УДК 514.756.4

Вик. С. Куликов

О многочленах Александера кривых Гурвица

Исследованы свойства многочленов Александера кривых Гурвица. Дано полное описание множества многочленов Александера неприводимых кривых Гурвица в терминах их корней.

Библиография: 9 наименований.

Введение

Исследование свойств многочленов Александера кривых Гурвица в \mathbb{CP}^2 было начато в работе [1]. Напомним кратко определения кривой Гурвица (относительно линейной проекции $\operatorname{pr}: \mathbb{CP}^2 \to \mathbb{CP}^1$) и ее многочлена Александера.

Пусть F_1 — относительно минимальная линейчатая поверхность, pr: $F_1 \to \mathbb{CP}^1$ — морфизм, задающий линейчатую структуру, R — слой морфизма pr и E_1 — исключительное сечение, $E_1^2 = -1$. Отождествим pr: $F_1 \to \mathbb{CP}^1$ с линейной проекцией pr: $\mathbb{CP}^2 \to \mathbb{CP}^1$ из точки $p_\infty \in \mathbb{CP}^2$ (точка p_∞ является образом кривой E_1 при стягивании его в точку).

Согласно определению, данному в работе [5], образ $\overline{H}=f(S)\subset F_1$ глад-кого отображения $f\colon S\to F_1\setminus E_1$ ориентированной замкнутой вещественной поверхности S называется кривой Гурвица (относительно проекции pr) степени m, если найдется конечное подмножество $Z\subset \overline{H}$ такое, что:

- (i) f является вложением поверхности $S\setminus f^{-1}(Z)$ и для каждой точки $s\notin Z$ поверхность \overline{H} и слой $R_{\mathrm{pr}(s)}$ проекции рг пересекаются в s трансверсально с положительным индексом пересечения;
- (ii) для каждой точки $s \in Z$ найдется окрестность $U \subset F_1$ этой точки такая, что $\overline{H} \cap U$ является комплексно-аналитической кривой и комплексная ориентация на $\overline{H} \cap U \setminus \{s\}$ совпадает с ориентацией, индуцированной с поверхности S отображением f;
- (iii) ограничение проекции pr на \overline{H} является конечным отображением степени m.

Это определение кривых Гурвица эквивалентно следующему определению. Пусть \mathbb{C}^2_i , i=1,2,- две копии аффинной плоскости \mathbb{C}^2 с координатами (u_i,v_i) , $u_2=1/u_1$ и $v_2=v_1/u_1$, которые покрывают $\mathbb{CP}^2 \setminus p_\infty$ (где p_∞ – центр проекции) так, что проекция рг задана формулами $(u_i,v_i)\mapsto u_i$ в картах \mathbb{C}^2_i . Множество

Работа частично поддержана РФФИ (грант № 05-01-00455), NWO (грант № 047.011.2004. 026/05-02-89000-HBO) и CRDF (грант № RUM1-2692-MO-05).

 $\overline{H} \subset \mathbb{CP}^2 \setminus \{p_\infty\}$, замкнутое в \mathbb{CP}^2 , называется *кривой Гурвица степени m*, если для i=1,2 множество $\overline{H} \cap \mathbb{C}^2_i$ совпадает с множеством решений уравнения

$$F_i(u_i, v_i) := v_i^m + \sum_{j=0}^{m-1} c_{j,i}(u_i) v_i^j = 0,$$
(1)

удовлетворяющего следующим свойствам:

- (i) $F_i(u_i, v_i)$ являются C^{∞} -гладкими комплекснозначными функциями в \mathbb{C}^2 ;
- (ii) $F_i(u_i, v_i)$ имеют лишь конечное число критических значений относительно проекции pr, т.е. существует конечное число значений переменной u_i , скажем $u_{i,1}, \ldots, u_{i,n_i}$, таких, что полиномиальное уравнение

$$v_i^m + \sum_{i=0}^{m-1} c_{j,i}(u_{i,0}) v_i^j = 0$$
 (2)

не имеет кратных корней для $u_{i,0} \notin \{u_{i,1}, \dots, u_{i,n_i}\};$

(iii) если $v_{i,j}$ является кратным корнем уравнения (2) для $u_{i,j} \in \{u_{i,1}, \ldots, u_{i,n_i}\}$, то в окрестности точки $(u_{i,j}, v_{i,j})$, которую мы называем *критической точкой* кривой \overline{H} , множество \overline{H} совпадает с множеством решений некоторого комплексно-аналитического уравнения.

Кривая Гурвица \overline{H} называется nenpusodumoй, если $\overline{H}\setminus M$ связно для любого конечного множества $M\subset \overline{H}$, и мы будем говорить, что кривая Гурвица \overline{H} состоит из k неприводимых компонент, если

$$k = \max \# \{$$
связные компоненты кривой $\overline{H} \setminus M \},$

где максимум взят по всем конечным множествам $M\subset \overline{H}.$

Пусть H — аффинная кривая Гурвица, т. е. $H = \overline{H} \cap (\mathbb{CP}^2 \setminus L_{\infty})$, где L_{∞} — прямая, являющаяся слоем проекции рг, находящаяся в общем положении по отношению к \overline{H} . В этом случае фундаментальная группа $\pi_1 = \pi_1 \left(\mathbb{CP}^2 \setminus (\overline{H} \cup L_{\infty}) \right)$ не зависит от выбора прямой L_{∞} и принадлежит классу $\mathcal C$ так называемых C-групп.

По определению C-группа – это группа вместе с конечным копредставлением

$$G_W = \langle x_1, \dots, x_m \mid x_i = w_{i,j,k}^{-1} x_i w_{i,j,k}, w_{i,j,k} \in W \rangle,$$
 (3)

где $W=\{w_{i,j,k}\in\mathbb{F}_m\mid 1\leqslant i,j\leqslant m,\ 1\leqslant k\leqslant h(i,j)\}$ – некоторый набор, состоящий из элементов свободной группы \mathbb{F}_m (возможно, что $w_{i_1,j_1,k_1}=w_{i_2,j_2,k_2}$ для $(i_1,j_1,k_1)\neq (i_2,j_2,k_2)$), порожденной свободными порождающими x_1,\ldots,x_m , и $h\colon\{1,\ldots,m\}^2\to\mathbb{Z}$ – некоторая функция. Такое копредставление называется C-копредставлением (буква C означает, что все соотношения являются сопряжениями).

Пусть $\varphi_W \colon \mathbb{F}_m \to G_W$ – канонический эпиморфизм. Элементы $\varphi_W(x_i) \in G$, $1 \leqslant i \leqslant m$, и элементы, сопряженные им, называются C-порождающими элементами C-группы G. Пусть $f \colon G_1 \to G_2$ – некоторый гомоморфизм C-групп. Он называется C-гомоморфизмом, если образы всех C-порождающих элемен-

тов группы G_1 при гомоморфизме f являются C-порождающими элементами C-группы G_2 . Мы будем рассматривать C-группы с точностью до C-изоморфизмов.

Любую C-группу G можно реализовать как фундаментальную группу $\pi_1(S^4 \setminus S)$ дополнения к замкнутой ориентированной поверхности S в четырехмерной сфере S^4 (см., например, [3], о других свойствах C-групп см. [2], [4], [6]).

C-копредставление (3) называется $\mathit{гурвицевским}$ C-копредставлением $\mathit{сте-nehu}$ m, если для каждого $i=1,\ldots,m$ слово $w_{i,i,1}$ совпадает с произведением $x_1\ldots x_m$, и C-группа G называется $\mathit{гурвицевской}$ C- $\mathit{группой}$ $\mathit{степени}$ m, если она обладает гурвицевским C-копредставлением степени m. Другими словами, C-группа G является гурвицевской C-группой степени m, если существуют C-порождающие элементы x_1,\ldots,x_m , порождающие группу G, такие, что произведение $x_1\ldots x_m$ принадлежит центру группы G. Отметим, что степень гурвицевской C-группы G определена неканонически и зависит от ее гурвицевского C-копредставления. Обозначим через $\mathcal H$ класс всех гурвицевских C-групп.

Пусть \overline{H} – кривая Гурвица степени m. Копредставление Зариского—ван Кампена группы $\pi_1=\pi_1(\mathbb{C}^2\backslash H)$, где $\mathbb{C}^2=\mathbb{P}^2\backslash L_\infty$ и слой L_∞ проекции рг находится в общем положении относительно кривой \overline{H} , определяет на π_1 структуру гурвицевской C-группы степени m (см. [4]). В работе [4] было доказано, что произвольная гурвицевская C-группа G степени m может быть реализована как фундаментальная группа $\pi_1(\mathbb{C}^2\backslash H)$ для некоторой кривой Гурвица \overline{H} с особыми точками типа $w^m-z^m=0$, имеющей степень $\deg \overline{H}=2^nm$, где n зависит от гурвицевского C-копредставления группы G. Поскольку мы рассматриваем C-группы с точностью до C-изоморфизмов, то класс $\mathcal H$ совпадает с классом $\{\pi_1(\mathbb{C}^2\backslash H)\}$ фундаментальных групп дополнений к аффинным кривым Гурвипа.

Легко показать, что G/G' является конечно порожденной свободной абелевой группой для любой C-группы G. C-группа G называется n-приводимой, если $G/G'\simeq \mathbb{Z}$, и мы будем говорить, что группа G состоит из n n-приводимых компонент, если $G/G'\simeq \mathbb{Z}^n$. Если гурвицевская C-группа G реализована как фундаментальная группа $\pi_1(\mathbb{C}^2\backslash H)$ дополнения к некоторой аффинной кривой Гурвица H, то число неприводимых компонент группы G совпадает с числом неприводимых компонент кривой H. Аналогично, если C-группа G, состоящая из n неприводимых компонент, реализована как $G = \pi_1(S^4 \backslash S)$, то число связных компонент поверхности S равно n.

