
HOMEWORK ASSIGNMENT 3

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 5 points.

Exercise 1 ([1, II.3.1]). Show that

|z| = (zz)1/2

is the only valuation of C which extends the absolute value | | of R.

Solution. Let | | be a valuation on C that extends the absolute value | | of R. Then
| − 1| = 1 by assumption. Moreover, we have |i| = 1 as well, because

1 = | − 1| = |i× i| = |i| × |i|
and |i| > 0. Thus, we have∣∣e2πiθ∣∣ = | cos(θ) + i sin(θ| 6 | cos(θ)|+ |i sin(θ| = | cos(θ)|+ |i|| sin(θ| 6 2

for every θ ∈ R. If |e2πiθ| > 1, then∣∣e2πiθn∣∣ =
∣∣e2πiθ∣∣n > 2

for some n ∈ N. Thus, |e2πiθ| 6 1 for every θ ∈ R. Similarly, if |e2πiθ| < 1, then∣∣e−2πiθn∣∣ =
1∣∣e2πiθ∣∣n > 2

for some n ∈ N. This shows that |e2πiθ| = 1 for every θ ∈ R. Since, every non-zero
complex number z can be written as

z = re2πiθ

for some r ∈ R>0 and θ ∈ R, we see that

|z| =
∣∣re2πiθ∣∣ =

∣∣r∣∣∣∣e2πiθ∣∣ = r = (zz)1/2

for every z ∈ C.

Exercise 2 ([1, II.3.2]). What is the relation between the Chinese remainder theorem and
the approximation theorem [1, Theorem II.3.4]?

Solution. The Chinese Remainder Theorem says that if n1, . . . , nk are pairwise coprime
integers, and a1, . . . , ak are some integers, then there is an integer x such that

x ≡ ai mod ni.

for every i ∈ {1, . . . , k}. Taking prime decomposition of each ni and applying [1, Theo-
rem II.3.4], we can find a rational number

q =
s

t
such that

s ≡ tai mod ni.

If such q was always an integer, i.e. t = 1, this would give us the Chinese Remainder
Theorem. However, [1, Theorem II.3.4] does not claim that q is an integer. So, the
Chinese Remainder Theorem is somewhat stronger statement.

This assignment is due on Wednesday 18 February 2015.
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Exercise 3 ([1, II.3.3]). Let k be a field and K = k(t) be the function field in one variable.
Show that the valuations vp associated to the prime ideals

p =
(
p(t)

)
of k[t], together with the degree valuation v∞, are the only non-trivial valuations of K
that are trivial on k, up to equivalence. What are the residue class fields?

Solution. Let v be a valuation of K. Since V is trivial on k, it must be a nonarchimedian
valuation (see [1, Definition II.3.5]). Thus, it follows from [1, Proposition II.3.4] that

v(a+ b) > min{v(a), v(b)}
for every a and b in K (strict triangle inequality). Recall that the valuation ring of v is

O = {x ∈ K | v(x) > 0}.
The ring O has a unique maximal ideal

I = {x ∈ K | v(x) > 0}
by [1, Proposition II.3.8].

Suppose that v(t) > 0. Let us show that v is equivalent to vp for some non-trivial ideal
p in k[t] that is generated by a non-zero irreducible polynomial p(t) ∈ k[t]. To see that
this is true, note that for any polynomial f(t) ∈ k[t], if

f(t) = a0 + a1t+ · · ·+ ant
n,

we have
v
(
f(t)

)
> min{v(al) + l · v(t)|l = 0, 1, . . . , n}.

Since v(ai) = 0 and v(t) > 0, this means that v(f(t)) ≥ 0. So k[t] is a subset of the
valuation ring O. Put p = I ∩ k[t]. Then p is an ideal in k[t] (and it is nontrivial because
1 /∈ I). So, since k[t] is a principal ideal domain (it’s a polynomial ring over a field), the
ideal p is generated by a single element p(t) ∈ k[t]. Moreover, because I is prime, so is p.
Thus, p(t) is irreducible. We claim that

v(h(t)) = vp(h(t))× v
(
p(t)

)
for every h(t) ∈ K. Indeed, let h(t) ∈ K, and write it as

h(t) = p(t)m
q(t)

r(t)

where q(t) and r(t) are polynomials in k[t] such that p(t) does not divide either q(t) or
r(t). Then neither q(t) nor r(t) is in p, so they are no in I. Then

v
(
q(t)

)
= v

(
r(t)

)
= 0.

On the other hand, we have
m = vp(h(t)

by definition. Thus, we have

v
(
h(t)

)
= m× v

(
p(t)

)
= vp(h(t))× v

(
p(t)

)
.

So, v is equivalent to vp.
Suppose now that v(t) < 0. Let us show that v is equivalent to the degree valuation.

Put x = 1
t . Then

v
(
x
)
> 0,

which implies that x ∈ I. Arguing as in the case v(t) > 0, we see that k[x] is a subset of
the valuation ring O, and p ∩ k[x] is a non-trivial prime ideal. Since, x is an irreducible
polynomial and x ∈ p, we see that p ∩ k[x] is generated by x. Arguing as in the case
v(t) > 0, we see that

v
(
f(t)

)
= v(t)× v∞

(
f(t)

)
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for every f(t) ∈ k(t), so that v is equivalent to v∞. Indeed, it is enough to check the latter
equality for polynomials in k[t]. Let

f(t) = a0 + a1t+ · · ·+ an−1t
n−1 + ant

n

be a polynomial of degree n in k[t], where an 6= 0. Then we can factor out a power of tn

so that
f(t) = tn

(
an + an−1t

−1 + · · ·+ a1t
1−n + a0t

−n
)
.

Then the strict triangle inequality gives

v
(
an + an−1t

−1 + · · ·+ a1t
1−n + a0t

−n
)

= v(an) = 0.

Thus, we have
v
(
f(t)

)
= n× v(t) = v(t)× v∞

(
f(t)

)
.

The residue class fields for the p(t)-adic valuations are

k[t]/(p(t)),

and that the residue class field for v∞ is just k. Indeed, in the former case, the ring O is
just a localization of the ring k[t] in the ideal generated by p(x), which implies that

O/I ∼= k[t]/(p(t)).

In the latter case, O is the localization of the ring k[x] in the ideal generated by x, where
x = 1

t as above. Thus, the residue class field for v∞ is

O/I ∼= k[x]/(x) ∼= k.
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