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On complete degenerations of surfaces
with ordinary singularities in PPPPPPP3

V. S. Kulikov and Vik. S. Kulikov

Abstract. We investigate the problem of the existence of degenerations
of surfaces in P3 with ordinary singularities into plane arrangements in
general position.
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Introduction

In this article we investigate degenerations of algebraic surfaces in P3 with ordi-
nary singularities. To begin, consider the classical prototype of this situation,
namely, degenerations of plane algebraic curves. As is known, any smooth projec-
tive curve can be projected to P2 onto a nodal curve C — a curve with ordinary
double points —nodes (singularities of type A1). According to Severi’s theorem
([1]–[3]) any nodal plane curve of degree m can be degenerated into an arrange-
ment of m lines in general position L =

⋃m
i=1 Li ⊂ P2. Such a degeneration defines

a subset S0 of the set S of double points of the curve L , which consists of the
limit double points of the curve C. Conversely, for any subset S0 ⊂ S there exists
a degeneration of nodal curves (maybe, reducible) for which S0 is the set of limit
double points ([3]), in other words, there exists a smoothing of double points S \S0

of the curve L (preserving double points lying in S0).
In dimension 2, surfaces in P3 with ordinary singularities are the analogue of

nodal curves. Only such singularities appear under generic projections of a smooth
surface X ⊂ Pr to P3 (see, for example, [4]). Let Y ⊂ P3 be a surface of degree m
with ordinary singularities. This means that the singular set Sing Y is the double
curve D; the curve D itself is smooth except the finite set of triple points T ; the
generic point y ∈ D is nodal on Y (is locally defined by the equation xy = 0);
the points y ∈ T are triple points of Y (locally, xyz = 0); besides, Y has a finite
set of pinch points at which Y is locally defined by the equation x2 = y2z.

A maximally degenerate (reducible) surface of degree m with ordinary singular-
ities is an arrangement

P = P1 ∪ · · · ∪ Pm ⊂ P3
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of m planes in general position. In this case the double curve Sing P = L con-
sists of

(
m
2

)
lines Li,j = Pi ∩ Pj ,

L =
⋃

16i<j6m

Li,j ,

on which
(
m
3

)
triple points lie,

T =
⋃

Ti,j,k, Ti,j,k = Pi ∩ Pj ∩ Pk, 1 6 i < j < k 6 m.

A degeneration of surfaces (in general, varieties) of given type is a one-
dimensional family, or for brevity, its zero fibre, the generic fibre of which is a surface
of given type (usually smooth). We consider families, all fibres of which are surfaces
in P3 with ordinary singularities. A degeneration is a surface which has ‘more’
singularities than the generic fibre. More precisely, a degeneration of a surface
Y ⊂ P3 with ordinary singularities is a flat family of embedded surfaces Yu ⊂ P3

with ordinary singularities, parametrized by points u ∈ U of a smooth curve U
(or even of a disc U ⊂ C), such that

(i) for the generic point u ∈ U the fibres Yu have singularities of the same type
as Y = Yu1 , and the fibre Yu0 over the point u0 = 0 is called degenerate;

(ii) there is a flat family Du ⊂ Yu, where Du is the double curve of the surface
Yu for u 6= u0, and the curve D = Du0 ⊂ Sing Yu0 is called the limit double
curve;

(iii) there is a flat family Tu, u ∈ U , where Tu ⊂ Du is the set of triple points
of the surface Yu for u 6= u0, and Tu0 = T3 is the set of triple points of the
curve D .

A degeneration is called complete if the degenerate fibre Yu0 = P is a plane
arrangement in general position.

A complete degeneration defines a limit double curve D ⊂ L . Conversely, if
a line arrangement D ⊂ L is selected and there is a complete degeneration of
surfaces Yu ⊂ P3 (not necessary irreducible) with ordinary singularities such that
Du0 = D , then we say that the plane arrangement P is smoothed outside D .

As in the case of curves, there are two questions. Can every surface Y ⊂ P3

with ordinary singularities be completely degenerated? Can every line arrangement
D ⊂ L of a plane arrangement P be smoothed outside D?

The problem of degeneracy of smooth surfaces X ⊂ PN into plane arrange-
ments was investigated previously, but in another setting, which is analogous to
the Zeuthen’s problem for curves (the degenerate surfaces are surfaces of Zappa,
or so called Zappatics; a survey of obtained results about Zappatic surfaces can be
found in [5], see also [6]).

In spite of the fact that in many cases surfaces with ordinary singularities can
be completely degenerated (see § 3 and § 6), we shall show in the article that in
general the answers to the questions formulated above are negative. The reason
why it is impossibile to completely degenerate a surface with ordinary singularities
can be the fact that it is impossible to degenerate the double curve of the surface to
a line arrangement D (see § 5), as well as the fact that the corresponding limit pair
(P,D) does not exist, although the double curve of the surface can be degenerated
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into a line arrangement (see § 8.5). In addition we show that there exist pairs
(Pm,D) which cannot be smoothed outside of a fixed line arrangement D . In
some cases such pairs cannot be smoothed for any m = deg Pm (see § 7.2), and in
other cases such pairs can be smoothed only for sufficiently large m (see § 7.1).

§ 1. Expression of numerical characteristics
of a surface in terms of degeneration

There are two classical ways to study smooth surfaces X ⊂ Pr: to consider
its generic projection to P3 or onto P2, respectively. We consider a slightly more
general situation. We begin with a surface Y ⊂ P3 with ordinary singularities, and
the normalization n : X → Y of Y and its composition with a projection of Y onto
P2 define a generic covering X → P2. The definition of a complete degeneration
makes it possible to express numerical characteristics of the surface Y in terms of its
degeneration. Invariants of a surface X can be expressed both in terms of numerical
characteristics of the surface Y and in terms of numerical characteristics of a generic
covering X → P2. This gives an expression of numerical characteristics of the cover-
ing in terms of degeneration.

1.1. Numerical characteristics of a surface with ordinary singularities.
Let Y ⊂ P3 be an irreducible surface with ordinary singularities, D = D1∪· · ·∪Dk

the double curve, gi = g(Di) its geometric genus, di = degDi the degree of an
irreducible component Di, T the set of triple points, Ω the set of pinch points. The
main numerical characteristics of the embedding Y ⊂ P3 are:

m = deg Y , the degree of the surface;
k, the number of irreducible components of the double curve;
g =

∑k
i=1 gi, the geometric genus of the double curve;

d =
∑k

i=1 di, the degree of the double curve;
t = ](T ), the number of triple points;
ω = ](Ω), the number of pinch points.
We call the collection of numerical data

type(Y ) = (m, d, k, g, t)

the type of the surface Y .
Let n : X → Y be a normalization of the surface Y . The surface X is smooth.

Its invariants are expressed in terms of numerical characteristics of the surface Y
by the following formulae (see [8]):

the intersection number of the canonical class is equal to

K2
X = m(m− 4)2 − (5m− 24)d + 4(g − k) + 9t; (1)

the topological Euler number e(X) = c2(X) is

e(X) = m2(m− 4) + 6m− (7m− 24)d + 8(g − k) + 15t. (2)

From these formulae and Noether’s formula we obtain the Euler characteristic:

χ(OX) =
1
6
m(m2 − 6m + 11)− (m− 4)d + (g − k) + 2t. (3)
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The number of pinches is equal to (see [8])

ω = 2d(m− 4)− 6t− 4(g − k). (4)

As is known ([7]), the arithmetic genus of a reduced curve C is equal to

pa(C) = g + δ − r + 1, (5)

where g is its geometric genus, δ is the sum of δ-invariants of the singularities and
r is the number of irreducible components. For the double curve D, which has only
triple points (δ = 3), formula (5) gives

pa(D) = g + 3t− k + 1. (6)

1.2. Numerical data for description of a curve DDDDDDD ⊂ LLLLLLL . Let P ⊂ P3 be an
arrangement of m planes in general position, L =

⋃
16i<j6m Li,j its double curve.

Let a curve D ⊂ L be the union of d lines Li,j and R the union of the d remaining
lines (the curves D and R are also called line arrangements),

L = D ∪R, deg D = d, deg R = d, d + d =
(

m

2

)
. (7)

With respect to the partition L = D ∪R the triple points of the curve L fall into
four types:

T = T3 tT2 tT1 tT0,

where T3 consists of those points which are triple on the curve D ; T2 consists of
those points which are double on the curve D ; T1 consists of those points which
are nonsingular on the curve D (and are double on the curve R); T0 consists of
those points which do not lie on D (and are triple on the curve R). Denote by τ3,
τ2, τ1 and τ0 the number of points in the corresponding sets. We have

τ = τ3 + τ2 + τ1 + τ0 =
(

m

3

)
. (8)

By the formula for the arithmetic genus (5) we have

pa(D) = τ2 + 3τ3 − d + 1 (9)

(the invariant δ = 1 for double points and δ = 3 for triple points).
The numbers τi are related as follows. On each line Li,j = Pi ∩ Pj there are

m − 2 triple points — the intersection points with planes Pk, k 6= i, j. Let us sum
up the numbers of triple points of L lying on d lines Li,j ⊂ D . On the one hand,
we get (m−2)d. On the other hand, we get 3τ3 +2τ2 + τ1 because the triple points
of D are counted 3 times, the double points are counted twice and non-singular
ones 1 time. We get

τ1 + 2τ2 + 3τ3 = (m− 2)d. (10)

An analogous calculation for the curve R gives

τ2 + 2τ1 + 3τ0 = (m− 2)d. (11)
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The data collection type(P,D) = (m, d, k, τ2, τ3) is called the type of the pair
(P,D). Here k is the number of connected components of the curve D \T3, where
T3 is the set of triple points of D .

