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INTRODUCTION

(1) Thereare, in projective space T of three dimensions, two famous quartic surfaces:
W, the Weddle surface with six nodes ((13), p. 69, footnote) and K, the Kummer surface
with sixteen ((8), p. 246, (7) passim). They are in birational correspondence and have
the same non-singular model: the octavic base surface F' of the net of quadries in [5],
which contain a given line A and for which a given simplex § is self-polar ((5); (6)).
One naturally takes S, with vertices X, X,, X,, X,, X,, X; as simplex of reference for
homogeneous coordinates %y, ;, %, %3, %, &;; F is invariant under the harmonic
inversions k; in the vertices X; and opposite bounding primes x; = 0 of S. These six %;,
mutually commutative and having identity for their product, generate an elementary
abelian group & of order 32. This representation of & throws into prominence what
may, in this context, be called its positive subgroup &+, of order 16, consisting of
identity and the 15 products h;h; = h,h;; these are harmonic inversions in the edges
X; X, and opposite bounding solids x; = x;, = 0 of 8. The coset of &+ consists of the
six h; and their ten products in threes, complementary products being the same
(hohy by = hghyhg) because of the product of all six A; being identity. These ten products
are harmonic inversions in the ten pairs of opposite plane faces of S.

A, which is presumed skew to every solid ; = ;, = 0, is thus one of a set of 32 lines

A, Ay A Ages

it meets, at its intersections with the primes x; = 0, its six images in the &, but is skew
to the other 25 lines. The 32 lines are a closed set under &, and are equivalent; absence
of a suffix confers no privilege, each line meeting its six images in the ;. For example,

A meets A;, Ay, Ape Aus  Ans  Aoss
Age meets Ay, Agy, Agy Ags  Agsy Agg
and so on.

The projection of # from A onto a solid X skew to A is W; this is explained in (5).
The plane joining A to a point P of F meets T ata point p and, as P traces F, p traces W.
But the plane AX; contains A; so that its intersection n; with Z is the projection of
every point on A;; #; is a node of W. Since A, meets both A; and 2, its projection is
n;n,. Since the projection of Ay,, must meet the projections of any lines on F that meet
Agyz this projection is the line [y, = 3,5 common to the planes nyn,n, and nyn,n,.

(2) In this communication some description is offered of specialized surfaces F,
whose projections are specialized surfaces W,; they possess properties not possessed
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by F. This endowment with additional properties is familiar for specialized Kummer
surfaces K ,. The best known example is the tetrahedroid K, recognized by Cayley(3)
in 1846 as the projective generalization of the Wave Surface in Euclidean space; K, can
be parametrized by elliptic functions, not so K. And whereas every curve on K is its
curve of contact with some other surface there are curves on K, that are not curves of
contact: indeed there is a tetrahedron 7' (hence the name tetrahedroid) each of whose
faces meets K, in a pair of conics. The corresponding non-singular model F; was
mentioned towards the close of (6); it contains eight conics, whereas there are no conics
on F. Hence there are eight curves on W, that are not present on W; these are lines or
conics according as the conics on F, of which they are projections meet, or do not
meet, A.

Cayley ((3), p. 303) unhappily says that there are, in addition to the faces of 7,
48 other planes meeting K, in pairs of conics; this is not so, nor is the dual statement
on p. 303 concerning pairs of quadric tangent cones true. The slip is a consequence of
the unwarranted assumption that six concurrent lines are joined in pairs by 15 planes,
whereas the lines in question happen to be intersections in pairs of only four planes!
The 48 planes imagined by Cayley consist in fact of four sets of four concurrent tropes,
each trope reckoned thrice. It was only too easy to be so deceived when the geometry,
indeed the very existence, of the general Kummer surface was unknown; but regret
that the mistake was not corrected when the volume of collected papers was published
more than 40 years later is perhaps permissible.

The specialized surfaces W, admit groups of self-projectivities; these, of course,
operate on 2 whereas the field of operations of the non-projective involutions discovered
by Baker(1) so long ago is confined to W, itself. But our main purpose is to give some
description of the non-singular models F, and thereby of the nets of quadrics whose
base surfaces they are.

THE ESSENTIAL FEATURES OF THE NON-SPECIALIZED FIGURE

(3) It is necessary, before imposing any specialization, to give details of certain
formalities concerning ¥, and the algebra involved when projecting F into W.
The equations determining F are

Q=Q,=Q,=0,
where Q, = Zafal,

summations being for j = 0, 1, 2, 3, 4, 5. It is presumed throughout that no two a; are
equal. Write
A0) = (0—ay) (0—a,)(0—a,) (0 —as3) (0 —ay) (0 —aj)

= 05—, 0%+ e,00— e30% + ¢,0% — e,0 + ¢;
also 8 = Zaf/f'(aj).

Then S =8, =8,=8=¢8=0, g=1, (3-1)



Models of Weddle surfaces 401

and any s, can be found in terms of the ¢; from these initial conditions and the recurrence
relation
81+6— €18k+5+ €28k 10— €35k+3+ €aSkin— CsSki1 T %S = 0, (3-2)
the last 5 — k terms here being zero if k < 5.
The relations (3-1) show that A, the line

z;f'(a;) = 0 +ay, (33)

where 6 is a parameter, lies on F'; 32 lines A, A;, A, A, are obtained from the different
signing of the six square roots. Every point on A satisfies

X, = X, = Xy= Xy = 0,
where Xy = Zaful\f (a;); (3-4)

A is skew to X, the solid X, = X; = 0, because the Vandermonde determinant |af| is
not zero. So # may be projected from A onto X, wherein W then appears.

