MIDTERM EXAM

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 20 points.

Problem 1. Find the *p*-adic expansions for

- (1) $\frac{2}{3}$ in \mathbb{Q}_2 ,
- (2) $-\frac{1}{6}$ in \mathbb{Q}_7 ,
- (3) $\frac{1}{10}$ in \mathbb{Q}_{11} ,
- (4) $\frac{1}{120}$ in \mathbb{Q}_5 .

Solution.

(1) In \mathbb{Q}_2 , we have

$$\frac{2}{3} = \sum_{i=0}^{\infty} a_i 2^i,$$

where $a_n \in \{0, 1\}$. Then we have the recurrence relation

$$f_{n-1} = 3a_{n-1} + 2f_n,$$

where $f_n \in \mathbb{Z}$, and $f_0 = 2$. Since each iteration has a unique solution, we simply solve for the sequences

$f_1 = 1$	$a_0 = 0$
$f_2 = -1$	$a_1 = 1$
$f_3 = -2$	$a_2 = 1$
$f_4 = -1$	$a_3 = 0$
$f_5 = -2$	$a_4 = 1$
:	÷

We see that the sequences beginning with f_3 and a_2 will be periodic. So, this means that we can write the 2-adic expansion

$$\frac{2}{3} = 2 + 2^2 + 2^4 + 2^6 + 2^8 + \cdots$$

(2) In \mathbb{Q}_7 , we have

$$-\frac{1}{6} = \frac{1}{1-7} = 1 + 7 + 7^2 + 7^3 + \cdots$$

Or like above, we could solve the recurrence relation

 $f_{n-1} = 6a_{n-1} + 7f_n,$

This take home exam is due on Wednesday 4 March 2015.

where $f_n \in \mathbb{Z}$, $a_n \in \{0, 1, \dots, 6\}$, and $f_0 = -1$. This gives $a_n = 1$ and $f_n = -1$ for all n.

(3) We have to find the 11-adic expansion for $\frac{1}{10}$. Similarly to above, we have to solve the recurrence relation

$$f_{n-1} = 10a_{n-1} + 11f_n,$$

where $f_n \in \mathbb{Z}$, $a_n \in \{0, 1, ..., 10\}$, and $f_0 = 1$. Since each iteration has a unique solution, we simply solve for the sequences

$$f_1 = -9$$
 $a_0 = 10$
 $f_2 = -9$ $a_1 = 9$
 $f_3 = -9$ $a_2 = 9$
 \vdots \vdots

We see that the sequences beginning with f_2 and a_1 will be periodic, and

$$\frac{1}{10} = 10 + 9(11) + 9(11)^2 + 9(11)^3 + \cdots$$

(4) In \mathbb{Q}_5 , we have

$$\frac{1}{120} = \frac{1}{5}\frac{1}{24}.$$

Let us find the 5-adic expansion of $\frac{1}{24}$. We want to solve the recurrence relation

$$f_{n-1} = 24a_{n-1} + 5f_n$$

where $f_n \in \mathbb{Z}$, $a_n \in \{0, 1, 2, 3, 4\}$, and $f_0 = 1$. Since each iteration has a unique solution, we simply solve for the sequences

$f_1 = -19$	$a_0 = 4$
$f_2 = -23$	$a_1 = 4$
$f_3 = -19$	$a_2 = 3$
$f_4 = -23$	$a_3 = 4$
÷	•

We see that the sequences beginning with f_2 and a_1 will be periodic. So, this means that we can write the 5-adic expansion

$$\frac{1}{120} = \frac{1}{5}\frac{1}{24} = \frac{4}{5} + 4 + 3(5) + 4(5)^2 + 3(5)^3 + 4(5)^4 + \cdots$$

Problem 2. Prove that the field \mathbb{Q}_p does not have automorphisms except the identity.

Solution. Let $\sigma: \mathbb{Q}_p \to \mathbb{Q}_p$ be an automorphism. Then it takes $1 \mapsto 1$, since σ is an automorphism. Since 1 generates \mathbb{Q} , we see that $x \mapsto x$ for all $x \in \mathbb{Q}$.

