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FINITE QUASISIMPLE GROUPS ACTING ON RATIONALLY

CONNECTED THREEFOLDS

JÉRÉMY BLANC, IVAN CHELTSOV, ALEXANDER DUNCAN,
AND YURI PROKHOROV

Abstract. We show that the only finite quasi-simple non-abelian groups that
can faithfully act on rationally connected threefolds are the following groups:
A5, PSL2(F7), A6, SL2(F8), A7, PSp4(F3), SL2(F7), 2.A5, 2.A6, 3.A6 or 6.A6.
All of these groups with a possible exception of 2.A6 and 6.A6 indeed act on
some rationally connected threefolds.

Contents

1. Introduction 1
2. Preliminaries 4
3. Gorenstein Fano threefolds 8
4. Proof of main result 12
5. 3.A7 22
6. Amitsur Subgroup 29
7. Conic bundles 33
References 36

1. Introduction

The complex projective plane P2 and projective space P3 are among the most
basic objects of geometry. They provide motivation for the study of two excep-
tionally complicated objects, the groups Cr2(C) and Cr3(C) of their birational
transformations, known as the plane Cremona group and the space Cremona
group, respectively. The group Cr2(C) has been studied intensively over the last
two centuries, and many facts about it were established. The structure of the
group Cr3(C) is much more complicated and mysterious. It still resists most
attempts to study its global structure.
One approach to studying Cremona groups is by means of their finite sub-

groups. An almost complete classification of finite subgroups of the plane Cre-
mona group Cr2(C) was obtained Dolgachev and Iskovskikh in [DI09] (see also
[Bla11, Tsy11, Tsy13] for further developments). For example, this classification
implies that there are exactly three isomorphism classes of non-abelian simple
finite subgroups of Cr2(C), namely those of A5, PSL2(F7) and A6.
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Recent achievements in three-dimensional birational geometry allowed Prokhorov
to prove

1.1. Theorem ([Pro12, Theorem 1.1]). There are exactly six isomorphism classes
of non-abelian simple finite subgroups of Cr3(C), given by

A5, PSL2(F7), A6, SL2(F8), A7, and PSp4(F3).

This classification became possible thanks to the general observation that a
birational action of a finite group G on projective space can be regularized, that
is, replaced by a regular action of this group on some more complicated rational
threefold. Thus, instead of studying finite subgroups in the space Cremona group,
one can consider a more general (and perhaps more natural) problem:

1.2.Question. What are the isomorphism classes of finite groups acting faithfully
on rationally connected threefolds?

The classical technique to study this (hard) problem goes as follows. LetX be a
rationally connected threefold faithfully acted on by a finite group G. Taking the
G-equivariant resolution of singularities and applying the G-equivariant Minimal
Model Program, we can replace X by a G-Mori fibre space. Thus, we may
assume that X has terminal singularities, every G-invariant Weil divisor on X is
Q-Cartier, and there exists a G-equivariant surjective morphism

φ : X → Z

whose general fibres are Fano varieties, and the morphism φ is minimal in the
following sense: rk Pic(X/Z)G = 1. If Z is a point, then X is a Fano threefold,
so that we say that X is a GQ-Fano threefold. Similarly, if Z = P1, then X is
fibred in del Pezzo surfaces, and we say that φ is a G-del Pezzo fibration. Finally,
if Z is a rational surface, then the general geometric fibre of φ is P1, and φ is
said to be a G-conic bundle. In this case, we may assume that both X and Z are
smooth due to a recent result of Avilov [Avi14]. A priori, the threefold X can
be non-rational. However, if X is rational, then any birational map X 99K P3

induces an embedding
G →֒ Cr3

(
C
)
.

Vice versa, every finite subgroup of Cr3(C) arises in this way. Thus, keeping in
mind that every smooth cubic threefold is non-rational, we see that Theorem 1.1
follows from the following (more explicit) result:

1.3. Theorem ([Pro12, Theorem 1.5]). Let X be a Fano threefold with terminal
singularities, and let G be a finite non-abelian simple subgroup in Aut(X) such
that rkCl(X)G = 1. Suppose also that G is not isomorphic to A5, PSL2(F7) or
A6. Then the following possibilities hold:

(i) G ≃ A7, and X is the unique smooth intersection of a quadric and a
cubic in P5 that admits a faithful action of the group A7;

(ii) G ≃ A7, and X is P3;
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(iii) G ≃ PSp4(F3), and X is P3;
(iv) G ≃ PSp4(F3), and X is the Burkhardt quartic in P4;
(v) G ≃ SL2(F8), and X is the unique smooth Fano threefold of Picard rank

1 and genus 7 that admits a faithful action of the group SL2(F8);
(vi) G ≃ PSL2(F11), and X is the Klein cubic threefold in P4;
(vii) G ≃ PSL2(F11), and X is the unique smooth Fano threefold of Picard

rank 1 and genus 8 that admits a faithful action of the group PSL2(F11)
(which is non-equivariantly birational to the Klein cubic threefold).

In this text, we extend the study of simple groups to quasi-simple groups.

1.4. Definition. A group is said to be quasi-simple if it is perfect, that is, it
equals its commutator subgroup, and the quotient of the group by its center is a
simple non-abelian group.

Taking the quotient by the center, which is again a rationally connected three-
fold, it follows from Theorem 1.3 that the only finite quasi-simple non-simple
group that can (possibly) faithfully act on rationally connected threefolds are
2.A5 or

(1.4.1) SL2(F7), SL2(F11), Sp4(F3), n.A6, n.A7 with n = 2, 3, 6.

As the group 2.A5 is a subgroup of SL2(C), there are many ways to embed it
into Cr2(C) (see [Tsy13]), and hence in Cr3(C). However, none of the groups
of (1.4.1) embedds in Cr2(C) (see Theorem 2.5). Some of them indeed act on
rationally connected threefolds. The goal of this paper is to prove the following
result:

1.5. Theorem. Every finite quasi-simple non-simple group that faithfully acts on
a rationally connected threefold is isomorphic to one of the following groups

SL2(F7), 2.A5, 2.A6, 3.A6, and 6.A6.

Moreover, the groups 2.A5 and 3.A6 act faithfully on rational threefolds, and the
group SL2(F7) acts faithfully on rationally connected threefolds.

Unfortunately, we do not know whether the groups 2.A6 and 6.A6 can act on a
rationally connected threefold or not (see Section 7 for a discussion), and do not
know if SL2(F7) can act on a rational threefold.
We finish this introduction by giving examples that prove the existence part of

Theorem 1.5 (we omit the case of 2.A5, already explained above).

1.6. Example. Let G = 3.A6 act on V := C3 and let φ(x1, x2, x3) be the invariant
of degree 6 (unique up to scalar multiplication). Then we have the following
induced actions:

(i) on P3 = P(V ⊕ C),
(ii) on the hypersurface X6 ⊂ P(13, 2, 2) given by φ+ y31 + y32 = 0,
(iii) on the hypersurface X6 ⊂ P(13, 2, 3) given by z2 + y3 + φ = 0,
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(iv) on the hypersurface X6 ⊂ P(14, 3) given by φ+ x6
4 = y2,

(v) on P(OP2(d)⊕OP2) where d ≥ 1 is not a multiple of 3.

1.7. Example. The group SL2(F7) has an irreducible four-dimensional represen-
tation, which makes it then acts faithfully on P4 and on P(1, 1, 1, 1, 3).

(i) The weighted projective space P(1, 1, 1, 1, 3) contains a SL2(F7)-invariant
sextic hypersurface (see [Edg47, MS73]). This hypersurface, that we
denote by X , is unique. In appropriate quasihomogeneous coordinates,
the threefold X is given by

w2 = 8x6 − 20x3yzt− 10x2y3z − 10x2yt3 − 10x2z3t− 10xy3t2

−10xy2z3 − 10xz2t3 − y5t− 15y2z2t2 − yz5 − zt5,

where x, y, z, t are coordinates of weight 1, and w is a coordinate of
weight 3. One can check that X is smooth, so that X is a smooth Fano
threefold with Pic(X) = Z · KX and −K3

X = 2. Note that X is non-
rational (see [Isk80b]).

(ii) The group SL2(F7) also acts on the smooth quartic X4 ⊂ P4 given by
y4 = φ4, where φ4(x1, x2, x3, x4) is an invariant of degree 4. This variety
is also non-rational [IM71].
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tially supported by the Russian Academic Excellence Project 5-100. The authors
would like to thank Josef Schicho for his help with Remark 5.2.3.

2. Preliminaries

2.1. Notation. Throughout this paper the ground field is supposed to be the
field of complex numbers C. We employ the following standard notations used in
the group theory:

• µn denotes the multiplicative group of order n (in C∗),
• An denotes the alternating group of degree n,
• SLn(Fq) (resp. PSLn(Fq)) denotes the special linear group (resp. projec-
tive special linear group) over the finite field Fq,

• Spn(Fq) (resp. PSpn(Fq)) denotes the symplectic group (resp. projective
symplectic group) over the finite field Fq,

• n.G denotes a non-split central extension of G by µn,
• z(G) (resp. [G,G]) denotes the center (resp. the commutator subgroup)
of a group G.
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All simple groups are supposed to be non-cyclic.