Note that the type(P,D) does not define the pair (P,D) uniquely up to
a homeomorphism: for some types there exist nonhomeomorphic pairs of a given
type.

1.3. The graph of a line arrangement. As is known, one can associate with
an algebraic variety, and in particular, with a divisor with normal crossings, a poly-
hedron by the rule: the vertices correspond to the irreducible components; two
vertices are connected by an edge if the components have a nonempty intersection;
three vertices span a triangle if the corresponding components have a nonempty
intersection, and so on. In particular, with an arrangement P of m planes in
general position in P3 we associate a polyhedron, which is the two-dimensional
skeleton of an (m−1)-dimensional simplex in Rm−1 (or a standard (m−1)-simplex
in Rm). Denote by Γ(L ) the graph which is the one-dimensional skeleton of this
polyhedron.

We associate with any line arrangement D ⊂ L a graph Γ(D), the graph of the
curve D , which is a subgraph of Γ(L ), consisting of the union of edges correspond-
ing to the lines Li,j ⊂ D . If D ⊂ L is a line arrangement, then we denote by R
the complementary line arrangement in L .

We say that a graph Γ is realizable if it satisfies the following conditions: it does
not contain isolated vertices, it does not contain simple loops (that is, edges with
the same source and end-point), and any two vertices are connected by at most one
edge. It is obvious that a graph Γ is the graph of a set of double lines D of a plane
arrangement P in general position if and only if Γ is realizable and the number of
its vertices is at most deg P.

The graph Γ(D) codes numerical characteristics of D . The number of vertices
of Γ(D) is equal to the number d of lines composing the curve D . The number τ3 of
triple points of D , obviously, is equal to the number of triangles of Γ(D) (by def-
inition, a triangle in a graph is three vertices and three edges connecting these
vertices).

We denote by v(P ) the valence of a vertex P of the graph Γ(D), that is, the
number of edges outgoing from P .

Lemma 1. The number of double points of the curve D is equal to

τ2 =
∑

P∈Γ(D)

1
2
v(P )(v(P )− 1)− 3τ3. (12)

Proof. A vertex P of valence v(P ) corresponds to a plane on which v(P ) lines lie.
These lines intersect at 1

2v(P )(v(P )−1) double points. The sum of the numbers of
these double points is the number of double points of D if D has no triple points. If
D has triple points, then each triple point Ti,j,k = Pi∩Pj∩Pk, being a double point
on each of three planes Pi, Pj , Pk, contributes 3 to the first term of formula (12).
To calculate τ2 we have to remove this contribution, that is, to subtract 3τ3. The
proof is complete.
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The graph Γ̄(R) consisting of all vertices of the graph Γ(L ) and all edges of the
graph Γ(R) is called the augmentation of Γ(R) (with respect to L ). A graph Γ(R)
is called augmented if Γ(R) = Γ(R).

Let D ⊂ L be the limit double curve of a complete degeneration of a surface Y
with ordinary singularities in P3.

Lemma 2. The number of irreducible components of a surface Y with ordinary
singularities in P3 is equal to the number of connected components of the graph
Γ(R). In particular, a surface Y is irreducible if the graph Γ(R) is connected.

Proof. Let P2 be a plane in generic position with respect to the degenerate fibre
Yu0 = P (and with respect to the fibres sufficiently close to it) of a complete
degeneration Yu of surfaces with ordinary singularities. Consider the restriction of
the family Yu to the plane P2 ⊂ P3. We obtain a degeneration of a family of nodal
curves Cu = Yu ∩ P2 to an arrangement of m lines L = Cu0 . The arrangement L
consists of m lines Li = Pi∩P2 intersecting at

(
m
2

)
points Li,j = Li,j ∩P2. The line

arrangement L defines a graph Γ(L), the dual graph of L. Obviously, Γ(L) = Γ(L ).
The family of double points Du∩P2 of curves Cu defines a set of limit double points
D̃ = D ∩ P2. Let R̃ be the set of double points of the arrangement L (the set of
smoothed double points of L) complementary to D̃ . We associate a graph Γ(R̃)
with R̃: the vertices of the graph correspond to the lines Li and two vertices
are connected by an edge if the corresponding lines Li intersect at a point of R̃.
Obviously, the graphs Γ(R) and Γ(R̃) are isomorphic. Furthermore, it follows
from Bertini’s theorem that the number of irreducible components of the surface
Yu coincides with the number of irreducible components of the curve Cu. On the
other hand, it is well known that the number of irreducible components of Cu

coincides with the number of connected components of the graph Γ(R̃). The proof
is complete.

In connection with this lemma, a line arrangement D , or more precisely, a pair
(L ,D) is called irreducible if the graph Γ̄(R) is connected.

Figure 1

In the case of a connected graph we use the symbol Γd,τ3
v1,v2,... for the type of the

graph Γ(D) (or for the line arrangement D itself). Here v1, v2, . . . are the numbers
of vertices of valence 1, 2, and so on, d is the degree of D , that is, the number of
edges of the graph, τ3 is the number of triple points of D , that is, the number
of triangles in Γ(D). If the graph Γ(D) is not connected, then we use an analo-
gous notation for connected components and separate data for each component by
parentheses. If several components have the same data, we use a multiplicative way



On complete degenerations of surfaces 135

of writing. For example, if D consists of three connected components, two of which
are chains of two lines, and the third consists of four lines, three of which intersect
at a triple point and the fourth line intersects two of the three lines, then the graph
Γ(D) has type Γ(2,0)2(4,1)

(2,1)2(1,2,1) (see Fig. 1).

1.4. Numerical characteristics of the limit double curve DDDDDDD ⊂ LLLLLLL . The con-
nection between numerical characteristics of double curves D and D of a complete
degeneration Yu, u ∈ U , is given by the following result.

Proposition 1. The following equalities hold for the limit double curve D ⊂ L of
a complete degeneration Yu, u ∈ U , of surfaces with ordinary singularities :

d = deg D; (13)
τ3 = t; (14)

τ2 = d + g − k; (15)
ω = 2τ1; (16)

k = ] C(D \T3), (17)

where ] C(D \T3) is the number of connected components of the curve D \T3.
Thus, if a surface Y = Yu1 is irreducible, then the types type(Y ) of the surface

and type(P,D) of the limit pair are uniquely recovered from each other.

Proof. Formula (13) is valid because the degree deg Du is constant for a flat fam-
ily Du. Analogously, formula (14) follows from the flatness of the family Tu. For-
mula (15) follows from the constancy of the arithmetic genus pa(Du) in a flat fam-
ily Du and from formulae (6) and (9). To prove (16) we substitute the expression
for (g − k) from (15) in formula (4). We have

ω = 2d(m− 4)− 6τ3 + 4(g − τ2) = 2d(m− 2)− 4τ2 − 6τ3,

and from (10) we obtain ω = 2τ1.
Formula (17) follows from the flatness of the family of curves Du \ Tu and from

the constancy of the number of connected components in such a family.

The number k of irreducible components of the double curve D ⊂ Y (for-
mula (17)) can be expressed in terms of the graph Γ(D) of the limit curve D
as follows. By definition, a path in Γ(D) is a sequence of edges for which the initial
vertex of the next edge is the end-point of the previous edge. A path is called
prohibited if two of its successive edges are sides of a triangle in Γ(D). We say that
two edges of the graph Γ(D) are equivalent if they are edges of some nonprohibited
path, and extend this relation to an equivalence relation on the edge set of the
graph Γ(D). Immediately one obtains the following lemma.

Lemma 3. The number k of connected components of the curve D is equal to the
number of equivalence classes of edges of the graph Γ(D).

The formulae (14) and (15) permit us to express the invariants of the surface X
in terms of numerical characteristics of the pair (P,D):

K2
X = m(m− 4)2 − (5m− 20)d + 4τ2 + 9τ3, (18)

e(X) = m2(m− 4) + 6m− (7m− 16)d + 8τ2 + 15τ3, (19)
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or taking (10) into account,

K2
X = m(m− 4)2 + 10d− 5τ1 − 6τ2 − 6τ3, (20)

e(X) = m2(m− 4) + 6m + 2d− 7τ1 − 6τ2 − 6τ3. (21)

It follows from Noether’s formula and (8) that

χ(OX) = d + τ0 −
m(m− 3)

2
. (22)

§ 2. Generic projections onto the plane

2.1. The discriminant of a projection. Let Y ⊂ P3 be a surface (not neces-
sarily irreducible) of degree m with ordinary singularities and let pr : P3 → P2 be
a linear projection with centre at a point o 6∈ Y . Choose coordinates in P3 such
that o = (0 : 0 : 0 : 1). Then the projection pr is given by

pr: (x1 : x2 : x3 : x4) 7→ (x1 : x2 : x3) ∈ P2,

and Y has an equation

h(x4) = xm
4 +

m−1∑
j=0

aj(x1, x2, x3)x
j
4 = 0.

The discriminant ∆(x1, x2, x3) of the polynomial h(x4) as a polynomial in x4 is
a homogeneous polynomial in the variables x1, x2, x3 of degree m(m − 1), and
defines in P2 the discriminant divisor ∆ of p = pr|Y : Y → P2 given by the equation
∆(x1, x2, x3) = 0.

