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STABLE POLARIZED DEL PEZZO SURFACES

IVAN CHELTSOV AND JESUS MARTINEZ-GARCIA

ABSTRACT. We give a simple sufficient condition for K-stability of polarized del Pezzo surfaces.

1. INTRODUCTION

In recent years the notion of K-stability has been of great importance in the study of the
existence of canonical metrics on complex varieties. This is mainly because of the following

Conjecture (Yau-Tian—Donaldson). Let X be a smooth variety, and let L be an ample line
bundle on X. Then X admits a constant scalar curvature Kahler (cscK) metric in c¢1(L) if and
only if the pair (X, L) is K-stable.

In the case of toric surfaces, the conjecture follows from the classical results of Donaldson [9]
and recent results of Codogni and Stoppa [7]. It is known in different degrees of generality that
K-stability is a necessary condition for the existence of a cscK metric, with the most general
result due to Berman, Darvas and Lu [2]. To show that it is also a sufficient condition is currently
one of the main open questions in the field. For smooth Fano varieties polarized by anticanonical
line bundles, this was recently proved by Chen, Donaldson and Sun in [6].

The goal of this paper is to study K-stability of polarized smooth del Pezzo surfaces. This
problem is explicitly solved in the toric case by Donaldson [9]. Surprisingly, we do not know many
results about the non-toric case. By the famous theorem of Tian [13], all non-toric smooth del
Pezzo surfaces are Kahler-Einstein, so that they are K-stable for the anticanonical polarization.
Arezzo and Pacard’s results [I] imply the K-stability for many other polarizations. On the
other hand, one can use Ross and Thomas’s [I1, Example 5.30] to produce many K-unstable
polarizations on every smooth non-toric del Pezzo surface.

The main result of this paper is

Theorem 1.1. Let S be a smooth del Pezzo surface such that Kg < 2, and let L be an ample
Q-divisor on S. If —Kg — %‘fzg'LL is nef, then (S, L) is K -stable.

For each smooth del Pezzo surface of degree one or two, this result provides a closed subset
in its ample cone that consists of K-stable polarizations. This subset contains an anticanonical
divisor, so that Theorem [[.T] also implies the existence of K&hler-Einstein metrics on smooth del
Pezzo surfaces of degree one and two. The nefness condition in Theorem [Tl is easy to check,
because the Mori cones of these del Pezzo surfaces are generated by finitely many (—1)-curves.

For smooth del Pezzo surfaces of degree one, the assertion of Theorem [I.T] was recently proved
by Hong and Won in [I0] using a different approach.

The a-invariant of Tian, originally defined in terms of complex differential geometry, has an
algebraic formulation which we use to study the K-stability of the anticanonically polarized del
Pezzo surfaces. For a variety X and an ample Q-divisor L on it, we let

the log pair (X,AD) is log canonical
a(X,L):sup{)\eQ B pair ( ) 8 }6 ~0-

for every effective Q-divisor D ~g L
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While the a-invariant is very difficult to estimate for an arbitrary polarization, it is the only
effective invariant to provide sufficient condition for K-stability. In this article we will prove
Theorem [[T] using the following criterion of Dervan:

Theorem 1.2 ([8, Theorem 1.1]). Let X be a Fano variety with log canonical singularities, and
let L be an ample Q-divisor on it. Let v(L) = _KxLinLnﬂ Then (X, L) is K-stable provided that
(A) the Q-divisor —KX V(L)L is nef,
(B) and a(X, L) > 25v(L).

Namely, we will show that for smooth del Pezzo surfaces of degree one and two, the condi-
tion (B) in this theorem follows from the condition (A). The reader may wonder whether the
condition (B) in Theorem [[.21is redundant. In general, this is not the case:

Example 1.3. Let S be a smooth cubic surface in P? that does not contain Eckardt points,
and let E be a line in S. Let L = —Kg + zF, where x is a non-negative rational number such
that x < 1. Then L is ample and

—Kg- L _ 3+
L? 3 + 2z — a2
so that —Kg—% KS L[ is nef if and only if z < 2. On the other hand, we have (14+-2)E+C ~g L,
where C is a conic in | — Kg — F| that is tangent to £. This immediately gives a(S,L) < 3 szx
Thus, if % >r > %, then —Kg — £ KS L[, is nef, while a(S,L) < 2 fzg L

In this paper, we also prove the following negative result.

Theorem 1.4. Let S be a smooth del Pezzo surface such that Kg > 4, and let L be an ample
Q-divisor on S. Then a(S,L) < 2 f§§ L, Moreover, the equality holds if and only if Kg =4
and L € Q>0[ KS]

Hence Theorem [[.1] exhausts the application of Theorem to all smooth del Pezzo surfaces
other than cubic surfaces. Fortunately, we can still obtain partial results in the latter case.

Theorem 1.5. Let S be a smooth cubic surface in P2, and let E1, Eo, F3, E4, Es, Eg be disjoint
lines on the surface S. Let L = —Kg + fo 1 Ei, where x z's a non-negative rational number

such that x < 1. Then L is ample. Furthermore, if 0 < x < 10, then (S, L) is K -stable.

Since all smooth cubic surfaces are Kdhler-Einstein by Tian’s theorem [13], the K-stability of
the pair (S, L) in this theorem holds also for x = 0. Moreover, Arezzo and Pacard’s results [1]
imply the K-stability of the pair (S, L) in the case when z is sufficiently close to 1. Thus, one may
expect that the pair (S, L) is K-stable for all positive rational numbers x < 1. Unfortunately,
we were unable to prove this.

Let us describe the structure of this paper. In Section [2] we present some auxiliary results.
In Section [B] we give a very short proof of our Theorem [[I] for smooth del Pezzo surfaces of
degree one. In Section @ we prove Theorem [I.1] for smooth del Pezzo surfaces of degree two.
This section is the main part of the paper. Then we prove Theorem in Section Bl Finally,
we tackle Theorem [[4] in Section Bl Its proof involves two very technical inequalities which are
left to the Appendix [Al
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2. PRELIMINARIES

Let S be a smooth surface, let D be an effective (Q-divisor on the surface S, and let P be a
point in the surface S. Let D = 3., a;C;, where each C; is an irreducible curve on S, and each
a; is a non-negative rational number. We assume here that all curves C1, ..., C, are different.

Let m: S — S be a birational morphism such that S is also smooth. Then T is a composition
of n blow ups of smooth points. For each C;, denote by C its proper transform on S. Let
Fi,..., F, be m-exceptional curves. Then

T n
K§+Zai0i —l—ijFj ~Q W*(KS —|—D)
i=1 j=1
for some rational numbers b1, ...,b,. Suppose, in Naddition, that Z:Zl 5@ + 2?21 F} is a divisor
with simple normal crossings (in particular each C; is smooth).
Definition 2.1. The log pair (S, D) is log canonical (respectively Kawamata log terminal) at
a point P € S if the following two conditions are satisfied:
e a; < 1 (respectively a; < 1) for every C; such that P € Cj,
e b; <1 (respectively b; < 1) for every Fj such that w(F;) = P.

This definition is independent on the choice of birational morphism 7: S — S. The log pair
(S, D) is said to be log canonical (respectively Kawamata log terminal) if it is log canonical
(respectively, Kawamata log terminal) at every point of S.