The tetrahedron of reference in X is to be that whose facesz = 0,y = 0,2 =0, = 0
are its planes of intersection with the [4]'s X; =0, X, =0, X, =0, X; = 0. One
therefore seeks to know the coordinates of its vertices in terms of the x;. With this in
view note that, when x; is replaced by 1/,/f’(a;), X}, becomes s, which, by (3-1), makes
each X zero save X = 1. Next, replacing x; by (a; —e,)/\/f'(a;), X, becomes s ., — e, 5;,
which, by (3-1),iszero for k£ = 0, 1, 2, 3and 1 for £ = 4;itisalsozerofor & = 5 by (3-2).
Proceeding thus one finally replaces z; by

5 4 3 2 ’
(a3 — e, a3 + e,03 — 505 + eya; — e5)[\f ' (a;)
and so X, becomes
Sp+5— €185+a+ €28113— €3Sk 10T €441 — €55k

which is —eg8;,_; = 0for k= 1,2,3,4,5 and s; = 1 for k¥ = 0. The upshot is that any
point in [5] can be labelled by

z;f'(a;) = x(af — e,a} + ex0} — €307 + €40, — €5)
+y(a§_ ela? + egajz - eaaj +e,,)
+Z(0:? - 8101? +eya;— ) +t(a§ —ea;+ €s) +p(a’. —e)+¢, (3-5)

where z, ¥, 2, t can now be used as coordinates in £; p, g a8 coordinates on A.

Now substitute these expressions for z; in Q, = 0, Q, = 0, Q; = 0; all three sub-
stitutions produce linear relations in p and ¢ which may then be eliminated deter-
minantally. The first two columns of the determinant are linear, the third quadratic,
in z, y, 2, t and so the equation (3-6) below of the quartic surface W emerges. That this
form of equation for a surface mentioned so long ago as 1849 is new is because the
projection from X has not been used before. But however new the form may be the
equation itself, as a referee has kindly said, is not; it was found by Cayley in 1869 ((4),
p- 179; (0, p. 172). One may therefore be excused from detailing the calculations of
the various entries in the determinant; those in the first two columns are dealt with

26 Psp 8o
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more briefly than those in the third, but constantly repeated appeals to (3-1) and (3-2)
bring one to

12— 2¢, 2t + ey(22 + 2yt) — 2e3yz + €, y% — eg ® =0. (36)

Y 2zt —e (2% + 2yt) + 2e,(yz + at) — e5(y® + 22x) + 2e, 2y — e 2
z
t —et?42e,2t —e32% +e5y% — 2¢5xy

x
y
z

Incidentally the tangent plane to F at a point of A, being common to the tangent
primes of the quadrics containing F, is

so that these tangent planes generate
XofXy = Xy|X, = X,/ X,
a line-cone meeting X in the twisted cubic vy;

aly = yle = oft.

On y the first two columns of the determinant are proportional, so that y is on W which
is readily seen to have nodes at the points ¢ = a; when y is parametrized as

x:iy:zit = 1:p: % @3,

(4) Several writers have submitted equations for W, Baker proferring no less than
eleven in (1); but they seem, with the notable exception of Cayley, always to select
a special tetrahedron of reference. Nothing could be more natural: but equations so
obtained, unlike Cayley’s, are not symmetrically related to the six nodes.

Cayley’s equation appears at the very end of a long memoir, possibly as an after-
thought and his method of obtaining it is perhaps not the simplest one. For all one
needs is the Jacobian of the web of quadrics through the nodes, a web spanned by the
net containing y and one other quadric meeting y only at the nodes. As the net is
spanned by
xz = Y2, wt=yz, yt=2>2
the web is spanned by these and, say, any of the ten plane-pairs containing the six
nodes. But in order to obtain an equation symmetric in the a; one must use a quadric
that itself has this symmetry; for example

e X — e kY + €420 — e yz + eyt — e 2t +1% = 0.

The Jacobian W of this web is

2 ¢ . 2egx—esy+eq2
-2y -z I —e;x—ezz+eyt —0
x -y -2z e x—esy—eyt '

x Yy ey—ez+2t

This determinant, not given by Cayley, is that in (3-6) multiplied by —2.
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(5) The merit of Cayley’s equation, in whichever form, is to be available even when
the situation of the nodes on vy is projectively specialized. Suppose, to take a single
example, that the a; are the six sixth roots of unity. Then

e =e =€ =¢=¢=0, g=—1
and (3-6) collapses to
r y 2z
y 2z 2°+12 =0,
z t 2wy
2(xy® +2%) = (22 +1¢%) (Byz —at). (5-1)

This surface W, is in birational correspondence with the quadruple tetrahedroid K,
((6), p. 966).

Fl AND ITS DOUBLE-FOUR OF CONICS

(6) Fisinvariantunder the harmonic inversions in pairs of opposite plane faces of S,
and under no other biplanar inversions than these ten. But since specializations F of
F will be invariant under further such inversions it will best serve our purpose if the
following lemma is ready to hand. The notation used chimes in with later develop-
ments, and although the lemma is stated with m = 3 it has a clear analogue in [2m — 1].

LeMMA. The harmonic inversion in the two planes

atofye = Prafys = Yulys = tk (6:1)

transposes the points whose coordinate vectors are
Zo» Yoo Ta Y2 Ty Ys (6-2)
and kyolo,  axolk, kyslB Buofk, kyily, vwifk. (63)

This is because the sum of these two vectors provides a point in one of the planes (6-1),
their difference a point in the other. One may add, what is readily proved, that the
pairs (6-1) with + k& and + %’ afford commutative inversions if, and only if, &' = +ik;
and, further, that the product of any such commutative pair is harmonic inversion in
the planes 2, = 2, = 2; = 0(k = 0) and y, = ¥, = y, = 0(k = o0).

(7) The Kummer surface K becomes a tetrahedroid K, when the six nodes on the
conic in any trope can be partitioned as three pairs of an involution J. Assign to the
foci of J the parameters 0 and oo; then the parameters of any pair of J have zero sum.
The non-singular model of K is, as remarked in (6), F}, the surface Q= Q, = Q, = 0

where now
Q, = 23+ 2% + 23+ 23+ 2 + 22,

a(wg—o}) + b(af —25) + c(af — 2f),

= aP(x§ +a) + b} + 28) + (e +2F).

