HOMEWORK ASSIGNMENT 3

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 5 points.

Exercise 1 ([1, II.3.1]). Show that

$$|z| = (z\overline{z})^{1/2}$$

is the only valuation of \mathbb{C} which extends the absolute value | | of \mathbb{R} . Solution. Let | | be a valuation on \mathbb{C} that extends the absolute value | | of \mathbb{R} . Then

$$|-1| = 1$$
 by assumption. Moreover, we have $|i| = 1$ as well, because

$$1 = |-1| = |i \times i| = |i| \times |i|$$

and |i| > 0. Thus, we have

$$\left|e^{2\pi i\theta}\right| = \left|\cos(\theta) + i\sin(\theta) \leqslant \left|\cos(\theta)\right| + \left|i\sin(\theta)\right| = \left|\cos(\theta)\right| + \left|i\right| \left|\sin(\theta) \leqslant 2\pi i\theta\right|$$

for every $\theta \in \mathbb{R}$. If $|e^{2\pi i\theta}| > 1$, then

$$\left|e^{2\pi i\theta n}\right| = \left|e^{2\pi i\theta}\right|^n > 2$$

for some $n \in \mathbb{N}$. Thus, $|e^{2\pi i\theta}| \leq 1$ for every $\theta \in \mathbb{R}$. Similarly, if $|e^{2\pi i\theta}| < 1$, then

$$\left|e^{-2\pi i\theta n}\right| = \frac{1}{\left|e^{2\pi i\theta}\right|^n} > 2$$

for some $n \in \mathbb{N}$. This shows that $|e^{2\pi i\theta}| = 1$ for every $\theta \in \mathbb{R}$. Since, every non-zero complex number z can be written as

$$z = r e^{2\pi i \theta}$$

for some $r \in \mathbb{R}_{>0}$ and $\theta \in \mathbb{R}$, we see that

$$|z| = |re^{2\pi i\theta}| = |r||e^{2\pi i\theta}| = r = (z\overline{z})^{1/2}$$

for every $z \in \mathbb{C}$.

Exercise 2 ([1, II.3.2]). What is the relation between the Chinese remainder theorem and the approximation theorem [1, Theorem II.3.4]?

Solution. The Chinese Remainder Theorem says that if n_1, \ldots, n_k are pairwise coprime integers, and a_1, \ldots, a_k are some integers, then there is an integer x such that

$$x \equiv a_i \mod n_i.$$

for every $i \in \{1, ..., k\}$. Taking prime decomposition of each n_i and applying [1, Theorem II.3.4], we can find a *rational* number

 $q = \frac{s}{t}$

such that

$s \equiv ta_i \mod n_i$.

If such q was always an integer, i.e. t = 1, this would give us the Chinese Remainder Theorem. However, [1, Theorem II.3.4] does not claim that q is an integer. So, the Chinese Remainder Theorem is somewhat stronger statement.

This assignment is due on Wednesday 18 February 2015.

Exercise 3 ([1, II.3.3]). Let k be a field and K = k(t) be the function field in one variable. Show that the valuations $v_{\mathfrak{p}}$ associated to the prime ideals

$$\mathfrak{p} = (p(t))$$

of k[t], together with the degree valuation v_{∞} , are the only non-trivial valuations of K that are trivial on k, up to equivalence. What are the residue class fields?

Solution. Let v be a valuation of K. Since V is trivial on k, it must be a nonarchimedian valuation (see [1, Definition II.3.5]). Thus, it follows from [1, Proposition II.3.4] that

$$v(a+b) \ge \min\{v(a), v(b)\}$$

for every a and b in K (strict triangle inequality). Recall that the valuation ring of v is

$$\mathcal{O} = \{ x \in K \mid v(x) \ge 0 \}$$

The ring \mathcal{O} has a unique maximal ideal

$$\emptyset = \{ x \in K \mid v(x) > 0 \}$$

by [1, Proposition II.3.8].

