
HOMEWORK ASSIGNMENT 1

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 5 points.

Exercise 1 ([1, II.1.1]). A p-adic number

a =

∞∑
i=−m

aip
i ∈ Qp

is a rational number if and only if the sequence of digits is periodic.

Solution. Suppose that a is a rational number m
n . Let us show that its p-adic expansion

is periodic. We may assume that m and n are coprime. Similarly, we may assume that p
divides neither m nor n. Then

a = a0 + a1p + a2p
2 + · · ·

where a0 6= 0 and each ai ∈ {0, . . . , p− 1}. Solving

a0n ≡ m mod p,

we find a0 ∈ {1, . . . , p− 1} that satisfies this congruence equation. Then
m−na0

p

n
= a1 + a2p + a3p

2 + · · ·

in Qp. Note that m−na0
p is an integer. Applying the previous step to m−na0

np , we find a1
and get

m−na0−na1p
p2

n
= a2 + a3p + a4p

2 + · · ·

in Qp. Similarly, m−na0−na1p
p2

is an integer. Keep doing this, we get a0, a1, . . . , ar such that

m−na0−na1p−na2p2−···−narpr
pr+1

n
= ar+1 + ar+2p + ar+3p

2 + · · ·

in Qp for every r > 0. On the other hand, the absolute value of the integers

m− na0
p

,
m− na0 − na1p

p2
, · · · , m− na0 − na1p− na2p

2 − · · · − narp
r

pr+1

are bounded. Indeed, we have∣∣∣m− na0 − na1p− na2p
2 − · · · − narp

r

pr+1

∣∣∣ 6 |m|+ |n|a0 + |n|a1p + |n|a2p2 + · · ·+ |n|arpr

pr+1
6

6
|m|+ |n|(p− 1)(1 + p + p2 + · · ·+ pr

pr+1
=
|m|+ |n|(pr+1 − 1)

pr+1
=

=
|m|
pr+1

+ |n| − |n|
pr+1

6
|m|
pr+1

+ |n| 6 |m|+ |n|.

Thus, they belongs to a finite set. So, for r � 0, two of them, say

m− na0 − na1p− na2p
2 − · · · − nar1p

r1

pr1+1
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and
m− na0 − na1p− na2p

2 − · · · − nar2p
r2

pr2+1

coincides (here r1 6= r2). Thus, we have

ar1+1 + ar1+2p + ar1+3p
2 + · · · = m− na0 − na1p− na2p

2 − · · · − nar1p
r1

pr1+1
=

=
m− na0 − na1p− na2p

2 − · · · − nar2p
r2

pr2+1
= ar2+1 + ar2+2p + ar2+3p

2 + · · ·

in Qp. This means that
ar1+i = ar2+i

for every i > 1. This is exactly means that the p-adic expansion

a0 + a1p + a2p
2 + · · ·

is periodic.
Now let us show that p-adic numbers with periodic p-adic expansions are rational.

Suppose that the p-adic expansion of a is periodic. Let us show that a ∈ Q. Since
adding/subtracting a rational and multiplying/dividing by a non-zero rational does not
change the rationality and irrationality of the numbers in Qp, we may assume that

a = a0+a1p+a2p
2+· · ·+aNpN +a0p

N+1+a1p
N+2+a2p

N+2+· · ·+a2Np2N +a0p
2N+1+· · · .

Then

a =
(
a0 + a1p + a2p

2 + · · ·+ aNpN
)(

1 + pN + p2N + p3N + · · ·
)

in Qp. On the other hand, we have

1

1− pN
= 1 + pN + p2N + p3N + · · ·

in Qp. Indeed, the proof of this equality is the same as of

1

1− p
= 1 + p + p2 + p3 + · · ·

that is given in [1, II.1]. Thus, we have

a =
(
a0+a1p+a2p

2+· · ·+aNpN
)(

1+pN+p2N+p3N+· · ·
)

=
a0 + a1p + a2p

2 + · · ·+ aNpN

1− pN
,

so that a is rational.

Exercise 2 ([1, II.1.2]). A p-adic integer

a = a0 + a1p + a2p
2 + · · ·

is a unit in the ring Zp if and only if a0 6= 0.