Свободная группа \mathbb{F}_n с фиксированными свободными порождающими элементами является C-группой, и для любой C-группы G однозначно определен канонический C-эпиморфизм $\nu \colon G \to \mathbb{F}_1$, отображающий все C-порождающие элементы группы G в C-порождающий элемент группы \mathbb{F}_1 . Обозначим через N его ядро. Отметим, что если C-группа является неприводимой, то N совпадает с G'.

 $^{^{1}}$ В настоящей работе используются стандартные обозначения G' для коммутанта группы G и $[g_{1},g_{2}]$ для коммутатора элементов $g_{1},g_{2}\in G$.

Пусть G-C-группа; C-эпиморфизм ν индуцирует следующую точную последовательность групп:

$$1 \to N/N' \to G/N' \xrightarrow{\nu_*} \mathbb{F}_1 \to 1.$$

C-порождающий элемент группы \mathbb{F}_1 действует на N/N' сопряжением $\tilde{x}^{-1}g\tilde{x}$, где $g\in N$ и \tilde{x} – один из C-порождающих элементов группы G. Обозначим это действие через h и через $h_{\mathbb{C}}$ – индуцированное действие на $(N/N')_{\mathbb{C}}=(N/N')\otimes\mathbb{C}$. Характеристический многочлен $\Delta(t)=\det(h_{\mathbb{C}}-t\operatorname{Id})$ называется многочленом Александера C-группы G (если векторное пространство $(N/N')_{\mathbb{C}}$ над \mathbb{C} является бесконечномерным, то по определению $\Delta(t)\equiv 0$). Для кривой Гурвица \overline{H} многочлен Александера $\Delta(t)$ группы $\pi_1=\pi_1(\mathbb{C}^2\setminus H)$ называется многочленом Александера кривой \overline{H} . Отметим, что многочлен Александера $\Delta(t)$ кривой Гурвица \overline{H} не зависит от выбора общей прямой L_{∞} .

Гомоморфизм $\nu\colon \pi_1\to \mathbb{F}_1$ определяет бесконечное циклическое неразветвленное накрытие $f_\infty\colon X_\infty\to \mathbb{C}^2\setminus H$. Имеем $H_1(X_\infty,\mathbb{Z})=N/N'$, и действие h на $H_1(X_\infty,\mathbb{Z})$ совпадает с действием порождающего элемента группы накрывающих преобразований накрытия f_∞ . Из работы [5] следует, что группа $H_1(X_\infty,\mathbb{Z})$ является конечно порожденной.

Для произвольного $n\in\mathbb{N}$ обозначим через $\operatorname{mod}_n\colon \mathbb{F}_1\to \mu_n=\mathbb{F}_1/\{h^n\}$ естественный эпиморфизм в циклическую группу μ_n порядка n. Накрытие f_∞ может быть пропущено через циклическое накрытие $f_n\colon X_n\to\mathbb{C}^2\setminus H$, ассоциированное с эпиморфизмом $\operatorname{mod}_n\circ\nu$, $f_\infty=g_n\circ f_n$. Поскольку кривая Гурвица \overline{H} имеет только аналитические особенности, то накрытие f_n может быть продолжено до гладкого отображения $\overline{f}_n\colon \overline{X}_n\to\mathbb{CP}^2$, разветвленного вдоль \overline{H} и, возможно, вдоль L_∞ (если n не является делителем $\operatorname{deg}\overline{H}$, то \overline{f}_n разветвлено вдоль L_∞), где \overline{X}_n – некоторое гладкое четырехмерное многообразие. Действие h индуцирует действия \overline{h}_n на \overline{X}_n и \overline{h}_{n*} на $H_1(\overline{X}_n,\mathbb{Z})$.

В работе [1] было показано, что любое такое многообразие \overline{X}_n может быть вложено как симплектическое подмногообразие в рациональное проективное трехмерное комплексное многообразие, симплектическая структура на котором задана некоторой целочисленной кэлеровой формой, а также было доказано, что первое число Бетти $b_1(\overline{X}_n) = \dim_{\mathbb{C}} H_1(\overline{X}_n, \mathbb{C})$ многообразия \overline{X}_n равно $r_{n,\neq 1}$, где $r_{n,\neq 1}$ – число корней многочлена Александера $\Delta(t)$ кривой \overline{H} , которые являются не равными единице корнями из единицы степени n. В работе [1] были также исследованы свойства многочленов Александера кривых Гурвица. В частности, было доказано, что если кривая Гурвица \overline{H} степени d состоит из n неприводимых компонент и $\Delta(t)$ – ее многочлен Александера, то:

- (i) $\Delta(t) \in \mathbb{Z}[t]$;
- (ii) $\Delta(0) = \pm 1$;
- (iii) корни многочлена $\Delta(t)$ являются корнями степени d из единицы;
- (iv) действие $h_{\mathbb{C}}$ на $(N/N')\otimes \mathbb{C}$ полупросто;
- (v) $\Delta(t)$ является делителем многочлена $(t-1)(t^d-1)^{d-2}$;
- (vi) кратность корня t=1 многочлена $\Delta(t)$ равна n-1;
- (vii) если n=1, то $\Delta(1)=1$ и степень $\deg \Delta(t)$ является четной.

Основными результатами настоящей статьи являются следующие теоремы².

ТЕОРЕМА 1. Многочлен $P(t) \in \mathbb{Z}[t]$ является многочленом Александера некоторой неприводимой гурвицевской C-группы G тогда и только тогда, когда корни многочлена P(t) являются корнями из единицы и P(1)=1.

ТЕОРЕМА 2. Пусть многочлен

$$P(t) = (-1)^m t^m + \sum_{i=0}^{m-1} a_i t^i \in \mathbb{Z}[t]$$

обладает следующими свойствами:

- (i) корни многочлена P(t) являются корнями из единицы;
- (ii) если ζ примитивный корень из единицы степени p^k , где p простое число, то кратность корня $t=\zeta$ многочлена P(t) не превосходит кратности его корня t=1.

Tогда P(t) является многочленом Aлександера некоторой гурвицевской C-группы G.

ТЕОРЕМА 3. Многочлен

$$P(t) = (-1)^{n+k} (t-1)^n (t+1)^k$$

является многочленом Александера некоторой гурвицевской C-группы G тогда и только тогда, когда $n\geqslant k$.

Доказательство теоремы 1 приведено в $\S 1$, а в $\S 2$ дано доказательство теоремы 2. Несмотря на то, что в доказательствах этих теорем использованы почти одни и те же идеи, для более ясного изложения эти доказательства приведены независимо друг от друга. Доказательство теоремы 3 приведено в $\S 3$. Эти теоремы позволяют сформулировать следующую гипотезу.

Гипотеза 1. Многочлен

$$P(t) = (-1)^m t^m + \sum_{i=0}^{m-1} a_i t^i \in \mathbb{Z}[t]$$

является многочленом Александера некоторой гурвицевской C-группы G тогда и только тогда, когда он удовлетворяет следующим условиям:

- (i) корни многочлена P(t) являются корнями из единицы;
- (ii) если ζ примитивный корень из единицы степени p^k , где p простое число, то кратность корня $t=\zeta$ многочлена P(t) не превосходит кратности его корня t=1.

 $^{^2}$ Напомним, что класс гурвицевских C-групп совпадает с классом фундаментальных групп дополнений к аффинным кривым Гурвица. Следовательно, говорить о многочленах Александера кривых Гурвица — это то же самое, что говорить о многочленах Александера гурвицевских C-групп. Поэтому полученные результаты формулируются в терминах гурвицевских C-групп, так как их доказательства являются чисто алгебраическими.

В § 4, чтобы сравнить случай гурвицевских C-групп с общим случаем C-групп, приведены пример (см. пример 2) C-группы, состоящей из двух неприводимых компонент, многочлен Александера которой равен $(1-t)(t+1)^2$ (ср. этот пример с теоремой 3), и пример (см. пример 1) C-группы, также состоящей из двух неприводимых компонент, многочлен Александера которой равен $(t-1)^2$ (ср. этот пример с упомянутым выше свойством (vi); см. [1, теорема 5.9]).

§ 1. Многочлены Александера неприводимых гурвицевских С-групп

В настоящем параграфе будет доказана теорема 1.

В работе [1] было доказано, что если многочлен $P(t) \in \mathbb{Z}[t]$ является многочленом некоторой неприводимой гурвицевской C-группы G, то корнями многочлена P(t) являются корни из единицы и имеет место равенство P(1)=1. Следовательно, для доказательства теоремы 1 достаточно доказать обратное утверждение.

Рассмотрим многочлен $P(t) \in \mathbb{Z}[t]$, корни которого являются корнями из единицы, и такой, что P(1) = 1.

Вначале покажем, что для доказательства теоремы 1 достаточно доказать, что для любого многочлена $\Psi(t)$ такого, что:

- (i) корни многочлена $\Psi(t)$ являются корнями из единицы,
- (ii) $\Psi(t)$ не имеет кратных корней,
- (iii) $\Psi(1) = 1$,

найдется неприводимая гурвицевская C-группа, имеющая своим многочленом Александера многочлен $\Psi(t)$.

