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Automorphisms of Galois coverings
of generic m-canonical projections

Vik. S. Kulikov and V. M. Kharlamov

Abstract. We investigate the automorphism groups of Galois coverings
induced by pluricanonical generic coverings of projective spaces. In dimen-
sions one and two, it is shown that such coverings yield sequences of exam-
ples where specific actions of the symmetric group Sd on curves and surfaces
cannot be deformed together with the action of Sd into manifolds whose
automorphism group does not coincide with Sd. As an application, we give
new examples of complex and real G-varieties which are diffeomorphic but
not deformation equivalent.

Keywords: generic coverings of projective lines and planes, Galois group
of a covering, Galois extensions, automorphism group of a projective
variety.

Perhaps the simplest combinatorial entity is the group of the n!
permutations of n things. This group has a different constitution
for each individual number n. The question is whether there are
nevertheless some asymptotic uniformities prevailing for large n or
for some distinctive class of large n. Mathematics has still little to
tell about such problems.

H. Weyl [1]

Introduction

0.1. Terminological conventions. By a covering we understand a branched
covering, that is, a finite morphism f : X → Y from a normal irreducible projective
variety X onto a non-singular projective variety Y , everything being defined over
the field C of complex numbers. With every covering f we associate the branch
locus B ⊂ Y , the ramification locus R ⊂ f−1B ⊂ X, and the unramified part
X \ f−1(B) → Y \ B, which is the maximal unramified subcovering of f . Being
unramified, it determines a homomorphism ψ from the fundamental group π1(Y \B)
to the symmetric group Sd acting on a set of d elements, where d is the degree of f .
This homomorphism ψ (called the monodromy of f) is uniquely determined by f
up to an inner automorphism of Sd. Conversely, the Grauert–Remmert–Riemann
extension theorem implies that the conjugacy class of ψ uniquely determines the
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covering f up to isomorphism. The image imψ = G ⊂ Sd is a transitive subgroup
of Sd.

It is well known that for every covering f there is a unique (up to isomorphism)
minimal Galois covering f̃ : X̃ → Y which factors through f : f̃ = f ◦ h, where
h : X̃ → X is again a Galois covering. The covering f̃ is called the Galois expan-
sion of f . The Galois expansion f̃ is characterized by the minimality property:
any Galois covering which factors through f can be factored through f̃ . Using the
Grauert–Remmert–Riemann extension theorem, one can obtain the Galois expan-
sion of f from the non-diagonal component of the fibre product of d copies of the
unramified partX\f−1(B) → Y \B of f . In particular, the Galois group Gal(X̃/Y )
of the covering f̃ : X̃ → Y is naturally identified with G = ψ(π1(Y \B)).

In this paper we study actions of finite groups on the Galois expansions of generic
coverings of projective spaces. To give a precise definition of a generic covering,
we introduce some preliminary definitions concerning actions of symmetric groups.

Let I be a finite set consisting of |I| = d elements and let I1 ∪ · · · ∪ Ik = I be
a partition of I, |Ii| = di > 1,

∑k
i=1 di = d. Such a partition determines a unique

(up to conjugation) embedding of Sd1 × · · · × Sdk
into the symmetric group Sd,

which is referred to as the standard embedding. A representation Sdi
⊂ GL(Vi),

where Vi is a vector space over C, is called a standard representation of rank di − 1
if there is a basis e1, . . . , eri

of Vi with ri = dimVi > di − 1 such that the action
σ(j,j+1) of the transposition (j, j + 1) ∈ Sdi

is given by

σ(j,j+1)(el) =


el if l 6= j, j + 1,
ej+1 if l = j,

ej if l = j + 1

for j 6= di − 1 and by

σ(di−1,di)(el) =

{
el if l 6= di − 1,
−

∑di−1
s=1 es if l = di − 1

for j=di−1. A set of standard representations of the symmetric groups Sdi⊂GL(Vi)
of ranks di − 1, i = 1, . . . , k, determines a representation Sd1 × · · · × Sdk

⊂
GL(V ) with V = V1 ⊕ · · · ⊕ Vk, which will be referred to as a standard repre-
sentation of the product Sd1 × · · · × Sdk

of rank
∑
di − k. It is easy to see that

if Sd1 × · · · × Sdk
⊂ GL(V ) is a standard representation of rank

∑
di − k, then the

codimension in V of the subspace consisting of all vectors that are fixed under
the action of Sd1 × · · · × Sdk

is equal to
∑
di − k.

Let the group Sd act on a projective manifold Y . We say that the action of Sd

on Y is generic if the stabilizer Sta ⊂ Sd of each point a ∈ Y is a standard
embedding of a product of symmetric groups and the action induced by Sta on the
tangent space TaY is a standard representation (the product and the representation
both depend on a). By this definition, if the action of Sd on Y is standard, then
the quotient space Y/Sd is a projective manifold.

A covering f : X → P dim X of degree d is said to be generic if the Galois group
G = Gal(X̃/P dim X) of the Galois expansion of f is the full symmetric group Sd, the
varieties X and X̃ are smooth and the action of G on X̃ is generic. This definition



Automorphisms of Galois coverings 123

implies that, for any generic covering f of degree d, the group Gal(X̃/P dim X) is the
full symmetric group Sd and the subgroup Gal(X̃/X) coincides with Sd−1 ⊂ Sd.

Suppose thatX is non-singular and dimX =1. In this case, a covering f : X→P1

branched over B⊂P1 is generic if and only if |f−1(b)|= deg f − 1 for every b∈B.
For generic coverings, the stabilizer Stb̃ ⊂Sd = Gal(X̃/P1) of every point b̃∈ f̃−1(b),
b ∈ B, is generated by a transposition. This determines a standard embedding
of Stb̃ = S2 into Sd.

Suppose that X is non-singular and dimX = 2. In this case, the covering
f : X → P2 is generic if and only if the following conditions hold: f is branched
over a cuspidal curve B ⊂ P2, we have |f−1(b)| = deg f − 1 for each non-singular
point b of B and |f−1(b)| = deg f − 2 if b is a node or a cusp of B. For generic
coverings, the stabilizer Stb̃ ⊂ Sd = Gal(X̃/P2) of every point b̃ ∈ f̃−1(b), b ∈ B, is
generated: by a transposition if b is non-singular point of B, and then Stb̃ = S2; by
two non-commuting transpositions if b is a cusp of B, and then Stb̃ = S3; by two
commuting transpositions if b is a node of B, and then Stb̃ = S2 × S2 (see § 3.1 for
a detailed exposition).

Whatever the dimension of the covering, the automorphism group Aut(X̃) of
the variety X̃ contains the symmetric group Sd, but the following examples show
that one cannot generally expect Aut(X̃) and Sd to be equal.

As a first example, we take a generic covering f1 : Y = P1 → P1 of degree d+ 1
and let f̃ : Ỹ → P1 be the Galois expansion f̃ = f1 ◦ h1 of f1. Then Gal(Ỹ /P1) =
Sd+1, Y = Ỹ /Sd and h1 : Ỹ → Y = P1 is a Galois covering with Galois group
Gal(Ỹ /Y ) = Sd. The covering h1 : Ỹ → Y = P1 may be regarded as the Galois
expansion X̃ = Ỹ → Y = P1 (with Galois group Gal(X̃/P1) = Sd) of a covering
f : X → Y = P1, X = X̃/Sd−1. Then f is a generic covering of degree d. Hence, if
we start from f : X → P1, we see that its Galois group Gal(X̃/P1) = Sd does not
coincide with Aut(X̃) because the group Aut(X̃) = Aut(Ỹ ) contains at least the
group Sd+1.

Another example may be obtained as follows. Let f1 : Y = P1 → P1 be a generic
covering of degree d branched over some B1 ⊂ P1. Take points x, y ∈ P1 outside B1

and let f2 : Z = P1 → P1 be a cyclic covering of degree p branched at x and y.
Consider the fibre product X = Y ×P1 Z and its projection f : X → Z = P1 onto
the second factor. It is easy to see that f is a generic covering and Aut(X̃) contains
Gal(X̃/P1)× Z/pZ.

0.2. Main results. The aim of our research is to give numerical conditions on
a generic covering f : X → P dim X which ensure that Aut(X̃) = Gal(X̃/P dim X)
and which are preserved under deformations of the Galois expansion.

To state the results obtained, we introduce another auxiliary notion. A covering
f : X → P dim X is said to be numerically m-canonical (m-canonical for short) if it
is given by dimX+1 sections (without common zeros) of a line bundle numerically
equivalent to the m th power K⊗m

X of the canonical bundle KX of X.
It is known that m-canonical coverings exist only if the Kodaira dimension of X

coincides with the dimension of X. If dimX = 2, then X must also be minimal
and contain no (−2)-curves. If dimX = 1, then the genus of X must be greater
than or equal to 2. Conversely, it is well known that any curve of genus g > 2
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possesses an m-canonical covering for m > 1 and, as shown in [2], any minimal
surface of general type containing no (−2)-curves also possesses an m-canonical
covering, at least for m > 10.

Theorem 0.1. Let X be a curve of genus g > 2 and f̃ : X̃ → P1 the Galois
expansion of an m-canonical generic covering f : X → P1. If m(g− 1) > 500, then
the Galois group Gal(X̃/P1) is the full automorphism group of X̃ .

Theorem 0.2. Let X be a surface of general type and assume that it possesses
an m-canonical generic covering f : X → P2, m > 2. If m2K2

X > 2 · 842 and
f̃ : X̃ → P2 is the Galois expansion of f , then the Galois group Gal(X̃/P2) is the
full automorphism group of X̃ .

As a corollary, we see that the G-curves in Theorem 0.1 and G-surfaces in Theo-
rem 0.2 provide infinitely many examples of saturated connected components of the
moduli space of G-varieties with G = Sd. Here a component is said to be saturated
if, for any G-variety representing a point of this component, G is the full automor-
phism group of V . (It may be worthwhile to point out other simple examples of
saturated components with G 6= Sd. These are the components given by the curves
and surfaces whose automorphism group has maximal possible order, 84(g− 1) for
curves and 422K2 for surfaces. One might also mention deformation-rigid varieties
with non-trivial automorphism groups.)

As another application of the theorems above, we give counterexamples to the
Dif = Def problem for complex and real G-varieties. Namely, we construct pairs
of complex (resp. real) varieties V1, V2 such that the actions of AutV1 and AutV2

(resp. KlV1 and KlV2, where KlV is the group formed by the regular isomorphisms
X → X and X → X) are diffeomorphic but not deformation equivalent. As far
as we know, such examples are new, especially in real geometry. (It may be worth
noting that the surfaces in our counterexamples [3] to the Dif = Def problem for
real structures have diffeomorphic real structures, but the actions of the Kleinian
groups on these surfaces are not diffeomorphic.)

0.3. Contents of the paper. The proofs of Theorems 0.1 and 0.2 consist of
two parts. First (in § 1) we use the methods of group theory to study minimal
expansions of symmetric groups. This restricts the number of possible cases. Then
the remaining cases are investigated by geometric methods (in § 2 for Theorem 0.1
and in § 3 for Theorem 0.2). In § 4 we describe the applications mentioned above.

§ 1. Minimal expansions of symmetric groups

1.1. Preliminary definitions. To state the group-theoretic assertions used in
the proofs of Theorems 0.1 and 0.2, we introduce some definitions. We say that
a group G containing the symmetric group Sd possesses the minimality property if
there is no proper subgroup G1 of G that contains Sd and does not coincide with Sd.
Such a group G is called a minimal expansion of Sd.

