
MIDTERM EXAM

MATH-GA 2210.001 ELEMENTARY NUMBER THEORY

Each problem will be marked out of 20 points.

Problem 1. Find the p-adic expansions for

(1) 2
3 in Q2,

(2) −1
6 in Q7,

(3) 1
10 in Q11,

(4) 1
120 in Q5.

Solution.

(1) In Q2, we have

2

3
=
∞∑
i=0

ai2
i,

where an ∈ {0, 1}. Then we have the recurrence relation

fn−1 = 3an−1 + 2fn,

where fn ∈ Z, and f0 = 2. Since each iteration has a unique solution, we simply

solve for the sequences

f1 = 1 a0 = 0

f2 = −1 a1 = 1

f3 = −2 a2 = 1

f4 = −1 a3 = 0

f5 = −2 a4 = 1

...
...

We see that the sequences beginning with f3 and a2 will be periodic. So, this

means that we can write the 2-adic expansion

2

3
= 2 + 22 + 24 + 26 + 28 + · · ·

(2) In Q7, we have

−1

6
=

1

1− 7
= 1 + 7 + 72 + 73 + · · ·

Or like above, we could solve the recurrence relation

fn−1 = 6an−1 + 7fn,
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where fn ∈ Z, an ∈ {0, 1, . . . , 6}, and f0 = −1. This gives an = 1 and fn = −1 for

all n.

(3) We have to find the 11-adic expansion for 1
10 . Similarly to above, we have to solve

the recurrence relation

fn−1 = 10an−1 + 11fn,

where fn ∈ Z, an ∈ {0, 1, . . . , 10}, and f0 = 1. Since each iteration has a unique

solution, we simply solve for the sequences

f1 = −9 a0 = 10

f2 = −9 a1 = 9

f3 = −9 a2 = 9

...
...

We see that the sequences beginning with f2 and a1 will be periodic, and

1

10
= 10 + 9(11) + 9(11)2 + 9(11)3 + · · ·

(4) In Q5, we have

1

120
=

1

5

1

24
.

Let us find the 5-adic expansion of 1
24 . We want to solve the recurrence relation

fn−1 = 24an−1 + 5fn,

where fn ∈ Z, an ∈ {0, 1, 2, 3, 4}, and f0 = 1. Since each iteration has a unique

solution, we simply solve for the sequences

f1 = −19 a0 = 4

f2 = −23 a1 = 4

f3 = −19 a2 = 3

f4 = −23 a3 = 4

...
...

We see that the sequences beginning with f2 and a1 will be periodic. So, this

means that we can write the 5-adic expansion

1

120
=

1

5

1

24
=

4

5
+ 4 + 3(5) + 4(5)2 + 3(5)3 + 4(5)4 + · · ·

Problem 2. Prove that the the field Qp does not have automorphisms except the identity.

Solution. Let σ : Qp → Qp be an automorphism. Then it takes 1 7→ 1, since σ is an

automorphism. Since 1 generates Q, we see that x 7→ x for all x ∈ Q.
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Let us show that σ is continuous. This follows from the fact that σ preserves the

valuation (i.e., we must have |σ(x)|p = |x|p for every x ∈ Qp). Let us show the latter.

Observe that the composition of σ with the p-adic valuation,∣∣σ( )
∣∣
p

: Qp → R

is itself a valuation, because σ is a field homomorphism. Moreover, this valuation agrees

with | |p on Q. Let {sn} be a cauchy sequence in Q. Then it converges with respect to

| |p to some limit s. We want to show that it converges to a limit in Qp with respect to

the valuation |σ( )|p to σ−1(s). Fix some ε > 0. Since sn → s in (Qp, | |p), we know

that ∣∣s− sn∣∣ < ε

for sufficiently large n > N . This implies∣∣∣σ(σ−1(s)− sn)∣∣∣
p

=
∣∣s− σ(sn)

∣∣
p

= |s− sn|p < ε

for n > N , because σ is a field homomorphism and it is the identity map on sn ∈ Q. Thus,

{sn} converges in (Qp, |σ( )|p), so that Qp is complete with respect to this valuation. And

if |σ( )|p is a complete extension of | |p to Qp, it must be equal to | |p since we know

such extensions are unique. So σ is continuous.