Действительно, каждый многочлен $P(t) \in \mathbb{Z}[t]$ можно разложить в произведение: $P(t) = \prod_i \Psi_i(t)$, где каждый множитель $\Psi_i(t) \in \mathbb{Z}[t]$ не имеет кратных корней. Поскольку корнями многочлена P(t) являются корни из единицы, P(1) = 1 и $\Psi_i(1) \in \mathbb{Z}$, то $\Psi_i(1) = 1$ для каждого i. Затем, если $\Delta_1(t)$ и $\Delta_2(t)$ являются многочленами Александера двух неприводимых гурвицевских C-групп G_1 и G_2 , заданных гурвицевскими C-копредставлениями $G_i = \langle x_{1,i}, \dots, x_{m_i,i} \mid \mathcal{R}_i \rangle$ степеней $m_i, i = 1, 2$, то согласно [1, предложение [1,] многочлен Александера гурвицевского произведения [1,] равен [1,] где гурвицевское произведение [1,] неприводимых гурвицевских [1,] где гурвицевское произведение [1,] где гурвицевское произведение [1,] неприводимых гурвицевсках [1,] где гурвицевсках

$$G = \langle x_{1,i}, \dots, x_{m_i,i}, \ i = 1, 2 \mid \mathcal{R}_1 \cup \mathcal{R}_2, \ x_{m_1,1} = x_{m_2,2},$$
$$[x_{i,i}, (x_{1,\bar{i}} \dots x_{m_{\bar{i}},\bar{i}})^{m_i}] = 1, \ j = 1, \dots, m_i - 1, \ i = 1, 2 \rangle,$$

где $\bar{i}=\{1,2\}\setminus\{i\}$ (напомним, что из соотношений $\mathcal{R}_{\bar{i}}$ следует, что элементы $x_{1,\bar{i}},\ldots,x_{m_{\bar{i}},\bar{i}}$ коммутируют с произведением $x_{1,\bar{i}}\ldots x_{m_{\bar{i}},\bar{i}}$).

Зафиксируем один из многочленов $\Psi_i(t) = \Psi(t)$. Обозначим через k такое наименьшее натуральное число, что все корни многочлена $\Psi(t)$ являются корнями степени k из единицы. Поскольку многочлен $\Psi(t)$ не имеет кратных корней, то он является делителем многочлена $t^k - 1$.

Для доказательства существования неприводимой гурвицевской C-группы, многочлен Александера которой совпадает с $\Psi(t)$, рассмотрим факторкольцо $M=M_\Psi=\mathbb{Z}[t]/(\Psi(t))$ кольца $\mathbb{Z}[t].$

Кольцо M (рассматриваемое как абелева группа относительно операции сложения) является свободной абелевой группой, свободно порожденной элементами $t_0=t^0,\ldots,t_{d-1}=t^{d-1}$, где $d=\deg \Psi(t)$. Пусть $h_0\in \operatorname{End}_{\mathbb{Z}} M$ действует по правилу $h_0(Q(t))=tQ(t)$, и пусть вложение $i\colon \mathbb{F}_1\to \operatorname{End}_{\mathbb{Z}} M$ определено равенством $i(x_0)=h_0$, где x_0 – порождающий элемент свободной группы \mathbb{F}_1 . Очевидно, что $h_0\in\operatorname{Aut} M$. Нетрудно показать (см., например, [7, гл. XV]), что $\det(h_{0,\mathbb{C}}-t\operatorname{Id})=\Psi(t)$, где $h_{0,\mathbb{C}}\in\operatorname{Aut}(M\otimes\mathbb{C})$ индуцирован автоморфизмом h_0 .

Поскольку $h_0 \in \operatorname{Aut} M$, можно рассмотреть (далее будем использовать мультипликативную запись групповой операции в M) полупрямое произведение

$$G_{\Psi} = M \times \mathbb{F}_1 \simeq \left\langle t_0, \dots, t_{d-1}, x_0 \mid [t_i, t_j] = 1, \ 0 \leqslant i, j \leqslant d - 1, \right.$$

$$x_0^{-1} t_i x_0 = t_{i+1}, \ i = 0, \dots, d - 2, \ x_0^{-1} t_{d-1} x_0 = \prod_{i=0}^{d-1} t_i^{-a_i} \right\rangle,$$

где числа a_i являются коэффициентами многочлена $\Psi(t) = t^d + \sum_{i=0}^{d-1} a_i t^i$.

Пусть $\nu\colon G_\Psi\to \mathbb{F}_1$ – канонический эпиморфизм, $\ker \nu=M\subset G_\Psi.$ Очевидно, что $h_0(g)=x_0^{-1}gx_0$ для $g\in M.$

При $i\geqslant d$ обозначим $t_i=x_0^{-i}t_0x^i$. Очевидно, элемент x_0^k принадлежит центру группы G_Ψ , так как $\Psi(t)$ является делителем многочлена t^k-1 и, следовательно,

$$t^{k+i} \equiv t^i \mod \Psi(t)$$

для всех $i\geqslant 0$. Таким образом, мы имеем $t_i=t_{k+i}$ для всех $i\geqslant 0$.

Для многочлена $P(t) = \sum_{i=0}^n c_i t^i \in \mathbb{Z}[t]$ обозначим

$$x_{P(t)} = x_0 \prod_{i=0}^{n} t_i^{c_i}.$$

Очевидно, имеет место следующее равенство:

$$x_{P(t)} = x_{Q(t)}, \quad \text{если} \quad P(t) \equiv Q(t) \mod \Psi(t),$$
 (4)

а также легко проверить, что

$$x_0^{-1} x_{P(t)} x_0 = x_{tP(t)} (5)$$

И

$$\left(\prod_{i=0}^{n} t_{i}^{c_{i}}\right) x_{Q(t)} \left(\prod_{i=0}^{n} t_{i}^{c_{i}}\right)^{-1} = x_{(t-1)P(t)+Q(t)}$$
(6)

для $P(t) = \sum_{i=0}^{n} c_i t^i$ и любого многочлена Q(t). В частности,

$$x_{t^{i+1}} = x_0^{-1} x_{t^i} x_0 (7)$$

при всех $i \geqslant 0$.

Поскольку $\Psi(1)=1$, то найдется такой многочлен $P(t)\in\mathbb{Z}[t]$, что $\Psi(t)=(t-1)P(t)+1$. Поэтому из соотношений (4) и (6) следует, что найдется такой элемент $g_{1,0}\in G_{\Psi}$, что $x_{t^0}=g_{1,0}^{-1}x_0g_{1,0}$. Следовательно, согласно (5) элементы $x_0,x_{t^0},\ldots,x_{t^{d-1}}$ являются сопряженными друг другу, и поэтому для каждого i элемент $x_{t^i}^k$ принадлежит центру группы G_{Ψ} .

Так как $t_i=x_0^{-1}x_{t^i}$ и элементы x_0,t_0,\ldots,t_{d-1} порождают группу G_Ψ , то элементы $x_0,x_{t^0},\ldots,x_{t^{d-1}}$ также порождают группу G_Ψ . Пусть $w_{1,0}(x_0,x_{t^0},\ldots,x_{t^{d-1}})$ является словом, состоящим из букв $x_0,x_{t^0},\ldots,x_{t^{d-1}}$ и обратных к ним, представляющим элемент $g_{1,0}$. Рассмотрим C-группу \widetilde{G} , заданную C-копредставлением:

$$\widetilde{G} = \langle x_1, \dots, x_{d+1} \mid x_{i+1} = x_1^{-1} x_i x_1, \ 2 \leqslant i \leqslant d,$$

$$x_1^{-k} x_i x_1^k = x_i, \ 2 \leqslant i \leqslant d+1,$$

$$x_2 = w_{1,0}^{-1} (x_1, \dots, x_{d+1}) x_1 w_{1,0} (x_1, \dots, x_{d+1}) \rangle.$$
(8)

Прежде всего заметим, что \widetilde{G} является неприводимой C-группой, так как все C-порождающие элементы группы \widetilde{G} сопряжены друг другу. Элемент x_1^k принадлежит центру группы \widetilde{G} . Следовательно, $x_i^k = x_1^k$ для $2 \leqslant i \leqslant d+1$, так как элементы x_i^k также сопряжены элементу x_1^k в группе \widetilde{G} . Поэтому произведение $x_1^k \dots x_{d+1}^k$ также принадлежит центру группы \widetilde{G} . Следовательно, согласно [1, лемма 5.11] \widetilde{G} является гурвицевской C-группой степени k(d+1). (Действительно, можно рассмотреть другое C-копредставление группы \widetilde{G} с C-порождающими элементами $\overline{x}_{i,j}, 1 \leqslant i \leqslant d+1, 1 \leqslant j \leqslant k$, удовлетворяющими следующим определяющим соотношениям:

$$\bar{x}_{i,j_1} = \bar{x}_{i,j_2} \quad \text{для всех} \quad i,j_1,j_2,$$

$$x_{1,1}^{-1}x_{i,1}x_{1,1} = x_{i+1,1} \quad \text{для} \qquad 2 \leqslant i \leqslant d,$$

$$x_{1,1}^{-k}x_{i,1}x_{1,1}^k = x_{i,1} \quad \text{для} \qquad 2 \leqslant i \leqslant d+1,$$

$$\left[\prod_{i=1}^{d+1}\prod_{j=1}^k \bar{x}_{i,j}, \, \bar{x}_{i,j}\right] = 1 \quad \text{для всех} \quad i \text{ и } j,$$

$$x_{2,1} = w_{1,0}^{-1}(x_{1,1},\dots,x_{d+1,1})x_{1,1}w_{1,0}(x_{1,1},\dots,x_{d+1,1}).$$

Очевидно, что после перенумерации порождающих элементов это копредставление становится гурвицевским C-копредставлением.)

Обозначим через $\tilde{\nu} \colon \widetilde{G} \to \mathbb{F}_1$ канонический C-эпиморфизм и через \tilde{h}_1 действие C-порождающего элемента группы \mathbb{F}_1 на группе $\widetilde{N} = \ker \tilde{\nu}$, заданное формулой $\tilde{h}_1(g) = x_1^{-1}gx_1$ для $g \in \widetilde{N}$.

Легко видеть, что отображение \tilde{f} , переводящее множество $\{x_i \mid i=1,\ldots,d+1\}$ порождающих элементов группы \widetilde{G} во множество $\{x_0,x_{t^i} \mid i=0,\ldots,d-1\}$ порождающих элементов группы G_{Ψ} по правилу: $\tilde{f}(x_1)=x_0$ и $\tilde{f}(x_i)=x_{t^{i-2}}$ для $2\leqslant i\leqslant d+1$, может быть продолжено до эпиморфизма $\tilde{f}\colon \widetilde{G}\to G_{\Psi}$. Очевидно, что $\tilde{f}(\widetilde{N})=M$ и $h_0\big(\tilde{f}(g)\big)=\tilde{f}\big(\tilde{h}_1(g)\big)$ для всех $g\in \widetilde{N}$.