P o
I

F,, though not F, is unchanged by the triple transposition (2,x,) (,%;) (x,2;) since
this changes neither Q, nor Q, and merely multiplies Q, by — 1. This operation is, by
(6-3), the harmonic inversion in the planes

T[Ty = XofTy = Tef2s = £ 1 (7-1)
26-2
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and so commutes with H, the harmonic inversion in
TofTy = Tpfary = Tyf25 = % 1; (7-2)

the product of these two inversions is kyhyh, = h,hyh;, inversion in the opposite
plane faces X, X, X, and X, X3 X, of S; so H and kyhyhy commute. Since H permutes

the vertices of S as (X, X,) (X, Xs) (X, X;)
it transforms each member of any pair
ho, by hgy has Ry, By
into the other, and so commutes with hyh,, kyhs, b, hs. Thus H commutes with all of

I hohy  hohg  hyhy } 73
hofishy Tyfaby holghy ool o
which compose the centre of the non-abelian group of self-projectivities of F,.
The eight planes
xj+af =23+t =ai+2i=0 (2)

are, as noted in (6), on both Q; = 0 and Q, = 0, so that the conics in which they meet
Q, = 0 are on F;. They consist of four pairs of skew planes, one such pair being

—Lofxy = o2y = Tyfrs = 15 (7-4)

harmonic inversion in this pair is the transform of H by &, (or by %,). Inversions in two
other pairs of skew planes in & are the transforms of H by h, and by %,; the four
inversions in opposite pairs of planesin & are

H, Hhyhy, Hhyhs, Hhyhs.
These are the coset of the first line of (7-3) in an elementary abelian group of order 8.

(8) The eight planes & form the base surface of a net of quadrics whose singular
members include three pencils of line-cones with respective vertices X, X, X, Xg, X, X;
the common member of any two of these pencils is a pair of primes. The eight planes
belong four to each of the two systems on any non-singular quadric of the net. The
figure has been aptly called ((2), p. 238) a double-four of planes and occurs when the
lines of a tetrahedral complex in [3] are mapped on a non-singular quadric in [5], the
vertices and faces of the tetrahedron providing the four planes of each of the two
systems.

Each plane of 2 is transversal to X X, X, X;, X, X;; it is spanned by three points,
one on each of these edges of 8. Each of the 12 joins of two of these points not on the
same edge is, as lying in two of the planes, on both Q, = 0 and Q, = 0 so that its two
intersections with Q, = 0 are on F;; the conics in which the two planes meet F} both
pass through these two points on the line.

Through each of the six points, two on each of X X, X, X, X, X, pass four planes
of Z; they lie in the [4] joining the point to the solid spanned by those two of the three
edges on which the point does not lie; this [4] meets #] in four conics, any one of these
being met twice by each of two others. There are six such composite sections of .
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(9) The cardinal feature on which the relation between ¥, and its projection W
hinges is that each line on F, meets one of the four skew pairs of 2. Since

Gy, @y, @y a3, Gy, O
are now replaced by
a, —a, b, -b, ¢, —c

J(0) becomes an even and so f'(#) an odd function. The first two of the six relations
(3-3) become 2o f'(@) = O+a, zAf'(—a)=0-a

so that (x2+22)f'(a) = 4a0, a ‘ quadratic’ in 6 whose roots are 0 and c0; one of these
roots makes z,+ tz,, the other z, — iz,, zero. Analogous statements hold for the present
forms of the other two pairs of equations in (3-3). The upshot is that the two foci of that
involution now existing on A three of whose pairs are its intersections with Ay and A,
A, and Ay, A, and A; are one in each of a skew pair of 2.

Every individual plane of & is invariant under the four projectivities in the top line
of (7-3) while those in the bottom line transpose the planes of each skew pair. If,
therefore, a skew pair of 2 meets A it meets all of

A A01 A23 A45 }

(9-1)
Aoza Aiza Aoza Ags-

A plane of @ that meets A meets Ag;, Ay, Ay In points with the same parameter,
whether 0 or oo, since kyk,, hyhg, hyhyleave both plane and parameter unchanged; but
the same plane meets Ay, Ay94, Agass Ages in the points with the opposite parameter
because the inversions in the lower line on (7-3), while not changing the parameter,
transpose the plane with its opposite member in 2.

The three sets of eight lines that meet the other skew pairs are found by operating
on this set with &g, A, and k, since these inversions transform any opposite pair of &
into the other three pairs. One such set is

Ag Ay Ag ’\045}
Agg Az Az Ags

A, meeting two conics on F, is skew to the six others and their planes. Consider, then
the [4] spanned by A and o, one of these six conics. The opposite pair of planes of 9
which includes the plane of ¢ is obtained from the pair which meet A by operating with
an hy, say, to be definite, with A, and so with %, too. Then o meets both A,A = A, and
fg gy = Ay; the [4] therefore contains A, A and A, as meeting both o and A, as well as Ay,
meeting both A; and A,. But X, and X, are one on each diagonal of the quadrilateral
AAyAg A, so that the [4] is invariant under A, and %, and contains the conic

(9-2)

7= hyo = k0.
Its complete intersection with F; consists of a quadrilateral and a pair of conics, each
conic meeting an opposite pair of sides of the quadrilateral.

(10) The projection W, of F, from A onto X is now seen to contain two lines, pro-
jections of the conics on F, that meet A; these lines ((11), p. 359) u, 4’ pass one through
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each focus of that involution now existing on y three of whose pairs are nyand n,, n, and
74, Ny and n;. Both g and 4" meet all seven of the lines (cf. (9-1))

oMy, NoMg, MyNgs loogs  lisgs  loses  loos

There are also six conics on W,; these lie one in each of the planes joining # and 4’ to
NgNy, Mgy, NaMg.
When the involution on vy is ¢ + ¢’ = 0 the chord joining n4(¢ = a) to n,(¢ = —a) is

t—a% =z—a% = 0.
The lines p, " are y =t = 0 and z = x = 0. Since, with
f(0) = (0*—a?) (0°—b%) (02— c?),

e =¢e;=¢ =0
the equation of W, is
x Yy 2zt+2e(yz+at)+ 2e,xy
Yy =z tey(P+2yl) teyt—egx? | =0,
2t 2eyzt—2e51y

and the presence of the lines on the surface can be verified. The expanded form, to be
available for reference, is

13yt — 223 — 2t?) + e, 2(2y % — y2? — 22t) + e,y (y*2 + 2yt — 2222)
+ egx(x® + 2y3 — 3xyz) = 0. (10-1)
Points in [5], neither of them on A, that are harmonic inverses in the pair of planes
of 2 that meet A are projected into points in T that are harmonic inverses in ¢ and p’.
With the present coordinate system this is effected by multiplying either « and z or

y and t by — 1, a procedure which merely multiplies the left-hand side of (10-1) by —1
and so leaves W, unchanged.