Remark 2.2. Let R be any effective Q-divisor on S such that R ~g D and R # D. Let
D.=(14¢)D —¢€R,

where € € Q>9. Then D, ~g D. Let ¢ be the greatest rational number such that D, is
effective. Then the support of D, does not contain at least one irreducible component of
Supp(R). Moreover, if the log pair (S, D) is not log canonical at P, and (S, R) is log canonical

at P, then the log pair (S, D,) is not log canonical at P, because
1 €0

D=—" D+

1+ ¢ ot 1+ ¢

The following result is well known and is very easy to prove.

R.

Lemma 2.3. Suppose that (S, D) is not log canonical at P. Then multp(D) > 1.
The following result is also well known (see [12], Corollary 3.12] or [4, Theorem 7).

Lemma 2.4. Suppose that (S, D) is not log canonical at P, the curve Cy is smooth at P, and
a1 < 1. Let A =3""_,a;C;. Then multp(Cy-A) > 1.
The following result plays an important role in the proof of Theorem [l

Theorem 2.5 ([4, Theorem 13]). Suppose that (S, D) is not log canonical at P, the curves Cy
and Cy are smooth at P and intersect each other transversally at P, a1 < 1 and ag < 1. Let
A=>"2a;Cp. Ifmultp(A) <1, then multp(Cr-A) > 2(1—a2) or multp(Cy-A) > 2(1—a1)

Let p: S — S be the blow up of a point P € S, and let F be the p-exceptional curve. Denote
by D the proper transform of the divisor D on the surface S via p. Then

Ks;+D+ (multp(D) - 1)F ~g p*(Ks + D).

By Definition 21} if (S, D) is not log canonical at P, then (S, D 4 (multp(D) — 1)F) is not log
canonical at some point of the curve F.
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3. DEL PEZZO SURFACES OF DEGREE ONE

Let S be a smooth del Pezzo surface such that Kg =1 and L be an ample Q-divisor on the
surface S. The goal of this section is to prove the following result:

Theorem 3.1. If —Kg — g—KE—LL is nef, then a(S, L) > %%ﬁ—L

Let us prove this result. Suppose that —Kg % =KoL T is nef. We can swap L with 2 fzg Ly
and assume that KS L 3 . Then
2
(3.1) (L-3(-Ks))-L=0,

and the class —Kg — L is nef. We have to show that a(S,L) > 1.
Let R=—Kg— L and ¢ = —Kg - R. Then € > 0, because R g 0 by (3I]). Let

gle)i,
if —.
3_61 e<2

Then v > 1. We will prove that «(S, L) > v by reductio ad absurdum.
Suppose that «(S, L) < 7. Then there exist a positive rational number A < 7 and an effective
Q-divisor D on S such that D ~g L, and (S, AD) is not log canonical at some point P € S.

Lemma 3.2. One has L g —3Kg.

Proof. By [3, Theorem 1.7], (S, Ks) > g Thus, if L ~g —2Kg, then (S, 2D) is log canonical,
which is impossible, because A < v < < by B2). 0

Let C be a curve in the pencil | — K 5\ that passes through the point P. Then C is irreducible.
Write D = aC + A, where a is a non-negative rational number, and A is an effective Q-divisor
whose support does not contain the curve C.

Lemma 3.3. One has a < %

Proof. Suppose that a > % Then it follows from (B.1]) that

ozL-(L—g(—KS)> :L(D—%C):L- ((a—%)C—i—A) > (a—%)L-C,

so that a = % and L-A =0, because L-C >0 and L-A > 0. Then A =0, because L is ample.
Thus, we have L ~q —%K s, which is impossible by Lemma O

If C' is smooth at P, then it follows from Lemma 2.4] that

1

X<C’-A:C-(D aC)=1—-R-C—a<1—-R-C=1-—g¢,

which gives e < 1 and v > A > = > %, which contradicts (3.:2). Thus, multp(C) = 2.
Let m = multp(A). Then2m < C-A=1—-¢ec¢—a<1l—a.

Corollary 3.4. One has a +2m < 1.

Let f: S — S be the blow-up at P, and let F' be its exceptional curve. Denote by C and A
the proper transforms on the surface S of the curve C and the divisor A, respectively. Then the
log pair (S, \aC +AA + (A(2a+m) —1)F) is not log canonical at some point Q € F. Since a < %
by Lemma B3 and a + 2m < 1 by Corollary B4l we have 2a +m < % Then A(2a+m)—1 < 1,
because A < 2 by (B:2). We also have A\(2a +m) — 1 > 0 by Lemma 23]



STABLE POLARIZED DEL PEZZO SURFACES 5

Lemma 3.5. The point Q) is contained in the curve C.
Proof. fQ ¢ C, then £ > 152 > m = F-A > 1 > 5 by Lemma[24] Corollary B4 and (32). O

By Lemma B3 and [32), we have Aa < 1. Observe that C'- F = 2 and the curve C is smooth.
Thus, applying Lemma 2.4] we get

1<C- ()\&+()\(2a+m)—1)F> =ANC-A—=2m)+2\2a+m)—2=A1—€+3a)— 2.

Now using e > 0 and a < Z, we obtain 3 < A(1+3a —€) < A (3 —¢) < 3 by B2).
The obtained contradiction completes the proof of Theorem 3.1

4. DEL PEZZO SURFACES OF DEGREE TWO

Let S be a smooth del Pezzo surface such that Kg = 2 and L be an ample Q-divisor on the
surface S. In this section we prove the following result:

Theorem 4.1. If —Kg — % KS LT is nef, then (S, L) > 2 KS L

As in the proof of Theorem [3.I], we may assume that KS L — 3 Then
2
(4.1) (L-3(-Ks))-L=0.

Suppose that —Kg — L is nef. To prove Theorem 1] we have to show that «(S,L) > 1
Let R=—Kg— L and ¢ = —Kg - R. Then € > 0, because R g 0 by (&I]). Let

12
ﬁ lf € 2 1,
(4'2) Y= 12
12 — €
Then v > 1. We will prove that «(S, L) > v by reductio ad absurdum.

Suppose that «(S, L) < 7. Then there exist a positive rational number A < v and an effective
Q-divisor D on S such that D ~g L, and (S, AD) is not log canonical at some point P € S.

Lemma 4.2. One has L 3q —%Ks.

if e <1.

Proof. By [3, Theorem 1.7], a(S, —Kg) > % Thus, if L ~g — Kg, then (S, 8D) is log canonical,
which is impossible, because A <y < £ < § by (@2). O
Lemma 4.3. Suppose that D = Zi:l a;C; + A, where ay,...,a, are non-negative rational
numbers, C1,...,Cy are irreducible curves on the surface S such that
k
> Ci~g —Ks,

i=1
and A is an effective Q-divisor on the surface S whose support does not contain any curve among
the curves C1,...,Cy. Then a, < % for some r.

