HOMEWORK ASSIGNMENT 1

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 5 points.

Exercise 1 ([1, I1.1.1]). A p-adic number

[e.9]
a= Y ap €Q
i=—m

is a rational number if and only if the sequence of digits is periodic.

Solution. Suppose that a is a rational number 7. Let us show that its p-adic expansion
is periodic. We may assume that m and n are coprime. Similarly, we may assume that p
divides neither m nor n. Then

a=ag+ap+ap*+---
where ap # 0 and each a; € {0,...,p — 1}. Solving
apn = m mod p,

we find ag € {1,...,p — 1} that satisfies this congruence equation. Then

m—nag
P = a1 +agp+agp® + -
in Q. Note that % is an integer. Applying the previous step to =29 we find aq
and get
m—nag—naip
p? _ 2
n = az +asp + asp” + - -
in Qp. Similarly, W is an integer. Keep doing this, we get ag, a1, ..., a, such that
m—nag—naip—nasp?—-—na,p"
pr+1

n = Gr41 + Grp2p + aT+3p2 + -

in Q, for every » > 0. On the other hand, the absolute value of the integers

m—nay M — nag — NaLP m — nag — nap — nasP> — - -+ — nayp"
» 2 T prtl
are bounded. Indeed, we have
m — nag — naip — nagp? — - - - — nayp" o Im| + |njag + |nlaip + |njasp? + - - - + |njayp” o
~ ~
pr—i-l pr—i—l
_ml+ Il - DA +p+p’+4p"  |m[+ 0l 1)
X pr+1 - pr+1 -
= g A2 < g <+
p7'+1 p'r—l—l ~ pr—l—l =~ :
Thus, they belongs to a finite set. So, for r > 0, two of them, say
m — nag — nNa1p — nagp? — - -+ — Nap, P
p’r‘l—‘rl
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and
m — nag — Naip — Nagp? — - -+ — Ny, P2
p’r‘2+1

coincides (here 1 # r2). Thus, we have

m — nag — naip — na2p2 — s = nap,pt

2
Qri+1 + Qpy 42D + Qpy 43" + - = prl-i-l o

m — nag — Na1p — NagP> — -+ - — Nar,p"?

— _ 2
= pr2+1 = Qry41 + Qryp2P + Aryy3p” + -0

in Qp. This means that
Ary+i = Qro+i
for every ¢ > 1. This is exactly means that the p-adic expansion

ao+a1p+a2p2+-~

is periodic.

Now let us show that p-adic numbers with periodic p-adic expansions are rational.
Suppose that the p-adic expansion of a is periodic. Let us show that a € Q. Since
adding/subtracting a rational and multiplying/dividing by a non-zero rational does not
change the rationality and irrationality of the numbers in @, we may assume that

N+1 N+2 N+2

a = ag+aip+agp’+- - -+anp” +aop +- - Faonp™ +aop® T4

Then

+aip +aop

a:(a0+a1p+a2p2+_..+aNpN)<1+pN+p2N+p3N+”_>
in @Q,. On the other hand, we have

1
m:1+pN+p2N+p3N+---

in Q,. Indeed, the proof of this equality is the same as of

1
—— =1+4p+p*+p*+--
L=p
that is given in [1, II.1]. Thus, we have

_ ag+a1p+a2p2+--'+aNpN

a= (ao+alp+a2p2+- : -+aNpN) <1+pN+p2N+P3N+- : ) N

so that a is rational.
Exercise 2 ([1, II.1.2]). A p-adic integer

a:ao+a1p+a2p2+'--
is a unit in the ring Z,, if and only if ag # 0.
Solution. For a, being a unit in Z, means that there is

b=bo+bip+bap? + -
with each b; € {0,...,p— 1} such that ab =1 in Z,. Keeping in mind the construction of
Qp in [1, II.1], we see that ab =1 if and only if