F,

(11) If ay, a4, @, a3, a4, a; can be paired not only in one but in two involutions their
single common pair may, or may not, include one and therefore two of the a;. Suppose
that it does not, and assign to its two members the parameters 0 and co. Any involution
which includes this pair has the same product of the two parameters of all its pairs so
that there are, say, relations

QoOy = Qo0y = Qyay =k,
g0y = A0y = Ay 0y = k.
But these relations imply that
Qa5 = 0y Gy = Qg = kg,
where kykyky = aga,asaz0,a;.
Hence the a; can be paired also in a third involution as proved geometrically long ago

on page 12 of (9). This situation will be explored below; one may then presume, for the
moment, that the common pair of the two involutions consists of a, and a; and
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assign to these the parameters 1 and — 1. Any involution that includes this pair has

an equation 00’ +k(0+0')+1=0.

Use, therefore, the same label J for the involution 6+ 6’ = 0 as above and call the
involution 64’ +1 = 0 J’; take

aGy+a, =ay+ag =a5+a; =0,

Ay = Ay Gy = Qyy = — 1
so that the q; are
a, —a, at, —al 1, -1
and f(0) = (0%—a?) (02—a~?) (6%—1). (11-1)

This may be the proper place to note, with an eye to any calculations involving points
on A, that

f@), f(=a), fia), fl(=a?), f'(1), f(-1)
are proportional to
a?, —af a? —a? —1f(et+al), 1f(ec+o?). (11-2)
(12) F,is the surface common to the quadrics
Qy=ad+ai+ad+ai+ali+at=0,
Q, = alad—ad) + o~ (af—a3) +af—af = 0,
Q, = a?(x3+a3) +a2(xi+x2)+ai+ak = 0.
As with F] so with its specialization F,: the planes of the double-four
2i+at =ai+ai=ai+al=0 (2)
meet the surface in conics. But now there appears a second double-four
a?xd—23 = a’al—a =aj—-al =0, (2"

on both Q; = 0 and Q, = Q,, whose eight planes therefore also meet F, in conics.
Any of the 32lines A on F, meets two skew planes of 2 and two skew planes of 2, the
intersections being the pairs of foci of the two involutions in which the six intersections
of A with other lines on F, are paired. The projection W, of F, from A onto 3 contains,
in consequence of the specialization, four lines and twelve conics.
It was seen in section 9 that A meets planes of & where 8 = 0 and 8 = o0; (3-3) and
(11-2) show that it meets

g+ oy = AX;+ %y = T4 —2; =0 where 6 =1,
ALy — Xy = AXy — Xy = X4+ %5 =0 where 6= —1.
The inversion H’ in this pair of planes of &’, whose equations are

axy[Ty = A Myfx) = —@yfrs = £ 1,
commutes with
I, hohs, hyhy, hyh,

Fohohy  hohghs, hohihs, hohohs.
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It replaces z,, 2y, Z,, %3, X4, Xz by a™luy, a1y, ax,, ax,, —2; —2x, and so is seen to
commute with A that replaces them by
T, —i%y, 1T, —iTy X5 —i%g
Both H and H’' commute with
I, hghs,  hohohy,  hohyhs,
which form the centre of the group of 128 self-projectivities of F,; this group consists
of its normal subgroup & and three cosets H&, H'&, HH'E.

The commutativity of H and H’ is also apparent from geometrical considerations.
For the four planes concerned, skew pairs of & and 2’, all meet the four skew lines
A, Ays, Agas, Ages and do so in related ranges: the parameters on A and A,; cut by any of
the four planes are equal while the parameter on either A or A,; is related to that on
either Ay,, or Ag,; by the involution 6 < 6-1. This shows the four planes to be among the
oo! generating planes of a cubic threefold V, a family fittingly described ((12), p. 12) as
a regulus Z of planes, and parametrized by their intersections with any of the oo?
directrix lines of V. The two pairs of 9 and &’ are, as their parameters show, harmonic
in Z and this not only explains why H and H' commute but discloses that HH' is also
a biplanar inversion, its fundamental planes completing in Z a regular sextuple with
the two harmonic pairs.

When Vis projected from A, one of its own directrices, onto Z the planes on V become
lines in 2. Any transversal of three of these lines is joined to A by a solid meeting three
planes of Z each in lines: these lines have a regulus of transversals which, meeting
three planes of ¥V, meet them all ((12), p. 13, with » = 3). The regulus of planes on V is
thus projected from A into an ordinary regulus of lines in Z, and the inversions H, H’,
HH' induce three mutually commutative biaxial inversions in ¥ whose axes form a
regular sextuple in a regulus.

(13) The projection W, of F, from A onto I contains four lines g, ', v, v’ belonging
to a regulus, and twelve conics. Just as u, x4’ are the transversals y =¢=0 and
z = z = 0 from the foci of J on 7y to the chords joining its pairs so are v, v’ related to J'.
But if ¢¢’ = — 1 the chords

pp'r—(p+9)y+z=¢py—(p+$)2+t=0
of y are members of the regulus
- =py, t—y=mpz
and so have for transversals the lines of the complementary regulus
e—2)=1t-y, qy=z
This line meets y where ¢ = ¢; nowhere else. So v, »’ occur when ¢ = +1 and are
v: y=1z, x=-it; Vv: y=—1iz, x=1il

They must, with # and #’, lie on W, and are quickly seen to do so. For now, by (11-1),
es = — 1 and e, = — e, s0 that (10-1) may be written

(22 -+ 82) (3yz —at) — 2(2y° +2%) = (g7 +2%) (yz+wt) = 2yalwz 9t} (13-1)
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The harmonic inversion in v and v’ transposes (z,¥,2,t) and (it, — iz, vy, —tx); this
merely multiplies each side of (13-1) by —1.

It is apparent that u, u’, v, V', all lie on @, the quadric xy = 2¢, occurring when p = oo,
0, —, % in the regulus z[t = 2[y = p. They are harmonic pairs therein, and the regular
sextuple is completed by zft = zJy = + 1. Harmonic inversion in these two lines
transposes x with ¢ and y with 2, an operation which, by (13-1), leaves W, unchanged.