An embedding α : Sd ⊂ Sd+2 is said to be quasi-standard if the image
α(σi,j) of every transposition σi,j = (i, j) ∈ Sd, 1 6 i, j 6 d, is the product
α(σi,j) = (i, j)(d+ 1, d+ 2) of two transpositions, (i, j) and (d+ 1, d+ 2), in Sd+2.
We note that the image of Sd under a quasi-standard embedding is contained in
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the alternating subgroup Ad+2 of Sd+2. Such an embedding α : Sd ↪→ Ad+2 is said
to be standard.

Proposition 1.1. Let G be a minimal expansion of the symmetric group Sd of
index k = (G : Sd). Assume that k 6 cdn, where either (i) c = 63 and n = 1, or
(ii) c = (2 · 42)2 and n = 2. If d > max(2c, 1000), then G is one of the following
groups.

1) G = Sd × Z/pZ, where p is a prime and p 6 cdn;
2) G = Ad oDr , where 3 6 r 6 cdn, r is odd, Dr is the dihedral group given by

the presentation
Dr = 〈σ, τ | σ2 = τ2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with that of the trans-
position (1, 2) ∈ Sd on Ad ⊂ Sd;

3) G = Sd+1 is the symmetric group;
4) G = Ad+2 is the alternating group, the embedding of Sd in Ad+2 is standard,

and such expansions can appear only under assumption (ii).

The rest of this section is devoted to the proof of Proposition 1.1.

Proof. A priori, one of the following two cases occurs.
Case I. The group G contains a non-trivial normal subgroup.
Case II. The group G is simple.
Since d > 6, the group Sd has a unique non-trivial normal subgroup (namely, the

alternating group Ad) and, therefore, Case I can be subdivided into the following
subcases, where N stands for the non-trivial normal subgroup of G:

Case I1. Sd ⊂ N .
Case I2. N ∩ Sd = {1}.
Case I3. N ∩ Sd = Ad.
Case I3 can be further subdivided into two subcases.
Case I31. Ad is a normal subgroup of G.
Case I32. Ad is not a normal subgroup of G.

1.2. Analysis of Case I1. It follows from the minimality property that Sd =N .
Let g1 be an arbitrary element of G \ Sd. Then conjugation by g1 induces an
automorphism of Sd. Since d > 7, all automorphisms of Sd are inner. Hence there
is a g2 ∈ Sd such that the element g = g1g2 commutes with all elements of Sd. Again
applying the minimality property, we see that G splits into the direct product of Sd

and the cyclic group 〈g〉 generated by the element g. Moreover, the order of g is
a prime number p.

1.3. Analysis of Case I31. By § 1.2, we can assume that Sd is not a normal
subgroup of G. Hence there is a g ∈ G such that the group S′d = g−1Sdg does not
coincide with Sd (but is isomorphic to Sd).

Since Ad is a normal subgroup of G, we have Ad ⊂ S′d ∩ Sd. Furthermore, for
any transposition σ ∈ Sd, the element τ = g−1σg (which will be called a transpo-
sition in S′d) does not belong to Sd. Thus, it follows from the minimality property
that G is generated by elements of Ad and any two transpositions, σ ∈ Sd and
τ ∈ S′d. Moreover, since conjugation by elements of Sd (resp. S′d) provides the
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full automorphism group Aut(Ad) of Ad, we can choose the two generating
transpositions σ ∈ Sd and τ ∈ S′d in such a way that στ commutes with all ele-
ments of Ad. We can also assume that the action (by conjugation) of σ and τ on Ad

coincides with the action of the transposition (1, 2) ∈ Sd.
Let H denote the subgroup of G generated by σ and τ . Then H is isomorphic

to the dihedral group

Dr = 〈σ, τ | σ2 = τ2 = (στ)r = 1〉
for some r ∈ N.

It is known that every element g ∈ Dr either belongs to the cyclic subgroup
generated by στ , or is conjugate to σ or τ . Therefore Ad∩H is a subgroup of 〈στ〉.
Since the element στ commutes with all elements of Ad and the centre of Ad is
trivial, we conclude that Ad∩H = {1}. In addition, Ad is a normal subgroup of G,
and G possesses the minimality property, whence

G = Ad oH ' Ad oDr.

Moreover, r is odd since σ and τ are conjugate in G and, therefore, in Dr.

1.4. Analysis of Case I2. It follows from the minimality property that in this
case the group G is isomorphic to the semidirect product N o Sd.

If N is not a simple group, then we can find a minimal non-trivial normal sub-
group N1 of N . First note that N1 cannot be a normal subgroup of G since G
possesses the minimality property. Therefore the set of subgroups of G conjugate
to N1 contains more than one element. Let {N1, . . . , Ns} be the set of subgroups
conjugate to N1 in G, s > 2. Every group Ni, 1 6 i 6 s, is contained in N since
N is a normal subgroup of G. Moreover, each of them is a normal subgroup of N
since N1 is normal in N and conjugation by any element of G induces an isomor-
phism of N . The action of Sd on the set {N1, . . . , Ns} is transitive and this set is
an orbit of the action of Sd by conjugation on the set of all subgroups of G.

We claim that N ' N1×· · ·×Ns1 for some s1 6 s (possibly after a rearrangement
of the Ni).1 We first note that Ni∩Nj = {1} for i 6= j. Indeed, N1, . . . , Ns are min-
imal normal subgroups of N and the intersection Ni ∩Nj , being an intersection of
two normal subgroups, is a normal subgroup. Therefore [N1, N2]⊂N1 ∩N2 = {1}.
Thus the subgroup N1N2, which is generated in N by the elements of N1 and N2,
is isomorphic to N1 × N2 and is again a normal subgroup of N . Using induction,
we take some i < s and assume that the subgroup N1,i = N1 · · ·Ni of N is normal
and is isomorphic to N1×· · ·×Ni. Then either N1,i ∩Ni+1 = {1}, or Ni+1 ⊂ N1,i.
(Here we again use the observation that Ni+1 is a minimal normal subgroup of N .)
If N1,i ∩Ni+1 = 1, then

N1,i+1 = N1 · · ·Ni+1 ' N1 × · · · ×Ni+1

since [N1,i, Ni+1] ⊂ N1,i ∩ Ni+1 = 1. This inductive procedure stops at some
subgroup N1,s1 ⊂ N which, being normal in N and invariant under the action

1Editor’s Note. The statement that a minimal normal subgroup of a finite group is a direct
product of isomorphic simple groups is well known to specialists in group theory (see, for exam-
ple, [B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg 1967 ], Lemma 4.8 a)
on p. 21 and Theorem 9.12 a) on p. 51).
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of Sd by conjugation, is a normal subgroup of G. Therefore N1,s1 coincides with N .
Thus we have N ' N1 × · · · ×Ns1 .

The groups N1, . . . , Ns, which are isomorphic to each other, are simple. Indeed,
if N1 is not simple, then there is a non-trivial normal subgroup Ñ1 of N1, so that
the group Ñ1×{1}× · · ·×{1} is a normal subgroup of N . But this contradicts the
assumption that N1 is a minimal normal subgroup of N .

We now claim that s1 = s if N1 is a non-abelian simple group. Indeed, arguing
by contradiction, suppose that s1 < s. Then Ns1+1 ⊂ N1×· · ·×Ns1 , the projection
of Ns1+1 onto each factor is either an isomorphism or the trivial homomorphism and
at least two of them are isomorphisms. Without loss of generality, we can assume
that the first two projections are isomorphisms. Thus, if an element g ∈ Ns1+1

is written as a product g = g1g2 · · · gs1 of elements gi ∈ Ni, then g1 is uniquely
determined by g2. On the other hand, Ns1+1 is a normal subgroup of N and,
therefore, for any g = g1g2 · · · gs1 ∈ Ns1+1 and any h ∈ N1, the product h−1gh =
(h−1g1h)g2 · · · gs1 belongs to Ns1+1. This contradiction proves the claim.

If N1 is a non-abelian simple group, then conjugation by the elements of Sd

transitively permutes N1, . . . , Ns and determines a homomorphism ψ : Sd → Ss.
Since d > 7, there are only two possibilities: either s 6 2 and Ad ⊂ kerψ, or ψ is
an embedding and, therefore, s > d.

Suppose that N1 is a non-abelian simple group and s = 2. Then conjugation
by the elements of Ad determines a homomorphism ψ : Ad → Aut(N1). Since
the outer automorphism group Out(N1) = Aut(N1)/ Inn(N1) is soluble for a sim-
ple group N1 (see [4], Theorem 4.240) and the group Ad is simple, we see that
ψ(Ad) ⊂ Inn(N1), and either ψ(Ad) = 1 or ψ : Ad → Inn(N1) is an embedding
in the inner automorphism group. If ψ(Ad) = 1, then every element of N1 com-
mutes with all elements of Ad and, therefore, Ad is a normal subgroup of G since
G is generated by the elements of Sd together with a non-identity element h ∈ N1

and h commutes with all elements of Ad. But this case has already been covered
(Case I31). If ψ : Ad → Inn(N1) is an embedding, then the order of N1 is greater
than 1

2d! and, therefore,

k = (G : Sd) >

(
1
2
d!

)2

.

But this is impossible because of the assumption that d > 1000 and k does not
exceed either 63d or (2 · 42)2d2.

We now suppose that N1 is a non-abelian simple group and s > d. Then, since
A5 is the smallest non-abelian simple group,

k = (G : Sd) = |N |s > |N |d > 60d,

which is impossible for the same reason as above.
We finally suppose that N1 is abelian. Then N ' N1 × · · · × Ns1 and again

conjugation by the elements of Ad determines a homomorphism ψ : Ad → Aut(N1).
As above, if ψ(Ad) = 1, then Ad is a normal subgroup of G. This case has already
been studied.

If ψ : Ad → Aut(N1) is an embedding, then Lemma 1.3 (see below) implies that
s1 > [d

4 ]. Therefore,
k = (G : Sd) = |N1|s1 > 2[ d

4 ].
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This contradicts the assumption that d > 1000 and k does not exceed either 63d
or (2 · 42)2d2.

The rest of this subsection is devoted to a proof of Lemma 1.3, which is based
on the following lemma.

Lemma 1.2. Let F be a finite field of characteristic p and H a subgroup of
PGL(F, n) isomorphic to the alternating group A4d1 , d1 ∈ N. Then n > d1.

Proof. If d1 6 2, the statement is obvious. Suppose that the lemma holds for d1 6 k
and put d1 = k + 1.

Consider the natural epimorphism ψ : GL(F, n) → PGL(F, n). The kernel of ψ
consists of scalar matrices λ Id, λ ∈ F ∗. Therefore the group ψ−1(A4(k+1)) is
a central extension of the group A4(k+1).