Since Q is dense in Qp (by the construction of Qp as the completion of Q with respect

to the p-adic valuation), we see that σ is an identity map on a dense subset of Qp. Hence,

σ is an identity map, because we already proved that σ is the identity on Q, and σ is

continuous.

Problem 3. Prove that

(1) the polynomial x2 − 5 is irreducible in Q7[x],

(2) the polynomial xp − x− 1 is irreducible in Qp[x] for any prime p > 2,

(3) the polynomial x4 + 4x3 + 2x2 + x− 6 is reducible in Q11[x],

(4) the polynomial x4 − x3 − 2x2 − 3x− 1 is reducible in Q5[x].

Solution. Prove that

(1) Suppose we had a root α = 7−ma such that α2 − 5 = 0 for a ∈ Z∗7. Then this

implies 7−2m|5, which can only happen if m = 0. So we know that any solution α

must be in Z7. However, if such a root existed, we would have a root in F7. But

we can easily check 5 is not a square in F7, because only 1, 2 and 4 are squares.

So this polynomial is irreducible over Q7.

(2) Suppose that xp−x−1 is reducible in Qp[x] for some prime p > 2. Then xp−x−1

is reducible in Zp[x] by Gauss’ lemma. Reducing mod p, we see that xp − x− 1 is

reducible in Fp[x]. So, we have

xp − x− 1 = f(x)g(x)
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for some polynomials f(x) and g(x) in Fp[x] such that f(x) is irreducible, and both

f(x) and g(x) are of positive degree. Denote the degree of f(x) by d. Then d < p

by assumption. Moreover, d > 1, because the polynomial xp−x− 1 does not have

roots in Fp (this follows from Fermat’s Little Theorem). Denote by K the field

Fp[x]/(f(x)),

where (f(x)) is the ideal generated by f(x). Then K is a field extension of Fp of

degree d. Thus, it contains pd elements. Then

αpd−1 = 1

for every α ∈ K∗ by Lagrange’s theorem. Thus, we have αpd = α for every α ∈ K.

In particular, we have

x̄p
d

= x̄,

where x̄ ∈ K is the image of x ∈ Fp[x] under natural projection Fp[x] → K. On

the other hand, we have

x̄p
c

= x̄+ c

for every c ∈ Z>0. Indeed, we can prove it by induction. For c = 0, this is true. If

it is true for some c > 0, we have

x̄p
c+1

=
(
x̄+ c

)p
= x̄p + cp = x̄+ 1 + cp = x̄+ 1 + c,

because x̄p = x̄ + 1 in K, and cp = c by Fermat’s Little Theorem. This proves

that x̄p
c

= x̄+ c for every c ∈ Z>0. In particular,

x̄ = x̄p
d

= x̄+ d,

which implies that d = 0 in K. The latter is impossible, since d < p.

(3) Put f(x) = x4 + 4x3 + 2x2 + x− 6. Let us show that f(x) is reducible in Q11[x].

Observe that

x4 + 4x3 + 2x2 + x− 6 ≡ (x+ 4)(x3 + 2x+ 4) mod 11.

Moreover, the polynomials x+ 4 and x3 + 2x+ 4 are co-prime in F11[x]. Thus, it

follows from Hensel’s lemma (see [1, Lemma II.4.6]) that f(x) splits as a product

of a polynomial of degree 1 and a polynomial of degree 3 in Z11[x].