When ¢, = 0 (13-1) collapses to (5-1); this occurs when o+ 1+a~2 = 0, so that a is
a sixth root of unity other than 1 and — 1. This special case will be encountered later.

Now as with @, so with W,; a plane through »,n; has only a single contact, namely
the intersection, other than n, and »;, of n,ng; with the cubic curve residual to n,ngin
which the plane meets W,. So the points of n,n, are in (1, 1) correspondence with the
contacts of planes through n,n; either with @ or with W,: the sets of contacts with the
two surfaces are projectively related. Hence if @ and W, have the same tangent plane
at three (or more) points on n,n, they touch all along the line. And this they do, having
the same tangent plane at the four intersections of n,n, with g, u’, v, V"

The twelve conics on W, are one in each of the planes joining n4n,, nyng, 7,15 to 4 and
' or joining ngns, nyn,, nyny to vand v'.

Since Agy and Ay meet those pairs of 2 and 2’ which meet A the lines [y, and Zyy;
meet all of x4, #', v, V' and so lie on . The complete intersection of @ and W, is thus
accounted for, consisting of (if the line of contact is reckoned twice) four lines in each
regulus.

Fy
(14) That there are on conics hexads whose points may be paired in three different
involutions is apparent from the figure of two equilateral triangles with the same
circumcircle; their six vertices are joined by three parallel chords in three different

directions and, incidentally, the three involutions have a common pair ‘at infinity’.
This Euclidean example also indicates that the six points may be assigned parameters

a, wa, wa, b, wb, w?,

zeros of f(6) = (6% — a®) (62— b®). The pairings in the three involutions are

1 A A
a, b a, wh a, wb
wa, w?h wa, b wa, wb
w?a, wb w?a, W w?a, b.

The respective quadratics whose roots are the foci of these involutions are
6% = ab, 6% = wab, 6% = wab.
Take, then, in [5] the quadrics
Q= x3+ai+a} +ad+af+at =0,
Q, = a(x3+wri+wil) + b@?+owri+wl) =0, (14-1)

Q, = a?(x} + v} + wxl) +b3(2% + wixi+ wrd) = 0.
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Fy, the surface Q, = Q; = Q, = 0, is invariant under , the projectivity of period 3
that replaces
Zg, X, Xy Z3, 4 X,
by 0¥, Wy, Wy, Wi, Wi, o,
and so multiplies Q,, Q,, Q, by w, 1, ©? One expects that F, will contain 24 conics, and
so it does; they lie in the planes of the three double-fours

axt+ bx? = warl+ w?r? = w¥axi+ wbri =0, (2,)
ar}+ wbxl = wazi+ bal = waxi+wal=0, (2,)
ard + whri= wari+ wbx} = waxi+ bxi = 0. (2,)

Indeed all these 24 planes are on Q, = 0 while those of 2, Z,, Z, are, respectively,
on abQy+ Q, = 0, wabQy+ Q, = 0, WHbQy+Q, = 0.
Since, now,
J/(0) = 36%263 — a®— b3)
the six square roots of

f(a), f'lwa), f'(w*a), f'(), [f'(wh), ['(&?)

are proportional to
a, wa, ?a, b, twb, 1w

so that A, given in terms of a parameter 6 by
x() = "’b(0+a)’ x2 = Zb((l)20+a), x4 = ib(w0+a),}

(14-2)
2, = a(@+b), z;=0a(w?0+b), x;=a(wd+b),

is on F, as are all the other lines which occur on prefixing minus signs to any of these x;.
Each of the 32 lines meets six others, the intersections being one in each of the primes
x; = 0 and so having parameters

—-a, —wa, —w?a, -=b, —wb, —w.

These six points are also paired in I, in I, and in I,.
Whatever line among the 32 is chosen it meets two planes of each double-four, the
parameters of the intersections satisfying

02 =ab, 0*= wab, 6*= b

according to which double-four (but not which line)is in question. These are the three
pairs of foci of I, I,, I,. The 192 intersections, six on each of 32 lines, lie eight in each
of the 24 planes.

(15) If the non-singular Q, = 0 is cast in the role of Grassmannian of lines in [3] so
that the planes, four in each system on Q; = 0, of a double-four map the vertices and
faces of a tetrahedron, then 2, 2,, 2, correspond to tetrahedra of a desmic triad: for
if two planes are taken, one from &, and one from 2,, in the same system on Q; = 0O and
s0 with a single common point, it is found that a plane of &, also passes through this
point. Such a point is (15-2) below. The 16 such points afforded by one system of planes
map the 16 lines that contain three vertices, one of each tetrahedron; the 16 afforded by
the other system map the 16 lines that lie in three faces, one of each tetrahedron.
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Three planes, one belonging to each of @, Z,, Z,, that meet A are
T Ja+  ix,b = 0y Ja+ iwasyb = wrga+iwtegb = 0,
Zgal@ +5w%5\[b = W2g\Ja+  1214Jb = wzyJa+ twzsafb =0,
Tga@ + 10T54/b = W¥aaJ0+ 10250 = wxgfa+  Gx4fb = 0;

here one may take either square root of a and either square root of b, but the same
roots are used throughout. These three planes all lie in the prime

(To + 0¥y + 024) O +1(2; + 025 + W25) /b = O (15-1)
and so, since they are all on Q, = 0, all contain the pole
(Wb, t4fa, w4/b, iw \Ja, w2 /b, iw?.\Ja) (15-2)

of this prime with respect to Q, = 0.
The opposite planes of the double-fours occur on multiplying (either \/a or) \/b by —1
and lie in the prime
(To + 02y + i) \Ja — 1(2; + W23 + was) /b = 0. (15-3)

These primes are transposed by the biplanar inversion hyhyk, and so both contain
Agoq 28 well as A. They both meet Fgin A, Ay, and three concurrent conics. Each pair of
the 32 lines that are transposed by this inversion, for example A5 and A,;, spans a solid
through which pass two primes each meeting F; further in three concurrent conics, so
that there are 32 such composite sections of F;. Since there are 32 points each common
to three of the 24 conics there will be four of the points on each conic.