Suppose that $v(t) \ge 0$. Let us show that v is equivalent to $v_{\mathfrak{p}}$ for some non-trivial ideal \mathfrak{p} in k[t] that is generated by a non-zero irreducible polynomial $p(t) \in k[t]$. To see that this is true, note that for any polynomial $f(t) \in k[t]$, if

$$f(t) = a_0 + a_1 t + \dots + a_n t^n,$$

we have

$$v(f(t)) \ge \min\{v(a_l) + l \cdot v(t) | l = 0, 1, \dots, n\}.$$

Since $v(a_i) = 0$ and $v(t) \ge 0$, this means that $v(f(t)) \ge 0$. So k[t] is a subset of the valuation ring \mathcal{O} . Put $\mathfrak{p} = \mathfrak{I} \cap k[t]$. Then \mathfrak{p} is an ideal in k[t] (and it is nontrivial because $1 \notin \mathfrak{I}$). So, since k[t] is a principal ideal domain (it's a polynomial ring over a field), the ideal \mathfrak{p} is generated by a single element $p(t) \in k[t]$. Moreover, because \mathfrak{I} is prime, so is \mathfrak{p} . Thus, p(t) is irreducible. We claim that

$$v(h(t)) = v_{\mathfrak{p}}(h(t)) \times v(p(t))$$

for every $h(t) \in K$. Indeed, let $h(t) \in K$, and write it as

$$h(t) = p(t)^m \frac{q(t)}{r(t)}$$

where q(t) and r(t) are polynomials in k[t] such that p(t) does not divide either q(t) or r(t). Then neither q(t) nor r(t) is in \mathfrak{p} , so they are no in \mathfrak{I} . Then

$$v(q(t)) = v(r(t)) = 0.$$

On the other hand, we have

$$m = v_{\mathfrak{p}}(h(t))$$

by definition. Thus, we have

$$v\big(h(t)\big) = m \times v\big(p(t)\big) = v_{\mathfrak{p}}(h(t)) \times v\big(p(t)\big)$$

So, v is equivalent to $v_{\mathfrak{p}}$.

Suppose now that v(t) < 0. Let us show that v is equivalent to the degree valuation. Put $x = \frac{1}{t}$. Then

$$v(x) > 0,$$

which implies that $x \in \mathfrak{I}$. Arguing as in the case $v(t) \ge 0$, we see that k[x] is a subset of the valuation ring \mathcal{O} , and $\mathfrak{p} \cap k[x]$ is a non-trivial prime ideal. Since, x is an irreducible polynomial and $x \in \mathfrak{p}$, we see that $\mathfrak{p} \cap k[x]$ is generated by x. Arguing as in the case $v(t) \ge 0$, we see that

$$v(f(t)) = v(t) \times v_{\infty}(f(t))$$

for every $f(t) \in k(t)$, so that v is equivalent to v_{∞} . Indeed, it is enough to check the latter equality for polynomials in k[t]. Let

$$f(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1} + a_n t^n$$

be a polynomial of degree n in k[t], where $a_n \neq 0$. Then we can factor out a power of t^n so that

$$f(t) = t^n \left(a_n + a_{n-1}t^{-1} + \dots + a_1t^{1-n} + a_0t^{-n} \right).$$

Then the strict triangle inequality gives

$$v(a_n + a_{n-1}t^{-1} + \dots + a_1t^{1-n} + a_0t^{-n}) = v(a_n) = 0.$$

Thus, we have

$$v(f(t)) = n \times v(t) = v(t) \times v_{\infty}(f(t)).$$

The residue class fields for the p(t)-adic valuations are

k[t]/(p(t)),

and that the residue class field for v_{∞} is just k. Indeed, in the former case, the ring \mathcal{O} is just a localization of the ring k[t] in the ideal generated by p(x), which implies that

$$\mathcal{O}/\mathfrak{I} \cong k[t]/(p(t)).$$

In the latter case, \mathcal{O} is the localization of the ring k[x] in the ideal generated by x, where $x = \frac{1}{t}$ as above. Thus, the residue class field for v_{∞} is

$$\mathcal{O}/\mathfrak{I} \cong k[x]/(x) \cong k.$$

References

[1] J. Neukirch, Algebraic Number Theory, Springer, 1999.