(4) We have

x4 − x3 − 2x2 − 3x− 1 = (x2 + x+ 1)(x2 − 2x− 1)

in F5[x]. Moreover, the polynomials x2 + x + 1 and x2 − 2x − 1 are coprime in

F5[x]. Arguing as above, we see that the polynomials x4 − x3 − 2x2 − 3x− 1 is a

product of two quadratic polynomials in Z5[x].

Problem 4. Show that for every d ∈ N, there is a field K containing Qp such that

[K : Qp] := dimQp(K) = d.
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Solution. We know that there exists a field Fpd consisting of pd elements. It can be

constructed from Fp by adding all roots of the polynomial xp
d−x ∈ Fp[x], which also show

that the field consisting of pd is unique. Note that the extension Fp ⊂ Fpd is separable,

since the derivative of xp
d − x is not a zero polynomial. Hence, Fpd = Fp(α) for some

α ∈ Fpd . Let f(x) ∈ Fp[x] be the minimal polynomial of α. Then it is irreducible and of

degree d. Let g(x) be any polynomial of degree d in Zp[x] such that

g(x) ≡ f(x) mod p.

Then g(x) is irreducible in Zp[x]. By Gauss’ lemma, it is irreducible in Qp[x]. Adding its

root to Qp, we obtain a field K containing Qp such that

[K : Qp] := dimQp(K) = d

as desired.

Problem 5. Let K be the field of fractions of the ring

Q7[x]/(x2 − 5),

where (x2 − 5) is the ideal in Q7[x] generated by x2 − 5. Identify Q7 with a subfield of K

via natural homomorphisms

Q7 ↪→ Q7[x]→ Q7[x]/(x2 − 5) ↪→ K

Prove that the p-adic valuation | |7 on Q7 can be extended to a valuation

| | : K → R>0

of the field K in a unique way. Describe its valuation ring

O :=
{
x ∈ K such that |x| 6 1

}
,

its unique maximal ideal I, its residue class field O/I, and its multiplicative group K∗.

Solution. To show that the valuation extends uniquely, all we need to do is show that

K is algebraic over Q7. This follows from the fact that x2 − 5 is irreducible over Q7 (see

Problem 3).

For this particular extension, we see that
√

5 must be a unit, since 5 ∈ Z∗7, and the

valuation is multiplicative. We claim that the valuation ring is exactly

O =
{
a+ b

√
5
∣∣∣ a, b ∈ Zp

}
.

That is, either a or b is in Z7. This follows immediately from the fact that since a 6= b
√

5,

we have ∣∣a+ b
√

5
∣∣
7

= max
{∣∣a∣∣

7
,
∣∣b√5

∣∣
7

}
= max

{
|a|7, |b|7

}
,

so that |a+ b
√

5|7 ≤ 1⇔ a, b ∈ Z7.

By the same reasoning, we see that it’s unique maximal ideal J is just

J =
{
a+ b

√
5
∣∣∣ a, b ∈ p

}
,
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where p is the maximal ideal in Z7 generated by 7. In particular, as an additive group we

have J ∼= Z2
7.

If we recall that the residue class field of Q7 is F7, we see that we can take the quotient

to find

O/J ∼= F7[
√

5] ∼= F49,

i.e., all elements of the form a+ b
√

5, where a, b ∈ F7.

Since [K : Q7] = deg(x2−5) = 2, it follows from [1, Proposition II.5.7], that there exists

a natural number a such that the multiplicative group can be decomposed into

K∗ ∼= Z⊕ Z/48Z⊕ Z/paZ⊕ Z2
p.

To find a, let us use [1, Proposition II.5.5]. It implies that the function

log : K∗ → K

induces an isomorphism Jn → U (n) for n > 1
7−1 = 1

6 . Thus, we have an isomorphisms

of groups J ∼= U (1). On the other hand, we already proved that J ∼= Z2
7. Thus, we have

U (1) ∼= Z2
7. But

K∗ ∼= Z⊕ Z/48Z⊕ U (1)

by [1, Proposition II.5.5]. This gives a = 0.
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