MIDTERM EXAM

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 20 points.

Problem 1. Find the *p*-adic expansions for

- (1) $\frac{2}{3}$ in \mathbb{Q}_2 ,
- (2) $-\frac{1}{6}$ in \mathbb{Q}_7 ,
- (3) $\frac{1}{10}$ in \mathbb{Q}_{11} ,
- (4) $\frac{1}{120}$ in \mathbb{Q}_5 .

Problem 2. Prove that the field \mathbb{Q}_p does not have automorphisms except the identity.

Problem 3. Prove that

- (1) the polynomial $x^2 5$ is irreducible in $\mathbb{Q}_7[x]$,
- (2) the polynomial $x^p x 1$ is irreducible in $\mathbb{Q}_p[x]$ for any prime $p \ge 2$,
- (3) the polynomial $x^4 + 4x^3 + 2x^2 + x 6$ is reducible in $\mathbb{Q}_{11}[x]$,
- (4) the polynomial $x^4 x^3 2x^2 3x 1$ is reducible in $\mathbb{Q}_5[x]$.

Problem 4. Show that for every $d \in \mathbb{N}$, there is a field K containing \mathbb{Q}_p such that

$$[K:\mathbb{Q}_p] := \dim_{\mathbb{Q}_p}(K) = d.$$

Problem 5. Let K be the field of fractions of the ring

$$\mathbb{Q}_7[x]/(x^2-5),$$

where $(x^2 - 5)$ is the ideal in $\mathbb{Q}_7[x]$ generated by $x^2 - 5$. Identify \mathbb{Q}_7 with a subfield of K via natural homomorphisms

$$\mathbb{Q}_7 \hookrightarrow \mathbb{Q}_7[x] \to \mathbb{Q}_7[x]/(x^2 - 5) \hookrightarrow K$$

Prove that the *p*-adic valuation $||_7$ on \mathbb{Q}_7 can be extended to a valuation

$$|: K \to \mathbb{R}_{\geq 0}$$

of the field K in a unique way. Describe its valuation ring

$$\mathcal{O} := \Big\{ x \in K \text{ such that } |x| \leq 1 \Big\},\$$

its unique maximal ideal \mathfrak{I} , its residue class field \mathcal{O}/\mathfrak{I} , and its multiplicative group K^* .

This take home exam is due on Wednesday 4 March 2015.