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A pencil of four-nodal plane sextics
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Introduction

Wiman, in 1895, found ((5), p. 208) an equation for a 4-nodal plane sextic W that
admits a group S of 120 Cremona self-transformations; of these, 24 are projectivities,
the other 96 quadratic transformations. S is isomorphic to the symmetric group of
degree 5 and Wiman emphasizes that § does permute among themselves 5 pencils
(4 pencils of lines and 1 of conies) and 5 nets (4 nets of conics and 1 of lines). But
he gives no geometrical properties of W. The omission should be repaired because, as
will be explained below, W can be uniquely determined by elementary geometrical
conditions. Furthermore: W is only one, though admittedly the most interesting, of
a whole pencil P of 4-nodal sextics; every member of P is invariant under S+, the
icosahedral subgroup of index 2 in S, while the transformations in the coset S\S+
transpose the members of P in pairs save for two that they leave fixed, W being one
of these. When the triangle of reference is the diagonal point triangle of the quadrangle
of its nodes the form of W is (7-2) below. Wiman referred his curve to a different
triangle.

After the equianharmonic properties necessitated by invariance have been stressed
in §§1-2 there follows an account of the geometry of P (§§3-6). Equations for the
sextics are then found (§§7-8) and some quadratic transformations in § given
(88 9-10).

In the two concluding sections (§§ 11-12) the plane maps a del Pezzo quintic surface.
Indeed the main object of the paper is to promulgate what appears to be as yet un-
known and unsuspected: there is, on a del Pezzo quintic surface, a uniquely special
single canonical curve W of genus 6. It seems that W has no free moduli, being subject
to 15 restrictions on its degree of freedom. Its discovery invites an exploration of the
geometry of its 6(62— 1) = 210 Weierstrassian points at which the osculating [4] has
(at least) six-point intersection, and of its 25(28 — 1) = 2016 contact primes, whose ten
intersections with W consist of five contacts.

The geometrical constraints imposed by invariance
1. A quadrangle in a plane 7 consists of four points 4, B, C, D, no three of them
collinear; it has three diagonal points

X, common to BC and 4D,
Y, common to C4 and BD,
Z, common to AB and CD.
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It determines five pencils:

a: lines through 4. p: lines through B.
7v: lines through C. ¢ lines through D.
€: conics through 4, B, C, D.

There is, by a fundamental theorem of projective geometry, a unique projectivity
imposing any one of the 4! permutations on 4, B, C, D. If a curve in 77 has a node at
D and is invariant under the projectivity of period 3 that leaves D fixed and permutes
A, B, C cyclically, its nodal tangents can only be the two lines d, d’ completing equian-
harmonic pencils with DA, DB, DC; they are the Hessian pair of these three joins.
With a 4-nodal curve the like circumstances occur at 4, B, C with nodal tangents
a,a’; b,b’; ¢,c’. Notice that a,a’ and d,d’ meet BC in the same pair of points, the
Hessian duad of the triad B, C, X; the like concurrencies occur on the join of any two
of 4, B, C, D. If, then, a sextic has nodes at all of 4, B, C, D and isinvariant under the
24 projectivities that permute its nodes its nodal tangents are all determined as a,a’;
b,b’;c,c’;d,d.

The projectivities that impose the double transpositions

(BC)(AD), (CA)(BD), (AB)(CD)

are the harmonic inversions in the vertices and opposite sides of XYZ; when, as
below, X YZ is triangle of reference for homogeneous coordinates z, y, z the equation
of an invariant sextic will include only even powers of z, y, 2. Wiman took his triangle
of reference to be A BC; the pairs of tangents at these three nodes can thus be read off
from his equation and the equianharmonic property confirmed.

