8 choices for h,, there being 4k in ¥, through
either of the two points other than s on g.

So G can be spanned as h® h in»; (24 X 8) =96 ways. Even so are

there 151200 =96 X 1575 spaces ¢, X ¢z in 9. Or take Ag /, a [D] meeting
© in a point cone and so a 7. Given T there are 96X therein; once one
of these is chosen f{ has to be the intersection of 7 with its polar X,
and indeed there are 362880 =96 X 3780 spaces y; X e, in 9. Then
s ®sat, which is also a T because it meets & in a point-cone, is the same
as x @ t. Given T there are 160 therein; once ome of these is chosen {
has to be the intersection of T with its polar »’, and there are 604800 =
160 X 3780 spaces v; X y1 X e, in 9. The section of & by a [0] Ads is
non-singular; it is a C wherein A and s are polars, and each C can be so
spanned in 56 ways. Just so are there 564320 =241920 spaces Y5}y, in 9.
And so forth.

19. When §, is a subgroup of 4 each of its conjugate classes is part
of a conjugate class of A. If the ennead of which &, is the stabiliser is &,
one can at once write down a matrix p belonging to any of these 30 classes
of A: its columns are the coordinate vectors of those 8 members of &, into
which the vertices of I,, ordered so that their coordinate vectors form the
unit matrix, are transformed.

A projectivity that permutes the members of &, among themselves is
the section by [7] of a projectivity in [8] that permutes the 9 vertices of a
simplex therein; one takes the [8] to be spanned by the vertices of %, with
a point X outside [7]. Any 9-rowed permutation matrix permutes the 9 X,
while leaving the unit point V in [8] unmoved; it imposes a projeetivity II
on the star of lines through V and so induces, in x;=0, one = on the
points of [7]. This permutes the members of &,, consisting as they do
of the vertices of I, together with the intersection U of VX, with [7]; all 9!
permutations of members of &, are so obtainable.

The dimension of the latent space A of II is (cf. 7, 595} less by 1 than
the number v of parts in {i}, the partition of 9 that corresponds fo the
cyclic decomposition of the permutation imposed by II; the [y — 2] in which
A meets xs =0 is latent for =n. Now it is, a priori, possible for a point a
to be latent for = but not for II; it may happen that II transposes a with
the third point on Va.

But scrutiny discloses that this- occurs when, and only when, every parf
of {A} is even; since this is impossible for any partition of an odd
number the contingency may here be disregarded. For if PA = 1A o}
consider the effect of I on a point @ in a3=0 that is presumed invariant
for = but not for II. Since Il is effected by a 9-rowed permutation matrix II*
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leaves a certain X, of the 9 coordinates of @& unchanged. Yet II itself
adds 1, and so II adds %,, to every coordinate of a: hence A, cannot be
odd, nor can any of %, ... Thus the latent space of any projectivity in
any subgroup &, of 4 has dimension v —2 where v is the number of cycles
in the permutation of members of the appropriate ennead.

20. Once the matrix p is written down the equations of the latent space
follow: its points are those whose coordinate vectors are latent for u. Thus
not only the dimension but also the category of the space in its relation
to © can be determined. Of the 30 instances a few suffice by way of
illustration; let them be concerned with the partitions

1234, 3%, 1*5, 1%23, 2?5, 9.

.1, N
1234 pn=1o | . . 1| ¢ . . 1

whose latent vectors fill the space
m1=w2=w3; m4=x5=w5:w7.
This is a plane f; the only p therein are

(.111...)and (.1111111).

.1

33 ==

—t
[ T - O e T

whose latent vectors are those having

Lo ==Xy =Lz, Xg= My =5, w6=w7=0.
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This is a line s.

145 p=10lo1e

-1 . . .. =

for which the invariant points satisfy @s==x,=ux;= ®;=2,. This is a
solid A, indeed X,X,X;U.
1

1}@..1

1423 p:l@l@l@!.
1

1

for which the invariant points are given by @;=w,, @;==as=a,. This is
a [4] J, containing X X, X,U.

2°5 woe="

[ e e S O

i
-,

having for invariant points those which satisfy

Lo == %1, Lo == L3, x4:w5:m6=w'{=0,

a line %.
A 1 l
I A . 1
. -
9 Here L1 T
ot M= 2 L s R A R R R S
1 X 1
1 2 1
1142
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as is seen by subtracting each row, multiplied by 2, from the one imme-
diately above it, beginning the operations from the bottom. Since {p+ 21| =0
has no root in F there is no invariant point.

21. Once equations determining the latent space are known the numbers
of m and p therein are known foo. These mere numbers do not always
identify the space; they fail to distinguish e from j, v from ¢, £ from J.
But these distinctions can be realised on scrutinising the distribution of the
points; in e, for example, the m are collinear whereas in j they are not.
And another criterion can be appealed to: the latent space for any
partition |A} necessarily includes spaces latent for any partitions to which
{Al is suobordinate. 1*23 gave J, not E, because it is subordinate to 1°5
whose latent space is A, and K does not include any A.

Likewise 1°24 and 1%2°3 are both subordinate to 134 whose latent
plane is f; hence their latent solids cannot be y and so, as including 8 p,
have to be ¢. And 12°4, subordinate to 14° with invariant g, has latent e,
not j; while 1°6 and 123°, subordinate to 1°7 and 3° respectively, have
latent j.

Proceeding on these lines one compiles Table II. This displays in its
different columns, reading from the left,

the partition determining the cycle type of the permutation of 9 members
of ap ennead.

the dimension of the latent space,
the number of invariant in,

the number of invariant p,

the category of the latent space,

the conjugate class of A to which the group operation belongs in Miss
Hamin’s enumeration.

The number of invariant p has to accord with that in Miss HamtLL
v-column (9, Table III), and here there is no discrepancy to explain away.
The period, and the category of the latent space, usually fix the class
numeral; in the few instances where they do not one can, to decide which
numeral to attach, mnote those already attached to classes whose members
are powers of fthose of the class in question. For example: 123% and 1%
both give classes whose operations have period 6, and points of a j invariant.
Buat the former class consists of operations whose squares are in
X(1%3%) and cubes in II(1"2), and so is XVII, whereas the latter, since its
operations have their squares in X and their cobes in V(1%2%), is XXII.

A sign 4- is affixed to partitions having an odd number of parts to

Annali di Matematica 4
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indicate that the corresponding classes of operations are in A4+. The
dimension of the latent space of any operation in Table II is odd or even
with the number of parts in the partition, and so according as the operation
is in A% or in its coset. This is true of all operations in A, whether
members of the 30 classes listed in Table II or not: any operation whose
latent space has odd dimension is in 4%, any whose latent space has even
dimension is in the coset.

TABLE 1II
M P o
19 - 7 135 120 I
12 6 63 64 P 1T
183 4 5) 27 36 S v
1°4 4 i1 20 H VI
S 152% - 5 31 32 T 111
1423 4 15 16 J VI
1*5 - 3 5) 10 X XI1
186 2 3 4 i XXII
1824 - 3 7 8 d X1
1328 4 15 16 B vV
1332 3 9 6 % X
1225 2 3 4 J XX
12223 |- 3 7 8 $ X
1234 2 5 2 4 XIX
17 - 1 2 1 c XXXIV
18 0 1 — i) XLVIIT
14* 4 1 3 — g XXVIII
1224 2 3 4 e XVIII
126 + 1 1 2 ! XXXII11
1232 2 3 4 J XVII
135 4~ 1 2 1 ¢ XXX
12¢ 3 7 8 ' VIII
45 0 1 — m XLIV
3 4 1 — 3 s XXXVIIII
36 0 — 1 P y
234 - 1 1 2 ¢ XXVII
217 0 — 1 P XLV
225 - 1 1 2 l XXIX
283 2 3 4 e XVI
9 4 —_ — — —_ LVIIE
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11
Operations of the orthogonal group not belonging to any symmetric snbgroup,
The gromps A..

22. Certain spaces do not occur in the penultimate column of Table IT;
the absence of some is inevitable. In order to see whether M can figure
as a latent space take the unit prime (6.2). Since every point having 2
non-zero coordinates is invariant

"a+1 o a a a a a a"l
b b4+1 b b6 b b b Db \

c cct+lec ¢ ¢ ¢ ¢

d d dd+1d d4d d d
m= e e e eet+1le e e |
f rfr r fr+1 7 f |

g g 9 9 g9 99+l yg

- h h h h h h hhi1

where, to forestall linear dependence of the rows,
Za=atbtectdtet+f+g+h=0
In order that each column be the coordinate vector of an
Zab+Za=a=b=c=d=e=f=g=nh,

so that, there being an even number of products in the sum, Zab=0. Thus
cannot belong t0 A unless p =1, and then M does not exhaust the inva-
riant points. Nor can a [B] C ever be latent for an operation of 4; its
polar ¢ involves a single p which would be invariant yet is not in C.

Certain spaces, then, never occur as latent spaces and are perforce
absent from Table II. But when a space is presentin Table II this in no way
suggests that there are not other operations of A4,Joutside its subgroups §,,
tor which it is latent too. Other conjugate classes in A than those 30 which
have members in these &, are encountered by pursuing this matter.

When a projectivity has every point of &, =, invariant its matrix must
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have the form

a-+-1 a

b b+1

c ¢c 1

a d 1

m= e 1
f 1
g . . . . 1 .
- h L. . . .1

wherein, to forestall singularity, o =0. Then, as above,
(22.1) Sab 4+ Yo = a =0.

Now, as p belongs to 4, the sum of any two of its last 6 columns is, as
coordinate vector of a point, conjugate to both the first and second columns;
hence

so that (22.1) reduces to ab+e*=a =050, and so a=0.

There are, then, two operations of 4 leaving every point in @, =2,
invariant; they are I (@ = b==0) and the matrix (@ =b=1) of the projection
cenfred at the pole of x, = ;.

The only operation of A for which a [6] P is latent is the projection
centred at it pole.

23. Consider, now, operations of 4 for which all points of some D are
invariant. Take, as in (10.2), D fo be

Ko+ X1 == X2 + X3 =Xy | X5 = X6 + X1

it includes the solid y whose equafions are
(23.1) Hp =10y, Hp=1Lg, La== X5, Lg= Xy,

and those projectivities for which every point of y is invariant have
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maftrices
F a1l a a 6 @ @, 0 Gy
b, by-+10b, b, b, b. b, b,
6, € CF1 ¢ ¢ € 6. ¢
23.2) di d dydy-1ds doe doe d

e, e e e e--1 e e e
fl fl f2 fﬂ f3 f3+1 f4 f4

g G g2 = G g gt+1 g,
- hy hy hy hy hy he  hy By 1 _

Here, to forestall singularity,
0&1=bl, szdz, 33:f3, g4:h4.

Next, as the sum of any two columns has o be conjugate to each of
the remaining six, we find, adding the first and second, then the third and
fourth, and so on, that

azzbg, a3:bg, a4:b4; Cl=d1, 03:d37 C4=d4;
a="l, =, a=[; G=h, ga=h, go=hs.

One has also to prevent any two columns from being conjugate to each
other; the second and third would be unless a,=yc¢,, and other pairings
show that (23.2) must be symmetric. Lastly, as the point whose coordinates
fill any one column is to lie on &,

=0+ e, g2=a:4¢€, g=a,+ c;.

The upshot is that any projectivity in A4 for which every point of
(23.1) is invariant has a matrix of the form

T a1 a h h g g g+h g-+h "
a a+1 h h g g g+h g+4n
h h b+1 b f f h4+7f h4+f
I h b b1 f f hid-f h-4f
g g f f e¢+1 ¢ f4+g f+yg
g g f f ¢ c+1f+g f+g

g+h g+h ht+-fh+f f+gf+g d+1 4
-g+h g+h h+fh+f[rgf+g d d+1 _

(23.3)
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The group property, expressible as

o b c dy /o bV ¢ d at+a b+V ¢+ d+d)
wo 20 |
f ah g W f+7r g+9 h+¥W

of such matrices is clear on multiplying them.

But it is, as yet, only the points of y whose invariance has been
insisted on. In order to ensure that every point of D is invariant it is
necessary and sufficient to ensure the invariance of any one point of D
outside v, say of (1.1.1-1.). This demands ¢ =b=c=d=0, and
(23.3) becomes

-1 . h h g g g+h g+h ~

t h h g g g+h g+h

h h 1 . i f ht+f h4-f

8.5 h h . 1 f f h+f ht+f
g9 g f f 1 f+g F+g

9 g f f . 1 f4+g9 F+yg

g+nh g+hb b+f h+f f+g F+g 1

-9+h g+h h+f h+f f+9 F+9 . 1 -

Thus there are 8 projectivities in A for which every point of D is
invariant. They include (f=g=h =0) the identity; the latent spaces of
the others are the 7G through D, and no D can itself be latent for any
operation of 4. The 7@ through (23.1), and the matrices (23.5) associated
with them, are as follows.

Lo s =Xy L= 24+ X5 : f=g=h=1.
Xy Xy == Xy + X5 = Xc + %, : g=h=0, f=1.
Ly Xy = Xy 25 = X6+ X7 : h=f=0 g=1
Ly Xy = @5 F g = X6 + X : f=g=0, h=1.
X+ By == Xz Xg, ®a - X5 = T k7 : f=g=1 h=0.
Lo + 0y = X+ X5, Ko X3 =25+ X7 h=f=1, g=
By By =X+ X7, X2+ B3 = Tu %5 g=h=1, =0

24. This discussion has shown not only that no vperation of 4 has D as
its latent space but also that there is one, and only one, operation whose
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latent space is a given @G. The 157H such operations constitute class XIII;
note the entry 24, on this level, under v in Table III of 9; there are,
indeed. 24 p in (. Such operations (over any field) were used by Tirs: he
names them glissements (12, 39; v, d there are g, G here), so that we
call them glides.

The action of a glide is easily described. Every point in G is unmoved.
Any point outside G lies in one, and only one, of the tangent primes to &
at the three m on the polar of G; such a point is transposed with the
remaining point on the line joning it to . Verification, using (28.5) with,
say, [=g==h =1, is immediate. Their actions show two glides to be
permutable whenever their axes ¢, g. intersect; should their plane be d
permutability is a consequence of (23.4). Should it be f, and m the
intersection of the axes, their polars G,, G, lie in the polar M of m, and
the other [5] in M through their intersection F is the polar T of the other
line through m in f. The action of both glides on any point W that lies
in T but not in F is fo. transpose it with the other point on m W; hence,
when the two glides act successively W is invariant, and that whatever the
order of succession. So, since both products leave every point of 7T inva-
riant, they are both the same as the involution for which T is latent
because, as will be seen immediately, there are only four operations in 4
for which every point of T' is invariant; two of these are projections which,
belonging to the coset of A¥*, cannot either of them be a product of two
glides,

%5. Table II includes 4 types of involution, and the glides farnish a
a fifth. The operations II are the 120 projections J, already encountered in § 8.

Operations III are, as the partition 1°2° shows, products of pairs of
commuting J. The discussion in § 25 of 6 proves that &,, J, commute if,
and only if, the join of their centres is a ¢ whose polar T is then the
Jatent space of J,dy=,J,

Conversely: when T is given its polar contains two p, say p,and p,; the
product of those projections centred at p, and p, is an involution whose
latent space is T. There are 3780 such involutions in 4. Any operation
for which T is latent leaves every point of any of the 15 y in T invariant,
and (23.3) serves to show that 7 is latent for one involution.