We write Ξ for the set of all 4-tuples {i1, i2, i3, i4} of pairwise-distinct integers
in the range 1 6 ij 6 4(k + 1). For every I ∈ Ξ, we denote by xI the permutation
(i1, i2)(i3, i4) ∈ A4(k+1). The permutations xI , I ∈ Ξ, generate the group A4(k+1).
Since 4(k + 1) > 8, any two of them are conjugate in A4(k+1). For every pair
I1, I2 ∈ Ξ we choose a word wI1,I2 in the letters xI such that xI1 = w−1

I1,I2
xI2wI1,I2

in A4(k+1). Then we pick elements x̂I ∈ ψ−1(xI) ⊂ ψ−1(Ak+1) and put

x̃I0 = x̂I0 , I0 = {4k + 1, 4k + 2, 4k + 3, 4k + 4},
x̃I = ŵ−1

I,I0
x̃I0ŵI,I0 , I 6= I0,

where ŵI,I0 is obtained from wI,I0 by writing x̂I instead of xI .
For every I ∈ Ξ we have x̃I = µI x̂I , where the µI ∈ kerψ belong to the centre

of GL(F, n). Therefore,
x̃I = w̃−1

I,I0
x̃I0w̃I,I0 ,

where w̃I,I0 is obtained from wI,I0 by writing x̃I instead of xI . On the other hand,
x2

I = 1 for every I ∈ Ξ, whence x̃ 2
I = λI ∈ kerψ. Since the x̃I are all conjugate

and the x̃ 2
I = λI belong to the centre, the λI must all be equal. We denote this

element by λ.
We regard GL(F, n) as a subgroup of GL(F , n), where F is the algebraic closure

of the field F . Let Ã4(k+1) be the subgroup of GL(F , n) generated by the x̃I , I ∈ Ξ,
together with the elements of the centre. It is easy to see that Ã4(k+1) is a central
extension of A4(k+1).
Ã4(k+1) contains an element µ such that µ2 =λ−1. Put yI =µx̃I . Then y2

I =1
and the elements yI are all conjugate: yI = v−1

I,I0
yI0vI,I0 , where vI,I0 is obtained

from wI,I0 by writing yI instead of xI . We also have xIxI0 = xI0xI for all I =
{i1, i2, i3, i4} ∈ Ξ, 1 6 ij 6 4k. It follows that yIyI0 = µIyI0yI for some element µI

of the centre of GL(F , n). Since y2
I = Id, we have µI = ±Id. Since the yI are all

conjugate by words depending on yI , we see that the µI must all be equal. Hence
the µI with I ∈ Ξ are all equal to either µ = Id or µ = −Id.

We claim that µ = Id. Indeed, consider the elements y1,2,3,4, y1,2,5,6 and put
ỹ3,4,5,6 = y1,2,3,4y1,2,5,6. We have ỹ3,4,5,6 = λy3,4,5,6, where λ is a central ele-
ment since x3,4,5,6 = x1,2,3,4x1,2,5,6. We also have yI0y1,2,3,4 = µy1,2,3,4yI0 and
yI0y1,2,5,6 = µy1,2,5,6yI0 . Hence, on the one hand,

yI0 ỹ3,4,5,6 = yI0λy3,4,5,6 = λµy3,4,5,6yI0 = µỹ3,4,5,6yI0 ,
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and on the other,

yI0 ỹ3,4,5,6 = yI0y1,2,3,4y1,2,5,6 = µ2y1,2,3,4y1,2,5,6yI0 = µ2ỹ3,4,5,6yI0 .

Therefore µ = Id.
We denote by Ā4(k+1) the subgroup of GL(F , n) generated by all yI , I ∈ Ξ.

Its image in PGL(F , n) is obviously equal to A4(k+1). Consider the subgroup Ā4k

of Ā4(k+1) generated by the elements yI , I = {i1, i2, i3, i4} ∈ Ξ with 1 6 ij 6 4k.
The elements of Ā4k commute with yI0 , and the image of Ā4k in PGL(F , n) is A4k.

We first assume that the characteristic p 6= 2. Then the vector space V = F
n

splits into a direct sum E+⊕E− of eigenspaces corresponding to the eigenvalues ±1
of yI0 . Since yI0 does not belong to the centre, we have dimE+ > 1 and dimE− > 1.
Since the elements of Ā4k commute with yI0 , the eigenspaces E± are invariant under
the action of A4k. This action is non-trivial on at least one of these subspaces, say
on E+. Moreover, since A4k is a simple group, this action induces an embedding
of A4k into PGL(E+). By the induction hypothesis, we have dimE+ > k and,
therefore, dimV > k + 1 = d1.

We now suppose that p=2. Then the subspace E= {v ∈V | yI0(v) = v} of V is
invariant under the action of A4k and dimE < dimV . If the action of A4k on E
is non-trivial, then n = dimV > dimE > k, that is, n > k + 1 = d1.

To complete the proof, we claim that if the action of A4k on E is trivial, then the
induced action of A4k on V/E is non-trivial. For if both actions are trivial, then
we can choose a basis of V in such a way that every element y ∈ A4k is represented
in this basis by a matrix of the form

y =
(

Ida A
0 Idb

)
,

where a = dimE, b = dimV − a, A is an a × b matrix and 0 is the zero b × a
matrix. But this is impossible because such matrices form an abelian group while
the group A4k is non-abelian. Thus we conclude that the action of A4k on V/E is
non-trivial and, therefore,

n = dimV > dimV/E > k,

whence n > k + 1 = d1. The lemma is proved.

Lemma 1.3. Let F be a finite field of characteristic p and H a subgroup of
GL(F, n) isomorphic to the alternating group A4d1 , d1 ∈ N. Then n > d1.

Proof. This follows from Lemma 1.2 since PGL(F, n) is the quotient group of
GL(F, n) by its centre and the alternating group has trivial centre.

1.5. Analysis of Case I32. Since N is a normal subgroup and N ∩ Sd = Ad, we
see that the subgroup 〈N,σ〉 of G generated by the elements of N together with
the transposition σ ∈ Sd is isomorphic to the semidirect product N o 〈σ〉. The
group Sd is contained in 〈N,σ〉 since Ad ⊂ N . Thus the minimality property of G
implies that G = N o 〈σ〉.

We recall that, by assumption, Ad is not a normal subgroup of G.
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We first suppose that the group N is not simple. Pick a minimal non-trivial
subgroup N1 of N . Then we have either N1 ∩Ad = {1} or N1 ∩Ad = Ad since Ad

is simple.
If N1 ∩Ad = {1}, then the group N2 = σ−1N1σ is a normal subgroup of N and

N2 ∩ Ad = {1}. If N1 = N2, then N1 is a normal subgroup of G, and this case
has already been studied (Case I2). If N1 6= N2, then [N1, N2] ⊂ N1 ∩ N2 = {1}
and the group N1N2 ' N1 × N2 is a normal subgroup of G. The case when
N1N2 ∩ Ad = {1} is also contained in Case I2. Therefore we can assume that
N = N1N2. Since Ni ∩Ad = {1} for i = 1, 2, the projections of Ad onto the factors
are embeddings. Therefore |Ni| > |Ad| = d!

2 . Hence,

k = (G : Sd) = (N : Ad) >
d!
2
,

which is impossible because of the assumptions that d > 1000 and k does not exceed
either 63d or (2 · 42)2d2.

If N1 ∩ Ad = Ad, then N2 ∩ Ad = Ad, where N2 = σ−1N1σ. If N1 = N2, then
N1 is a normal subgroup of G. This case is contained in Case I2. If N1 6= N2,
then N1 ∩ N2 is a normal subgroup of N and we have Ad ⊂ N1 ∩ N2 ⊂ N1.
This contradicts the original assumption that N1 is a minimal non-trivial normal
subgroup of N .

Thus it remains to treat the case when N is a simple group and G = N o 〈σ〉.
Clearly, the group N cannot be cyclic.

If N is isomorphic to some alternating group Ad1 , then d1 − d = n1 > 1 and

k = (G : Sd) = (Ad1 : Ad) = (d+ 1) · · · (d+ n1).

By hypothesis, we have d > max(2c, 1000) and k 6 cdn, where c = 63, n = 1
(case (i)) or c = (2 · 42)2, n = 2 (case (ii)). Therefore n1 6 1 in case (i) and n2 6 2
in case (ii).

If n1 = 1, then G = Sd+1 (and, moreover, the embedding of Sd in G = Sd+1

is standard).
Before completing the analysis of other simple groups, let us show that it is

impossible to have n1 = 2 under assumption (ii).

Lemma 1.4. Any embedding α : Ad → Ad+2 is conjugate to the standard one
if d > 9.

Proof. We consider the standard actions of Ad ⊂ Sd and Ad+2 ⊂ Sd+2 on the sets
Id = {1, 2, . . . , d} and Id+2 = {1, 2, . . . , d + 2} respectively. If τ ∈ Ad is a cyclic
permutation of length 3, then its image α(τ) is a product τ1 · · · τs of pairwise disjoint
cyclic permutations, and we have τ3

i = 1 for all i = 1, . . . , s. To prove the lemma,
it suffices to show that s = 1 for every 3-cycle τ ∈ Ad. There is no loss of generality
in assuming that τ = (d− 2, d− 1, d).

Under the action of α(τ), the set Id+2 splits into a disjoint union of s orbits O3,i,
i = 1, . . . , s, of length 3 and d+2− 3s orbits O1,i, i = 1, . . . , d+2− 3s, of length 1.
Consider the subgroup Ad−3 of Ad whose elements leave the points d − 2, d − 1,
d ∈ Id fixed. The elements of Ad−3 commute with τ . Hence the group α(Ad−3) acts
on the set of all orbits O3,i and on the set of all orbits O1,i. This action determines
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a homomorphism β : Ad−3 → Ss × Sd+2−3s. But we have s < d− 3 for d > 9, and
if s > 1, then d + 2 − 3s < d − 3. Hence the homomorphism β is trivial for s > 1
because Ad−3 is a simple group and |Ad−3| > |Ss|, |Ad−3| > |Sd+2−3s| if d > 9.
Therefore α induces a homomorphism from Ad−3 to the direct product of s copies
of S3, and this induced homomorphism must also be trivial. Finally, we see that
if s > 1, then α cannot be an embedding. The lemma is proved.

By Lemma 1.4, we can assume that G ' Ad+2 o 〈σ〉 and the embedding Ad ⊂
Ad+2 is standard. We claim that in this case G ' Sd+2 and the embedding
Sd ⊂ G ' Sd+2 is also standard, so the expansion Sd ⊂ G of the symmetric
group Sd does not possess the minimality property.

Indeed, consider the natural homomorphism

i : Inn(G) → Aut(Ad+2) ' Sd+2.

Clearly, i(Ad+2) = Ad+2 ⊂ Sd+2. To prove that G ' Sd+2, it suffices to show that
i(σ) is not an inner automorphism of Ad+2 (we recall that σ is a transposition as an
element of Sd). If i(σ) ∈ Inn(Ad+2), then there is an element τ ∈ Ad+2 such that
the product γ = στ commutes with all elements of Ad+2. In particular, it commutes
with τ and, therefore, it commutes with σ. Since σ /∈ Ad+2, we have γ = στ 6= 1
and the group 〈Sd, γ〉 (which is generated in G by γ and the elements of Sd) is
isomorphic to Sd × 〈γ〉. But the existence of such a subgroup in G ' Ad+2 o 〈σ〉
contradicts the minimality property of G.

To prove that the embedding j : Sd ⊂ G ' Sd+2 is standard, we note that j(σ) is
a product σ1 · · ·σs of an odd number of pairwise disjoint transpositions σi ∈ Sd+2.
We must show that s = 1. Assume that s > 3. As in the proof of Lemma 1.4,
we consider the standard actions of Sd and Sd+2 on the sets Id = {1, 2, . . . , d} and
Id+2 = {1, 2, . . . , d + 2} respectively. Let σ ∈ Sd be the transposition (d− 1, d).
Under the action of j(σ), the set Id+2 splits into the disjoint union of s orbits O2,l

(l = 1, . . . , s) of length 2 and d+2−2s orbits O1,l (l = 1, . . . , d+2−2s) of length 1.
Consider the subgroup Sd−2 of Sd which leaves fixed the elements d− 1, d ∈ Id. The
elements of Sd−2 commute with σ. Hence the group j(Sd−2) acts on the sets of orbits
O2,j and O1,j . This action determines a homomorphism β : Sd−2 → Ss × Sd+2−2s.
But we have s < d− 2 (recall that d > 1000), and if s > 3, then d+ 2− 2s < d− 3.
Therefore the composite of β and the projection onto each factor has a non-trivial
kernel if s > 3. This kernel is either Ad−2 or the whole group Sd−2. Therefore the
image of any element of Sd−2 under the embedding j has order at most 4, which is
impossible if d− 2 > 5.

The following lemma forbids the appearance of other simple groups N in the
product G = N o 〈σ〉 and thus completes the investigation of Case I32.

Lemma 1.5. Suppose that G is a simple group different from an alternating group
and containing a subgroup Hd isomorphic either to the symmetric group Sd or to
the alternating group Ad, d > 1000. Then (G : Hd) > 842d2.

Proof. The proof uses the classification of finite simple groups (see [4]).
The group G is non-abelian since Hd is non-abelian. Moreover, G cannot be

a sporadic simple group since the order of no such group can be divisible by d!
2

if d > 33 (the sporadic simple groups possess the following property: either the
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multiplicity of the prime 11 in their order does not exceed 2, or the order is not
divisible by 13) while the order |G| is divisible by |Hd|, which is in turn divisible
by d!

2 .
Let G be a simple group of Lie type. Then G is a subgroup of either GL(F, n) or

PGL(F, n), where F is a finite field. We denote the number of elements of F by q.
Since Hd ⊂ G, we have n > [d

4 ] by Lemmas 1.2 and 1.3.
Suppose that G is one of the following groups: An(q), Bn(q), Cn(q), Dn(q),

2An(q2), 2Dn(q2). Then
|G| > qr2

,

where r = [n
2 ]. Since [d

8 ]2 − 16 > d log2 d for d > 1000 > 3!, we have (G : Hd) >
1682d2.

To complete the proof of the lemma, we note that all the other simple groups
of Lie type have a non-trivial irreducible linear representation of dimension less
than 250. Therefore, by Lemma 1.3, they cannot have a subgroup isomorphic
to Ad if d > 1000.

1.6. Analysis of Case II. Lemma 1.5 shows that it only remains to consider the
case when Sd ⊂ G = Ad1 .

The embedding Sd ⊂ Ad1 induces an embedding Sd ⊂ Sd1 . Since any embed-
ding Sd ⊂ Sd+1 is standard, we have d1 − d = n1 > 2. By hypothesis, we have
d > max(2c, 1000) and (Ad1 : Sd) = 1

2 (d + 1) · · · (d + n1) 6 cdn, where either
(i) c = 63, n = 1 or (ii) c = (2 · 42)2, n = 2. Therefore n1 6 2.

We claim that if n1 = 2, then the embedding Sd ⊂ Ad+2 is standard. Indeed, by
Lemma 1.4, the embedding Sd ⊂ Ad+2 induces a standard embedding Ad ⊂ Ad+2.
Moreover, the image in Ad+2 ⊂ Sd+2 of a transposition σ ∈ Sd is a product of an
even number s of mutually commuting transpositions σi in Sd+2. To show that
the embedding Sd ⊂ Ad+2 is standard, it suffices to prove that s=2. We omit the
proof since it coincides almost verbatim with that of Lemma 1.4.

§ 2. Proof of Theorem 0.1

2.1. Minimal expansions of the Galois groups of generic coverings. We
denote by g = g − 1 the arithmetic genus of X, g > 1, and by B the branch locus
of f : X → P1 in P1. Since f is m-canonical, we have

d = deg f = 2mg.

Applying the Hurwitz formula to f , we get

|B| = 2d+ 2g = 2(2m+ 1)g.

The branch locus of f̃ (the Galois expansion of f) coincides with B, and the ram-
ification indices of all ramification points of f̃ are equal to 2. Thus, applying the
Hurwitz formula to f̃ , we have

2g̃ = −2d! +
1
2
d! |B| = d! (d+ g − 2), (2.1)

where g̃ = g(X̃)− 1 is the arithmetic genus of X̃.
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Assume that Aut(X̃) 6= Gal(X̃/P1) and choose a subgroup G of Aut(X̃) such
that Sd ⊂ G is a minimal expansion of Sd.

We denote the index of Sd in G by k = (G : Sd). The Hurwitz bound on the
orders of the automorphism groups of algebraic curves (see, for example, [5]) implies
that |G| 6 84g̃. Therefore,

k 6 42(d+ g − 2). (2.2)

In particular, we have
k < 63d. (2.3)

Thus it follows from Proposition 1.1 that G is one of the following groups:
1) G = Sd × Z/pZ, where p > 2 is a prime;
2) G = Ad o Dr, where r > 3, r is odd, Dr is the dihedral group given by the

presentation
Dr = 〈σ, τ | σ2 = τ2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with that of the trans-
position (1, 2) ∈ Sd on Ad ⊂ Sd;

3) G = Sd+1 is the symmetric group.

2.2. Elimination of the remaining three cases. Consider Case 1). Let γ be
a generator of Z/pZ.

Since the action of γ on X̃ commutes with the action of any element of Sd, we
see that the action of the group 〈γ〉 on X̃ descends to X and to P1. We denote the
corresponding quotient spaces by X̃1 = X̃/〈γ〉 and X1 = X/〈γ〉. Let r̃ : X̃ → X̃1,
r : X → X1, h1 : X̃1 → X1 and rP : P1 → P1/〈γ〉 ' P1 be the corresponding
morphisms. We have the following commutative diagram.

X̃

er
��

h // X

r

��

f // P1

rP

��
X̃1 h1

// X1
f1

// P1

The cyclic covering rP : P1 → P1 is of degree p > 2 and is ramified at two points,
say, at x1, x2 ∈ P1. Therefore the cyclic covering r is ramified at least at 2(d − 1)
points lying in f−1(x1)∪f−1(x2). The ramification indices at these points are equal
to p. By the Hurwitz formula, we have

2g > 2p(g(X1)− 1) + 2(d− 1)(p− 1),

whence
2g > −2p+ 2(2mg − 1)(p− 1).

We finally get the inequality

p 6
(2m+ 1)g + 1

2mg − 2
= 1 +

g + 3
2mg − 2

< 2,

which shows that Case 1) is impossible.
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Consider Case 2). By choosing a suitable pair of generators σ, τ of Dr, we have
Sd = Ad o 〈σ〉 ⊂ G while the group S′d = Ad o 〈τ〉 is conjugate to Sd and does not
coincide with Sd (but is isomorphic to Sd). Moreover, Ad ⊂ S′d ∩ Sd. We denote
the corresponding quotient spaces by X1 = X̃/S′d−1, P1 = X̃/S′d and X0 = X̃/Ad.
They can be arranged in the following commutative diagram, where the morphisms
f0i, i = 1, 2, are of degree two and, since f is a generic covering, f01 is branched
over all points belonging to B.

X̃

h~~}}
}}

}}
}}

h0

��

h1

  B
BB

BB
BB

B

X

f

��

X0

f01~~||
||

||
||

f02 !!B
BB

BB
BB

B X1

f1

��
P1 P1

The morphisms f0i, i = 1, 2, of degree 2 determine an embedding i : X0 → P1×P1

whose image i(X0) is a curve of bidegree (2, 2) in P1 × P1. Therefore i(X0) is
an elliptic curve, and the projections of i(X0) onto each factor are branched at
four points. On the other hand, f01 is branched at every point of B while |B| =
2d+ 2g > 4. Therefore Case 2) is impossible.

Consider Case 3). First note that the embedding of Sd in G = Sd+1 is standard.
We consider the quotient space X̃/G and the quotient map f̄ : X̃ → X̃/G. The

morphism f̄ factors through f̃ , whence X̃/G ' P1 and f̄ is the following composite
of morphisms:

X̃
h // X

f // P1 r // P1 ,

where r is a morphism of degree d+1. Since Sd and Sd+1 have no common normal
subgroup, f̄ is the Galois expansion of r.

We denote by B1 ⊂ P1 the branch locus of r and compare the cardinality of B
with that of r(B) ⊂ B1.

The symmetric group Sd+1 acts as a permutation group on I = {1, . . . , d+1}⊂N.
We put Hi = {γ ∈ Sd+1 | γ(i) = i}, so that our group Sd is equal to Hd+1. The
groups Hi are all conjugate. Therefore all the coverings f̃i : X̃ → X̃/Hi ' P1 are
Galois expansions of generic coverings.

Let a ∈ X̃ be a ramification point of f̃d+1 = f̃ . The stabilizer Sta(f̄) = {g ∈
G | g(a) = a} is a cyclic group. Its order is equal to the ramification index of f̄
at a. Let τ be a generator of Sta(f̄). The intersection Sta(f̄) ∩ Sd = Sta(f̃d+1) is
a group of order 2 generated by a transposition σ ∈ Hd+1 since f̃d+1 is the Galois
expansion of a generic covering. Therefore σ = τk and τ2k = 1.

First we claim that k is odd. Indeed, let us write τ as a product of disjoint
cycles:

τ = (i1,1, . . . , i1,k1) · · · (is,1, . . . , is,ks
).

We can assume that (up to a rearrangement) σ = (i1,1, . . . , i1,k1)
k and

(ij,1, . . . , ij,kj )
k = 1 for j = 2, . . . , s. Then we easily see that k1 = 2, k is odd

and the kj are divisors of k for j = 2, . . . , s.
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We now claim that k = 1 and, therefore, τ = σ. For each i, the intersection
Sta(f̄) ∩Hi = Sta(f̃i) is a group of order at most 2, and if its order is equal to 2,
then it is also generated by a transposition σi ∈ Hi since f̃i is conjugate to f̃d+1.
On the other hand, the element

στ = (i2,1, . . . , i2,k2) · · · (is,1, . . . , is,ks
) ∈ Sta(f̄) ∩Hi1,1 = Sta(f̃i1,1)

is of odd order. Therefore σ = τ .
We now consider the fibre f̄−1(f̄(a)) containing the point a: it can be identified

with the set of right cosets {Sta(f̄)γ} in Sd+1. Hence the stabilizer St(a)γ(f̄) of the
point (a)γ is generated by the transposition γ−1σγ.

The fibre f̄−1(f̄(a)) splits into the disjoint union of the orbits under the action
of Hd+1. Each orbit is a fibre of f̃d+1. There is no loss of generality in assuming
that the group Sta(f̄) is generated by σ = (1, 2). Then we easily see that each of
these orbits can be identified with one of the sets Fi = {Sta(f̄)γ | γ ∈ σiHd+1},
where σi = (i, d+1) if 2 6 i < d+1, and σ = (1, 2) if i = d+1. (The transpositions
σ1 = (1, d + 1) and σ2 = (2, d + 1) determine the same orbit under the action
of Hd+1 because (1, 2)(1, d+ 1)(1, 2) = Id · (2, d+ 1).)

The points ai = (a)σi have the same stabilizer,

Stai
(f̄) = 〈(1, 2)〉 ⊂ Hd+1,

if i > 2. Hence all the points belonging to Fi with i > 3 are ramification points
of f̃d+1 and, therefore, f̃d+1(Fi) ∈ B. It is easy to see that the points belonging
to F2 are not ramification points of f̃d+1. Thus the point f̃d+1(F2) is a ramification
point of r.

As a corollary, we obtain that if b̃ ∈ r(B), then the fibre r−1(b̃) consists of d− 1
points belonging to B and one point (a ramification point of r) which does not
belong to B. Hence the number |B| = 2d+ 2g = 2(m+ 1)g is divisible by d− 1 =
2mg− 1. Then 2g+1 must be divisible by 2mg− 1. But this is possible only when
g = 1 and m = 1 or m = 2.

§ 3. Proof of Theorem 0.2

3.1. Local behaviour of generic coverings and their Galois expansions. In
this subsection we specialize to the case of surfaces the definitions related to generic
actions of symmetric groups, compare our definitions with traditional definitions
of generic coverings, deduce the local properties of generic coverings from those of
such actions, and fix the corresponding notation and notions.