2. The restrictions of invariance serve also to identify the intersections, other than
the nodes themselves, with the six joins. Let J be the involutory standard quadratic
transformation ((4), p. 47) whose homaloids are the conics through 4, B, C and which
has D for a fixed point;its other fixed points D', D", D" form with D a quadrangle whose
diagonal points are 4, B, C. The transform of any conic ¢ through 4,B,C,Disalineg
through D; as any second intersection of g and ¢ would be fixed under J, g is the tangent
of ¢ at D. Now take ¢ to be Q, that conic of ¢ which touches d. By the cross-ratio pro-
perty of conics, and the fact that the condition to be equianharmonic involves four
objects symmetrically, Q also touches a, b, c — the notation being fixed accordingly.
So all intersections of Q and the sextic are absorbed, three at each of 4, B,C, D; and
therefore all intersections of 4 and the sextic are absorbed at D itself and ((4), pp. 48-9)
at the intersections of d with BC,C4, A B all of whose points congregate, under J, at
A, B, C, respectively. Analogous statements apply to all eight nodal tangents, so that
the two intersections with the join of two nodes are, apart from the nodes themselves,
the Hessian duad of the two nodes and the diagonal point. For three of the joins this
can be checked instantly from Wiman’s equation.
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The pencil of 4-nodal sextics

3. It might at first sight appear that there are now sufficient restrictions on W to
determine it: one has to impose linear conditions on an arbitrary ternary sextic in
number ‘

(a) 5 ateach of A, B,C, D in order to have a node with prescribed tangents;

(b) 2inorder to pass through prescribed points on each of BC,CA,AB, AD, BD,CD.
These make a total of 32, but a ternary sextic can only satisfy 27 linearly independent
linear conditions so that the 32 cannot be independent. Indeed they are insufficient
because there are two sextic curves satisfying all of them, namely

Z = Qa'b'¢’'d and X' = Q'abed.

There is, therefore, at least a pencil P of sextics satisfying all 32 conditions; and there
cannot be more than a pencil because they all have the equivalent of 36 common
points — 6 at each of 4 nodes, 2 on each of 6 joins. A third member of P is II, the
product of the 6 joins: every line through 4, not only a and @', has 3-point intersection
with IT at 4. The place of W in P can, as will be seen in § 5, be identified.

4. It was noted in §1 that a,a’ meet BC in the same pair of points as do d,d’. But
the intersection of @ and d is the pole of A.D with respect to Q and so is on YZ because
X YZ is self-polar for Q. Thus it cannot be on BC because the intersection of YZ and
BC is the harmonic conjugate of X with respect to B and C and so does not belong to
the Hessian duad of B, C, X. Thus a,d’ meet on BC, as do a’,d; corresponding con-
currencies occur on the other joins.

5. X and X’ are, it can now be shown, interchanged by any transposition, and so
by any odd permutation, in §. They must then both be invariant under S+.

It is enough to show this for, say, (¢f) and (d¢). Under the projectivity (af) 4 — B
~ while C, D are both fixed, it is the harmonic inversion with axis CD and centre the
intersection of AB and X Y. Thus its effect is

aob, boa, cocd, dod, Q-0

and so ’
T X,

Under the quadratic transformation (d¢)
Qed, Qed

as remarked above. The lines of « are ((4), p. 48) permuted among themselves; here,
as (d¢) has period 2, ADD’ and AD"D"” are both fixed while the other lines of « are
paired by (d¢) as harmonic conjugates with respect to these; one pair is AB, 4C. As
cross-ratio is unaltered by this pairing of lines of «, and as a,a’ are not fixed, they are
transposed. The circumstances are similar in £ and y:

’

aea, bobd, coc.
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Thus
Qa'b’'c'd’ « dabcf)’,

PIRED Y

2 and X’ are transposed by every odd permutation of «, 8, v, 8, € and so are both in-
variant under every operation of S+,
Now II is invariant not only under 8+ but under the whole of S. Under (af) its

components

BC, C4, AB, AD, BD, CD
become

AC, CB, BA, BD, AD, CD.

Under (d¢) AD, BD,CD are all fixed while the set of three lines BC,CA4, AB is trans-
formed into itself: any scrutiny here of the subtleties of a standard quadratic trans-
formation can be avoided by a reference to page 49 of (4). Thus three distinct members
of P are all invariant under S+, and therefore every member of P is invariant too — on
a projective line the only projectivity with three distinct fixed points is the identity.

Every operation of the coset S\S+ transposes the members of P in pairs; this in-
volution in P has two fixed members, invariant under the whole of S; one of these is I1.
The other, since X and X’ are a pair of the involution, is harmonic to I in P with respect
to  and X'. So W is identified.