Let us show that σ is continuous. This follows from the fact that σ preserves the valuation (i.e., we must have $|\sigma(x)|_p = |x|_p$ for every $x \in \mathbb{Q}_p$). Let us show the latter. Observe that the composition of σ with the *p*-adic valuation,

$$\left|\sigma(\quad)\right|_{n}:\mathbb{Q}_{p}\to\mathbb{R}$$

is itself a valuation, because σ is a field homomorphism. Moreover, this valuation agrees with $| |_p$ on \mathbb{Q} . Let $\{s_n\}$ be a cauchy sequence in \mathbb{Q} . Then it converges with respect to $| |_p$ to some limit s. We want to show that it converges to a limit in \mathbb{Q}_p with respect to the valuation $|\sigma(\)|_p$ to $\sigma^{-1}(s)$. Fix some $\epsilon > 0$. Since $s_n \to s$ in $(\mathbb{Q}_p, |\ |_p)$, we know that

$$|s - s_n| < \epsilon$$

for sufficiently large n > N. This implies

$$\left|\sigma\left(\sigma^{-1}(s)-s_n\right)\right|_p = \left|s-\sigma(s_n)\right|_p = |s-s_n|_p < \epsilon$$

for n > N, because σ is a field homomorphism and it is the identity map on $s_n \in \mathbb{Q}$. Thus, $\{s_n\}$ converges in $(\mathbb{Q}_p, |\sigma(-)|_p)$, so that \mathbb{Q}_p is complete with respect to this valuation. And if $|\sigma(-)|_p$ is a complete extension of $|-|_p$ to \mathbb{Q}_p , it must be equal to $|-|_p$ since we know such extensions are unique. So σ is continuous.

Since \mathbb{Q} is dense in \mathbb{Q}_p (by the construction of \mathbb{Q}_p as the completion of \mathbb{Q} with respect to the *p*-adic valuation), we see that σ is an identity map on a dense subset of \mathbb{Q}_p . Hence, σ is an identity map, because we already proved that σ is the identity on \mathbb{Q} , and σ is continuous.

Problem 3. Prove that

- (1) the polynomial $x^2 5$ is irreducible in $\mathbb{Q}_7[x]$,
- (2) the polynomial $x^p x 1$ is irreducible in $\mathbb{Q}_p[x]$ for any prime $p \ge 2$,
- (3) the polynomial $x^4 + 4x^3 + 2x^2 + x 6$ is reducible in $\mathbb{Q}_{11}[x]$,
- (4) the polynomial $x^4 x^3 2x^2 3x 1$ is reducible in $\mathbb{Q}_5[x]$.

Solution. Prove that

- (1) Suppose we had a root $\alpha = 7^{-m}a$ such that $\alpha^2 5 = 0$ for $a \in \mathbb{Z}_7^*$. Then this implies $7^{-2m}|5$, which can only happen if m = 0. So we know that any solution α must be in \mathbb{Z}_7 . However, if such a root existed, we would have a root in \mathbb{F}_7 . But we can easily check 5 is not a square in \mathbb{F}_7 , because only 1, 2 and 4 are squares. So this polynomial is irreducible over \mathbb{Q}_7 .
- (2) Suppose that $x^p x 1$ is reducible in $\mathbb{Q}_p[x]$ for some prime $p \ge 2$. Then $x^p x 1$ is reducible in $\mathbb{Z}_p[x]$ by Gauss' lemma. Reducing mod p, we see that $x^p x 1$ is reducible in $\mathbb{F}_p[x]$. So, we have

$$x^p - x - 1 = f(x)g(x)$$
3

for some polynomials f(x) and g(x) in $\mathbb{F}_p[x]$ such that f(x) is irreducible, and both f(x) and g(x) are of positive degree. Denote the degree of f(x) by d. Then d < p by assumption. Moreover, d > 1, because the polynomial $x^p - x - 1$ does not have roots in \mathbb{F}_p (this follows from Fermat's Little Theorem). Denote by K the field