(16) Ifris a square root of —b/a F; is invariant under the biplanar inversions
Hyin the planes  zy/z, = wz,/rs = 0*x,fes = + 7,
H, in the planes wzyfzr; = wkr,fr, = x,fxs = + 7,
H,in the planes w2x,fx; = 2,3 = wxyfz, = +7,

which, by section 6, transpose zy, &,, %,, 23, ,, €5 With, respectively

72, rix,,  wirrg, ¥ lm,,  wrr;, wrla
wres, oW lx, wrr,, wrlxg, x5, riz,; (16-1)
wrr,, owrlx, %3, rlz,, wirx,, 0¥z,

Matrices imposing H,, H,, H, are

R . . . R . .. e
[. . wR], [wR . ., [ . R .,
. wR . . . R w*R . .
where R= [ T r].
r .

These matrices are all, with R, of period 2 and, as their form shows, generate a sym-
metric group of degree 3. Their products in pairs impose $ and 2.
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H,, H,, H, subject the vertices of S to the permutations

(Xo X)) (X, X} (X X3), (Ko Xa) (XaXy) (X Xp), (XoXj) (XpXp) (X X).

The group so generated is imprimitive, the planes X,X,X, and X, X, X, being
either invariant or transposed. &, under which every vertex of § is stable, is a normal
subgroup of the group of 192 self-projectivities of Fy; hyhyh, is still central for this
larger group.

(17) The projection W; of Fy; from A onto T contains six lines

Has foas flas  Hoos flos fha

and 18 conics. The u; are coplanar and concurrent, as are the u;. Moreover, since
%y + Wiy + w2, = 0 joins A to X, X, X and 2, + w3+ 0rg = 0 joins A to X X, X, the
two planes in X both contain ly,, = l,35and are harmonic to ny 7,74 and n, ng 7. p; and
#; meet A one at each focus of I, and are transversals to the three joins of nodes of W,
that are paired in Z; on y; the planes which contain either u; or u; and one of these joins
meet W, further in its 18 conics.

The plane containing pu,, s, t, is the intersection of = with (15-1) and this opens one
way to finding its equation. Since, with ¥, three of the relations (3-5) may be taken as

ary= —a®ir— abdy—b%+ a*+ pa+yg,
waz, = —w2a?ir— wab®y—b%+ 0¥+ wpa+q,
w?axy = —wa?h3r — Wlabdy—b%2+ wal+wipa+tq,
it follows that
(% + Wi, + wrx,) = 3(a?t—a?bix).
Similarly 1b(x; + w3+ wxy) = 3(b% — a®bix)

so that (15-1) is
a¥(t—b3z) + bt —adz) = 0,

(at +b%) {t — (ab)ix} = 0,
showing o, #ta, #4 to be in the plane ¢ —(ab)}z = 0. Similarly g, x3, u4 are in
t+(ab)iz = 0.
Since, now, e, = €, = ¢, = ¢; = 0 the equation of Wy is

x Yy ey +2zx)—22
Y 2z egrt+2eyz—t2 |=0
2t 2ery+ey2?
eq(3x2yz — 2wy — 3t) + e4(y3t — 23) + 213 + 22% — 3yt = 0, (17-1)
where ¢; = a®h® and e; = a®+b3. The six lines y;, u; lie three in each of two planes

through z = ¢ = 0, the intersection of the planes ¢ = a3z, { = b3 spanned by the triads
of points on (1, 8, 62, 3) whose parameters are

o, wa, w2a and b, wb, w?.
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The lines become conspicuous on writing (17-1) in the form (abbreviating a square root
of a3?® by the letter p)

3 3
(t* — a3b3x?) (xt — 3yz) + 2

8 (o5 () (o +29) (o)
~{(py®~2) (pz +1) + (py® +2°) (px — 1)} = 0.

The yu, are the intersections of px = ¢ with the planes py® = 2% and concur at (1, 0, 0, p);
the u; occur on writing — p for p.

W is invariant under biaxial inversions J, 5, #;, the axes of 5 being u; and u;.
These, like the H; which have given rise to them on projection from A, generate a
symmetric group of degree 3 under which W; is invariant. Indeed a glance at (17-1)
wherein y and z only occur cubed and in the product yz, shows that W, admits the self-
projectivity which replaces z, y, 2, ¢ by %, wy, w%, ¢ and this does in fact happen to be
Hy Hy = HyH, = HyH,. Since the axes of H#;, are pzft = wPpby/z = £ 1 the effect of
the inversion is clear from (6-3), or rather from the analogue in [3] of this rule in {5];
it is to replace

%9, 2t by tp, 20%[p}, wrply, px.
This, as eg = p?, multiplies the left-hand side of (17-1) by —1.

F,

(18) While the vertices of any two equilateral triangles with the same circumcircle
can be paired in three involutions [, ,, I, it is noticeable that a fourth such partitioning,
in an involution J, is available when the two triangles supply the vertices of a
regular hexagon, for they then lie two on each of three diameters. This, in the notation
of section 14, happens when a+b = 0; the pairing in J is

a, —a;, we, —wa; oa, -—oa.
The quadrics are then precisely as in section 17 of (6); Fy admits, among its self-

projectivities, not only H,, H,, H, but also H of section 7 here. Since H imposes the

triple transposition
(Xo Xy) (X Xg) (Xy X)

on the vertices of § it transposes the planes X, X, X, and X, X3 X;. These vertices now
undergo a dihedral group of twelve permutations and ¥, admits 384 self-projectivities.
The product H, H, H, for example, permutes the six X in a single cycle.

ho by ky 18 still central in this larger group.

When b = —a (17-1) becomes

a2 + 2xy® — 3x2yz) + 213+ 22% — 3y212 = 0
in agreement, when a® = 1, with (5-1). The six lines x4, u; are apparent from
(£2+ a®2?) (xt — 3yz) = (tay® —23) (iaPx + t) + (ta®y® + 23) (ialz —1).
This equation may also be written

3(2 + a®2?) (at — yz) + 2¢(23 — a®2?) — 2x(t2 — aSy?) = 0,
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showing that at = yz cuts W,, apart from ¥, in the five lines

z=a%, t=ay; z=wak, l=waYy;, z=ow?, t=ow’?,
x:z:o’ y=t=0.