We recall that the Galois expansion f̃ : X̃ → P2 of a generic covering f : X → P2

of degree d factors through f : f̃ = f ◦h, where h : X̃ → X is a Galois covering with
Galois group Gal(X̃/X) = Sd−1 ⊂ Sd = Gal(X̃/P2). The branch locus B ⊂ P2 of
the covering f coincides with that of f̃ . We say that f is generic if the action
of Sd on X̃ is generic. The latter means that the stabilizer Sta(Sd) of any point
a ∈ X̃ is a product of symmetric groups (depending on a) embedded in Sd in the
standard way and that the actions induced by Sta(Sd) on the tangent spaces TaX̃
are standard representations of rank 6 2 (see the introduction).
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On the other hand, in dimension 2 it is more traditional to define a generic
covering f : X → P2 of degree d as a covering with the following local behaviour.
The branch locus B of f is a cuspidal curve. Over a neighbourhood U of a smooth
point of B, the pre-image f−1(U) splits into a disjoint union of d − 1 connected
components. In one of them, the covering is two-sheeted and isomorphic to the
projection of the surface x = z2 onto the (x, y)-plane in a neighbourhood of the ori-
gin, and in the others it is a local isomorphism. Over a neighbourhood of a cusp
of B, the pre-image splits into a disjoint union of d− 2 connected components. In
one of them, the covering is a pleat (that is, a three-sheeted covering isomorphic to
the projection of the surface y= z3 +xz onto the (x, y)-plane in a neighbourhood
of the origin), and in the others it is a local isomorphism. Over a neighbourhood of
a node ofB, the pre-image splits into a disjoint union of d−2 connected components.
The covering is two-sheeted in two of them, and the restriction of the covering
to the union of these components is isomorphic to the projection of the union
of the surfaces x = z2 and y = z2 onto the (x, y)-plane in a neighbourhood of
the origin, while the restriction of the covering to any other component is a local
isomorphism. The non-trivial local Galois groups in the corresponding three cases
are Z/2, S3, and Z/2× Z/2. All their non-trivial representations in GL(2,C) that
produce non-singular quotients are standard representations of rank 6 2. Hence
our definition of a generic covering coincides with the traditional one.

The global behaviour of generic coverings is easy to see from the above local
models. In particular, we have f∗(B) = 2R + C, where R (the ramification
locus of f) is a non-singular curve, C is a reduced curve and C is non-singular
over the non-singular points of B. Moreover, the intersection points of R and C
lie over the nodes and cusps of B. There are two intersection points over each
node (and these intersections are transversal) and one intersection point over
each cusp (this intersection is a simple tangency).

Consider the same behaviour from the viewpoint of the action of Sd on X̃. The
properties of this action are used repeatedly in the rest of this section.

For every point a ∈ X̃, the action of Sta(Sd) on a small neighbourhood of a can
be linearized. (This can be done by Cartan’s linearization procedure [6], which is
reproduced below in the proof of Lemma 4.2. It gives a suitable coordinate change
that enables us to identify the local action with the action induced on the tangent
space TaX̃.) We shall treat the possibilities for Sta(Sd) case by case, analyzing
the local behaviour of f , f̃ and h in accordance with the definition of standard
representations.

If the group Sta(Sd) = S2 is generated by a transposition σ ∈ Sd, the ramification
divisor R̃ of f̃ coincides in some neighbourhood of a with the set of fixed points of σ,
to be denoted by R̃σ. This set is a smooth curve and, in particular, R̃ is smooth at a.
The image h(a) of a belongs to the ramification locus R of f (equivalently, a does
not belong to the ramification locus of h) if and only if σ /∈ Sd−1. Moreover, h(R̃σ)
coincides with R in a neighbourhood of h(a) if σ /∈ Sd−1 (otherwise it coincides
with the curve C defined above). We see that the curve h(R̃σ) is smooth at h(a) in
both cases (σ ∈Sd−1, σ /∈Sd−1). Moreover, in both cases, the point f̃(a) belongs
to B and B is non-singular at f̃(a).
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If the group Sta(Sd) = S2 × S2 is generated by two commuting transpositions
σ1 ∈ Sd and σ2 ∈ Sd, then a belongs to R̃σ1 ∩ R̃σ2 , and the curves R̃σ1 and R̃σ2

are non-singular and meet each other transversally at a. Furthermore, the curves
h(R̃σ1) and h(R̃σ2) are non-singular and meet each other transversally. If one of
the transpositions (say, σ1) does not belong to Sd−1, then h(R̃σ1) is contained in the
divisor R and, moreover, coincides with R in a neighbourhood of h(a). If σ1 ∈ Sd−1,
then h(R̃σ1) is not contained in R (but is contained in C). If both σ1 and σ2 belong
to Sd−1, then h(a) is not a ramification point of f . (In this case, h(a) is a node
of C and we have C = h(R̃σ1)∪h(R̃σ2) in a neighbourhood of h(a).) In every case,
f̃(a) is a node of B.

If the group Sta(Sd) = S3 is generated by two non-commuting transpositions
σ1 ∈ Sd and σ2 ∈ Sd, then a belongs to R̃σ1∩R̃σ2∩R̃σ3 , where σ3 = σ1σ2σ1, and the
curves R̃σ1 , R̃σ2 and R̃σ3 are non-singular and meet each other pairwise transver-
sally at a. If all three transpositions belong to Sd−1, then h(a) is not a ramification
point of f . Otherwise, one and only one of the transpositions (say, σ3) belongs
to Sd−1, and then the curves h(R̃σ1) = h(R̃σ2) and h(R̃σ3) are non-singular and tan-
gent to each other while the curve h(R̃σ1) = h(R̃σ2) coincides with R (and h(R̃σ3)
coincides with C) in a neighbourhood of h(a). In every case, f̃(a) is a cusp of B.

3.2. Invariants of m-canonical generic coverings. Let f :X→P2 be a generic
m-canonical covering branched along a cuspidal curve B ⊂ P2. ThenX is a minimal
surface of general type containing no (−2)-curves, and the degree of f is equal to

d = deg f = m2K2
X .

By the formula for the canonical divisor of a finite covering, we have KX =
f∗KP2 + [R]. Hence the divisor R is numerically equivalent to (3m+ 1)KX . Since,
in addition, the curve R is non-singular and X contains no (−2)-curves (if f is
an m-canonical generic covering, then KX is ample), we see that R is irreducible.
Since the curve B is birationally isomorphic to R, it too is irreducible. Thus we can
apply the results of [7]. In particular, we get the following formulae for the degree
degB and the number c of cusps of B (see [7], proof of Theorem 2):

degB = m(3m+ 1)K2
X , (3.1)

c = (12m2 + 9m+ 3)K2
X − 12pa, (3.2)

where pa = pg − q + 1 is the arithmetical genus of X. Note that if the degree of
the generic covering f exceeds 2, then its branch curve B necessarily has cuspidal
singular points, that is, c > 0. (Indeed, the image in Sd of the monodromy of f is
a transitive subgroup of Sd. Since for generic coverings this image is generated by
transpositions, we see that it coincides with the whole of Sd. Therefore the group
πi(P2 \ B) is non-abelian for d > 3. On the other hand, by Zariski’s theorem, the
group πi(P2 \B) is abelian if B is a nodal curve.)

Finally, we apply to f̃ the projection formula for the canonical divisor. This
yields that K eX = f̃∗(KP2) + [R̃] = f̃∗(KP2 + 1

2 [B]) and, therefore,

K2eX =
1
4
(degB − 6)2d! = d!

(
m(3m+ 1)

2
K2

X − 3
)2

. (3.3)
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3.3. Minimal expansions of the Galois groups of generic coverings.
Assume that Aut(X̃) 6= Gal(X̃/P2) and choose a subgroup G of Aut(X̃) such that
Sd ⊂ G is a minimal expansion of Sd. We write k = (G : Sd) for the index
of Sd in G.

The Xiao bound (see [8]) for the order of the automorphism group of a surface
of general type states that |G| 6 422K2eX . It follows that

k 6 422

(
m(3m+ 1)

2
K2

X − 3
)2

. (3.4)

We finally get
k < (2 · 42)2d2. (3.5)

Proposition 1.1 now yields that G must be one of the groups in the following list.
1) G = Sd × Z/pZ, p > 2, where p is a prime.
2) G = Ad o Dr, where r > 3, r is odd, Dr is the dihedral group with the

presentation
Dr = 〈σ, τ | σ2 = τ2 = (στ)r = 1〉,

and the action (by conjugation) of σ and τ on Ad coincides with that of the trans-
position (1, 2) ∈ Sd on Ad ⊂ Sd.

3) G = Sd+1 is the symmetric group.
4) G = Ad+2 is the alternating group and the embedding of Sd in G = Ad+2 is

standard.

3.4. Case 1). Let g be a generator of Z/pZ. Since the action of g on X̃ commutes
with that of any element of Sd, we see as in the proof of Theorem 0.1 that the action
of the group 〈g〉 = Z/pZ descends to X and to P2. We denote the corresponding
quotient spaces by X̃1 = X̃/〈g〉 and X1 = X/〈g〉, and let r̃ : X̃ → X̃1, r : X → X1,
h1 : X̃1 → X1 and rP : P2 → P2/〈g〉 = Y be the corresponding morphisms. We
have the following commutative diagram.

X̃

er
��

h // X

r

��

f // P2

rP

��
X̃1 h1

// X1
f1

// Y

The automorphism g of P2 is determined by a linear map C3 → C3 of order p.
Hence it has either three isolated fixed points, say x1, x2, x3 ∈ P2, or just one, say
x ∈ P2, and a fixed line E ⊂ P2. The cyclic covering rP : P2 → P2 is accordingly
of degree p and ramified either at the three points x1, x2, x3 or at the point x and
along the line E. We consider these two cases separately.

If rP is ramified at three isolated points, then r is ramified at least at 3(d − 2)
points lying in F = f−1(x1) ∪ f−1(x2) ∪ f−1(x3), and the ramification index of
each of them is equal to p. The points of F are the only fixed points of the
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automorphism g acting on X. Therefore, by the Lefschetz fixed point theorem, we
have

|F | =
4∑

i=0

(−1)itri, (3.6)

where tri is the trace of the linear transformation g∗ acting on Hi(X,R). It follows
from (3.6) that

3(d− 2) 6 |F | 6
4∑

i=0

|tri| 6
4∑

i=0

bi(X) = e(X) + 4b1(X) (3.7)

(where e stands for the topological Euler characteristic). On the other hand,
Noether’s formula 1− q + pg = K2

X+e(X)
12 with 2q = b1 yields that

e(X) + 4b1(X) = 12−K2
X + 12pg − 4q 6 12−K2

X + 12pg. (3.8)

Therefore, combining (3.7) and (3.8) with Noether’s inequality 2pg 6 K2
X + 4, we

get
3(m2K2

X − 2) 6 12−K2
X + 12pg 6 5K2

X + 36. (3.9)

Hence,
(3m2 − 5)K2

X 6 42.

This contradicts the inequality m2K2
X > 2 · 842 if m > 2 since we have K2

X > 1 for
any surface of general type.

We now assume that rP is ramified at a point x ∈ P2 and along a line E ⊂ P2.
Then every line L ⊂ P2 through x is invariant under the action of g on P2. Hence
every curve C = f−1(L) ⊂ X is invariant under the action of g on X. Pick a generic
line L passing through x. By the Hurwitz formula,

2(g(C)− 1) = −2d+ degB − 2m2K2
X +m(3m+ 1)K2

X = m(m+ 1)K2
X , (3.10)

where g(C) is the geometric genus of C.
We consider the restriction r|C : C → C/〈g〉 = Z ⊂ X1 of r to C. The cyclic

covering r|C has degree p and is branched at least at 2d − 3 = 2m2K2
X − 3 points

belonging to f−1(x) ∪ f−1(L ∩ E). Hence,

2(g(C)− 1) > 2p(g(Z)− 1) + (2m2K2
X − 3)(p− 1). (3.11)

It follows from (3.10) and (3.11) that

m(m+ 1)K2
X > −2p+ (2m2K2

X − 3)(p− 1)

and, therefore,
m(3m+ 1)K2

X > (2m2K2
X − 5)p.