It is notable that W is uniquely determined when its four nodes are assigned; it is
an essential constituent of the geometry of the quadrangle. It has, like the quadrangle
which determines it, freedom 8. But a plane sextic with four nodes has, in general,
freedom 27 —4 = 23, so that W is specialized 15 times. As a non-hyperelliptic curve of
genus 6 has 3.6 — 3 = 15 moduli it would seem that W has no free modulus. But other
4-nodal members of P will have a single modulus which varies with the curve in P.

An equation for W is given in (7-2). W is indeed the sum of the squares of ten cubics,
but the details of this relation must, with its geometrical significance, be left to some
possible future communication.

The pair of rational curves

6. The harmonic inversion & with axis YZ and centre X imposes the double trans-
position (x8)(fy), an even permutation: » belongs to S+ and leaves every curve C in
P invariant. Should an intersection of ' with YZ be non-singular the tangent passes
through X but it is, @ priori, possible for C to have a node on YZ, the nodal tangents
being transposed by A.

The six intersections of C and YZ comprise three pairs of the involution I whose
foci are Y and Z. The parameters of any three pairs in I are zeros of a binary cubic;
each member of P yields such a cubic, the different cubics belonging to a pencil. But,
in a pencil of binary cubics, four members have repeated factors; each corresponding
sextic in P has coincident intersections with YZ at both members of a pair in I.
This has already been observed to happen with £ and Z’, the intersections concerned
being b’c’ and a’d’ for X, bc and ad for Z'. There remain two further members R, R’ of
P to be accounted for. Note, in passing, that I1 does not qualify, for while two of its
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intersections with YZ are at Y and two at Z these coincidences are of members of a
single pair, not of members of different pairs.

The indications are, therefore, that P includes sextics R, R’ each having two nodes
on YZ; these, owing to invariance under S+, will be accompanied on the same sextics
by two nodes on ZX and two on XY; R and R’ will be rational, having the maximum

of ten nodes.
The discussion in § 12 below will show that all members of P save I1, X, X', R, R are
non-singular. R and R’ are transposed by the operations of S\S+.

Equations for the plane sextics

7. When X YZ is triangle of reference, and D the unit point, for homogeneous co-
ordinates the nodes are

and
= (38— 2) (22— %) (o~ ).

Also, if w is a complex cube root of 1,
d=z+owy+or, d=z+oty+wz;
d and d’ having to be fixed lines when z, y, z are cyclically permuted:
Q=22+ wy?+ 0%, Q =22+0%’+w2,
Z=Qa'b'cd = Q(x—wzy—wz)(—:i+w2y—wz) (—z — 0% + w2) (x+ vy + w2)

= (22 + wy? + 0%2?) (24 + WY? + w2t — 2y%? — 20w%%? — 2wxty?)
= 28 + 8 + 2% — 6a2y%? — w(y2? + 2%% + 2%y?) — (Y2t + 2%t + 2);

Y = Q'abed = 28+ y® + 28 — 622y%? — W (y122 + 2% + 2% ?) — w(y®et + 2%t + 2%yt

Thus
2-% = (w—w?)]l,

so that one must take £ + X’ for W, producing the symmetric form
W = a8 4+ 98 + 28 4 (a2 + y2 + 22) (24 + yt + 2%) — 122%y%22, (7-2)

Since W is symmetric in z, y, z and consists entirely of even powers it isinvariant under
all permutationsand all changes of sign. Indeed these 22 x 3! = 48 operationsimpose the
24 permutationson 4, B, C, D asis clear from (7-1), a point not changing position when
all three of its coordinates are multiplied by — 1. W is of course also invariant under 96
quadratic transformations; some of these appear in (10-1) below.