2.2. Lemma. Let C be a smooth curve with a faithful action of a finite group G
of genus g < 1

4
|G|. Then

2g − 2

|G| + 2 =
∑

r

cr

(
1− 1

r

)

where r varies over the orders of cyclic subgroups of G, and {cr} are non-negative
integers.

Proof. This is a standard consequence of the Riemann-Hurwitz formula for the
quotient morphism C → C/G:

2g − 2 = |G|(2gq − 2) +
∑

p

(ep − 1)

where p varies over the branch points, ep are the ramification indices, and gq is
the genus of the quotient. Recall that the stabilizers of all points must be cyclic,
so we get a contribution of the form |G|(r − 1)/r = ep − 1 for each G-orbit (free
orbits contributing 0). Solving for g, we see that gq = 0 or else g ≥ 1

4
|G|. �

2.3. Lemma (see, e. g., [Car57, p. 98]). Let X be an irreducible algebraic variety,
let P be a point in X, and let G be a finite group in Aut(X) that fixes the point P .
Then the natural linear action of G on the Zariski tangent space TP,X is faithful.

2.4. Theorem ([Bli17]). Let G ⊂ GL3(C) be a finite quasi-simple subgroup. Then
G is isomorphic to one of the following groups:

2.A5, A5, 3.A6, PSL2(F7).

2.5. Theorem ([DI09]). Let G ⊂ Cr2(C) be a finite quasi-simple subgroup such
that G/z(G) 6≃ A5. Then G is conjugate to one of the following actions:

(i) A6 acting on P2,
(ii) PSL2(F7) acting on P2,
(iii) PSL2(F7) acting on a unique del Pezzo surface of degree 2.

In particular, G is simple.

2.6. Lemma. Let G be a group isomorphic to one in the list (1.4.1).

(i) If G ⊂ Aut(P3), then G ≃ 3.A6 and the action is induced by the reducible
representation V = V1 ⊕ V3 with dimV1 = 1, dim V3 = 3.

(ii) If G ⊂ Aut(X), where X = Xd ⊂ P4 is a an irreducible hypersurface
of degree d ≤ 4, then G ≃ SL2(7), X is smooth quartic, and the action
is induced by the reducible representation V = V1 ⊕ V4 with dimV1 = 1,
dim V4 = 4.

(iii) If G ⊂ Aut(P5), then there exists no G-invariant quadric Q ⊂ P5 of
corank ≤ 2.
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(iv) If G ⊂ Aut(P5), then there exists no G-invariant irreducible complete
intersection of two quadrics.

Proof. The assertion (i) follows from Table 1.
(ii) Regard P4 as the projectivization of a vector space V = C5 and consider

a lifting G̃ ⊂ SL(V ), where G̃ is quasi-simple. Since G is not simple, z(G̃) is
not a subgroup of scalar matrices, i.e. there exists a non-trivial decomposition
V = V ′ ⊕ V ′′ of G̃-modules, where dimV ′ > dimV ′′. Then dim V ′′ ≤ 2 and so
the action of G̃ on V ′′ must be trivial and on V ′ it is faithful with dimV ′ = 3 or 4.
Then G̃ has an invariant of degree ≤ d on V ′. From Table 1, the only possibility
is G̃ ≃ SL2(7) and d = 4.
(iii) and (iv) follow from Table 1. �

2.7. Lemma. Let X be a threefold with terminal singularities and a faithful action
of a group G from the list (1.4.1). Assume that X has a G-fixed point P . Then
one of the following holds:

(i) P ∈ X is smooth and G ≃ 3.A6,
(ii) P ∈ X is of type 1

2
(1, 1, 1) and G ≃ 3.A6.

Proof. First, consider the case where P ∈ X is Gorenstein. The groupG faithfully
acts on the tangent space TP,X . If P ∈ X is smooth, then dim TP,X = 3 and
G ≃ 3.A6 by Theorem 2.4. If P ∈ X is singular, then there exists an analytic
equivariant embedding (X,P ) ⊂ (T, 0), where T ≃ C4 and the action on T
is linear. Let φ(x1, . . . , x4) = 0 be the (invariant) equation of X in T . Write
φ =

∑
φd, where φd is homogeneous of degree d. By the classification of terminal

singularities [Rei87], we conclude φ2 6= 0. If moreover G →֒ GL4(C) = GL(T )
is irreducible, then the group G/z(G) faithfully acts on P(T ) = P3. In this
case φ2 = 0 defines an invariant quadric Q ⊂ P3 which must be smooth. Thus
Q ≃ P1 × P1 and then the simple group G/z(G) embedds into PGL2; impossible
for G in the list (1.4.1). Let G →֒ GL4(C) = GL(T ) be reducible. We have a
decomposition T = T ′ ⊕ T ′′, where T ′ is irreducible faithful with dim T ′ < 4.
If dimT ′ = 3, then G ≃ 3.A6. Again 3.A6 has no invariants of degree ≤ 3 on
T ′, so φ2 = x2

4 and φ3 = λx3
4. This contradicts the classification of terminal

singularities. Hence dim T ′ = 2 and G ≃ 2.A5. Again we have a contradiction.
Consider the case where (X,P ) is a singularity of index r > 1. Let π :

(X♯, P ♯) → (X,P ) be the index one cover and let G♯ ⊂ Aut(X♯, P ♯) be the
natural lifting of G. We have an exact sequence

1 −→ µr −→ G♯ ν−→ G −→ 1.

Since G is a quasi-simple group and Aut(µr) is abelian, this is a central extension.
Let Z♯ ⊂ G♯ be the preimage of z(G). Since z(G) is cyclic, Z♯ is an abelian group
with two generators and one of these generators is of order 2 or 3. In this situation,
the automorphism group Aut(Z♯) is solvable. Hence Z♯ coincides with the center
of G♯. Thus either G♯ = µr × G or Z♯ ≃ µ6 and G/z(G) ≃ A6 or A7. In both
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cases there exists a quasi-simple subgroup G′ ⊂ G♯ such that ν(G′) = G. By the
above G′ ≃ 3.A6 and P ♯ ∈ X♯ is smooth. Since the representation of G′ on TP ♯,X♯

is irreducible, r = 2. �

2.8. Varieties of minimal degree.

2.8.1.Theorem (F. Enriques, see e.g. [EH87]). Let Y = Yd ⊂ PN be an irreducible
subvariety of degree d and dimension n which is not contained in a hyperplane.
Then d ≥ N−n+1 and the equality holds if and only if Y is one of the following:

(i) Y = PN ;
(ii) Y = Y2 ⊂ PN , a smooth quadric;
(iii) a rational scroll PP1(E ), where E is an ample rank n vector bundle on

P1, embedded by the linear system |O(1)|;
(iv) a Veronese surface F4 ⊂ P5;
(v) a cone over one of the varieties from (ii), (iii) or (iv).

2.9. Group actions on K3 surfaces.

2.9.1. Theorem ([Muk88]). Let a finite quasi-simple group G faithfully act on
a K3 surface S. Then G ≃ A5, A6 or PSL2(F7). In particular, G is simple.
Moreover, if G ≃ A6 or PSL2(F7), then rkPic(S) = 20 and rkPic(S)G = 1.

2.9.2. Corollary. Let S be a K3 surface with at worst Du Val singularities. Sup-
pose S admits a faithful action of a quasi-simple group G, where G 6≃ A5. Then
S is smooth.

2.10. Linearizations. Let X be a proper complex variety with a faithful action
of a finite group G. Let E be a vector bundle on X . We say that E is G-invariant
if there exist isomorphisms φg : g∗E → E for every g ∈ G. We say that E is
G-linearizable if E is G-invariant and one can select the isomorphisms {φg}g∈G
such that φgh = φh ◦ h∗(φg) for all g, h ∈ G. Equivalently, this means that G
acts on the total space of E linearly on the fibers and the projection to X is
equivariant. The particular choice of action on E is called a linearization.

2.11. Proposition. If X is a smooth G-variety, then the canonical line bundle
has a canonical linearization.

Proof. The points of the total space of the tangent bundle TX are of the form
(x, t) where x ∈ X and t ∈ TxX . For g ∈ G, g(x, t) := (g(x), dg(t)) defines an
action on TX which is linear on the fibers. Thus TX is linearizable, and so is
the canonical bundle. �

2.12. Lemma ([DI09, Lemma 5.11]). Let f : X → Y be a double cover of smooth
varieties whose branch divisor B ⊂ Y is given by an invertible sheaf L together
with a section sB ∈ H0(Y,L ⊗2) (see [Wav68]) and let τ is the Galois involution.
Suppose a group G acts on Y leaving invariant B. Then there exists a subgroup
G′ ⊂ Aut(X) fitting into the exact sequence

1 −→ 〈τ〉 −→ G′ δ−→ G −→ 1,
7



where δ is induced by G′ → Aut(Y ). The sequence splits if and only if L admits
a G-linearization and in the corresponding representation of G in H0(Y,L ⊗2)
the section sB is G-invariant.

3. Gorenstein Fano threefolds

3.1. Special Fano threefolds.

3.1.1. Proposition. Let G be a group from the list (1.4.1) and let X be a G-Fano
threefold (with only terminal Gorenstein singularities). Then rkPic(X) = 1.