$$\mathbb{F}_p[x]/(f(x)),$$

where (f(x)) is the ideal generated by f(x). Then K is a field extension of \mathbb{F}_p of degree d. Thus, it contains p^d elements. Then

$$\alpha^{p^d-1} = 1$$

for every $\alpha \in K^*$ by Lagrange's theorem. Thus, we have $\alpha^{p^d} = \alpha$ for every $\alpha \in K$. In particular, we have

$$\bar{x}^{p^d} = \bar{x},$$

where $\bar{x} \in K$ is the image of $x \in \mathbb{F}_p[x]$ under natural projection $\mathbb{F}_p[x] \to K$. On the other hand, we have

$$\bar{x}^{p^c} = \bar{x} + c$$

for every $c \in \mathbb{Z}_{\geq 0}$. Indeed, we can prove it by induction. For c = 0, this is true. If it is true for some $c \geq 0$, we have

$$\bar{x}^{p^{c+1}} = \left(\bar{x} + c\right)^p = \bar{x}^p + c^p = \bar{x} + 1 + c^p = \bar{x} + 1 + c_p$$

because $\bar{x}^p = \bar{x} + 1$ in K, and $c^p = c$ by Fermat's Little Theorem. This proves that $\bar{x}^{p^c} = \bar{x} + c$ for every $c \in \mathbb{Z}_{\geq 0}$. In particular,

$$\bar{x} = \bar{x}^{p^a} = \bar{x} + d,$$

which implies that d = 0 in K. The latter is impossible, since d < p.

(3) Put $f(x) = x^4 + 4x^3 + 2x^2 + x - 6$. Let us show that f(x) is reducible in $\mathbb{Q}_{11}[x]$. Observe that

$$x^{4} + 4x^{3} + 2x^{2} + x - 6 \equiv (x+4)(x^{3} + 2x + 4) \mod 11.$$

Moreover, the polynomials x + 4 and $x^3 + 2x + 4$ are co-prime in $\mathbb{F}_{11}[x]$. Thus, it follows from Hensel's lemma (see [1, Lemma II.4.6]) that f(x) splits as a product of a polynomial of degree 1 and a polynomial of degree 3 in $\mathbb{Z}_{11}[x]$.

(4) We have

$$x^{4} - x^{3} - 2x^{2} - 3x - 1 = (x^{2} + x + 1)(x^{2} - 2x - 1)$$

in $\mathbb{F}_5[x]$. Moreover, the polynomials $x^2 + x + 1$ and $x^2 - 2x - 1$ are coprime in $\mathbb{F}_5[x]$. Arguing as above, we see that the polynomials $x^4 - x^3 - 2x^2 - 3x - 1$ is a product of two quadratic polynomials in $\mathbb{Z}_5[x]$.

Problem 4. Show that for every $d \in \mathbb{N}$, there is a field K containing \mathbb{Q}_p such that

$$[K:\mathbb{Q}_p]:=\dim_{\mathbb{Q}_p}(K)=d.$$

Solution. We know that there exists a field \mathbb{F}_{p^d} consisting of p^d elements. It can be constructed from \mathbb{F}_p by adding all roots of the polynomial $x^{p^d} - x \in \mathbb{F}_p[x]$, which also show that the field consisting of p^d is unique. Note that the extension $\mathbb{F}_p \subset \mathbb{F}_{p^d}$ is separable, since the derivative of $x^{p^d} - x$ is not a zero polynomial. Hence, $\mathbb{F}_{p^d} = \mathbb{F}_p(\alpha)$ for some $\alpha \in \mathbb{F}_{p^d}$. Let $f(x) \in \mathbb{F}_p[x]$ be the minimal polynomial of α . Then it is irreducible and of degree d. Let g(x) be any polynomial of degree d in $\mathbb{Z}_p[x]$ such that

$$g(x) \equiv f(x) \mod p$$

Then g(x) is irreducible in $\mathbb{Z}_p[x]$. By Gauss' lemma, it is irreducible in $\mathbb{Q}_p[x]$. Adding its root to \mathbb{Q}_p , we obtain a field K containing \mathbb{Q}_p such that

$$[K:\mathbb{Q}_p] := \dim_{\mathbb{Q}_p}(K) = d$$

as desired.