8. The sextics R, R’ are among the curves W + AIl = 0. These meet x = 0 where
Yo +28+ (17 +2°) (' +20) — Ay*e¥(y* —2%) = O;
this yields, on writing # for y? and { for 22, the binary cubic
f=29"+(1=A) ¢+ (1 +2) 9%+ 283
(5+8A=A%) 92+ (A2 +35) ¢+ (5 —8A— A%) L2

14 PSP 89

whose Hessian is
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But if f has a repeated factor its Hessian is a square, so that
(A24 35)% = 4{(5— A%)2— 6427},
A4— 12222375 = 0,

making A? either — 3 or 125. The former alternative, A = + (v —w?), leads back to X
and X’ which, as noted earlier, each have two nodes on z = 0:

Wi(w—o)I =28 W-(w—0?)Il=2%".
When A=w—o?
[ =2 —n?{— ™%+ 83) = 2(n— wb)? (9 + wi)

and the (composite) curve has nodes on z = 0 where 32 = w22, i.e. at (0,0? 1) and
(0, —w?, 1). These points are b’c’ and a'd’, nodes of Z.
If
A=55

f =29+ (1=55)°0 + (1+ 54/5) 8%+ 283
= (1-2L 9 ey a-3y90

= 2(y -7 (1 +717%),

where 7 = }(1 +./5), a root of 62 = 6+ 1, the other root being —7-1. So one sextic R
in P has nodes on 2 = 0 where y2 = 7%2, i.e. at (0,7, 1) and (0, —7, 1). R therefore has
nodes at 4, B, C, D and at (0,7, 1), (r,1,0), (1,0,7), (0, —7,1), (—7,1,0), (1,0, —7).
The other rational curve R’ is obtained from R by the replacement 7« —7 ~1s0 that
its nodes, other than 4, B,C, D, are (0, - 1,7), (—1,7,0), (7,0, —1), (0,1,7), (1,7,0),
(7,0, 1). The replacement is, of course, simply changing the sign of ,/5.

As R and R’, in common with all other members of P, are invariant under S+ they
admit self-transformations of period 5. Such a transformation will leave one node of
the hexad fixed and permute the others in a single cycle. The six cyclic subgroups
C; of S+ are thus associated one with each node (other than 4, B, C, D) of R; this node
is twinned with one of R’ fixed for the same C;. Indeed the six pairs of twinned nodes
undergo, under S+, analogous permutations to those undergone by the six diagonals
of a regular icosahedron under the icosahedral group of its rotations.

then

Quadratic transformations

9. The transpositions of pairs of «, 8,7y, are produced by harmoniec inversions;
these replace z, y, z by the following sets of three:

(By) z,2,y, (va) 2,97, (@B) y,z,2,
(@) =, —2, —y, (B8 —2z2,y, -z, (V8 —y, —z,z. (9-1)

In order to have the whole group S one also uses (d¢), which changes lines through D
into conics through A4, B, C, and conversely. Since BC,CA4, AB are

Yy+2=0, z+2=0, z+y=0
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it follows, by analogy with the standard quadratic transformation ((4), p. 47), that
(d¢) will replace each of these lines by the product of the other two, and so z by a
quadratic form proportional to

(+y)(y+2)+(y+2)(z+2)—(z+2) (+y) = H—222,
where H is the sum of the homogeneous products of degree 2:

H=za?+y*+224yz+2x+2y.
So, in (d¢), replace z,7,2 by
H—22? H-2y?, H-—222 (9-2)

When these quadratics are substituted for z, y,z in H — 222 the outcome is
8x(y+2) (z+z) (x+y)

in accordance with the period being 2 and the jacobian of the homaloidal net of conics
being (y +2) (z+ ) (x +y). D is a fixed point; the others are

D,(_3,1’1)’ D”(11_3’1)’ D”I(l’1>—3)'

10. All operations in § are products of transpositions; examples, of periods 3, 4, 5,
are, if operations on the right in products act first,

(ade) = (ad) (8e), (afide) = (BB) (aB) (Fe), (aByde) = (v8)(B8) () (de).