The former three join nodes of W, paired in J; the latter two, in the opposite regulus,
pass one through each focus of J on A and are the axes v, v’ of a biaxial inversion
H leaving W, invariant. W, admits a dihedral group of 12 self-projectivities: the
symmetric group, already available for W;, extended by 5.
The lines p;, p; on W, are
b= +iddx, z= Fiway

and lie in a regulus with v, »* on @, the quadric z¢ = w/azxy which touches W, all along
the join of the two nodes that are paired both in J and in I;; i.e. those whose parameters
on y are + wia.

Fy

(19) There are on conics hexads admitting six partitionings as three pairs in
involution; such a hexad, as Corrado Segre first remarked ((10), p. 133) affords a
sextuple tetrahedroid K. In birational correspondence with K is a specialized Weddle
surface W; which is the projection of a non-singular model .

One way to obtain such a hexad is to use a regular sextuple, i.e. three pairs each
harmonic to both the others. Each pair belongs to two of the six involutions: one
supplementsit by crossings of the other two. For example: astandard regular sextupleis

0,00; 1,—1; 1, —3;
the pair 0, oo is to be supplemented either by 1,7and —1, —¢ orby 1, —sand —1, 3.

Take, then, the three pairs
a,b; wa, wb;, 3a, w?b.

Since they undergo cyclic permutation on multiplication by & any two of them are
harmonic if one pair of pairs is; this occurs when

(wa + wb) (w?a+ w?b) = 2(w?ab + wab),
a®+4ab+-b2 = 0. (19-1)

There are, in these circumstances, six involutions each containing three pairs of the
hexad, namely

I, I I, I I, I

a,b a, b a, wb a, wa a, w?b a, W3
wa, 0% wa, o%a wa, b b, wb wa, wb wa, wb
w?a, wb wb, wb w?a, wbh w?a, w?b wa, b b, w?

The quadratics whose roots are the foci of these involutions are
Iy: 0= ab. L[: 6+ 2(a+b)0+ ab=0.
L: 0% = wab. I;: 4+ 20w¥a+b)0+ wab = 0. (19-2)
1,: 0% = w2%b. I: 0*+ 20w(a+b)0+ wab = 0,
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The I; admit coupling as
Iy by Ly Iy 1, I

the pair common to any couple belonging to the hexad; F has the properties of F; in

triplicate and so, after projection, W; will have the properties of W, in triplicate.
Three involutions do not, in general, share a common pair; they do so when the

quadratics whose roots are their foci are linearly dependent; this occurs for

I, L,1; I1,I1,I; L,I,1; I,1I,1I,

So F; has the properties of F,in quadruplicate, as, after projection, W; will have those
of W,. One expects four sets of three double-fours of planes all meeting F; in conics and,
as each I; belongs to two sets of three with a common pair, each double-four will belong
to two of the four sets of three double-fours.

One set is 2, D,, 2, already encountered in section 14; the others will be labelled

Do, Dy Ds; Do, D5, D15 Dy, D1, Ds; (19-3)
they can, of course, only occur when (19-1) is satisfied and we now proceed to identify
them.

(20) By (14-1) the sum a?Q, +aQ, + Q, lacks the terms in % and 22, while

b%2Q,+bQ, + Q,
lacks those in 2§ and x2. Is there, in the pencil of quadratic forms spanned by these two,

one lacking z% and 23? The only possibility is ab€); — (@ +b) Q; + Q, which is not in the
pencil unless

a? a 1
b2 b 1[=0,
ab —a-b 1

(@a—b)(a*+4ab+b?%) = 0,
and this is so by (19-1). Now
a?Qy+ a2, + Q, = 3a%r + (a®+ab + b2) 2
+ (a® + wab + w?) 22 + (a® + w?ab + wb?) 22
= 3a(ax}—ba?)+ (@ —b){(a — w?) x} + (a — wb) x}}
by a further appeal to (19-1). But (19-1) is
(wa — )+ (w%a— wb)? = 0
and to take

wa — w% = t(w?a— wb) (20-1)

is merely to select one of two sets of quadrics possessing the properties now demanded.
Then
a?Qy+aQ, + Q, = 3a(axi—bal) + (@ -b) (@ — w?b) (2% +iwa?).
Likewise
b2Q, +bQ, + Q, = 3b(ba? —axd) + (b—a) (b~ va) (3 —iwal)



416 W. L. Epce
so that the double-four of planes
ari—br} = xi—iwrl = 2i+iwal =0 (2,)
is on every quadric of the pencil. The remaining two double-fours are, by using g,
axl—bal = al—iwzl = 23 +iwz? =0, (2,)
axi—bxl = 2} - iwrd = 22+ 1wz = 0. (Z5)
Every plane of any of these six double-fours cuts eight lines on F; at the foci of the
appropriate involutions. This may be verified by substituting the parametric forms
(14-2) in the equations for the &;; the resulting quadratic for & must be the same as
that in (19-2) with @ changed in sign. One instance must suffice. The two primes

z% = iwx} cut A, where
W02+ 2wal + a? = iw(0?%+ 200 + a?)

which accords with I; in (19-2), with — @ instead of 6, provided that

wa(l—i) (1—iv)a
—w(a+bd) o

These conditions are indeed satisfied, by (20-1).

(21) It wasnoted in section 14 that 2,4, 9,, &, are all on Q, = 0; it is therefore to be
expected that each of the sets of three double-fours in (19-3) is on some quadric
containing F;. Since 2, is on

a?Qp+ad;+Q, =0 and b2Qy+bQ;+Q, =0
it follows, on applying %, that &5 is on
wa?Qy+al; +0*Q, =0 and ©h2Q,+bQ;+0w?Q, =0
and that 9, is on
?a?Qy+aQ +wQ, =0 and 02Q,+bQ;+wQ, = 0.

W—tw =

The quadric that is common to the pencil containing Z; and the pencil containing 2,
contains both Z; and Z;; which quadric this is appears from the identity

b(w?a — wb) (wa?Qy+aQd, + w?),) + a(wa — w?) (Wb2Qy +bQ, + w?Q,)
= (a—b){ab(a+b) Qy—abQ, + (a+b) Qy},

and since the quadratic form in brackets is (@ +b) (abQ + Q,) — abQ, the corresponding
quadric, to be called @, contains 2. Moreover, by (19-1), the equation of @, is

abQy+3(@+b)Q, +Q, = 0.
From this, using $? and g, one finds that Z2,, Z;, &, are all on
Qos1: 02abQy+3(a+b) Q, +wQy =0
and that Z,, 2,, 9, are all on
Q13 wabQy+3(a+b) Q, + w?Q, = 0.
The quadric Q, = 0 is Q.
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The two planes of &; that meet A are fundamental spaces of a harmonic inversion
H; leaving Fy invariant; H; induces in  a biaxial harmonic inversion 5; for which W;
isinvariant. The effects of H,, H,, H, are indicated in (16-1); they show that these three
inversions act on Q,, Q,, Q, and the above four quadrics as follows.