Proof. Suppose that a; > %, e, 2 % Then it follows from (4.1)) that

k k
2 2 2
=L- —Z( = — P — .C A S . _Z O >
0=L-(L-3(-Ks)) ;le (a—3)L-CitL-az ;le (a=3)L-Ci>0
which implies that a; = -+ = ap = % and L-A =0. Then A = 0, since the divisor L is ample
and L ~g —2Kyg, which contradicts Lemma O
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Let f: S — S be a blow-up of the point P, let F' be its exceptional curve, and let D be the
proper transform on S of the divisor D. Then (S, \D + (Amultp(D) — 1) F) is not log canonical
at some point () € F'. Note that Amultp(D) > 1 by Lemma 2.3

Lemma 4.4. One has multp(D) < 2 — € and Amultp(D) < 2.

Proof. Let C be a general curve in |— Kg| that passes through P. Then multp(D) < D-C = 2—e¢,
which implies that Amultp(D) < 2 by (4.2]). O

Let g: S — S be the blow-up at the point @, and let GG be its exceptional curve. Denote by
F and D the proper transforms on S of the curve F and the divisor D respectively. Then the
log pair (S, AD + (Amultp(D) — 1)F + (A(mult p(D) + multg (D)) — 2)G) is not log canonical at
some point O € G. Note that it follows from Lemma 23] that Amultp (D) + Amultg (D) > 2.

The linear system | — Kg| gives a double cover 7: S — P? branched over a smooth quartic
curve Cy C P2, Thus, if 7(P) € Cy, then | — Kg| contains a unique curve that is singular at P.

Lemma 4.5. Suppose that w(P) is contained in the curve Cy. Let T be the unique curve in the
linear system | — Kg| that is singular at the point P. Then T is reducible.

Proof. Suppose that T is irreducible. Write D = aT + A, where a is a non-negative rational
number, and A is an effective Q-divisor whose support does not contain 7. By Lemma [.3], we
have a < % Let m = multp(A). Then

(4.3) IM<T - A=2—€—2a<2—e

Denote by T and A the proper transforms on S of the curve T" and the divisor A, respectively.
If Q ¢ T, then Lemma 24l gives + < F - A =m < 1— %, which contradicts @2). Then Q € T.

Since T is irreducible, it has either a nodal point at P or a cuspidal point. In particular, the
curve T is smooth. If T has a nodal point at P, then Lemma 4] gives

~ o~ ~ ~ 2
2—6—2@—2m:T-A>muth<T'A) >X—2a—m

sothat 2—e>2—€e—m > %, which contradicts (@2]). Thus, T has a cuspidal singularity at P.
Denote by T and A the proper transforms on S of the curve T and the divisor ﬁ, respectively.
Let m = multg(A). Then (S, \aT + AA + (A(2a+m) — 1)F + (A(3a + m+m) — 2)G) is not log
canonical at O. Using Lemmalﬂl and (IIZI) we get A(3a+m +m) < (§ —€) < 3, since a < 2.
IfO+#TNFNG, then 1— £ 5 < <G-A=m<m by Lemma 2.4 and ([@.2]), which is absurd
because m < 1 — § by ([&3). Thus, we have O =T N F N G. Then

1<T- <A£+(A(2a+m)_1)F+(A(3a+m+m)—2)c) —A2+3a—¢)—3

by Lemma [24] Since a < %, this gives 1 < A\(4 — €) — 3, which is impossible by (Z2). O
Lemma 4.6. The point w(P) is not contained in the curve Cy.

Proof. Suppose that 7(P) € C4. Let T be the curve in | — Kg| that is singular at the point P.
By Lemma [435] it is reducible, so that T' = L; + Lo, where L and Lo are irreducible smooth
curves such that L% = L% =—1,L1-Ly=2and P€ L1 NLy. Let e =L1- R and e = Lo - R.
Then € = €1 + €9, where €1 > 0 and €2 > 0, since R is nef.

Write D = a1Lq + asLs + A, where a1 and ao are non-negative rational numbers, and A is
an effective Q-divisor whose support contains neither L; nor Lo. Then a1 < % or ag < % by
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Lemma 4.3l Without loss of generality, we may assume that aq < % It follows from (4.1]) that

OZL‘<D—§(L1+L2)> =L- <(a1—§)L1+<a2—§>L2+A) -
2

= (a1—§>(1—61)—|—(a2—§>(1—62)—|—A-L> <a1—§>(1—61)+<a2—§>(1—62).

This gives us

4 2
(4.4) a1 + as < 3 §E + ar€1 + agen.
Let m = multp(A). Then we get two inequalities:
(4.5) l—e14+a; —2aa=A-Li1 >m

and 1—62—2&1 +as = A-Ly > m. Adding them, we get 2—¢ > aq —|—a2—|—2m so that m 1-—
Since a1 < 3, it follows from (5] that 2as < 1—€1 + a1 < 14+a1 < 3, so that ag < 6

Denote by Ll, L2 and A the proper transforms on S of L1, Lo and A, respectively. Then the
log palr (S NaiLi + AasLa + AA + ()\(al + az +m) — 1)F) is not log canonical at the point Q.
If Q ¢ L1 U Ly, then Lemma 24 and [@2) give m = A - F > % > % > %, which is impossible,
since m < 1 — 5. Thus, we have Q € El U Zg. IfQ ¢ Zl, then Lemma 2.4 gives

2
A
so that 1 — s + 2a9 — a1 > . Adding this inequality to (&.3]), we get 2 —€ > % + m = %, which
contradicts (42]). Thus, we see that @ € L1 Similarly, it can be shown that Q € L2
We have Q = F' N L1 N L2 Then L; is tangent to Lo at the point P. Let m = muth(A)
Then A - L1 > m and A - L2 m. This gives

{1—61+a1—2a2—m

N

—(al—l—ag—l—m)<E2-£:1—e2—2a1+a2—m

= m,
4.6 ~
(4.6) l—e—2a1+as—m=m

In particular, adding the two inequalities, we obtain
(4.7) 2—€>a;+ax+2m+2m.

Denote by L1, Lg, F and A the proper transforms of Ll, Lg, F and A on S respectively.
Then (S, Aai L1 + AazLa + AA + (A(a1 +ag +m) — 1) F + (M(2ay + 2as + m+m) — l)G) is not log
canonical at the point O. Moreover, we have 2a; + 2as + m+m < 1 — & + 2(a; + a2) by @).
Now using (@2), @), a1 < % and ap < 3, we get

2a1 +2a2 +m+m < 1 €+3(4 2+a +a > 3 3( a a >

<l—=+-(=—z¢ € 2] =3—=(e—aje; —azex) =
1 2 575373 1€1 + az€2 3 1€1 — a2€2

= Z — Z — e — e <3 — e —Zeg=3—Ze= <z <2
3—|—2<CL1 1>61—|—2 <a2 1>62 <3 261 462 <3 461 462 3 46 1 <

2
>

Ifo ¢ L1 ULsU F then Lemma 2.4 and (4.2)) give m = A-G > > 2=¢ which is impossible,
because m < m < — £ IfO = FNG, then Lemmaﬂglves (a1+a2+m) < G-A =1, so that
ai+ag+m+m > 2 Y ThlS together with (A7) imply 2—e > a1+a2+2m+2m > aj+ast+m—+m > /\,
which contradlcts (42]). Thus, we see that either O = L1 NGor O = L2 NG.
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Suppose that O = L1 NG. Then m = G- A > 5 — a1 by Lemma 2.4l Plugging this into ([4.6l),
we obtain 1 — e — 2a1 + ag = m +m > 2m > 2 Y —2a1, so that 1 — €3 + a9 > . But