The quadratics that replace z,¥,z in these transformations are found in succession
by using (9-1). The replacements are as shown.

x y z
(d¢) H — 2% H—2y% H—22?
(ade) H —2x? —H + 222 —H+2y2 10-1
(aBée) H—2y® —H +222 —H+ 2z ( )
(afryde) H — 222 —H +2y® — H + 222 :

Each of the six C;’sin S — indeed in 8+ — consists of powers of an operation obtained
from (afyde) by one of the six permutations of «, 8, y. ‘
Any fixed point of (afiyde) satisfies

H—-22 H-2y* H-2x> 2(x®-—2%

(10-2)
x -y -z z+z

and, as the line z + z = 0is fundamental, joining two base points 4, C of the homaloidal
net of conics, one can suppose here that z+z is not zero so that all ratios (10-2) are
equal to 2(z —z). But they are also equal to

2(22+yz+zx+2y)

—2(z+x),

14-2



420 W. L. EncE

the vanishing of y+z being discounted for the same reason. So one is forced to the
conclusion that, at any fixed point of (afyd¢), x = 0. Now, taking = 0, the equations
(10-2) give

—y:+224+yz P+ 4y

all of which hold when, and only when, 22 = yz + 2, so that there are two fixed points

Y +yz+ 22 = 2228,

’

(0,1,7) and (0,1, —7-1) ~ (0,7, — 1),

twinned nodes of R’ and R. Permuting the three coordinates gives the other five
twinned pairs of nodes of R’ and R; each pair is fixed for one of the six cyclic subgroups
C; of S+.

The pencil of canonical curves

11. The natural setting for the foregoing geometry is the del Pezzo quintic surface
F in [5]; the prime sections of this rational surface are mapped in 7 by the cubics
through 4, B, C, D ((2); 4), p- 140). 4, B, C, D map lines A,,, A4, A, A s on F'; all points
of, say, A4 are mapped on B but its different points are uniquely linked to the different

directions in 77 at B. There are six other lines

Aﬂy, Aya! /\aﬂs Aaa, Aﬂ:b A‘yd

on F, mapped in 7 by the joins
AD, BD, CD, BC, CA, AB;

with this notation lines on F are skew when their binary suffixes share a letter,incident
when there is no shared letter. Each line meets three others, and the Hessian duads
of their triads of intersections are basic in the geometry. The directions at 4 of a, o’
in 7 map the Hessian duad on A, of its intersections with A4,, A4, A4,. The two types of
condition imposed on the sextics of P in 7, four involving pairs of nodal tangents and
the other six involving intersections with joins of nodes, all map the same type of con-
dition on F. The curves of the pencil P on ¥ — we use the same letters to label curves
on F as label their maps in 7 — thus cut each of the ten lines A;; at the Hessian duad of
the triad of intersections with other lines; P has 20 base points.

All five pencils , 8,7, 6, € in 7 map pencils of conics on F'; the conics of ¢ meet those
four lines whose binary suffix includes ¢. Conics in different pencils have a single
intersection; conics in the same pencil are skew. The conics of @ that are mapped by o
and a’ cut the Hessian duads on A4, A,,, A4, A,.. Each of X, 2’ consists of five conics,
one from each pencil; reducible curves, of order 10, with 10 double points. In any of
the five pencils three of the conics are line-pairs.

12. Every transformation of § turns the system of cubics through 4, B, C, D into
itself ((4), p. 49) so that it maps a linear transformation in [5]; F is invariant under a
group S of projectivities isomorphic to the symmetric group of degree 5 and imposing
all 5! permutations on a, §, y, 8, €. The cubics, being adjoint and of order less by 3, cut
the canonical series on any sextic with nodes at 4, B, C, D but no other multiple points;
hence the prime sections of F cut the canonical series on all those curves of P that are
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non-singular: these, W in particular, are canonical curves. They are, as mapped by
4-nodal sextics, intersections of F with quadrics. Each of them is invariant under S+,
a group of 60 projectivities imposing even permutations on a, 8,7, 8,¢; but W is in-
variant under the whole group S. The other member of P invariant under § is II,
the product of the ten lines on F. P includes a pair R, B’ of rational curves, each with
six nodes.

Every curve other than I, 2, I1, R, R’ in P is non-singular, and so canonical: this is
proved by using the Zeuthen-Segre invariant ((3), p. 315; (1), p. 185). If a pencil of
curves of genus p on F has o base points, and if ¢ is the number of double points of

these curves, then
I=0—0c—-4p

is the same for every pencil on F. But, for each pencil 7, 8§ = 3 and o = p = 0 so that
I = 3. Hence, for P,
3=86-20—24,

8 =47,
to which X, %', 1, R, R’ contribute 10, 10, 15, 6, 6.
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