Proof. The lattice Pic(X) is equipped with non-degenerate G-invariant pairing
(D1, D2) = −KX · D1 · D1. According to [Pro13b] we have rkPic(X) ≤ 4. The
group G acts on the orthogonal complement W = K⊥

X of KX in Pic(X). Since X
is a G-Fano, WG = 0. But groups as in (1.4.1) have no rational representations
of dimension ≤ 3, a contradiction. �

Fano threefolds with Fano index ι(X) = 2 are also called del Pezzo threefolds.

3.1.2. Proposition. Let X be a Fano threefold with with at worst canonical
Gorenstein singularities. Assume that ι(X) = 2 and (−1

2
KX)

3 ≤ 4. Further-
more, assume that Aut(X) contains a subgroup G from the list (1.4.1). Then
(X,G) is as in Example 1.6(iii).

Proof. Let A = −1
2
KX and d(X) := A3. Consider the possibilities for d(X) case

by case. We use the classification of del Pezzo threefolds [Fuj90], [Shi89].

Case d(X) = 1. Here Bs |A| = {P} and G faithfully acts on TP,X . Hence

G ≃ 3.A6 by Theorem 2.4. Let G̃ be the universal central extension of G (see,
for example, §33 of [Asc00]). Then the action of G on X lifts to an action of G̃

on H0(X, tA) for any t. Hence G̃ acts on the graded algebra

R(X,A) :=
⊕

t≥0

H0(X, tA).

In our case R(X,A) is generated by its elements x1, x2, x2, y, z with deg xi = 1,
deg y = 2, deg z = 3 and a unique relation of degree 6.
There exists a natural isomorphism H0(X,A) ≃ TP,X . The subspace

S2(H0(X,A)) ⊂ H0(X,−KX)

is invariant. Since dimH0(X,−KX) = 7 and dimS2(H0(X,A)) = 6, the element
y ∈ H0(X,−KX) can be taken to be a relative invariant of G̃. Similarly, the
subspace of the 10-dimensional space H0(X, 3A) generated by x1, x2, x3, y is in-
variant and of codimension 1. Hence the element z ∈ H0(X, 3A) can be taken
to be a relative invariant of G̃. Since the action on x1, x2, x3 has no invariants of
degree < 6 and has a unique invariant φ6 of degree 6, X ⊂ P(13, 2, 3) is given by
the equation

z2 + y3 + φ6

8



and so we are in the situation of Example 1.6(iii).

Case d(X) = 2. In this case the map given by the linear system |A| is a finite
morphism Φ|A| : X → P3 of degree 2 branched over a quartic B ⊂ P3. The group
G acts non-trivially on P3. Therefore, G/z(G) is either PSL2(7) or A6. In the case
G/z(G) = A6, the group G has no invariant quartic. Hence G/z(G) = PSL2(7)
and G ≃ SL2(7).
Similar to the above considered case R(X,A) is generated by x1, . . . , x4, y with

deg xi = 1, deg y = 2 with a unique relation of degree 4. We may take y to be a
relative invariant for G̃. Hence X ⊂ P(14, 2) can be given by the equation

y2 + yφ2 + φ4 = 0

Since the action on x1, . . . , x4 has no invariants of degree ≤ 2, φ2 = 0. Now we
see that z(G) acts trivially on X (cf. Lemma 2.12), a contradiction.

Case d(X) = 3. This case does not occur by Lemma 2.6(ii).

Case d(X) = 4. In this case X is an intersection of two quadrics Q1 and Q2 in
P5, which is impossible by Lemma 2.6(iv). �

3.1.3. Corollary. Let G be a group from the list (1.4.1) and let X be a G-Fano
threefold with ι(X) = 2. Then X is as in Example 1.6(iii).

Proof. By Proposition 3.1.2 we may assume that (−1
2
KX)

3 ≥ 5 and by Proposi-
tion 3.1.1 we have rkPic(X) = 1. Hence by [Pro13a, Theorem 1.7] and [CS16,
Proposition 7.1.10] we have (−1

2
KX)

3 = 5, X is smooth, and Aut(X) ≃ PSL2(C).
On the other hand, PSL2(C) does not contain finite non-solvable groups different
from A5, a contradiction. �

3.2. Lemma (cf. [Pro12, Lemma 5.2]). Let X be a Fano threefold with at worst
canonical Gorenstein singularities. Assume that Aut(X) contains a subgroup G
as in the list (1.4.1). Then the linear system | −KX | is base point free.

Proof. Assume that dimBs | − KX | = 0, then by [Shi89] Bs | − KX | is a single
point, say P , and X has at P terminal Gorenstein singularity of type cA1. By
Lemma 2.7 this is impossible.
Thus dimBs |−KX | > 0, then by [Shi89] Bs |−KX | is a smooth rational curve

C contained in the smooth locus of X . The action of G on C must be trivial and
we obtain a contradiction as above. �

3.3. Lemma. Let X be a Fano threefold with at worst canonical Gorenstein sin-
gularities. Assume that Aut(X) contains a subgroup G from the list (1.4.1). If
the linear system |−KX | is not very ample, then (X,G) is as in Examples 1.7(i),
1.6(iii) or 1.6(iv).

Proof (cf. [Pro12, Lemma 5.3]). Assume that the linear system | −KX | defines
a morphism ϕ : X → Pg+1 which is not an embedding. Let Y = ϕ(X) and let
Ḡ be the image of G in Aut(X). Then ϕ is a double cover and Y ⊂ Pg+1 is a

9



subvariety of degree g − 1 (see [Isk80a] and [PCS05]). Hence either Ḡ ≃ G or Ḡ
is the quotient of G by a subgroup of order 2. Let H be the class of a hyperplane
section of Y and let B ⊂ Y be the branch divisor. Then

(3.3.1) −KX = ϕ∗H, KX = ϕ∗
(
KY + 1

2
B
)
, KY +H + 1

2
B = 0.

Apply Theorem 2.8.1. The case where Y is a quadric (case 2.8.1(ii)) does not
occur by Lemma 2.6(ii) and [Pro12, Lemma 3.6].
If Y ≃ P3 (the case 2.8.1(i)), then the morphism ϕ : X → P3 is a double cover

with branch divisor B ⊂ P3 of degree 6 by (3.3.1). The groups A7 and PSp4(F3)
have no non-trivial invariant hypersurfaces of degree 6. If Ḡ ≃ PSL2(F7), then
we get Example 1.7(i). Likewise, if Ḡ ≃ A6, we get the case 1.6(iv).
If Y is a cone over the Veronese surface (case 2.8.1(iv)), then Y ≃ P(1, 1, 1, 2)

and OP(B) = OP(6) by (3.3.1). Hence ι(X) = 2 and X is a del Pezzo threefold
of degree 1. This case was considered in Proposition 3.1.2.
Finally consider the case where Y is either a rational scroll, a cone over a

rational scroll, or a cone over a rational normal curve. Then Y is the image of Ŷ :=
PP1(E ), where E is a nef rank n vector bundle on P1, under the map defined by the

linear system |O(1)|. Thus ν : Ŷ → Y is the “minimal” resolution of singularities
which is given by the blowup of the maximal ideal of Sing(Y ). In particular, ν is
G-equivariant. Then we have the following equivariant commutative diagram

X̂
η
��

ϕ̂
// Ŷ

ν
��

π

##

X
ϕ

// Y P1

where X̂ is the normalization of the fiber product. The morphism η is a crepant
contraction and X̂ has at worst canonical Gorenstein singularities [PCS05, Lemma 3.6].
The group Ḡ trivially acts on P1, so it non-trivially acts on each fiber F ≃ P2 of
π. Write E = OP1(d1)⊕ OP1(d2)⊕ OP1(d3), where d3 ≥ d2 ≥ d1 ≥ 0. If d1 < d2,

then the surjection E → OP1(d2)⊕ OP1(d3) defines an invariant subscroll Ŷ2 ⊂ Ŷ
such that Y2 ∩F is a line. According to Theorem 2.4 this is impossible. Thus we
may assume that d1 = d2 and, similarly, d2 = d3. So, Ŷ ≃ P2×P1 ≃ Y . Note that
B intersects F along a quartic curve which must be invariant by (3.3.1). Then
the only possibility is that B is a divisor of bidegree (4, 0) or a (reducible) divisor
of bidegree (4, 2), where Ḡ ≃ PSL2(F7). In the former case X is the product of
P1 and del Pezzo surface of degree 2. In the latter case X is described in [Kry16,
Example 1.8] as the threefold X1. In both cases the group G splits by Lemma
2.12, a contradiction. �

3.3.2. Remarks. Assume that −KX is very ample. Then, by Proposition 2.11,
our group G acts faithfully on the space H0(X,−KX)

∨ so that the induced action
on its projectivization P(H0(X,−KX)

∨) = Pg+1 is also faithful. This implies that
the representation H0(X,−KX)

∨ of G is reducible.
10



3.4. Lemma. Let X be a Fano threefold with at worst canonical Gorenstein singu-
larities. Assume that Aut(X) contains a subgroup G as in the list (1.4.1). Assume
that the linear system | −KX | is very ample but the image X = X2g−2 ⊂ Pg+1 is
not an intersection of quadrics. Then (X,G) is as in Example 1.7(ii).

Proof. By our assumption g ≥ 3. If g = 3, then X = X4 ⊂ P4 is a quartic.
Inspecting the list (1.4.1) one can see that the only possibility is G ≃ SL2(F7),
which implies that (X,G) is as in Example 1.7(i).
Now assume that g > 3. Since X = X2g−2 ⊂ Pg+1 is projectively normal

[Isk80a], the restriction map

H0(Pg+1,OPg+1(2)) −→ H0(X,OX(2))

is surjective. This allows us to compute that the number of linear independent
quadrics passing through X is equal to

1
2
(g − 2)(g − 3) > 0.

Let Y ⊂ Pg+1 be the intersection of all quadrics containing X . It is known that
Y is a reduced irreducible variety of minimal degree (see [Isk80a] and [PCS05]).
Thus Y is described by Theorem 2.8.1.
If g = 4, then Y is a (unique) quadric passing through X and X is cut out on

Y by a cubic, say Z. We may assume that Z is G-invariant. Thus our group G
has invariants of degrees 2 and 3. Hence, z(G) is of order 6 and so G ⊃ 6.A6.
But then G has no faithful reducible representations of dimension 6 by Table 1.
Thus it remains to consider the case where Y is either a rational scroll, a cone

over a rational scroll, or a cone over a rational normal curve. Arguing as in the
proof of Lemma 3.3 and using [PCS05, Lemma 4.7], we conclude that there exists

a G-equivariant crepant extraction η : X̂ → X and a degree 3 del Pezzo fibration
X̂ → P1. This gives us a contradiction (see Theorem 2.5). �

3.5. Lemma. Let X be a Fano threefold with at worst canonical singularities and
G ⊂ Aut(X) be a finite group contained in the list (1.4.1). Assume that there
exists a G-invariant divisor S ∈ | −KX | such that the pair (X,S) is not plt and
either S is irreducible or (X,S) is not lc. Then G has a fixed point P ∈ S such
that (X,S) is not plt at P .

Proof. Let c be the log canonical threshold of (X,S), that is, the pair (X, cS) is
maximally lc. Then c ≤ 1 and −(KX + cS) is nef.
Consider the case c < 1. Then −(KX+cS) is ample. Let Λ ⊂ X be the locus of

lc singularities of (X, cS). By Shokurov’s connectedness principle (see [Sho93] and
[Kol92, ch. 17]), Λ is connected (and clearly G-invariant). If dimΛ = 0, then Λ
must be an invariant point. Suppose dimΛ = 1. If there exists a zero-dimensional
center of lc singularities, then replacing cS with small invariant perturbation
(c − ǫ)S + ∆ we get a zero-dimensional locus of lc singularities and may argue
as above (see [Pro12, Claim 4.7.1]). Otherwise Λ must be a minimal center of
lc singularities and by Kawamata subadjunction theorem [Kaw98, Theorem 1] Λ

11



is a smooth rational curve, because −(KX + cS) is ample. Since G cannot act
non-trivially on P1, the action of G on Λ is trivial.
Now consider the case c = 1 and S is irreducible. Then (X,S) is lc. Let

ν : S ′ → S be the normalization. Write

0 ∼ ν∗(KX + S)|S = KS′ +D′,

where D′ is the different, an effective integral Weil divisor on S ′ such that the
pair (S ′, D′) is lc (see [Sho93, §3], [Kol92, ch. 16], and [Kaw07]). The group G
acts naturally on S ′ and ν is G-equivariant. Now consider the minimal resolution
µ : S̃ → S ′ and let D̃ be a uniquely defined) divisor such that

KS̃ + D̃ = µ∗(KS′ +D′) ∼ 0, µ∗D̃ = D′.

is usually called the log crepant pull-back of D′. Here D̃ is again an effective
reduced divisor. Run G-equivariant MMP on S̃. Clearly, the whole D̃ cannot be
contracted. We get a model (Smin, Dmin) such that (Smin, Dmin) is lc, (KSmin

+
Dmin) ∼ 0, and Dmin 6= 0. Assume that Smin has an equivariant conic bundle
structure π : Smin → B. Then Dmin has one or two horizontal components which
must be G-invariant. By adjunction any horizontal component of Dmin is either
rational or elliptic curve. Such a curve does not admit a non-trivial action of G,
so the action of G on the corresponding component D̃1 ⊂ D̃ and ν(µ(D̃1)) must
be trivial. Similarly, if Smin is a del Pezzo surface with rkPic(Smin)

G = 1, then
K2

Smin
= 2 or 9 by Theorem 2.5 and so D̃ has at most 3 components. Arguing as

above we get that the action of G on some component D̃1 ⊂ D̃ is trivial. �

4. Proof of main result

In this section, we prove Theorem 1.5 omitting the proof that 3.A7 cannot act
faithfully on a rationally connected threefold. The case of 3.A7 will be dealt with
in Section 5 later.

4.1. Singularities of quotients. First, we need two auxiliary local results.

4.1.1. Lemma. Let (X ∋ P ) be a threefold terminal singularity of index 1. Sup-
pose that a group A of order 2 acts on (X ∋ P ) so that either the action is free in
codimension 1 or the fixed point locus is a Q-Cartier divisor. Then the quotient
(X ∋ P )/A is canonical.

Proof. Denote (Y ∋ Q) := (X ∋ P )/A. If A acts freely in codimension one,
then the assertion is a consequence of [KSB88, Proposition 6.12]. Let Fix(A,X)
contain a divisor, say D. We have an A-equivariant embedding (X ∋ P ) ⊂ (C4 ∋
0) and we may assume that the action on C4 is diagonalizable. If this action
is of type 1

2
(1, 0, 0, 0), then C4/A is smooth and so Y is Gorenstein. Since the

quotient singularities are always rational [KM98, Proposition 5.13], this implies
12



that (Y ∋ Q) is canonical [KM98, Corollary 5.24]. Thus we may assume that the
action is of type 1

2
(1, 1, 0, 0) and the equation of X is of the form

φ = x1φ1(x1, . . . , x4) + x2φ2(x1, . . . , x4) = 0.

But then the fixed point locus is not a Q-Cartier divisor. �

4.1.2. Lemma. Let (X ∋ P ) be a threefold terminal cyclic quotient singularity of
index 2 acted by a finite group GP such that z(GP ) contains a subgroup A ≃ µ2.
Suppose that the center of any extension of GP by µ2 does not contain an element
of order 4. Then the quotient (X ∋ P )/A is canonical.

Proof. Let π : (X♯ ∋ P ♯) → (X ∋ P ) be the index-one cover, so that (X ∋ P ) =
(X♯ ∋ P ♯)/µ2 where the action of µ2 is free outside P ♯ [KM98, Definition 5.19].
By our assumption (X♯ ∋ P ♯) ≃ (C3, 0) and the action of A is of type 1

2
(1, 1, 1).

The action of GP lifts to an action of G♯
P on (X♯ ∋ P ♯), where G♯

P is an extension

of GP by µ2. Let A
♯ ⊂ G♯

P be the preimage of A (a group of order 4).
If A♯ ≃ µ2 × µ2, then the elements of this group act as follows: 1

2
(1, 1, 1),

1
2
(1, 1, 0), 1

2
(0, 0, 1). It is easy to see that in this case the quotient is canonical

Gorenstein.
Assume that the extension A♯ ≃ µ4. Then the action on C3 is of type 1

4
(1, 1, 1)

or 1
4
(1, 1,−1). By our assumption the former case does not occur. In the latter

case the quotient is terminal. �

4.2. G-birationally superrigid Fano threefolds. Second, we need the follow-
ing global result.

4.3. Theorem. Let X be a Fano threefold with terminal Gorenstein singularities,
and let G be a finite subgroup in Aut(X). Suppose that X and G fit one of the
following seven cases:

(i) G ≃ A7, and X is the unique smooth intersection of a quadric and a
cubic in P5 that admits a faithful action of the group A7;

(ii) G ≃ A7 and X = P3;
(iii) G ≃ PSp4(F3) and X = P3;
(iv) G ≃ PSp4(F3) and X is the Burkhardt quartic in P4;
(v) G ≃ PSL2(F11) and X is the Klein cubic threefold in P4;
(vi) G ≃ PSL2(F11) and X is the unique smooth Fano threefold of Picard

rank 1 and genus 8 that admits a faithful action of the group PSL2(F11).

Let ρ : X 99K V be a G-birational map such that V is a Fano variety with at most
canonical singularities. Then ρ is biregular.

The proof of this result is based on the following technical result, which origi-
nated in [CS12, CS14, CS16, CS17].

4.4. Proposition. Let X be a Fano threefold with terminal Gorenstein singular-
ities, and let G be a finite subgroup in Aut(X). Write −KX ∼ nH, where H is a

13



Cartier divisor on X, and n = ι(X) is the Fano index of the threefold X. Let M

be a linear system on the threefold X that does not have fixed components, and
let λ be a positive rational number such that

λM ∼Q −KX .

Suppose that (X, λM ) does not have terminal singularities. Then one of the
following (non-exclusive) possibilities holds:

• there exists a G-orbit Σ ⊂ X such that

|Σ| = h0
(
OX

(
(n + 1)H

))
− h0

(
OX

(
(n + 1)H

)
⊗ IΣ

)
,

where IΣ is the ideal sheaf of Σ;
• there exists a G-irreducible reduced curve C that consists of r > 1 pairwise
disjoint smooth isomorphic irreducible components C1, . . . , Cr such that
2g − 2 6 nd, rd 6 H3n2 and

r ((n+ 1)d− g + 1) = h0
(
OX

(
(n + 1)H

))
− h0

(
OX

(
(n + 1)H

)
⊗ IC

)
,

where d = H · Ci, g is the genus of any curve Ci, and IC is the ideal
sheaf of C.

Proof. Since −KX is Cartier, the log pair (X, 2λM ) does not have klt singularities
by [CS14, Lemma 2.2]. Choose µ 6 2λ such that (X, µM ) is strictly lc. Let Z be
a minimal center of lc singularities of the log pair (X, µM ), see [Kaw97, Kaw98]
for a precise definition. Then θ(Z) is also a minimal center of lc singularities of
this log pair for every θ ∈ G. Moreover, we have

Z ∩ θ(Z) 6= ∅ ⇐⇒ Z = θ(Z)

by [Kaw97, Proposition 1.5].
Since M does not have fixed components, the center Z is either a curve or a

point. Observe that

µM ∼Q

µ

λ
nH,

where µ

λ
6 2. It would be easier to work with (X, µM ) if it did not have centers

of lc singularities that are different from θ(Z) for θ ∈ G. This is possible to
achieve if we replace the boundary µM by (a slightly more complicated) effective
boundary BX such that

BX ∼Q

(µ
λ
n + ǫ

)
H

for some positive rational number ǫ that can be chosen arbitrary small. This
is known as the Kawamata–Shokurov trick or the perturbation trick (see [CS16,
Lemma 2.4.10] and the proofs of [Kaw97, Theorem 1.10] and [Kaw98, Theo-
rem 1]). By construction, we may assume that

(4.4.1)
µ

λ
n+ ǫ 6 2n + ǫ < 2n+ 1.

Note that the coefficients of BX depend on ǫ. But we can chose ǫ as small as we
wish, so that the number µ

λ
n+ ǫ can be as close to 2n as we need.

14



Let Σ be the union of all log canonical centers θ(Z) for θ ∈ G. Then Σ is
either a G-orbit or a disjoint union of irreducible isomorphic curves, which are
transitively permuted by G. In both cases, we have an exact sequence of vector
spaces

(4.4.2) 0 −→ H0
(
OX

(
(n + 1)H

)
⊗ IΣ

)
−→ H0

(
OX

(
(n + 1)H

))
−→

−→ H0
(
OΣ ⊗ OX

(
(n + 1)H

))
−→ H1

(
OX

(
(n+ 1)H

)
⊗ IΣ

)
,

where IΣ is an ideal sheaf of the locus Σ, and OΣ is its structure sheaf. Note
that IΣ is the multiplier ideal sheaf of the log pair (X,BX). Since

KX +BX ∼Q

((µ
λ
− 1

)
n+ ǫ

)
H,

we can apply Nadel’s vanishing (see [Laz04, Theorem 9.4.17]) to deduce that

h1 (OX((n+ 1)H)⊗ IΣ) = 0.

In particular, if Z is a point, it follows from (4.4.2) that

|Σ| = h0
(
OX

(
(n + 1)H

))
− h0

(
OX

(
(n + 1)H

)
⊗ IΣ

)
.

To complete the proof of the proposition, we may assume that Σ is disjoint
union of irreducible isomorphic curves C1 = Z,C2, . . . , Cr, which are transitively
permuted by G. In particular, if r = 1, then Σ = C1 = Z is a G-invariant
irreducible curve in X .
Let d = H · Ci. Then rd 6 H3n2. This immediately follows from Corti’s

[Cor00, Theorem 3.1]. Namely, observe that (X, µM ) is not klt at general points
of every curve Ci. Let M and M ′ be general surfaces in M . Then, applying
[Cor00, Theorem 3.1] to the log pair (X, µM ) at general point of the curve Ci,
we obtain

multCi
(M ·M ′) >

4

µ2

Then
n2

λ2
H3 = H ·M ·M ′ >

r∑

i=1

H · Ci multCi
(M ·M ′) > rd

4

µ2
,

so that rd 6 H3n2 µ2

4λ2 6 H3n2 as claimed.
By Kawamata’s subadjunction [Kaw98, Theorem 1], each curve Ci is smooth.

Let g be its genus. Moreover, for every ample Q-Cartier Q-divisor A on X , it
follows from [Kaw98, Theorem 1] that

(KX +BX + A)
∣∣∣
Ci

∼Q KCi
+BCi

for some effective Q-divisor BCi
on the curve Ci. Computing the degrees of the

left hand side and the right hand side in this Q-linear equivalence, we see that
2g − 2 6 nd. In particular, the divisor (n+ 1)H|Ci

is non-special on Ci, so that

h0
(
OCi

(
(n + 1)H|Ci

))
= (n+ 1)d− g + 1

15



by the Riemann–Roch formula. Now using (4.4.2), we get

r ((n+ 1)d− g + 1) = h0
(
OX

(
(n + 1)H

))
− h0

(
OX

(
(n + 1)H

)
⊗ IΣ

)
,

which complete the proof of the proposition. �

4.5. Remark. In the notations and assumptions of Proposition 4.4, there exists a

central extension G̃ of the group G such that the line bundle H is G̃-linearizable.
Recall the Riemann-Roch theorem for a divisor D on a smooth threefold X :

χ(OX(D)) =
1

6
D3 − 1

4
D2 ·KX +

1

12
D ·K2

X +
1

12
D · c2(X) + χ(OX).

Thus, the vector space H0(OX((n + 1)H)) is a representation of the group G̃ of
dimension

h0(OX((n+ 1)H)) =
(n + 1)(2n+ 1)(3n+ 2)

12
H3 +

2n+ 2

n
+ 1.

Then the exact sequence (4.4.2) in the proof of Proposition 4.4 is an exact se-

quence of G̃-representations.

Proof of Theorem 4.3. Suppose that there exists a non-biregularG-birational map
ρ : X 99K V such that V is a Fano variety with at most canonical singularities.
Applying [CS16, Theorem 3.2.1], we see that there exists a G-invariant linear
system M on the threefold X such that M does not have fixed components, and
the singularities of the log pair (X, λM ) are not terminal, where λ is a positive
rational number such that λM ∼Q −KX . We will obtain a contradiction using
Proposition 4.4 and Remark 4.5.

Let m = (n+1)(n+2)
12

H3+ 2
n
. Note that the divisor H is very ample in each of our

cases, and h0(OX(H)) = m+ 1. Thus, we may identify X with its image in Pm.

Then G is a subgroup in PGLm+1(C). Let G̃ be a finite subgroup in GLm+1(C)

that maps surjectively to G by the natural projection. We may assume that G̃ is
the smallest group with this property.

The vector space H0(OX(H)) is an irreducible representation of the group G̃.
From Table 1, this is immediate in all cases except 4.3(vi). In this remaining
case, G ≃ PSL2(F11) and X the unique smooth Fano threefold of Picard rank
1 and genus 8 that admits a faithful action of the group PSL2(F11) (see Exam-
ple 2.9 of [Pro12]). The space H0(OX(H)) is isomorphic to the representation∧2 V where V is a 5-dimensional faithful representation of G. Recall that

χ∧
2 V (g) =

1

2

(
χV (g)

2 − χV (g
2)
)

where g ∈ G and χ∧2 V (resp. χV ) is the character of
∧2 V (resp. V ). Evaluating

g at any element of order 2 in PSL2(F11), we conclude that
∧2 V is irreducible

from the character table [CCN+85].
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Since H0(OX(H)) is an irreducible representation of the group G̃, the threefold
X does not contain G-invariant subvarieties contained in a proper linear subspace
of Pm.
Applying Proposition 4.4, we see that either X contains a G-orbit Σ such that

m < |Σ| = h0
(
OX

(
(n+ 1)H

))
− h0

(
OX

(
(n+ 1)H

)
⊗ IΣ

)
,

where IΣ is the ideal sheaf of Σ, or there exists a G-irreducible reduced curve
C that is a disjoint union of smooth irreducible curves C1, . . . , Cr of genus g and
degree d = H · Ci such that rd 6 H3n2, 2g − 2 6 nd and

r ((n+ 1)d− g + 1) = h0
(
OX

(
(n + 1)H

))
− h0

(
OX

(
(n + 1)H

)
⊗ IC

)
,

where IC is the ideal sheaf of the curve C. In the former case, by Remark 4.5, the
number |Σ| is the dimension of some G̃-subrepresentation in H0(OX((n+ 1)H)).
Likewise, in the latter case, the number r((n+ 1)d− g+ 1) is also the dimension

of some G̃-subrepresentation in H0(OX((n+ 1)H)). Moreover, if r = 1, then the
natural homomorphism G → Aut(C) is injective, because C is not contained in
a hyperplane in this case. Thus, if r = 1, then

(4.5.1) 84(g − 1) > |G|

by Hurwitz’s automorphisms theorem.

Case 4.3(i). Here G ≃ A7 and X is the unique smooth intersection of a quadric
and a cubic in P5 that admits a faithful action of the group A7. We have n = 1,

H3 = 6, m = 5, G̃ ≃ A7 and h0(OX(2H)) = 20. Note that H0(OX(H)) is the ir-
reducible A7-representation obtained as the quotient of the standard permutation
representation by the trivial representation.
Suppose that there exists a G-orbit Σ in X such that 5 < |Σ| 6 20. Using

Table 3, we see that |Σ| is either 7 or 15. In the case |Σ| = 15, a stabilizer of a point
in Σ is isomorphic to PSL2(F7). The restriction of the representation H0(OX(H))
to PSL2(F7) is the quotient of a transitive permutation representation so it has
no trivial subrepresentations. Since PSL2(F7) is simple, it therefore has no one-
dimensional subrepresentations. The action cannot fix a point so this case is
impossible. In the case |Σ| = 7, the stabilizer is isomorphic to A6. In this case,
there is a fixed point in the ambient space P5 corresponding to the fixed point of
the natural permutation action. One checks that this point does not lie on X by
explicitly checking the defining equations, which are just elementary symmetric
functions.
Thus, the threefold X contains a G-irreducible reduced curve C that is a dis-

joint union of smooth irreducible curves C1, . . . , Cr of genus g and degree d such
that rd 6 6 and 2g − 2 6 d. As above, this shows that r = 1, so that d 6 6 and
g 6 4, which contradicts (4.5.1).
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Case 4.3(ii). Here G ≃ A7 and X = P3. We have n = 4, H3 = 1, m = 3,

G̃ ≃ 2.A7 and h0(OX(5H)) = 56. Note that H0(OX(H)) is an irreducible four-

dimensional representation of the group G̃.
Suppose that P3 contains a G-orbit Σ such that 3 < |Σ| 6 56. Going through

the list of subgroups in G of index 6 56, we see that

|Σ| ∈
{
7, 15, 21, 35, 42

}
.

Let GP be the stabilizer of a point P ∈ Σ. Using Table 3, we conclude GP is
isomorphic to one of the following groups: A6, PSL2(F7),S5, (A4×µ3)⋊µ2, or A5.

Let G̃P be a subgroup in G̃ that is mapped to GP . We claim that the restriction

of the representation V = H0(OX(H)) to G̃P does not contain one-dimensional
subrepresentations, which contradicts the fact thatGP fixes the point P ∈ P3. Let

χ be the 4-dimensional representation of G̃; we will consider restricted characters
of χ (see [CCN+85]). We have χ(g) = −1

2
(1 ±

√
−7) when g ∈ G̃ has order 7;

if GP ≃ PSL2(F7) then the only possibility is that G̃P ≃ PSL2(F7) and V |
G̃P

is irreducible. We have χ(g) = −1 when g has order 5, which means that V |G̃P

is irreducible if GP
∼= A5 (and a fortiori S5 and A6). It remains to consider

GP
∼= (A4 × µ3) ⋊ µ2, which contains a 3-Sylow subgroup H ⊆ G. For some

elements g of order 3, we have χ(g) = −2 meaning that χ|H does not have any
trivial subrepresentations. Since the group GP has no non-trivial maps to µ3, we
conclude that there are no one-dimensional subrepresentations. With the claim
proved, we see this case is impossible.
Thus, there is a G-irreducible reduced curve C in P3 with the following prop-

erties: C is union of smooth irreducible curves C1, . . . , Cr of genus g and degree
d, rd 6 16, 2g − 2 6 4d and

r
(
5d− g + 1

)
6 56.

As above, we see that r ∈ {1, 7, 15}. If r = 15, then d = 1, so that g = 0 and

90 = r
(
5d− g + 1

)
6 56,

which is absurd. Likewise, if r = 7, then d 6 2, so that g = 0 and

35d+ 7 = 7
(
5d+ 1

)
= r

(
5d− g + 1

)
6 56,

so that d = 1. In this case, the stabilizer of the line C1 is isomorphic to A6,
which is impossible, since the restriction of the representation H0(OX(H)) to the
subgroup 2.A6 is irreducible. Thus, we see that r = 1, so that C is irreducible.
Using (4.5.1), we see that g ∈ {31, 32, 33}. By Lemma 2.2, one of the expressions

169

22 · 3 · 7 ,
5071

23 · 32 · 5 · 7 ,
634

32 · 5 · 7
is a non-negative integer combination of expressions of the form 1 − 1

r
for r =

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14. Since 1
2
+ 2

3
+ 6

7
is larger than these expressions, this

is impossible.
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Case 4.3(iii). Here G ≃ PSp4(F3) and X = P3. We have n = 4, H3 = 1,

m = 3, G̃ ≃ Sp4(F3) and h0(OX(5H)) = 56. We will see that H0(OX(5H)) is a

direct sum of irreducible representations of G̃ of dimensions 20 and 36. Indeed,

h0(OX(H)) is an irreducible 4-dimensional representation V of G̃ with character

χ. Note that every summand of S5V must be a faithful representation of G̃ since
5 is coprime to 2. Via the Newton identities, we have the standard formula for
the 5th symmetric power

S5χ(g) =
1

120

[
χ(g)5 + 10χ(g2)χ(g)3 + 15χ(g2)2χ(g)

+ 20χ(g3)χ(g)2 + 20χ(g3)χ(g2) + 30χ(g4)χ(g) + 24χ(g5)
]

where g is an element of G̃. From the character table [CCN+85], we see that
χ(g) = −1 for any element g of order 5. We compute that S5χ(g) = 1 and
conclude from the character table that the only possibility is a sum of characters
of degree 20 and 36 as desired.
Suppose that P3 contains a G-orbit Σ such that |Σ| is the dimension of some

G̃-subrepresentation in H0(OX(5H)). Then

|Σ| ∈ {20, 36, 56}.
Using Table 3, we see that |Σ| = 36. Let GP be the stabilizer of a point P ∈ Σ.
Then GP ≃ S6. The group G contains one such subgroup up to conjugation.

Let G̃P be a subgroup in G̃ that is mapped to GP . Then G̃P ≃ 2.S6, and

the restriction of the representation H0(OX(H)) to G̃P does not contain one-
dimensional subrepresentations. This contradicts the fact that GP fixes the point
P ∈ P3.
Thus, there is a G-irreducible reduced curve C in P3 that is a union of smooth

irreducible curves C1, . . . , Cr of genus g and degree d such that rd 6 16, 2g−2 6

4d and

r
(
5d− g + 1

)
6 56.

Arguing as above, we see that r = 1, so that d 6 16 and g 6 33, which is
impossible by (4.5.1).

Case 4.3(iv). Here G ≃ PSp4(F3) and X is the Burkhardt quartic in P4. We

have n = 1, H3 = 4, m = 4, G̃ ≃ G and h0(OX(2H)) = 15. Note that P3 does
not contain a G-orbit Σ such that 4 < |Σ| 6 15, because G does not contain
subgroups of such index. Thus, there is a G-irreducible reduced curve C in P3

that is union of smooth irreducible curves C1, . . . , Cr of genus g and degree d such
that rd 6 4 and 2g − 2 6 d. Since there are no subgroups of index 2, 3, or 4, we
have r = 1. Thus d 6 4 and g 6 3, which contradicts (4.5.1).

Case 4.3(v). Here G ≃ PSL2(F11) and X is the Klein cubic threefold in P4.

We have n = 2, H3 = 3, m = 4, G̃ ≃ G and h0(OX(3H)) = 34. If χ is the
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character of the representation V = h0(OX(3H)) of G, then the character of the
third symmetric power is given by

S3χ(g) =
1

6

[
χ(g)3 + 3χ(g2)χ(g) + 2χ(g3)

]

for g ∈ G. The trivial character occurs exactly once in S3V by Table 1. From the
character table [CCN+85], for any element g ∈ G of order 3 we have χ(g) = −1
and thus S3χ(g) = 2. Note that all irreducible characters ρ satisfy ρ(g) ∈ R, but
only the trivial and 10-dimensional ones have ρ(g) > 0. Since there is only one
trivial subrepresentation, this forces the existence of at least one 10-dimensional
irreducible subrepresentation. The possible irreducible characters have degrees
1, 5, 10, 11, 12, thus 1 + 10 + 12 + 12 is the only possibility for S3V . For any
h ∈ G of order 5, χ(h) = 0 and S3χ(h) = 0 while ρ(h) 6= 0 for the 12-dimensional
irreducible representations. We conclude that the vector spaceH0(OX(3H)) splits
as a sum of two non-isomorphic twelve-dimensional representations, and one ten-
dimensional representation.
Suppose that X contains a G-orbit Σ such that |Σ| is the dimension of some

G-subrepresentation in H0(OX(3H)). Going through the list of subgroups in G
of index 6 34, we see that |Σ| = 12. Let GP be the stabilizer of a point P ∈ Σ.
Then GP ≃ µ11 ⋊ µ5, and the restriction of the representation H0(OX(H)) to
GP is irreducible. This contradicts to the fact that GP fixes a point in P4.
Thus, there is a G-irreducible reduced curve C in P4 that is union of smooth

irreducible curves C1, . . . , Cr of genus g and degree d such that rd 6 12, 2g−2 6

2d and r
(
3d − g + 1

)
6 34. Going through the list of subgroups in G of index

6 12, we see that r ∈ {1, 11, 12}. If r = 12 or r = 11, then d = 1, so that g = 0,
which gives

11× 4 6 4r = r
(
3d+ 1

)
= r

(
3d− g + 1

)
6 34,

which is absurd. Thus, we have r = 1, so that C is irreducible. Then d 6 12 and
g 6 13. Using (4.5.1), we see that g > 9, so that g ∈ {9, 10, 11, 12, 13}. Since
|G| = 25920 = 26 ·34 ·5 and 2g−2 is never divisible by 25 or 33, the expression on
the left hand side from Lemma 2.2 has 22 · 32 in the denominator when written
in lowest terms. However, it is a non-negative integer combination of expressions
of the form 1− 1

r
for r = 1, 2, 3, 4, 5, 6, 9, 12. Thus, this case is impossible.

Case 4.3(vi). Here G ≃ PSL2(F11) and X is the unique smooth Fano threefold of
Picard rank 1 and genus 8 that admits a faithful action of the group PSL2(F11).

We have n = 1, H3 = 14, m = 9, G̃ ≃ G and h0(OX(3H)) = 40. Going
through the list of subgroups in G of index 6 40, we see that either GP ≃ A5

or GP ≃ µ11 ⋊ µ5. Since X is smooth, the embedded tangent space at P is
3-dimensional and has a faithful GP action. This means that the restriction
of the representation H0(OX(H)) to GP has a trivial representation and a 3-
dimensional faithful subrepresentation. This is impossible if GP ≃ µ11 ⋊ µ5,
so GP ≃ A5. From the character table [CCN+85] of PSL2(F11, we see that any

20



faithful irreducible character χ of degree ≤ 10 must have χ(g) = 0 for all g ∈ G of
order 5. However, we have ρ(g) = 1

2
(1±

√
5) for an irreducible character ρ of A5

of degree 3. Thus there must be two 3-dimensional faithful A5-subrepresentations
of H0(OX(H)) along with a trivial subrepresentation. The remaining character
must be a character σ of A5 of degree 2 such that σ(g) = −2. No such characters
exist, so this case is impossible.
Thus, there is a G-irreducible reduced curve C in X that is a union of smooth

irreducible curves C1, . . . , Cr of genus g and degree d such that rd 6 14, 2g−2 6 d
and r(2d− g +1) 6 40. Arguing as above, we see that r ∈ {1, 11, 12}. As above,
denote by G1 the stabilizer of the curve C1. If r = 12, then d = 1, so that C1 is
a line, which implies that the restriction of the representation H0(OX(H)) to G1

contains a two-dimensional subrepresentation. But we already checked that this
is not the case, so that r 6= 12. Similarly, we see that r 6= 11, because G1 ≃ A5

in this case, and the restriction of the representation H0(OX(H)) to G1 does not
have two-dimensional subrepresentations either. Hence, we see that r = 1, so
that C is irreducible. Then d 6 14 and g 6 8, which is impossible by (4.5.1).
This completes the proof of Theorem 4.3. �

4.6. The proof. Now we are ready to prove

4.7. Proposition. Let X be a rationally connected threefold. Then the group
Aut(X) does not contain a subgroup isomorphic to SL2(F11), Sp4(F3), 2.A7 or
6.A7.

Proof. LetX be a rationally connected threefold. Let G be a subgroup in Aut(X).
Suppose that G is one of the following groups SL2(F11), Sp4(F3), 2.A7 or 6.A7.
We seek a contradiction. We may assume that G 6≃ 6.A7 because in this case
taking the quotient by a subgroup of order 3 in the center reduces the problem to
2.A7. Thus z(G) ≃ µ2. We may assume that X has a structure of G-Mori fiber
space π : X → S. By Theorem 2.5 the base S is a point, i.e. X is a GQ-Fano
threefold.
Let Y = X/z(G), let π : X → Y be the quotient map and let Ḡ := G/z(G).

Then Y has canonical singularities by Lemmas 4.1.1, 4.1.2 and Claim 4.7.2 below.
Using Theorem 1.3, we see that Y is Ḡ-birational to one of the Fano threefolds
listed in Theorem 4.3 and by this theorem Y , in fact, is Ḡ-isomorphic to one of
the varieties in the list. In all our cases Y is a Ḡ-Fano with at worst isolated or-
dinary double points (in fact, Y is smooth except for the case 4.3(iv)). Moreover,
Cl(Y )Ḡ = Pic(Y ) by [CPS16, Lemma 2.2]. The Hurwitz formula gives

(4.7.1) KX = π∗
(
KY + 1

2
B
)
,

where B is the branch divisor. Thus B is non-zero Ḡ-invariant and there exists a
Cartier divisor D such that 2D ∼ B. In particular, the Fano index of Y is even.
Therefore, we are left with the cases 4.3(ii), 4.3(iii), 4.3(v). But in the case 4.3(ii)
we have Y ≃ P3, Ḡ ≃ A7 and degB ≤ 6 by (4.7.1) which impossible because the
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minimal degree of invariants in this case is at least 8 (see Table 1). Likewise we
obtain a contradiction in the cases 4.3(iii) and 4.3(v). �

4.7.2. Claim. Any z(G)-fixed point of X satisfies conditions of Lemma 4.1.1 or
Lemma 4.1.2.

Proof. Note that the fixed point locus of z(G) on X is G-invariant and so its
divisorial part must be a Q-Cartier divisor. Hence any Gorenstein point of X
satisfies conditions of Lemma 4.1.1. Assume that X is a non-Gorenstein Fano
threefold. Let P ∈ X be a non-Gorenstein point and let GP ⊂ G be its stabilizer.
Arguing as in the proof of [Pro12, Lemma 6.1] or Lemma 5.5 below one can show

that P ∈ X is a cyclic quotient singularity of type 1
2
(1, 1, 1). As in Lemma 4.1.2,

consider the index-one cover π : (X♯ ∋ P ♯) → (X ∋ P ) and the lifting G♯
P to

Aut(X♯ ∋ P ♯). Since the length of the orbit of P is at most 15 (see [Pro12,
Lemma 6.1] or Lemma 5.5), we see that there are only the following possibilities
[CCN+85], [GAP18]:

(i) G ≃ 2.A7, GP ≃ 2.A6;
(ii) G ≃ 2.A7, GP ≃ SL2(F7);
(iii) G ≃ SL2(F11), GP ≃ 2.A5;
(iv) G ≃ SL2(F11), GP ≃ µ22 ⋊ µ5.

Now one can see that in the cases (i)-(iii) any extension G♯
P of GP by µ2 splits.

Consider the case (iv). Assume that the center of G♯
P contains an element z of

order 4. Then the kernel of the homomorphism G♯
P → µ5 must be a cyclic group

µ44. But then G♯
P has no faithful 3-dimensional representation, a contradiction.

�

5. 3.A7

The aim of this section is to prove the following.

5.1. Proposition. Let X be a rationally connected threefold. Then the group
Aut(X) does not contain a subgroup isomorphic to 3.A7.

Let G = 3.A7. Assume that G ⊂ Aut(X) where X is a rationally connected
threefold. We may assume that X has the structure of a G-Mori fiber space
π : X → S. By Theorem 2.5, the base S is a point, i.e. X is a GQ-Fano
threefold. We distinguish two cases: 5.2 and 5.3.

5.2. Actions on Gorenstein Fano threefolds. First we consider the case
where KX is Cartier, i.e. the singularities of X are at worst terminal Goren-
stein. By Propositions 3.1.1 and 3.1.2 we have Pic(X) = Z ·KX . Let g = g(X)
be the genus of X . Thus (−KX)

3 = 2g − 2. By Lemmas 3.2 and 3.3 the lin-
ear system | −KX | defines an embedding to Pg+1. By [Pro16] we have g 6= 12.
Recall that any Fano threefold X with terminal Gorenstein singularities admits
a smoothing, i.e. a deformation X → D ∋ 0 over a disk D ⊂ C such that the
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central fiber X0 is isomorphic to X and a general fiber is smooth [Nam97]. The
numerical invariants such as the degree, the Picard number, and the Fano index
are constant in such a family X/D. Now by the classification of smooth Fano
threefolds [Isk80a] or [IP99] we conclude that g ≤ 10. By Lemma 2.7 the group
G has no fixed points.

5.2.1. Claim. X has no G-invariant hyperplane sections.

Proof. Assume that there exists a G-invariant divisor S ∈ | − KX |. By Theo-
rem 2.9.1 the pair (X,S) is not plt. By Lemma 3.5 the surface S is reducible
and reduced. Since Pic(X) = Z · [S], the linear system | − KX | = |S| has no
fixed components. By Bertini’s theorem this G-invariant surface S ∈ | −KX | is
unique. Write S =

∑m

i=1 Si. Then∑
(−KX)

2 · Si = 2g − 2 ≤ 18.

So the cardinality of the orbit of S1 equals 7 or 14 by Table 3. In both cases g = 8
so that dimH0(X,OX(−KX)) = 10. We get a contradiction with Table 1. �

Let V := H0(X,OX(−KX))
∨. The group G faithfully acts on V and P(V ).

Hence the representation V of G is reducible. Since dimV = g+2 ≤ 12, we have
V = V ′ ⊕ V ′′ (as a G-module), where V ′ and V ′′ are irreducible representations
with dimV ′′ = dimV ′ = 6. Thus g = 10.

5.2.2. Lemma. Let U be an irreducible 6-dimensional representation of 3.A7 and
let Q ⊂ S2U∨ be a 6-dimensional subrepresentation. Then the base locus of Q on
P(U) is empty.

Proof. Observe from Table 1, that all 6-dimensional irreducible representations
U have a unique invariant cubic in P(U) defined by a polynomial f . Then the
quadratic polynomials ∂f/∂xi generate a 6-dimensional irreducible subrepresen-
tation Q ⊆ S2U∨ which is isomorphic to U . The complement U ′ of Q in S2U∨

is 15-dimensional. If U is faithful, then so must be U ′ and we conclude immedi-
ately from the character table [CCN+85] that S2U∨ ≃ U ⊕ U15, where U15 is a
faithful irreducible representation of dimension 15. If U is not faithful, then from
Table 1 we see that U ′ contains a unique trivial subrepresentation. In this case,
S2U∨ ≃ C ⊕ U ⊕W14, where W14 is a non-faithful irreducible representation of
dimension 14. From the character table, the only possibility is that U ′ is a direct
sum of an irreducible 14-dimensional representation and a trivial representation.
In either case, Q is the the unique 6-dimensional irreducible subrepresentation.
One can check that the hypersurface f = 0 in P(U) is smooth. Hence quadrics
from Q have no common zeros in P(U). �

5.2.3. Remarks. Let X3 a cubic fourfold in P5 that admits a faithful action of
the group A7. Then X3 is one of two hypersurfaces that (implicitly) appear in the
proof of Lemma 5.2.2. For one of them, the action of A7 is given by the standard
irreducible six-dimensional representation of the group A7. For the other, the
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action is given by an irreducible faithful six-dimensional representation of the
group 3.A7. In the former case, one has αA7

(X3) 6 2
3
, because P4 contains an

A7-invariant quadric hypersurface. Here, αA7
(X3) is the A7-invariant α-invariant

of Tian defined in [Tia87]. However, in the latter case, one has αA7
(X3) > 1.

Indeed, suppose that αA7
(X3) < 1. Then there exists an effective A7-invariant

divisor D on X3 such that D ∼Q −KX3
and (X3, D) is not lc. This follows from

the algebraic formula for αA7
(X3) given in [CS08, Appendix A]. Choose positive

rational number µ < 1 such that (X3, µD) is strictly lc. Let Z be a minimal
center of lc singularities of the log pair (X3, µD). Then dim(Z) 6 2, because
P6 does not contain A7-invariant hyperplanes and quadric hypersurfaces. Using
the perturbation trick (see the proofs of [Kaw97, Theorem 1.10] and [Kaw98,
Theorem 1]), we may assume that all log canonical centers of the log pair (X3, µD)
are of the form θ(Z) for some θ ∈ G. Moreover, by [Kaw97, Proposition 1.5],
either Z ∩ θ(Z) = ∅ or Z = θ(Z) for every θ ∈ G. On the other hand, it follows
from [Laz04, Theorem 9.4.17] that the union of all log canonical centers of the log
pair (X3, µD) is connected, which implies that Z is A7-invariant. In particular,
since P6 does not have A7-fixed points, the center Z is not a point, and A7 acts
faithfully on Z. However, Kawamata’s subadjunction [Kaw98, Theorem 1] implies
that Z is a normal Fano type subvariety, so that either it is a smooth rational
curve or a rational surface with at most quotient singularities. This is impossible,
because A7 is not contained in Cr2(C) by [DI09]. Thus, we see that αA7

(X3) > 1
in the case when the action of A7 on P6 is given by an irreducible faithful six-
dimensional representation of the group 3.A7. In particular, this hypersurface
admits a Kähler–Einstein metric by [Tia87]. Note that there are other smooth
cubic fourfolds that are known to be Kähler–Einstein. They are described in
[AGP06]. Our A7-invariant cubic fourfold is not one of them: in appropriate
homogeneous coordinates on P6 it is given by

x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x1x2x3 + x1x2x4+

+ x1x2x5 + x1x4x5 + x1x5x6 + x2x4x5 + x2x4x6 + x3x4x5+

ω2x1x3x4 + ω2x1x4x6 + ω2x2x3x5 + ω2x2x5x6 + ωx1x2x6 + ωx1x3x5+

+ ωx1x3x6 + ωx2x3x4 + ωx2x3x6 + ωx3x4x6 + ωx3x5x6 + ωx4x5x6 = 0,

where ω is a primitive cubic root of unity. This implies that it does not contain
planes, while Kähler–Einstein smooth cubic fourfolds found in [AGP06] always
contain many planes.

Let Q := H0(X,JX(2)) ⊂ S2V ∨ be the space of quadrics passing through X .
Then dimQ = 28. Consider the decomposition

(5.2.4) S2V = (S2V ′)⊕ (S2V ′′)⊕ (V ′ ⊗ V ′′).

Since X 6⊃ P(V ′) and X 6⊃ P(V ′′) we have

Q ∩ S2V ′ 6= 0, Q ∩ S2V ′′ 6= 0.
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If both representations V ′ and V ′′ are faithful, then V ′ 6≃ V ′′ and (5.2.4) has the
form

S2V = S2V ′ ⊕ S2V ′′ ⊕ V ′ ⊗ V ′′

≃ ≃ ≃
V ′′ ⊕ U15 V ′ ⊕ U ′

15 C⊕W14 ⊕W21

where U15, U
′
15 are different faithful 15-dimensional irreducible representations,

and Wk, k = 14, 21 are irreducible representations of A7 with dimWk = k. The
symmetric powers follow from the proof of Lemma 5.2.2. Since V ′ and V ′′ are
dual, the trace shows there is a trivial subrepresentation of V ′ ⊗ V ′′. If χ is the
character of the product V ′⊗V ′′, we observe that χ(g) = 0 for all non-central g of
order 3 and 4. Since the trivial representation is already a summand, we require
(non-faithful) subrepresentations with characters whose values are not ≥ 0 for
such g. Looking at the character table V ′ ⊗ V ′′ ≃ C ⊕ W14 ⊕ W21 is the only
possibility.
If V ′′ is not faithful, then similarly (5.2.4) has the form

S2V = S2V ′ ⊕ S2V ′′ ⊕ V ′ ⊗ V ′′

≃ ≃ ≃

U6 ⊕ U15 C⊕W6 ⊕W14 U ′
15 ⊕ U21

In this case, that V ′ ⊗ V ′′ ≃ U ′
15 ⊕U21 is the only possibility can be seen by con-

sidering the values of faithful characters on the trivial element and an involution.
In both these decompositions all the irreducible summands are pairwise non-

isomorphic. Counting dimensions one can see that either Q ∩ S2V ′ or Q ∩ S2V ′′

contains a 6-dimensional subrepresentation. Suppose that this holds, for example,
for Q ∩ S2V ′. This implies that X ⊂ P(V ′′), a contradiction.

5.3. Actions on non-Gorenstein Fano threefolds. Now we consider the case
where KX is not Cartier.

5.3.1. Lemma ([Kaw92], [Rei87]). Let X be a (terminal) Q-Fano threefold whose
non-Gorenstein singularities are exactly N cyclic quotient points of type 1

2
(1, 1, 1).

Then we have

−KX · c2 = 24− 3N
2
,(5.3.2)

dim | −KX | = 1
2
(−KX)

3 − 1
4
N + 2,(5.3.3)

dim | − 2KX | = 5
2
(−KX)

3 − 1
4
N + 4.(5.3.4)

5.4. Assumption. Let G = 3.A7 and let X be a non-Gorenstein GQ-Fano three-
fold. Let Sing′(X) be the set of non-Gorenstein points and let N be its cardinality.

5.5. Lemma. The following assertions hold.

(i) G has no fixed points on X;
(ii) G acts transitively on Sing′(X);
(iii) every non-Gorenstein point P ∈ X is cyclic quotient singularity of type

1
2
(1, 1, 1);
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(iv) for the stabilizer GP of P ∈ Sing′(X) there are the following possibilities:
(a) GP ≃ A6, N = 7 or 14,
(b) GP ≃ PSL2(F7)× µ3, N = 15.

Proof. Take a point P ∈ Sing′(X). Let r be the index of P , let Ω be its orbit,
and let and n := |Ω|. Bogomolov–Miyaoka inequality [Kaw92], [KMMT00] gives
us

0 < −KX · c2 = 24−
∑

(ri − 1/ri) = 24− 3N/2 ≤ 24− 3n/2.

Then using the list of maximal subgroups from Table 3 one can obtain the fol-
lowing possibilities:

(i) GP ≃ 3.A6, n = 7,
(ii) GP ≃ PSL2(F7)× µ3, n = 15.

Then one can proceed similarly to [Pro12, Lemma 6.1]. �

5.6. Corollary. Let σ : XP → X be the blowup of P ∈ Sing′(X) and let EP =
σ−1(P ) be the exceptional divisor. Then XP is smooth along EP , EP ≃ P2,
OEP

(EP ) ≃ OP2(−2), and the action of GP on EP has no fixed points.

5.7. First we consider the case | −KX | = ∅.

5.7.1. Lemma. In the above notation, N = 14 or 15,

(−KX)
3 = 1

2
N − 6 ≥ 1,(5.7.2)

dim | − 2KX | = N − 11 ≥ 3.(5.7.3)

5.7.4. Lemma. The linear system | − 2KX | has no fixed components.

Proof. As in [Pro12, Claim 6.8.1] one can show that the Weil divisor class group
Cl(X) is torsion free. Thus Cl(X)G ≃ Z. Let A be the ample generator of
this group. Write −KX = aA. Since KX is not Cartier, a is odd. On the
other hand, a3A3 = (−KX)

3 = 1 or 3/2. Since aA3 ∈ 1
2
Z, this implies a = 1,

i.e. Cl(X)G ≃ Z ·KX . