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WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL?

IVAN CHELTSOV, VICTOR PRZYJALKOWSKI, CONSTANTIN SHRAMOV

Abstract. We study the rationality problem for nodal quartic double solids. In par-
ticular, we prove that nodal quartic double solids with at most six singular points are
irrational, and nodal quartic double solids with at least eleven singular points are ratio-
nal.

1. Introduction

In this paper, we study double covers of P3 branched over nodal quartic surfaces.
These Fano threefolds are known as quartic double solids. It is well-known that smooth
threefolds of this type are irrational. This was proved by Tihomirov (see [23, Theorem 5])
and Voisin (see [25, Corollary 4.7(b)]). The same result was proved by Beauville in [2,
Exemple 4.10.4] for the case of quartic double solids with one ordinary double singular
point (node), by Debarre in [8] for the case of up to four nodes and also for five nodes
subject to generality conditions, and by Varley in [24, Theorem 2] for double covers of P3

branched over special quartic surfaces with six nodes (so-called Weddle quartic surfaces).
All these results were proved using the theory of intermediate Jacobians introduced by
Clemens and Griffiths in [6]. In [5, §8 and §9], Clemens studied intermediate Jacobians of
resolution of singularities of nodal quartic double solids with at most six nodes in general
position.

Another approach to irrationality of nodal quartic double solids was introduced by
Artin and Mumford in [1]. They constructed an example of a quartic double solid with
ten nodes whose resolution of singularities has non-trivial torsion in the third integral
cohomology group, and thus the solid is not stably rational. Recently, Voisin used this
example together with her new approach via Chow groups to prove the following theorem.

Theorem 1.1 ([26, Theorem 0.1]). For any integer k = 0, . . . , 7, a very general nodal
quartic double solids with k nodes is not stably rational.

In spite of its strength, Theorem 1.1 is not easy to apply to particular varieties. This
is due to non-explicit generality condition involved. The main goal of this paper is to
get rid of this generality condition (at the cost of slightly weakening the assertion and
allowing fewer singular points on a quartic double solid). We use intermediate Jacobian
theory together with elementary birational geometry to prove the following theorem.

Theorem 1.2. A nodal quartic double solid with at most six nodes is irrational.

Recall that a nodal quartic surface in P3 can have at most 16 nodes, so that this is also
the maximal number of nodes on a quartic double solid. Moreover, Prokhorov proved that
every nodal quartic double solid with 15 or 16 nodes is rational (see [17, Theorem 8.1]
and [17, Theorem 7.1], respectively). We use his approach to study quartic double solids
with many nodes. In particular, we prove the following result.

Theorem 1.3. A nodal quartic double solid with at least eleven nodes is rational.
1
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In fact, we prove a stronger assertion. To describe it, let us recall that a variety is
said to be Q-factorial if every Weil divisor on it is Q-Cartier. For a nodal variety, this
condition is equivalent to the coincidence of Weil and Cartier divisors.

Example 1.4. Let S be a nodal quartic surface in P3 with homogeneous coordinates
x, y, z, t that is given by the equation g2 = 4xh, where g and h are some quadric and
cubic forms, respectively. Then S is singular at the points given by x = g = h = 0. Since
we assume that S is nodal, this system of equations gives exactly 6 points P1, . . . , P6. Let
τ : X → P3 be a double cover branched over S. Then there exists a commutative diagram

X ′ α //

β
��

V3

γ
��

X
τ // P3

where V3 is a smooth cubic threefold in P4 with homogeneous coordinates x, y, z, t, w
that is given by w2x + wg + h = 0, the map γ is a linear projection from the point
P = [0 : 0 : 0 : 0 : 1], the map β is the blow up of this point, and α is the contraction
of the proper transforms of 6 lines on V3 that pass through P to the singular points of
X . Then the image on X of the β-exceptional surface is not a Q-Cartier divisor. In
particular, X is not Q-factorial. Note that β is the small resolution of P1, . . . , P6. Thus,
V3 is singular if and only if P1, . . . , P6 are the only singular points of X . On the other
hand, V3 is irrational if and only if it is smooth (see [6, Theorem 13.12]). Thus, X is
irrational if and only if it has exactly six singular points.

It turns out that Example 1.4 provides the only construction of irrational nodal quartic
double solids that are not Q-factorial. Namely, we prove the following result.

Theorem 1.5. A non-Q-factorial nodal quartic double solid is rational unless it has
exactly six nodes and it is described by Example 1.4.

Note that the Q-factoriality of a nodal quartic double solid can be easily verified using
the following result of Clemens.

Theorem 1.6 ([5, §3]). Let X be a double cover of P3 branched over a nodal quartic
surface S. Then X is Q-factorial if and only if the nodes of S impose independent linear
conditions on quadrics in P3.

In particular, this theorem gives the following result that implies Theorem 1.3 by The-
orem 1.5.

Corollary 1.7. Every nodal quartic double solid with at least eleven nodes is not Q-
factorial.

On the other hand, nodal quartic double solids with at most five nodes are always
Q-factorial. This follows from the following result.

Theorem 1.8 ([11], [3, Theorem 6]). A nodal quartic double solid with at most seven
nodes is Q-factorial unless it is described by Example 1.4.

Thus, one can generalize our Theorem 1.2 as follows.

Conjecture 1.9. Every Q-factorial nodal quartic double solid is irrational.



WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL? 3

By Theorem 1.5, this conjecture gives a complete answer to the question in the title
of this paper. In this paper, we show that it follows from Shokurov’s famous [21, Con-
jecture 10.3], see Corollary 5.2. Note that the intermediate Jacobians of resolutions of
singularities of nodal quartic double solids with 7 6 k 6 10 nodes are sums of Jacobians
of curves, so that the method of [6] is not applicable to prove Conjecture 1.9 in this case.

The paper is organized as follows. In Section 2, we review some well-known facts
about conic bundles over rational surfaces including their Prym varieties and results
concerning irrationality of such threefolds. In Section 3, we show how to birationally
transform a nodal Q-factorial singular quartic double solid into a conic bundle and study
the singularities of its degeneration curve. In Section 4, we present an explicit birational
transformation of the latter conic bundle to a standard one. In Section 5, we prove
Theorem 1.2 and show that [21, Conjecture 10.3] implies our Conjecture 1.9. In Section 6,
we prove Theorem 1.5. In a sequel [4], we apply Theorems 1.2 and 1.3 to nodal quartic
double solids having an icosahedral symmetry.
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Notation and conventions. All varieties are assumed to be algebraic, projective and
defined over C. By a node, we mean an isolated ordinary double singular point of a variety
of arbitrary dimension. A variety is called nodal if its only singularities are nodes. By a
cusp, we mean a plane curve singularity of type A2. By a tacnode, we mean a plane curve
singularity of type A3. By Fn we denote a Hirzebruch surface P

(

OP1 ⊕OP1(n)
)

. Given
a morphism ϕ : X → Y and a linear system M on Y , by a proper transform of M we
mean the linear system generated by divisors ϕ−1M , where M is a general divisor in M;
since a rational map is a morphism in a complement to a closed subset of codimension 2,
we will also use this terminology in case when ϕ is an arbitrary rational map.

2. Conic bundles over rational surfaces

Let ν : V → U be a conic bundle such that V is a threefold, and U is a surface. Recall
that ν is said to be standard if both V and U are smooth, and the relative Picard group
of V over U has rank 1. It is well-known that there exists a commutative diagram

V

ν
��

ρ
//❴❴❴❴❴❴ V ′

ν′

��

U
̺

//❴❴❴❴❴❴ U ′
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such that ρ and ̺ are birational maps, and ν ′ is a standard conic bundle (see, for example,
[20, Theorem 1.13]). Because of this, we assume here that ν is already standard. In
particular, we assume that V and U are both smooth.

In this section, we discuss some obstructions for V to be rational. Because of this, we
also assume that U is rational, since otherwise irrationality of V is easy to show.

Denote by ∆ the degeneration curve of the conic bundle ν. Since ν is assumed to be
standard, the curve ∆ is nodal (see, for example, [20, Corollary 1.11]). Restricting the
conic bundle ν to ∆, taking the normalization of the resulting surface, and considering
the Stein factorization of the the induced morphism to ∆, we obtain a nodal curve ∆′

together with an involution I on it such that

∆′/I ∼= ∆,

the nodes of ∆′ are exactly the fixed points of I, and I does not interchange branches
at these points. In particular, the number of connected components of ∆′ is the same as
that of ∆. Alternatively, one can construct ∆′ as a Hilbert scheme of lines in the fibers
of ν over ∆.

Corollary 2.1. The curve ∆ satisfies the following conditions:

(A) for every splitting ∆ = ∆1 ∪∆2, the number |∆1 ∩∆2| is even;
(B) for every connected component ∆1 of the curve ∆, one has ∆1 6∼= P1.

Proof. Assertion (A) follows from the fact that a double cover of a smooth curve is ramified
over an even number of points. Assertion (B) follows from the fact that P1 does not have
connected unramified double covers. �

In [21], Shokurov posed the following conjecture.

Conjecture 2.2 ([21, Conjecture 10.3]). If |2KU +∆| 6= ∅, then V is irrational.

It follows from [2, Théorème 4.9] that this conjecture holds for U = P2. In [21, §10],
Shokurov proved that Conjecture 2.2 holds also for U = Fn.

Remark 2.3. Let Γ be a connected nodal curve. Suppose that there exists a connected
nodal curve Γ′ together with an involution ι on it such that Γ′/ι ∼= Γ, the nodes of Γ′ are
exactly the fixed points of ι, that ι does not interchange branches at these points, and
the number of connected components of Γ′ is the same as of Γ. Then one can construct
a principally polarized abelian variety Prym(Γ′, ι) known as the Prym variety of the pair
(Γ′, ι). For details and basic properties of Prym(Γ′, ι), see [2, §0] or [21].

Consider Prym(∆′, I). Its importance is due to the following result.

Theorem 2.4 (see [2, Proposition 2.8] and the discussion before it). Let J(V ) be the
intermediate Jacobian of V . Then J(V ) ∼= Prym(∆′, I) (as principally polarized abelian
varieties).

The dualizing sheaf of the curve ∆ is free (see e. g. [10, Exercise 3.4(1)]). Moreover,
the linear system |K∆| is base point free by Corollary 2.1. Hence, it gives the canonical
morphism

κ∆ : ∆ → PN ,

where N = h0(O∆(K∆))− 1. Note that κ∆ may contract irreducible components of ∆. If
∆ is connected, then it is said to be

• hyperelliptic if there is a morphism ∆ → P1 that has degree 2 over a general point
of P1;
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• trigonal if there is a morphism ∆ → P1 that has degree 3 over a general point of
P1;

• quasitrigonal if it is a hyperelliptic curve with two glued smooth points.

Remark 2.5. Suppose that ∆ is connected. If the curve ∆ is hyperelliptic, then κ∆(∆)
is a rational normal curve of degree N , and the induced map ∆ → κ∆(∆) has degree
2 over a general point of κ∆(∆). If the curve ∆ is trigonal, then the curve κ∆(∆) has
trisecants, so that κ∆(∆) is not an intersection of quadrics. If ∆ is quasitrigonal, then
the intersection of quadrics passing through κ∆(∆) is a cone over a rational normal curve
of degree N − 1.

The main result of [21] is the following theorem.

Theorem 2.6 ([21, Main Theorem]). In the notation and assumptions of Remark 2.3,
suppose that Γ is connected, and the following condition holds

(S) for any splitting Γ = Γ1 ∪ Γ2, one has |Γ1 ∩ Γ2| > 4.

Then Prym(Γ′, ι) is a sum of Jacobians of smooth curves if and only if Γ is

• either hyperelliptic, or
• trigonal, or
• quasitrigonal, or
• a plane quintic and h0(Γ, π∗(OP2(1)|Γ)) is odd.

Thus, Theorems 2.4 and 2.6 imply the following result.

Corollary 2.7. Suppose that the curve ∆ is connected and not hyperelliptic, the curve
κ∆(∆) is an intersection of quadrics in PN , and condition (S) of Theorem 2.6 holds for
∆. Then Prym (∆′, I) is not a sum of Jacobians of smooth curves.

Proof. By Remark 2.5 and Theorem 2.6, it is enough to show that ∆ is not a plane quintic.
This follows from the fact that the canonical image C in P5 of a plane nodal quintic is
not an intersection of quadrics, because the quadrics in P5 that pass through C cut out
the Veronese surface. �

Clemens and Griffiths proved in [6, Corollary 3.26] that V is irrational provided that
J(V ) is not a sum of Jacobians of smooth curves. Thus, Corollary 2.7 and Theorem 2.4
imply the following result.

Corollary 2.8. Suppose that the curve ∆ is connected and not hyperelliptic, the curve
κ∆(∆) is an intersection of quadrics in PN , and condition (S) of Theorem 2.6 holds for ∆.
Then V is irrational.

Corollary 2.8 and Theorem 2.6 imply Conjecture 2.2 for U = Fn. For details, see the
proof of [21, Theorem 10.2].

Remark 2.9. In the notation and assumptions of Remark 2.3, suppose that there is a
splitting

Γ = E1 ∪ . . . ∪ Er ∪ Φ

such that each Ei is a smooth rational curve, the curves E1, . . . , Er are disjoint, and each
intersection Ei ∩ Φ consists of two points. Let Θ be a nodal curve obtained from Φ by
gluing each pair of points Ei∩Φ. It follows from [21, Corollary 3.16] and [21, Remark 3.17]
that there exists a connected nodal curve Θ′ together with an involution σ on it such that
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Θ′/σ ∼= Θ, the nodes of Θ′ are exactly the fixed points of σ, that σ does not interchange
branches at these points, and

Prym (Γ′, ι) ∼= Prym (Θ′, σ) .

3. Quartic double solids and conic bundles

Let τ : X → P3 be a double cover branched over a nodal quartic surface in S. Suppose
that S is indeed singular, and let OS be a singular point of the surface S. Denote by OX

the point in X that is mapped to the point OS by the double cover τ . Then there exists
a commutative diagram

X
τ

//

pOX

��❁
❁

❁
❁

❁
❁

❁
❁

❁ P3

pOS

��
✤
✤
✤
✤
✤
✤
✤ S? _oo

pOS
|S

��✄
✄
✄
✄
✄
✄
✄
✄
✄

X0

fOX

88♣♣♣♣♣♣♣♣♣♣♣♣♣

π

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱

P2

where pOS
is the linear projection from the point OS, the morphism fOX

is the blow up
of the point OX , the map pOX

is undefined only in the point OX , and π is a conic bundle.
One has

(τ ◦ fOX
)∗OP3(1)−EOX

∼ π∗OP2(1),

where EOX
∼= P1 × P1 is the exceptional surface of fOX

.

Remark 3.1. The divisor −KX0
is ample and −K3

X0
= 14. If OX is the only singular point

of the surface S, then X0 is the Fano threefold No. 8 in the notation of [13, §12.3].

The restricted map pOS
|S : S → P2 is a generically two-to-one cover, and its branch

locus is a (reduced) curve of degree 6, which is the degeneration curve of the conic bundle
π. Denote this curve by C. The scheme fibers of π over the points of the curve C are
singular conics in P2. Note that the scheme fiber of π over a point ξ ∈ P2 is non-reduced
if and only if the line Lξ mapped to ξ by pOX

is contained in the quartic S; in this case
one obviously has ξ ∈ C.

Proposition 3.2. The singularities of the curve C (if any) are nodes, cusps, or tacnodes.
Moreover, let ξ be a point in C, and let Lξ be a line in P3 that is mapped to ξ by the linear
projection pOX

. Then the following assertions hold.

(i) The curve C has a tacnode at ξ if and only if Lξ ⊂ S, and there are exactly two
singular points of S different from OS that are contained in Lξ.

(ii) The curve C has a cusp at ξ if and only if Lξ ⊂ S, and there is a unique singular
point of S different from OS that is contained in Lξ.

(iii) The curve C has a node at ξ if and only if one of the following two cases holds:
• Lξ 6⊂ S, and there is a unique singular point of S different from OS that is
contained in Lξ;

• Lξ ⊂ S, and OS is the unique singular point of S that is contained in Lξ.

Proof. Choose homogeneous coordinates x, y, z and t in P3 so that OS = [0 : 0 : 1 : 0].
Then the quartic S is given by equation

(3.3) z2q2(x, y, t) + zq3(x, y, t) + q4(x, y, t) = 0,
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where qi is a form of degree i. One has pOS
([x : y : z : t]) = [x : y : t]. Moreover, after

a change of coordinates x, y and t we may assume that the line Lξ is given by equations
x = y = 0. The equation of the curve C in a local chart A2 ⊂ P2 with coordinates x and
y is written as F = 0, where

(3.4) F (x, y) = q3(x, y, 1)
2 − 4q2(x, y, 1)q4(x, y, 1).

Assume that the line Lξ is not contained in S, i. e. at least one of the forms qi in (3.3)
does not vanish at ξ. Since ξ is contained in C, we see that Lξ intersects S at OS and at
most one more point.

Suppose that OS is the only common point of Lξ and S. Then q4(0, 0, 1) 6= 0 by (3.3).
Keeping this in mind and looking at (3.3) once again, we see that

q2(0, 0, 1) = q3(0, 0, 1) = 0.

Since OS is a node, we also see that at least one of the partial derivatives of q2 with
respect to x and y does not vanish at the point [0 : 0 : 1]. We may assume that this is a
partial derivative with respect to x. Then (3.4) implies that the partial derivative of F
with respect to x at the point (0, 0) does not vanish either, so that C is smooth at the
point ξ.

Suppose that the intersection Lξ ∩ S contains a point PS different from OS. Making
a change of coordinates if necessary, we may assume that PS = [0 : 0 : 0 : 1]. Then
q4(0, 0, 1) = 0 by (3.3) and thus q3(0, 0, 1) = 0 by (3.4). This implies q2(0, 0, 1) 6= 0, so
that we may assume that q2(0, 0, 1) = 1.

Suppose that PS is a non-singular point of S. Then at least one of the partial derivatives
of q4 with respect to x and y does not vanish at the point [0 : 0 : 1]. As above, we may
assume that this is a partial derivative with respect to x. Then (3.4) implies that the
partial derivative of F with respect to x at the point (0, 0) does not vanish either, so that
C is smooth at ξ.

Suppose that PS is a singular point of S. Then none of the monomials of q4 is divisible
by t3. Write

q3(x, y, t) = 2l(x, y)t2 + q̄3(x, y, t)

and

q4(x, y, t) = q(x, y)t2 + q̄4(x, y, t),

where every monomial of q̄3 has degree at least 2 in x, y, while every monomial of q̄4 has
degree at least 3 in x, y. Using the fact that PS is a node of S, we conclude that the
quadratic form

g(x, y) = z2 + 2l(x, y)z + q(x, y)

is non-degenerate. This means that q(x, y)− l(x, y)2 is not a square. On the other hand,
we rewrite (3.4) as

F = 4l(x, y)2 − 4q(x, y) + F̄ (x, y),

where any monomial of F̄ has degree at least 3. This means that the curve C has a node
at ξ.

Now assume that the line Lξ is contained in the quartic S. This means that neither of
the forms qi in (3.3) contains a monomial ti with non-zero coefficient.

Suppose that Lξ does not contain singular points of S that are different from OS. Write

qi(x, y, t) = li(x, y)t
i−1 + q̄i(x, y, t)
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for i = 2, 3, 4, where every monomial of q̄i has degree at least 2 in x, y. Put

f(x, y) = l3(x, y)
2 − 4l2(x, y)l4(x, y).

Then (3.4) gives
F = f(x, y) + F̄ (x, y),

where any monomial of F̄ has degree at least 3. If one has

l3(x, y) = αl4(x, y) +
l2(x, y)

α

for some α ∈ C, then S is singular at the point O′
S = [0 : 0 : − 1

α
: 1], which is not the

case by assumption. Therefore, f is not a square, and thus is a non-degenerate quadratic
form in x and y, so that C has a node at ξ.

Suppose that Lξ contains a singular point PS of S such that PS is different from OS.
Making a change of coordinates if necessary, we may assume that PS = [0 : 0 : 0 : 1] and

(3.5) q2 = xt+ y2.

Since PS is a singular point of S, the form q4 does not contain any of the monomials xt3

or yt3 with non-zero coefficient. Since PS is a node of S, the form q3 contains at least one
of the monomials xt2 or yt2 with non-zero coefficient.

Suppose that q3 contains the monomial yt2 with non-zero coefficient. It is easy to see
from equation (3.3) that in this case OS and PS are the only singular points of S contained
in Lξ. Making a further change of coordinates x and y if necessary, we rewrite

q2(x, y, t) = xt + l(x, y)2, q3(x, y, t) = yt2 + q̄3(x, y, t),

and
q4(x, y, t) = αx2t2 + βxyt2 + γy2t2 + q̄4(x, y, t),

where α 6= 0, every monomial of q̄3 has degree at least 2 in x, y, and every monomial of q̄i
has degree at least 3 in x, y. Assigning the weights wt(y) = 3 and wt(x) = 2, we rewrite
(3.4) as

F = y2 − 4αx3 + F̄ (x, y),

where any monomial of F̄ has weight at least 7. This means that the curve C has a cusp
at the point ξ.

Finally, suppose that q3 does not contain the monomial yt2 with non-zero coefficient.
It is easy to see from equation (3.3) that in this case there is a unique singular point of S
different from OS and PS that is contained in Lξ. We may write

(3.6) q3(x, y, t) = αxt2 + q̄3(x, y, t),

where α 6= 0, and every monomial of q̄3 has degree at least 2 in x, y. Using once again
the fact that PS is a node of S, we write

(3.7) q4(x, y, t) = βy2t2 + γxyt2 + δx2t2 + q̄4(x, y, t),

where β 6= 0, and every monomial of q̄4 has degree at least 3 in x, y. Assigning the weights
wt(x) = 2 and wt(y) = 1, and using equations (3.5), (3.6) and (3.7), we rewrite (3.4) as

F = α2x2 − 4βxy2 − 4βy4 + F̄ (x, y),

where any monomial of F̄ has weight at least 5. This means that the curve C has a
tacnode at ξ. �

Remark 3.8. If OS is the only singular point of the surface S, then Proposition 3.2 follows
from a much more general [20, Corollary 1.11].
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Lemma 3.9. In the notation of Proposition 3.2, suppose that the curve C has a tacnode
at the point ξ. Let Fξ be the preimage of the point ξ with respect to π. Let T be the line
in P2 that passes through ξ and has a local intersection number 4 with the curve C at ξ.
Denote by B the linear system of conics in P2 that are tangent to T at ξ. Let B1 and B2 be
preimages on X0 of two general conics in B. Then each Bi has a singularity analytically
isomorphic to a product of a node and A1 at a general point of Fξ, and

multFξ
(B1 · B2) = 4.

Proof. Using coordinates in P3 and P2 introduced in the proof of Proposition 3.2, we find
that the line T is given by equation x = 0. Regarding x and y as local coordinates in an
affine chart containing ξ, and making an analytic change of coordinates if necessary, we
write an equation of a general conic in B as

x− λy2 = 0,

where λ ∈ C.
Keeping in mind equation (3.3), we write down the local equation of X (and also of X0

at a general point of Fξ) in A4 as

w2 = q2(x, y, t) + q3(x, y, t) + q4(x, y, t).

Using equations (3.5), (3.6) and (3.7), we see that the surfaces Bi are locally defined by
equations

w2 = ǫiy
2 + Fi(y, t)

in local coordinates w, y and t, where ǫi are non-zero constants, and every monomial of
Fi has degree at least 3. Since Fξ is given by w = y = 0 in the same coordinates, the
assertion of the lemma follows. �

4. From non-standard to standard conic bundles

Let us use all notation and assumptions of Section 3. If S is smooth away of OS, then
the conic bundle π : X0 → P2 is standard by Theorem 1.8. Moreover, it follows from [20,
Theorem 1.13] that there exists a commutative diagram

(4.1) V

ν
��

ρ
//❴❴❴❴❴❴ X0

π
��

U
̺

// P2

where V is a smooth projective threefold, U is a smooth surface, ν is a standard conic
bundle, ρ is a birational map, and ̺ is a birational morphism. Of course, (4.1) is not
unique. The goal of this section is to explicitly construct (4.1) with ̺ being a composition
of |Sing(S)| − 1 blow ups of smooth points. Namely, we prove the following theorem.

Theorem 4.2. Suppose that X is Q-factorial. Then there exists a commutative dia-
gram (4.1) where ν is a standard conic bundle and the following properties hold.

(i) The birational morphism ̺ is a composition of |Sing(S)| − 1 blow ups of smooth
points.

(ii) The birational morphism ̺ factors as

U
̺′t−→ Ut

̺t
−→ Uc

̺c
−→ Un

̺n
−→ P2,



10 IVAN CHELTSOV, VICTOR PRZYJALKOWSKI, CONSTANTIN SHRAMOV

where the morphism ̺n is a blow up of the nodes of the curve C that are images
of the singular points of X0 via π, the morphism ̺c is a blow up of all cusps of
the proper transform of C on the surface Un, the morphism ̺t is a blow up of all
tacnodes of the proper transform of C on the surface Uc, and the morphism ̺′t is
a blow up of all nodes of the proper transform of C on the surface Ut that are
mapped to the tacnodes of the curve C by ̺t ◦ ̺c ◦ ̺n. In particular, the birational
map ̺−1 is regular away of Sing(C).

(iii) Let ∆ be the degeneration curve of the conic bundle ν. Then ∆ is the proper
transform of the curve C, i. e. the exceptional curves of ̺ are not contained in ∆.
In particular, one has ∆ ∼ −2KU .

In the rest of the section, we will prove Theorem 4.2. Namely, we will show how to con-
struct the commutative diagram (4.1) by analyzing the geometry of X0 in a neighborhood
of a fiber containing a singular point of X0, producing a desired transformation in such
neighborhood, and then applying these constructions together to obtain a global picture.

Let ξ be a point of C, let Fξ be the preimage of the point ξ with respect to π, i. e.
the reduced fiber of π over ξ. Let Lξ be a line in P3 that is mapped to ξ by the linear
projection pOX

, so that Fξ is the preimage of Lξ with respect to τ ◦ fOX
.

Choose homogeneous coordinates x, y, z and t in P3 so that OS = [0 : 0 : 1 : 0] and
the line Lξ is given by equations x = y = 0. One has pOS

([x : y : z : t]) = [x : y : t].
During our next steps we will always assume that the quartic S is singular at some point
PS of the line Lξ such that PS is different from OS; we can choose x, y, z and t so that
PS = [0 : 0 : 0 : 1]. Since PS is a node of S, we know that S is given by equation

(4.3) t2q2(x, y, z) + tq3(x, y, z) + q4(x, y, z) = 0,

where qi is a form of degree i in three variables, and the quadratic form q2 is non-
degenerate. We can expand (4.3) as

(4.4) t2
(

αz2 + zq
(1)
2 (x, y) + q

(2)
2 (x, y)

)

+

+ t
(

z2q
(1)
3 (x, y) + zq

(2)
3 (x, y) + q

(3)
3 (x, y)

)

+

+
(

z2q
(2)
4 (x, y) + zq

(3)
4 (x, y) + q

(4)
4 (x, y)

)

= 0,

where q
(j)
i is a form of degree j in two variables, and α is a constant.

In what follows we will frequently use the following easy and well known auxiliary
result.

Lemma 4.5. Let Y be a normal threefold, R be a surface in Y , and L be a smooth
rational curve in R such that R and Y are smooth along L. Suppose that NL/R

∼= OP1(r)
and −KY · L = s with 2r > s− 2. Then

NL/Y
∼= OP1(r)⊕OP1(s− r − 2).

Proof. We have

degNL/Y = 2g(L)− 2−KY · L = s− 2.

Also, there is an injective morphism NL/R →֒ NL/Y . Therefore, there is an exact sequence
of sheaves on L ∼= P1

0 → OP1(r) → NL/Y → OP1(s− r − 2) → 0.

Since r > s−r−2, the latter exact sequence splits and gives the assertion of the lemma. �
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Now we are ready to describe birational maps that are needed to transform π to a
standard conic bundle.

Construction I. Suppose that S is singular at exactly two points OS and PS of the
line Lξ, and Lξ is not contained in S. This happens if and only if one has α 6= 0 in
equation (4.4). In particular, we can assume that

(4.6) q2(x, y, z) = xy + z2.

Denote by P0 the preimage of the point PS on X0. The threefold X0 has a node at P0

and is smooth elsewhere along Fξ. The fiber Fξ consists of two smooth rational curves
that intersect transversally at the point P0.

Let fP0
: X1 → X0 be the blow up of the point P0, and let E1 be the exceptional divisor

of fP0
. One has E1

∼= P1×P1, and the threefold X1 is smooth along the proper transform
of Fξ.

Denote by L+
0 and L−

0 the irreducible components of Fξ, and denote by L+
1 and L−

1

their proper transforms on X1. Then the curves L+
1 and L−

1 are disjoint smooth rational
curves.

Lemma 4.7. Let L1 be one of the curves L
+
1 and L−

1 . Then NL1/X1

∼= OP1(−1)⊕OP1(−1).

Proof. Let Π ⊂ P3 be a general plane containing the line Lξ. Then Π is given by

λx+ µy = 0

for some [λ : µ] ∈ P1. Let R be the preimage of Π via τ . We see from equation (4.4) that
R has nodes at the preimages of the points PS and OS and is smooth elsewhere.

Let R1 be the proper transform of R on the threefold X1. Then the surface R1 is
smooth. One has KR1

· L1 = −1, so that L2
1 = −1 on R1, and the normal bundle

NL1/R1

∼= OP1(−1).

On the other hand, we know that

KX1
· L1 = 0,

which implies the assertion by Lemma 4.5. �

By Lemma 4.7 one can flop each of the curves L+
1 and L−

1 . Namely, each of these two
flops is just an Atiyah flop, i. e. it can be obtained by blowing up the curve L+

1 or L−
1

and blowing down the exceptional divisor isomorphic to P1×P1 along another ruling onto
a curve contained in a smooth locus of the resulting threefold (see [16, §4.2], [12, §2]).
Let χ : X1 99K X2 be the composition of Atiyah flops in the curves L+

1 and L−
1 . Let

fξ : U2 → P2 be the blow up of the point ξ, and p2 : X2 99K U2 be the corresponding
rational map. Put p1 = p2 ◦ χ.

Let Z ∼= P1 be the exceptional divisor of the blow up fξ, and C2 be the proper transform
of the curve C on U2. By Proposition 3.2(iii) the intersection C2∩Z consists of two points,
and C2 is smooth at these points. Let E2 be the proper transform of the divisor E1 on
the threefold X2.

Lemma 4.8. The rational map p2 is a morphism, and p2(E2) = Z. The fiber of p2 over
each of the two points in C2 ∩ Z is a union of two smooth rational curves that intersect
transversally at one point. All other fibers of p2 over Z are smooth, so that C2 is the
degeneration curve of the conic bundle p2.
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Proof. Denote by ω1 : W → X1 the blow up of X1 along the curves L+
1 and L−

1 , so that
there is a commutative diagram

W
ω1

!!❇
❇❇

❇❇
❇❇

❇
ω2

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X2 X1
χ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴

Let G+
W and G−

W be the exceptional divisors of ω1 over the curves L
+
1 and L+

2 , respectively.
Recall that G+

W
∼= G−

W
∼= P1 × P1. Denote by l+1 and l−1 the classes of the rulings of G+

W

and G−
W that are mapped surjectively onto L+

1 and L−
1 by ω1 (and are contracted by ω2),

and denote by l+2 and l−2 the classes of the rulings of G+
W and G−

W that are contracted by
ω1. Let E

P
W be the proper transforms of the surface E1 on W . One has

EP
W |G+

W
∼ l+2 , EP

W |G−

W
∼ l−2 .

Let H be the pencil of curves that are proper transforms on U2 of lines in P2 passing
through the point ξ. Note that the class H + R, where H ∈ H and R ∈ |f ∗

ξOP2(1)|, is
very ample. Note also that the proper transform on X2 of the linear system |f ∗

ξOP2(1)| is
base point free. Thus, to conclude that the rational map p2 is a morphism it is enough to
check that the proper transform HX2

of the linear system H on X2 has no base points.
Let us first show that the proper transform HW of the pencil HX2

on W is base point
free. By construction, its base locus is contained in the union G+

W ∪G−
W ∪ EP

W . One has

HW ∼ (π ◦ fP0
◦ ω1)

∗OP2(1)−G+
W −G−

W − EP
W .

This gives HW |G+

W
∼ l+1 and HW |G−

W
∼ l−1 . Therefore, either two different elements of the

pencil HW do not have intersection points in G+
W , or all of them contain one and the same

ruling of class l+1 . The latter is impossible since the proper transforms of elements of H
on X1 are transversal to each other at a general point of L+

1 . Thus, HW does not have
base points on G+

W . In a similar way we see that it does not have base points on G−
W .

Let us check that the pencil HW has no base points in EP
W . It is most convenient

to do this by analyzing the behavior of the rational map p1 along the surface E1. Using
equation (4.6) and writing down the equation of X , we see that the surface E1 is identified
with a quadric surface given by

xy + z2 = w2

in P3 with homogeneous coordinates x, y, z and w. Note that x and y can be interpreted
as homogeneous coordinates on Z. The closure of the image of E1 with respect to the
rational map p1 is the curve Z. The restriction pE1

of p1 to E1 is given by

(4.9) [x : y : z : w] 7→ [x : y].

Therefore, pE1
is a projection from the line x = y = 0, which intersects E1 at the

points [0 : 0 : 1 : 1] and [0 : 0 : 1 : −1]. Note that these are the points P+
1 = L+

1 ∩ E1 and
P−
1 = L−

1 ∩E1 up to permutation. This implies that the pencil HW has no base points in
EP
W except possibly in the two curves contracted to P+

1 and P−
1 by ω1. But these curves

are contained in the divisors G+
W and G−

W , respectively, and we already know that HW has
no base points in these surfaces. Thus, the pencil HW is base point free. In particular,
we see that p2 ◦ ω2 is a morphism.

The restrictions of HW to the surfaces G+
W and G−

W are contained in the fibers of the
contraction ω2. This shows that the pencil HX2

is also base point free, so that p2 is a
morphism.
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The remaining assertions of the lemma follow from (4.9). �

Putting everything together, we obtain a commutative diagram

W
ω1

!!❇
❇❇

❇❇
❇❇

❇
ω2

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X2

p2

��

X1

p1

~~⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥ fP0

&&◆◆
◆◆

◆◆◆
◆◆

◆◆◆
◆

χ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X0

π
��

U2

fξ
// P2

Construction II. Suppose that S is singular at exactly two points OS and PS of the
line Lξ, and Lξ is contained in S. This happens if and only if in equation (4.4) one has

α = 0, and the linear forms q
(1)
2 (x, y) and q

(1)
3 (x, y) are not proportional. In particular,

we can assume that q
(1)
2 (x, y) = x and

(4.10) q2(x, y, z) = xz + y2.

As in Construction I, denote by P0 the preimage of the point P0 on X0. Note that Fξ
is a smooth rational curve passing through P0. The threefold X0 has a node at P0 and is
smooth elsewhere along Fξ.

Let fP0
: X1 → X0 be the blow up of the point P0, and let E1 be the exceptional divisor

of fP0
. One has E1

∼= P1 × P1. Denote by L1 the proper transform of Fξ on X1. The
threefold X1 is smooth along L1.

We need the following auxiliary result which is actually easy and well known.

Lemma 4.11. Let Y be a normal threefold, and C be a smooth rational curve contained
in the smooth locus of Y . Let P be a point on C, and h : Y ′ → Y be the blow up of P .
Let C ′ be the proper transform of C on Y ′. Write NC′/Y ′

∼= OP1(a)⊕OP1(b). Then

NC/Y
∼= OP1(a+ 1)⊕OP1(b+ 1).

Proof. Suppose that NC/Y
∼= OP1(c)⊕OP1(d). One has

(4.12) (d+ c)− (a+ b) = degNC/Y − degNC/Y = 2.

Let g : W → Y be the blow up of the curve C, and G be the exceptional divisor of g.
Then G is a Hirzebruch surface Fr, where r = |c−d|. Let Z be the fiber of the projection
g|G : G → C over the point P . Let g′ : W ′ → Y ′ be the blow up of the curve C ′, and G′

be the exceptional divisor of g′. Then G′ is a Hirzebruch surface Fr′, where r
′ = |a− b|.

Note that there is a morphism h′ : W ′ → W that is a blow up of the curve Z. It gives
the following commutative diagram:

W ′

g′

}}④④
④④
④④
④④ h′

!!❈
❈❈

❈❈
❈❈

❈

Y ′

h !!❈
❈❈

❈❈
❈❈

❈ W

g
}}④④
④④
④④
④④

Y
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In particular, the surface G′ is the proper transform of the surface G with respect to h′,
so that G ∼= G′. Thus we have

|c− d| = r = r′ = |a− b|,

and applying (4.12) we obtain the assertion of the lemma. �

As in the proof of Lemma 4.7, let Π ⊂ P3 be a general plane containing the line Lξ,
and let R be the preimage of Π via τ . Denote by R0 the proper transform of R on the
threefold X0. Then it follows from equation (4.4) that R0 has a node at the point P0, one
more node at some point PΠ ∈ Fξ, and is smooth elsewhere. One has

KR0
· Fξ = KX0

· Fξ = −1.

The following result is not crucial for the construction, but makes the geometric picture
more clear.

Lemma 4.13. One has NL1/X1

∼= OP1 ⊕OP1(−2).

Proof. Let f : X ′
1 → X1 be the blow up of the preimage of the point PΠ on X1. Put

f ′ = fP0
◦ f , so that f ′ : X ′

1 → X0 is the blow up of the points P0 and PΠ. Let R′
1 be

the proper transform of R0 on the threefold X ′
1. Then the surface R′

1 is smooth. Note
that f ′|R′

1
: R′

1 → R0 is the blow up of nodes of R0, and thus it is crepant. Let L′
1 be the

proper transform of Fξ (or L1) on X ′
1. Let E ′

1 be the exceptional divisor of f ′ over the
point P0 (i. e. the proper transform on X ′

1 of the exceptional divisor of fP0
), and E ′ be

the exceptional divisor of f ′ over the point PΠ.
One has KR′

1
· L′

1 = −1, so that L′2
1 = −1, and the normal bundle NL′

1
/R′

1

∼= OP1(−1).
On the other hand, we know that

KX′

1
· L′

1 =
(

f ′∗KX0
+ E ′

1 + 2E ′
)

· L′
1 = 2,

which gives

NL′

1
/X′

1

∼= OP1(−1)⊕OP1(−3).

by Lemma 4.5. Now the assertion follows from Lemma 4.11. �

Let f1 : X̄1 → X1 be the blow up of the curve L1, and let Ḡ1 be its exceptional surface.
By Lemma 4.13 we have Ḡ1

∼= F2. Denote by L̄1 the unique smooth rational curve in Ḡ1

such that L̄2
1 = −2.

Lemma 4.14. One has NL̄1/X̄1

∼= OP1(−1)⊕OP1(−1).

Proof. Let R̄1 and Ē1 be the proper transforms on X̄1 of the surfaces R and E1, re-
spectively. Let Ē0 be the proper transform of the exceptional divisor of the blow up
fOX

: X0 → X on X̄1. Denote by l the class of the fiber of the natural projection
Ḡ1 → L1

∼= P1 in Pic(Ḡ1). Then Ē0|Ḡ1
∼ Ē1|Ḡ1

∼ l. We compute

R̄1 + Ē0 + Ē1 + Ḡ1 ∼Q −
1

2

(

fOX
◦ f0 ◦ f1

)∗
KX ∼Q −

1

2

(

KX̄1
− Ē0 − Ē1 − Ḡ1

)

.

Therefore, one has R̄1|Ḡ1
∼Q L̄1 + l.

On the other hand, we know that the proper transform of R on X1 is a del Pezzo surface
with a unique node on the curve L1. Thus, we conclude that R̄1|Ḡ1

= L+ T , where L is
a fiber of the projection Ḡ1 → L1, and T is some effective one-cycle such that T ∼Q L̄1.
Hence we have T = L̄1.



WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL? 15

Since f0 ◦ f1|R̄1
: R̄1 → R0 is the minimal resolution of singularities of a nodal del Pezzo

surface R, we have KR̄1
· L̄1 = −1. Therefore, one has

NL̄1/R̄1

∼= OP1(−1).

