
HOMEWORK ASSIGNMENT 2

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 5 points.

Exercise 1 ([1, II.2.2]). Let n be a natural number,

n = a0 + a1p + · · ·+ ar−1p
r−1

it’s p-adic expansion, with 0 6 ai < p, and sn = a0 + a1 + · · ·+ ar−1. Show that

vp(n!) =
n− sn
p− 1

.

Solution. Let us prove the required assertion by induction on n. When n = 1, we have
s1 = 1, so that

n− s1
p− 1

= 0,

which is exactly vp(1) since p does not divide 1.
Suppose that the required assertion holds for n, i.e. we have

vp(n!) =
n− sn
p− 1

.

Let us show that it holds for n + 1, i.e. let us show that we have

vp
(
(n + 1)!

)
=

n + 1− sn+1

p− 1
.

If a0 6= p− 1, then

n + 1 = (a0 + 1) + a1p + · · ·+ ar−1p
r−1

is p-adic expansion of n + 1, so that sn+1 = sn + 1, which gives

vp
(
(n + 1)!

)
= vp(n + 1) + vp(n!) = vp(n + 1) +

n− sn
p− 1

= 0 +
n− sn
p− 1

=
n + 1− sn+1

p− 1
,

which is exactly what we want. If a0 = a1 = · · · = ar−1 = p− 1, then

n + 1 = pr

is p-adic expansion of n + 1, so that sn+1 = 1 and sn = r(p− 1), which gives

vp
(
(n + 1)!

)
= vp(n + 1) + vp(n!) = vp(n + 1) +

n− sn
p− 1

= r +
n− sn
p− 1

=

=
r(p− 1) + n− sn

p− 1
=

r(p− 1) + n− r(p− 1)

p− 1
=

n

p− 1
=

n + 1− sn+1

p− 1
,

which is exactly what we want. Thus, we may assume that a0 = p−1, but not all numbers
a0, a1, . . . , ar−1 are equal to p− 1.

Let m be the number in {1, . . . , r − 1} such that

a0 = a1 = · · · = am−1 = p− 1

and am 6= p− 1. Then

sn = m(p− 1) + am + am+1 + · · ·+ ar−1.
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Moreover, we have vp(n + 1) = m and

n + 1 = (am + 1)pm + am+1p
m+1 + · · ·+ ar−1p

r−1

is the p-adic expansion of n + 1. This gives

sn+1 = (am + 1) + am+1 + · · ·+ ar−1 = m(p− 1) + sn + 1.

Thus, we have

vp
(
(n + 1)!

)
= vp(n + 1) + vp(n!) = vp(n + 1) +

n− sn
p− 1

= m +
n− sn
p− 1

=

=
m(p− 1) + n− sn

p− 1
=

m(p− 1) + n− (sn+1 − 1−m(p− 1)

p− 1
=

n

p− 1
=

n + 1− sn+1

p− 1
,

which is exactly what we want.
Let us give another solution. For every m ∈ {1, . . . , r − 1}, there are⌊ n

pm

⌋
= am + am+1p + · · ·+ ar−1p

r−1−m

integers between 1 and n that are divisible by pm. Thus, for every m ∈ {1, . . . , r − 1},
there are exactly ⌊ n

pm

⌋
−
⌊ n

pm−1

⌋
integers between 1 and n with exponential valuation vp = m. Thus,

vp(n!) =

r−1∑
m=1

(⌊ n

pm

⌋
−
⌊ n

pm−1

⌋)
=

r−1∑
m=1

⌊ n

pm

⌋
=

r−1∑
m=1

r−1−m∑
i=m

aip
i−m =

= a1 + a2(p + 1) + a3(p
2 + p + 1) + · · ·+ ar−1(p

r−2 + pr−3 + · · ·+ 1) =
n− sn
p− 1

.

Exercise 2 ([1, II.2.3]). Prove that the sequence

1,
1

10
,

1

102
,

1

103
,

1

104
,

1

105
, · · ·

does not converge in Qp for any p.

Solution. If p = 2 or p = 5, then ∣∣∣ 1

10m

∣∣∣
p

= 2m,

so the sequence

1,
1

10
,

1

102
,

1

103
,

1

104
,

1

105
, · · ·

is not bounded, and, in particular, it does not converge in Qp. Thus, we may assume that
either p = 3 or p > 7.

For every m > n, we have∣∣∣∣ 1

10n
− 1

10m

∣∣∣∣
p

=

∣∣∣∣10m−n − 1

10m

∣∣∣∣
p

=
∣∣10m−n − 1

∣∣
p

∣∣∣∣ 1

10m

∣∣∣∣
p

.

Thus, if m = n + 1, we have∣∣∣∣ 1

10n
− 1

10m

∣∣∣∣
p

=

∣∣∣∣ 9

10m

∣∣∣∣
p

= |9|p

∣∣∣∣ 1

10m

∣∣∣∣
p

= |9|p >
1

9
,

which implies that the sequence

1,
1

10
,

1

102
,

1

103
,

1

104
,

1

105
, · · ·
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is not Cauchy, and, in particular, it does not converge in Qp.

Exercise 3 ([1, II.2.5]). Show that for every a ∈ Z such that gcd(a, p) = 1, the sequence{
ap

n
}
n∈N

converges in Qp.

Solution. Let us show that this sequence is Cauchy, so it converges. First, observe that
there are

ϕ(pn) = pn − pn−1

integers less than pn that do not divide it (here ϕ is the Euler function). Since gcd(a, p) = 1,
we have

aϕ(p
n) = ap

n−pn−1 ≡ 1 mod pn

by Euler’s Theorem. Then

ap
n ≡ ap

n−1
modpn.

Raising LHS and RHS of this congruence to the power of pk for every k ∈ N, we get

ap
n+k ≡ ap

n+k−1
modpn.

Thus, we have

ap
m ≡ ap

m−1 ≡ · · · ≡ ap
n ≡ ap

n−1
modpn.

for every m > n. Thus, pn+1 divides

ap
m − ap

n

for all m > n. Then ∣∣∣apm − ap
n
∣∣∣
p
6

1

pn+1

for all m > n. This implies that the sequence{
ap

n
}
n∈N

is Cauchy, and thus it converges in Qp.

Exercise 4 ([1, II.1.6]). Prove that Qp is not isomorphic to Qq if p 6= q.

Solution. Without loss of generality, we may assume that q > p. In particular, q 6= 2.
Let m be an integer such that the congruence equation

x2 ≡ m mod q

does not have a solution. Note that such m exists, because q > 2. On the other hand, it
follows from the Chinese Remainder Theorem that to find an integers n such that

n ≡ 1 mod p

and
n ≡ m mod q.

Then the equation x2 = n does not have solutions in Qq. This follows, for example, from
[1, Proposition II.1.4]. On the other hand, the equation

x2 = n

has a root in Qp. Indeed, the equation

x2 = n

has a solution in Qp if and only if the congruence equation

x2 ≡ n mod p
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has a solution. This was implicitly proved in the lectures (cf. [1, Exercise II.1.3]) and it
follows, in particular, from Hensel’s Lemma (see [1, Lemma II.4.6]). Since

n ≡ 1 mod p,

the congruence equation x2 ≡ n mod p has obvious solutions, so that the equation x2 = n
has a solution in Qp as well. Thus, the fields Qp and Qq cannot be isomorphic.
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