HOMEWORK ASSIGNMENT 2

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

FEach problem will be marked out of 5 points.

Exercise 1 ([1, I1.2.2]). Let n be a natural number,

n=ap+ap+--+a_1p""

it’s p-adic expansion, with 0 < a; < p, and s, = a9+ a1 + - + a,_1. Show that

n— Sy

p—1"

Solution. Let us prove the required assertion by induction on n. When n = 1, we have
s1 =1, so that

vp(n!) =

n—si

p—1
which is exactly v,(1) since p does not divide 1.
Suppose that the required assertion holds for n, i.e. we have

Y

n — Sp
p—1"
Let us show that it holds for n + 1, i.e. let us show that we have

1—

vp(n!) =

If ag # p — 1, then

n+l=(apg+1)+ap+-+ar_1p" "

is p-adic expansion of n + 1, so that s, 11 = s, + 1, which gives

n—s n—s n+1—sp4+1
vp((n+ 1)) = vp(n+1) + vp(n!) = vy(n+1) + p—ln =0+ p—ln = p—ln ,
which is exactly what we want. If aqg = a1 =--- =a,_1 = p—1, then

n+1=p"

is p-adic expansion of n + 1, so that s,4+1 = 1 and s, = r(p — 1), which gives

n—s n—s
vp((n+1)!) = vp(n+1) + vp(n!) = vp(n+1) + p—ln =r+ p—ln =

rp—1)+n—-s, r(p—1)+n—-r(p—-1) n  n+l-s,41

N p—1 N p-1 p-1 p-1 7

which is exactly what we want. Thus, we may assume that ag = p—1, but not all numbers
ap,ai,...,ar—1 are equal to p — 1.
Let m be the number in {1,...,r — 1} such that

apg=a1=+=ap-1=p—1
and a,, # p — 1. Then
sp=m(p—1)+ am + ame1 + -+ + ar_1.

This assignment is due on Wednesday 11 February 2015.
1



Moreover, we have v,(n + 1) = m and
nA 1= (am + D)p™ + appap™ ™+ apap’
is the p-adic expansion of n 4+ 1. This gives
Sn1 = (am + 1)+ @i+ + a1 =m(p— 1) + sp + 1.

Thus, we have

n—s n-—s
vp((n+1)1) = vp(n+ 1) + vp(n!) = vy(n+ 1) + p—ln =m+ p—ln =
- mp—1)+n—-s5, mp—-1)+n—(spp1—1-m(p—-1) n  n+l-s,41
N p—1 N p—1 Cp—1 p—1
which is exactly what we want.
Let us give another solution. For every m € {1,...,r — 1}, there are

n
[WJ =am +amp+---+ arflpr_l_m
p

integers between 1 and n that are divisible by p™. Thus, for every m € {1,...,r — 1},

there are exactly
n n
ol - L]

integers between 1 and n with exponential valuation v, = m. Thus,

r—1 n n r—1 n r—1r—1-m '
i) = 32 (o] L)) = S ) - 2 i
m=1 p p m=1 p m=1 i=m
n—s
=a1+ax(p+ 1) +az(P?+p+ 1)+ Fa (P i Hp 1) = p_1”

Exercise 2 ([1, I1.2.3]). Prove that the sequence
1777737a777a"'
10710271037 104 105
does not converge in Q, for any p.

Solution. If p =2 or p = 5, then

so the sequence

7%)@7@1@)17057“'
is not bounded, and, in particular, it does not converge in Q,. Thus, we may assume that
either p=3orp> 7.
For every m > n, we have

T e et [ S e
p P P
Thus, if m =n + 1, we have
L] ] o] <>
om 10|, j10m | Pliom|, P79’

which implies that the sequence

10710271037 1047 105
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is not Cauchy, and, in particular, it does not converge in Q,,.

Exercise 3 ([1, I1.2.5]). Show that for every a € Z such that ged(a,p) = 1, the sequence

n
{=}
neN

Solution. Let us show that this sequence is Cauchy, so it converges. First, observe that
there are

converges in Q.

1

n_

p(p") =p" —p""
integers less than p™ that do not divide it (here ¢ is the Euler function). Since ged(a,p) =1,
we have

a?®") = g?" """ =1 mod p"

by Euler’s Theorem. Then

n n—1

a’? =a’  modp™.

Raising LHS and RHS of this congruence to the power of p* for every k € N, we get

n+k nt+k—1
a? = adP modp”.
Thus, we have
m m—1 n n—1
a’? =d T =..-=a’ =d’ modp”.
for every m > n. Thus, p"*! divides
m "
aP" — P
for all m > n. Then .
m n
a? —adl | <
p pn+1

for all m > n. This implies that the sequence

{=}
neN

Exercise 4 ([1, I1.1.6]). Prove that Q) is not isomorphic to Q, if p # q.

is Cauchy, and thus it converges in Q.

Solution. Without loss of generality, we may assume that ¢ > p. In particular, g # 2.
Let m be an integer such that the congruence equation

2 =m mod ¢

does not have a solution. Note that such m exists, because ¢ > 2. On the other hand, it
follows from the Chinese Remainder Theorem that to find an integers n such that

n =1 mod p

and

n =m mod q.
Then the equation 22 = n does not have solutions in Qq- This follows, for example, from
[1, Proposition II.1.4]. On the other hand, the equation

1’2:7?,

has a root in Q,. Indeed, the equation
?=n
has a solution in Q, if and only if the congruence equation

z? =n mod p
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has a solution. This was implicitly proved in the lectures (cf. [1, Exercise I1.1.3]) and it
follows, in particular, from Hensel’s Lemma (see [1, Lemma I1.4.6]). Since

n =1 mod p,

2 _ 2 _

the congruence equation x n mod p has obvious solutions, so that the equation x
has a solution in Q, as well. Thus, the fields Q, and QQ; cannot be isomorphic.

n
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