For, taking T to be xy,=—=x,, x2=x; s0 that it contains (23.1), the
only matrices (23.3) for which all its points are invariant have

c::d:f::g:h:@;

these answer fto I, &), 3,, .3, (this latter having a =0b=1) where J,
and J, are those projections centred on the polar ¢ of T.
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When every pair of a set of projections commute the join of every
pair of their centres is a £. Any 3 such centres span an e so that, as each
e includes®4 sets of 3 non-collinear p, there are 4x9450=—237800 involutions
in class V, 1%2° Dbeing the corresponding partition. The product of 4 projec-
tions whose centres are =all in the same e is, in fact. a glide. Take, for
example, the projections

(25.1) Mo €> Ly, Ly<€—> L3, Xy <> Xy

their centres

{(r1...... o (.11, | 11..)
span
(25.2) o~ X1 =X+ y=s + s =g =2, =0

wherein the fourth p is (1 1 1 11 1 ... The matrix of the projection
centred here is

| 111 11 -
! 1111
11 111
} 111 11
(22.3) {111 .1 ;
111 1 1
1
1.

when it is multiplied by the matrices for (25,1) so that its first and second,
third and fourth, fifth and sixth rows are transposed the product is (23.5)
with

the matrix for the glide associated with
R S Iy A S I 1

This is the polar of the g in (2b.2). and each of the 6 ¢ in any G must
give, as the product of the 4 projections centred in any one of them, the
same glide.

There are also sets of mutually commuting ¢J Wwhose centres are not
coplanar but vertices of a tetrahedron; since all 6 edges of such a tetrahedron
are ¢ its vertices span a y. There are, in v, 8.7.6.4/1.2.3.4 = b6 tetrahedra
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whose vertices are all p; they fall into 28 complementary pairs, each pair
exhausting, by its vertices, the 8 p in yv. The product of the 8 projections
centred in y (the order of factors, since they commute, being immaterial) is
identity. Take, for example, vy to be (23.1) wherein the vertices of one
tetrahedron are

and of its complement
(.1111r1y @¢1r..1111, ®1r11..110, ®11111...
The matrices of the projections centred at the former have product
D A | | .1
) o

(25.4) 1. . 1 . .

The matrices of the projections centred at the latter are (25.3) and -its
analogues; in fact they are those instances of (23.3) with

5]

a,:g._—_h:(), b:c:d::f:l, b:h:f:o, C = d:a:g-_—.l;

so that (23.4) shows their produet too to be (25.4). Thus 28 different products
arise from tetrahedra of p in y, and class VIII consists ef 28 X 2025 = 56700
involutions. Notice, incidentally, that while each e in vy provides a glide the
two glides so arising from e whose line g of intersection lies in the d in y
are the same, for both these e lie, with v. in the polar @ of this g.

The 8 projections centred in vy all commute with one another, and this
is the maximum number that can do so. Since their product is idenfity
they form an elementary abelian 2-group of order’ 27; when vy is (23.1) these
2" operations have matrices (23.3) which all, as (23.4) shows, have period 2
except for the unit matrix. They consist of

Identity;
8 projections, one for each p in y;
28 involutions of class III, one for each ¢ in v;

56 involutions of class V, four for each e in y;

28 involutions of class VIII, one for each pair of complementary
tetrahedra with vertices among the p in y;

7 glides, one for each pair of e through the same g in vy.

Annali di Matematica 5
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Since all these projectivities leave every point of y invariant they form
a normal subgroup of the stabiliser of y in A. The order of the stabiliser is

27.3%.5%.7/2025 = 2%.3.7;

)

its quotient group by the normal subgroup of order 27 has order
20.3.7 = 1344.

Its members, cosets of the elementary abelian group in the stabiliser,
impose a group of 1344 permutations on the 8 p in y (4 § 19).

26. Were every point of each of two polar spaces S, s to be invariang
under a projectivity every point of [7], since it completes a transversal of §
and s, would be. Thus two differnt projectivities leaving every point of §
invariant can never impose the same permutation on the 3 points of s. Now
the projections &, J,, Js whose centres p,, p,, p, are on s all leave every
point of § invariant and, simultaneously, impose the fhree possible transpo-
sitions on the p;; they therefore, as any two of them generate the &, on
these p;, generate the whole of Ag- the subgroup of operations of 4 for
which every point of S is invariant. The only spaces confaining § are its
joins P; to the p;; these are latent one for each J; and S is latent for the
pair of inverse operations of period 3 that are products of pairs of these
(non-commutative) &J; but not for any other operations of A.

This corresponds to the sole appearance of § in Table 1I, and as there
are 1120 § there are 224 ) operations in class LV.

R7. Were every point of each of two polar space J, j to be invariant
under a projectivity so would every point of their join 7, be; tor through
any point of P, exterior fo both J and j there passes a plane meeting them
both in lines through their intersection p,. This p, is the kernel of the
sections of & by both J and j, the latter section consisting of non-collinear
points m,. m,, my. If different operations of 4 impose the same projectivity
in J and the same projectivity in j it can only be because one is a product
of the other and the projection dJ, centred at p,.

A projectivity in j is determined by its action on any three non-collinear
points in j. When a projectivity belongs to 4 it permutes i, m,, m, and the
transpositions of pairs of these are imposed by J,, d., J; — the projections
whose centres p,, Ds, ps lie respectively on s, #gm,, #n,m,. These
three projections all leave every point of J invariant, and any operaiion
of A that does so must be generated by (any two of) them and &,. Thus
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Ay is found on adjoining J, to the §; that includes 3, J,. J5; J, commutes
with each J, and 4, is a dihedral group D.,. The spaces which contain J,
nawmely

[7]7 P07 P17 PZ' P3; Tl; TZ: T

3
and § are respectively latent for
IJ 301 ‘Jl’ gZ: 337 3031, 3051; 50333

and a pair of inverse operations of period 3. There remain in D,, a pair
of inverse operations of period 6; they have J for their latent space, and
no other operation of A can do so. This accords with the sole appearance
of J in Table II, and as there are 40320 J there are 80640 operations
in class VL

28. When one considers H with a view to identifying those operations
of A for which itis latent it appears, since H spans an M with its polar h, that
no two operations in 4 can impose the same projectivity in H if they impose
the same projectivity in k. Now any operation in 4 permutes the four s
in 7, and any projectivity in & is determined when its action on this quadrilateral
of s is known. The six possible transpositions of pairs of sides of this
quadrilateral are imposed by fthe projections centred at its six vertices -
projections all of which leave every point of H invariant.

Hence Ay is and,. The spaces containing H afford those latent for all
operations in this 8, save the six of period 4: these, and only these, have H
for their latent space, and the 7560 H account thereby for the 45360 opera-
tions of class VIIL

29. D, as was seen in §23, does not figure as a latent space, so that
the only [4] 's still to be considered are E and F. E is quickly dismissed,
but F will be seen to furnish, as did G, operations not represented in
Table IL

The set Ag of operations for which every point of some E is invariant
is an elementary abelian 2-group - common to the three subgroups 4, each
elementary abelian and of order 2, that are associated one with each v
in E, Take E to be

Lo =21, XLp==®g, Ly— X5

so that one y therein is given by (23.1); (23.3) only leaves every point of E
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a, b, . O form an ele
rff) |

mentary abelian group of order 2*; the projections therein are cenfred at
the 4 p in the polar e of E - projections, it will be recalled, that mutually
commute and whose product is a glide. E is latent for the produet of any
three of them; indeed the sole appearence of £ in Table II corresponds to
the partition 1°2°. Since there are 9450 E there are 37800 members of
class V.

invariant when f—=g="Fh and d=0. The matrices (

30. Does A4 include operations whose latent space is a given [4]F? The
subgroup Ag'; of operations of A4 for which all points of F are invariant
includes

identity
two projections J,, J, whose latent spaces are the two P through F,

two glides &,, G, whose latent spaces are the two (G through F, and

the involution &J,= J,d;= &G, = G.8: whose latent space is the
T fthrough F.

This set, of 6 operations none of which has period 3, cannot be a group;
yet no other space through F is latent for any operation of 4 because neither
M nor C can ever be. It is then certain that, despife its non-occurrence
in Table II, operations having F' latent do occur in 4. Indeed the above 6
operations belong to a dihedral group 9,, and it is the pair of inverse
operations of period 4 in 9, that have F latent; they belong to class XXIII
which, as there are 37800 F, has 76600 members.

Take, as in (14.1), G to be

Do+ X1 = Bz -+ Xz = Xs -+ 5.
The plane joining its polar g to p is an f provided that p is conjugate

to one of the m on g but to neither of the other two; if, for example, p
satisfies

mo+x1=w2—|—w3:m4+m5—{—1.
So one may take (1 . 1 ..... ) for p, when F is

{80.1) Xp ==Xz, Xy ==dg, Lo+ L1 ==Ls+ 5.

The projection centred at p is o, <—> @,; When its matrix premultiplies
that of the glide having G latent the product is (23.5) with f=g=h=1 and
its first and third rows transposed. The latent column vectors of this
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matrix are indeed found to consist of those satisfving (30.1), and of no
others, The other projection for which every point of (30.1) is invariant
is x, <> wz; the G latent for the other glide is

X+ 2, = 2 + Xy =4 + X5 .

31. When polar spaces u, # are skew the group of operations of A4 for
which every point of # is invariant is the same as the group of projectivities
induced by 4 in w'; the direct produect of fthe groups so associated omne
with % and one with #' is a subgroup of 4, as it is too when u, ' infersect
at m and span M. The simplest instance occurs when, as in § 26, u, ' are
S, s. Those operations for which every point of S is invariant compose
an &; and impose all 3! permutations on the p on s. Those operations for
which every point of s is invariant induce in S the 51840 operations of a
‘“cubic surface” group &, and 4 has 1120 subgroups 8; X §. Its SyLow
3-groups are each the direct product of §; and a Syrow 3-group of &. One
may note here a property of the operations in class IV, verified immediately
by using the cyeclic permutation (wgm,®,) :

It a point lies neither in the latent S nor on its polar s the plane
spanned by it and those two points which are its transforms wunder the
operation and its square passes through s and meets S.

32. Take now a polar pair of solids %, »'; they meet & in hyperboloids
H, I, each having a group of 72 automorphisms with the direct product
83 X 85 as subgroup of index 2. Those automorphisms in the coset of
S: X 8; transpose the reguli; those in 8; X &, itself do not, and each factor
of this direct product imposes all 3! permutations on the 3 members of the
appropriate regulus.

Since = lies in

6P, 6G, 9T, 28, 9F, 6J

the operations for which all its points are invariant include
Identity, 6 projections, 6 glides, 9 involutions of class III,
4 operations of class 1V, 18 of class XXTII, 12 of class VI.

The projections are those centred on the two DANDELIN lines s, s in
«" and ftranspose the reguli on . For the P whose points are invariant
under one of the projections J meets % in a plane j through, say, s and
meets }' in 3 points which are all invariant and which constitute a conic
whose kernel k£ is the centre of J and is the intersection of j with s'. The
generators of ¥’ through any one of these 3 points are transposed. For, were
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they not transposed, the two other points on either would be, whereas their
join does mnot pass through % All 36 members of the coset of &, X &,
are thus accounted for, namely by 6 projections, 18 operations of class
XXIII and 12 of class VL

The operations whose latent space is » belong therefore to § X &,, and
there do remain, as yet unrecorded in this direct produect,

4 operations of period 3 and 12 of period 6.

The former are those of class X recorded in Table II; there are 268800
such operations in 4. The latter belong to a class of 806400 operations and
impose permutations of periods 2 and 3 on the respective reguli of J{'. Their
squares impose the identity on one regulus, a permutation of period 3 on
the other. Now operations of class IV cannot do this, since they permute
the 9 points of ¥’ in 3 ecycles of 3, the plane of each cycle containing
either s or §; hence the squares of the new operations are in class X,
Their cubes impose identity on one regulus and a transposition on the other
and so leave invariant, with every point of a ¢ in this other regulus, the
whole G joining g to x; they are glides. All these facts indicate class XXXIX.

83. The section of & by any A is an ‘ellipsoid” - over F a set of b
points, no 4 coplanar - whose group of automorphisms is an 8;. Since A
lies in

10P, 15T, 108, 5H, 10J
the group of projectivities for which every point of A is invariant, and
which impose automorphisms on the ellipsoid in the polar A" of A, includes

identity, 10 projections, 15 involutions of class III and pairs of
inverse operations,

10 of period 3, 15 of period 4, 10 of period 6.

These are the exact numbers and periods of operations in &;, Wwhich is
completed by 24 operations of period 5. These are in class XII, which thus
has 24 X 24192 = 580608 members. And 4 has 12096 subgroups &; X &s.

34. Take now a solid y. Since it lies in
12P, 1G, 18T, 168, 3E, 12H
the operations of A4 for which every point of y is invariant include

identity, 12 projections, 1 glide, 18 involutions of clars III

and further operations: 32 in class IV, 12 in class V, 72 in class VIL
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Of these 14+ 14 18+ 32 are in 4™, the other 1212 4 72 outside
A~+; hence there must be 96 — 52 =44 more operations of A+ that leave
every point of y, but no further poinf, invariant. That there are precisely
this number, that the subgroup 4, so associated with x has order 192, can
algso be shown by giving explicit matrix forms for them.

Take x to be spanned by

B41) (1....... S U SO boGe11.. ), (111,

a matrix for which these are all latent column vectors must have the form

b+1 b & b B B, B
b ¢+1 ¢ ¢ C, C, Cs
d d d+1 d D, D, D,

1 e a o e 4 A 4
|
{
{

This has fo belong to 4. By requiring that the sum of any two of the

second, third, fourth and fifth columns be conjugate to every other column
one finds immediately

b=c=d=¢, B;=0,=D;=E;

for ¢ =1, 2, 3 and then, prohibiting the first column from being conjugate
fo any other,

Next, since the columns are coordinate vectors of m,
a+b+f+g+fg=0 A4;,=FG,

and then, to prevent any of the last three columns being conjugate to the
earlier ones,

b+ B.=(f+F) g+ G
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The matrix is therefore

-1 a a a a F.G, F,G, .G, -
b1 b b b B, B, B
b b+1 b b B, B, B,
b b b1 b B
549 + X B, B,
b b b b4 1 B, B, B,
f f f / Fy F, F,
g g g g & (. G,
— . f4+9 49 I+g [+9 Fit- G+ 1 Fot G+ 1 Fod Go+1 —
wherein

a=b-+4f4+g+fg, Bi=b+(f+ F) (g + G

The only further conditions necessary are those which prevent any two
of the last three columns being conjugate :

(343) o+ Fot+ 1) (Ge4 Go+ )= (Fo+ Fi+ 1) (Ge+ G+ 1) =
=(Fi+ Fo+ 1) (Gi+ G+ 1) =0

whieh imply, on addition,

F. F, F,
(34.4) G, G Gy | =1
1 1 1

Not only so; (34.4) implies, conversely, all of (34.3). For since the
determinant is mnot zero the first two columns cannot be identical; hence
at least one of

B4+ F, G4 G,

is 1 and the last equation of (34.3) holds; so, likewise, do the others.
There are 24 choices for Fj;, G; that conform to (34.4); if

(Fy, Fa, Fyj and (G,, G., G5} are regarded as points in the 7-point plane

the first can be any of the 6 other than the unit point, the second any of

the 4 not on the join of the unit point to the first. And as each of b, f, g

can be either O or 1 the number of matrices is 2°.24 =192, This, then, is

the order of 4,.
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The glide is solitary among the 192 operations. Since the g in yx joins
the first and last of the points (34.1} its polar is

X1+ X2+ w5 2y = 25 + 2 + 2, =0.