3 . ~
X—(2a1+2a2+m+m) <L1-A:1—61+a1—2a2—m—m

by Lemma 2.4l so that 1 —e; + 3a; > % Adding these inequalities, we get 3a; +as +2 —€ > %
Now using a; < 2, az < 2 and (1), we get

d Batart2—e< Dyt <10+(4 e+ azes )
— a1 +a —e< —4a+ta—e< — — — —€etaje; +agen) —e=
)\ 1 2 3 1 2 3 3 3 1€1 2€2
4 5 .4 5 2 5 14 5 _14 5
= ——-eta a — — et t-e=——€— -6 < — ——¢
3 3CTUATMmES I TREeT AT 2T T AT 2N e

which implies that v > A > 522%—. This is impossible by (ZZ). We conclude that O # LiNG.
We have O = LQOG By (@.7), we also have 4m < 2m+2m a1 +azs+2m+2m < 2—¢€ s0

that m < 5. Then (IZEI) gives multo(AA) < A < 2 < 1. Thus, applying Theorem either
we obtain 2(— —az) < A -G =, or we obtain
(4.8) 2(;— (2(a1+a2)+m+r77,)> < ﬁfg =1—¢e —2a1 +ay —m—m.
If m > 2(+ — ag), then (@2) and (L) imply
ldai—2a221—e +a1—2a >m+m> 2m>4<§—a2> :%—4@ > %—4@,

which gives a; + 2ao > %. But a1 + 2a2 < %, since a1 < % and as < %. We see that (48] holds.

It gives us 1 — €3 + 2a1 + 5ag + m +m > %. But m+m < 1— €1 + a3 — 2ae by (@6, so that we

obtain 2 — e+ 3(a; + a2) = 1 — €2 + 2ay + bag + m +m > g. Now using (4.4]), we get

6 5)

T <2 c43(a1+a2) <6 3e+3a1e1 +3azer < 6 3¢+ 21 + Jep <6 %

because a; < % and as < 2. Thus, we see that A > 32, which is impossible by ([@2)). O
Let C be a curve in the pencil | — K g] that passes through Q. Denote by C' its image on the

surface S. Then P € C and C € | — Kg|. Moreover, the curve C' is smooth at P, because P is
not contained in Cy by Lemma Furthermore, we have

Lemma 4.7. The curve C is reducible.

Proof. Suppose that C is irreducible. Let us write D = aC + A, where a is a non-negative
rational number, and A is an eﬁective Q-divisor on the surface S, whose support does not
contain the curve C'. Then a < % by Lemma [£.3]

Denote by A the proper transform of the divisor A on the surface S. Let m = multp(A).
Then (S AaC + AA + (AMa +m) —1)F) is not log canonlcal at Q). Now, applying Lemma 2.7
we get 3 — (a+m) < C-A=2-2a—¢c—m,so that 2 £ < 2 — ¢, which contradicts (£2). O

Thus, we have C = L1 + Lo, where L and Lo are irreducible curves such that L% = L% = —
and Ly - Ly = 2. Since C' is smooth at P, we have P & L1 N Ly. Without loss of generality, we
may assume that P € L;. Let ¢ = L1 - R and €o = Ly - R. Then € = ¢; + €9.

Write D = a1Lq + asLs + A, where a; and ao are non-negative rational numbers, and A is
an effective Q-divisor, whose support contains neither L1 nor Lo. Then a1 < H%, since

(49) 1—€e—2a1+as=Ly-A>=0.
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If ay < %, then a1 < H% < %. Vice versa, if ao > %, then a1 < % by Lemma [£3] In both cases
we have a; <~%. ”J;vhen )\alé 2 by ([@2). B
Denote by L1, Lz and A the proper transforms on S of Ly, Ly and A, respectively. Then the
log pair (S, Aa1 L1 +AA+ (A(a1 +m) —1)F) is not log canonical at @ = L; N F', by construction.
Since Aa; < 1, we can apply Lemma 2.4] to this log pair and the curve L;. This gives
2

X—(al—m)<El'£:1—61+a1—2a2—m,

so that % < 1— €1 4 2a1 — 2az. Using (£9]), we get % <2—€—€g—a3<2—€ —eg=2—¢,
which implies that A > ;2. This is impossible by (Z2).
The obtained contradiction completes the proof of Theorem .11

5. CUBIC SURFACES

Let S be a smooth cubic surface in P3. Fix six disjoint lines E;, Eo, E3, Ey4, FE5, Fg in S, and
fix a positive rational number z < %. Let L=—-Kg+= Zle FE;. Then L is ample.

The goal of this section is to prove Theorem By Theorem [[.2] to do this it is enough to
show that (S, L) > ?’Jr% Suppose that this is not true. Then there exist an effective Q-divisor
D on the surface S and a positive rational number A < ?ﬁ% such that D ~g L, and (S, AD) is
not log canonical at some point P € S. In this section we seek for a contradiction.

Lemma 5.1. The log pair (S, AD) is log canonical outside of finitely many points.

Proof. Suppose that this is not true. Then D = aC 4+ A, where C' is an irreducible curve, a is a
positive rational number such that a > %, and A is an effective Q-divisor, whose support does
not contain the curve C. Denote by d the degree of the curve C in P3. Then

d  3d+3xzd
3+6x=—-Ks-D=-Kg-(aC+A)=0ad—Kg-A>ad> 1> %
which implies that d < 2. Then C'is a line or a conic. Denote by Z a general curve in |- Kg—C/|.
Suppose that C is a line. Then Z is a smooth conic, C'- Z = 2, and Z is not contained in the
support of A. If C is one of the lines Fy, Fsy, Fs, E4, E5, Eg, then 2472 —2a > A-Z >0, so
that 3 + 3z < % < 2a < 2+ Tx, which is impossible, because x < %. Then

6
2 4 6z — 2a > <—K5+:EZEi—aC’>-Zz(L—aC’)-ZzA-Z)O,
i=1

so that 2a < 2 + 6x, which is impossible, because 2a > % >3+ 3x and z < %.

We see that C is a conic. Then Z is a line. Write A = bZ + ), where b is a non-negative
rational number, and €2 is an effective QQ-divisor, whose support contains no Z. If Z is one of
the lines F1, Es, F3, E4, F5, Eg,then 1 —x —2a+b=2-Q>0and 2+ 7x—-20>C-Q >0,
so that 4 4+ 5z > 4a > $ > 6 + 6z, which is absurd. Then (C + Z) - E; = 1 for each E;. But

6
1+xZZ-Ei—2a+b:Z-Q>O

i=1

and2—|—:nzf:10-Ei—2b:C"Q>0. This gives

6 6 6
4
4+12x>4+x<6+ZZ.E,~) :4+x(2ZZ-Ei+ZC-Ei> >da> 5> 6+6,
=1 =1 =1

so that = > %, which is impossible, because x < %. O
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Let h: S — P2 be the contraction of the lines Ey, FEs, Es, Ey, Es, Es,
Lemma 5.2. The point P is contained in E1 U Eo U E3 U E4 U E5 U Eg.