Рассмотрим ограничение $\tilde{f}_{|\widetilde{N}}\colon\widetilde{N}\to M$ эпиморфизма \tilde{f} на \widetilde{N} . Поскольку M – свободная абелева группа, то эпиморфизм $\tilde{f}_{|\widetilde{N}}$ разлагается в композицию: $\tilde{f}_{|\widetilde{N}}=\tilde{f}'\circ\tilde{j},\,$ где $\tilde{j}\colon\widetilde{N}\to\widetilde{N}/\widetilde{N}'$ – канонический эпиморфизм и $\tilde{f}'\colon\widetilde{N}/\widetilde{N}'\to M$ – эпиморфизм, индуцированный эпиморфизмом $\tilde{f}_{|\widetilde{N}}$. Обозначим $\widetilde{K}=\ker\tilde{f}'.$

Из работы [5] следует, что абелева группа $\widetilde{N}/\widetilde{N}'$ является конечно порожденной. Следовательно, группа \widetilde{K} также является конечно порожденной абелевой группой. Пусть $\{g_1,\ldots,g_n\}$ — множество элементов из \widetilde{N} таких, что их образы $\widetilde{j}(g_1),\ldots,\widetilde{j}(g_n)$ в $\widetilde{N}/\widetilde{N}'$ порождают группу \widetilde{K} , и пусть слова $w_i(x_1,\ldots,x_{d+1})$, $1\leqslant i\leqslant n$, состоящие из букв $x_1^{\pm 1},\ldots,x_{d+1}^{\pm 1}$, представляют элементы g_i . Рассмотрим C-группу G, заданную C-копредставлением:

$$G = \langle x_1, \dots, x_{d+1} \mid \mathcal{R}, \quad x_j = w_i^{-1}(x_1, \dots, x_{d+1}) x_j w_i(x_1, \dots, x_{d+1}),$$

$$1 \le j \le d+1, \quad 1 \le i \le n \rangle,$$
(9)

где \mathcal{R} — множество определяющих соотношений копредставления (8). Группа G также является гурвицевской C-группой. Более того, из определяющих соотношений для группы G следует, что эпиморфизм \tilde{f} может быть разложен в композицию: $\tilde{f} = f \circ r$, где C-эпиморфизм r отображает порождающие элементы $x_i, \ 1 \leqslant i \leqslant d+1$, группы \tilde{G} в порождающие элементы $x_i, \ 1 \leqslant i \leqslant d+1$, группы G, а $f \colon G \to G_{\Psi}$ — такой эпиморфизм, что $f(x_1) = x_0$ и $f(x_i) = x_{t^{i-2}}$ при $2 \leqslant i \leqslant d+1$. Из (9) следует, что элементы $r(g_i), \ 1 \leqslant i \leqslant n$, принадлежат центру группы G.

Обозначим через $\nu \colon G \to \mathbb{F}_1$ канонический C-эпиморфизм и через \tilde{h} действие C-порождающего элемента группы \mathbb{F}_1 на группе $N = \ker \nu$, заданное формулой $\tilde{h}(g) = x_1^{-1}gx_1$ для всех $g \in N$. Очевидно, что f(N) = M и $h_0(f(g)) = f(\tilde{h}(g))$ для всех $g \in N$.

Ограничение $f_{|N}\colon N\to M$ эпиморфизма f на группу N также разлагается в композицию: $f_{|N}=f'\circ j$, где $j\colon N\to N/N'$ – канонический эпиморфизм и $f'\colon N/N'\to M$ – эпиморфизм, индуцированный эпиморфизмом $f_{|N}$. Обозначим $K=\ker f'$. Очевидно, что $r'(\widetilde K)=K$, где $r'\colon \widetilde N/\widetilde N'\to N/N'$ – эпиморфизм, индуцированный эпиморфизмом r. Пусть $h\in \operatorname{Aut} N/N'$ – автоморфизм, индуцированный автоморфизмом $\widetilde h$. Имеем следующую коммутативную диаграмму:

$$\widetilde{N} \xrightarrow{\widetilde{j}} \widetilde{N}/\widetilde{N}'$$

$$r \qquad \widetilde{K} \qquad r' \qquad f' \qquad M$$

$$N \xrightarrow{j} N/N'$$

$$(10)$$

Элементы $\tilde{j}(g_1), \ldots, \tilde{j}(g_n)$ порождают группу \tilde{K} . Поскольку гомоморфизмы \tilde{j}, j, r и r' в коммутативной диаграмме (10) являются эпиморфизмами, то группа K порождается элементами $j(r(g_1)), \ldots, j(r(g_n))$.

По построению группы G элементы $r(g_1),\ldots,r(g_n)$ принадлежат центру группы G. Следовательно, $h(j(r(g_i)))=j(r(g_i))$, т. е. $h_{|K}=\mathrm{Id}$. Однако t=1 не является корнем многочлена Александера $\Delta(t)=\det(h_{\mathbb{C}}-t\,\mathrm{Id})$ группы G, так как G — неприводимая C-группа. Поэтому группа K принадлежит ядру естественного гомоморфизма $c\colon N/N'\to (N/N')_{\mathbb{C}}=(N/N')\otimes \mathbb{C}$, который совпадает с подгруппой $\mathrm{Tors}\,N/N'$ группы N/N', состоящей из всех элементов, имеющих конечные порядки. С другой стороны, $\mathrm{Tors}\,N/N'\subset\ker f'$, так как M является свободной абелевой группой. Поэтому $K=\mathrm{Tors}\,N/N'$, и так как f' является эпиморфизмом, то $f'_{\mathbb{C}}\colon (N/N')_{\mathbb{C}}\to M_{\mathbb{C}}$ является изоморфизмом. Следовательно, $\Delta(t)=\Psi(t)$, так как $h_0(f'(g))=f'(h(g))$ для всех $g\in N/N'$.

§ 2. Многочлены Александера гурвицевских *С*-групп, состоящих из нескольких неприводимых компонент

В настоящем параграфе докажем теорему 2.

Рассмотрим многочлен $P(t)=(-1)^{n+\deg P_0}(t-1)^nP_0(t)\in\mathbb{Z}[t]$ такой, что $P_0(1)\neq 0$, все корни многочлена $P_0(t)$ являются корнями из единицы, и если ζ – примитивный корень степени p^k из единицы, где p – простое число, то кратность корня $t=\zeta$ многочлена $P_0(t)$ не превосходит n. Многочлен $P_0(t)$ можно разложить в произведение циклотомических многочленов. Хорошо известно (см., например, [1, лемма [1, лемма [1, что для циклотомического многочлена [1, имеем [1, имеем [1, лемма [1, итолько тогда, когда [1, иметочлена [1, иметочлена [1, иметочлена, когда [1, иметочлена [1,

Согласно теореме 1 существует гурвицевская C-группа, многочлен Александера которой совпадает с $\Psi_{n+1}(t)$. Кроме того, согласно [1, предложение 5.12] многочлен Александера гурвицевского произведения $G=G_1 \diamond G_2$ двух гурвицевских C-групп равен произведению многочленов Александера этих групп. Поэтому для доказательства теоремы 2 достаточно доказать существование гурвицевской C-группы G, многочлен Александера $\Delta(t)$ которой равен $\Psi(t)$, где многочлен $\Psi(t)=(-1)^{\deg\Psi}(1-t)\Psi(t)\in\mathbb{Z}[t]$ не имеет кратных корней и все его корни являются корнями из единицы.

Зафиксируем такой многочлен $\Psi(t)$. Пусть $d=\deg \Psi(t)$. Обозначим через k такое наименьшее положительное целое число, что все корни многочлена $\Psi(t)$ являются корнями степени k из единицы. Поскольку $\Psi(t)$ не имеет кратных корней, то $\Psi(t)$ является делителем многочлена t^k-1 . Следовательно, $\Psi(0)=\pm 1$ и $\Psi(t)=\pm t^d+\ldots$, т. е. его старший коэффициент равен ± 1 .

Как и в доказательстве теоремы 1, для доказательства существования гурвицевской C-группы, многочлен Александера которой совпадает с $\Psi(t)$, рас-

смотрим факторкольцо

$$M = M_{\Psi} = \mathbb{Z}[t]/(\Psi(t)).$$

Поскольку старший коэффициент многочлена $\Psi(t)$ равен ± 1 , то кольцо M (рассматриваемое как абелева группа относительно операции сложения) является свободной абелевой группой, свободно порожденной элементами $t_0 = t^0, \ldots, t_{d-1} = t^{d-1}$. Как и выше, пусть эндоморфизм $h_0 \in \operatorname{End}_{\mathbb{Z}} M$ задан формулой $h_0(Q(t)) = tQ(t)$ и вложение $i \colon \mathbb{F}_1 \to \operatorname{End}_{\mathbb{Z}} M$ определяется равенством $i(x_0) = h_0$, где x_0 – порождающий элемент свободной группы \mathbb{F}_1 . Имеем $h_0 \in \operatorname{Aut} M$, так как $\Psi(0) = \pm 1$, и $\det(h_{0,\mathbb{C}} - t\operatorname{Id}) = \Psi(t)$.

Поскольку $h_0 \in \operatorname{Aut} M$, то можно рассмотреть полупрямое произведение

$$G_{\Psi} = M \times \mathbb{F}_1 \simeq \left\langle t_0, \dots, t_{d-1}, x_0 \mid [t_i, t_j] = 1, \ 0 \leqslant i, j \leqslant d - 1, \right.$$
$$x_0^{-1} t_i x_0 = t_{i+1}, \ i = 0, \dots, d - 2,$$
$$x_0^{-1} t_{d-1} x_0 = \prod_{i=0}^{d-1} t_i^{-a_i} \right\rangle,$$

где a_i – коэффициенты многочлена $\Psi(t) = t^d + \sum_{i=0}^{d-1} a_i t^i$.