Problem 5. Let K be the field of fractions of the ring

$$\mathbb{Q}_7[x]/(x^2-5),$$

where $(x^2 - 5)$ is the ideal in $\mathbb{Q}_7[x]$ generated by $x^2 - 5$. Identify \mathbb{Q}_7 with a subfield of K via natural homomorphisms

$$\mathbb{Q}_7 \hookrightarrow \mathbb{Q}_7[x] \to \mathbb{Q}_7[x]/(x^2 - 5) \hookrightarrow K$$

Prove that the *p*-adic valuation $| |_7$ on \mathbb{Q}_7 can be extended to a valuation

$$|: K \to \mathbb{R}_{\geq 0}$$

of the field K in a unique way. Describe its valuation ring

$$\mathcal{O} := \Big\{ x \in K \text{ such that } |x| \leq 1 \Big\},\$$

its unique maximal ideal \mathfrak{I} , its residue class field \mathcal{O}/\mathfrak{I} , and its multiplicative group K^* .

Solution. To show that the valuation extends uniquely, all we need to do is show that K is algebraic over \mathbb{Q}_7 . This follows from the fact that $x^2 - 5$ is irreducible over \mathbb{Q}_7 (see Problem 3).

For this particular extension, we see that $\sqrt{5}$ must be a unit, since $5 \in \mathbb{Z}_7^*$, and the valuation is multiplicative. We claim that the valuation ring is exactly

$$\mathcal{O} = \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Z}_p \right\}.$$

That is, either a or b is in \mathbb{Z}_7 . This follows immediately from the fact that since $a \neq b\sqrt{5}$, we have

$$|a + b\sqrt{5}|_7 = \max\{|a|_7, |b\sqrt{5}|_7\} = \max\{|a|_7, |b|_7\},\$$

so that $|a + b\sqrt{5}|_7 \leq 1 \Leftrightarrow a, b \in \mathbb{Z}_7$.

By the same reasoning, we see that it's unique maximal ideal \mathfrak{J} is just

$$\mathfrak{J} = \Big\{ a + b\sqrt{5} \ \Big| \ a, b \in \mathfrak{p} \Big\},\$$

where \mathfrak{p} is the maximal ideal in \mathbb{Z}_7 generated by 7. In particular, as an additive group we have $\mathfrak{J} \cong \mathbb{Z}_7^2$.

If we recall that the residue class field of \mathbb{Q}_7 is \mathbb{F}_7 , we see that we can take the quotient to find

$$\mathcal{O}/\mathfrak{J}\cong\mathbb{F}_7[\sqrt{5}]\cong\mathbb{F}_{49},$$

i.e., all elements of the form $a + b\sqrt{5}$, where $a, b \in \mathbb{F}_7$.

Since $[K : \mathbb{Q}_7] = \deg(x^2 - 5) = 2$, it follows from [1, Proposition II.5.7], that there exists a natural number *a* such that the multiplicative group can be decomposed into

$$K^* \cong \mathbb{Z} \oplus \mathbb{Z}/48\mathbb{Z} \oplus \mathbb{Z}/p^a\mathbb{Z} \oplus \mathbb{Z}_p^2.$$

To find a, let us use [1, Proposition II.5.5]. It implies that the function

$$\log\colon K^* \to K$$

induces an isomorphism $\mathfrak{J}^n \to U^{(n)}$ for $n > \frac{1}{7-1} = \frac{1}{6}$. Thus, we have an isomorphisms of groups $\mathfrak{J} \cong U^{(1)}$. On the other hand, we already proved that $\mathfrak{J} \cong \mathbb{Z}_7^2$. Thus, we have $U^{(1)} \cong \mathbb{Z}_7^2$. But

$$K^* \cong \mathbb{Z} \oplus \mathbb{Z}/48\mathbb{Z} \oplus U^{(1)}$$

by [1, Proposition II.5.5]. This gives a = 0.

References

[1] J. Neukirch, Algebraic Number Theory, Springer, 1999.