Solution. For a, being a unit in Zp means that there is

b = b0 + b1p + b2p
2 + · · ·

with each bi ∈ {0, . . . , p− 1} such that ab = 1 in Zp. Keeping in mind the construction of
Qp in [1, II.1], we see that ab = 1 if and only if(

a0 + a1p + a2p
2 + · · ·+ an−1p

n−1
)(

b0 + b1p + b2p
2 + · · ·+ bn−1p

n−1
)
≡ 1 mod pn

for every n > 1. On the other hand, if a0 = 0, then we never find b0 such that

a0b0 ≡ 1 mod p,

which implies that a is not a unit unless a0 6= 0.
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Vice versa, suppose that a0 6= 0. Let us show that a is a unit. Solving the congruence
equation

a0b0 ≡ 1 mod p,

we find a unique b0 ∈ {1, . . . , p− 1}. Similarly, we get a1 ∈ {0, . . . , p− 1} by solving

a0b1 + a1b0 ≡
1− a0b0

p
mod p,

where 1−a0b0
p is an integer by construction. In general, we may prove the existence of the

required integers b0, b1, . . . , bn for ever given n by induction. Indeed, the base of induction
is already done (we found a0). Thus, if we have b0, b1, . . . , bn−1 such that(

a0 + a1p + a2p
2 + · · ·+ an−1p

n−1
)(

b0 + b1p + b2p
2 + · · ·+ bn−1p

n−1
)
≡ 1 mod pn,

then (
a0 + a1p + a2p

2 + · · ·+ an−1p
n−1
)(

b0 + b1p + b2p
2 + · · ·+ bn−1p

n−1
)
− 1

pn

is an integer, which implies that the congruence equation(
a0 + a1p + a2p

2 + · · ·+ anp
n
)(

b0 + b1p + b2p
2 + · · ·+ bnp

n
)
≡ 1 mod pn+1

is equivalent to(
a0 + a1p + a2p

2 + · · ·+ an−1p
n−1
)(

b0 + b1p + b2p
2 + · · ·+ bn−1p

n−1
)
− 1

pn
+(a0bn+b0an) ≡ 0 mod p,

which has a unique solution bn{0, . . . , p − 1}. This proves the existence of b ∈ Qp such
that ab = 1.

Exercise 3 ([1, II.1.3]). Show that the equation

x2 = 2

has a solution in Z7.

Solution. Keeping in mind the construction of Qp in [1, II.1], we must find an infinite
sequence of integers

a0, a1, a2, a3 . . . ,

in {0, 1, 2, 3, 4, 5, 6} such that(
a0 + a17 + a27

2 + · · ·+ an−17
n−1
)2
≡ 2 mod 7n

for every n > 1. For n = 1 this congruence equation gives

a20 ≡ 2 mod 7,

which gives that either a0 = 3 or a0 = 4.
Let us fix a0 = 3 (the case when a0 = 4 is similar). Then the above equation for n = 2

gives

a20 + 2a17 ≡ 2 mod 72,

which is equivalent to
a20 − 2

7
+ a1 ≡ 0 mod 7,

which has a unique solution a1 ∈ {0, 1, 2, 3, 4, 5, 6}. Note that

a20 − 2

7
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is an integer by construction. Once we found, a0, a1, . . . , an, we use(
a0 + a17 + a27

2 + · · ·+ an7n
)2
≡ 2 mod 7n+1

to get (
a0 + a17 + a27

2 + · · ·+ an−17
n−1
)2
− 2

7
+ 2an ≡ 0 mod 7,

which gives us unique an ∈ {0, 1, 2, 3, 4, 5, 6}. Here(
a0 + a17 + a27

2 + · · ·+ an−17
n−1
)2
− 2

7

is an integer. This proves the existence of the solution x2 = 2 in Qp. In fact, it proves
that there are exactly two such solutions.

Exercise 4 ([1, II.1.4]). Write the numbers 2
3 and −2

3 as 5-adic numbers.

Solution. Let us find the 5-adic expansion of 2
3 first. We must find an infinite sequence

of integers
a0, a1, a2, a3 . . . ,

in {0, 1, 2, 3, 4} such that

2 ≡ 3
(
a0 + a15 + a25

2 + · · ·+ an−15
n−1
)

mod 5n

for every n > 1. For n = 1, we get

3a0 ≡ 2 mod 5,

which gives a0 = 4. For n = 2 this gives

3a0 + 3a15 ≡ 2 mod 52,

which is equivalent to

3a1 ≡
2− 3a0

5
mod 5,

which gives us a1 = 1, because 2−3a0
5 = −2. Similarly, for n = 3, we have

3a2 ≡
2− 3a0 − 15a1

52
mod 5,

which gives us a1 = 3, because 2−3a0−15a1
52

= −1. For n = 4, we have

3a3 ≡
2− 3a0 − 15a1 − 75a2

53
mod 5,

which gives us a3 = 1, because 2−3a0−15a1−75a2
53

= −2. Note that the computation of a3 is
identical to that of a1. Arguing as in the solution of Problem 1, we see that

a1 + a25 + a35
3 + · · · = a3 + a45 + a45

3 + · · ·
in Qp. This means that

2

3
= 4 + 1 · 5 + 3 · 52 + 1 · 53 + 3 · 54 + · · · = 413.

Similarly, we can the 5-adic expansion of

−2

3
= 1 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + · · · = 31.
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