Finally, since (m2 −m)K2 > 842 > 10, we get

p 6
m(3m+ 1)K2

X

2m2K2
X − 5

< 2,

contrary to the fact that p is integer and p > 1.
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3.5. Case 2). Group-theoretic part. Since r is odd and r > 3, the conjugacy
class of σ in Dr consists of r elements σ1, . . . , σr, σ1 = σ, σ2 = τ . For every i
with 1 6 i 6 r, the group Sd,i (generated in G by σi and the elements of Ad)
is isomorphic to Ad o 〈σi〉 ' Sd. The groups Sd,i are conjugate to each other
in G. Moreover, the element σi ∈ Sd,i acts on Ad ⊂ Sd,i as the transposition
(1, 2). We write σi,(i1,i2) for the element of Sd,i which is conjugate to σi and acts
on Ad as the transposition (i1, i2). Given two disjoint subsets J1 6= ∅, J2 of the set
I = {1, . . . , d}, we denote by SJ1,J2,i the subgroup of G = Ad o Dr generated by
the elements σi,(i1,i2), (i1, i2) ∈ (J1 × J1) ∪ (J2 × J2).

Let Sta ⊂ Aut X̃ be the stabilizer of a point a ∈ X̃. For any subgroupH of Aut X̃
we put Sta(H) = H ∩ Sta. For every point a ∈ X̃, the action induced by Sta(Sd)
on the tangent space TaX̃ is a standard representation of rank 6 2 and the group
Sta(Sd) is either trivial or isomorphic to SJ1,J2,1, where either 2 6 |J1| 6 3 and
J2 = ∅, or |J1| = |J2| = 2. Since the groups Sd,i are all conjugate, we see that the
groups Sta(Sd,i) possess the same properties for every i and every a ∈ X̃. Hence
the intersection Sta(Sd,i)∩Ad is generated by the cyclic permutation (i1, i2, i3)∈Ad

if J1 = {i1, i2, i3} and J2 = ∅, and by the product of two transpositions if J1 =
{i1, i2} and J2 = {i3, i4}. The group Sta(Sd,i) ∩ Ad is trivial in all the remaining
cases (when |J1| = 2 and J2 = ∅ or Sta(Sd,i) = {1}). It follows that if Sta(Sd,1) =
SJ1,J2,1 with |J1| = 3 and J2 = ∅, then the group Sta(Sd,i) coincides with SJ′

1,J ′
2,i

for every i, where J ′1 = J1 and J ′2 = ∅. Similarly, if Sta(Sd,1) = SJ1,J2,1, where
J1 = {i1, i2} and J2 = {i3, i4}, then the group Sta(Sd,i) coincides with SJ′

1,J ′
2,i for

every i, where J ′1 = J1 and J ′2 = J2. If Sta(Sd,1) = SJ1,J2,1, where J1 = {i1, i2}
and J2 = ∅, then for each i either Sta(Sd,i) is trivial or Sta(Sd,i) coincides with
SJ′

1,J ′
2,i, where |J ′1| = 2 and J ′2 = ∅.

Let us investigate in more detail the case when Sta(Sd,i) coincides with SJ1,J2,i

for every i, where |J1| = 3 and J2 = ∅. Suppose that J1 = {i1, i2, i3} and denote
the cyclic permutation (i1, i2, i3) ∈ Ad by y. Let F3 be the subgroup of Sta(G)
generated by x1 = σ1,(i1,i2) (conjugate to σ), x2 = σ2,(i1,i2) (conjugate to τ) and y.
It is easy to see that F3 has the presentation

F3 =
〈
x1, x2, y |x2

1 = x2
2 = (x1x2)r = y3 = [y, x1x2] = [y, x2x1] = 1,

x−1
1 yx1 = y−1, x−1

2 yx2 = y−1
〉

(3.12)

(recall that r > 3). The group F3 is non-abelian and has a maximal normal
subgroup N3 generated by y and z = x1x2. This subgroup is isomorphic to
the direct product 〈y〉× 〈z〉 of cyclic groups of orders 3 and r respectively. On the
other hand, well-known properties of finite subgroups of GL(2,C) (see, for exam-
ple, [9]) imply that the quotient of F3 by its centre is either a cyclic group, a dihe-
dral group, or one of the groups A4, A5, S5. However, the centre of the group
F3 = (Z/3Z × Z/rZ) o Z/2Z, is trivial since r is odd. It follows that r cannot be
divisible by 3 (we recall that the branch curve B has at least one cuspidal singular
point; see § 3.2) and that F3 must be isomorphic to the dihedral group Dr′ , r′ = 3r.

Again using the classification of the conjugacy classes of finite subgroups of
GL(2,C), we see that the action of F3 ' D3r near a is isomorphic to the unique
2-dimensional linear representation of D3r. In particular, the set of fixed points
of the automorphism σi,(i1,i2), i1, i2 ∈ J1, in a neighbourhood of a is a smooth
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curve, to be denoted by R̃i,(i1,i2). Any two curves R̃i,(i1,i2) and R̃i′,(i′1,i′2)
with

(i, (i1, i2)) 6= (i′, (i′1, i
′
2)) are distinct and meet transversally at a.

We now examine the case when Sta(Sd,i) = SJ1,J2,i, where J1 = {i1, i2} and
J2 = {i3, i4}. Let F2,2 be the subgroup of Sta(G) generated by x1 = σ1,(i1,i2)

(conjugate to σ), x2 = σ2,(i1,i2) (conjugate to τ) and y = (i1, i2)(i3, i4) ∈ Ad. It is
easy to see that F2,2 has the presentation

F2,2 =
〈
x1, x2, y | x2

1 = x2
2 = (x1x2)r = y2 = [y, x1] = [y, x2] = 1

〉
(3.13)

(we recall that r is odd and r > 3). The group F2,2 has a maximal normal subgroup
N2,2 generated by y and z = x1x2. This subgroup is isomorphic to the direct
product 〈y〉 × 〈z〉 of cyclic groups of orders 2 and r respectively. Therefore F2,2 is
isomorphic to the dihedral group D2r. The classification of the conjugacy classes
of finite subgroups of GL(2,C) implies that the action of F2,2 ' D2r near a is
isomorphic to the unique 2-dimensional representation of D2r. In particular, for all
i1, i2, i

′
1, i

′
2 ∈ J1 t J2 with (i, (i1, i2)) 6= (i′, (i′1, i

′
2)), we see that the curves R̃i,(i1,i2)

and R̃i′,(i′1,i′2)
are distinct and meet transversally at a.

Finally, we consider the case when Sta(Sd,1) = SJ1,J2,1 and Sta(Sd,2) = SJ′
1,J ′

2,2,
where J1 = {j1, j2}, J2 = ∅, J ′1 = {j3, j4}, J ′2 = ∅. We claim that in this case J1 = J ′1.

Indeed, if |J1 ∩ J ′1| = 1, we can assume that j2 = j3 and, therefore, σ2,(j3,j4) =
η−1σ2,(j1,j2)η, where η = (j4, j2, j1) ∈ Ad. We have η3 = 1 and

(σ1,(j1,j2)σ2,(j3,j4))
r = (σ1,(j1,j2)ησ2,(j1,j2)η

−1)r = (σ1,(j1,j2)σ2,(j1,j2)η)
r

= (σ1,(j1,j2)σ2,(j1,j2))
rηr = ηr = η±1

since r is not divisible by 3. Hence η ∈ Sta(G), contrary to the assumption that
Sta(Sd,1) = SJ1,J2,1.

If J1 ∩ J ′1 = ∅, then σ2,(j3,j4) = η−1σ2,(j1,j2)η, where η = (j1, j3)(j2, j4) ∈ Ad.
We put η1 = (j1, j2)(j3, j4) ∈ Ad. Then η2 = η2

1 = 1 and

(σ1,(j1,j2)σ2,(j3,j4))
r = (σ1,(j1,j2)ησ2,(j1,j2)η

−1)r

= (σ1,(j1,j2)σ2,(j1,j2)σ
−1
2,(j1,j2)

ησ2,(j1,j2)η
−1)r

= (σ1,(j1,j2)σ2,(j1,j2)η1)
r = η1.

Hence η1 ∈ Sta(G), contrary to the assumption that Sta(Sd,1) = SJ1,J2,1.

3.6. Case 2). Geometric part. We have Ad = Sd,i ∩ Sd,j for i 6= j. Denote the
corresponding quotient spaces by Xi = X̃/Sd−1,i, P2 = X̃/Sd,i and X0 = X̃/Ad.
They can be arranged in a commutative diagram (a fragment of which is shown
below), where f0i is a morphism of degree 2 for i = 1, . . . , r.

X̃

hi~~}}
}}

}}
}}

h0

��

hj

  A
AA

AA
AA

A

Xi

fi

��

X0

f0i~~}}
}}

}}
}}

f0j   B
BB

BB
BB

B Xj

fj

��
P2 P2
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Since for every i, the morphism f0i is conjugate to the covering f01 : X0 → P2

branched along B1 = B, we see that f0i is a covering of P2 branched over the
points of a cuspidal curve Bi ⊂ P2 having the same degree and the same number
of cusps and nodes as B. We denote the ramification curve of the covering f0i

by Ri,0 ⊂ X0.
The group Dr acts on X0. The image of σi,(j1,j2) ∈ Sd,i (see § 3.5) under the

natural epimorphism from G to Dr coincides with σi. Therefore the set of fixed
points of σi coincides with Ri,0.

The surface X0 is a normal projective variety. The set of its singular points coin-
cides with f−1

01 (SingB1): we have a singular point of type A2 over every cusp and
a singular point of type A1 over every node. Hence all the points of f−1

01 (SingB1)
belong to Ri,0 for every i, 1 6 i 6 r. On the other hand, the observations at the
end of § 3.5 imply that no two curves Ri,0 and Rj,0 with i 6= j can meet at a non-
singular point of X0.

Let ν : Z → X0 be the minimal resolution of singularities. Its exceptional divisor
is given by

E = ν−1(SingX0) =
c⋃

k=1

(E1,sk
∪ E2,sk

) ∪
2c+n⋃

l=2c+1

Esl
,

where E1,sk
, E2,sk

(1 6 k 6 c) are the irreducible components of E contracted to
the cusp sk of X0, and Esl

(l = 2c + 1, . . . , 2c + n) is the irreducible component
of E contracted to the node sl of X0.

Since f0i is a double covering branched along a cuspidal curve Bi0, the above
minimal resolution of singularities fits into the following commutative diagram:

Z

f̄0i

��

ν // X0

f0i

��
P2

νi

// P2

where νi blows up each singular point of Bi once and f̄0i is a two-sheeted covering
of P2

branched over the proper transform Bi ⊂ P2
of Bi.

Here is a more explicit description that enables us to count the intersection
numbers.

Let s be a cusp of Bi and E ⊂ P2
the exceptional curve ν−1

i (s) = P1 of νi lying
over s. Then the curve Bi ⊂ P2

meets E at one point, is non-singular at this point
and has a simple tangency to E there. The lift Ri,0 = f−1

0i (Bi) is the ramification
curve of f̄0i. It is non-singular and coincides with the proper transform of Ri,0. The
set f̄−1

0i (E) splits into a union E1,s ∪ E2,s ⊂ Z of two smooth curves intersecting
transversally, so that

(E
2

1,s)Z = (E
2

2,s)Z = −2,

(E1,s, E2,s)Z = (E1,s, Ri,0)Z = (E2,s, Ri,0)Z = 1.