Proposition 2. Let a projection pr: P3 → P2 be such that
(i) the composition f = p ◦ n : X → P2 is unramified over generic points of

components of D = pr(D), where n : X → Y is a normalization ;
(ii) the ramification index of f at generic points of its ramification curve R ⊂ X

is equal to 2;
(iii) the restriction of f to the curve R ⊂ X is of degree 1.
Then the polynomial ∆(x1, x2, x3) factors as

∆(x1, x2, x3) = β(x1, x2, x3) · ρ(x1, x2, x3)2,

where the polynomials β(x1, x2, x3) and ρ(x1, x2, x3) have no multiple factors, the
equation of the branch curve f(R) = B ⊂ P2 of f is β(x1, x2, x3) = 0, and
ρ(x1, x2, x3) = 0 is the equation of the curve D.

Proof. The surface Y is covered by three charts Ui:xi 6= 0, i = 1, 2, 3, Ui = C3. In
each of these charts the projection pr is of the form (x, y, z) 7→ (x, y). For example,
in the chart U3: x3 6= 0, one takes x1/x3 = x, x2/x3 = y, x4/x3 = z. In this chart
the surface Y has the equation

h(z) = zm +
m−1∑
j=0

aj(x, y)zj = 0,

and the equation of the discriminant divisor is ∆(x, y, 1) = 0.
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Let q ∈ P2 and assume, for instance, that q lies in the chart C2 = {x3 6= 0}.
Except for a finite set of points (the singular points of B and the images of pinches
and triple points of Y ), there are an analytic neighbourhood V ⊂ C2 of this
point and analytic coordinates u, v in it such that the polynomial h(z) is a product
of m factors of the form z − αj(u, v) if q 6∈ B, or of m− 2 factors of the same form
and one factor of the form (z−g(u, v))2−u if q ∈ B, where αj(u, v), g(u, v) are some
analytic functions and u = 0 is a local equation of the curve B. Furthermore, as is
known, the discriminant of a polynomial h(z) =

∏m
j=1(z − αj) is

∏
i<j(αi − αj)2.

Consequently, the discriminant ∆(x, y, 1) vanishes only at the points of B and
D = pr(D). Moreover, as Y has only ordinary singularities, it follows from the
conditions on the projection pr that the equations of the irreducible components
of the curve D occur in ∆(x, y, 1) with multiplicity 2, and in the equations of the
irreducible components of B they occur with multiplicity 1. The proof is complete.

In particular, if Y = P is an arrangement of planes in general position, then the
discriminant divisor of the restriction of the projection pr to P equals

∆ = 2pr(L ) = 2L .

Moreover, if the projection pr satisfies the conditions of Proposition 2 for each
surface Yu, u ∈ U , of a complete degeneration of surfaces with ordinary singularities,
then we obtain three flat families of curves: Du = pr(Du), Bu and ∆u = Bu +2Du,
where Du0 = pr(D) = D and Bu0 = 2pr(R) = 2R.

2.2. Generic coverings of the plane and generic projections of surfaces
with ordinary singularities. Let X be a smooth algebraic surface, not neces-
sarily irreducible. Recall ([9]) that a finite covering f : X → P2 is called generic if
it is like a generic projection of a projective surface onto the plane, that is, satisfies
the following properties

(i) the branch curve B ⊂ P2 is cuspidal, that is, has ordinary cusps and nodes
as the only singularities;

(ii) f∗(B) = 2R + C, where the ramification curve R is smooth, and the curve
C is reduced;

(iii) f|R : R → B f|R : R → B is the normalization of B.

Proposition 3. Let X be a smooth irreducible projective surface. Then the branch
curve B ⊂ P2 of a generic covering f : X → P2 of degree m > 2 is irreducible.

Proof. The statement is obvious if deg f = 2.
Let deg f > 3. A generic covering f : X → P2 branched along a curve B defines

(and is defined by) an epimorphism µ : π1(P2\B) → Sm to the symmetric group Sm

such that the image µ(γ) of each geometric generator γ ∈ π1(P2\B) (that is, of each
simple circuit around the curve B) is a transposition in Sm (see, for example, [9]).
If B splits into the union of two curves B1 and B2, then B1 and B2 meet each other
transversally at nonsingular points since B has only nodes and ordinary cusps as the
only singularities. Therefore (see, for example, [10]) the elements of the group Γ1

generated by simple circuits around B1 commute with the elements of the group Γ2

generated by simple circuits around B2. On the other hand, it is easy to see that
the elements of two nontrivial subgroups µ(Γ1) ⊂ Sm and µ(Γ2) ⊂ Sm generated
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by transpositions cannot generate Sm if the elements of the group µ(Γ1) commute
with the elements of the group µ(Γ2). The proof is complete.

As a corollary of Proposition 3 we obtain that the number of irreducible com-
ponents of the branch curve B of a generic covering f : X → P2 is equal to the
number of irreducible components Xi of X such that deg f|Xi

> 2.
The main numerical characteristics of a generic covering f of the projective plane

by an irreducible surface are:
m = deg f , the degree of the covering;
g = g(B), the geometric genus of the branch curve;
2d = deg B, the degree of the branch curve;
n, the number of nodes of B;
c, the number of cusps.
The invariants of a surface X are expressed in terms of numerical characteristics

of a generic covering by the following formulae (see [9]):

K2
X = 9m− 9d + g − 1, (23)

e(X) = 3m + 2(g − 1)− c. (24)

Now let Y ⊂ P3 be a surface with ordinary singularities and n : X → Y its
normalization. A projection pr : P3 → P2 is called generic with respect to Y if it
is generic for the double curve D ⊂ Y (and, in particular, pr(D) has only t triple
points and some nodes as singularities) and the composition f = p ◦ n : X → P2 is
a generic covering of the plane, where p = pr|Y .

Proposition 4. Let Yu, u ∈ U , dim U = 1, be a complete degeneration of surfaces
of degree m with ordinary singularities. Then for almost all generic projections
pr: P3 → P2 of the plane arrangement P = Yu0 the projections pr are generic with
respect to Yu for all u ∈ U , except perhaps for a finite number of values u.

Proof. According to the definition of a degeneration the surfaces Yu, u ∈ U , are
the fibres of a restriction to Y ⊂ P3 × U of the projection onto the second factor.

By the definition of a generic projection applied to a plane arrangement it follows
that there exist a finite covering

⋃
Ui = P2 by small open balls Ui with centres at

points pi and an open neighbourhood V of P such that the number of connected
components of the intersection pr−1(Ui) ∩ V equals respectively: m if pi 6∈ L =
pr(L ), m− 1 if pi is a nonsingular point of L , and m− 2 if pi is a singular point
of L . For u sufficiently close to u0 the surface Yu ⊂ V and hence for such u
the restriction of pr to Yu satisfies the conditions of Proposition 2. It follows
from the flatness of the family of branch curves Bu that for almost all u ∈ U the
curves Bu are reduced. According to [11] the restriction of a generic projection
to Yu1 (for fixed u1) is a generic covering of the plane and, in particular, the curve
Bu1 is cuspidal. Therefore, if the projection is generic simultaneously for P and
for Yu1 , then it follows from the flatness of the family Bu that for almost all u
the curves Bu have singularities not worse than the singularities of Bu1 , that is,
for almost all u ∈ U the curves Bu are also cuspidal and the restriction of the
projection pr to Yu is a generic covering of the plane. The proof is complete.
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2.3. Numerical data for the description of a projection of a curve DDDDDDD ⊂ LLLLLLL
onto the plane. Let pr : P3 → P2 be a generic projection of an arrangement of m
planes P ⊂ P3. Then the curve

L = pr(L ) ⊂ P2

has τ triple points and

ν =
1
2

(
m

2

)(
m− 2

2

)
=

m(m− 1)(m− 2)(m− 3)
8

(25)

double points — points of intersection of lines pr(Li,j) and pr(Lk,l), which are pro-
jections of skew lines Li,j and Lk,l of the line arrangement L ⊂ P3.

Let L = D ∪ R be a partition of
(
m
2

)
lines in L into two parts, containing

d and d lines, respectively. We denote D = pr(D) and R = pr(R). Then the
ν double points of the curve L fall into three sets: ν2 points which are double
on D ; ν1 points which are simple on D (they are intersection points of D and R);
ν0 points which do not lie on D (they are double points of R),

ν = ν2 + ν1 + ν0. (26)

The curve D , which is an arrangement of d̄ lines, has τ3 triple points and τ2 +ν2

double points, τ2 of which were on D , and ν2 appeared under projection of skew
lines of the curve D . Applying formula (5) to the curve D we get

1
2
(d− 1)(d− 2) = (τ2 + ν2) + 3τ3 − d + 1,

or 1
2d(d− 1) = ν2 + τ2 + 3τ3; hence

ν2 =
1
2
d(d− 1)− τ2 − 3τ3. (27)

The analogous formula for the curve R of degree d with τ0 triple points and
τ1 + ν0 double points gives

ν0 =
1
2
d(d− 1)− τ1 − 3τ0. (28)

2.4. Expression of numerical characteristics of a covering in terms of
degeneracy. We expressed the invariants K2

X and e(X) of an irreducible sur-
face X in terms of numerical characteristics of a degeneracy of the surface Y . On
the other hand, K2

X and e(X) can be expressed in terms of numerical character-
istics of a generic covering (see (23) and (24)). This gives an expression of the
numerical characteristics of the covering in terms of the numerical characteristics
of the degeneration.
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Proposition 5. If Yu, u ∈ U , is a complete degeneration of an irreducible
surface Y , then the numerical characteristics of a generic projection p : Y → P2

are expressed in terms of the numerical characteristics of the degeneration by the
formulae:

deg B = 2d, (29)
g − 1 = 6τ0 + τ1 − d, (30)

c = 6τ0 + 3τ1, (31)
n = 4ν0. (32)

Proof. First we prove (29), that is, that d in the notation of degree deg B in § 2.2
equals to d = deg R in formula (7). Let L be a generic line in P2, and L = p−1(L)
the corresponding hyperplane section of Y . Then L is an irreducible plane curve of
degree m with d = deg D nodes. Hence the geometric genus g(L) = (m−1)(m−2)

2 −d.
On the other hand, p : L → L is a covering of degree m ramified at deg B = (B,L)
points. Therefore, by Hurwitz’s formula, we have: 2g(L) − 2 = −2m + deg B. It
follows that

deg B = (m− 1)(m− 2)− 2d− 2 + 2m = m(m− 1)− 2d = 2d.