(ao +aip+asp® + -+ an_lpnfl) (bo +bip+bop® + -+ bn_lp”fl) =1 mod p"
for every n > 1. On the other hand, if ayg = 0, then we never find by such that
aobp = 1 mod p,

which implies that a is not a unit unless ag # 0.
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Vice versa, suppose that ag # 0. Let us show that a is a unit. Solving the congruence
equation
aoby = 1 mod p,
we find a unique by € {1,...,p — 1}. Similarly, we get a; € {0,...,p — 1} by solving
1 —agb
agby + a1bg = — =700 hod D,
p

where =% jg an integer by construction. In general, we may prove the existence of the
required integers bg, b1, ..., b, for ever given n by induction. Indeed, the base of induction
is already done (we found ag). Thus, if we have by, by, ..., b,—1 such that

(ao +aip+ap®+---+ an_lpnfl) (b() +bip+bop®+ -+ bn_lp"”) =1 mod p",
then
(ao +aip +agp® + -+ + an,lpnfl) (bo +b1p + bop? + - + bn,lpnfl) -1
pn
is an integer, which implies that the congruence equation

(ao +a1p + asp® + -+ aw”) (bo +bip + bop® + -+ bw”) =1 mod p"*!
is equivalent to
(ao +aip+ agp® + - + an_lpn—l) (bo +bip 4 bop? + - + bn_lp"_1> -1
p’fL

which has a unique solution b,{0,...,p — 1}. This proves the existence of b € Q, such
that ab = 1.

+(apbn+boan) = 0 mod p,

Exercise 3 ([1, II.1.3]). Show that the equation
=2
has a solution in Zr.

Solution. Keeping in mind the construction of Q, in [1, IL.1], we must find an infinite
sequence of integers

ap,a1,a2,asz ...,
in {0,1,2,3,4,5,6} such that

2
(ao + a1 T+ asT>+ -+ an_17"_1> =2mod 7"

for every n > 1. For n = 1 this congruence equation gives
ag =2 mod 7,

which gives that either ag = 3 or ag = 4.
Let us fix ap = 3 (the case when ag = 4 is similar). Then the above equation for n = 2
gives
a? + 24,7 = 2 mod 72,
which is equivalent to
ag -2
7
which has a unique solution a; € {0,1,2,3,4,5,6}. Note that

a%—2
7
3

4+ a1 =0mod 7,




is an integer by construction. Once we found, ag, a1, ..., a,, we use

2
(ao + a7+ as?? + -+ a,ﬁ”) =2 mod 7!
to get
2
(ao +a1 74 ag?? 4+ -+ an_17n71> -2

7
which gives us unique a,, € {0,1,2,3,4,5,6}. Here

+ 2a, = 0 mod 7,

2
(a() +a17+ag?? + -+ an_17n_1> -2

7

is an integer. This proves the existence of the solution z? = 2 in Qp- In fact, it proves
that there are exactly two such solutions.

Exercise 4 ([1, IL.1.4]). Write the numbers 2 and —2 as 5-adic numbers.

Solution. Let us find the 5-adic expansion of % first. We must find an infinite sequence
of integers

ap,a1,a2,asz ...,
in {0,1,2,3,4} such that

2= 3(a0 +a1b+ah® + -+ an_15"_1) mod 5"

for every n > 1. For n = 1, we get

3ap = 2 mod 5,
which gives ag = 4. For n = 2 this gives

3ap + 3a15 = 2 mod 52,

which is equivalent to
2 — 3ag

3a1 = mod 5,

which gives us a1 = 1, because % = —2. Similarly, for n = 3, we have
2 — 3a0 — 15@1
3ay = — mod 5,

which gives us a; = 3, because % = —1. For n = 4, we have

2 —3ag — 1ba; — 75

3az = 0 ! @2 mod 5,
53

which gives us ag = 1, because HLO*EM = —2. Note that the computation of ag is

identical to that of a;. Arguing as in the solution of Problem 1, we see that
a1+a25+a353+---:a3+a45+a453+~-
in Q,. This means that

2 _
g:4+1‘5+3‘52+1'53+3‘54+”':413'
Similarly, we can the 5-adic expansion of
2 _
_g:1+3'5+1'52+3'53+1'54+”':31-
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