Let s be a node of Bi. Then the curve Bi ⊂ P2
meets the exceptional curve E =

ν−1
i (s) at two points, is non-singular at these points and intersects E transversally.
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The lift f−1
0i (E) = Es ⊂ Z is the exceptional curve of ν and meets the proper

transform Ri,0 = f−1
0i (Bi) transversally at two non-singular points of Ri,0. Hence

we have
(E

2

s)Z = −2, (Es, Ri,0)Z = 2.

We claim that the intersection number (Ri,0, Rj,0)Z is independent of i and j
if i 6= j. Indeed, consider the commutative diagram

X

h̄0

��

µ // X̃

h0

��
Z µ

// X0

where X = X̃ ×X0 Z is the fibre product of X̃ and Z over X0 while µ : Z → X0 is
the composite of ν and the blow ups of all the intersection points of the (−2)-curves
E1,sk

and E2,sk
(k = 1, . . . , c) lying on Z (these curves are those components of the

divisor E that are contracted by ν to the cusps of X0). We denote by E1,2,sk
⊂ Z

the exceptional curve lying over the point E1,sk
∩ E2,sk

. To simplify the notation,
we again use the symbols Ri,0, E1,sk

, E2,sk
and Esl

to denote the strict transforms
in Z of the curves Ri,0, E1,sk

, E2,sk
(k = 1, . . . , c) and Esl

(l = 2c+ 1, . . . , 2c+ n)
lying in Z.

It is easy to see that h̄0 is a Galois covering branched along the curves E·,sk

and Esl
. The ramification indices over the curves E·,sk

are equal to 3 (see the
local calculations in [2], § 2), and the ramification indices over the curves Esl

are
equal to 2. The morphism µ blows up once each of the points lying over the nodes
of X0 and performs three blow ups at each of the points lying over the cusps of X0.
Therefore the strict transforms µ−1(R̃i,(j1,j2)) are pairwise disjoint for 1 6 i 6 r,
1 6 j1, j2 6 d. But

⋃
j1,j2

µ−1(R̃i,(j1,j2)) = h̄−1
0 (Ri,0). Hence, blowing all the

curves E1,2,sk
down, we see that

(Ri,0, Rj,0)Z = c

for i 6= j and these intersection numbers are independent of i and j. We also note
that the intersection numbers of the curves Rj,0 and any irreducible component
of E are independent of j.

The action of Dr on X0 lifts to an action on Z. The curve Ri,0 ⊂ Z (resp.
Ri,0 ⊂ X0) is the set of fixed points of σi ∈ Dr. Since σ−1

i σjσi 6= σj for j 6= i,
we have σi(Rj,0) 6= Rj,0 (resp. σi(Rj,0) 6= Rj,0) for j 6= i. In particular, R3,0 =
σ1(R2,0) 6= R2,0 and, therefore, R2,0 +R3,0 = f−1

01 (D) for some curve D ⊂ P2.
SinceDr acts transitively on the set of curvesRi,0 (resp. on the set of curvesRi,0),

we have (R
2

1,0)Z = (R
2

2,0)Z = (R
2

3,0)Z . It was also shown above that

(R1,0, R2,0)Z = (R1,0, R3,0)Z = (R2,0, R3,0)Z .

Denote by L the subspace of the Néron–Severi group NS(Z) ⊗ Q orthogonal
(with respect to the intersection form) to the subspace VE generated by E1,sk

,
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E2,sk
, k = 1, . . . , c, and Esl

, l = 2c + 1, . . . , 2c + n. The intersection form is
negative definite on VE . Therefore, by the Hodge index theorem, the intersection
form on L has signature (1,dimL− 1).

Let us calculate for later use the intersection numbers of some divisors in L. We
project the Néron–Severi classes of the divisors Ri,0 to L, denote these projections
by (Ri,0)L and denote their intersections in L by (Ri,0 ·Rj,0)L (these numbers are
equal to the corresponding Q-intersection numbers on the Q-variety X0).

Observe that f∗i,0Bi = 2Ri,0 and ν∗Ri,0 = Ri,0 mod L. Thus,

(R
2

i,0)L = (R
2

j,0)L =
1
2
(degB)2 > 0

for all i, j. Write (R2,0)L = λ(R1,0)L + T , where T ∈ L is orthogonal to (R1,0)L.
We have

(R2,0 ·R1,0)L = λ(R
2

1,0)L = (R3,0 ·R1,0)L = (R2,0 ·R3,0)L

since the intersection numbers of the curves Rj,0 and any irreducible component
of E are independent of j, and the intersection numbers (Ri,0, Rj,0)Z are also
independent of i and j provided that i 6= j.

Next, the divisor (R2,0 + R3,0)L coincides with ν∗(f∗01(D)). Therefore (R2,0 +
R3,0)L is proportional to (R1,0)L = 1

2ν
∗(f∗01(B1)). It follows that (R3,0)L =

λ(R1,0)L − T , where λ > 0. We have (R
2

2,0)L = λ2(R
2

1,0)L + T 2 = (R
2

1,0)L and,
therefore,

T 2 = (1− λ2)(R
2

1,0)L 6 0.

Hence λ > 1. Moreover, λ = 1 if and only if T 2 = 0, that is, if and only if T = 0 ∈ L.
Since (R2,0 ·R3,0)L = (R2,0 ·R1,0)L, we have

λ2(R
2

1,0)L − T 2 = λ(R
2

1,0)L, T 2 = (λ2 − λ)(R
2

1,0)L 6 0,

whence λ 6 1. Combining this with the previous observations, we get λ = 1 and
T = 0. It follows that (Ri,0)L = (Rj,0)L for all i, j. This enables us to conclude
that degD = degB since 2(degD)2 = ((R2,0 + R3,0)2)L = 4(R

2

2,0)L = 2(degB)2.
Therefore we have

(R
2

1,0)Z =
1
2
(R1,0, R2,0 +R3,0)Z = c.

Since, in addition,

(R
2

1,0)Z =
1
2

(
ν∗1 (B1)− 2

∑′
Esk

− 2
∑′′

Esl

)2

=
1
2
(degB)2 − 2c− 2n,

where the sum
∑′ (resp.

∑′′) is taken over all cusps (resp. all nodes) of the curveB1,
we get

(degB)2 − 4n = 6c. (3.14)

On the other hand, we know (see the proof of Lemma 3 in [7]) that

(degB)2 − 2n 6 6c
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for any generic covering of degree d > 3. It is also shown in [10] that n > 0
if d > 6. The contradiction between these estimates and (3.14) shows that Case 2)
is impossible.

3.7. Case 3). The symmetric groupG=Sd+1 acts on the set I = {1, . . . , d+1}⊂N
as a permutation group. We denote by Hi the subgroup {γ ∈ Sd+1 | γ(i) = i}
of Sd+1, so that Sd coincides with Hd+1.

As in the proof of Theorem 0.1, we consider the quotient space X̃/G=Y and
the quotient map f̄ : X̃ → Y . The surface Y is a normal projective variety. The
morphism f̄ factors through f̃i. Hence f̄ is the following composite of morphisms:

X̃
h // X

f // P2 r // Y,

where r is a finite morphism of degree d+ 1. Since Sd and Sd+1 have no common
normal subgroups, we see that f̄ is the Galois expansion of r.

Let B ⊂ Y be the branch locus of r. We have r(B) = B1 ⊂ B. The pre-image
r−1(B1) is the union of B and some curve B′ ⊂ P2.

Since Y is a normal projective surface, we can find a non-singular projective
curve L ⊂ Y \ Sing(Y ) which transversally intersects B. We put E = r−1(L),
F = f−1(E) and F̃ = f̃−1(E). Then f|F : F → E is a generic covering branched
over B∩E, f̃| eF : F̃ → E is the Galois expansion of the generic covering f|F : F → E

with Galois group Gal(F̃ /E) = Sd, and f̄| eF : F̃ → L is the Galois expansion of the
covering r|E : E → L with Galois group Gal(F̃ /L) = Sd+1.

Consider the image b1 = r(b) of a point b ∈ B ∩ E. As in the proof of Theo-
rem 0.1, we easily see that r−1(b1) consists of d− 1 points belonging to B and one
point (the ramification point of r|E) belonging to B′. In other words, the covering
r|B′ : B′ → B1 is of degree 1, the covering r|B : B → B1 is of degree d − 1, and
r∗(B1) = B + 2B′. In particular, we have

degB′ · degE = (B′, E)P2 = (B1, L)Y ,

degB · degE = (B,E)P2 = (d− 1)(B1, L)Y .

Therefore,
degB = (d− 1) degB′.

Since d = m2K2
X and degB = m(3m+ 1)K2

X , it follows that mK2
X + 3 is divisible

by m2K2
X − 1. This contradicts the assumption that m2K2

X > 2 · 842.

3.8. Case 4). We denote the standard embedding Sd → Ad+2 by α. For every
transposition σ ∈ Sd, the set X̃σ = X̃α(σ) ⊂ X̃ of fixed points of σ is a non-singular
curve. Hence, for every element τ ∈ Ad+2 which is conjugate to α(σ), the set X̃τ

of fixed points of τ is also a non-singular curve.
It is shown in [10] that if d > 6, then the branch curve B ⊂ P2 has at least

one node. Therefore, for every product η = σ1σ2 of two commuting transpositions
σ1, σ2 ∈ Sd, the set X̃η of fixed points of η is finite and non-empty. It follows that
the set X̃η′ is finite and non-empty for any element η′ which is conjugate to α(η)
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in Ad+2. On the other hand, if σ1 = (j1, j2) and σ2 = (j3, j4), then the elements
α(σ1) = (j1, j2)((d + 1), (d + 2)), α(σ2) = (j3, j4)((d + 1), (d + 2)) and α(η) =
(j1, j2)(j3, j4) are conjugate to each other in Ad+2, a contradiction.

§ 4. Applications

4.1. Deformation stability. In this subsection we prove a kind of deformation
stability of the examples given by Theorems 0.1 and 0.2. To state the correspond-
ing assertions, we need to introduce some notions. Namely, a G-manifold is under-
stood to be a non-singular projective manifold equipped with a regular action of
the group G. A smooth G-family (or G-deformation) of G-manifolds is a proper
smooth morphism (that is, a proper submersion) p : X → B, where X and B
are smooth quasi-projective varieties and X is equipped with a regular action of G
preserving every fibre of p (preservation of fibres means that p ◦G = p).

Proposition 4.1. If one of the fibres of a smooth G-family is the Galois expansion
of a generic covering of Pn, then the whole family consists of Galois expansions of
generic coverings of Pn.

To prove this we shall need the following lemma.

Lemma 4.2. Let G be a finite group and p : X → B a smooth G-deformation
of G-manifolds. Assume that there is an element g ∈ G whose fixed-point set
X g = {x ∈ X | g(x) = x} is non-empty. Then the following assertions hold.

(i) X g is a smooth closed submanifold of X .
(ii) The restriction of p to X g is a smooth proper surjective morphism.
(iii) The intersection of X g and every fibre Xt, t ∈ B, of p is transversal.

Proof. It is known that the action of any subgroup H of G can be linearized at
any point x ∈ X which is fixed by H. In other words, one can find local ana-
lytic coordinates in a neighbourhood of x such that the action of H is linear in
these coordinates.

Recall Cartan’s linearization procedure for actions of finite groups (see [6]). We
start from any system of local coordinates z1, . . . , zn taking the value 0 at the chosen
point x which is fixed by H. For every h ∈ H we denote by h′ the linear part of the
Taylor expansion (with respect to z1, . . . , zn) of the automorphism h at x. Then
the change of coordinates defined by the map

σ =
1
|H|

∑
g∈H

(g′)−1g

makes the action of H linear. Namely, it conjugates h and h′ for every h ∈ H
since σ ◦ h = h′ ◦ σ. Indeed, we have

σ◦h =
1
|H|

∑
g∈H

(g′)−1g ◦ h =
1
|H|

∑
g∈H

h′(g′ ◦ h′)−1g ◦ h =
1
|H|

h′
∑
e∈H

(e′)−1e = h′ ◦ σ.