Q Q, Q, Qozs Qoss Q251 @as
H, — Qyfab - —abQ, Qoz4 Qoss Qus @251
H, — w?Qyfab -Q —wabQl, Qozs Qus Qo Qoss
H, — 0 Qyfab - —w’abQ Qo2s Qa5 Qozs Qns

Thus each H; leaves invariant those two of the four quadrics on which the planes of &;
lie, while transposing the other two quadrics. So, enlisting H,, H;, H;, the six H;impose
the six transpositions of pairs and the group generated by the H; imposes the sym-
metric group of 4! permutations on the quadrics.

If every one of Quosr Qosss Pos1» @ais is invariant under a projectivity P so is every
quadric of the net to which they belong and so, therefore, is their common self-polar
simplex § whose bounding primes are thus permuted among themselves. But no
permutation, other than the identity, of these primes x; = 0 can leave every quadric
of the net invariant; so P must be the identity. Thus the group of projectivities
generated by the H; is of order 24, a symmetric group of degree 4; F; has a group of
768 self-projectivities.

(22) Fghas, as already remarked, the properties of F,in quadruplicate; for example,
each set of three double-fours provides 32 prime sections of Fg consisting of two lines

and three concurrent conics. Of the 128 such sections of Fy a single example must
suffice: the planes (o being a square root of z)

T A0+ 12, \Jb = 0%y \Ja +T02g b = 0x,\Ja +iw%; /b = 0,
ZyJa+as/b = xy+00wix, = x, +i0w?xs = 0,
Tgala—z34b = x,— 0wz, = 2y —iowir, = 0
belonging respectively to 2, 23, &; are all in the prime
O (g A/ + iy /D) + 10y AJa — 23 4[b) — (24 4Ja + 254/b) = O
and all pass through the point

(cw? b, iow?Ja, —.b, —Ja, iv b, —iw.ja).

Since A meets an opposite pair of planes of each of the six double-fours there are, in
addition to the lines on an unspecialized Weddle surface, 12 lines u;, u; ((11), p. 360)
on Wy; p; and p; meet y at the foci of I; and are the transversals from these points to the
chords joining points paired by I; on y. The 12 lines fall into four pairs of coplanar and
concurrent sets of three, such a set being the projection of three concurrent conics on
F; that all meet A. The intersection of such a pair of planes is on W; and is also the
intersection of planes spanned by complementary triads of nodes. The six biaxial
inversions in pairs of lines y;, #; belong to a group of 24 projectivities under which W,
is invariant.

2% pse 8o
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These, and other properties, are analogous to those of W,; but W; has also properties
that are analogous to those of W,. For example: g, g, #;, #1— the suffices as in one of
the three couplings of the I;—-belong to a regulus on a quadric g, which meets W;
further in two lines and touches it along another line.

Of the ten lines of intersection of planes, spanned by complementary triads of nodes
of W, four are also intersections of planes such as gy, fts, sty and ug, 3, pty; these four

lines are
losa = ligss  loss =hizes  loss =lasey  laas = Uspe

and indicate the possession by W, of a property of W, in quadruplicate. The remaining
six of the ten lines lie two on each of three quadries that touch W along the join of two
nodes, and indicate the possession by W of a property of W, in triplicate. Indeed there
are quadrics:

doy1» touching W along nyn, and containing lyy; = 45 With 1,55 = lgys,
g3, touching Wy along nyn, and containing Iy, = l;, With Iy = Ly,

45, touching Wy along n,7, and containing lyg, = lpg With Ijg; = Uyos.

REFERENCES

(1) BakER, H. F. Elementary note on the Weddle quartic surface. Proc. London Math. Soc. (2)
1 (1903), 247-261.

(2) Baxkegr, H. F. Principles of geometry, vol. 1v (Cambridge, 1925 and 1940).

(3) CavLgy, A. Sur la surface des ondes. Journal de mathématiques 11 (1846), 291-296; Collected
Papers, 1, 302-305.

(4) CaYLEY, A. A memoir on quartic surfaces. Proc. London Math. Sec. 3 (1870), 19-69;
Collected Papers, vii, 133-181.

(5) Epce, W. L. Baker’s property of the Weddle surface. J. London Math. Soc. 32 (1957),
463-466.

(6) Epce, W. L. A new look at the Kummer surface. Canad. J. Math. 19 (1967), 952—967.

(7) Hupsox, R. W. H. T. Kummer’s quartic surface (Cambridge, 1905).

(8) Kummer, E.E. Uber die Flichen vierten Grades mit sechzehn singularen Punkten.
Monatsberichte der kiniglich preussischen Akademie der Wissenschaften zu Berlin (1865).

(9) Ronn, K. Einige specielle Fille der Kummerschen Fliche. Berichte iiber die Verhandlungen
der koniglich sdchsischen Gesellschaft der Wissenschaften zu Leipzig (Mathematisch-
Physische Klasse) 36 (1884), 10-16.

(10) SEcrE, C. Sur un cas particulier de la surface de Kummer. Berichte tiber die Verhandlungen
der koniglich sdchsischen Gesellschaft der Wissenschaften zu Leipzig (Mathematisch-
Physische Klasse) 36 (1884), 132-135; Opere, vol. 111 (Rome 1961), 502-505.

(11) SNYDER, V. An application of a (1,2) quaternary correspondence to the Weddle and
Kummer surfaces. Trans. Amer. Math. Soc. 12 (1911), 354-366.

(12) TYRRELL, J. A. and SEMPLE, J. G. Generalized Clifford parallelism (Cambridge, 1971).

(13) WEDDLE, T. On the theorems in space analogous to those of Pascal and Brianchon in a
plane: Part II. Cambridge and Dublin Math. J. 5 (1850), 58-69.