The glide is determined by stipulating that 2 points of this # whose join is skew
to y are invariant; these could be any 2 of those points whose only non-
zero coordinates are two of x5, xs, 2;, points that are not invariant unless

f=g=F=F=0G=_=0 F,=G=1

The resulting matrices include, for 6 =0, the unit matrix; the glide
therefore has b==1. It is found to commute with all 192 matrices, and so
is in the centre of 4,.

This group of order 192, with a centre of order 2, is the one encoun-
tered by ofther writers (2, 230; 13, 149) and it was, more recently, found as
a group of quaternary substitutions over F (4 § 23). It includes 12 operations
of period 4 all having the glide for their square. Any such operation must
satisfy, among many other conditions,

PGy + Gy 4 gl (s + FoGg) = 1,

so that
F Gy, F.(G,, F.(G,

cannot all be equal and f, g cannot both be zero. 1t is found that every
requisite condition holds for each of the following sets of 4 matrices (b being
free to be either 0 or 1 in each instance).

(@) Fi=G, =0, Fo=Mh=F=006=1=f+yg
(@) Fo=0=F,=0, Fi=0Gi= Gy=1=1{.
(#8) Fi=G1=G;, =0, F,=G,=Fy;=1=yg.
There is such a set of 12 operations associated with each of the 3150 ¥,
and the whole aggregate of 37800 constitutes class XV.
These are not the only members of A, to have x for their latent space;
the same holds for 32 operations of period 6, each of which has one of the

32 operations of period 3 for its square. Now the square of (34.2) has, for
its bottom right-hand corner of elemenis. the square of the corresponding

Annali di Matematica 6
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block in (84.2) for, on partitioning its 3 rows and 8 columns as 5+ 3,
the additional contribution to this block in the square of (34.2) is seen
to be {over F) the zero matrix. This fact is relevant because one §
through ¥ is @ = ®; == a;, and those operations for which it is latent have
matrices

lolplelele |. . 1

{34.5) and

loloplolele |1

1

Any matrices (34.2) of which one of (34.5) is the square may have

either

F3:=G1:]9 F1:F2=G2=G3:O
or

F2:G3=1, F1:F3:G1:G2=O

and it must also happen that f=g=0. Were b=0 too (34.2) would
reduce to one of (34.5) which, of course, are squares of each other; but if
b=1 the resnlting matrix has period 6 and y for latent space. As each of
the 82 operations of class IV has one such square root the whole group of
order 192 is exhausted. These 32 operations of period 6 belong to class XIV,
with a membership of 100800.

Through y pass 3 E; these undergo permutations under A, and those
operations of 4, for which one of these E is stabilised constitute a Syrow
subgroup of order 64 When yx is spanned by (34.1) the E in question are

2w+, =2=0, x;=2s;
0+ X+ s+ X =2=0, x; =25
By FwsF X =2,=0, X =x.
The corresponding stabilisers occur for
(a) Fi1l=F,=F, G4 3, =1;
by =G, +1=0G;, Fi- Fy=1;
(c) i=F,+1, Gi=0G+1, Fot G=F + Gh+1.
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They intersect in the group, of order 32, given by
F1+1=F2=F3, G1=G2+1=G3;

this includes those 12 operations of period 4 for which y is latent, and it
is a normal subgroup of 4,.

35. In order to find operations whose latenf space is a solid w it is
more expeditious to use (10.4}) and find those automorphisms of

Y1Z1 "I— YzZz + Y3Z3 + Y4Z4

for which every point of
Yi =Y, =Y, =Y,=0

is invariant. They must, supposing the coordinates ranged in the order

Y1> yz; YS; Y47 Zl; Z2> Z37 Z4;

4 .

B I
where A4, B, I are square with 4 rows; but the quadratic form is unaltered
only when

have matrices

c b o
c a b
b a ¢
a b

Since

[I } [I } { I .
B, I)\B, I |B.+B, I
every such operation that is not itself identity has period 2; 4, is an
elementary abelian 2-group whic , since each of a, b, ¢, &, ¥/, ¢’ can be 0
or 1, has order 64, It includes 35 glides, one for each G through w; there

remain 28 involations for which w is the latent space and so, with 28 for
each of 270 w, one finds the 7560 involutions of class LXI.
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{I } I .
+
B I N §
is the rank of B, and so is 4 or 2 according as aa’ --bb' +c¢' is 1 or O;

the invariant points fill a space of b or 3 dimensions to correspond, and the
numbers, 35 and 28, are as they should be (4, 325).

The rank of

36. The canonical form (10.4) is the more expeditious also in yielding
information about operations having ¢ for their latent space. For

Y1:Y2:Y3=Z3=O

is such a solid, and the general form of a matrix which leaves every point
therein invariant can be written down; four of its columns are empty save
for units on the main diagonal. But {10.4) is not automorphic under the
resulting projectivity unless the matrix has one of the two following aspects,
in both of which e--f=ad -+ bc:

-4 _ - _
1 1
o b 1 a b 1
1 N

ac e a . 1 . ¢ . =P ac e ¢ . 1 o = P
fobd b . . 1 d . fbda a . . 1 b

c da 1t . . . . . ¢ d 1
S S

Now the rank of p,- I cannot, because of the restriction e+ f=ad -} b,
exceed 3; hence all 2° matrices p, have their latent space of dimension
at least 4; this space includes ¢, but ¢ is not the whole of it. The rank
of p,- I, on the other hand, is 4 unless ad -+ bc=0. Hence if ad+4-bc=1
the latent space of p, has dimension 3 and so is ¢ itself. The number of
solutions @, b, ¢, d of ad - bc=1 is 6 (recall that there are 6 poinfs not
lying on a hyperboloid) and since there remains a choice of e and f subject
to e-+ f =1 there are 12 operations for which ¢ is latent.

The square of p, depends only on ad + be; if ad 4 bc =0, wi=1I; but if

ad -+ bc=1,
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v, has period 4 and p3 imposes the transformation
i Zi Y, Zye>Z,+ Y,

all other coordinates being unchanged. Thus all 12 operations for which o
is latent have the same square, namely the glide associated with the polar,
here Y, =Y, =0, of the line of intersection of the two planes in which o
meets &. As there are 28350 o there is a class of 340200 conjugate opera-
tions in A4; it is numbered XXXVI in 9.

37. The only type of solid yet to be considered is ¢; through it pass
8P; 3G, 16T, 45; 3E, 1H, 3F, 8J
that are latent for operations of 4. These account for
84+ 124646 4 16 =48
members of the coset of 4+, but only for
1434164 8=28

members of A+ itself (identity included). Hence ¢ is latent for 20 members
of A* and 4, has order 96.

It ¢, " are polar spaces A, X 4, is a subgroup of 4, and there are
37800 such subgroups. ¢’ is invariant as a whole under A4,, and each ot
the 3g therein is invariant for 32 operations of Ay; these are its SyLow
2-groups and their intersection, fur which all g in ¢’ are invariant, is normal
in 4. of order 16, and will be seen to be elementary abelian.

In 4’ are three concurrent g:
G = MBGING, gy = Ny, (5 = TN,

each pair spans a plane wherein a third line passes through . these lines
being

L=mpip,, t= np,p,, fts= mpsp;
where #; is coplanar with the two g other than ¢,. The seventh line through

m in ' is ¢ =mpep;. Denote by J;, J; the projections centred at p;, i
any two J with the same suffix commute, and both &, and J; commute
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with all the ofhers. Then every gi is invariant nunder

JoJ5 dds &2, J s
(37.1) %

I Jododidy ooy JodoTadly

as well as under

Jo Jodhds Jod2 5 Jod 3
(37.2) %

Jo Jod: Jo23 JoJas

in all 16 operations and all, save I, of period 2. They exhaust those members
of 4, for which g, g., g. are all invariant and form an elementary abelian
2-group, mormal in 4,: (37.1) belong to 4+, (37.2) to the coset. Each S, of
A, consists of (37.1), (37.2) and 16 further operations of which 8 are in 4+;
the aggregate of 32 operations composed of 8 in each S, supplementing
(37.1) does not, since each of its constituents has a power of 2 for its period,
include any of those 8, among the 28 operations listed above, of period 3.
It then ineludes 32 — 20 =12 new operations, and these belong to class
X1 (see Table IT) which therefore has 907200 members. There now remain
20 — 12 =8 further operations for which ¢ is latent; they belong to class
IX which has 604800 members.

The 8. of operations for which every point of the H through ¢ is inva-
riant is, since H is unique, a normal subgroup of A4,. It intersects the
elementary abelian normal subgroup in the 4 group, consisting of identity
and three glides, that occupies the lower row in (37.1).

38. The detection, of operations with a given latent space o, by catalo-
ouing operations for which every point of o is invariant and discarding
those, all known from antecedent enquiries, whose latent spaces strictly
include o is now a matter of routine. The operations in question belong
wholly to A* or to its coset according as the dimension of o is odd or
even - and that whether or not o figures in the penultimate column of
Table II. If o has even dimension the discarded operations account for the
whole intersection A+ of A4+ with 4,, and the order of A, is double the
number of discards from A4+. The other discards are in the coset of 4+
and they fall short of half the order of 4, by the number of operations for
which o is latent. Some, possibly all. of this deficiency may be made up by
entries in Table II; when it is not all so made up the residue consists of
operations in classes not encountered heretofore.

Take for ¢ a plane d. Operations of A+ for which its points are all



W. L. Evce: An orthogonal group of order 2+3-85.5%.7 47

invariant have latent spaces of odd dimension that contain d; these are, in
addition to the whole [7],

63G, 28T: 2w, 28y, 1y

so that the number of operations of A+ for which every point of d is
invariant is

14 63 4 28 4 56 + 336 4 28 = 512

and A,; has order 1024. But the spaces of even dimension containing
d are

8P; 14E, 112F

which yield only 8 - 56 -+ 224 = 288 operations in the coset. Hence d is
the latent space of D512 — 288 —= 224 operations. As there are 2025 d one
thus accounts for 453600 operations; their period is a power of 2, they are
in the coset, have not been previously encountered, and are devoid of inva-
riant p; they constitute class LIIIL.

A4 permutes the 8 p in the y through d. Those 128 operations (see § 23)
for which every point of y is invarianf form a normal subgroup of 4,4, the
quotient group of order 8 being elementary abelian (4, 336}

39. The analogous facts for e are that it lies in
19G, 72T, 16S; 3y, 39, 1x. 24¢
so that all its points are invariant for
14+19 472 + 32 4 84 4 36 4 44 + 480 =768
operations of A47%; whereas, lying as it does in

16P; 40FE, 12H, 36F, 64J
there occur only
16 4 160 4 72 -+ 72 + 128 = 448

operations of the coset. Hence there are 320 operations, all of them in the
cosef, having e for their latent space. They include, according to Table II,
members of classes XVI and XVIIIL

Class XVIII consists, says the Table, of operations that permute the
vertices of some ennead according to the partition 1224. It the ennead is &,
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one such operation leaves U unmoved and imposes the permutation

(XoX5) (XX, (XXX Xo) ;
its latent e is

o ==, Ly== s, X4=Ls=70x,; =&y,
and this same e is latent for six permutations, any cycliec permutation of
Xy, X5, Xy, Xy
being permissible. To span e take

the third point on X,X,,
the third point on X, X,

the point (cf. § 15) supplementary to X,, X;, Xs, X;.

Snppose then that a plane e is given, and let wpp’ be the g therein.
Let & be any of the 64 enneads of which m is a vertex; its ofher vertices
are automatically separated (see § 15) into tetrads t, ' supplemented respec-
tively by wu, p'. There is a second ennead &, sharing m but no other vertex
with 6, whose other vertices are likewise separated into tetrads t,, ¢/ supple-
mented by p, p'. If & is & and m is U then & counld include (15.2).

Through p pass transversals ¢, one to each pair of opposite edges of <;
since no 5 vertices of & can lie in a solid g cannot lie in the plane of any
two of these f. Through p' pass transversals ' one to each pair of opposite
edges of t'; as the solids spanned by t and 7’ are skew it is not possible
for any ¢ to intersect any #, Thus the six lines ¢, /' are joined to g by the
six e which contain g. Here e is among the data; suppose it then to contain
a transversal f. Transpose the pairs of vertices of © on those of its edges
that meet ¢, and impose any cyclic permutation on 7’; the consequent permu-
tation of vertices of & is of type 12°4 and the resulting projectivity has e for
its latent space. Since there are, on g, 3 choices for m and then 2 for p,
and since 6 cyclic permutations of ¢ are available, there are 36 operations
in A4 which leave & invariaut and have e for their latent space; the number
of operations in class XVIIL for which e is latent is therefore 36v where v
is the number of enneads, including & itself, into Which é can be transfor-
med by these operations.

One finds v =4 by taking, again, 6 to be &, m to be U; the other
enneads into which & can be transformed are &', defined by sharing U, Xo, X,
with &,, &”, defined by sharing U, X,, X, with &, and 6,, sharing only U
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with &, and given by (15.2). Matrices of corresponding projectivities are

T S oot 11 1 1
1 1 11 11
i1 1 11 1111 1
1 11 1 1 1 11 1 1
111 1 1 and 11 11 1

1 1 11 i 1 1 1 11

111 11 1111 .1 . .

- 11 11 1_ -1 1ttt 1 . .1 .._

Since each of the 9450 e is latent for 144 operations of class XVIII
this class has 1360800 members.

Class XVI consists of operations permuting the vertices of some ennead
according to the partition 2°3; for example, all those projectivities belong
to it which impose the permutation

(UX, X5} (X Xs) (X Xs) (X Xo)

on the vertices of &,, and the latent e is spanned by the p which lie one
on each of

XX, X X5, XeX;.

The number of & from which a given e so arises, fransversal to 3
mutually skew edges, is

(960.36.21.10) / (9450.31) = 128

the remaining p in e is the kernel of the conic constituted by the trio of
“cyelically permuted vertices of & Now each such trio is shared by two
of the 128 § which thus fall into 64 pairs; for instance, U, X,, X, are
shared by &, with &, the ennead including (15.1); the p on ‘

-X2X3, X4X5; XSX'(

also lie one on each of three joins of pairs of vertices of &. and the
projectivity that imposes

(UXoX5) (XoX) (XuXo) (X Xo)

imposes a permutation of this type too on the vertices of &. Since U, X,. X,
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admit two cyeclic permutations there are 128 members of class XVI having
for their latent plane

o=y =0, Xo=%s, La=2%5, o=

and so the class has 1209600 members.

As each e is latent for 128 operations of class XVI and 144 of class
XVIII there remain, to complete 4,, 320 — 128 — 144 =48 new operations.
They belong to class XXI.

Since there is a unique y containing e the corresponding group 4., of
order 192, is a normal subgroup of A4,, of order 1536. The glide in the
centre of A4, is also in the centre of A,. It can be shown that all 48 opera-
tions of class XXI in 4, have this glide for their square.

40. Through a given f pass
334G, 427, 8S; 9y, 64, 16x
so that all its points are invariant for
14 334424 16 4 108 4 120 + 256 = 576
operations of A*; there pass also thromgh f

12P; 9E, 2H, 90F, 48J
yielding
12 4 36 + 12 4 180 4 96 = 336

operations of the coset. Hence f is the latent space for 240 operations, and
these, according to Table II, include members of class XIX. Members of
this class permute the vertices of some enmead according to the partition
1234; for instance, the projectivity determined by the permutation

(40.1) (U'(Xo)(X1X2X3)(X4X5X6X7)
of the vertices of &, bas for its latent plane
(40.2) XLy == Wy = Xy, Ky ==X = Lg == Ly

and, there being two cyclic permutations of X,, X,, X, and six of
X,, X,, X;, X;, the same latent [ occurs for 12 operations in the sta-
biliser of &,.
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The ¢ in f join the supplement 1 of X,, X,, X;, X; to U and X,
respectively; the kernel %k of X,X,X, is that p in / which does not lie
on UX,. The 8 & that share both U and X, with &, each yield the same f,
with the same ¢ and £; note, as instances, those & whose other vertices
than U have for their coordinate vectors the columns (so ordered inten-
tionally) of

-1 . . . 0007 R
1 1 1 1 1 1
111 1 1 1111 1
1 1111 11 1 11
(40.3) and
1 11 11 1
1 1 1 11 1 11 11
1 11 11 .11 o1 o101
— 1 111 . 1_ . .1 11 .1 1°

Under the projectivity that imposes (40.1} these other & move, with
vertices of &,, in cycles of 3 and 4; none of them is stable. But the
stabiliser of each furnishes, as does that of &, 12 operations of class XIX
for which (40.2) is latent; hence there are certainly 96 distinct members of
this class having (40.2) for their latent f, and so 3628800 members in the
whole class.

There are 36.35f obtainable from any &é by taking two of its vertices
and the kernel of the conic constituted by three others; the number of §
from which a given f so arises is therefore

960.36.35/37800 = 32.

It was seen above that (40.2) so arises from those 8 & which include
both U and X,; each f contains 4 ¢, each of which is associated in this way
with 8 &, and so all 32 § are accounted for.

The matrix on the left in (40.3) is a representative of class XIX; it has
period 12, ifs cube being a permutation matrix of period 4. But the matrix
on the right, which also imposes a projectivity having (40.2) for its latent
space, does nof stabilise any &; if has period 8 and so represents one of
the 240 — 96 = 144 operations still outstanding- These can only belong, in
Miss HAMILL'S enumeration, to class LV. Because only the analogues of p
occur as points in her geometry only the 2p on the ¢ in f will be recorded
in the penultimate column, and labelled e, in the final column, of Table
III in 9; since these operations are in the coset of A+ LV is the only
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class eligible. The 144 operations so associated with each of the 37800 f
exhaust the 5443200 members of the class. The fourth power of the matrix
on the right in (40.3) imposes the glide whose latent @ is

Xy -+ s = X4 + ¢; = X5 -+ X6,

and indeed this same glide is the fourth power of all those 144 operations
in class LV for which (40.2) is the latent plane.

41. Through a given j pass

156G, 60T, 20S; 159, 10x, 62
affording
115+ 60 + 40 + 300 4- 160 + 144 =720

operations of A+ for which every point of j is invariant. There are, too,

16P; 1bE, 15H, 45F, 80J
providing

16 + 60 -4 90 4 90 -+ 160 = 416

operations in the coset of A+. A;is of order 1440 and j is latent for
720 — 416 = 304 operations. These, in fact, are all accounted for by the
classes XVII, XX and XXIT which Table II registers as having latent j.

The number of members in any of these classes can be obtained by
finding the order of the normaliser. As this process has already been used
elsewhere (6 §21; 7§§15—17) it will be sufficient to apply it here to one
of the classes, say to XX, and give the corresponding results for XVII and
XXII without detailed substantiation. Members of class XX impose a permu-
tation of type 1?25 on the vertices of some &, so one seeks the order of the
normaliser in A of

(41.1) 1o

. . .
® A |
]
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The general form of any matrix that commutes with (41.1) is

a o o A A A A 4 |
b ¥ ¢ B B BB B |
b ¢ ¥ B B B B”B
d & & ¢ D EF G
d d &4 G ¢ D EF
d d d F G C D E
d & &d E F G C D
_~dd & DEF G C _

and one now has to impose those conditions necessarv for it to belong to 4.
First, to forestall singularity,

¢=b41;

the second and third colamns cannot then be coordinate vectors of points
on & unless

o =d =290,

nor can the first column wunless b =ad. The same condition, when imposed
on any of the last five columns, gives

A91 + B + ey =— 0
where

ee=0+4D+E4 F+ G,
¢,= CD + CE + OF + CG + DE + DF + DG + EF + EG + FG.

The prohibition that no two of these last five columns be conjugate
provides the restrictions

e,+ CD+ GO+ FG 4+ EF + DE=1,
¢, + CF + GD - FC 4 EG 4+ DF =1,

which combine to give e,==0 — a condition also obtainable by noting that
the sum of any four of the last five columns has to be the coordinate vector

of an m. Further, as none of these last columns is permitted to be conju-
gate to either of the first two,

A+ B+4e=1=qge 1+ dA.
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The matrices of the normaliser therefore have the form

a . . A 4 4 A 4
ad b O 4+1 Ae, Ae, Ade, Ae, Ae
ad b 41 b Ae, Ae, Ae, Ae, Ae,

d ¢c D E F @

d G C D E F

d F @ € D E

d E F G C D

— 4a b E F G C _

with e,=0. It is not possible for all of C, D, E, F, G to be 1 if the
matrix is not singular; hence, as e,==0, the number which are 1 is either
4 or 1 and the discussion bifurcates accordingly. In the former case e, =0;
hence d=A =1 while a, b stay free; there are 20 matrices. In the
latter case e, =1; hence a=1+4dA while 4, ¥, d stay free; there are
40 matrices. The normaliser of (41.1) is of order 60, and.the conjugate class
in 4 to which (41.1) belongs has

960.91/60 = 16.9! = 5806080

members. Hach of the 403204 is latent for 144.
So much for class XX. There are also 40 members of class XVII and
120 of class XXII for which j is lafent.

42. The spaces of odd dimension that pass through a plane & are, in
addition to the whole |7],

bG, T0T, 408 ; oy, 104, 16X
so that every point of h is invariant for
1+ 5 4 70 4 80 4 220 4 200 4 384 = 960
operations in A+. There are also, containing 7,
20P; 15E, 50H, 10F, 30J

vielding
20 + 60 - 300 4+ 20 + 160 = 560
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operations of the coset: A, is of order 1920 and % is latent for 400 opera-
tions. These belong. since  never occurs in Table II, to classes not yet
encountered.

There are, passing through the single m in an %, 5 g lying in the polar
H; the join of each of these g to % is a x. If p bas % latent and tran-
sposes the two points on g outside s p* leaves every point of the correspon-
ding y invariant and, indeed, & can be such that x is the latent space of
n® Take, so that x is spanned by (34.1), h to be

(42.1) e+, =, =x,=;,=x, =0

and g to join

(.1111...)tc @1111...).

The conditions that these latter two points be transposed, that every point
satisfying (42.1) be invariant, and that p belong to A impose restrictions on
the first 5 columns of p. These, coordinate veetors of 5 m in the same 6,
are flanked by others, coordinate vectors of 3 of the 4 remaining members
of &; but these latter must be chosen and ordered so that the latent space
of p is & itself, not a space of larger dimension containing #h. One
instance is

1111 .1 .172= 111111 . .-

U T 1 q

1 1 1. 1

2 1 1. L1 1

b= 111 .1 .1 R ST
11111 .1 L1011

11 A G

T T .11 1 111 .

The matrix on the right is one of 12 found in § 34 .to belong to class
XV (it occurs under the second of three headings, with

F2=G2=F3=O’ F4=G1=G3=1=f);

it has period 4 and its latent y is (34.1). The matrix on the left, which is
at once seen to have (42.1) for its latent plane, has therefore period 8. Tt

permutes the remaining 4 of the 5 g in one eycle, and the m (apart from
X,) thereon in a cycle of 8.
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Since each y includes 12 h, and since an operation of period 8 has
the same square as does its fifth power, each operation in class XV is the
square of 24 of the new operations which therefore fill a class, XXV, of
1814400 members. Each of the 7560 I is latent for 240 of them.

The 5y which contain a given A join it to those 5 g that pass through
the m in h and lie in its polar H. The 10¢ in H are spanned each by 3 of
these 5 concurrent g, and their polars are the 10¢ containing 7. An
operation p having % latent and transposing the two points outside A on a g
in one of these latter has for its square an operation leaving every point
of ¢ invariant, and enquiry shows there to be p such that ¢ is the latent
space of nw®. When A is (42.1) one ¢ containing it is

(42.2) x, +a, o, =, +x, =x,=x,=0.

One therefore demands that p leaves every point satisfying (42.1) inva-
riant, transposes through premultiplication the columns

(..1111..) and (1 .1111..y

and does not leave invariant any point not satisfying (42.1). A general form
for the first six columns of p can be written down at once, and one then
imposes the conditions for p to belong to A. The details intervening may
be suppressed; among the eligible matrices is

1111 .1 .1-
11111
o111
{1 .1 11

m= 1111 .1
q 1
1
- 11

with (42.1) for its latent space. The latent space of p° is (42.2), that of p*
is the ¥

x1+m2+w3=w4=x5:m6=mv;
i has period 12 and p* of period 6, is (§37) oue of the 604800 members of

class IX. Since p?® is also the square of p’, and ¢ inclades only a single b,
there are 1209600 members in this new class XXIV.
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43. The spaces of even dimension that contain a given ¢ include
28P; 105E, 70H, 630F, 560/ ; 284, 3bf
and operations of 4 for which such spaces are latent afford
28 + 420 4 420 + 1260 + 1120 4~ 8512 4 8400 = 20160

for which every poiut of ¢ is invariant. On the other hand, in correspon-
dence with the whole [7| and the

106G, 2107, 568 ; 105y, 2104, 280x, H6A
that contain ¢, there are only

1 4+ 105 + 210 + 112 -+ 1260 4 4200 4 4480 4 1344 = 11712 members

of A* that leave every point of ¢ invariant. Thus ¢ is latent for 8448
members of A+,

The column of latent spaces in Table II enters ¢ for those classes
answering to 1°7 and 135; these classes are representable by 8-rowed
permutation matrices whose normalisers, in the whole linear group, have
the respective forms

4 9 9 9 ¢ ¢ 9 ¢ 4 B Cqqqq4q
p abocde g C 4 B qqaq9qyq
p g abecdef B C 4 q94q4q9qyg
3.1 pfgabcde’ p p p a b c d e
pefga,bcd; p p p e a b ¢ d
pdefgabci p p p d e a b ¢
pcdefgab:; p p p ¢ d e a
_pbcdefga_i _p p p b c d e a_

When the conditions are imposed which ensure that these matrices
belong to A it is found that, so far as the left~hand one is concerned,
A=1, ¢q=0 and only one of @, b, ¢, d, ¢, f. g, is non-zero. As there
are 7 choices for this non-zero mark, and as p may be either 0 or 1, the
normaliser in A is of order 14 and there is a conjugate class of

960.91/ 14 — 24883200 members.

Annali di Matematica 8
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This is class XXXIV, and each of the 4320 ¢ is latent for.B760 of its
operations. Then, taking the matrix on the right, it is found that p =20
while two of A4, B, C are zero; and, farther, that only one of a, b, ¢, d, e
is non-zero. As there are D choices for this non-zero mark and 3 for that
among 4, B, C, and as ¢ may be either O or 1, the normaliser in A is of
order 30 and there is a conjugate class of

32.9!1 = 11612160 members.

This is class XXX, and each ot the 4320 ¢ is latent for 2688 of its operations.
All 8448 operations for which ¢ is latent are thus accounted for.

The normalisers (43.1) anticipate representatives of two classes that have
a single point latent. Xor while the permutation matrix chosen above as
representative of class XXXIV leaves X, and U invariant its normaliser N
includes, with p=1, operations of A that transpose X, and U. Indeed
N= @, and those 6 of its operations that have period 14, baving themselves
N for their normaliser, belong to a class XLV with the same number of
members as XXXIV; it occurs in Table II. Again: the permutation matrix
chosen above as representative of class XXX leaves U and (. ..11111)
invariant, but its normaliser N’ includes, with ¢ =1, operations of A4 that
transpose them. In fact N'=2®,, and those 8 of its operations that have
period 30, having themselves N’ for their normaliser, belong to a eclass
XLIII with the same number of members as XXX.

44. Those operations of 4 for which every point on s is invariant form
a cubic surface group of order 51840; its subgroup of order 25920 consists
of those operations whose latent spaces contain s and have odd dimension.
Such spaces, apart from s itself, include the whole [7] together with

45@, 270T, 1208 ; 45y, 270¢, 120%, 2164 ;
they account for

1 4 45 + 270 + 240 4 1980 - 5400 + 1920 -+ 5184 = 15040

operations, leaving 10880 for which s is the latent space. These induce in
the polar S of s operations of a cubic surface group that are devoid of
invariant points; but one wishes fto describe their effect on the whole [7].

Table II records that s is latent for permutations, according to the
partition 3°, of the vertices of any of those 240¢é of which s is an axis
(cf. § 16). Each triad of vertices of é whose kernel is on s can undergo two
cyclic permutations so that there are, if v is the number of & which not
only share s as an axis but whose vertices are permuted in 3 triads, with
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kernels on s, under some given operation of 4. 240.8/v members of class
XXXVIII for which s is latent. In order to find % take, as permufing the
vertices of & in 3 cycles of 3,

)
1
1 1
1 1
(44.1) = . )
1 1
1 1
_1 1 —
the kernels are on
(44.2) =2, =0, x,=e,=x,, =0, =2,
and each point of [7] traces a cycle
€, ~—~ ®, F+un, — X,
x, @, x, + %, with cenfroid .
x, X, + %, x, + x, x, + o, +x, + 2, + x,
&, X, + @, ®, +x, g+, + o, 2, +
x, x, + x, x, 4 x, €y +x, + x, + x, + x,
x, x, + @, ©, + x, x,+ e, +ux, +a, +x,
x, x, + @, x, + x, €, F+ o, +x, 42,4+,
x, x, 4+ x, ®, + @, 2, +x, +x, + x, + x,

The points of the cycle coincide if on s; they are collinear if
(44.3) T, +x,=x,+x, +x, =2, + 2, + x,,
i.e. whenever they lie in S. Otherwise they span a plane in one of
2, +x, f X, =0, F o, Fw, X, Fw, =+, o,
Ty + @, = o, 4, .

These are the P which join § to the points of s, so that the plane of
each cycle meets S in a line. Kach of these P includes 63 — 27 = 36m
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outside § which, under g, run in 12 cycles of 3; each cyvcle has its centroid
on s and is the set of common vertices of two & which, as they cannot be
transposed by an operation of period 3, are both invariant under p. Since
no point is invariant that is not on s each of these invariant & has its
vertices permuted in 3 cycles and has s for an axis: thus =24, and there
are 80 members of clags XXXVIIT for which s is latent. The whole class
musters 89600, each of the 1120 s contributing 80.

A cubic surface group includes, with its conjugate class & of 80 opera-
tions of period 3, certain other classes powers of whose members belong
to ¥; these are (9, 146) classes of 720, 4320, 5760 members of respective

periods 6, 12, 9. One therefore expects, with these same periods, classes
in 4 of

806400, 4838400, 6451200
members; and Table ITI of 9 lists such classes, namely XL, XLII, XLI. It

will suffice to to give the matrix of one member of each of these classes,
and to describe the action of the projectivity imposed thereby.