Proof. Suppose that P ¢ E1 U Ey U E3U E4U E5 U Eg. and let £ be a line in P? such h(P) ¢ /.
Let D = h(D), and denote by LCS(P?2, AD + ¢) the locus in P? consisting of all points where the
log pair (P2, AD + ) is not Kawamata log terminal. Then this set contains both h(P) and ¢, so
that it is not connected by Lemma B.1l But it follows from A < =% +3 that the divisor

—Kp2 +AD + /¢ ~g (=3+3X+1)¢

is ample. This contradicts Shokurov’s connectedness principle [12], Theorem 6.9]. g

We may assume that P € F;. Then FE; is contained in the support of the divisor D, because
otherwise we would have 1 — 2z = E; - D > multp(D) > 1 by Lemma

Lemma 5.3. The point P is an Eckardt point.

Proof. Let T be the plane section of S that is singular at P, let Zy, Zs, Z3, Z4, Z5, and Zg be
general conics in the pencils | — Kg — F1|, | — Kg — Es|, | - Kg — E3|, | — Ks — Ey4|, | — Kg — E5|,
and | — Kg — Eg|, respectively. Let

6
11—\ 11—
T = (T_M) ;ZlEi—FT<Zl+Z2+Z3+Z4+Zs+Z6>-

Then T is an effective Q-divisor such that T+ AD ~g —Kg, and the pair (S, D+ T) is not log
canonical at P. Then P is not an ordinary double point of the curve T by [5, Corollary 1.24].
Thus, either P is an Eckardt point or 7" has a tacknodal singularity at the point P.

Suppose that P is not an Eckardt point. Then T' = E; + C', where C is smooth conic such
that F is tangent to C' at the point P. We have

AD ~q (A + Ax)E, +)\C+)\Z’(E2 + Es + E4 + B —|—E6),

and (S, A+ A\x)E1 +A\C+ A x(Ey+ Es+ Eq+ E5+ Eg)) is log canonical. Therefore, by Remark [2.2]
we may assume that the support of the divisor D does not contain either C' or Ey (or both).
Write D = aE7 + bC + A, where a and b are non-negative rational numbers, and A is an
effective Q-divisor, whose support does not contain the curves Fq and C. We know that a > 0.
Ifb>0,thenl —x—b>Ey-A >0, sothat b <1— x. Thus, we always have b <1 — x.
Let m = multp(A). Then 1 —z+a—2b=Ej - A>mand2—|—7:r—2a—0 A > m, which
gives a < 1+ %x and

5+ 13x —3a —2b 5413z b bH+13z 11—z 2

b < b= - < =24+4xr < —

m+a+ 3 +a+ 3 —1-3 3 + 3 + 4z Y
and m < 2—2:(:—%2(1—41) + 2+7§—2a — 4+5§‘—4b < 4+5x < %

Let f: S — S be the blow up at P, and let F' be its exceptional curve. Denote by El, C
and A the proper transforms on S of the curve E4, the curve C and the divisor A, respectively.
Then (S, )\aEl +AC + AA 4+ (Ma+b+m) — 1)F) is not log canonical at some point Q eF.

If Q # Ei N C’ then Lemma 24 gives m = F - A > )\, which is impossible, as m < 1. Let
m = muth(A) Thenl—24+a—2b—m=E;-A>mand 2+ 7z —2a—m > C-A > m. Slnce
b <1 — z, the latter inequality gives

~ 3
m+m+2a—|—2b<2+7x+2b<2+7x+2(1—x)<4+5x<X.
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Let g: S — S be the blow up at Q, and let GG be its exceptional curve. Denote by El, C F
and A the proper transforms on S of El, C F and A , respectively. Then the singularities of
the log pair (S, A\aEy + AaC + AA + (A(a+b+m) — 1)F + (AM(2a+2b+m+m) —2)G) are not
log canonical at some point O € G. Note that 1 > )\(2a +2b+m+ m)—2> O

The curves El, C’ and F are dlSJOlHt fo¢ E,uCU F then m = G-A > 1 by Lemma 241

But m <m < /\, so that O € EyUCUF. If O = E; NG, then Lemmalﬂlmphes
- = ~_ 3 -
1—:E—|—a—2b—m—m:E1'A>X—Za—Zb—m—m,
Sothatwehave3#+l—:n 3a+1—:17> >M
IfOzaﬂG, then Lemma 2.4] implies

sl

which is impossible, because z <

~

2+7$—2a—m—m>a-A —2a —2b—m —m,

so that 4+5z = 2+ Te+2(1—2) > 2+ 7z+2b > 3 > 2)
Finally, if we have O = Fn G, then Lemma 2.4 1mphes m—-—m=F-A> X —2a — 2b m—m,
so that 2m + 2a + 2b > %, which is impossible because m +a + b < 2+ 4x and z < 10 O

3
A
( , which is impossible, because z < %.

We see that S contains two more lines (except the line E7) that pass through the point P.
Denote these two lines by L; and Lo. Recall that E; is contained in the support of D. If L; is
not contained in the support of D, then Lemma 23] gives
3+ 3z

5 -

However, 1+ 6z < 34'23”0, because z < %. Thus, we see that L is also contained in the support
of D. Similarly, we see that Lo is contained in the support of D as well.

As usual, we write D = aFq + b1 L1 + baoLo + A, where a, by, by are positive rational numbers,
and A is an effective Q-divisor whose support does not contain E1, L1, or Ly. We have

AD ~g (A + Az)Ey + AL1 + AL + 2(Ey + E3 + E4 + Es + Eg),

and the singularities of the log pair (S, (A+Az)E1 + AL1+ ALs+x(Eo+ Es+ E4+ E5 + Eg)) are
log canonical. Hence, by Remark 2.2] we may assume that Supp(A) does not contain at least
one line among Fs, Fs, E4, E5, Eg.

Lemma 5.4. Either by <1 —x orby < 1—x (or both).

1
146z >1+axLy - (Ey + Ey + Es + Ey + E5 + Ej) :Ll-DZmultp(D)>X>

Proof. Without loss of generality, we may assume that Es ¢ Supp(D). Then
1—x—Ey- (b1l +bylo) = Ey- A > 0.
But EQ'(Ll —|—L2) = 1, so that either EQ-Ll =1and EQ-LQ = 0, or EQ-Ll =0 and EQ-LQ =1.
In the former case, we get by < 1 — z. In the latter case, we get by < 1 — x. O
We may assume that k(L) is a line in P?, and h(Lz) is a conic. Then h(L;) is tangent to
the conic h(Lg) at the point h(E7). We may also assume that h(L;) contains the point h(Eg).
Then Ll'El = Ll‘Eﬁ = 1, Ll-Eg = Ll-Eg = Ll'E4 :Ll-E5 = 0, L2'E6 = 0 and
Ly -Fy=Ls-Ey=Ly-E3=1Ly-Ey=1Lo-FE5=1.
Let m = multp(A). Then Fy - A >m, Ly - A > m and Ly - A > m. This gives
1—x+a—b1—b2:m
(5.1) 1+2x—a+b—by=m
1+5x—a—bl+bzz
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Lemma 5.5. One has m+a < 1—1— x, m+by < 142z, m+be < 1+35 and a+b1+ba+m < 3+3w.

Proof. The first three inequalities directly follow from (5.I)). To prove the fourth inequality, let
us recall that by <1 — 1z or by < 1 — z by Lemma (.4l Thus, if by <1 — z, then

34+x23>214+2x+2b1 >2m+a+bs+ b
by (&1)). Similarly, if be < 1 — x, then (B.1]) gives 3+3x > 1+5x +2by > m+a+be+b;. O

Let f: S — S be a blow up of the point P. Denote by F' be the f-exceptional curve, and
denote by El, L and Ly the proper transforms on S of the lines FEn, L1 and Lo, respectively.
Similarly, denote by A the proper transform on S of the Q-divisor A. Then the singularities of
the log pair (S AaEy + Aoy Ly 4+ Ab1 Ly + AA + (Ma + by +ba +m) — 1)F) are not log canonical
at some point Q € F. By Lemma B3 we have m +a+ b1 + by <3+ 3z < %, since A < ?ﬁ%

If @ is one of the points F'N Zl, FNLyor FN Zg, then Lemma 2.4] gives

3

—aifQ=FNE

33 3; i@ b

3 _

_ —bifQ=FnNLy,
m=F-A> 3—%3x B
—bifQQ=FNL

3+ 3x 2 1 Q@ o

3 S

if EFi{UL L

3132 it Q¢ FEyULy ULy,

because)\<3+3w Butm+a<1+2 5T, m+b1\1+2:Eandm+b2<1+§byLemma

This immediately leads to a contradlctlon, because 0 < z < %.
The obtained contradiction completes the proof of Theorem

6. DEL PEZZO SURFACES OF DEGREE FOUR AND HIGHER

Let S be a smooth del Pezzo surface such that Kg > 4. Let d = Kg Let L be an ample
Q-divisor on the surface S. Let v(L) = —KE—L The goal of this section is to prove Theorem [I.4
If S is one of the surfaces P2, P! x P! or Fy, then one easily sees that a(S, L) < 1/( ). Thus,

to prove Theorem [.4] we may assume d < 7. In this case the Mori cone NE(S) is a polyhedral
cone that is generated by all (—1)-curves in S. Let

pur = inf{)\ € Qo ‘ the Q-divisor Kg + AL € NE(S)}.

Replacing L by ur L, we may assume that puy = 1. Denote by Ap the largest extremal face of
the Mori cone NE(S) that contains the divisor Kg + L, and denote its dimension by 7.
If Ap = 0and d = 4, then (S, L) = 2v(L) by [3, Theorem 1.7]. Similarly, we see that if
Ar =0and d > 5, then (S, L) < 2v(L). Thus, we may assume that Ay, # 0, so that 7, > 0.
Let ¢r.: S — Z be the contraction of the face Ay. Then either ¢y, is a birational morphism,
or ¢y, is a conic bundle with Z = P'.

Lemma 6.1. Suppose that Z =P?. Then o(S,L) < 3v(L).

Proof. The face Ay, is generated by r;, =9 — d disjoint (—1)-curves Ej, ..., E,,. Then

TL
L ~Q —KS + ZaiEz
=1
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for some positive rational numbers aq,...,a,,. We may assume that a; > --- > a,,. Then we
must have a1 < 1, because L - F7 > 0. We also have

(L) = d+3 0k a

d+2370 a; — 3ok af
For every i < 71, denote by Ly; the proper transform on S of the line in P? that passes through
the points gbL(El) and ¢r(E;), e.g., ¢r(Li12) is the line that contains ¢ (E1) and ¢ (F2).
If d=7, then L ~Q 3L19 + (2 + al)El + (2 + CLQ)EQ, so that
1 14 + 2a1 + 2a9 2
S’L <3< = —v(L).
L) S 3 < 960 ¥ 6 — 3 —3a3 3D
Similarly, if d = 6, then L ~g 2L12+ L13+ (24 a1) Ey + (1 + a2) E2 + a3 B, which implies that
12 4+ 2a1 + 2a9 + 2(13 2
a(S,L) < < 5 5 5 = sv(L),
2+4+a1 18+ 6ay + 6ag + 6az — 3ay — 3a5 — 3a3 3

because otherwise we would have

—22@14—12&1—1—2&12&@—1—32&1 6+2Za2+2a12a2+32a1,

which is absurd. If d =5, then L ~Q L12 + L13 4+ Lis+ (2 + al)El + CL2E2 +as b3+ CL4E4, which
implies that

1 10 + 2a1 + 2a9 + 2a3 + 2a4 —EV(L)
2 tar 15 + 6a1 + 6as + 6az + 6as — 3a? — 3a3 — 3a3 —3a3 3

Indeed, if this inequality does not hold, then

a(S, L) <

4 4 4
2Za,~ >5+3> a +10ay +2a1 ¥ a; > 5ay + 3af + 104y + 2a,
j i=1 i=1
so that 8a; > 2ZZ 1 a; > 15a71 + 5a1, which is absurd.
We may assume that d = 4. Let Z the proper transform on the surface S of the conic in P?
that passes through the points ¢r(E1), ¢r(E2), ¢r(E3), ¢r(Es), and ¢r(Es5). Then
3+ 2a1
2
which implies that a(S, L) < 3+2a . Let N be the largest number among as, as + ag, as + a4,
ag + as, az + a4, ag + as, a4 + as, as + ag + a4, a2 + ag + as, as + a4 + as, az + a4 + as, and
az + a3 + a4 + a5 that does not exceed 1. We claim that (S, L) < m Indeed, we have
Ey ~q %El — %Z — %ng + %ng + %L14 + %ng,, so that we have

1 1 1 1 1
L ~Q Ei+ §Z + —L12 + —L13 + —L14 + —L15 + asFo 4+ agFEs3 4+ agFy 4 a5 Es,

5
3+ 2a1 + as 1—as 1—as 14 as 1+ a9 1+ as

L~ E Z L L L L E,

Q 5 1+ 5 + 5 12 + 5 13 + 5 14 + 3 15—1-%% i

In particular, if N = ag, then «(S, L) < m as claimed. We also have
1
2

1 1
E3 ~q §E1 =Z+ L12 L13 + §L14 + 2L15,
1 1 1 1 1 1
Ej~g =By — =Z+=Lis+ =L13— =L L
4~vQ 5P T g +2 12+2 1375 14-1-2 155
1 1 1 1 1 1
FE;5 ~Q §E1 — §Z + §L12 + §L13 + §L14 — 2L15.
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For any other value of N Table [Il provides an effective Q-divisor D ~g L that shows the
inequality a(S, L) < m as claimed.

N Effective Q-divisor D ~qg L

201+ N - 1- 14as— 1
ag+az | EFRGENE 4 SN 7 4 labas g, eds g, 4 g (L + 0, Ey)

i=4,5
- - - 1
as + ay WEl-FlZNZ-FI “§+“4L12+1+“2%L14+E:(%Llriraiﬂ)
i=3,5
_ _ 5 —as 1 5
as + as WE1+12NZ+1 “§+“0L12+1+“2%L15+E:(%Lu—l—aiﬂ)
i=3,4

_ —a: 0 14q-
az + a4 2N p, LN 7 loastaay, 4 Ihas—asy,, 4 g (Hutu ) + o, F;)

i=2,5
2a,+N - 1- 1+az— 1
az+as | YENE 4 SN 7 lagbas gy Ihaman g, 4 g (FER Ly + 0 Ey)
i=2,4
3420, +N 1-N 1-ay+ 1+as— 1tast
a4 + as %El +5Z+ a% 95 L4 + %Lm + E (%Lli + a,-Ei)
i=2,3

_ 4> (di5a4)
as + as + aq 3+21121+NE1 + 12NZ + Zi:234 ( J 2,23,4 @ Lli) + 1-SNL15 + CL5E5

1+ i
as + a4 + as 3+2a21+NE +1 NZ+ZZ 245< Z] 240 dijaj) ) L13—|—a3E3
1 (6;
as + ay + as 3+2a1+NE 4+ 1= NZ+ZZ 345<+ZJ 3,4,5 (045 a5) ) L12—|—CL2E2
5
_ 1+>._ (6i5a5)
Zai RN + 5N 2+ Y 0545 ( E Lli)

TABLE 1. Effective Q-divisors, where 0;; = 1if ¢ # j and 0;; = —1if i = j.

Now Proposition A1l gives a(S, L) < 2v(L). O
By Lemma [6.1] we may assume that Z # P? in order to complete the proof of Theorem [l
Then the surface S contains 8 —d > rp, disjoint (—1)-curves Ey,..., Es_4 and a smooth rational
curve C such that C? = 0, the curve C is disjoint from Ei, ..., Es_g4, and
8—d
L~y —Kg+0C+ ZaiE
i=1
for some non-negative rational numbers 9, aq,...,as_q. We may assume that a1 > --- > ag_q.

Then a1 < 1, since L- E; >0 and C - E; = 0. If a; > 0, then E; € Ay. Similarly, the morphism
¢r, is a conic bundle if and only if § > 0. We have
d+26+ Z a;
v(L) = 1= 1 ! Fa it
d+45+222 1 al_Zz 1%

Let h: S — S be the contraction of the curves Ej,...,Fs_q. Then S = F; or § = P! x P!
The linear system |C] is a free pencil. It gives a conic bundle ¢: S — P! such that there exists
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a commutative diagram
S R
N A
]P)l
where v is a natural projection. Then the curves F,..., Eg_g4 lie in the reducible fibers of ¢.

Lemma 6.2. Suppose that S =Fy. Then (S, L) < 3v(L).

Proof. Let Egy_g be the (—1)-curve on S, and let Eg_q be its proper transform on the surface S.
Let f: S — P2 be the contraction of the curve Eg_4. Let 7 = f o g. Denote by Ly; the proper
transform on S of the line in P? that passes through 7(E;) and 7(E;) (for every i < 9 — d).
If d=7, then L ~Q (3 + 5)L12 + (2 + 6+ CLl)El + 2F5 and
1 14 + 40 + 2aq 2
< = —v(L),
555~ 2120+ 60 —32 3"
since otherwise we would have 0 > 21 + 146 + 46% + 26a; + 3a3.
If d =6, then L ~g 2L12 + (1 +9)L13 + (2+ 6 + a1)E1 + (1 + ag) Es, which gives
1 12 + 40 + 2aq + 2a9 2
S, L) < < = -v(L),
D) S o < 187120 1 60y + 603 — 307 —322 ~ 37D
because otherwise we would have
0> 6—2(a; +as) + 3(a? + a3) + 85 + 12a1 + (5 + a1)(46 + 2a; + 2as),

which gives a contradiction, since a1 > ao.
If d=5,then L ~qg Lig+ L1z + (1 +9)L1a + (24 6 + a1) E1 + agEs + a3z E3, which gives
1 10 + 46 + 2 2 2 2
a(S, L) < < R el e e e Y}
2+0+a1 154120 + 6a; + 6ag + 6az — 3a] — 3a5 — 3a5 3

Indeed, if this inequality does not hold, then we have

a(S, L) <

3 3 3
0>5+60-2 a;+3) af +10a1 +45(8 + a1) +2(0 + a1) Y _ a;,
i=1 i=1 i=1
which is impossible since —2 Z?:l a; + 10a1 > 4aq as a1 = ag > as.

Thus, we may assume that d = 4. Denote by Z be the proper transform on the surface S of
the unique conic in P? that passes through the points 7(E1), 7(Es), 7(E3), 7(E4), 7(Es). Then
34+ 2CL1

2
Moreover, there exists a (—1)-curve E} such that E] + E; ~ C, so that

3+2a1 +26 1
L ~Q %El + 5E1 + 5 (Z + L12 + L13 + L14 + L15) + (IQEQ + a3E3 + a4E4.

1
L ~q 0C + FEi+ 3 (Z 4+ Lig+ L3+ Ly + L15) + aoFs + asFEs + agFy,

Arguing as in the proof of Lemma [6.1I] we see that
2
S, L) < ,
LS sy BN

where N is the largest number among as, as + as, as + a4, as + a4, as + a3z + a4, that does not
exceed 1. Then a(S,L) < %V(L) by Proposition [A] O

The final step of the proof of Theorem [I.4]is the following Lemma.
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T 2
Lemma 6.3. Suppose that S =P x P'. Then a(S,L) < 2v(L).

Proof. We may assume that the fibers of the natural projection v: S — P! are curves of bi-
degree (1,0). For every i < 8 — d, we denote by F; (respectively, by F;) the curve of bi-degree
(1,0) (respectively, bi-degree (1,0)) in P! x P! that passes through the point h(E;), and we
denote by F; (respectively, by F!) its proper transform on S.

If d=7, then L ~q (3+aj + 0)E1 + (2 + 6)F; + 2F], which gives
1 14 + 4 + 2aq 2

= Zu(L).
Sta 0 24120+ 60 —3a2 3"

a(S, L) <

Similarly, if d = 6, then L ~q (3 +0)Fy + SF{ + (Fo + F}) + (2+ 0 + a1) By + a2 E, which gives

1 . 12 4+ 46 4 2a1 + 2a9 —gy(L).

S, L) < < =
S0 <55Ta 18+ 126 + 6ay + 6az — 3a2 — 3a3 3

For d < 5, denote by Z;; for 2 < ¢ < j < 4 the proper transform on S of the unique irreducible
curve of bi-degree (1,1) on S that passes through the points h(E;) and h(E;). If d = 5, then

Leg (L+0)Fy+ Fl + Zos+ (2404 a1)E1 + agEs + agEs,

so that, arguing as in the proof of Lemma [6.2] we see that

1 10 + 49 + 2aq + 2as + 2a3 2
S, L < =—-v(L).
(8 L) < 2+04+ar 15+ 126 + 6a; + 6az + 6ag — 3a} — 3a3 — 3a3 3V( )

Thus, we may assume that d = 4. Then —Kg ~q %El + %(Fl + F{ + Zaoz + Zog + 234). Hence

3+ 2a1+ 26 1+9 1
LNQ 21 Ei+ 5 F1—|-2F1+ Zgg—l— Z24+ Z34—|—CL2E2+CL3E3+CL4E4,

which implies, in particular, that «(S, L) < Moreover, we have

3+2a1 +25°
1

=2 + 2234,

1
=234,

1 1
Es ~Q §E1 + 2F1 + 2F1 —Zo3 —
1 1 1
FEs ~g =F F;
sttty 2
1 1 1 1 1 1
Ey~q =E1+ =Fy + =F| + = Zog — = Zoy — = Z3u.
4 Q21+21+2 1+2 28 T 5424 T 54

1 1
2 2
1 1

F!

19 2

=293 + = Zoy —

Therefore, we have

3+2a1+26+a 1+6+a 1+a
L ~g - 2B+ 2R+ —2Fj+
2 2 2
1—a 1—a 1+a
5 2 Zosg + 5 2 Zos + 2

Z34 + azF3 + asEy,

so that a(S,L) < since

Moreover, if ag + a3 < 1, then «(S,L) <

2
34+2a1 +25+a2 34+2a1 +25+a2+a3

34+2a1+20+as+a 1+6+as2+a 1+as+a
L ~g 1 5 2 3E1+ 22 3F1+ ; 3F1’+
l1—as—a 1—as+a l+a9—a
+ 7; 3 Za3 + 2 3224 + ; 3Z34 +asby.
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Similarly, if as 4+ a4 < 1, then (S, L) < m since
34+2a1+20+as+a 1+d+a2+a l1+as+a
L ~g 1 = 2 4E1+ 22 4F1+ ; 4F1/+
l—as+a l—as—a 1+as—a
T M s+ 2 7o+ 2 275 + azEs.
2 2 2
And if az + a4 < 1, then a(S, L) < m since
34+2a1+20+a3+a 1+d+as+a l1+as3+a
L~g B+ 5P+
l—as+a 14+a3—a 1—a3—a
T A T+ S o+ S 7y + asEs.
2 2 2
Finally, if as + ag < 1+ a4, then (S, L) < 3+2a1+2§+a2+a3+a4 since
3+2a+20+ax+az3+a 1+d+ax+az+a 14+ax+az+a
I ~g 1 : 2 3 4E1+ 22 3 4F1—|— 223 4F1’+
l1—as—az+a 1—as+asg—a 14+a3—a3—a
" 2 3 4Z23+ 2 3 4Z24+ 2 3 4234'
2 2 2
Thus, we proved that
2 if ao +a3 <1+
if ag +a aq,
3+2n+20+astaztas 20T 4
2
if ao +a4 <1and as +ag > 1+ ay,
a(S,I) < 3+2a1+225—|—a2—|—a4
ifag+a4 <1,a34+ a4 >1and as +asz > 1+ aq,
3421 +20+ag+aq o Ao ETH 2T 4
2
ifag+aq4 > 1, a9 +a4 >1and ag +ag > 1+ aq.
3 2a + 20 tag BT 2 2 ag > L as
.. 8+45+2a1+2a2+2a3+2a. 2
By Proposition [AT} (S, L) < 12712561 +6a2 +6a3 +6a1 3% —3a3—3a—3a7 — sv(L). U

APPENDIX A. INEQUALITIES

Let a1, a9, a3, a4, as be non-negative rational numbers such that 1 > a1 > a2 > az > a4 = as,
let § be a non-negative rational number, and let N be the largest number among as, as + as,
as + aq, as + as, a3 + aq, a3 + as, a4 + as, as + a3z + a4, a2 +as + as, as + a4 + as, a3 + aq + as,
as + as + a4 + as that does not exceed 1. Let

2
30w 201 ay tas tap T2 tassItas
o= 3+2a1+225+a2+a41fa2+a4 < 1and ag + a3 > 1+ ay,
3+2a1+25+a3+a41fa3+a4 <1l,a3+a4>1and ax +a3z > 1+ ay,
k3+2a1j_25+a2ifa3+a4>1,a2+a4>1anda2+a3>1+a4.

Proposition A.1. One has
2 <g' 44204+ a1+ as+ag+ag+ as
3+2a0 +26+N 3 4446 +2(a1 + az + ag + as + as) — a3 — a3 — a3 — a3 — a2
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and
8 + 40 + 2a1 + 2a9 + 2a3 + 2a4
STey 126+ 6a1 + 6ag + 6az + 6as — 3a} — 3a3 — 3a% — 3a3’

Moreover, both inequalities are strict unless a1 = d = 0.

Proof. Consider the first inequality. If a; = § = 0, then N = 0 and both sides of the inequality
equal % Suppose that either a; > 0 or § > 0 (or both). We have to prove that
2 <g>< 4420+ a1+ as+ag+ayg + as
34241 +20+N "3 4+45+2(a;+ax+az+as+as)—al—a3—al—al—a?

Suppose that this inequality does not hold. Then

5 5 5
3 ai—3> aj —26 > (201 + N +26) Y a; +8ay + 4N + 4ar6 + 2N + 46,
= ' i=1

Since either a1 > 0 or § > 0, this inequality implies that

(A1) 3Za, (2a1 + N) Zaz—|—8a1+4N
1=1

If N =ay+ a3+ a4 + as, then (A.I) gives

32% (2a1 + N) Zal—|—8a1—|—4N 8a1+4N>4Za2,
=1 =1

which is absurd. Thus, N # as + a3 + a4 + as, so that as + ag + a4 + a5 > 1. Then (A7) gives

5
32% (2a1+ N) > a; +8ay + 4N > (2a1 + N)(ay + 1) + 8as + 4N,
=1

which implies, in particular, that
(A.2) 3(ag + a3z + a4 + as) > 7a; + 5N,

which implies that N is none of the numbers as 4+ a3 + a4, as + ag + a5, as + a4+ as, az+ as + as.
If N is one of the numbers as + ag, as + a4, as + as, as + aq, az + as, aq + as, then (A2) gives

3(ag 4+ as +aq +as) > Ta; + 5N > Tay + 5(aq + as),
so that 3ag + 3az > Tay, which is absurd. We see that N = ay. Then ([A.2]) gives
3(ag + a4 + az) > Tay + 2asz,

which is impossible, because a1 > a2 > a3 > a4 > a5 = 0.
Consider the second inequality. If a; = § = 0, then both sides of the inequality equal
Suppose that a; > 0 or § > 0. Take N > 0 such that a =

w0

2
T TN We have to prove that

8 + 40 + 2a1 + 2a9 + 2a3 + 2a4
12 + 128 + 6ay + 6as + 6as + 6a4 — 3a2 — 3a3 — 3a3 — 3a3’

Suppose the latter is false. Then

4 4 4
3 ai—3> ai —26 > (201 + N +26) Y a; +8ay + 4N + a6 + 2N + 46°.
] ] =1
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Since either a; > 0 or § > 0, this inequality implies that

5 5
32%’ > (249 +N)Zai + 8a71 + 4N.
i=1 i=1
If N=as+ a3+ aq or N = ag + ay, then we get a contradiction
4 4 4
3 a;>(2a1+N)Y a;+8a; +4N >8a; +4N >4 a,
i=1 i=1 i=1

because a1 > a3 > a4. Thus N = as, ag+ a4 > 1,a9 +a4 > 1 and as + a3 > 1+ a4. Let a5 = 0.
Now the result follows from the first inequality, since a9 is the largest number not exceeding 1
among those values in the hypothesis. U
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