Finally, we have KX̄1
· L̄1 = 0, so that the assertion follows by Lemma 4.5. �

By Lemma 4.14 one can make an Atiyah flop ψ : X̄1 99K X̄2 in the curve L1. Let Ḡ2

be the proper transform of the surface Ḡ1 on the threefold X̄2. Then Ḡ2
∼= F2 and there

exists a contraction f2 : X̄2 → X2 of Ḡ2 onto a curve contained in the smooth locus of X2.
We have the following commutative diagram:

(4.15) X̄2

f2
��

X̄1

f1
��

ψ
oo❴ ❴ ❴ ❴ ❴ ❴

X2 X1
χ

oo❴ ❴ ❴ ❴ ❴ ❴

Note that χ is a flop, and L1 is a (−2)-curve of width 2 in the notation of [18, Defini-
tion 5.3]. The diagram (4.15) is an example of a pagoda described in [18, 5.7].

Let fξ : U2 → P2 be the blow up of the point ξ, and p2 : X2 99K U2 be the corresponding
rational map. Put p1 = p2 ◦ χ. Let Z ∼= P1 be the exceptional divisor of the blow up
fξ, and C2 be the proper transform of the curve C on U2. By Proposition 3.2(ii) the
intersection C2 ∩ Z consists of a single point, and C2 is smooth at this point. Let E2 be
the proper transform of the divisor E1 on the threefold X2.

Now we will prove a result that is identical to Lemma 4.8 (but takes place in the setup
of our current Construction II).

Lemma 4.16. The rational map p2 is a morphism, and p2(E2) = Z. The fiber of p2 over
the point C2 ∩ Z is a union of two smooth rational curves that intersect transversally at
one point. All other fibers of p2 over Z are smooth, so that C2 is the degeneration curve
of the conic bundle p2.

Proof. Denote by ω1 : W → X̄1 the blow up of X̄1 along the curve L̄1, so that there is a
commutative diagram

W
ω1

  ❇
❇❇

❇❇
❇❇

❇
ω2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

X̄2 X̄1
ψ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴

Let GW be the exceptional divisor of ω1. Recall that GW
∼= P1 × P1. Denote by l1 the

class of the ruling of GW that is mapped surjectively onto L̄1. Let EP
W and G1,W be the

proper transforms on W of the surfaces E1 and Ḡ1, respectively.
As in the proof of Lemma 4.8, let H be the pencil of curves that are proper transforms

on U2 of lines in P2 passing through the point ξ. To show that the rational map p2 is a
morphism, it is enough to check that the proper transform HX2

of the linear system H
on X2 is base point free. Let us show first that its proper transform HW on the threefold
W is base point free.

By construction, we know that all base points of the pencil HW are contained in the
union GW ∪G1,W ∪ EP

W . One has

HW ∼ (π ◦ fP0
◦ f1 ◦ ω1)

∗OP2(1)−GW −G1,W −EP
W .
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This gives HW |GW
∼ l1. Therefore, either two different elements of the pencil HW do not

have intersection points in GW , or all of them contain one and the same ruling of class l1.
The latter case is impossible; indeed, the proper transforms of elements of H on X̄1 are
tangent to each other along L̄1 with multiplicity 2 since τ is a double cover and the proper
transforms of the elements of H on P3 are planes passing through the line Lξ. Therefore,
HW has no base points in GW .

Let t1 be the class of the ruling of G1,W
∼= F2. Then

HW |G1,W
∼ t1,

and the rulings of G1,W cut out by the members of the pencil HW vary (cf. the proof of
Lemma 4.14). Therefore, HW has no base points in G1,W .

Let us check thatHW has no base points in EP
W by analyzing the behavior of the rational

map p1 along the surface E1. Using equation (4.10) and writing down the equation of X ,
we see that the surface E1 is identified with a quadric surface given by

xz + y2 = w2

in P3 with homogeneous coordinates x, y, z and w. Note that x and y can be interpreted
as homogeneous coordinates on Z. The closure of the image of E1 with respect to the
rational map p1 is the curve Z. The restriction pE1

of p1 to E1 is given by the formula (4.9).
Therefore, pE1

is a projection from the line x = y = 0, which is tangent to E1 at the
point [0 : 0 : 1 : 0]. Note that this is the point P1 = L1∩E1. This implies that HW has no
base points in EP

W outside the curves contracted to P1 by ω1. But these are exactly the
curves G1,W ∩EP

W and GW ∩EP
W . Since we already know that HW has no base points in

G1,W and GW , we conclude that HW is base point free. In particular, the rational map
p2 ◦ f2 ◦ ω2 is a morphism.

Since HW |GW
∼ l1, the proper transform HX̄2

of the pencil HX2
on the threefold X̄2 is

also base point free. Let t2 be the class of the ruling of G2
∼= F2. Then the restriction

HX̄2
|G2

∼ t2.

lies in the fibers of the morphism f2. Therefore, the pencil HX2
is also base point free, so

that p2 is a morphism.
The remaining assertions of the lemma follow from (4.9). �

Putting everything together, we obtain a commutative diagram

W
ω1

  ❇
❇❇

❇❇
❇❇

❇
ω2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

X̄2

f2
��

X̄1

f1
��

ψ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X2

p2

��

X1

p1

~~⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥ fP0

&&◆
◆◆◆

◆◆
◆◆◆

◆◆◆
◆

χ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X0

π
��

U2

fξ
// P2
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Construction III. Suppose that S is singular at exactly three points of the line Lξ,
namely OS, PS and some other point QS different from OS and PS; in particular, this
implies that Lξ is contained in S. This happens if and only if in equation (4.4) one has

α = 0, and the linear forms q
(1)
2 (x, y) and q

(1)
3 (x, y) are proportional. In particular, we

can assume that q2(x, y, z) is given by equation (4.10).
Denote by P0 and Q0 the preimages of the points PS and QS on X0. Note that Fξ is a

smooth rational curve passing through P0 and Q0. The threefold X0 has nodes at P0 and
Q0, and is smooth elsewhere along Fξ.

Let f : X1 → X0 be the blow up of the points P0 and Q0. Denote by EP
1 and EQ

1 be
the exceptional divisors of f over the points P0 and Q0, respectively. One has

EP
1
∼= EQ

1
∼= P1 × P1.

Denote by L1 the proper transform of Fξ on X1. The threefold X1 is smooth along L1.

Lemma 4.17. One has NL1/X1

∼= OP1(−1)⊕OP1(−2).

Proof. As in the proof of Lemmas 4.7 and 4.13, let Π ⊂ P3 be a general plane containing
the line Lξ, let R be the preimage of Π with respect to the double cover τ , and let R0 be
the proper transform of R on the threefold X0. Then it follows from equation (4.4) that
R0 has nodes at the points P0 and Q0, and is smooth elsewhere. One has

KR0
· Fξ = KX0

· Fξ = −1.

Let R1 be the proper transform of R0 on the threefold X1. Then the surface R1 is
smooth. The morphism f |R1

: R1 → R0 is the blow up of nodes of R0, and thus it is
crepant. One has KR1

· L1 = −1, so that L2
1 = −1, and the normal bundle

NL1/R1

∼= OP1(−1).

On the other hand, we know that

KX1
· L1 =

(

f ∗KX0
+ EP

1 + EQ
1

)

· L1 = 1,

which implies the assertion by Lemma 4.5. �

By Lemma 4.17 and [12, §2], there exists an antiflip σ : X1 99K X̌1 in the curve L1. The
inverse map σ−1 is usually called Francia flip.

Let fξ : U1 → P2 be the blow up of the point ξ. Let Z1
∼= P1 be the exceptional

divisor of the blow up fξ, and C1 be the proper transform of the curve C on U1. By
Proposition 3.2(i) the intersection C1∩Z1 consists of a single point ξ1, and C1 has a node
at ξ1. Let p1 : X1 99K U1 and p̌1 : X̌1 99K U1 be the resulting rational maps. In fact, the
rational map p̌1 is a morphism. To prove this, we need to recall the explicit construction
of σ from [12, §2].

Let f1 : X̄1 → X1 be the blow up of the curve L1, and let Ḡ1 be its exceptional surface.
By Lemma 4.17 we have Ḡ1

∼= F1. Denote by L̄1 the unique smooth rational curve in Ḡ1

such that L̄2
1 = −1.

Lemma 4.18. One has NL̄1/X̄1

∼= OP1(−1)⊕OP1(−1).

Proof. One has NL̄1/Ḡ1

∼= OP1(−1) by construction. On the other hand, we know that

KX̄1
· L̄1 = 0, which implies the assertion by Lemma 4.5. �
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By Lemma 4.18, we can make an Atiyah flop ψ : X̄1 99K X̂1 in the curve L̄1. Thus,
there is a commutative diagram

W
ω1

  ❆
❆❆

❆❆
❆❆

❆
ω2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X̂1 X̄1
ψ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴

where ω1 is the blow up of the curve L̄1, and ω2 is the contraction of the exceptional
divisor GW

∼= P1 × P1 of ω1 onto a smooth rational curve L̂1 contained in the smooth
locus of X̂1. Denote by EP

W , EQ
W , and G1,W the proper transforms on W of the surfaces

EP
1 , E

Q
1 and Ḡ1, respectively.

Let Ĝ1 be the proper transform of Ḡ1 on X̂1. Then Ĝ1
∼= P2 and its normal bundle

in X̂1 is isomorphic to OP2(−2), so that there exists a contraction g1 : X̂1 → X̌1 of the

surface Ĝ1 to a singular point Ξ1 of type 1
2
(1, 1, 1). There is a commutative diagram

(4.19) W
ω1

  ❆
❆❆

❆❆
❆❆

❆
ω2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X̂1

g1
��

X̄1

f1

��

ψ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X̌1

p̌1

��
✤
✤
✤
✤
✤
✤
✤

X1
σoo❴ ❴ ❴ ❴ ❴ ❴ ❴

p1

~~⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

f

  ❆
❆❆

❆❆
❆❆

❆

X0

π
��

U1

fξ
// P2

Lemma 4.20. The rational map p̌1 is a morphism.

Proof. As in the proof of Lemmas 4.8 and 4.16, let H be the pencil of curves that are
proper transforms on U1 of lines in P2 passing through the point ξ. Denote by HX̌1

its

proper transform on X̌1. To show that p̌1 is a morphism, it is enough to show that HX̌1

is base point free. To start with, we show that its proper transform HW on W is base
point free.

By construction, we know that all base points of the pencil HW are contained in the
union

GW ∪G1,W ∪ EP
W ∪ EQ

W .

Let us show that the pencil HW has no base points in these surfaces.
Let l1 be the class of the ruling of GW

∼= P1 × P1 that is contracted by ω2. Since

HW ∼ (π ◦ f ◦ ω1)
∗OP2(1)−GW −G1,W − EP

W −EQ
W ,

we obtain HW |GW
∼ l1. Therefore, either two different elements of the pencil HW do not

have intersection points in GW , or all of them contain one and the same ruling of class
l1. The latter case is impossible, because the proper transforms of elements of H on X̄1

are tangent to each other along L̄1 with multiplicity 2. Therefore, the pencil HW has no
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base points in GW . Also, we have

HW |G1,W
∼ 0,

which implies that the surface G1,W is disjoint from a general member of the pencil HW .
In particular, HW has no base points in G1,W .

Arguing as in the proof of Lemma 4.16, we see that the pencil HW does not have base
points in the surfaces EP

W and EQ
W outside the curves EP

W ∩GW , EP
W ∩G1,W , EQ

W ∩GW ,

and EQ
W ∩ G1,W . But we already know that HW has no base points in GW and G1,W .

This shows that HW is base point free. In particular, the rational map p̌1 ◦ g1 ◦ ω2 is a
morphism.

Observe that the restrictions

HW |GW
∼ G1,W |GW

∼ l1

lie in the fibers of the morphism ω2. Therefore, the proper transform HX̂1
of the pencil

HX̌1
on the threefold X̂1 is base point free, and the surface Ĝ1 is disjoint from its general

member. This shows that HX̌1
is base point free, so that p̌1 is a morphism. �

Let us describe the fibers of p̌1 over the points in the curve Z1. Denote by ĒP
1 and ĒQ

1

the proper transforms on X̄1 of the surfaces EP
1 and EQ

1 , respectively. Similarly, denote

by ÊP
1 and ÊQ

1 the proper transforms on X̂1 of the surfaces EP
1 and EQ

1 , respectively.

Finally, denote by ĚP
1 and ĚQ

1 the proper transforms on X̌1 of the surfaces EP
1 and EQ

1 ,
respectively. One has

ĚP
1 ∩ ĚQ

1 = L̂1.

Moreover, the surfaces ĚP
1 and ĚQ

1 intersect transversally along the curve L̂1 outside the
singular point Ξ1. Furthermore, one has

p̌−1
1 (Z1) = ĚP

1 ∪ ĚQ
1 .

The curve L1 intersects each of the divisors EP
1 and EQ

1 transversally at a single point.
Denote by MP and M ′

P the two rulings of EP
1
∼= P1 × P1 that pass through the intersec-

tion point L1 ∩ EP
1 , and denote by MQ and M ′

Q the two rulings of EQ
1

∼= P1 × P1 that

pass through the intersection point L1 ∩ EQ
1 . Let M̌P , M̌

′
P , M̌Q and M̌ ′

Q be the proper

transforms on X̌1 of the curves MP , M
′
P , MQ and M ′

Q, respectively. Then the curves M̌P ,

M̌ ′
P , M̌Q and M̌ ′

Q pass through the singular point g1(Ĝ1), and are mapped by p̌1 to the
nodal point ξ1 of the curve C1. Since

KX̂1
∼Q g

∗
1KX̌1

+
1

2
Ĝ1,

one has

−KX̌1
· M̌P = −KX̌1

· M̌ ′
P = −KX̌1

· M̌Q = −KX̌1
· M̌ ′

Q =
1

2
.

This shows that M̌P + M̌ ′
P + M̌Q+ M̌ ′

Q is a scheme theoretic fiber of p̌1 over ξ1. All other
fibers of p̌1 over the points of Z1 are described by the following remark.
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Remark 4.21. The commutative diagram (4.19) gives the commutative diagram

EP
W

ω1

  ❇
❇❇

❇❇
❇❇

❇
ω2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

ÊP
1

g1
��

ĒP
1

f1
��

ĚP
1

p̌1 !!❈
❈❈

❈❈
❈❈

❈
EP

1

p1
}}④
④
④
④

Z1

Here we denote the restrictions of the morphisms ω1, ω2, g1, f1, p̌1, and the rational map
p1 to the corresponding surfaces by the same symbols for simplicity. The rational map p1
is the linear projection of the surface EP

1 identified with a quadric in P3 from a line that is
tangent to it at the point P1 = L1 ∩EP

1 (cf. the proof of Lemma 4.20). The morphism f1
is the blow up of the point P1, the morphism ω1 is the blow up of the point L̄1 ∩ ĒP

1 , the
morphism ω2 is an isomorphism. The morphism g1 is the contraction of the (−2)-curve

Ĝ1 ∩ ÊP
1 to the node Ξ1 of the surface Ě

P
1 . By construction, p̌1(Ξ1) = ξ1, and the fiber of

p̌1 over ξ1 is M̌P ∪ M̌ ′
P . The fibers of p̌1 over all other points in Z1 are smooth rational

curves. A similar description applies to the surfaces EQ
1 , Ē

Q
1 , E

Q
W , ÊQ

1 , and Ě
Q
1 .

Let M̂P , M̂
′
P , M̂Q and M̂ ′

Q be the proper transforms on X̂1 of the curves MP , M
′
P , MQ

and M ′
Q, respectively. The curves M̂P , M̂

′
P , M̂Q and M̂ ′

Q are pairwise disjoint, and each

of them is disjoint from the curve L̂1.

Lemma 4.22. Each of the normal bundles NM̂P /X̂1
, NM̂ ′

P
/X̂1

, NM̂Q/X̂1
and NM̂ ′

Q
/X̂1

is

isomorphic to OP1(−1)⊕OP1(−1).

Proof. Let M̄P , M̄
′
P , M̄Q and M̄ ′

Q be the proper transforms on X̄1 of the curves MP ,

M ′
P , MQ and M ′

Q, respectively. Then M̄P , M̄
′
P , M̄Q and M̄ ′

Q are disjoint from the curve

L̄1. Therefore, to prove the assertion of the lemma, it is enough to compute the normal
bundles of the latter four curves on X̄1.

One has NM̄P /Ē
P
1

∼= OP1(−1). On the other hand, we compute KX̄1
· M̄P = 0, so that

the assertion for the curve M̄P follows from Lemma 4.5. For the curves M̄ ′
P , M̄Q and M̄ ′

Q

the argument is similar. �

By Lemma 4.22, we can make simultaneous Atiyah flops in the curves M̂P , M̂
′
P , M̂Q

and M̂ ′
Q. Let φ : X̂1 99K X̄2 be the composition of these four flops.

Let ω̂1 be the blow up of the curves M̂P , M̂
′
P , M̂Q, and M̂

′
Q. Denote by NP , N

′
P , NQ,

and N ′
Q the exceptional surfaces of ω̂1 that are mapped to the curves M̂P , M̂

′
P , M̂Q, and

M̂ ′
Q, respectively. Then there is a commutative diagram

Ŵ
ω̂1

��❅
❅❅

❅❅
❅❅

❅
ω̂2

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

X̄2 X̂1
φ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴
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where ω̂2 is the contraction of the surfaces NP , N
′
P , NQ, and N

′
Q to smooth rational curves

contained in the smooth locus of X̄2.
Let fξ1 : U2 → U1 be the blow up of the point ξ1. Denote by T2 the exceptional divisor

of the blow up fξ1 , and by Z2 and C2 the proper transforms of the curves Z1 and C on
the surface U2, respectively. Note that the curves C2 and Z2 are disjoint. Furthermore,
let p̄2 : X̄2 99K U2 be the resulting rational map. We have constructed the following
commutative diagram

(4.23) Ŵ
ω̂2

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ ω̂1

��❅
❅❅

❅❅
❅❅

❅

X̄2

p̄2

��
✤
✤
✤
✤
✤
✤
✤

X̂1

g1

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
φ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X̌1

p̌1
��

U2

fξ1 // U1

Lemma 4.24. The rational map p̄2 is a morphism.

Proof. Let BU1
be the linear subsystem in |f ∗

ξOP2(2)−Z1| consisting of all curves that pass
through the point ξ1. Note that the base locus of BU1

consists of the point ξ1. Moreover,
the point ξ1 is a scheme theoretic intersection of curves in BU1

.
Denote by BX̌1

the proper transform of BU1
on X̌1 via p̌1. Then the base locus of BX̌1

consists of the curves M̌P , M̌
′
P , M̌Q, and M̌ ′

Q. Moreover, the union of these curves is a
scheme theoretic intersection of surfaces in BX̌1

.
Denote by BX̄2

the proper transform of BX̌1
on the threefold X̄2. To prove that p̄2 is

a morphism, it is enough to show that BX̄2
is base point free. Denote by BX̄1

, BX̂1
and

BŴ the proper transforms of BX̌1
on the threefolds X̄1, X̂1 and Ŵ , respectively. To show

that BX̄2
is base point free, let us describe the base loci of BX̄1

, BX̂1
and BŴ .

We claim that the base locus of BX̄1
consists of the curves M̄P , M̄

′
P , M̄Q, and M̄

′
Q. We

already know that these curves are contained in the base locus. On the other hand, the
base locus of BX̂1

is contained in the union of the curves M̂P , M̂
′
P , M̂Q and M̂ ′

Q, and the

surface Ĝ1. Thus, the base locus of BX̄1
consists of the curves M̄P , M̄

′
P , M̄Q and M̄ ′

Q, and

a (possibly empty) subset of Ḡ1. Using Lemma 3.9, we obtain

BX̄1
∼ (π ◦ f ◦ f1)

∗OP2(2)− 2Ḡ1 − ĒP
1 − ĒQ

1 .

This gives

BX̄1
|Ḡ1

∼ 2L̄1 + 2t,

where t is the class of a ruling of Ḡ1
∼= F1. By Lemma 3.9, the restriction BX̄1

|Ḡ1
does

not have base curves that are mapped dominantly to the curve L1 by f1. In particular, a
general surface in BX̄1

is disjoint from the curve L̄1. On the other hand, the four points
M̄P ∩Ḡ1, M̄

′
P ∩Ḡ1, M̄Q∩Ḡ1 and M̄

′
Q∩Ḡ1 are contained in the base locus of the restriction

BX̄1
|Ḡ1

. This implies that BX̄1
|Ḡ1

is a pencil whose base locus consists of exactly these
four points. In particular, the base locus of BX̄1

consists of the curves M̄P , M̄
′
P , M̄Q, and

M̄ ′
Q.
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Since a general surface in BX̄1
is disjoint from L̄1, we see that the base locus of BX̂1

consists of the curves M̂P , M̂
′
P , M̂Q, and M̂ ′

Q. By the same reason, we see that the

restriction of BX̂1
to Ĝ1

∼= P2 is a pencil of conics that pass through the four points

M̂P ∩ Ĝ1, M̂
′
P ∩ Ĝ1, M̂Q ∩ Ĝ1, and M̂

′
Q ∩ Ĝ1. In particular, the four points

M̂P ∩ Ĝ1, M̂ ′
P ∩ Ĝ1, M̂Q ∩ Ĝ1, M̂ ′

Q ∩ Ĝ1

are in general position.
Computing the classes of the restrictions of the linear system BŴ to the exceptional

divisors NP , N
′
P , NQ, and N ′

Q, we see that they all lie in the fibers of ω̂2. This shows
that both linear systems BŴ and BX̄2

are base point free. Thus, we proved that p̄2 is a
morphism. �

Let Ḡ2, Ē
P
2 and ĒQ

2 be the proper transforms on X̄2 of the surfaces Ĝ1, Ê
P
1 and ÊQ

1 ,

respectively. Then ĒP
2 (resp., ĒQ

2 ) is isomorphic to F1 since it is obtained from the surface

ÊP
1 (resp., ÊQ

1 ) by blowing down two (−1)-curves M̂P and M̂ ′
P (resp., M̂Q and M̂ ′

Q) as a

result of flopping them (cf. Remark 4.21). Similarly, Ḡ2 is a smooth del Pezzo surface of

degree 5 since it is obtained from the surface Ĝ1
∼= P2 by blowing up four points

M̂P ∩ Ĝ1, M̂ ′
P ∩ Ĝ1, M̂Q ∩ Ĝ1, M̂ ′

Q ∩ Ĝ1,

which are in general position (see the proof of Lemma 4.24).

We know that the preimage of Z2 via p̄2 is the union of the surfaces ĒP
2 and ĒQ

2 . These
surfaces intersect transversally along the curve that is a unique (−1)-curve on each of

them. Moreover, the restrictions p̄2|ĒP
2
: ĒP

2 → Z2 and p̄2|ĒQ
2

: ĒQ
2 → Z2 are just natural

projections of F1 to P1. In particular, the curve Z2 is contained in the degeneration curve
of the conic bundle p̄2.

By construction, the preimage of the curve T2 via p̄2 is the surface Ḡ2, and the induced
map p̄2|Ḡ2

: Ḡ2 → T2 is a conic bundle with three reducible fibers. In particular, the curve
T2 is not contained in the degeneration curve of the conic bundle p̄2, so that the latter
degeneration curve is Z2 ∪ C2. Note that the fibers of p̄2 over the two points in C2 ∩ T2
must be reducible. Also the fiber of p̄2 over the point T2 ∩ Z2 is reducible. Thus, these
three fibers are all reducible fibers of p̄2 over T2.

There are contractions fP2 : X̄2 → XP
2 and fQ2 : X̄2 → XQ

2 of the surfaces ĒP
2 and ĒQ

2

to the curves contained in the smooth loci of the threefolds XP
2 and XQ

2 , respectively.

Let pP2 : X
P
2 → U2 and pQ2 : XQ

2 → U2 be the resulting morphisms. Then there is a
commutative diagram

(4.25) X̄2

p̄2

��

fP2

  ❆
❆❆

❆❆
❆❆

❆
fQ
2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

XQ
2

pQ
2   ❇

❇❇
❇❇

❇❇
❇

XP
2

pP2~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

U2

Corollary 4.26. The curve C2 is the degeneration curve of both conic bundles pP2 and pQ2 .
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Gluing together the commutative diagrams (4.19), (4.23), and (4.25), we obtain a com-
mutative diagram

Ŵ
ω̂2

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ ω̂1

  ❆
❆❆

❆❆
❆❆

❆ W
ω2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ω1

��❅
❅❅

❅❅
❅❅

❅

X̄2

p̄2

��

fP
2

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅

fQ
2

��✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄

X̂1

g1

''PP
PPP

PPP
PPP

PPP
PP

φ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ X̄1

f1

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
ψ

oo❴ ❴ ❴ ❴ ❴ ❴ ❴

X̌1

p̌1

��

X1
σoo❴ ❴ ❴ ❴ ❴ ❴

p1

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

f

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

XQ
2

pQ
2

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

XP
2

pP
2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

, X0

π
��

U2

fξ1 // U1

fξ
// P2

. Now we are ready to give

Proof of Theorem 4.2. Note that Constructions I, II and III are local over the base of the
conic bundle. Thus, they are applicable not only to the the conic bundle π but also to
any other conic bundle which is obtained from π : X0 → P2 by a birational transformation
that is local over the base, provided that they are carried out over neighborhoods of points
of the base not influenced by this transformation.

We start with the conic bundle π : X0 → P2. Keeping in mind Proposition 3.2 and
applying Construction I in neighborhoods of points of P2 where the curve C has a node and
over which the fiber of π contains a singular point ofX0, we obtain the birational morphism
̺n : Un → P2. Applying Construction II in neighborhoods of points of Un where the proper
transform of C has cusps, we obtain the birational morphism ̺c : Uc → Un. Finally,
applying Construction III in neighborhoods of points of Uc where the proper transform
of C has tacnodes, we obtain the birational morphisms ̺t : Ut → Uc and ̺

′
t : U → Ut. We

put

̺ = ̺′t ◦ ̺t ◦ ̺c ◦ ̺n.

We denote by ρ : V 99K X0 the birational map provided by Constructions I, II and III.
Choosing the conic bundle p2 : X2 → U2 after performing Constructions I or II, and
choosing any of the conic bundles pP2 : X

P
2 → U2 or pQ2 : X

Q
2 → U2, we finally obtain a

conic bundle ν : V → U . This completes the diagram (4.1).
We already know that the threefold V and the surface U are smooth. Also, we know

from Lefschetz theorem that rk Pic(X) = 1, so that rk Cl(X) = 1 by Q-factoriality
assumption. Keeping track of the blow ups we make in course of our construction, we see
that at the starting point we have an equality rk Cl(X0/P

2) = 1, and Constructions I, II
and III preserve this equality. At the end of the day we arrive to smooth varieties V and
U , and thus conlcude that

rk Pic(V/U) = rk Cl(V/U) = 1.
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This means that ν is a standard conic bundle. Since the divisor −KV is ν-ample and U
is an projective surface, we see that V is also projective (although a result of a flop may
a priori be not projective).

Other assertions of the theorem hold by construction. �

Constructions I, II and III are analogues of the constructions in the proof of [19, Propo-
sition 2.4]

5. Irrational quartic double solids

The main goal of this section is to prove Theorem 1.2. The auxiliary goal is to show
that Conjecture 1.9 follows from Conjecture 2.2. To achieve these goals, we need the
following simple result.

Proposition 5.1. Let U be a smooth surface, and let ∆ be a reduced curve in U . Suppose
that

∆ ∼ −2KU ,

the curve ∆ is not a smooth rational curve, and ∆ satisfies conditions (A) and (B) in
Corollary 2.1. Then −KU is numerically effective (nef).

Proof. Suppose that −KU is not nef. Then there is an irreducible curve ∆1 ⊂ U such
that ∆ ·∆1 < 0. This, in particular, means that ∆1 is an irreducible component of ∆.

We claim that ∆ is a reducible curve. Indeed, if ∆ = ∆1, then ∆2 < 0. On the other
hand, the adjunction formula implies that

2pa(∆)− 2 = ∆2 +KU ·∆ = ∆2 −
∆2

2
=

∆2

2
,

where pa(∆) = 1 − χ(O∆) is the arithmetic genus of ∆. Thus, if ∆ is irreducible, then
its arithmetic genus must be zero, so that ∆ is a smooth rational curve. The latter is
impossible, because ∆ satisfies condition (B) of Corollary 2.1.

We see that ∆ is reducible, and ∆1 is its irreducible component. Denote the union of
its remaining irreducible components by ∆2, so that ∆ = ∆1 ∪∆2. Then

0 > ∆ ·∆1 = ∆2
1 +∆1 ·∆2.

On the other hand, the adjunction formula gives

2pa(∆1)− 2 = ∆2
1 +KU ·∆1 = ∆2

1 −

(

∆1 +∆2

2

)

·∆1 =
∆2

1

2
−

∆1 ·∆2

2
,

so that

4pa(∆1)− 4 = ∆2
1 −∆1 ·∆2.

Thus, if pa(∆1) > 0, then

0 6 4pa(∆1)− 4 = ∆2
1 −∆1 ·∆2 < −2∆1 ·∆2,

which gives a contradiction with ∆1 ·∆2 > 0. Hence, we have pa(∆1) = 0, which implies
that ∆1 is a smooth rational curve. Therefore

−4 = ∆2
1 −∆1 ·∆2

by the adjunction formula. Since ∆2
1 + ∆1 · ∆2 < 0 by assumption, we have ∆2

1 < −2.
Thus

−4 = ∆2
1 −∆1 ·∆2 < −2−∆1 ·∆2,
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which gives ∆1 · ∆2 6 1. This is impossible, because ∆ satisfies conditions (A) and (B)
of Corollary 2.1. �

Now let τ : X → P3 be a double cover branched over a nodal quartic surface S. To
prove Theorem 1.2 and to show that Conjecture 1.9 follows from Conjecture 2.2, we must
prove that X is irrational in one of the following cases:

• when S has at most six nodes;
• or when X is Q-factorial and Conjecture 2.2 is true.

If S is smooth, then X is irrational by [25, Corollary 4.7(b)]. Thus, we may assume
that S is singular. If S has at most five nodes, then X is Q-factorial by Theorem 1.8.
Similarly, if S has exactly 6 nodes, then X is Q-factorial by Theorem 1.8 with the only
exception when X is birational to a smooth cubic threefold in P4, and thus irrational
by [6, Theorem 13.12]. Therefore, we may also assume that X is Q-factorial. Thus, we
can apply all results of Sections 3 and 4 to X .

By Theorem 4.2, the threefold X is birational to a smooth threefold V with a structure
of a standard conic bundle ν : V → U and there exists a birational morphism ̺ : U → P2

that is a composition of |Sing(S)| − 1 blow ups. Denote by ∆ the degeneration curve of
the conic bundle ν. In particular, there exists a pair (∆′, I) of a connected nodal curve
∆′ and an involution I on it such that ∆ ∼= ∆′/I, the nodes of ∆′ are exactly the fixed
points of I, and I does not interchange branches at these points. One has ∆ ∼ −2KU by
Theorem 4.2(iii).

Corollary 5.2. Conjecture 2.2 implies Conjecture 1.9.

Proof. We have 2KU + ∆ ∼ 0, so that the linear system |2KU +∆| is not empty. Thus,
the irrationality of X follows from Conjecture 2.2. �

By Corollary 2.1, the curve ∆ satisfies its conditions (A) and (B). Thus, −KU is nef
by Proposition 5.1. Put d = K2

U > 0. Then

d = 10−
∣

∣Sing(S)
∣

∣

by Theorem 4.2(i).

Now we are ready to prove Theorem 1.2. Until the end of the section we assume that S
has at most 6 nodes, so that d > 4. In particular, U is a weak del Pezzo surface (see [9]).

Lemma 5.3. The curve ∆ is connected.

Proof. Since −KU is nef and big, we have h1(OU(−2KU )) = 0 by the Kawamata–Viehweg
vanishing theorem (see [14]). This implies connectedness of ∆, because ∆ ∼ −2KU . �

We plan to apply Theorem 2.6 to V . Unfortunately, the curve ∆ may not satisfy
condition (S). Luckily, we can explicitly describe each case when ∆ does not satisfy it.
This description is given by the following three lemmas.

Lemma 5.4. Let E be a (−2)-curve on U . Then either E is contracted by ̺ to a point,
or ̺(E) is a line in P2. Moreover, either E is disjoint from ∆, or E is an irreducible
component of ∆. Furthermore, if E is an irreducible component of ∆, then it intersects
∆ − E by two points. In particular, if ∆ satisfies condition (S) of Theorem 2.6, then E
is disjoint from ∆.
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Proof. If E is not contracted by ̺ to a point, then ̺(E) is a line, because d > 4. If E is
not an irreducible component of the curve ∆, then

∆ · E = −2KU · E = 0,

which implies that E is disjoint from ∆. If E is an irreducible component of ∆, then

(∆−E) · E = (−2KU −E) ·E = 2.

Since ∆ is nodal, this means that ∆−E intersects E by two points. In particular, ∆ does
not satisfy condition (S) of Theorem 2.6. �

Lemma 5.5. At most two irreducible components of the curve ∆ are (−2)-curves. More-
over, all other (−2)-curves on S are disjoint from ∆. Furthermore, for the curve ∆ we
have only the following possibilities:

• the curve ∆ contains a unique (−2)-curve E in S and

∆ = E + Ω,

where Ω is a nodal curve such that ̺(Ω) is a (possibly reducible) quintic curve,
̺(E) is a line, and E ∩ Ω consists of two points;

• the curve ∆ contains two (−2)-curves E1 and E2 in S, the curves E1 and E2 are
disjoint, and

∆ = E1 + E2 +Υ,

where Υ is a nodal curve such that ̺(Υ) is a (possibly reducible) quartic curve,
̺(E1) and ̺(E1) are lines, and each intersection E1 ∩Υ or E1 ∩Υ consists of two
points.

Proof. Suppose that at least three irreducible components of ∆ are (−2)-curves. Denote
them by E1, E2, and E3. Then ̺ maps them to lines in P2 by Lemma 5.4. This implies
that ̺ blows up at least 6 points on these lines, which is impossible, because we assume
that d > 4. This shows that at most two irreducible components of the curve ∆ are
(−2)-curves. All remaining assertions easily follows from Lemma 5.4. �

Lemma 5.6. Suppose that ∆ does not satisfy condition (S) of Theorem 2.6, i. e. there is
a splitting ∆ = ∆1 ∪∆2 such that ∆1 ·∆2 = 2. Then either ∆1 or ∆2 is a (−2)-curve.

Proof. We claim that ∆1 and ∆2 are linearly independent in Pic(S) ⊗ Q. Indeed, if
∆1 ∼Q λ∆2 for some rational number λ, then

2 = ∆1 ·∆2 = λ∆2
2,

which means that λ = 1 or λ = 2. Moreover, −KU ∼Q
λ+1
2
∆2 and

4 6 (−KU)
2 =

(

λ+ 1

2

)2

∆2
2 =

2

λ

(

λ+ 1

2

)2

,

which is impossible for λ = 1 or λ = 2.
Applying the Hodge index Theorem, we get

∣

∣

∣

∣

∆2
1 ∆1∆2

∆1∆2 ∆2
1

∣

∣

∣

∣

< 0,

which means that

(5.7) ∆2
1∆

2
2 < (∆1∆2)

2 = 4.
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We claim that an arithmetic genus of either ∆1 or ∆2 is non-positive. Indeed, otherwise

0 6 2pa(∆i)− 2 = ∆i(∆i +KU) =
∆2
i

2
−

∆1∆2

2
=

∆2
i

2
− 1.

This means that ∆2
i > 2, and thus ∆2

1∆
2
2 > 4, which contradicts (5.7).

Without loss of generality, we may assume that pa(∆1) 6 0. Then ∆2
1 6 −2 by the

adjunction formula. Thus, if ∆1 is irreducible, then we are done. Therefore, we assume
that ∆1 has at least two irreducible components. Then the degree of the curve ̺(∆1) is
at least two, and thus the degree of the curve ̺(∆2) is at most four. On the other hand,
we have

∆2
2 > ∆2

2 +∆2
1 + 2 = (∆1 +∆2)

2 − 2 = (−2KU)
2 − 2 > 14,

which implies that the degree of the curve ̺(∆2) is exactly four, ∆1 has exactly two
irreducible components, and each of these components is mapped by ̺ to a line in P2.
This is impossible, because

2 = ∆1 ·∆2 > ̺(∆1) · ̺(∆2)− (9− d) = d− 1 > 3,

which is absurd. �

Since d > 4, the linear system |−KU | is base point free and gives a morphism φ : U → Pd.
Denote by U ′ the image of U via φ. Then U is a del Pezzo surface with du Val singularities,
and φ induces a birational morphism ϕ : U → Y that contracts all (−2)-curves on U to
singular points of the surface Y . Since d > 4, the surface Y is an intersection of quadrics
in Pd (see, for example, [9]).

Put ∇ = ϕ(∆). Then ∇ ∈ | − 2KY |. By Lemma 5.5, the curve ∇ is connected and
nodal. Moreover, it follows from Lemma 5.5 and Remark 2.9 there exists a pair (∇′, J)
of a connected nodal curve ∇′ and an involution J on it such that ∇ ∼= ∇′/J , the nodes
of ∇′ are exactly the fixed points of J , the involution J does not interchange branches at
these points, and

Prym (∆′, I) ∼= Prym (∇′, J) .

Since U is rational, the exact sequence

0 → OU → ωU ⊗OU (∆) → ω∆ → 0

implies that there is a surjection

H0(−KU) = H0(KU +∆) ։ H0(K∆),

so for the anticanonical map φ one has

φ|∆ = κ∆,

where κ∆ is a canonical map of the curve ∆. Therefore, we see that ∇ is a connected nodal
curve canonically embedded into Pd, which is an intersection of quadrics. In particular,
∇ is not hyperelliptic by Remark 2.5. Moreover, for every splitting ∇ = ∇1 ∪ ∇2, the
intersection ∇1 ∩ ∇2 consists of at least 4 points. This follows from Remark 2.1 and
Lemmas 5.5 and 5.6. Thus, Prym(∇′, J) is not a sum of Jacobians of smooth curves by
Corollary 2.7. On the other hand, Theorem 2.4 implies that

J(V ) ∼= Prym (∆′, I) ∼= Prym (∇′, J) ,

where J(V ) is the intermediate Jacobian of the threefold V . This shows that V is irrational
by [6, Corollary 3.26] and completes the proof of Theorem 1.2.
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6. Rational quartic double solids

In this section, we prove Theorem 1.5. Let τ : X → P3 be a double cover branched over
a nodal quartic surface S. Suppose that X is not Q-factorial. We are going to show that
X is rational unless it is described by Example 1.4.

Let f : X ′ → X be a Q-factorialization of the threefold X (see [15, Corollary 4.5]).
Then

(6.1) −KX′ ∼ f ∗ (2τ ∗ (OP3(1))) ,

and X ′ has at most nodes as singularities.
SinceKX′ is not nef, the cone NE(X ′) has an extremal ray that has negative intersection

with KX′ . Let η : X ′ → Y be a contraction of this extremal ray (see [22, Corollary 2.9]).
Since X is not Q-factorial, Y is not a point. If η is a conic bundle, then (6.1) implies that
the pull-back of a plane in P3 via f ◦ τ is a section of η, so that X is rational. Similarly,
if η is a del Pezzo fibration, then (6.1) implies that the canonical class of its general fiber
is divisible by 2 in the Picard group, so that the general fiber of η is a quadric surface
by the adjunction formula, and X is rational in this case as well. Hence, to complete the
proof, we may assume that η is birational. Then it follows from (6.1) and [7, Theorem 5]
that η is a blow up of a smooth point in Y . Let us denote this point by P .

The divisor −KY is nef by (6.1). Moreover, we have

(−KY )
3 = (−KX′)3 + 8,

which implies that −KY is big. By [22, Theorem 2.1], the linear system | − nKY | is base
point free for some n > 0, and it gives a birational morphism φ : Y → Z such that Z is a
Fano threefold with canonical Gorenstein singularities. Moreover, [22, Theorem 2.1] also
implies that −KZ is divisible by 2 in Pic(Z). Since

(−KZ)
3 = (−KY )

3 = 24,

the threefold Z must be isomorphic to a cubic threefold in P4 (see, for example, [17,
Theorem 3.4]). In particular, if Z is singular, then X is rational. Thus, to complete the
proof, we may assume that Z is smooth. Then φ is an isomorphism, so we may assume
that Z = Y . Now (6.1) implies the existence of a commutative diagram

X ′ η
//

f
��

Y

γ
��
✤
✤
✤

X
τ // P3

where γ is a linear projection from the point P . Since X is nodal, the cubic Y contains
exactly six lines that pass through P , and f is the contraction of their proper transforms.
This means that X is described by Example 1.4.
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