Пусть $\nu_0 \colon G_\Psi \to \mathbb{F}_1$ – канонический эпиморфизм, $\ker \nu_0 = M \subset G_\Psi$. Имеем $h(g) = x_0^{-1} g x_0$ для всех $g \in M$.

Для $i\geqslant d$ обозначим $t_i=x_0^{-i}t_0x^i$. Очевидно, что x_0^k принадлежит центру группы G_Ψ , так как $\Psi(t)$ является делителем многочлена t^k-1 , и поэтому

$$t^{k+i} \equiv t^i \mod \Psi(t)$$

для всех $i\geqslant 0$. Таким образом, имеем равенства $t_i=t_{k+i}$ для всех $i\geqslant 0$. Обозначим $x_{t^i}=x_0t_i$. Имеем

$$x_0^{-1} x_{t^i} x_0 = x_{t^{i+1}}. (11)$$

Поскольку каждый элемент t_i принадлежит нормальной абелевой подгруппе M группы G_{Ψ} , то имеет место равенство $x_0^{-1}gx_0=x_{t^i}^{-1}gx_{t^i}$ для всех $g\in M$. Следовательно, все элементы $x_{t^i}^k$ так же, как и x_0^k , принадлежат центру группы G_{Ψ} .

Имеем $t_i=x_0^{-1}x_{t^i}$, и элементы x_0,t_0,\ldots,t_{d-1} порождают группу G_Φ , поэтому элементы $x_0,x_{t^0},\ldots,x_{t^{d-1}}$ также порождают G_Ψ .

Рассмотрим C-группу \widetilde{G} , заданную C-копредставлением

$$\widetilde{G} = \langle x_1, \dots, x_{k+1} \mid x_{i+1} = x_1^{-1} x_i x_1, \ 2 \leqslant i \leqslant k, \ x_1^{-1} x_{k+1} x_1 = x_2,$$
$$[x_i^k, x_j] = 1, \ 2 \leqslant i \leqslant k, \ 1 \leqslant j \leqslant k+1 \rangle.$$
(12)

Прежде всего заметим, что \widetilde{G} является C-группой, состоящей из двух неприводимых компонент. Все элементы $x_i^k, \quad i=1,\dots,k+1$, принадлежат центру группы \widetilde{G} . Следовательно, произведение $x_1^k\dots x_{k+1}^k$ также принадлежит центру группы \widetilde{G} . Поэтому, как и в доказательстве теоремы 1, можно показать, что \widetilde{G} является гурвицевской C-группой степени k(k+1).

Обозначим, как и выше, через $\tilde{\nu}\colon \widetilde{G}\to \mathbb{F}_1$ канонический C-эпиморфизм и через \tilde{h}_1 действие C-порождающего элемента группы \mathbb{F}_1 на группе $\widetilde{N}=\ker\tilde{\nu}$, заданное формулой $\tilde{h}_1(g)=x_1^{-1}gx_1$ для всех $g\in \widetilde{N}$. Как и выше, легко видеть, что отображение \tilde{f} , переводящее множество $\{x_i\mid i=1,\ldots,k+1\}$ порождающих элементов группы \widetilde{G} в множество $\{x_0,x_{t^i}\mid i=0,\ldots,k-1\}$ порождающих элементов группы G_{Ψ} по правилу: $\tilde{f}(x_1)=x_0$ и $\tilde{f}(x_i)=x_{t^{i-2}}$ для $2\leqslant i\leqslant k+1$, может быть продолжено до эпиморфизма $\tilde{f}\colon \widetilde{G}\to G_{\Psi}$. Также очевидно, что имеют место равенства $\tilde{f}(\widetilde{N})=M$ и $h_0(\tilde{f}(g))=\tilde{f}(\tilde{h}_1(g))$ для всех $g\in \widetilde{N}$.

Как и в доказательстве теоремы 1, ограничение $\tilde{f}_{|\widetilde{N}}\colon \widetilde{N}\to M$ эпиморфизма \widetilde{f} на группу \widetilde{N} можно разложить в композицию: $\tilde{f}_{|\widetilde{N}}=\widetilde{f}'\circ \widetilde{j}$, где $\widetilde{j}\colon \widetilde{N}\to \widetilde{N}/\widetilde{N}'-$ канонический эпиморфизм и $\widetilde{f}'\colon \widetilde{N}/\widetilde{N}'\to M$ – эпиморфизм, индуцированный эпиморфизмом $\widetilde{f}_{|\widetilde{N}}$. Обозначим $\widetilde{K}=\ker \widetilde{f}'$.

Группы $\widetilde{N}/\widetilde{N}'$ и \widetilde{K} являются конечно порожденными абелевыми группами. Пусть $g_1,\ldots,g_n\in\widetilde{N}$ – такие элементы, что их образы $\widetilde{j}(g_1),\ldots,\widetilde{j}(g_n)$ в $\widetilde{N}/\widetilde{N}'$ порождают группу \widetilde{K} , и пусть слова $w_i(x_1,\ldots,x_{k+1}),\ 1\leqslant i\leqslant n,$ состоящие из букв $x_1^{\pm 1},\ldots,x_{k+1}^{\pm 1},$ представляют элементы g_i . Рассмотрим C-группу G, заданную C-копредставлением:

$$G = \langle x_1, \dots, x_{k+1} \mid \mathcal{R}, x_j = w_i^{-1}(x_1, \dots, x_{k+1}) x_j w_i(x_1, \dots, x_{k+1}),$$

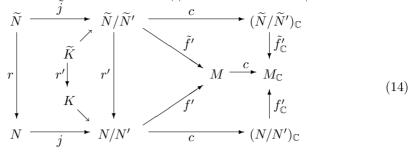
$$1 \le j \le k+1, \ 1 \le i \le n \rangle,$$
(13)

где \mathcal{R} — множество определяющих соотношений копредставления (12). Группа G также является гурвицевской C-группой, состоящей из двух неприводимых компонент. Более того, по построению группы G эпиморфизм \tilde{f} можно разложить в композицию: $\tilde{f} = f \circ r$, где C-эпиморфизм r отображает порождающие элементы x_i , $1 \leqslant i \leqslant d+1$, группы \tilde{G} в порождающие элементы x_i , $1 \leqslant i \leqslant k+1$, группы G и $f\colon G \to G_{\Psi}$ — такой эпиморфизм, что $f(x_1) = x_0$ и $f(x_i) = x_{t^{i-2}}$ для $2 \leqslant i \leqslant k+1$. Из (13) следует, что элементы $r(g_i)$, $1 \leqslant i \leqslant n$, принадлежат центру группы G.

Пусть $\nu \colon G \to \mathbb{F}_1$ – канонический C-эпиморфизм и \hat{h} – действие C-порождающего элемента группы \mathbb{F}_1 на группе $N = \ker \nu$, заданное формулой $\tilde{h}(g) = x_1^{-1}gx_1$ для всех $g \in N$. Очевидно, имеют место равенства f(N) = M и $h_0\big(f(g)\big) = f\big(\tilde{h}(g)\big)$ для всех $g \in N$.

Ограничение $f_{|N}\colon N\to M$ эпиморфизма f на N можно также разложить в композицию: $f_{|N}=f'\circ j$, где $j\colon N\to N/N'$ – канонический эпиморфизм и $f'\colon N/N'\to M$ – эпиморфизм, индуцированный эпиморфизмом $f_{|N}$. Обозначим $K=\ker f'$. Очевидно, что $r'(\widetilde K)=K$, где $r'\colon \widetilde N/\widetilde N'\to N/N'$ – эпиморфизм, индуцированный эпиморфизмом r. Пусть $h\in \operatorname{Aut} N/N'$ – автоморфизм, индуцированный автоморфизмом $\widetilde h$.

Имеем следующую коммутативную диаграмму:



Согласно [1, теорема 5.9] значение t=1 является корнем кратности один многочлена Александера $\Delta(t)=\det(h_{\mathbb C}-t\operatorname{Id})$ группы G, так как гурвицевская C-группа G состоит из двух неприводимых компонент. Кроме того, кратность корня t=1 характеристического многочлена $\det(h_{0,\mathbb C}-t\operatorname{Id})=(-1)^d\Psi(t)$ также равна единице. Следовательно, собственные подпространства $\left((N/N')_{\mathbb C}\right)_1\subset (N/N')_{\mathbb C}$ и $(M_{\mathbb C})_1\subset M_{\mathbb C}$, соответствующие собственному значению 1, являются одномерными. Затем, $f_{\mathbb C}$ является эпиморфизмом таким, что $f'_{\mathbb C}(h_{\mathbb C}(v))=h_{0,\mathbb C}(f'_{\mathbb C}(v))$ для всех $v\in (N/N')_{\mathbb C}$. Поэтому $\left((N/N')_{\mathbb C}\right)_1\not\subset\ker f'_{\mathbb C}$.

Элементы $\tilde{j}(g_1), \ldots, \tilde{j}(g_n)$ порождают группу \tilde{K} . Поскольку гомоморфизмы \tilde{f}, f, r и r' в коммутативной диаграмме (14) являются эпиморфизмами, то группа K порождается элементами $j(r(g_1)), \ldots, j(r(g_n))$.

По построению группы G элементы $r(g_1),\dots,r(g_n)$ принадлежат центру группы G. Поэтому $h\big(j\big(r(g_i)\big)\big)=j\big(r(g_i)\big),$ т.е. $h_{|K}=\mathrm{Id},$ и, следовательно, $c(K)=\ker f'_{\mathbb{C}}\cap \big((N/N')_{\mathbb{C}}\big)_1=0.$ Имеем $K\subset\ker c=\mathrm{Tors}\,N/N'.$ С другой стороны, $\mathrm{Tors}\,N/N'\subset K,$ так как M является свободной абелевой группой. Поэтому $K=\mathrm{Tors}\,N/N'$ и $f'_{\mathbb{C}}$ является эквивариантным изоморфизмом. Следовательно, $\Delta(t)=\Psi(t).$ Теорема 2 доказана.

§ 3. Гурвицевские C-группы с многочленами Александера $\Delta(t)=(-1)^{n+k}(t-1)^n(t+1)^k$

В настоящем параграфе доказана теорема 3.

Рассмотрим пары A=(M,h), состоящие из конечно порожденных свободных абелевых групп M и автоморфизмов $h\in \operatorname{Aut} M$. В частности, положим $A_{\pm}=(\mathbb{Z},\pm\operatorname{Id})$ и $A_{+-}=(\mathbb{Z}\oplus\mathbb{Z},h_{\pm})$, где автоморфизм h_{\pm} в некотором базисе e_1,e_2 группы $\mathbb{Z}\oplus\mathbb{Z}$ действует по правилу: $h_{\pm}(e_1)=e_2$ и $h_{\pm}(e_2)=e_1$. Для двух пар A=(M,h) и A'=(M',h') равенство A=A' будет означать, что пары A и A' являются изоморфиными, т. е. существует изоморфизм $g\colon M\to M'$ такой, что $h=g^{-1}\circ h'\circ g$. Для A и A' положим $A\oplus A'=(M\oplus M',h\oplus h')$ и обозначим через nA прямую сумму n копий пары A.

ПРЕДЛОЖЕНИЕ 1. Пусть A = (M,h) – такая пара, что $h^2 = \text{Id.}$ Тогда существуют целые числа n_1 , n_2 и n_3 такие, что $A = n_1 A_+ \oplus n_2 A_- \oplus n_3 A_{+-}$.

Доказательство. Обозначим $M_+ = \{a \in M \mid h(a) = a\}$ и $M_- = \{a \in M \mid h(a) = -a\}$. Рассмотри подгруппу M' в M, порожденную элементами $a \in M_+ \cup M_-$. Очевидно, что $M' = M_+ \oplus M_-$. Обозначим через $p_+ \colon M' \to M_+$

и $p_-\colon M'\to M_-$ проекции на слагаемые. Поскольку M является свободным \mathbb{Z} -модулем, то его подмодули M_+ и M_- также являются свободными \mathbb{Z} -модулями. Пусть M_+ и M_- свободно порождаются над \mathbb{Z} элементами e_1,\ldots,e_{k_1} и $e_{k_1+1},\ldots,e_{k_1+k_2}$ соответственно.

Покажем, что для любого $a \in M$ элемент 2a принадлежит модулю M'. Действительно, для каждого $a \in M$ имеем $a + h(a) \in M_+$, $a - h(a) \in M_-$ и 2a = (a + h(a)) + (a - h(a)). Следовательно, все элементы абелевой группы M/M' являются элементами второго порядка. Заметим также, что согласно определению подгрупп M_\pm если для элемента $a \in M$ имеет место включение $2a \in M_+$ (соответственно, $2a \in M_-$), то $a \in M_+$ (соответственно, $a \in M_-$).

Имеем $M/M' \simeq (\mathbb{Z}/2\mathbb{Z})^{n_3}$ для некоторого целого числа $n_3 \geqslant 0$. Выберем элементы $a_1,\ldots,a_{n_3}\in M$, образы которых порождают группу M/M', и пусть $2a_i=(\alpha_{i,1},\ldots,\alpha_{i,k_1+k_2}), \quad i=1,\ldots,n_3$, – координаты элементов $2a_i$ в базисе $e_1,\ldots,e_{k_1+k_2}$. Не ограничивая общности, прибавляя или вычитая элементы, принадлежащие M', можем предполагать, что при каждом $i=1,\ldots,n_3$ каждая координата $\alpha_{i,j}$ равна 0 или 1 и найдется j, для которого $\alpha_{i,j}=1$.

Покажем, что элементы $2a_1,\ldots,2a_{n_3}$ являются линейно независимыми над \mathbb{Z} . Действительно, предположим, что для некоторых $m_1,\ldots,m_{n_3}\in\mathbb{Z}$ имеет место равенство $\sum m_i(2a_i)=0$ в M'. Так как M' – свободная абелева группа, то можно предполагать, что по крайней мере одно из чисел m_i , скажем m_{n_3} , является нечетным числом. В этом случае образ элемента a_{n_3} в M/M' является линейной комбинацией образов элементов a_1,\ldots,a_{n_3-1} . Противоречие.

Покажем, что элементы $p_+(2a_1),\ldots,p_+(2a_{n_3})$ (соответственно, элементы $p_-(2a_1),\ldots,p_-(2a_{n_3})$) являются линейно независимыми над \mathbb{Z} . Действительно, предположим, что для некоторых $m_1,\ldots,m_{n_3}\in\mathbb{Z}$ имеет место равенство $\sum m_i p_+(2a_i)=0$ в M_+ . Поскольку M_+ – свободная абелева группа, то можем предполагать, что по крайней мере одно из чисел m_i , скажем m_{n_3} , является нечетным числом. Тогда $2a=2\sum m_i a_i\in M_-$ и, следовательно, $a=\sum m_i a_i\in M_-$. Но это невозможно, так как образы элементов a_1,\ldots,a_{n_3-1} не могут порождать $M/M'\simeq(\mathbb{Z}/2\mathbb{Z})^{n_3}$. В качестве следствия получаем, что $n_3\leqslant \min(k_1,k_2)$.

Покажем, что можно так выбрать элементы a_1,\ldots,a_{n_3} , образы которых порождают M/M', что система элементов $p_-(2a_1),\ldots,p_-(2a_{n_3})$ может быть расширена до свободного базиса свободного \mathbb{Z} -модуля M_- . Действительно, не ограничивая общности (если необходимо, перенумеруем элементы $e_{k_1+1},\ldots,e_{k_1+k_2}$), предположим, что $\alpha_{1,k_1+k_2}=1$. Для $i=2,\ldots,n_3$, заменяя a_i на

$$a'_{i} = a_{i} - \alpha_{i,k_{1}+k_{2}} \left(a_{1} - \sum_{j=1}^{k_{1}+k_{2}-1} \alpha_{1,j} (1 - \alpha_{i,j}) e_{j} \right),$$

получим новую систему элементов $a_1, a_2', \dots, a_{n_3}'$ такую, что:

- (i) образы элементов $a_1, a'_2, \dots, a'_{n_3}$ порождают M/M';
- (ii) координаты элементов $2a_1, 2a_2', \dots, 2a_{n_3}'$ в базисе $e_1, \dots, e_{k_1+k_2}$ равны 0 или 1;

(ііі) для каждого $i=2,\ldots,n_3$ последняя координата элемента $2a_i'$ в базисе $e_1,\ldots,e_{k_1+k_2}$ равна нулю.

Теперь ясно, что, повторяя подобные замены n_3 раза, можем найти новые элементы $a_1, a_2, \ldots, a_{n_3}$ и новый базис $e_{k_1+1}, \ldots, e_{k_1+k_2}$ модуля M_- такие, что:

- (i) образы элементов $a_1, a_2, \ldots, a_{n_3}$ порождают M/M';
- (ii) для каждого $i=1,\ldots,n_3$ координаты $\alpha_{i,j}$ элемента $2a_i$ в новом базисе $e_1,\ldots,e_{k_1+k_2}$ равны 0 или 1;
- (iii) для каждого $i=1,\ldots,n_3$ координата $\alpha_{i,j}$ элемента $2a_i$ в новом базисе $e_1,\ldots,e_{k_1+k_2}$ равна нулю при $j>k_1+k_2-i+1$ и $\alpha_{i,k_1+k_2-i+1}=1$.

В результате получаем разложение группы M_- в прямую сумму: $M_- = \widetilde{M}_- \oplus \overline{M}_-$, где группа \overline{M}_- порождена элементами $e_{k_1+1}, \ldots, e_{k_1+k_2-n_3}$, а \widetilde{M}_- порождена элементами $p_-(2a_1), \ldots, p_-(2a_{n_3})$.

Обозначим через M подгруппу в M, порожденную элементами a_1,\ldots,a_{n_3} вместе с элементами $e_1,\ldots,e_{k_1}\in M_+$. Легко видеть, что $M=\widetilde{M}\oplus \overline{M}_-$, группа \widetilde{M} инвариантна относительно действия $h,\ M_+=\{a\in \widetilde{M}\mid h(a)=a\}$ и $\widetilde{M}_-=\{a\in \widetilde{M}\mid h(a)=-a\}$. Пусть $\widetilde{M}'=M_+\oplus \widetilde{M}_-\subset \widetilde{M}$, и обозначим через $\widetilde{p}_+\colon \widetilde{M}'\to M_+$ и $\widetilde{p}_-\colon \widetilde{M}'\to \widetilde{M}_-$ проекции на прямые слагаемые.

Покажем, что с помощью линейного треугольного преобразования можно заменить выбранную выше систему элементов a_1,\ldots,a_{n_3} на систему элементов $\bar{a}_1,\ldots,\bar{a}_{n_3}$ так, что образы элементов $\bar{a}_1,\ldots,\bar{a}_{n_3}$ порождают $\widetilde{M}/\widetilde{M}'$, элементы $\widetilde{p}_-(2\bar{a}_1),\ldots,\widetilde{p}_-(2\bar{a}_{n_3})$ порождают \widetilde{M}_- и система элементов $\widetilde{p}_+(2\bar{a}_1),\ldots,\widetilde{p}_+(2\bar{a}_{n_3})$ может быть расширена до свободного базиса свободного \mathbb{Z} -модуля M_+ . Действительно, как и выше, не ограничивая общности (если это необходимо, то перенумеруем элементы e_1,\ldots,e_{k_1}), можем предполагать, что $\alpha_{1,k_1}=1$. Тогда для $i=2,\ldots,n_3$, заменяя a_i на

$$a'_{i} = a_{i} - \alpha_{i,k_{1}} \left(a_{1} - \sum_{j=1}^{k_{1}-1} \alpha_{1,j} (1 - \alpha_{i,j}) e_{j} \right),$$

получаем новую систему элементов $a_1, a_2', \dots, a_{n_3}'$ такую, что:

- (i) образы элементов $a_1, a'_2, \dots, a'_{n_3}$ порождают M/M';
- (ii) элементы $\tilde{p}_{-}(2a_1), \tilde{p}_{-}(2a_2'), \dots, \tilde{p}_{-}(2a_{n_3}')$ порождают \tilde{M}_{-} ;
- (iii) координаты элементов $2a_1,2a_2',\ldots,2a_{n_3}'$ в базисе $e_1,\ldots,e_{k_1},\quad \tilde p_-(2a_1),$ $\tilde p_-(2a_2'),\ldots,\tilde p_-(2a_{n_3}')$ равны 0 или 1;
- (iv) для $i=2,\ldots,n_3$ координаты α_{i,k_1} элементов $2a_i'$ в базисе $e_1,\ldots,e_{k_1},$ $\tilde{p}_-(2a_1),\tilde{p}_-(2a_2'),\ldots,\tilde{p}_-(2a_{n_3}')$ равны нулю.

Очевидно, что, повторяя подобные замены n_3 раза, можно найти новые элементы $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_{n_3}$ и новый базис e_1, \dots, e_{k_1} свободного \mathbb{Z} -модуля M_+ такие, что:

- (i) образы элементов $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_{n_3}$ порождают $\widetilde{M}/\widetilde{M}';$
- (ii) элементы $\tilde{p}_{-}(2\bar{a}_1), \tilde{p}_{-}(2\bar{a}_2), \dots, \tilde{p}_{-}(2\bar{a}_{n_3})$ порождают M_{-} ;
- (iii) для каждого $i=1,\ldots,n_3$ координаты $\alpha_{i,j}$ элемента $2\bar{a}_i$ в новом базисе $e_1,\ldots,e_{k_1},\ \tilde{p}_-(2\bar{a}_1),\tilde{p}_-(2\bar{a}_2),\ldots,\tilde{p}_-(2\bar{a}_{n_3})$ равны 0 или 1;
- (iv) для каждого $i=1,\dots,n_3$ координаты $\alpha_{i,j},\ j\leqslant k_1$, элемента $2\bar{a}_i$ в новом базисе $e_1,\dots,e_{k_1},\ \tilde{p}_-(2\bar{a}_1),\tilde{p}_-(2\bar{a}_2),\dots,\tilde{p}_-(2\bar{a}_{n_3})$ равны нулю при $j>k_1-i+1$ и $\alpha_{i,k_1-i+1}=1$.

В результате группа M_+ разлагается в прямую сумму: $M_+ = \widetilde{M}_+ \oplus \overline{M}_+$, где \overline{M}_+ порождена элементами $e_1, \ldots, e_{k_1-n_3}$, а \widetilde{M}_+ порождена элементами $\widetilde{p}_+(2\overline{a}_1), \ldots, \widetilde{p}_+(2\overline{a}_{n_3})$. Обозначим через \overline{M}_{+-} подгруппу группы M, порожденную элементами $\overline{a}_1, h(\overline{a}_1), \ldots, \overline{a}_{n_3}, h(\overline{a}_{n_3})$. Легко видеть, что группа \overline{M}_{+-} инвариантна относительно действия h и, кроме того, $\widetilde{M}_+ \oplus \widetilde{M}_- \subset \overline{M}_{+-}$. Поэтому rk $\overline{M}_{+-} = 2n_3$ и по построению имеем $(\overline{M}_{+-}, h) \simeq n_3 A_{+-}$. Более того,

$$(M,h) = (\overline{M}_+ \oplus \overline{M}_- \oplus \overline{M}_{+-}, h) \simeq n_1 A_+ \oplus n_2 A_- \oplus n_3 A_{+-},$$

где $n_1 = k_1 - n_3$ и $n_2 = k_2 - n_3$. Предложение доказано.

ЛЕММА 1. Пусть $(M,h) = n_1 A_+ \oplus n_2 A_- \oplus n_3 A_{+-}$. Рассмотрим полупрямое произведение $G = M \setminus \langle h \rangle$. Тогда:

- (i) $G/G' \simeq \mathbb{Z}^{n_1 + n_3 + 1} \oplus (\mathbb{Z}/2\mathbb{Z})^{n_2}$;
- (ii) $\det(t \operatorname{Id} -h_{\mathbb{C}}) = (t-1)^{n_1+n_3} (t+1)^{n_2+n_3}.$

Доказательство. Группа G задается копредставлением:

$$G \simeq \langle e_1, \dots, e_{n_1 + n_2 + 2n_3}, h \mid [e_i, e_j] = 1, \ 1 \leqslant i, j \leqslant n_1 + n_2 + 2n_3,$$

$$h^{-\varepsilon} e_i h^{\varepsilon} = e_{n_3 + i}, \ 1 \leqslant i \leqslant n_3, \ \varepsilon = \pm 1,$$

$$h^{-1} e_{2n_3 + i} h = e_{2n_3 + i}, \ 1 \leqslant i \leqslant n_1,$$

$$h^{-1} e_{2n_3 + n_1 + i} h = e_{2n_3 + n_1 + i}^{-1}, \ 1 \leqslant i \leqslant n_2 \rangle.$$

Следовательно, группа G/G' может быть задана копредставлением:

$$G/G' \simeq \langle e_1, \dots, e_{n_1+n_2+2n_3+1} \mid [e_i, e_j] = 1, \ 1 \leqslant i, j \leqslant n_1 + n_2 + 2n_3 + 1,$$

$$e_i = e_{n_3+i}, \ 1 \leqslant i \leqslant n_3,$$

$$e_{2n_3+n_1+i} = e_{2n_2+n_3+i}^{-1}, \ 1 \leqslant i \leqslant n_2 \rangle,$$

T. e. $G/G' \simeq \mathbb{Z}^{n_1+n_3+1} \oplus (\mathbb{Z}/2\mathbb{Z})^{n_2}$.

Утверждение (ii) леммы тривиально.

Вернемся к доказательству теоремы 3. Пусть многочлен $\Delta(t) = (-1)^{n+k} \times (t-1)^n (t+1)^k$ является многочленом Александера гурвицевской C-группы G. Тогда согласно [1, теорема 5.9] группа G состоит из n+1 неприводимых компонент, т. е. $G/G' \simeq \mathbb{Z}^{n+1}$.

Рассмотрим канонический C-эпиморфизм $\nu\colon G\to \mathbb{F}_1,\ N=\ker\nu$. В работе [5] доказано, что группа N является конечно представленной. Поэтому N/N' – конечно порожденная абелева группа. Пусть $T=\operatorname{Tors}(N/N')$ – подгруппа группы N/N', состоящая из элементов конечных порядков. Тогда группа T инвариантна при действии h. Следовательно, h индуцирует действие (обозначим его той же самой буквой) h на свободной абелевой группе M=(N/N')/T. Так как действие $h_{\mathbb{C}}$ на $(N/N')\otimes\mathbb{C}\simeq M\otimes\mathbb{C}$ является полупростым и все корни характеристического многочлена $\det(h_{\mathbb{C}}-t\operatorname{Id})=\Delta(t)$ равны ± 1 , то $h_{\mathbb{C}}^2=\operatorname{Id}$. Следовательно, $h^2=\operatorname{Id}$ на M. Из предложения 1 следует, что $(M,h)\simeq n_1A_+\oplus n_2A_-\oplus n_3A_{+-}$ для некоторых неотрицательных целых чисел n_1,n_2,n_3 .

Легко видеть, что T является нормальной подгруппой в G/N'. Поэтому точная последовательность

$$1 \to N/N' \to G/N' \xrightarrow{\nu} \mathbb{F}_1 \to 1$$

влечет точную последовательность

$$1 \to M \to \overline{G} \xrightarrow{\nu} \mathbb{F}_1 \to 1, \tag{15}$$

где $\overline{G}=(G/N')/T$. Обозначим через $f\colon G\to \overline{G}$ и $g\colon N\to M$ канонические эпиморфизмы и через $\nu_1\colon \overline{G}\to \mathbb{F}_1$ эпиморфизм, индуцированный эпиморфизмом ν . Точная последовательность (15) может быть включена в следующую коммутативную диаграмму точных последовательностей:

$$\begin{array}{cccc} 1 \longrightarrow N \longrightarrow G \stackrel{\nu}{\longrightarrow} \mathbb{F}_1 \longrightarrow 1 \\ & g \bigg| & f \bigg| & \bigg| \simeq \\ & 1 \longrightarrow M \longrightarrow \overline{G} \stackrel{\nu_1}{\longrightarrow} \mathbb{F}_1 \longrightarrow 1 \end{array}$$

Легко видеть, что $\overline{G} \simeq M \leftthreetimes \langle h \rangle$. Поэтому согласно лемме 1 имеем

$$n = n_1 + n_3$$
 w $k = n_2 + n_3$. (16)

Эпиморфизм f индуцирует эпиморфизм $f_*\colon G/G'\simeq Z^{n+1}\to \overline{G}/\overline{G}'$. Применяя лемму 1 еще раз, имеем $\overline{G}/\overline{G}'\simeq \mathbb{Z}^{n_1+n_3+1}\oplus (\mathbb{Z}/2\mathbb{Z})^{n_2}$. Следовательно,

$$n_1 + n_2 + n_3 + 1 \leqslant n + 1. (17)$$

Из (16) и (17) следует, что $n_2 = 0$ и $k \leq n$.

В работе [1] было показано, что многочлен Александера гурвицевской C-группы

$$G(2) = \langle x_1, \dots, x_4 \mid x_2^2 x_1 x_2^{-2} = x_4, \ x_3 = x_2, \ x_4^2 x_2 x_4^{-2} = x_2,$$
$$[x_i, x_1 \dots x_4] = 1, \ i = 1, \dots, 4 \rangle$$

равен t^2-1 . Кроме того, многочлен Александера абелевой C-группы \mathbb{Z}^n равен $(-1)^{n-1}(t-1)^{n-1}$. Следовательно, при $k\leqslant n$ для доказательства существования гурвицевской C-группы G, имеющей многочлен Александера $\Delta(t)=(-1)^{n+k}(t-1)^n(t+1)^k$, достаточно рассмотреть гурвицевское произведение $G=G(2)^{\diamond k}\diamond Z^{n+1-k}$. Теорема 3 доказана.

§ 4. Два примера С-групп

В настоящем параграфе покажем, что в общем случае C-групп утверждения, аналогичные теореме 5.9 из [1] и теореме 3, не имеют места.

Пример 1. Существует C-группа, состоящая из двух неприводимых компонент, многочленом Александера которой является $\Delta(t)=(t-1)^2$.

Рассмотрим C-группу G, заданную C-копредставлением:

$$G = \langle x_1, x_2, x_3 \mid x_3 = x_1^{-1} x_2 x_1, \quad x_3 = x_1^{-1} x_3 x_2 x_3^{-1} x_1 \rangle.$$

Легко видеть, что C-группа G состоит и двух неприводимых компонент. Обозначим через N ядро канонического C-эпиморфизма $\nu: G \to \mathbb{F}_1$. Не ограничивая общности, можем считать, что $\tilde{h}(g) = x_1 g x_1^{-1}$ для $g \in N$.

Для нахождения конечного копредставления группы N используем метод Рейдемейстера—Шрайера. Напомним кратко этот метод (см., например, [8, § 2.3]). Вначале выбирается так называемая шрайерова система представителей, т. е. выбирается по представителю s_i в каждом правом классе смежности группы $G = \langle x \in X \mid r=1, r \in \mathcal{R} \rangle$ по подгруппе N таким образом, что если слово s_i является представителем, то все его начальные подслова также являются представителями некоторых смежных классов (в нашем случае в качестве шрайеровых представителей смежных классов группы G по подгруппе N выберем элементы x_1^k , $k \in \mathbb{Z}$). В этом случае группа N порождается элементами $a_{i,j} = s_i \cdot x_j \cdot \overline{s_i x_j}^{-1}$, где $\overline{s_i x_j}$ — шрайеров представитель смежного класса, содержащего элемент $s_i x_j$, а системой определяющих соотношений для N является множество

$$\{s_i r s_i^{-1} = 1 \mid r \in \mathcal{R}\},\$$

где соотношения $s_i r s_i^{-1}$ записаны в виде слов, состоящих из букв $a_{i,j}$ и $a_{i,j}^{-1}$. В нашем случае группа N порождается элементами

$$a_{k,j} = x_1^k x_j x_1^{-(k+1)}, (18)$$

где j=2,3 и $k\in\mathbb{Z}.$ Легко видеть, что действие \tilde{h} задается формулой $\tilde{h}(a_{k,j})=a_{k+1,j}.$

 $\ddot{\text{Соотношение}} \ x_3 = x_1^{-1} x_2 x_1$ дает соотношения

$$a_{k,3} = a_{k-1,2} \tag{19}$$

для $k \in \mathbb{Z}$, а соотношение $x_3 = x_1^{-1} x_3 x_2 x_3^{-1} x_1$ приводит к соотношениям

$$a_{k,3} = a_{k-1,3} a_{k,2} a_{k,3}^{-1} (20)$$

для $k \in \mathbb{Z}$. Согласно методу Рейдемейстера–Шрайера множество, состоящее из соотношений (19) и (20), является множеством определяющих соотношений для N.

Обозначим через $\bar{a}_{k,j}$ образ в N/N' элемента $a_{k,j}$. Из (19) и (20) следует, что абелева группа N/N' порождается элементами $\bar{a}_{k,j},\ j=2,3$ и $k\in\mathbb{Z},$ которые связаны следующими соотношениями:

$$\bar{a}_{k,3} = \bar{a}_{k-1,2},$$

$$2\bar{a}_{k,3} = \bar{a}_{k-1,3} + \bar{a}_{k,2}$$
(21)

для $k \in \mathbb{Z}$. Действие h на N/N', индуцированное действием \tilde{h} , задается формулой $h(\bar{a}_{k,j}) = \bar{a}_{k+1,j}$ для j=2,3 и $k \in \mathbb{Z}$.

Из (21) следует, что группа N/N' порождается элементами $\bar{a}_{0,3}$ и $\bar{a}_{1,3}$ и имеет место равенство $\bar{a}_{2,3}=-\bar{a}_{0,3}+2\bar{a}_{1,3}$. Следовательно, в базисе $\bar{a}_{0,3}$, $\bar{a}_{1,3}$ автоморфизм h задается матрицей:

$$h = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}.$$

Легко проверить, что $\det(h - t \operatorname{Id}) = (t - 1)^2$.

Пример 2. Существует C-группа, состоящая из двух неприводимых компонент, многочленом Александера которой является $\Delta(t)=(1-t)(t+1)^2.$

Рассмотрим C-группу G, заданную C-копредставлением:

$$G = \langle x_1, x_2, x_3 \mid x_3 = x_1^{-1} x_2 x_1, \left[x_1, (x_3^2 x_1^{-1} x_2 x_1^{-1} x_3) \right] = 1 \rangle.$$

Очевидно, G является C-группой, состоящей из двух неприводимых компонент. Обозначим через N ядро канонического C-эпиморфизма $\nu \colon G \to \mathbb{F}_1$. Не ограничивая общности, можно предполагать, что $\tilde{h}(g) = x_1 g x_1^{-1}$ для $g \in N$. Применяя метод Рейдемейстера—Шрайера, покажем, что группа N порождается элементами

$$a_{k,j} = x_1^k x_j x_1^{-(k+1)}, (22)$$

где j=2,3 и $k\in\mathbb{Z}$. Действие \tilde{h} на N задается формулой $\tilde{h}(a_{k,j})=a_{k+1,j}$. Как и в примере 1, соотношение $x_3=x_1^{-1}x_2x_1$ приводит к соотношениям

$$a_{k,3} = a_{k-1,2} (23)$$

для $k \in \mathbb{Z}$, а соотношение $\left[x_1, (x_3^2 x_1^{-1} x_2 x_1^{-1} x_3)\right] = 1$ дает соотношения

$$a_{k,3}a_{k+1,3}a_{k+1,2}a_{k+1,3}a_{k+2,3}^{-1}a_{k+2,3}^{-1}a_{k+2,3}^{-1}a_{k+1,3}^{-1} = 1 (24)$$

для $k \in \mathbb{Z}$. Согласно методу Рейдемейстера—Шрайера множество соотношений (23) и (24) является множеством определяющих соотношений для N.

Обозначим через $\bar{a}_{k,j}$ образ элемента $a_{k,j}$ в группе N/N'. Из (23) и (24) следует, что абелева группа N/N' порождена элементами $\bar{a}_{k,j},\ j=2,3$ и $k\in\mathbb{Z},$ удовлетворяющими соотношениям

$$\bar{a}_{k,3} = \bar{a}_{k-1,2},$$

$$\bar{a}_{k,3} + \bar{a}_{k+1,3} + \bar{a}_{k+1,2} - 2\bar{a}_{k+2,3} - \bar{a}_{k+2,3} = 0$$
(25)

для $k \in \mathbb{Z}$. Действие h на N/N', индуцированное автоморфизмом \tilde{h} , задается формулой $h(\bar{a}_{k,j}) = \bar{a}_{k+1,j}$ для j=2,3 и $k \in \mathbb{Z}$.

Из (25) следует, что группа N/N' порождается элементами $\bar{a}_{0,3}$, $\bar{a}_{1,3}$, $\bar{a}_{2,3}$ и имеет место равенство $\bar{a}_{3,3}=\bar{a}_{0,3}+\bar{a}_{1,3}-\bar{a}_{2,3}$. Следовательно, в базисе $\bar{a}_{0,3}$, $\bar{a}_{1,3}$, $\bar{a}_{2,3}$ автоморфизм h задается матрицей:

$$h = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Можно легко проверить, что

$$\det(h - t \operatorname{Id}) = (1 - t)(t + 1)^{2}.$$

Список литературы

- 1. Гроель Г.-М., Куликов Вик. С., "О симплектических накрытиях проективной плоскости", Изв. РАН. Сер. матем., **69**:4 (2005), 19–58.
- 2. Куликов Вик.С., "Многочлены Александера плоских алгебраических кривых", *Изв. РАН. Сер. матем.*, **57**:1 (1993), 76–101.
- 3. Куликов Вик. С., "Геометрическая реализация C-групп", Изв. РАН. Сер. матем., 58:4 (1994), 194–203.
- 4. Куликов Вик. С., "Формула разложения на множители полного поворота с удвоенным числом нитей", *Изв. РАН. Сер. матем.*, **68**:1 (2004), 123–158.
- 5. Куликов Вик. С., Харламов И. М., "О брэйд-монодромных разложениях на множители", *Изв. РАН. Сер. матем.*, **67**:3 (2003), 79–118.
- Куликова О. В., "О фундаментальных группах дополнений к кривым Гурвица", Изв. РАН. Сер. матем., 69:1 (2005), 125–132.
- 7. Кузьмин Ю. В., "Об одном способе построения *С*-групп", *Изв. РАН. Сер. матем.*, **59**:4 (1995), 105–124.
- 8. Ленг С., Алгебра, Мир, М., 1968.
- 9. Магнус В., Каррас А., Солитэр Д., Комбинаторная теория групп: Представления групп в терминах образующих и соотношений, Наука, М., 1974.

Вик. С. Куликов (Vik. S. Kulikov) Математический институт им. В. А. Стеклова РАН

E-mail: kulikov@mi.ras.ru

Поступило в редакцию 21.12.2004