45. The above 24 & invariant under p must consist of 4 such sets of 6
as were encountered in § 16. One set, there fully recorded, consists of

a, e, &,
(45.1) B, A, C,
e B, 4,

The 6 & consist each of 3 triads labelled by the script capitals in a row
or in a column; labels &, &, € indicate triads with the respective kernels

45.2) (L.111111), (.11 1...) (..., 111

The 80 members of class XXXVIIT for which (44.2) is latent leave every
one of the 9 triads invariant; yet one may allow, while keeping the latent
space the same, operations of 4 to permute the triads. But any permissible
permutation has to replace every 3 collinear triads in (45.1) by collinear
triads (this is simply to insist that, under 4, enneads remain enneads) and,
moreover, it must replace every triad by one labelled by the same letter
(this is to insist that the centroid of each triad, being on (44.2), is unmoved).

If 5[1, s, d; are all invariant so is every triad; &, for example, is
the only one of &B,, ., B, that is aligned in (45.1) both with &, and &,.
It &,, d,, 9, are cyclically permuted the permutation that they undergo
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determines that undergone by the other triads; one has
(&,8.4,)(B,8,%,)(C,L,C,

and its inverse. A mafrix that imposes this must have two of the three
coordinate vectors of &, for its first two columns. followed by those of B,
for its next three and then by those of @, for its last three columns; the
columns must, within this prescription, be so ordered that no point off (44.2)
is invariant, and any such ordering gives an admissible matrix. One example,
whose cube is p and which has therefore period 9, is

I~ i1 . . . .7
1 1
11 1 1 1
11 1 11
1 11 1 1
11111
1 1 11 11
— .1 111 1 1_

One may also permit &, and &, to be transposed while &, is invariant;
this, by the restrictions above, implies the permutation

(a’i) (a2a3) ($2) (QS%J (@3) (@!@2)'

A matrix that imposes it has for iis first two columns fhe coordinate
vectors of two members of &,; &, provides the following three and @, the
last three columns; nor must any point be invariant unless it satisfies {44.2}.
One such matrix, whose square is p and which has therefore period 6, is

— { -
11
111t 11 1
453 1 11 11 1
11 11 11
11 1 111
11 1 11 1
- 1 111 1 1_
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Classes XL and XLI have been accounted for without substituting
another scheme for (45.1); but operations in class XLII are only detected
through permitting (45.1) to be replaced by another of the 4 schemes that
are, as wholes, invariant under p. There are, and they have been displayed
in § 16, 27 m involved in the 9 triads of (45.1); in order to obtain another
scheme one takes an w not included among these 27 yet which does not lie
in (44.3). This m is one of a triad &', cyclically permuted by p and having
its centroid on (44.2); two 6, A\ H.C, and &' H,C, include &'; among
their vertices and furnish the scheme. For example

1.1 11
.11 1 .1
1. 111
111 .1
.. .1
1 1.1
111 11
.. ...
& @

11

1.1
1.1
11.
111
.1

.1

A

Nl
<L

11
1.1

11 . 1.1

1.1 .11
1

111 .11
. 1.1

11. 1

1

1.1 111
&, G

.11 11
11 1.1
111 .1.
R I |
1. 111
.1

1 1.1
111 11.
a, &,

1.1
.11

Each triad, it will be noted, has its centroid or kernel at the appropriate
point (45.2) according as its label is &, or €. The two other schemes
analogous to (45.1) involve those & derived from the above by eyclic permu-
tation of the three bottom rows.

The matrices

1
1

i

t 1
1
k
t .
1 k41
k
t 1
1 k41

1

k1

impose on the triads the permutations

&, ) (B,8,)(C,C")
(&) (B,B)C,L)

1 1
1
1 k
k 1
E+1 k1
k
k
E+1 k41
for
for

1
k

k1

k
1
1

k=1,
k= 0.

k
k41
1
k

E41_J
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Each matrix is the product of the other by the glide that is the cube
of (45.3), and both have (43.3) for their square. Each of the two other schemes
eligible to replace (45.1) affords a pair of matrices of class XLII with each
member of a pair the product of the other by the glide that is the cube
of (45.3). Thus 6 matrices arise having (45.3) for their square; the other
4 are given by

1 1 . 1 1 . 1 1~
1 . 1 . 1 . 1
1 1 k E4+1 . k k41 1
1 1 k k . k k
E+4+1 1 E+1 k41 . E+1
1 1 k E41 1 k E41
1 k k 1 k k
- . k41 . E+1 kE4+1 1 E4+1
and
1 1 1 1 1 1 .
1 . . 1 1 . 1 1
1 k k 1 k k .
1 k+-1 k41 . E+1 k41
1 1 k41 . k E+1 1 k
1 k k . k k 1
E+1 k41 1 E+1 kE+1
_ 1 . k41 1 k E+1 . k *i

46. The spaces of even dimension containing g consist of
24P; 114E, 24H, 792F, 384J; 48f, 6e, 94d;
hence the coset of A consists of
24 4 456 +- 144 - 1584 4 768 + 11520 4 1920 + 2016 = 18432

operations. Buf, apart from the whole [7] and g itself, the spaces of odd
dimension that contain it include

151G, 1807, 32S; 6o, 9y, 234y, 2y, 144¢, 236x;
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hence there occur
1 4 151 4 180 + 64 4 168 4 252 + 2808 4 88 4 2880 4 4096 — 10688

operations of A;, leaving 7744 for which g is latent.

Table II registers operations of class XXVIII as having g latent; they
permute the vertices of some ennead according to the partition 14% and so
are exemplified by those which permute the 8 vertices of X, in two cycles
of 4. The size of this class can be deduced from the order of the normaliser
of any one of its members. The permutation matrix

(46.1) S e

has, in the general linear group, a normaliser of the form

a b ¢ d e [ g h
d o b ¢ h e g
¢c d a b g h

b ¢ d

46.2
( 6 ) a/l bl c! dl e! fl

~

f
e
a f g h e
g
f
e

_ b/ cl d’ a/l f/ g’ h/
This"is to belong to A. Write
s=a+b+c+d t=ced+f+og+h
S=a +b+-d+d, t=+f+g+H.
Since the first and third columns of (46.2) are not to be copjngate
s4s=1; one of s & is O and the other 1, and likewise with /, ¢. But
st = g't because the sum of the last 4 columups has to be conjugate to any

of the other 4; hence

(46.3) s=14s=14+t=17¢.
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Bach column therefore has an odd number of units, and so either 1
or 5. Each of the first 4 columns has the same number, as does each of
the last 4; but, indeed, every column has the same number of units. For
were either the left or right hand half of (46.2) to consist of columns with
a single unit and the other half to have 5 units in its columns one at least
of these latter would, as coordinate vector of a point, be conjugate to one
of the former. Now the first 2 columns of (46.2) are not to be conjugate;
this in conjunction with (46.3), demands

@+ 60+ d) =@ + )t + d)=0.

the zero on the right being necessary because 1 would contradiet s =1 + &',
Hence there are the mutually exclusive alternatives:

either a+c=0+d, a+dJd=b+d-+1,
or at+c=b+d+1, a+c¢=b44d.

We can confine attention to the former; the latter is then allowed for
by reflecting in its horizontal bisector any matrix that occurs.
There are 4 possibilities:

Hla=c¢c=0, b=d=0. (la=c=1, b=d=1.
filya=c=1, b=d=0. (ivVa=c=0, b=d=1.

Each allows the first column, which has to include either 1 or 5 units,
to be filled in 4 ways. It is then found that, in each instance, the last
column, which has to include the same number of units as the first and is
prohibited from being conjugate to if, can also be filled in 4 ways. Thus
64 matrices occur. They form, when taken with the reflections in the

horizontal bisector, the group of order 128 that normalises (46.1). Thus (46 1)
belongs to a counjugate class of

20.3%.5%.7 = 2721600

members. Hach of the 1575 g is latent for 1728 of these.

The other eclasses than XXVIII whose members have latent g are
XXXT, XXXII, LXII, LXIIT; this is seen from the second column of
Table III registering the cyclic decompositions of permutations of the
135 m under the subgroup A3, of a stabiliser A,. The dimension of the

Anneli di Matematica 9
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space latent for an operations of 4+ is always odd; if the space contains
3 m it is either y or g aund, as found in § 34, y occurs for classes XIV
and XV. Members of class LXII are alluded to again in § 53 below; each
g is latent for 1152 of them.

47. The spaces of even dimension containing # comprise
32P; 180E, 140H, 420F, 640J; 32g, 10f, 6h, 15e
so that the coset of A4; consists of
32 + 720 4 840 4 840 - 1280 + 9728 + 2400 - 2400 -+ 4800 = 23040
operations. But the [7] itself and
7H@, 2567, 80S; 4b9, by, 3204, 160x, 96A, by
only provide
1+ 76 + 256 4 160 4 540 4 660 + 6400 + 2560 - 2304 4 420 = 13376,

leaving a further 9664 operations of 4, to be accounted for. Table II
discloses that classes XXVII, XXIX, XXXIII contribute; their contributions
of 1920, 2304, 1920 can be found by constructing the normalisers of their
respective members in 4. The other classes which contribute the remaining
3620 operations are seen, on appealing again to the second column of
Table IIT below, fo be XXVI, XXXV, XXXVII.

The two latter classes will he encountered again in §52; each of
them includes 1440 operations of 4,. This leaves 640 operations to belong
to elass XXVI, which therefore has 640.3780 = 2419200 members.

48. Consider now the stabiliser A, of a point p; it includes the
projection &, centred at p and has, indeed, the &, generated by J, for a
direct factor. For let u be any operation of A,. Any point in the polar P
of p is transformed by p into a peint also in P, so that every point of P
is transformed by both pJ, and J,u into the same point as that into which
it is transformed by p; thus (pd,)J,w)~", imposing the identity projectivity
in P, is either I or J,.

But pJ, and J,p both belong either to A+ or to its coset, so that
(1d,)T,)"* belengs to A+ and cannot be J,. Thus J, commutes with p, and
A4,22Q, X A%, This subgroup A‘; is the group “of the bitangents”, and is
well enough known (9, Table V; 7 passim) to be spared further comment
here save for a brief mention of which further classes in A have represen-
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tatives in A,. Just as, in § 43. one encountered classes XLIII and XLV by
permitting the transposition of the 2 m on ¢ so one encounters further
classes by permitting the transposition of any 2 of the 3 p on s. Thus one
finds, as representatives of classes XLIX and LII,

o1 - L I
1 N
L { 1 r .11 .
L 1 {10111 |
{ . e . L1
1 | R U B
t .1 . . 1. . 111
1 t .. .1 11 .1 _

whose squares are, respectively, (44.1) and (45.3). There also occur in 4,
representatives of a class LI; they are of period 18 with their cubes belon-
ging to class XLIX.

49. While 4,, as the direct product of @; and a well-known group, can
be summarily dispatched A4,, merits, as a group of low index in 4, more
formal recognition. Its order is 29%.3%.5.7 and it has a subgroup A}, of
index 2; it does not share with A, the prestige of being an exceptional
Lie group and may not have been examined heretofore. So we display in
tabular form the distribution of its operations among the conjugate classes
of A. The number in any class is the quotient, by 135, of the product of
the number of operations of A in the class and the number of m invariant
under any one of these operations; it is therefore obtainable once this
number of invariant m is known. The second and fifth columns of Table III
show the cyclic decomposition of the permutation imposed on the 135 m by
the operations of each class of 4. For operations of prime period this
decomposition is known, being determined by the latent space; for example,
a projection in class Il leaves invariant all 63 m in its latent P and tran-
sposes in pairs the 72 m outside P; a glide in class XIII leaves invariant
all 39 min its latent G and transposes in pairs the 96 m outside G; an operation
of period 5 in class XII leaves invariant the b m in its latent A and permutes
the 130 m outside A in cycles of 5, and so on. The decomposition of a
permutation imposed by an operation p whose period is not prime is then
deduced from those of the permutations imposed by the powers of .

The left-hand half of the table appertains to Aj,, the right-hand half
to its coset which includes representatives of the classes XLVI, XLVII,
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LIV not encountered before, The third and sixth columns both sum fo
1290240 = 2'2.3%.5.7,

III

v

VIIi

IX

X

XTI

XII
XIII
X1V
XV
XXVI
XXVIL
XXVIII
XXIX
XXX
XXXI
XXXII
XXXIIT
XXXIV
XXXV
XXXVI
XXXVII
XXXVIII
XXXIX
LXI
LXII
LXIII

{105
10190
1773%
1720

172103%6
1g%2
1721420
1552
1%g%

1222816
159 4es
112396
112934767127
19922452
11255010
1°3'5°15"
1°2°326%
1°4°6°12°
1'243%6%
12720
11214982
JrgHges
11254782
1°31060
rsge0
122045
1°2°346%

TABLE IiI
The group 4,

1

868
448
2940
31360
17920
47040
21504
455
2240
840
17920
53760
60480
64512
172032
35840
26880
53760
368640
40320
27720
40320
53760
840
40320
107520

IT

v

VI
VII
XVI
XVII
XVIIE
XIX
XX
XXT
XXII
XXII1
XXIV
XXV
XLIIT
XLIV
XLV
XLVI
XLVII
XLVIII
XLIX
L

LI
LII
LIIT
LIV
LV

esges
L15gn0
{00562
[1groges
121231670
1223706
1oy
12'3%4°6°127
1925221 0"
13gueg2s
102346
11090426
1129304561127
11204%8"

2'3'5'1015°30°

1*4*5%10°20°
217°14°
1'3%4%6°12°
11218%12%24°
11314]816
321612
35620
9118¢
3'6°12°
17212426
1*3°4°6*12°
15234"{812

56
4200
8960
3690

26880
35840
30240
134400
129024
10080
107520
10640
8960
13440

129024

35840
107520
161280

23520
107520
201600
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TABLE IV
The groups A,

The table shows, in addition to their orders, classes not occuring in

Table II that have representatives in these

H
-~
=

H U N Qa9 R

oo W

p

e

X = & 8

o (3] j—y —

Do

128
192

XTI1

XXIII

XXXIX

LXT
XXXVI

XIV, XV

groups.

e

®

2 =

¢
¢

S

1024
1152
1440
1536
1920
36864
40320
46080
51840

i 2580480

p

2903040

LIII
LV

XX1
XXIV, XXV
XXXI, XXXII, LXII, LXIII

XXVI, XXXV, XXXVII
XL, XLI, XLII

XLVI, XLVII, LIV
XLIII, XLIX, LI, LII
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T

The Sylow 2-groups of A+

-

50. The groups 4,, are of order 2'°.3%.5.7. Any one of them acts as a
transitive permutation group on the 35 g through m, each of which is
invariant for 2'*.3% of the permutations. These latter act as a transitive
permutation group on the 9d through g, each of which is invariant for 2%
of them. Thus one comes upon the §.. SYrow subgroups of order 2% in
A; each is associated with a flag m <g <d on &. S, can, since the
projections centred in the y through d belong to it, transpose the two solids
on & through d; hence a complete flag m <g<d <o - complete in
that it cannot be extended without involving points off & —~ is invariant
for an Sy of A+ Since there are 2025 d, each containing 7 g on each of
which lie 3 m, there are 42525 S; in 4 and Si in A+

Take & to have the equation (10.4) and the spaces of the flag &, with
their polars, to be

me: ¥, =Y, =Y, =Y, =2 =2,=2,=0, M,: Y,=0,
g: YWw=Y, =Y, =Y, =24 =27,=0, Gy: Y,=Y,=0,
dy: Y, =Y, =Y =Y,=27 =0, Dy: Y, =Y =Y, =

Any matrix 91T for which i, go, do, o are all invariant must have every
element above its main diagonal in each of the last 4 columns zero. It &
is invariant too so must each of M,, G,, D, be; these requirements imply
certain zeros below the main diagonal in the first three columns, and the
presence of the zero in the fifth row and first column is then demanded
by the invariance of

wy Li=Y,=Y, =Y, =0
or of
Yo: Y+ 74, =Y, =Y,=Y,=0.

Detailed examination then discloses that, if

Y Z, + Y, Z,+ Y, Z,+ Y2,
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is to be unchanged,

1 n #t A . . oL
1 A m'
1 W
(60.1) M = !
c b a’ 1
c cn a bV n 1
b+el a4 al+bm ¢ m+nl l 1
—a4+4A V+B ¢+C B I'+L w+nl w 1_
where

A =bn + cm 4 nl), A'=bn 4 cw' -+ n'l),
B =an -+ cl +mn)+ wa+ 4), C=am' + bl'-am-0bl,
B =al4+bm +cn, L=mwmn+nm-+ nl.

Since each of
14 ’ 14 ! ’
L,m, n, I', m, w, a, b c a,tc

’

can be either O or 1 there are 2 9IU; they represent, and can be regarded
as composing, an Sy in A+. They have the group property

s b, my, ng Uy, my, n’1> ( byy o, M Uy, Wy, n’z>

kal, by, ¢y o'y, U1, €L Uz, by, €23 a's, by, €

(60.2)
Aowovy A, v
(“7 Bvs o B, Y’>
where
X =1, + 1, W=+ - 1yl V== 0y A B
N=10, U5+ o0+ 0y, W=y f+my+Lnw, V=mn,+n,;

o = a,t a4 mbs+ et cingly, B =04+ b, - cils, Y = ¢ - G
(B0.3) y o' = a'y +a's 4 by + o, Br=014b+ (o’ + I'5) +
+ a1y + ma’s,
Y =y 4 ¢s + alw's + w'y) + b’y + ngn's 4+ 1) +
4= el l'y + wmaw/y + nadyis) - (aly + m)a's + L.
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( Lm,n;, U, m,n )2
. 7
a b, c; o, b ¢

In particunlar

(50.4)
, nl, « 5 mn 4 nw, i, .
- ( nb - (m -+ nl)e, cl, - ;b4 em, clmwn’ + 1) + an' + na’, T )
where
(50.5) P=alln’ + w') 4+ bimn’ 4 nm’ 4 1) 4~ ¢(ll' + mwm’ 4
wlm'y + o' (nl + m) + b'l.

A repeated application of (50.4) shows that all save one of the 12 marks
which determine the fourth power of any operation of S7 are zero; the one
that may not be zero corresponds to ¢ and is ci’nn’. Hence there are 2°
operations of period 8 in S;, namely those having

c=l=n=n=1,

and no operation of S; has a higher period. All these 2° operations have
the same fourth power - the gilde

(50.6) Z,— Y, + 2, Z —Y,+1Z,

associated with G,. This glide is that operation of S, for which all 12
marks save ¢ are zero; the relations (50.3) show that it commutes with
every operation of S;- These relations also suffice to show, on serutiny,
that no operation save (D0.6) and identity commutes with every operation
of S;7; the centre of St has order 2.

So far as ¢, I, n, n' are concerned the effect of multiplying two matrices
(50.1) is to add the corresponding marks; hence those operations of S, for
which any one of ¢, I, », n' is zero form a maximal subgroup of index 2.
These subgroups can be defined geometrically. For there are

(4) two points m,, m, other than m, on g,. These are transposed if
w = 1; the subgroup having #'=0 leaves them both invariant. and is of
index 9 in A7,

() two lines g,, g, other than g, that pass through m, and lie in d,.
These are transposed if [=1; the subgroup having 7=0 leaves them
both invariant.



W. L. Evcu: An orthogonal group of order 2'3.3°-52.7 73

(¢34) two planes d,, d, other than d, that pass through g, and lie
in ®,. These are transposed if n =1: the subgroup having n =0 leaves
them both invariant.

(fv) two solids w,, w, other than w,, and belonging to the same system,
that pass through g, and lie in G,. These are transposed if ¢=1; the
subgroup having ¢==0 leaves them both invariant.

To verity, say, (¢éé) one takes

d, :

{

Y =Y,=Y=Y,=2,=0, d,;: Y =Y,=Y,=Y,=2Z,+Z%,=0;

when the column vector of coordinates of a point s in d, is premultiplied
by 9T that component which answers to Z, in the resulting vector is #nf,,
where §, is the Z, - coordinate of m. To verify (i) one takes

w: Y, =Y,=2,=2,=0, v,: Y,=Y,=Y,+2,=Y,+ 7, =0.

1

51. The 2° operations of period 8 in S7 are precisely those not
belonging to any of the above four maximal subgroups. No operation of
period 8 in 4 can belong to more than one S;". For suppose the contrary, that

F: m<g<do<o, and §F: w <g<d<w

both afford the same such operation p. The glide p* shows immediately that
9 =g,, and as p transposes two of the points on this line its invariant
m =m,. Were d' distinct from d, it could not, being invariant, be either
d, or d, since p transposes these; it could not, therefore, lie in ®, and so
would lie in w; or w, - and so in both w, and w, because p transposes them;
this is impossible. Hence d'=d,, and o = w,. As there are 2° operations
of period 8 in each of 42525 S;” 10886400 such operations in A+ are hereby
accounted for,

52. Any column vector that is latent for MM with c=l=n=nw=1
satisfies

as well as
Zi;=Y, Zy=m-+bY, Z={m-+bm+1)+ao+01Y,

These conditions determine a line, one of the 4 ¢ that pass through mi,
and lie in D,; each such ¢ is latent for 2° operations of period 8 in S;L.

Annali di Matematica 19
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Table I tells that any ¢ lies in 15 D; the polar d of any such D accompanies
the m on ¢ in 3 flags, one for each g in d through w. Thus ¢ is latent for
2% ¢ 45 = 2880 operations of period 8 in A% : they belong to classes XXXV
and XXXVII, and indeed are equally distributed between them. For the
latent space of the square of (50.1) is found, on using (50.4), to be, when
c=Il=n=wn=1, the solid

Y, =Y,=0, Z, =Y, +0b+m+ 1Y,
(52.1) ' Z,= b+ mY, + (a4 a+ 1+ b+ bm -+ mm)Y,.

This is ¢ or y, and so the square belongs to class XXXVI or class
XV, according as the coefficient of Y, in (52.1) is O or 1.

53. There are in SF operations whose latent space is g,; they must
have #'=0 and, in order that no point off g, shall be invariant, satisfy
(when #'=0) the further condition that 91T has no latent column vector
save those with

n m I
(63.1) - loowm | =1
c b o

then, as this condition ensures that Y,=Y,=7Y,=0, the three bottom
rows produce the same condition again to ensure that Y, =2,=7,=0.
Since, in (53.1), one has, in succession, 3 choices for the first, 6 for the
central and 4 for the last column there are 72 non-vanishing determinants;
and since a, b, ¢ are left free there are, in Si, 576 operations with g,
for their latent space. These, as is seen by squaring them, are not all of
the same kind. (50.4) shows that, when »'=0, points invariant under the
square of (50.1) satisfy

wlY,+mY,)=clY,+mY,)=0

{nb 4 (m 4+ nl)ic} Y, = {cmwm’ + 1)+ na'} ¥,.
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Since, by (33.1), » and ¢ are not both zero, ¥, 4+ m'Y, =0 and since,
also by (B63.1),

563.2) w {nb -+ (m -+ nhel + Licmmw + 1)+ na'} =1

it must be that Y,==7Y,=0. The further conditions to be satisfied by
invariant points are

clY + {nb 4 (m 4+ nl)c} Y, 4 nlZ, =0,
em' Y+ {olnm' + 1)+ na't Y, 4+ nm'Z, = 0,
which, noting (53.2), combine to give
Y,=c¢Y, +nZ =0

since, again by (b3.1), it is impossible for !/ and #' to be both zero. Now
the solids

cYy=nZ, Y,=Y,=Y,=0

are oc=1, n=0), woc=0, n=1), and Y c=mn =1), so that those H76
operations of S for which 9o is latent fall into 3 sets of 192. The square
of each operation has a latent solid, and the operation itself belongs to one
or other set according as this is (a)w,, (), (0)y,. The 192 operations (c)
belong to class XXVIII; the others are in class LXIL It was proved in
§ 46 that each g is latent for 1728 members of class XXVIII; since g lies
in 9 v and 6 o it follows that it is latent for 1152 members of class LXII.
This last class therefore embraces 1152 X 1575 = 1814400 operations of A+,

54. The subgroup ®, of order 25 of S that is common fo the four
maximal subgroups of §50 belongs also to six other maximal subgroups,
namely to those subgroups for whose operations some two of ¢, I, n, #' are
equal. These maximal subgroups will have geometrical characterisations;
for instance, if n = ¢, the two ¥ in G, are not transposed, for these solids
in Y,=Y,=0 are

Ko Y1+Z1:Y2=Z2’ Xot Y1:21:Y2+Z2‘

® and its cosets in Sj are, as (50.3) shows; determined by ¢, I, n, w in the
sense that these marks are the same for all 2° operations in any coset. The
group S7/® of these cosets is thus elementary abelian - as always (15, 141)
with the FRATTINI subgroup of a p-group - of order 16.
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55, When c¢=I!=mn=mn =0 the expression I' of (50.5) reduces to
7 = am’ 4+ bl'+ a'm; those operations of ® for which v =1 have period 4
while all its other operations save identity have period 2. Since ¥, ¢’ are
not restricted, and since there are 28 points off a KLEIN quadric in [5],
there are 112 operations of period 4 in ®.

The top six rows of &MU supply, when c=!{=n=nn=0, as equations
of its latent space o,

mY,+1Y, =wY, =0Y,+aY,=aY,+0Y, =0

of which two linear combinations are nY,==0 and 7Y, =0; so, if =1, o is
in G,. The bottom rows of 9T supply further equations of ¢ which reduce,
when Y, = Y,=0, to

bY, + aY, +mZ, =0
(65.1)
Y, + Y, 4+ 1VZ 4+ wZzZ,=0
Since
b m|! + |a
‘ a, l’ J bl q;l/

(65.1) can be solved either for Y, and Z, or for Y, and Z, as linear combi-
nations of the others. The expression Y, Z, 4 Y,Z, thereby becomes a binary
quadratic ¢ and the solid o is y, x, ¢ according as g is a perfect square,
irreducible ‘or factorisable over F. But y does not oceur; the product term
is always present in g. Consider now the alternatives.

(¢) (65.1) can be solved for Y., Z,; a'm 4+ bl' =1, am'=0. This allows
6 tetrads of marks o/, m, b, I’ and 3 duads a, m’'; 18 sets of marks in all.
Thus, b, ¢ being free, 72 operations of period 4 come under this head. We
have

q = (al' 4 b'm) (aa’ + ) Y2+ YoZ, + bmm*Z:.
The only irreducible form is Y24 Y,Z, -4 Z2; hence, if ¢ is irreducible,
(65.2) b=m=mwm=1, a=0, =1, o+ =1.

This permits, ¢’ being free, 4 operations.

(¢¢) (65.1) can be solved for Y,, Z;;

g=mw =1, bl'=a'm.
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This allows 10 tetrads of marks a', b, 7, m; thus, 0, ¢’ being free. 40
operations of period 4 come under this head. We have

q=0bla -+ b)Y+ Y. Z, 4 m{l + b'm) 43

which factorises unless b=m =1, o'=10'=1¥8 -4 1. This permits, ¢’ being
free, 4 operations. It thus. appears that, of the 112 operations of period 4
in @, 8 have a latent solid y and so belong to class XV while the remaining
104 have a latent solid ¢ and belong to class XXXVI. These latent solids
are all in G,. If one suabstitutes from (55.2) in (35.1) the outcome is the
set of equations for yx, which is therefore latent for the 4 corresponding
operations, as y, is, likewise, for the 4 operations under (¢s).

56. When all of ¢, I, n, #’, whatever their suffix, are zero all the
equations (50.3) except the last become symmetric in the suffixes; so, in
order that operations in & commnute, it is sufficient that

'y = 0.0y + M’y = aem’y + bol'y + maas,

a polarised version of v =0. Now all operations of ® save those 4
for which 0 = a'==b=10=m = m'=0 are mapped by the points of a [5];
each point, because of the non-occurrence in its coordinates of %' and ¢
maps 4 operations, and they are of period 2 or 4 according as their map is
on or off a KLEIN guadric €. And operations commute or do not commute
according as their maps are conjugate or not in the mnull polarity set
up by Q.

The operations that avoid the mapping, and only they, commute with
every member of ®; they form the centre of @, a 4-group 2,. But any of
the other 252 operations commutes only with the members of 2, and with
the 124 mapped 4 by each point in the polar prime, with respect to Q, of the
point that maps the operation in guestion. Thus each operation of ® ontside
#z; has a normaliser of order 128 and so belongs, in ¥, to a conjugate class
of only 2 mewmbers. The polar [4] 's with respect to Q, of the 63 points
in [5] correspond to 63 maximal subgroups (the above normalisers) of ®.
Each of the 30 planes on Q corresponds to an elementary abelian subgroup,
containing #z; and of order 32.

The operations of 2, must of course be closely linked to &; indeed one
of them has already been noted, in (50.6), as the glide having G, latent. The
other two involutions in 2, are, as can easily be verified, those glides for
which the other G, which contain D, and lie in M,, are latent.
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b7. The 12 equations (50.3) provide, on stipulating that they are all
symmetric in the suffixes, 8 conditions, for two operations in SF to com-
mute. When these condifions are invoked fto discover which operations of
S, commute with every operation of the group it is found, as remarked in
§ 50, that all 12 marks save ¢ are zero; the centre #, of S has order 2.
One can now proceed with the upper, or ascending, central series (15, 50);
the next stage is to identify the centre of S7/z,. Hach element of S7/z is
a coset of 2z, in S, i.e. a pair of operations differing only in their mark
¢'; the rule of multiplication in Sy /2, is therefore given by (50.3) without
the last of its equations. Hence the centre of S7/z is found by insisting
that, so far as (50.3) minus its last equation is concerned, an operation
commutes with all others. There is no condition on &', but all other marks
than b and ¢ are found to be zero. Thus z,, the subgroup of S7 such that
#/2, is the centre of Si/z, is the 4-group whose operations have all their
12 marks zero save b’ and ¢'; it has been enconntered already as the centre
of ®. Next, in order to find the centre of Si/z, one ignores the last two
equations in (50.3); the remaining conditions for commutation are then
satisfied so long as I, m, n, w', #, b, ¢ all vanish.

Since a, o', I’ now share the freedom of ¥, ¢’ the centre z;/z, of ;S;"/z2
is of order 8 and #; is that subgroup of S for which

l=m=n=m=w=0=c=0.
It is, as (B0.3) shows, elementary abelian and its order is 32. Next, in seeking
the centre of Sj/z:;. only those equations for 2, p, v, ¢, v, 8, v in (50.3)
are relevant and the only conditions necessary to ensure their symmetry are
%112 = anl 5 llnlz = lz’nll, cllg == Ozll .
These only hold for all values of n,, i, wy, ¢, if
ngzlzzn,z—:02:—0;
hence the subgroup 2, of S7 such that z,/2, is the centre of S;F/z3 is ®.

And as S, /® is abelian it is its own centre. The ascending central series
tor S is therefore

(67.1) to=1I 2,2,,2,2 == s ==_8;.

One can derive the lower, or descending, central series (13, 156) too
from (50.3). The 12 marks of the inverse of 91 are found on replacing
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every Greek letter by 1 and solving the resulting 12 equations (50.3) for
the marks with either suffix in ferms of those with the other; the marks
of NLM,~t are those of the inverse of NI, with the two suffixes
transposed: another appeal to (30.3) then yields, by a straightforward if
if somewhat laboured process, those of

(%1 ) %2) == %1~1®1t201%1%2 .

This commutator is known (15, 144) to belong to @; here it proves to
be the whole of ®. The mutual commutator group (®, S;) then turns out
to be z,, and indeed the descending central series is simply (57.1) read from
right to left. The coincidence of the two central series of a group is perhaps
a consequence of such a distribution of zeros, in the matrices of some
representation, that it may here be a consequence of (50.1).

The characteristic subgroup 2z, of S5 can be identified by its effect on
§. Those operations of S, that leave every point of d, invariant have

l=—m = n =0.

They permute the points of D, among themselves, and if one demands
that every point in D, but outside d, is either invariant or transposed with
the other point on its join to #, one finds the necessary conditions to be

m=n=>b=c=0.
58, If one disregards, for the moment, the centre z of ST (it consists

of identity and the glide (50.6)) the necessary and sufficient conditions for
an operation to have period 2 are, by (50.4) and (50.5),

g nl=cl=1In"=0, mnw'=mnw, bn'=cm', nb=mc,
(8.1) . cmm + 1) = an’ 4+ na/,
e am’ 4 bl -+ a'm + b'l = cmm/.
They are completely fulfilled if
(58.2) c=n=n"=0=aw' 4 bl'4+ a'm 4 ¥,

equations which have 135 solutions - the number of points on STUDY'S
quadric. Since, as will be explained immediately, the other solutions of
(08.1) fall 16 under each of 7 heads there are 135 4- 112 =247 in all, so
that, since ¢’ is not subjected to any constraint, there are, in addition to
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(50.6), 494 operations of period 2 in SF. The 7 heads are

(o) c=n=I0=0, n=1; a=b=m=0,
@) cz=w=10=0, n=1; a'=b=m'=0.

() n=n'=1=0, c=1; I'=m=m' =0.

@ c=n=1 n=1=0; m'=0, m=0b, I'=a

(e e=nw=1 n=I=0, m=0, w=05b I'=a

’

Dn=n=1 ¢c=1=0; b=0, m=w', a=a.
) 2 2 3

) c::n,:n’_—.-_\l, I1=0; m=m' =0b, 'l =a-+a 4+ 6.

Operations of @ cannot occur under any of these heads, but only under
(58.2) and then only when ! =0. They are, excepting (50.6), mapped two by
each point on the section of a Study quadric by one of its tangent primes;
the contact B’ of the prime maps those two members of the centre z, of @
that do not belong to z,, and the remaining 140 operations of period 2 are
mapped two by each of 70 points collinear in 35 pairs with B. Each of
the 70 points maps a coset of 2. in @, and the two cosets so mapped by
points collinear with B’ form a coset of z,: the projection from B gives
the mapping already encountered in § 56.

59. Consider now the solutions of (58.2). When c¢=n=n"=0 the
latent vectors of DT satisfy

(59.1) mY,=1Y,, IY,=wY,, bY,=ad'¥, aY,=07Y,:

S bY,+aYe -+ (al 4+ bm)Y, 4 'Y, =mZ, + 12,
(59.2)
| @Yo b Yo &Y, + (@l + b, Y, = U7, + w2,

Since one is disregarding the special circumstance of all 8 marks being
zero the rank r of
b a m 1
(59.3)

a U ow

is either 1 or 2, and the discussion bifurcates accordingly.
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Suppose that r =1
There are 3 mutually exclusive possibilities

) a=b=Il=m=0, (@) o =0=0I=m=0,
(4ii) Bach column consists of equal marks, and in af least one column
these are 1.
Take these possibilities in turn.

(¢) The latent space is
(69.4) Yi=a'Y + Y.+ Y, + 172, + wmZ,=0,

the polar of the join of m, to (I, w/, 0, 0, &, ¥, ¢, 0), a point on or off &
according as a'l' +bm’ is O or 1, but in any event conjugate to m,. So
there occur 18 G and 12 7, the polars of those 18 g (other than g,) and
12 ¢ that pass through m, and lie in G,; the associated 30 operations of Sy
all, since 7 =0, belong to ®.

(#1) Here too there occur 18 G and 12 T, the polars of those 18 g
(other than g,) and 12 ¢ that lie in G, and pass now through m,;. Those 18
operations having a latent G occur when al4bm=0: =0 for 10 of
these. Those 12 operations having a latent T occur when al+bm =1,
{=0 for 4 of them. Hence 14 of the 30 operations belong to @; their
latent spaces are the polars of those 10 g (other than g,) and 4 { which pass
throngh m, and lie not merely in G, but in D,.

(¢¢4) The latent space is
Y, =Y, bY +aY,+ (@l +bmc\Y, =mZ, +1Z,.
The results are precisely as in (4) - 30 operations of which 14 are

in @ - with m, replaced by m,.

60. Suppose now that r =2: mnot all of
Pi=la" + b’ P, ="+ am' Py = U + man’
Pos == o' -+ mb’ P, = bl' + ma’ p,=0aa + bb’
are zero and, by (88.2), p,,=p,. Thus one may take these p,; to be
PLuCKER coordinates of the lines in a screw (4, § 8) or linear complex in a

projective 3-space P over F. Since a screw comprises 15 lines, and since
a line over F provides 6 ordered pairs of points, one obtains 90 matrices

Annali di Matematica 1
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(69.3) and, ¢ being free as usual, 180 matrices . These, with the 3 sets
of 30 found when » =1, make up the whole set of 270 operations of period
2 that are permitted by (58.2).

The number of operations among the 130 that belong to ® is found by
requiring that {=0. If ¢ v, {, 1) are coordinates in P one has to take a
point-pair, on a line A of the screw, whose first member is the intersection
of A with t=0 - except that, in the event of A lying wholly in t =0, any
ordered pair on A is eligible. Since there are (4, § 9) 3 of the 15 lines of
the screw in any plane the number of ordered point-pairs available is
12.2 4- 3.6 = 42; of the 180 9T 84 belong to ®. And so we find again thaf,
apart from (b0.6), there are in @ 30 4 14 4 14 4 84 = 142 operations of
period 2.

When # =2 (59.1) and (59.2) reduce to Y,=Y,=0 and

b+ aY,=mz,+ 17,

(60.1)
dY,+ Y, =127, 4 wmZ,

which, r being 2, can be solved for at least one pair of Y, Y,, Z,, Z, as
linear combinations (possibly zero) of the others; each of the 180 operations
has a latent solid o in G,. (60.1) is interpretable as equations of a line A*
in a projective 3-space P* and ¢ is o, y, ¢ or x according as A* lies on,
touches, is a chord of or is skew to ¥, the hyperboloid Y,Z,= Y.Z, in P*.
But, by (58.2), A* satisfies pj =p; and the null polarity for this screw is
also that for }. The 15 lines A* are therefore the 6 generators and 9
tangents of J, and there are 6w and 9y - those passing through g, and
lying in G, - each latent for 12 operations of ST.

Among those 60 and 9y there ocour, passing through d, and lying in
D,, vy, v, and y,; they give I==m'=0 in (60.1) so that the 36 operations
for which they are latent belong, all of them, to ®. But any other of the
6w and 9y corresponds to a A* not containing Y,= Y,=Z,=0; one then
takes the first equation (60.1) to be the plane joining A* to this point.
thereby ensuring that 7=0, and the second to be either of the other two
planes through A*. Of the 12 operations of S, having the solid for latent
space only 4 belong to ®. And so one again obtains the 3.12 124 =284
operations of period 2 already found.

61. These discussions in §§ 58-60, involving as they do all the operations
of period 2 in @, cover the whole of z, and enable one to define, in relation
to &, all the operations of this important and characteristic subgroup of
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S,. That identity and the glides with axes g,, ¢., 92, compose 2z, is
already known; those operations of 2z, that are not in 2z, and have latent
spaces of dimension 5 are

4 involutions, the polars of whose latent T are those { which pass
through i, and lie in v,;

8 glides, whose axes are those githrough m, that lie in D, but
not in dy;

4 glides, whose axes are those g in d, that do not pass through m,.

For such operations only occur when (59.3), here specialised to

61.1)

has rank 1. This is so when () a =0, and then the latent space is the
polar of the join of m, to (I, 0, 0, 0, a', ¥, ¢, 0). The join is in D,; it is
not in d, unless a'=7=0, but this relegates the operation to z,. The
4 { in y, occur when a'=10'=1; otherwise the join is in wfa' =1, I'=0) or
w/(@ =0, '=1). If a =1 the rank of (61.1) is 1 when (ii) o' =0 =1 =0,
giving those two glides whose axes lie in d,, pass through m, and are
distinet from g,; and when (i4) o' =1'=0, b’=1, giving those two glides
whose axes lie in d,, pass through m, and are distinct from g,.

When (61.1) has rank 2, a=1 and o, I’ cannot both be zero; the
latent solid is

Yo when o'=10=1;

0, when o' =1, I'=0; o,/ when a'=0, I'=1.

Since b, ¢’ both stay free 4 operations occur for each solid; the 12
complete z,.

It remains, in order to describe z, fully, to explain how to identify, in
each of the 3 instances, the 4 among those 28 operations in A+ for which
the solid is latent. That each of the 28 operations for which y, is latent is
the product of 4 commuting projections centred at the vertices of either of
two tetrahedra was seen in § 25; the tetrahedra together account by their

vertices for all 8 p in y, and are in perspective from a point of d,. Each
of the 7 m in d, is the centre of perspective for 4 such pairs of tetrahedra,

and it is when this m is m, that an operation in z, results.
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62. The identification of operations of 2, having w, or ®, latent uses a
mode of generating them, just as above a mode of generating operations
having 7y, latent was essential to their description. One must therefore first
expound this elementary topiec.

It was seen in § 24 that plides commute when their axes meet; but
they commute also when their axes g;, g, are skew and the solid [g.g.] is
an . Since G,. (, both contain w every point of w is invariant for
both glides.

Take any point 4 outside both G, and (.. Let wm,, m. be the inter-
sections of g,, g. with the polar prime of A; 4,, 4, the remaining points
on Am,, Am,; A, the intersection of A,m, and A,m,. The first glide, as
remarked in § 24, transforms 4 iuto 4,; since m, is conjugate both to m,
and to 4 it is conjugate to A4,, so that the second glide transforms 4, into
4,:; the two glides combined (in this order) transform 4 into 4;.. But so
they do, by similar reasoning, when combined in the opposite order: the
two products have the same effect on any point which lies either in both or
in neither of G; and G.. Indeed they have the same effect on every point
in [7]. If 4 lies, say, in G, but not in  its transform 4, under the second
glide lies in the plane Ag., and so, with 4 and g,, in G;; the first glide
leaves both A and A4, invariant and both products transform A4 into 4,.

A is distinet from A4,,; it is only points of o that are invariant under
the product of the glides, and so the product of any two glides whose axes
are skew lines in ® is an involution of class LXI. But whereas there are
only 28 such involutions with v latent there are

%.35.16: 280

pairs of skew lines in w; each involution is expressible as the product
of glides with skew axes in 10 different ways. The explanation is that there
are in o (4, §9) 28 screws each having 10 pairs of polar lines; products of
pairs of glides with skew axes in w are the same involution when the pairs
of axes are polars in the same screw.

To return, now, to z,. Of the 28 screws, whether in v, or in o/, 4
provide involutions - products of glides whose axes are polars in the screw
- that belong to #,. The 4 screws are those to which g,, g, g. belong; i.e.
those in which the null plane of m, is d,.

63. The preceding paragraphs do not merely calculate numbers of ope-
rations of period 2 in S7 and ®: they identify such operations by their
latent space o and -its relation to §. Kach of the 7 heads of § 58 provides
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32 operations of period 2 that ean be similarly identified, and these heads
are now taken seriafim. None of these 224 operations belongs to @.

(¢) The equations of o are
Y,=adY, +0Y,4-cY, 4+ 1Z +wZ,+ Z,=0;
it is the polar [B] of the line joining m, to (I, w/, 1, 0, o', ¥, ¢, 0). This
is one of those 32 lines through i, which lie in M, but outside G,: the
line is g it ¢'=a'l'+4 b'm/, { otherwise. The 32 operations under this head

have therefore as latent spaces those 16 G and 16 7' in M, that confain m,
but not g,.

(B) The equations of o are
Y, +mY, +1'Y, =0,
Z, +aY,+0Y, =0,
mL, +ay, + Y, =0,
V7, + b Y, +¢Y,  +0,

whose rank is 4 or 2 according as al’ 4+ bm is ¢ 4+ 1 or ¢. In the former
instance o is 'y, latent for 16 operations. In the latter o is the [5]

Y,=mY, +1Y,, Z=aY,+V7,.

This is one of those 16 G whose polar g lie in ', though not in dy:
moreover the intersection of g with d, is one of the 4 points not on g,.

(v. The situation is as in (§). Of the 32 operations 16 have w, for their
latent space. The other 16 have each a latent G; the polars of these G

are those 16 g, 4 through each point of d, not on g,. that lie in w, but
not in d,.

(8) The equations of ¢ are
Y, +b6Y, 4+ a')Y, =0,
Zi+ N+ Yot aY, +0Y, =0,
WZ, + V) 4+ aY, 4 VY, +¢ ¥, =0,

Q/'(Zl + Yl) + b' Yg + C' )73 + (L’ YA;: O.
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so that ¢ is the solid
Z]_“I— Yi= Yz—_'- Y3=If4=0,

i.e. Yo, when ¢ =uaa 4 bb' -+ a'b+ 1; this accounts for 16 operations. The
others have each a latent [5]

Yo =bY,+a¥,, Y, +Z =@+bY,+@+HY,.

These 16 [5]'s are T, being polars of those 16 ¢ in y, that meet d, 4
at each of the 4 points off g,.

(¢) The equations of ¢ are
Y,:aYS, Y2=bY3, Y4=O,
Z, = aZ, + bZ; + (ad’ + bb + ¢)Y,,

a solid which is o or vy according as ¢ is aa’ - b0’ or not; each solid is
latent for 4 of the 32 operations. For there are 4 solids o', namely those
meefing ®, in the planes other than d, containing either g, or g,, and 4
solids y, one through each of these same planes.

() The situation is as in (¢); but now the 4 planes, other than d,,
through either g, or g, are in ', instead of in w,.

() The equations of o are
Y, = 0, Y, =bY3, Z, = Y, +@+bY,,
Z, 4 bZy=(a +bZ, + (@a +ba’+ b+ b+ ) Y,;

these provide, where the marks take different values, 8 solids y, each latent
for 4 of the 32 operations. y, and ¢ meet in the plane

Y.+ Z,=Y,=Y,=Y,=0, Z,+bZ,=(a + bZ;

this can be any of those 4 e, two (b =0) through g, and two (b = 1) through
g,, that lie in y,. Since, in addition to y,, there are 2y through each e the
latent solids are identified.

64, All operations of S belong to A+ and have for their period some
power of 2; they are distributed among the classes

I, TI, VIII, XI, XIII, XV, XXVIIl, XXXV, XXXVI, XXXVII, LXI, LXII



W. L. Evce: 4n orthogonal group of order 23.37.52.7 87

with respective periods
1, 2.2, 4,2 4, 4,8, 4 8 2 4
and latent spaces

% T, v, 4, Gy, 9, 8 9 8, v, 0.

Those of periods 1, 2, 8 have all been accounted for, the contributions
to the classes being

1 to I, 68 to ITI, 188 to VIII, 103 to XIIT, 128 to XXXV,
128 to XXXVII, 136 to LXI.

There remains a total of 3344 operations of period 4, distributed among
classes XI, XV, XXVIII, XXXVI, LXII.

Some of these have been encountered too; for instance the 192 in
class XXVIII and 384 in class LXII for which g, is latent. One might now
enquire whether operations of S7 have latent some ¢ other than go but,
since § is to be invariant, no space can be latent for any operation of S;
unless it includes w,. Take, then, either of those g other than g, which
pass through m, and lie in d,; say

9 ¥ =Y, =Y, =Y,=4 =2,=0,

and demand that a point on ¢, other than m, is invariant when the column
vector of its coordinates is premultiplied by 9IT. Then = m’ = 0. Further-
more, since i, and #, on g, have to be transposed, »' = 1. Next, in order
that the latent space be g, itself and not a space of higher dimension, the
rank of 91T+ I must be 6, which it is seen to be if, and only if, with
l=m'=0 and n' =1, bn+ cm = 1. The remaining 5 marks are unrestricted,
so that 6.2° = 192 operations are obtained. An argument similar to, though
rather shorter than, that of § 53 shows each of w,, v, ¥, to be latent for
the squares of 64 of these operations. Since g, could have served as latent
space just as g, has done one accounts for 128 members of class XXVIII
and 256 of class LXIL.
The line

Y. =Y,=Y,=Y,=7,=Z,=0, passing through #, and lying in D,,

does mot lie in do; it is one of 8 such g, 4 in w, and 4 in w,. Its points
are all invariant under 91T when !'==m=n=0 and then O + I has
rank 6 if, and only if #' =1 = ¢ = 1. These restrictions allow 64 O which,
again by arguing as in § 53, belong 32 to each of the classes XXVIII and
LXII; so one accounts for 256 more of each class.
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65. This procedure, of using latenf spaces and their relation to & to
determine operations in 5, calls on the geometry to classify these
operations and distingnish them from each other. The main outlines of
some instances will now be given, although one does not probe matters
down to the least detail.

Take the latent space to be ¢; it meets & in 3 g concurrent at an
apex. This apex may, or may not, be #,; if it is not, its join to m, is one of the
3 g; if it is. g, may, or may -not, lie in ¢. There are 75600/135 = 560¢ with
a given m as apex; of these, 560 X 3/35 =48 include a given g through m.
There are (the dual statement is registered in Table 1) 24 ¢ through a plane
e, aud each of the 3m in e is the apex of 8 of them; hence, as there
pass through g, two e in v,, there are, among those 48 ¢ having apex m,
and containing g,, 16 that meet v, in planes. The other 32 meet v, in g,
only. Alternatively: take m, to be the apex, so that ¢ lies in ¥, =0. Each
g in ¢ meets Z, =0 and no two of these 3 intersections are conjugate. If it
is also stipulated that g, belongs to ¢ the solid is spanned by 4 points

J/ 1
(65.1) ¢
( hooy, 1 A A
yi’ yg’ 1 zt/ yzl '23’
where

gy =Y8 + YR, 7= y'5 + 9,7y,
yxzil + yl,zi + y2z2’ + ys’zz =2z, zsl + 1,
implying
(65.2) @, + 1)@ + 20+ @ + )+ 2) = 1.

Thus ¥,, ¥,, #,, %, can each) be either O or 1 and z, is then known;
(65.2) then allows 6 sets of marks for y/, y,, 2/, 2, and so 2, is determined.
Hence there are 2%6=96 ways of filling the two bottom rows in (65.1)
and, as these can be transposed without changing the solid, there are 48
eligible ¢. There is a single e in ¢ and containing g,; it joins g, to

Y +«y4,’ ¥, + Z/z/a N A 2/, 2,4+ 52,7 2+ zal?

which is not in v, unless y,’=y,. It then follows from (65.2) that y'=y,+ 1
and z,/=¢, -+ 1; only 2 of the 6 ways of satisfying (65.2), and so only 16
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of the 48 ¢ are now available. Two among these 16 ¢ occur on putting
a=0,1in ¥, +2=Y=Y, =0, Z,=0aZ,.

The requirement that every point of this solid be invariant demands

and the further requirement that no point outside the solid be invariant
demands

c=n=m=1 I'=a + o

So one accounts, 4 9T being available for each ¢, for 64 operations of
class XI.

There are 16 ¢ having m, for apex which meet d, in g, and v, in a
plane; one is '

Y+ 24,=Y,=%,=Y,=0.

The conditions for it to be the latent solid of an operation (50.1) of
ST are

o=bU=c=l=m=n=0, b=m=n'=1, dod=1,

so that 4 9W are permissible. Thus 64 operations occur, and there is
another set of 64 related to g, as this set is to g,

Next, still retaining m, for apex, take any of the 4 g outside d, in w,
and any of the 4 g ountside d, in /. A further g, joined to both the
selected ones by planes f yet lying in Go,, can be chosen in 2 ways; for
example, if the g in w, and o, join mp to (. .. . 1 .. )and (1....... )
the further g joins #, to (1 1 ..1 12 .) where « can be either O or 1.
These g lie in

Y2+Z2=Y3=Y4=O, Z2=MZ1;
the conditions on 9T are
=m=n=0, a=Il=nw=1 W=+«

so that 4 matrices are permitted. This type of ¢ therefore accounts for
14.4.2.4 = 128 operations of S;.

If wn, is the apex ¢ necessarily includes g,; among such ¢ are 16 whose
intersection with vy, is a plane. Two of these ¢ occur on putting « =0,1 in

Y.+ 2, =Y,=Y,=0, Z,=aZ;

Annali di Matematica 12
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this solid is found fo be latent when, in 9,

d=bV=c=l=m=n=0, c=n=I0l=1, b==oal - m;
since ¢ and m stay free there are 4 such 9. Since m, could have filled
the role of apex just as m,; has done the number of operations of Sy that
fall under this head is 2.16.4 = 128.
This discussion, occupying §65, shows there to be (at least, though in
fact the number is exact) 448 members of class XI in S;.

66. Tt was shown in § 55 that each of y,, %o is latent for 4 operations
of ®. In order to find how many operations of SF have y, for their latent
space one notes that

EGE+m 0,07 E+7§ v,

which traces ¥, as § %, {, © vary, has to be invariant, under premultipli-
cation by O, for all &, v, §, © in F; this is not so unless

c=n=un =0, l=a-+b l'=a, m=0b, wm=n+70.

Further, in order that no point outside ¥, be invariant if is necessary
that aa’ -4 bb' = 1. As this equation has 6 solutions, and ¢’ is free, 12 ope-
rations of S3 have ¥, for their latent space. Those for which ! =0, and
s0 a=~"0, are the ones in ®. The same holds for ¥,

The solid ¥, +-Z,=Y,=Z2,, ¥,=Y,=0 is one of the two y through
g,; it provides 4 operations of S7 for which it is latent, namely those with

b=l=m=m =0, a=c=n=n=1, d=0=c+1,

both & and ¢’ staying free. Since 4 operations are so associated with each %
throngh ¢, and each % through g. there are 16 operations of class XV
whose effect on & is different from that of the 24 having x, and y, as their
latent solids.

67. The class to afford, geometrically speaking. the most diverse ope-
rations of ST is XXXVI. The latent solid ¢ meets & in 2 planes whose
common line V can be called the hinge; if m, is not on V its join to V
lies on © and is one of the two planes constituting the section. If m, does
lie on V this hinge may be g,, or one of g; and g., or one of those 8¢ in
D, but not in d,, and so on; and after V is chosen there remains some
freedom of choice for the two planes. To span ¢ one requires two points

on V and then two further points on & not coniugate to one another but
both conjugate to both points on V.
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Suppose - an obvious first choice - V to be g,. One sees, on observing
the section Jf of & by a solid » in @G, skew to g,, that ¢ can belong to
any of 4 categories. For ¥ consists of 6 lines, 3 in each of its comple-
mentary reguli; those passing through the intersection of z with d, belong
one to w, and the other to w,, and the ¢ hinged on g, join it to the 18
chords of . They are distributed as

(@) 4 which contain d,;
(b) 4 containing one plane in v, and another in w';

(¢) 8 whose 2 planes of intersection with & lie one in either w,or w,,
the other in neither;

(d) 2 meeting & in planes neither of which is in either o, or w,.

Kach of these 18 ¢ is found to be latent for 12 operations; it will appear
that these 216 operations of S7 include the 104 that were seen in § b5 to
belong to @, the categories respectively contributing 48, 16, 32, 8. Instances
are as follows.

(@) ¥, =Y,=Y,=2 =0, latent for those 12 DT wherein
a=c=l=n=b=m=n=0, am¢-bl =1
) Yo=Y,=Y,=2,=0, latent for those 129 wherein
¢=b=c=0l=m=n=n"=0, am }-bl=1.
(¢) ¥, =Y, Y,=Y,=27,=0, latent for those 12 9T wherein
c=m=n=0=n=0, a=b, o =V, adl+bm=1.
d Y +Y, =2, ¥,=Y,=7,=0, latent for those 12 91T wherein

c=n=n"=0, a=b=m, o' = =1, U4+ mw =1

Every operation under (a) belongs to @; of the other sets of 12 those
4 members of the set having /=0 belong to .

The same 4 categories apply to those 18 v hinged either on g, or on
g:; but now, while under (a) ¢ is again latent for 12 operations, it is
latent for only 4 wunder the other headings. Instances, with g, as hinge, as
as follows.

(@ Y, =Y, =Y, =Z =0, latent for those 12 O wherein

o=b=c=l=m=m=n =0, na' 4 cl'=1.
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0 Y, =Y,=Y,=Z,=0, latent for those 4 9T wherein

o=b=c=l=mm=n=0I=m=0, a=n'=1,

¢ Y, =Y, Y,=2,=2Z7,=0, latent for those 49T wherein

b=l=m=n=0=m'=0, a=n'=1, ¢c=a, ¢ =a"

@ Y, +Y¥, =2, Y,=Y,=7,=0, latent for those 4T wherein

b=l=m=m=0, c=a=n=n=1, ¢=a=1.

The total number of operations of S, with a latent ¢ hinged on g, is
therefore

412 4 44 4 8.4 4+ 2.4 = 104,

and, since there is an equal number with a latent ¢ hinged on g., 208 opera-
tions of 87 are accounted for.
One of those 8 g through m, which lie in D, though outside d, is

Y =Y,=Y,=Y, =2,=2,=0;

this, which is in w,, can serve as a hinge. If one of the two planes through
it that compose the section of & by ¢ lies in w, this plane meets d, in one
of gi, g1, g.; in any event there are 4 choices for the companion plane,
and each ¢ is latent for 4 operations of Sy. If ¢ contains g, it can be any
of the 4 solids which arise on taking either O or 1 for «, § in

Y, =Y,=0, ¥,=aY,, Z,=pY,,
a solid which is latent for those 4 9T having
o=b=l=m=n=nw=0, c=m'=1, b=a, c’=ab + .
If ¢ contains g, it can be any of
Y=Y,=0, Y,=aY,, Z,=§Y,,
latent for those 4 T having
a=l=m=n=0l=w=0, b=uw'=1, ¢c=a, V=ad L

And analogously if ¢ contains g,. As there are 8 choices for the hinge
one accounts for 8.3.4.4 = 384 operations of S;.
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Given any of the 8 g through i, that lie in G, but outside D, there
are, among the 18 ¢ having g for hinge, 4 such that, of the two planes
constituting the section of & by ¢, one meets w, and the other meets w, in
a line. As each such o is latent for 4 operations of Si a further 128 ope-
rations are accounted for. If the hinge is

Y =Y=Y =2 =2Z,=7,=0
the 4 relevant ¢ have equations
Y. =Y,=27,=0, Z,=aY, + pZ,;

and this is latent for those 4 91T having

68. Suppose now that the hinge does not pass through n,, but that it
is one of those 4 g not passing through s, that lie in d,. Then ¢ must
contain d,, and there are 4 possibilities. If the hinge is

Y, =Y, =Y,=Y,=Z=2,=0
the 4 ¢ are found by taking «, § to be either O or 1 in
Y,=Y,=0, Y,=aY,, Z =B5Y,.
This solid is latent for the 12 9T having
d=l=0=m=Z2nw=0, b=o0c48n, ¢=ab+} Bm, bn-+ cm=1.

As there are 4 eligible hinges 192 operations of S7 are accounted for.

Among g which neither pass through m, nor lie in d, are 16, 8 through
each of m, and m,, that meet g, and lie in D,. One of them is

and if ¢ has this hinge and contains m, it is one of the 4 solids
Y, =Y,=0, Y,=aY,, Z,=3Y,.
This is latent for those 4 91T having

m=n=1=mwm=n=0=0, c=l=1, d =0, ¢=2aa-38,
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and one thereby accounts for 256 operations of SJ. The aggregate of ope-
rations in S; that have, in these $§67, 68, been recognised as belonging to
class XXXVI is

216 4- 208 + 384 4 128 4 192 -+ 256 = 1384,

The 3344 operations of period 4 that, as remarked in § 64, belong to S
have all been found; the classes

XI, XV, XXVIII, XXXVI, LXII
confribute, respectively,
448, 40, 576, 1384, 396.

69. The 4096 operation of Sy can now, when the relation of each latent
space to & is known. be partitioned into sets: not necessarily, at a first
essay, into the conjugate classes of S but certainly into sets each of
which is a union of conjugate classes, no two operations being conjugate
in S+ unless they belong to the same set. Should any further refinement
of these sets, separating conjugate classes from each other, be desired (50.3)
enables one to find the normaliser in Sy of any chosen operation; the
index of this normaliser is the number of operations in the conjugate class
to which the chosen operation belongs. The number in any conjugate class
must, of course, be a power of 2.

It is natural to carry out the partitioning by ascending the upper central
series. Each of the two members of #, is itself a cofijugate class, and a
third set consists of the two members of 2, outside z,. As for the 28
members of z, outside z,, the discussion in §§ 61, 62 partitions them into
7 sets of 4; a glide whose axis is in ®, but not in d, cannot be conjugate
in S;*' to one whose axis is in ,.

There are 112 operations of period 2in @ thatare notinz, . Of those with
a latent [5] 16, 8 of them glides, come under (4) of § 59 while 12, including
4 glides with axes in w, and 4 with axes in ®,, come under each of (¢
and (i49); as these latter heads include operations that are conjugate in
ST the 40 operations of ®, of period 2, outside z, and with latent [5]’s,
fall into D sets of 8. Next: each of ,, vy, v, is latent for 8 operations
of ® not in #,, and the argument at the end of § 60 serves to partition the
remainder as 8 4 8 with latent » and 8 -+ 8- 16 with latent y. So the
112 operations fall into 12 sets of 8 and one of 16. As for the operations

of period 4 in @ 8 of them have a latent ¥ and the other 104 fall, by § 67
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and the fact that w, and w®, cannot be transformed either into the other
under S7F, into sets of

48, 8, 8. 16, 16, 8.

It can then be shown, using (50 3), that one of the set of 48 has a
normaliser of order 2% so that the set is the union of 3 conjugate classes
with 16 members in each. And so on.
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