MIDTERM EXAM

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 20 points.

Problem 1. Find the p-adic expansions for
(1) 2 in Qo,

(2) —% in Q~,

(3) 15 in Quy,

(4) 135 in Qs.

Solution.

(1) In Q2, we have

2 =
5= a2,
=0

where a,, € {0,1}. Then we have the recurrence relation

fn—l = 3ap—1+ 2fn,

where f, € Z, and fy = 2. Since each iteration has a unique solution, we simply

solve for the sequences

fi=1

fa=-1
f3=-2
Ji=-1
fs=-2

We see that the sequences beginning with f3 and as will be periodic.

means that we can write the 2-adic expansion

ag =0
a; =1
as =1
az3 =0
as =1

2
S=2422 420 420 428 4

3
(2) In Q7, we have
1 1

—e = = 14T+ T+ TP

6 1-7

Or like above, we could solve the recurrence relation

fn—l - 6an—1 + 7fn7
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where f, € Z, a,, € {0,1,...,6}, and fy = —1. This gives a,, = 1 and f,, = —1 for
all n.
(3) We have to find the 11-adic expansion for 1—10. Similarly to above, we have to solve

the recurrence relation
fn—l = 10a,_1 + 11fn,

where f, € Z, a,, € {0,1,...,10}, and fy = 1. Since each iteration has a unique

solution, we simply solve for the sequences

fi=-9 ap = 10
f2=—9 a1:9
fz=-9 ay =9

We see that the sequences beginning with fs and a; will be periodic, and
1
75 = 10+9(11) + 9(11)2 +9(11) + - -

(4) In Q5, we have
1 11
120 524
Let us find the 5-adic expansion of 2—14. We want to solve the recurrence relation

fn—l = 24an—1 + 5fn7

where f,, € Z, a,, € {0,1,2,3,4}, and fy = 1. Since each iteration has a unique

solution, we simply solve for the sequences

fi=-19 ag =4
fo=-23 a1 =4
f3=-19 as =3
fa=-23 a3 =4

We see that the sequences beginning with fo and a; will be periodic. So, this
means that we can write the 5-adic expansion
1 11 4

120 524 5 2 3 4 e
50 — 521 = 5 T4T30)+4(5)7 +3(5)° +4(5)" +

Problem 2. Prove that the the field @, does not have automorphisms except the identity.
Solution. Let o: @Q, — @Q, be an automorphism. Then it takes 1 — 1, since o is an

automorphism. Since 1 generates QQ, we see that = — x for all x € Q.
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Let us show that o is continuous. This follows from the fact that o preserves the
valuation (i.e., we must have |o(z)|, = |z|, for every x € Q)). Let us show the latter.

Observe that the composition of ¢ with the p-adic valuation,
}0( )’p :Qp—R

is itself a valuation, because ¢ is a field homomorphism. Moreover, this valuation agrees
with | [, on Q. Let {s,} be a cauchy sequence in Q. Then it converges with respect to
| |p to some limit s. We want to show that it converges to a limit in Q, with respect to
the valuation |o( )|, to o7!(s). Fix some € > 0. Since s, — s in (Qp,| |p), we know
that

|5—5n‘<e

for sufficiently large n > N. This implies
‘0(0*1(3) )
P

for n > N, because o is a field homomorphism and it is the identity map on s,, € Q. Thus,

=s —a(sn)‘p =|s—splp <e€

{sn} converges in (Q,, |o( )|p), so that Q, is complete with respect to this valuation. And
if |o( )|p is a complete extension of | |, to Q, it must be equal to | |, since we know
such extensions are unique. So ¢ is continuous.

Since Q is dense in Q, (by the construction of Q, as the completion of Q with respect
to the p-adic valuation), we see that ¢ is an identity map on a dense subset of @,. Hence,
o is an identity map, because we already proved that ¢ is the identity on Q, and o is

continuous.

Problem 3. Prove that

(1) the polynomial x2 — 5 is irreducible in Q7[z],

(2) the polynomial 2P — z — 1 is irreducible in Qp[z] for any prime p > 2,
(3) the polynomial x* + 423 4 222 4+ x — 6 is reducible in Q11 [x],
(4)

4) the polynomial z* — 23 — 222 — 3z — 1 is reducible in Qs|x].

Solution. Prove that

(1) Suppose we had a root a = 7"™a such that a®> —5 = 0 for a € Z%. Then this
implies 772™|5, which can only happen if m = 0. So we know that any solution «
must be in Z;. However, if such a root existed, we would have a root in F7. But
we can easily check 5 is not a square in F7, because only 1, 2 and 4 are squares.
So this polynomial is irreducible over Q.