Let us prove formula (30). From (23) we have g − 1 = K2
X − 9m + 9d and by

virtue of (18)

g − 1 = m(m− 4)2 + 10d− 5τ1 − 6τ2 − 6τ3 − 9m + 9d.

Substituting d = (m− 1)(m− 2)/2− d from (7) and τ2 + τ3 = τ − τ1 − τ0 from (8)
we obtain formula (30):

g − 1 = m(m− 4)2 + 5m(m− 1)− 10d− 5τ1 −m(m− 1)(m− 2)
+ 6τ1 + 6τ0 − 9m + 9d = 6τ0 + τ1 − d.

To calculate c we use formula (24): c = −e(X) + 3m + 2(g − 1). Substituting
the expression for e(X) from (21) and g − 1 from (30) we obtain

c = −m2(m− 4)− 6m− 2d + 7τ1 + 6τ2 + 6τ3 + 3m + 12τ0 + 2τ1 − 2d

= −m2(m− 4)− 3m− 2(d + d) + 6(τ0 + τ1 + τ2 + τ3) + 6τ0 + 3τ1.

Applying formulae (7) and (8) we obtain (31).
To calculate n we use the formula for the genus of a plane curve:

deg B(deg B − 3)
2

= g − 1 + c + n.

From here and from formulae (29), (30) and (31) we obtain

d(2d− 3) = 6τ0 + τ1 − d + 6τ0 + 3τ1 + n = 12τ0 + 4τ1 + n− d,

that is, n − (d − 1) − 12τ0 − 4τ1 = 4ν0 by virtue of formula (28). The proof is
complete.
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2.5. Degenerations of cubic surfaces. The geometric meaning of the for-
mulae for c and n. Let p : Y → P2 be a generic projection of a surface Y ⊂ P3,
deg Y = 3.

It is known [8] that irreducible surfaces with ordinary singularities of degree
m = 3 are either smooth cubics or cubics the double curve of which is a line.

If Y is a smooth cubic, then, as is known, the branch curve B ⊂ P2 is a curve of
degree 6 with six cusps (which in addition lie on a conic).

If the double curve D is a line (d = 1), then the surface Y has two pinches,
ω = 2, and the discriminant curve B is a rational quartic (2d = 4) with three cusps
(c = 3).

If a surface Y is reducible, then either Y = P ∪ Q is the union of a plane and
a quadric, or Y is the union of three planes.

Now consider a complete degeneration of a cubic Y into an arrangement of three
planes P = P1 ∪ P2 ∪ P3 with the double curve L = L1,2 ∪ L2,3 ∪ L3,1. The
arrangement P has one triple point s = L1,2 ∩ L2,3 ∩ L3,1. Let D and R be the
limit double curve and the limit ramification curve, respectively. The surface Y is
obtained from P by smoothing R (smoothing outside D). We have 4 possibilities:

1) if the generic fibre Y is a smooth cubic, then L = R, D = ∅, that is,
the double curve L is smoothed completely; in this case from the triple point
s = p(T0) ∈ R there appear 6 cusps (and no nodes) on the branch curve B;

2) if the generic fibre Y is an irreducible cubic whose double curve D is a line, then
D = L1,2 (for example), and R = L2,3 ∪L3,1, that is, two lines in L are smoothed
and one line remains double; the point s ∈ T1; in this case from the point s there
appear two pinches on Y , and the point s gives three cusps on the curve B;

3) if the generic fibre Y = P ∪ Q, then R = L1,2, D = L2,3 ∪ L3,1; the point
s ∈ T2; the curves 2R and D are smoothed into plane conics, one of which becomes
a ramification curve R and the other becomes a double curve D; the curve B
is a conic in P2.

4) Finally, if Y is a union of three planes, then L = D , R = ∅ and s ∈ T3; the
double curve L is not smoothed at all.

Now let P be a complete degeneration of a surface Y of degree m with ordinary
singularities, and let D and R be the limit double curve and the limit ramification
curve. If s ∈ T is a triple point on P, then (locally) in a neighbourhood of the
point s the smoothing outside D , or the regeneration, looks the same as in the case
of the regeneration of a cubic surface, and this explains the previously obtained
formulae in the following way.

Formula (31) is explained by the fact that the regeneration in the case s ∈ T0

gives 6 cusps on the curve B, and in the case s ∈ T1 there appear 3 cusps.
Formula (16) is explained by the fact that pinches (in pairs) appear only from

points s ∈ T1.
Finally, formula (32) is explained as follows. Let q be one of the ν0 double

points of the curve R, q = Li,j ∩ Lk,l, where Li,j and Lk,l is a pair of skew lines.
In a neighbourhood of a line Li,j the surface P is given (locally) by the equation
z2−x2 = 0 and smoothed surface Yu is given by an equation z2−x2 = ε. Projecting
to the plane P2, we obtain two branches of the branch curve Bu close (‘parallel’) to
the curve Li,j . Analogously, for the curve Lk,l we obtain two branches of the branch
curve Bu close to the line Lk,l. These two pairs of branches meet in four points.
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Thus, each of the ν0 pairs of skew lines of the curve R under regeneration gives
4 nodes on the curve B, and we obtain the formula n = 4ν0.

§ 3. Complete degeneracy of quartic surfaces

Let us analyse complete degenerations of surfaces of degree m = 4. If a surface Y
is reducible, then it is obvious that complete degenerations of components of Y give
a complete degeneration of Y . Thus, we can assume the surface Y to be irreducible
since the case m = 2 is trivial and the case m = 3 has been described in § 2.5.

3.1. Degenerations of irreducible quartics with ordinary singularities.
The description of all irreducible quartics Y ⊂ P3 with ordinary singularities can
be found in [8]. There are 6 types of such surfaces in accordance with the types of
the double curve D ⊂ Y :

1) Y is smooth, that is, D = ∅;
2) D is a line;
3) D is a plane conic;
4) D is a pair of skew lines;
5) D is the union of three lines meeting at a point;
6) D is a rational normal curve of degree 3.
We show that in each of these cases there is a complete degeneration of Y . Let

F (x) = 0 be an equation of Y and let Hi(x) = 0, i = 1, . . . , 4, be the equations of
four planes P1, . . . , P4 in general position in P3.

In cases 1), 2), 4) and 5) we can obtain the desired complete degenerations Yu,
u ∈ C, in the form

u · F (x) + (1− u)H1(x)H2(x)H3(x)H4(x) = 0,

where in case 1) the linear functions H1(x), . . . ,H4(x) are arbitrary and such that
P1, . . . , P4 are in general position; in case 2) H1(x) = H2(x) = 0 are the equations
of the line D; in case 4) H1(x) = H2(x) = 0 and H3(x) = H4(x) = 0 are the equa-
tions of the skew lines forming D; in case 5) H1(x)H2(x)H3(x) = 0 is the equation
of a union of three planes the double curve of which is the union of three lines
forming D. In all cases the double curve L of the arrangement P of four planes
P1, . . . , P4 contains the double curve Du ⊂ Yu and the limit double curve D coin-
cides with D.

In the special case 3) the double curve D is a complete intersection. We consider
this case in § 6.

Consider case 6). As is known, all smooth space curves of degree 3 are pro-
jectively equivalent. Such a curve D has parametrization x = t, y = t2, z = t3

in appropriate affine coordinates. It is not a complete intersection and is defined
by three equations: y = x2, xy = z, y2 = xz. In homogeneous coordinates
(x1 : x2 : x3 : x4) = (x : y : z : 1) in P3 the curve D is the intersection of
three quadrics:

x2x4 = x2
1, x1x2 = x3x4, x2

2 = x1x3.
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Consider the family of curves Du: x = t, y = ut2, z = u3t3. The curves Du

are given by the three equations y = ux2, u2xy = z, uy2 = xz, or in homogeneous
coordinates

x2x4 − ux2
1 = 0, x3x4 − u2x1x2 = 0, x1x3 − ux2

2 = 0.

The family Du defines a degeneration of the curve D (for u = 1) to the curve D
(for u = 0), which is given by the equations: x2x4 = 0, x3x4 = 0, x1x3 = 0. If Pi

is a plane given by the equation xi = 0, Li,j = Pi ∩Pj , then D is the chain of lines
L1,4 ∪ L4,3 ∪ L3,2.

Consider the family of surfaces Yu given by the equation

u(x2x4 − ux2
1)(x3x4 − u2x1x2) + u(x3x4 − u2x1x2)(x1x3 − ux2

2)

+ (x2x4 − ux2
1)(x1x3 − ux2

2) = 0.

For u 6= 0 the double curves are smooth space cubic curves Du, and for u = 0 the
surface Y degenerates to the plane arrangement Y0 = {x1x2x3x4 = 0} and the limit
double curve is D .

3.2. Description of possible arrangements of limit double curves. In the
case m = 4 the graph Γ(L ) consists of the union of all edges of a tetrahedron.
By Lemma 2, a curve D ⊂ L can be a limit double curve of a degeneration of
an irreducible quartic with ordinary singularities if the graph Γ(R) is connected.
The graph Γ(R) is obtained from Γ(L ) by removing some edges corresponding to
lines Li,j ⊂ D . It is obvious that the graph Γ(R) remains connected only in the
following cases:

1) we remove nothing from Γ(L );
2) we remove one edge from Γ(L );
3) we remove two adjacent edges;
4) we remove two skew edges;
5) we remove three edges going out from one vertex;
6) we remove a chain of three edges.
Removing four edges leads to a nonisolated vertex, that is, to a disconnected

graph Γ(R).
Thus, up to renumbering the planes P1, . . . , P4, the curve D is one of the

following:
1) D = ∅;
2) D = L1,2;
3) D = L1,2 ∪ L1,3;
4) D = L1,2 ∪ L3,4;
5) D = L1,2 ∪ L1,3 ∪ L2,3;
6) D = L1,2 ∪ L2,3 ∪ L3,4.
In § 3.1 we showed that all such D are realized as limit double curves. Thus, we

obtain the following result.

Theorem 1. For any surface of degree 4 with ordinary singularities in P3 there
exists a complete degeneration.

If P is an arrangement of four planes in general position in P3, D ⊂ L is any
line arrangement, then there exists a complete degeneration of surfaces of degree 4
with ordinary singularities for which D is the limit double curve.
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§ 4. Existence of line arrangements which are not limit

In the previous section we showed that in the case of surfaces with ordinary
singularities of degree m 6 4 the situation is as good as in the case of plane curves.
The answers to both questions put in the introduction are affirmative. But if m > 5,
the situation is not so good. In this section we show that there are at least seven
arrangements of double lines D in plane arrangements P, deg P = 5, such that
P cannot be smoothed outside D .

Theorem 2. The line arrangements D with graphs depicted in Fig. 2 are not limit
for complete degenerations of surfaces with ordinary singularities of degree 5.

Figure 2

Proof. Assume that the line arrangements with graphs depicted in Fig. 2 are limit
double curves for complete degenerations of surfaces Y of degree m = 5 with
ordinary singularities.

In all cases the graph Γ(R) is connected and by Lemma 2 the surface Y for
which D is the limit double curve is irreducible.

We can obtain numerical characteristics of curves D . In our case m = 5 and
therefore, d + d =

(
5
2

)
, τ =

(
5
2

)
. The number τ3 is equal to the number of triangles

in Γ(D). To calculate τ2 we use formula (12); τ1 and τ0 are obtained from formulae
(10), (11) and (8):

τ1 + 2τ2 + 3τ3 = 3d, τ2 + 2τ1 + 3τ0 = 3d, τ0 + τ1 + τ2 + τ3 = τ.

By (30)–(32) we can find numerical characteristics of the double curve D ⊂ Y and
of the branch curve B: the numbers g, t, k we find from Proposition 1, and the
numbers g, c, n we find from Proposition 5 by applying formulae (30)–(32) and (28).

We consider each of the line arrangements D with graphs depicted in Fig. 2 and
show that in all cases we obtain a contradiction with the assumption made above
that these arrangements be limit.
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For a line arrangement of type Γ3,0
3,0,1 we have: d = 3, τ3 = 0 and τ2 = 3. By

Proposition 1, the double curve D ⊂ Y is an irreducible smooth curve of degree
d = 3 and genus g = 1. Hence D is a plane cubic. Suppose D lies in a plane P .
Then for any line L ⊂ P the intersection number (L, Y )P2 > 6, and since deg Y = 5,
we have L ⊂ Y . Thus, P ⊂ Y and the surface Y is reducible: a contradiction. The
same arguments can be applied for line arrangements of the following two types.

For a line arrangement of type Γ(1,0)(2,0)
(2)(2,1) we have: d = 3, τ3 = 0 and τ2 = 1. By

Proposition 1 we have k = 2, g = 0 and the double curve D ⊂ Y is a disconnected
union of a line L1 and a plane conic Q. Suppose Q lies in a plane P and the point
A = L1∩P . As in the previous case, we see that any line L ⊂ P passing through A
lies in the surface Y and, consequently, P ⊂ Y . Again we obtain a contradiction
with the irreducibility of Y .

For a line arrangement of type Γ4,1
1,2,1 we have: d = 4, τ3 = 1 and τ2 = 2. By

Proposition 1 we have k = 2, g = 0, t = 1. Hence D = L ∪ C consists of two
irreducible components, where L is a line and C is a curve of degree 3 with one
node. Consequently, the curve C lies in a plane P . As in the previous cases, we
obtain that P ⊂ Y and this gives a contradiction with the irreducibility of Y .

We consider a line arrangement of type Γ4,0
3,1,1 in Theorem 5, where it is shown

that the curve D can not be the limit double curve of a complete degeneration of
a surface Y of any degree m, and not only m = 5.

For a line arrangement of type Γ5,1
1,3,1 we have: d = 5, τ3 = 1, τ2 = 3 and

τ1 = 6. By (18) and (19) we obtain K2
X = 1 and e(X) = −1. It is known from

the classification of algebraic surfaces that if K2
X > 0, then e(X) > 0. Thus such

surfaces do not exist.

A line arrangement of type Γ6,4
0,0,4 is a special case (for m = 5) of line arrangements

which are considered below in Proposition 9.

For a line arrangement of type Γ6,2
1,1,3 we have: d = 6, d = 4, τ3 = 2, τ2 = 4,

τ1 = 4, τ0 = 0. The branch curve B is cuspidal and has numerical characteristics:
deg B = 8, g = 1, c = 12, n = 8. Let us show that the curve B̂ dual to B also is
cuspidal. By Plücker’s formula we obtain deg B̂ = 4. Since g(B̂) = 1 and a curve
of degree 4 has arithmetic genus pa(B̂) = 3, B̂ has either two singular points with
δ = 1, or one singular point with δ = 2. The Milnor number µ and δ are connected
by the formula µ = 2δ−r+1, where r is the number of branches. Singularities with
δ = 1 are either singularities of type A1, nodes, or of type A2, cusps, therefore, in the
first case the curve B̂ is cuspidal. The second case is impossible since the singularity
dual to A3 is A3, and the one dual to A4 is E8: x3 + y5 = 0. But the curve dual
to B̂ is the curve B, which has only nodes and cusps. Thus, the curve B̂ is cuspidal.
In this case it follows from Plücker’s formula that 3 deg B − c = 3deg B̂ − ĉ, where
ĉ is the number of cusps of B̂. Therefore, ĉ = 0 and, consequently, the curve B̂
is nodal and the number of nodes of B̂ is n̂ = 2. For such a curve B̂ there exists
a generic covering of the plane of degree 4 = deg B̂ branched along B (see [9]). On
the other hand, a generic projection of a surface with ordinary singularities in P3

onto P2 is a generic covering, in our case of degree 5. As is shown in [13], generic
coverings, which are generic projections, are uniquely defined by their branch curves
always, except the case of surfaces of degree 4 with singularities consisting of three
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lines intersecting in a point.1 We obtain a contradiction with the uniqueness of the
covering, which completes the proof of the theorem.

§ 5. Existence of surfaces not possessing complete degenerations

In this section we show that there exist surfaces in P3 with ordinary singularities
which can not be degenerated into plane arrangements in general position.

5.1. Zeuthen’s problem. The problem of the existence of a complete degen-
eration for any surface with ordinary singularities is closely connected with the
problem of degeneration of its double curve D into a line arrangement. In the case
of a smooth space curve D it is the famous Zeuthen problem. In [12], a nega-
tive solution of Zeuthen’s problem is obtained, that is, it is shown that there exist
smooth projective curves D ⊂ P3 which cannot be degenerated into a line arrange-
ment with double points. One of such curves has degree 30 and genus 113. We call
it the Hartshorne curve.

Theorem 3. There exist surfaces in Y ⊂ P3 with ordinary singularities which
cannot be degenerated into a plane arrangement in general position.

Proof. Let D be the Hartshorne curve. In the next subsection we prove Propo-
sition 6 that there exists a surface Y ⊂ P3 with ordinary singularities the double
curve of which is D. By [12] the curve D cannot be degenerated into a line arrange-
ment with double points and, consequently, Y cannot be degenerated into a plane
arrangement in general position, which is the required result.

5.2. Existence of a surface with ordinary singularities, the double curve
of which is any smooth curve. Let D be a smooth (not necessarily irreducible)
curve in P3. Then for any point x ∈ D there exist a Zariski open set Ux in P3

and two rational functions fx,1 and fx,2, regular in Ux and such that fx,1 and
fx,2 are local parameters in Ux and the curve D ∩ Ux is defined by equations
fx,1 = fx,2 = 0. Let fx,j = Fx,j/Gx,j , where Fx,j and Gx,j are relatively prime
homogeneous polynomials of degree Mx,j . The curve D being compact, we can
choose a finite covering of D by open sets Ux1 , . . . , Uxk

such that the polynomials
Fxi,j , 1 6 i 6 k, j = 1, 2, generate the homogeneous ideal of D. Set

M(D) = 2 max
16i6k

(
max
j=1,2

Mxi,j

)
+ 1. (33)

Proposition 6. For any smooth projective curve D ⊂ P3 and for any natural
number m > M = M(D), where M(D) is the number defined in (33), there
exists a projective surface Y with ordinary singularities of degree m in P3 such that
D = Sing Y .

Proof. Let σ : P̃3 → P3 be a monoidal transformation with centre at D, E = σ−1(D)
its exceptional divisor and P̃ = σ∗(P ) the total inverse image of the plane P ⊂ P3.

1In [13] this statement was formulated only for surfaces obtained as a generic linear projection
onto P3 of smooth surfaces embedded in some PN . But the proof of this statement used only the
assumption that surfaces in P3 have only ordinary singularities.
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The surfaces Yi,j = {Fxi,j = 0} ⊂ P3 and deg Yi,j = deg Fxi,j = Mxi,j , j = 1, 2,
meet transversally along D in Uxi . It is obvious that for any plane P in P3 the
divisors

Yi,1 + Yi,2 + (m−Mxi,1 −Mxi,2)P̃

are the zeros of sections of the sheaf OeP3(mP̃ − 2E) for m > M . From this it is
easy to see that the linear system |mσ∗(P )− 2E| is nonempty, does not have fixed
components and base points, and for any points x, y ∈ P̃3 there exists a divisor of
this system such that it does not go through the point y and is a smooth reduced
surface at x. According to Bertini’s theorem the generic member X of the linear
system |mσ∗(P ) − 2E| is a smooth surface, and it is easy to see that its image
Y = σ(X) is a surface in P3 of degree m with ordinary singularities along D. The
proof is complete.

§ 6. Complete degeneracy of surfaces
with complete-intersection double curves

As has been shown in the previous section, in general the answer to the question
about the existence of a complete degeneration is negative even in the case of
a smooth double curve. In this section we show that the answer to this question is
affirmative in the case when the double curve is a complete intersection.

6.1. Equations of surfaces with complete-intersection double curves. The
following proposition gives a description of equations of surfaces, double curves of
which are complete intersections.

Proposition 7. Suppose an irreducible surface Y ⊂ P3 with ordinary singularities,
deg Y = m, given by equation F (x) = 0, has a smooth double curve D = Y1 ∩ Y2,
which is a complete intersection of surfaces Y1 and Y2 of degrees m1 and m2. Then
the polynomial F can be written in the form

F = AF 2
1 + BF1F2 + CF 2

2 , (34)

where F1(x) = 0 and F2(x) = 0 are equations of the surfaces Y1 and Y2, respectively,
and A, B and C are homogeneous polynomials.

Conversely, if F is written in the form (34) and m > 2m1 + 1 (let m1 > m2)
and the polynomials A, B, and C are sufficiently general, then the surface Y has
only ordinary singularities and its double curve is a complete intersection.

Proof. Since the curve D is a complete intersection, the homogeneous ideal I(D)
is generated by two elements, I(D) = (F1, F2). We write F in the form F =
K1F1+K2F2. It follows from the transversality of intersection of the surfaces F1 = 0
and F2 = 0 along D that the differentials dF1 and dF2 are linearly independent at
each point of D. In addition, the differential dF is equal to zero at each point in D
since D is the double curve of Y . At each point in D we have dF = K1dF1 +K2dF2

and it follows from the linear independence of the differentials dF1 and dF2 at these
points that K1 and K2 belong to the ideal I(D), that is, K1 = S1F1 + S2F2 and
K2 = S3F1 + S4F2, where the Si are some homogeneous polynomials. Substituting
these expressions for K1 and K2 in the expression for F we obtain the desired
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form of F . The second part of the proposition follows from Proposition 6 and the
estimate (33).

6.2. Construction of a degeneration. We prove the following theorem.

Theorem 4. Surfaces with ordinary singularities the double curves of which are
complete intersections have complete degenerations.

Proof. Let the double curve D of a surface Y be given by the equations F1 = 0,
F2 = 0, deg F1 = m1, deg F2 = m2. Then by Proposition 1 the surface Y is given
by an equation of the form

AF 2
1 + BF1F2 + CF 2

2 = 0.

We consider a deformation of this equation killing the first and the third terms
and transforming the second term into a product of linear forms. Let a family of
surfaces Yu, u ∈ C, be given by an equation

(uB + (1− u)B)(uF1 + (1− u)F 1)(uF2 + (1− u)F 2)

+ uA(uF1 + (1− u)F 1)2 + uC(F2 + (1− u)F 2)2 = 0, (35)

where F 1 = H1 · · ·Hm1 , F 2 = Hm1+1 · · ·Hm1+m2 , B = Hm1+m2+1 · · ·Hm are
products of linear forms such that zeros of the forms are planes P1, . . . , Pm in
general position.

It is easy to see that for u = 1 the surface Yu coincides with Y . It is obvious
also that for values u close to 1 the curves Du given by equations

uF1 + (1− u)F 1 = uF2 + (1− u)F 2 = 0,

are smooth and they are the double curves of surfaces Yu with ordinary singularities.
For u = 0 the degenerated fibre is given by an equation H1 · · ·Hm = 0 and the
limit double curve D0 is given by the equations

H1 · · ·Hm1 = Hm1+1 · · ·Hm1+m2 = 0. (36)

In particular, for m1 = m2 = 2 the graph of the limit double curve D = D0 is
depicted in Fig. 3.

Figure 3

The proof of Theorem 4 is complete.
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§ 7. Potentially limit and absolutely nonlimit line arrangements

Until now we have considered complete degenerations of surfaces with ordinary
singularities for fixed degree m. The line arrangements D ⊂ Lm which can be
obtained in the degenerate fibre are called now m-limit curves. (Here Lm is the
double curve of an arrangement of m planes in general position). In § 4 it was shown
that there exist line arrangements D which are not 5-limit. We want to investigate
the dependence on m of the property of a curve D to be m-limit.

If for some m0 a curve D is not m0-limit, but for sufficiently big m and for an
embedding D ⊂ Lm the curve D is m-limit, then D is called potentially limit. If for
any embedding D ⊂ Lm a curve D is not m-limit, then such a line arrangement D
is called absolutely nonlimit.

7.1. Examples of potentially limit line arrangements. Let us show that
a line arrangement D of type Γ3,0

3,0,1 is potentially limit. It was shown in Theorem 2
that Γ3,0

3,0,1 is not 5-limit. Let us show that Γ3,0
3,0,1 is m-limit for m > 7. The line

arrangement D consists of three lines L1 ∪ L2 ∪ L3, which lie in a plane P and are
cut out by three planes defined by equations H1 = 0, H2 = 0, and H3 = 0. Such an
arrangement D is limit for surfaces Y the double curves D of which are complete
intersections of a smooth cubic and a plane. Indeed, let F1(x) = 0 be an equation
of a smooth cubic Y1 and F2(x) = 0 an equation of a plane Y2 = P . Consider
a surface F (x) = 0, where F is defined by formula (34) and consider a family of
surfaces Yu defined by equation (35). It follows from (36) that the limit double
curve D is defined by equations H1H2H3 = F2 = 0 and it is of type Γ3,0

3,0,1.

Analogously one can show that a line arrangement of type Γ(1,0)(2,0)
(2)(2,1) also is

potentially limit.

7.2. An example of an absolutely nonlimit line arrangement. The follow-
ing theorem gives an example of absolutely nonlimit line arrangement. Note that
this line arrangement is a degeneration of a smooth space curve of degree 4 and
genus 1.

Theorem 5. The line arrangement D of type Γ4,0
3,1,1 (see Fig. 2) is absolutely non-

limit.

Proof. Let D be m-limit for some m, that is, D is the limit double curve of a com-
plete degeneration of surfaces Yu, u ∈ U , defined by equations Fu(x) = 0. We have
d = 4, τ3 = 0, and τ2 = 4. By Proposition 1 the double curve D ⊂ Y is a smooth
irreducible curve in P3 of degree d = 4 and genus g = 1. As is known, such curves D
are complete intersections of two quadrics, and, consequently, a polynomial F defin-
ing the surface Y can be written in the form (34):

F = AQ2
1 + BQ1Q2 + CQ2

2, (37)

where Q1(x) = 0 and Q2(x) = 0 are equations of these quadrics and A, B and C
are homogeneous polynomials of degree m− 4.

Let us show that the family of surfaces Fu(x) = 0, u ∈ U , can be written in the
form

Fu = AuQ2
1,u + BuQ1,uQ2,u + CuQ2

2,u (38)
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(maybe after a base change). For this let us consider the universal family of surfaces
given by equations of the form (37). The base of this family F is an open subset of
the space of coefficients of the forms Q1, Q2, A, B, C. Denote by Hm,4,1 the space
parametrizing the surfaces of degree m the double curve of which is a smooth curve
of degree 4 and genus 1. Obviously, we have a rational dominant map F → Hm,4,1.
The family of surfaces Fu(x) = 0 defines a map U → Hm,4,1. We can assume that
U ⊂ Hm,4,1. If a curve Ũ ⊂ F is mapped to the curve U we get a family of surfaces
(38) parametrized by points of Ũ .

A line arrangement D of type Γ4,0
3,1,1 consists of three lines in a plane and a fourth

line not in this plane and intersecting one of these lines. Such curves are degener-
ations of space elliptic curves of degree 4 (see [14]). But if a curve D is the limit
double curve of the family (38), then the double curves Du are given by a family of
ideals Ju = (Q1,u, Q2,u). By [14], in order that a degenerate curve coincide with D
it is necessary that for u = u0 the quadratic forms Q1,u0 and Q2,u0 split into a prod-
uct of linear forms with one common form: Q1,u0 = HH1 and Q2,u0 = HH2. But
then it follows from (38) that the degenerate surface Yu0 contains a multiple plane
H = 0, and we obtain a contradiction with the definition of a complete degeneration
of surfaces with ordinary singularities.

§ 8. Virtual degeneracy

If for a surface Y ⊂ P3 of degree m with ordinary singularities there exists a com-
plete degeneration in the sense of the definition given in the introduction, then, for
brevity, we call Y a completely degenerative surface. In § 5 we gave examples of
surfaces which are not completely degenerative.

8.1. Necessary conditions for complete degeneracy. Let us weaken the
notion of degeneracy of a surface. Recall that in §§ 1.1 and 1.2 we defined the type
of an irreducible surface Y ⊂ P3 of degree m with ordinary singularities and the
type of a pair (P,D) as collections of numerical data:

type(Y ) = (m, d, k, g, t), type(P,D) = (m, d, k, τ2, τ3).

By Proposition 1, if Y is a completely degenerative surface, then the types type(Y )
and type(P,D) define each other. We call collections of numbers (m, d, k, g, t) and
(m, d, k, τ2, τ3) corresponding to each other if τ3 = t, and the numbers τ2 and g
are connected by formula (15): τ2 = d + g − k. We call an irreducible surface Y
virtually degenerative if there exists an irreducible pair (P,D) the type of which
corresponds to the type of the surface Y . Thus, a surface Y can be not degenerative
for a trivial reason: there does not exist a pair (P,D) of the corresponding type.

Analogously, we call a pair (P,D) virtually smoothable outside D (or we call
a line arrangement D virtually m-limit) if there exists an irreducible surface Y of
degree m which has a type corresponding to the type of the pair (P,D). Thus,
the term ‘virtual’ talks about the fulfillment of necessary numerical conditions
for the existence of a complete degeneration.

The proof of Proposition 5 does not use essentially the fact of complete degen-
eracy of Y , but uses only the connection (arising from it) between the type of Y
and the type of the limit pair (P,D) given by formulae (14): t = τ3, and (15):
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g = τ2 − d + k. Therefore, in the case of virtual degeneracy an analogue of Propo-
sition 5 holds.

Proposition 8. Let the type (m, d, k, g, t) of a surface Y correspond to the type
(m, d, k, τ2, τ3) of a pair (P,D). Then the same formulae (29)–(32) as in Propo-
sition 5 hold for numerical characteristics of a generic projection p : Y → P2.

8.2. Examples of virtually m-limit, but not m-limit arrangements. Con-
sider an irreducible pair (P,D), where D is an arrangement of type Γ4,0

3,1,1 from The-
orem 5. This pair has type(P,D) = (m, 4, 1, 4, 0). In Theorem 5 it was proved that
D is nonlimit for all m. But the line arrangement D is virtually m-limit for m > 5.
Indeed, the type of the pair (P,D) has the corresponding data set (m, 4, 1, 1, 0).
Surfaces Y are of type(Y ) = (m, 4, 1, 1, 0), that is, surfaces of degree m, the double
curve D of which is an elliptic curve of degree 4, exist. Since D is a complete inter-
section of two quadrics Q1 and Q2, we can take a surface Y given by an equation
F = 0, where the polynomial F is defined by formula (37). Such surfaces are com-
pletely degenerative, but the limit double curve D has a graph not of type Γ4,0

3,1,1,
but a graph of type depicted in Fig. 3.

8.3. Examples of virtually nonlimit line arrangements. Consider an
arrangement of m planes P = Pm in general position in P3. Let Pm−1 ⊂ Pm be
the arrangement of some m − 1 of these planes and D = Lm−1 the double curve
of the surface Pm−1. Then

d =
(

m− 1
2

)
, τ0 = τ2 = 0, τ1 =

(
m− 1

2

)
, τ3 =

(
m− 1

3

)
and the pair (P,D) has type

type(P,D) =
(

m,

(
m− 1

2

)
,

(
m− 1

2

)
, 0,

(
m− 1

3

))
. (39)

Proposition 9. If (P,D) is an irreducible pair of type (39) and m > 5, then D
is not virtually limit.

Proof. Assume that D is virtually limit. Then there exists a surface Y of type

type(Y ) =
(

m,

(
m− 1

2

)
,

(
m− 1

2

)
, 0,

(
m− 1

3

))
corresponding to the type of the pair (P,D).

Consider a generic projection of the surface Y to the plane. Then, by Proposi-
tion 8 the branch curve B of the generic projection has the following invariants:

deg B = 2d = 2(m−1), g−1 =
(

m− 1
2

)
−m+1, c = 3

(
m− 1

2

)
, n = 0.

But then the degree of the curve B̌ dual to the branch curve B equals

deg B̌ = deg B(deg B − 1)− 3c

= 2(m− 1)(2m− 3)− 9
(

m− 1
2

)
=

(
3− 1

2
m

)
(m− 1) 6 2

for m > 5, and this is impossible.
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8.4. Examples of surfaces completely degenerative only virtually. Con-
sider a surface Y in § 5 which is not completely degenerative. The double curve D
of Y is the Hartshorne curve. The curve D is smooth, has degree d = 30 and genus
g = 113. Then type(Y ) = (m, 30, 1, 113, 0) and, consequently, τ2 = d + g− k = 142
and the collection corresponding to the type of Y is (m, 30, 1, 142, 0). Let us show
that the surface Y is virtually degenerative.

Proposition 10. For m > 31 there exist irreducible pairs of type

type(P,D) = (m, 30, 1, 142, 0).

Proof. Consider the graph Γ(D) depicted in Fig. 4.

Figure 4

It has 31 vertices, two of which (v12 and v17) are of valence 12, three vertices
(v13, v14, v15) are of valence 3, the rest are of valence 1. Applying (12) we find
τ2 = 142. Therefore, Γ(D) is in fact of the mentioned type. It is easy to see
that the pair (P,D) is irreducible, that is, the graph of the complementary curve
R = L \D is connected.

8.5. Examples of virtually nondegenerative surfaces. Below we prove the
existence of a surface Y ⊂ P3 with ordinary singularities whose double curve D
has a unique triple point and consists of three components: two lines L1 and L2

and a conic Q. Such a curve D lies on the union of two planes P1 and P2 such that
L1 ∪ L2 ⊂ P1, Q ⊂ P2, s = L1 ∩ L2 ∩Q ∈ P1 ∩ P2 = L, Li 6= L for i = 1, 2 and Q
transversally intersects the line L.

Let us show that a surface Y with ordinary singularities and with double curve D
described above cannot be virtually completely degenerated. Indeed, the type of
such a surface Y is type(Y ) = (m, 4, 3, 0, 1). If Y is virtually completely degener-
ated, then an irreducible pair (P,D) with type(P,D) = (m, 4, 3, 1, 1) must exist,
that is, there must exist four double lines D of a plane arrangement P having the
following invariants: τ2 = τ3 = 1 and, moreover, after removing the triple point
the curve D is decomposed into three (k = 3) connected components.

Note that there is a degeneration of the curve D into the union of four lines
having one triple point and one double point (to obtain such a degeneration we
need to degenerate the conic into a pair of lines lying in P2 so that one of the lines
passes through the point s and the other one does not).
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Nevertheless, it is easy to see that there does not exist such a union of double
curves of any plane arrangement P = ∪Pi in general position. Indeed, three lines
meeting at the triple point must be pairwise intersections of three planes, say P1,
P2 and P3. It follows from the conditions k = 3 and τ2 = 1 that the fourth line
must intersect one (and only one) of these lines (without loss of generality we can
assume that the fourth line intersects the line L1,2). This means that the fourth
line is the intersection of the fourth plane P4 of the arrangement P with one of the
two planes P1, P2 and then this line must intersect either L1,3 or L2,3. But this is
impossible since τ2 = 1.

Let us prove the existence of a surface Y with ordinary singularities, deg Y > 8,
the double curve of which is D. For this let us blow up the point s in P3 and
after that let us consecutively blow up the proper transforms of the curves L1, L2,
and Q. Let σ : P̃3 → P3 be a composition of these monoidal transformations, E,
E1, E2, E3 ⊂ P̃3 the proper transforms of the exceptional divisors of each of these
blow-ups, and let P̃ = σ∗(P ) be the total inverse image of a plane P ⊂ P3.

Let us show that a generic member X̃ of the linear system

|mP̃ − 3E − 2E1 − 2E2 − 2E3|

is a smooth surface if m > 8. For this let us choose a system of homogeneous
coordinates in P3 as follows (recall that the systems of homogeneous coordinates
in P3 are uniquely determined by the choice of ordered sets of four planes in general
position). We take P1 and P2 for the first two coordinate planes. As the third plane
we take any plane P3 6= P2 passing through s and touching the conic Q at this point.
We choose the fourth coordinate plane P4 such that it is in general position with P1,
P2 and P3 and touches the conic Q at some point s1 ∈ Q, s1 6= s. In the coordinate
system chosen in such a way the lines Li, i = 1, 2, are given by equations

z1 = (ciz2 + z3) = 0, c1 6= c2,

and the curve Q is given by

z2 = (z3z4 − c3z
2
1) = 0, c3 6= 0.

The triple point s of D has coordinates (0 : 0 : 0 : 1).
Denote by Fi the following homogeneous polynomials:

F1 = z1, F2 = z3z4 +c1z2z4−c3z
2
1 , F3 = z3z4 +c2z2z4−c3z

2
1 , F4 = z4,

and consider a linear system of surfaces Sa1,a2,a3 ⊂ P3 given by the homogeneous
equation

F1F2F3F
3
4 + a1F

2
1 F 2

2 F 2
4 + a2F

2
1 F 2

3 F 2
4 + a3F

2
2 F 2

3 = 0.

We also denote by xi = zi/z4 inhomogeneous coordinates in the chart

V4 = P3 \ P4 ' C3

and put
Sa1,a2,a3 = Sa1,a2,a3 ∩ V4.
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Claim 1. (i) For almost all points (a1, a2, a3) the proper transforms

σ−1(Sa1,a2,a3) ⊂ σ−1(V4)

are nonsingular surfaces.
(ii) For j = 1, 2, 3 and almost all (a1, a2, a3) the intersections

σ−1(Sa1,a2,a3) ∩ Ej

are nonsingular 2-sections of the ruled surfaces Ej , and the intersections

σ−1(s) ∩ σ−1(Sa1,a2,a3) ∩ Ej

consist of two points.
(iii) The base locus of the linear system σ−1(Sa1,a2,a3) consists of three rational

curves lying in E, their images after blowing down of the divisors E1, E2 and E3 are
lines in the exceptional divisor E′ of the blow-up of s. In some analytic neighborhood
of E′, after the blow-down the image of a generic surface of this linear system is
decomposed into three irreducible nonsingular components each of which intersects
transversally E′ along one of three lines in E′ ' P2, which is the image of the base
locus of the linear system.

Proof. In the coordinates x1, x2, x3 the linear system of the surfaces Sa1,a2,a3 is
given by

x1(x3 + c1x2 − c3x
2
1)(x3 + c2x2 − c3x

2
1) + a1x

2
1(x3 + c1x2 − c3x

2
1)

2

+ a2x
2
1(x3 + c2x2 − c3x

2
1)

2 + a3(x3 + c1x2 − c3x
2
1)

2(x3 + c2x2 − c3x
2
1)

2 = 0.

Let us take new coordinates in V4:

y1 = x1, y2 = x3 + c1x2 − c3x
2
1, y3 = x3 + c2x2 − c3x

2
1.

In these coordinates the linear system of the surfaces Sa1,a2,a3 is given by

y1y2y3 + a1y
2
1y2

2 + a2y
2
1y2

3 + a3y
2
2y2

3 = 0,

that is, for almost all points (a1, a2, a3) the surfaces Sa1,a2,a3 ∩ V4 are affine parts
of the images of Veronese surfaces under a generic projection into P3 for which the
claim is well known.

To show that a generic member X̃ of the linear system |mP̃−3E−2E1−2E2−2E3|
is a nonsingular surface for m > 8, let us note that the surfaces

S̃a1,a2,a3 = σ−1(Sa1,a2,a3)

belong to the linear system |8P̃ − 3E − 2E1 − 2E2 − 2E3|. It follows from Claim 1
that for any point p ⊂ P3, p 6= s, after replacing the coordinate plane P4 by another
plane not passing through p, the base locus of the linear system |mP̃ − 3E− 2E1−
2E2 − 2E3| does not meet the proper transform σ−1(p). Consequently, for any
m > 8 the linear system |mP̃ − 3E − 2E1 − 2E2 − 2E3| has the same base locus as
for m = 8, since the linear system |(m− 8)P̃ | has no base points. Finally, it follows
from Bertini’s theorem that the generic member X̃ of |mP̃ −3E−2E1−2E2−2E3|
satisfies the same properties (i)–(iii) in Claim 1 as the generic member σ−1(Sa1,a2,a3)
has. From this it follows that the image Y = σ(X̃) of the generic member X̃ is
a surface with ordinary singularities the double curve of which is D.
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§ 9. Concluding remarks

In this section, we formulate some open questions relating to the existence prob-
lem of complete degenerations of surfaces with ordinary singular points.

9.1. Absolute and relative complete nondegeneracy. Let X be a smooth
projective surface and g : X → P3 some ‘immersion’ (that is, Y = g(X) is a surface
with ordinary singularities and the morphism g : X → Y is a normalization of Y ).
In §§ 5.1 and 8.5 we gave examples of surfaces Y which can not be completely degen-
erate. The reason for the impossibility to be completely degenerate can originate
from the possibility that the ‘immersion’ g is ‘bad’, while for some other ‘immersion’
of X its image, nevertheless, can be completely degenerated. The second possible
case is when for all ‘immersions’ of a surface X in P3 it is impossible to completely
degenerate its image Y , in other words, the reason for the impossibility of com-
plete degenerations lies in the topology of X. In the first case we say that X is
relatively completely degenerative, and in the second case X is absolutely completely
nondegenerative. We say also that X is absolutely completely degenerative if for any
‘immersion’ g its image g(X) = Y is completely degenerative.

Problem 1. (i) Do there exist absolutely completely nondegenerative surfaces X?
(ii) Do there exist absolutely completely degenerative surfaces X?

In the case of a negative answer to any of these problems the normalizations X
of completely nondegenerative and completely degenerative surfaces Y described in
the article would give examples of relatively completely degenerative surfaces.

9.2. Problem of adjacency. We denote by Htype(Y ) ⊂ P(m+3
3 )−1 the quasi-

projective variety parametrizing the surfaces with ordinary singularities of the same
type as the type of a surface Y , deg Y = m. Let Πm ⊂ P(m+3

3 )−1 be the variety
parametrizing arrangements of m planes in P3 in general position, dim Πm = 3m.
It follows from the complete degeneracy of Y that Πm and the closure of Htype(Y )

have nonempty intersection.

Problem 2. Let Y be a completely degenerative surface with ordinary singulari-
ties. Is it true that Πm lies in the closure of Htype(Y )?

This is a part of the following more general problem: to describe the natural
stratification (according to the types of double curves) of the variety Hm of surfaces
in P3 with ordinary singularities and the adjacencies of these strata.

9.3. Complete degeneracy uniqueness problem. We say that pairs (P,D1)
and (P,D2) are deformation equivalent if these pairs are fibres of flat families
Du ⊂ Pu ⊂ P3, u ∈ U , of plane arrangements in general position and the configu-
rations of double lines contained in the plane arrangements. It is obvious that pairs
(P1,D1) and (P2,D2) are deformation equivalent if and only if deg P1 = deg P2

and the graphs Γ(D1) and Γ(D2) are isomorphic.
Let Y be a surface with ordinary singularities. We say that Y has a unique

complete degeneration if it is completely degenerative and any two of its complete
degenerations are deformation equivalent.

Claim 2. Any surface Y with ordinary singularities whose double curve is of degree
at most 4 possesses not more than a unique complete degeneration.
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Figure 5

Proof. All possible realizable graphs with the number of edges not more than four
are depicted in Fig. 5. The type (m, d, k, g, t) of a surface Y in which the plane
arrangement Pm in general position can be smoothed outside the configuration of
corresponding double curve D is written under each graph.

One can see from this list of graphs that a surface Y can have more than
one complete degeneration only in two cases, when type(Y ) = (m, 4, 2, 0, 0) or
type(Y ) = (m, 4, 1, 1, 0). But in the first case graphs Γ(D) have different types
Γ(2,0)2

(2,1)2 and Γ(1,0)(3,0)
(2)(2,2) , and if a plane arrangement P is smoothed outside D with

graph Γ(2,0)2

(2,1)2 , then the double curve D of Y consists of two irreducible components
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of degree two; while if the smoothing takes place outside D with graph Γ(1,0)(3,0)
(2)(2,2) ,

then the irreducible components of D have degrees one and three, that is, in this
case the regenerated surfaces Y have different (extended) types. In the second case
the graphs Γ(D) have the same type Γ(4,0)

(3,1,1), but the plane arrangements P cannot
be smoothed outside one of configurations of double curves corresponding to this
type (see Theorem 5). The proof is complete.

Problem 3. Does any surface Y possess not more than a single complete degen-
eration?

9.4. Smoothings in the symplectic case. Above we gave many examples of
pairs (P,D) which cannot be smoothed outside D . In some cases the obstructions
to smoothing were purely topological (for example, the negativity of degree of
the dual curve of the branch curve B ⊂ P2 of a generic projection to the plane
of a smoothed surface Y ); in the other cases the obstructions, possibly, have an
algebraic-geometric nature (for example, the pairs (P,D) with the curve D whose
graph is depicted in Fig. 4).

To understand better the nature of these obstructions, it is useful to generalize
the problem of complete degenerations of algebraic surfaces with ordinary singular-
ities to the case of symplectic varieties. Namely, we say that a compact real four-
dimensional subvariety M of CP3 is a symplectic variety with ordinary singularities
if for each point p ∈ M there is a neighbourhood V of p such that

– either the variety V ∩M is decomposed into n smooth components (n 6 3)
which are symplectic submanifolds of CP3 with respect to the Fubini-Studi
symplectic form and meet transversally along smooth symplectic surfaces
(‘double curves’ of M ; in the case n = 3 the point p is a triple point of M),

– or V ∩ M is a complex analytic variety given in some complex analytic
coordinates in V by equation x2 − yz2 = 0 (and in this case the point p is
called a pinch of M).

The definition of complete degeneration of varieties with ordinary singularities
can also be generalized for symplectic varieties.

Problem 4. Do there exist pairs (P,D) such that the plane arrangement P can-
not be smoothed outside D in the context of algebraic geometry, but this arrange-
ment can be smoothed outside D in the symplectic context?
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