This change of coordinates is tangent to the identity. Moreover, it acts as the
identity on every linear (with respect to z1, . . . , zn) subspace on which H already
acts linearly. Therefore, to prove (i), it suffices to linearize the action of g (where-
upon the set X g becomes linear in the new coordinates), and to prove (ii) and (iii),
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it suffices to take any system of local coordinates at t ∈ B and include its lift
into a system of local coordinates z1, . . . , zn. (This guarantees the surjectivity of
the map Tx(X g) → Tp(x)B at the level of tangent spaces. Since the morphism
p : X → B is proper and the submanifold X g is closed in X , we see that the
morphism p : X g → B is proper and surjective.)

Proof of Proposition 4.1. We give a proof only for n 6 2 since the proof in the
general case is similar.

Let Xo, o ∈ B be a fibre of p which is the Galois expansion of a generic covering
Xo → Pn. The ramification locus of this covering is a union of smooth manifolds
Ro(i,j), 1 6 i < j 6 d, of codimension one. These manifolds are the fixed-point sets
of the transpositions (i, j) ∈ Sd. By Lemma 4.2, the fixed-point sets X (i,j)⊂X of
the same transpositions acting on X are also smooth manifolds of codimension
one, and the intersection Rt(i,j) = X (i,j) ∩Xt is transversal for every t ∈ B and all
transpositions (i, j) ∈ Sd. Moreover, if X g 6= ∅ for some element g ∈ Sd, g 6= 1,
then X g ∩ Xo 6= ∅ by Lemma 4.2. Since the action of Sd on Xo is generic, it
follows that g is a transposition in the case n = 1, and g is either a transposition,
a product of two commuting transpositions or a cyclic permutation of length three
in the case n = 2.

Suppose that n = 2 and g is a cyclic permutation (j1, j2, j3) (the other cases can
be treated in a similar way). We claim that the actions of S{j1,j2,j3} on X and on
each fibre Xt, t ∈ B, are generic. Indeed, there is no loss of generality in assum-
ing that dimB = 1. Then by Lemma 4.2, X g is a smooth curve and X (j1,j2)

and X (j1,j3) are smooth surfaces, and they all meet every fibre transversally.
Since X g ∩ Xo = Ro(j1,j2) ∩ Ro(j1,j3), another application of Lemma 4.2 yields
that X (j1,j2) ∩X (j1,j3) =X g and Xg

t =Rt(j1,j2) ∩Rt(j1,j3) for all t∈B. Therefore
X g (resp. Xg

t ) coincides with the fixed-point set under the action of S{j1,j2,j3}
on X (resp. on Xt).

As a result, we see that the actions of Sd on X and on every Xt, t ∈ B, are
generic. Hence the quotient space X /Sd is a smooth manifold and the induced
morphism p1 : X /Sd → B is smooth and proper. Thus it remains to note that
Xt/Sd = Xo/Sd = Pn for every t ∈ B because a projective manifold M is isomor-
phic to Pn if there is a C∞-diffeomorphism M → Pn which maps the canonical
class to the canonical class. (For n=1, this was known to Riemann. For n=2,
one can use the Enriques–Kodaira classification of algebraic surfaces; see [11]. It is
worth mentioning a related result of Siu [12]: in any dimension, a compact complex
manifold is isomorphic to Pn if it is deformation equivalent to Pn.)

Corollary 4.3. G-varieties like those in Theorems 0.1 and 0.2 form connected
components in the moduli spaces of, respectively, G-curves and G-surfaces of general
type. These components are saturated (see § 0.2). In dimension one, G-curves like
those in Theorem 0.1 form proper subvarieties in the moduli space of curves of
general type.

Proof. The first assertion follows from Proposition 4.1 while the second follows
from the first and Theorems 0.1 and 0.2. The third assertion follows from the first
along with the observation that if a birational transformation of a one-parameter
deformation family of curves of genus g > 2 preserves every fibre and is regular
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everywhere except for finitely many fibres, then it extends to a transformation
which is regular everywhere.

4.2. Examples of Dif 6= Def complex G-manifolds. Here we consider regu-
lar actions of finite groups on complex surfaces and construct diffeomorphic actions
which are not deformation equivalent. The idea is to pick surfaces that are diffeo-
morphic but not deformation equivalent and apply Theorem 0.2.

Let X be a rigid non-real minimal surface of general type (that is, a minimal
surface of general type which is stable under deformations and not isomorphic to its
complex conjugate X). Such surfaces can be found in [13]. We denote by Y1 = X̃
the Galois expansion of a generic m-canonical covering X → P2, and by Y2 its
conjugate, Y2 = Y 1.

Proposition 4.4. Suppose that Y1 and Y2 are as above and m satisfies the hypothe-
ses of Theorem 0.2. Then the actions of Sd = AutY1 = AutY2 on Y1 and Y2 are
diffeomorphic, but Y1 and Y2 are not Sd-deformation equivalent.

Proof. According to Theorem 0.2, AutY1 = AutY2 = Sd, where d is the degree of
them-canonical coveringX → P2. The actions of Sd on Y1 and Y2 are tautologically
diffeomorphic since Y2 = Y 1.

Assume that Y1 = X̃ and Y2 = Y 1 are Sd-deformation equivalent. Let p : X →B
be a smooth Sd-deformation connecting them (the same treatment applies in the
case when there is a chain of deformations). By Proposition 4.1, the covering
Xt → Pn is generic for every t ∈ B. Hence, X /Sd−1 → B is a deformation family
connecting X = Y1/Sd−1 with X = Y2/Sd−1, which is a contradiction.

4.3. Examples of Dif 6= Def real G-manifolds. Here we extend the category
of G-manifolds. Namely, we consider finite subgroups of Klein extensions of the
automorphism group. We recall that the Klein group Kl(X) of a complex vari-
ety X is, by definition, the group consisting of biregular isomorphisms X → X and
X → X (it is sometimes called the group of dyanalytic automorphisms). If X is
a real manifold and c is a real structure on X, then there is an exact sequence

1 → 〈c〉 = Z/2 → Kl(X) → AutX → 1.

We consider the real Campedelli surfaces (X1, c1) and (X2, c2) constructed
in [3], § 2. As shown in [3], these surfaces are not real deformation equivalent,
but their real structures c1 : X1 → X1 and c2 : X2 → X2 are diffeomorphic.

The Campedelli surfaces are minimal surfaces of general type. Thus we can con-
sider m-canonical generic coverings X1 → P2 and X2 → P2. Moreover, we can
choose these coverings to be real. This means that they are equivariant with respect
to the usual (complex-conjugation) real structure on P2 and the real structures
c1, c2 on X1, X2. We denote the Galois expansions of such coverings by X̃1 → P2

and X̃2 → P2. The surfaces X̃1 and X̃2 are real with real structures lifted from P2.

Proposition 4.5. The Klein groups Kl(X̃1) and Kl(X̃2) are isomorphic and their
actions are diffeomorphic, but there is no equivariant deformation connecting
(X̃1,Kl(X̃1)) with (X̃2,Kl(X̃2)).
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Proof. As in the proof of Proposition 4.4, the non-existence of an equivariant
deformation follows immediately from Proposition 4.1.

To prove the other two assertions, it suffices to construct a real diffeomorphism
X̃1 → X̃2 commuting with the actions of the Galois groups. To do this, it suffices to
construct real diffeomorphisms X1 → X2, P2 → P2 that commute with the initial
m-canonical generic coverings X1 → P2 and X2 → P2.

We recall some details of the construction of the surfaces X1, X2 in [3]. The con-
struction starts from a real one-parameter family of Campedelli line arrangements
L (t), t ∈ T = {|t| 6 1, t ∈ C}, consisting of seven lines L1(t), . . . , L7(t) labelled
by the non-zero elements α ∈ (Z/2Z)3. These lines are real for real values of t,
and the family performs a triangular transformation at t = 0 (see the definition of
a triangular transformation in [3]). Consider the Galois covering Y → P2 × T with
Galois group (Z/2Z)3, branched over

∑7
i=1 Li, Li = {(p, t) ∈ P2 × T : p ∈ Li(t)}

and defined by the chosen labelling of the lines. The fibres Yt of the projection of Y
to T are non-singular Campedelli surfaces for generic t and, in particular, for all
t 6= 0 sufficiently close to 0. The surfaces X1 and X2 we are interested in are given
by Yt with, respectively, positive and negative t close to 0. The fibre Y0 has two
singular points. Each of them is a so-called T (−4)-singularity. These points are
non-real and complex-conjugate to each other. For every non-singular Campedelli
surface Yt, t 6= 0, and every i, 1 6 i 6 7, the pullback L∗i (t) ⊂ Yt of the line
Li(t) ⊂ P2 represents the bi-canonical class, [L∗i (t)] = 2KYt .

Since Y → P2 × T is a finite morphism, the divisors Em = m[L ∗
i ] are relatively

very ample for any sufficiently large m (and any i); see, for example, [14]. Pick such
an integer m and consider the real (with respect to T ) embedding of Y in PN × T
defined by the linear system |Em| (to construct such an embedding, one must
twist Em by the pullback of a very ample divisor on T ). Since [L∗i (t)] = 2KYt , this
embedding determines a (2m)-canonical embedding of the Campedelli surfaces Yt

in PN . Theorem 0.1 of [2] implies that if m > 5, then the linear projection Yt → P2

from a generic subspace PN−3 is a generic covering for all but finitely many values
of t ∈ T and, in particular, for all t 6= 0 close to 0. The projection Y → P2 × T
is real for real subspaces PN−3. If the real subspace PN−3 is sufficiently generic,
then the two singular points of Y0 are projected to distinct complex-conjugate
points. We denote these singular points by y, ȳ and their projections by b, b̄.
Literally repeating the argument in [2], one can show that the projection Y0 → P2

is everywhere generic. (The projection is said to be generic at the singular points if
the fibre of the projection passing through the singular point y ∈ Y0 (resp. ȳ ∈ Y0)
is in general position with respect to the tangent cone CbY0 (resp. Cb̄Y0).)

We restrict our attention to small values of t. The coverings Yt → P2 are generic
for t 6= 0, and their branch curves Bt are cuspidal. For t = 0, the branch curve B0

is cuspidal everywhere except for two distinct complex-conjugate points b and b̄.
We cut out Milnor’s small complex-conjugate balls V (b) and V (b̄) centred at these
points. Using a family of Morse–Lefschetz diffeomorphisms, we complete the iso-
topy Bteiϕ \ (V (b) ∪ V (b̄)) by an isotopy inside V (b) and then complete it by the
complex-conjugate isotopy inside V (b̄). The resulting isotopy provides an equivari-
ant diffeomorphism between the Galois coverings branched alongBt andB−t respec-
tively. The Morse–Lefschetz diffeomorphisms may be regarded as transformations



150 Vik. S. Kulikov and V. M. Kharlamov

acting as the identity on the complement of V (b) ∪ V (b̄). Hence the epimorphism
π1(P2 \Bt) → Sd which defines the Galois coverings is not changed and, therefore,
the diffeomorphism constructed between the Galois coverings acts from X̃1 to X̃2

and is equivariant with respect to the Galois action. It is also equivariant with
respect to the real structure. To complete the proof, it remains to note that by
Theorem 0.2, the full automorphism groups Aut(X̃1) and Aut(X̃2) coincide with
the Galois group.
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