(2) Suppose that 2P —z —1 is reducible in Q,[x] for some prime p > 2. Then 2 —x —1
is reducible in Zy[z| by Gauss’ lemma. Reducing mod p, we see that 2 —x — 1 is
reducible in [ [x]. So, we have

af —x—1= f(z)g(x)
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for some polynomials f(z) and g(z) in Fp[z] such that f(x) is irreducible, and both
f(x) and g(z) are of positive degree. Denote the degree of f(x) by d. Then d < p
by assumption. Moreover, d > 1, because the polynomial 2P —x — 1 does not have
roots in F,, (this follows from Fermat’s Little Theorem). Denote by K the field

Fpla]/(f(x)),
where (f(z)) is the ideal generated by f(z). Then K is a field extension of F,, of

degree d. Thus, it contains p¢ elements. Then

q_
o =1

for every o € K* by Lagrange’s theorem. Thus, we have a?’ = o for every o € K.
In particular, we have

ot

P =1z,
where Z € K is the image of x € Fp[z] under natural projection Fp[z] — K. On
the other hand, we have

P =I4c

for every ¢ € Z>p. Indeed, we can prove it by induction. For ¢ = 0, this is true. If

it is true for some ¢ > 0, we have

_nct+1

p
¥ = (f+c) =+ =z+1+=x+1+c¢,
because 27 = z + 1 in K, and ¢ = ¢ by Fermat’s Little Theorem. This proves

that 2P° = T + ¢ for every ¢ € Z>g. In particular,

e
=7 =7+d,

which implies that d = 0 in K. The latter is impossible, since d < p.

(3) Put f(z) = 2* + 42 + 222 + x — 6. Let us show that f(x) is reducible in Qq;[x].
Observe that

et 423 + 200 1 — 6= (x4 4) (2 + 22+ 4) mod 11.

Moreover, the polynomials  + 4 and 2% + 2x + 4 are co-prime in Fy[z]. Thus, it
follows from Hensel’s lemma (see [1, Lemma I1.4.6]) that f(x) splits as a product
of a polynomial of degree 1 and a polynomial of degree 3 in Zj;[x].

(4) We have

2t =2 —22% -3 —1=(+2+1)(2%—22-1)

in Fs[z]. Moreover, the polynomials 22 + x + 1 and 22 — 2z — 1 are coprime in

3

Fs[z]. Arguing as above, we see that the polynomials 2* — 23 — 222 — 3z — 1 is a

product of two quadratic polynomials in Zs|x].

Problem 4. Show that for every d € N, there is a field K containing @, such that

[K : Qp] := dimg, (K) = d.
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Solution. We know that there exists a field F,. consisting of p? elements. It can be
constructed from F,, by adding all roots of the polynomial ' —x € Fp[x], which also show
that the field consisting of p? is unique. Note that the extension F, C Fpa is separable,
since the derivative of 27" — z is not a zero polynomial. Hence, F,a = Fp(a) for some
a € Fpa. Let f(x) € Fy[z] be the minimal polynomial of a. Then it is irreducible and of
degree d. Let g(z) be any polynomial of degree d in Zy[x] such that
g9(z) = f(z) mod p.
Then g(x) is irreducible in Zy[z]. By Gauss’ lemma, it is irreducible in Qp[z]. Adding its
root to Q,, we obtain a field K containing @@, such that
(K : Qp] :=dimg, (K) =d

as desired.

Problem 5. Let K be the field of fractions of the ring

Qrlz]/(2* - 5),
where (22 — 5) is the ideal in Q7[z] generated by x? — 5. Identify Q7 with a subfield of K
via natural homomorphisms

Qr — Qrfz] = Q7z]/ (2% = 5) = K

Prove that the p-adic valuation | |7 on Q7 can be extended to a valuation

| [t K= Rxo
of the field K in a unique way. Describe its valuation ring

0= {x € K such that |z| < 1},

its unique maximal ideal 7, its residue class field O/J, and its multiplicative group K*.

Solution. To show that the valuation extends uniquely, all we need to do is show that
K is algebraic over Q7. This follows from the fact that 22 — 5 is irreducible over Q7 (see
Problem 3).

For this particular extension, we see that /5 must be a unit, since 5 € 7%, and the

valuation is multiplicative. We claim that the valuation ring is exactly
0={a+tv5|abez,}.

That is, either a or b is in Z7. This follows immediately from the fact that since a # bv/5,

we have
‘a+b\/g|7 = max{‘a
so that |a + bV5|7 <1< a,b € Z7.

By the same reasoning, we see that it’s unique maximal ideal J is just

3:{a+b\/5’a,bep},
5

b\/5|7} = max{|a|77 W?},

77



where p is the maximal ideal in Z7 generated by 7. In particular, as an additive group we
have J = Z%.
If we recall that the residue class field of Q7 is 7, we see that we can take the quotient
to find
0/3 =2 F7[v/5] = Fy,
i.e., all elements of the form a + bv/5, where a,b € Fr.
Since [K : Q7] = deg(z? —5) = 2, it follows from [1, Proposition I1.5.7], that there exists

a natural number a such that the multiplicative group can be decomposed into
K*>7®L/ABL®L[p"LS L.
To find a, let us use [1, Proposition I1.5.5]. It implies that the function

log: K* - K

induces an isomorphism J* — U™ for n > % = %. Thus, we have an isomorphisms

of groups J = UM, On the other hand, we already proved that J = Z%. Thus, we have
UM =72 But

K*~7®7/48% & UM
by [1, Proposition I1.5.5]. This gives a = 0.
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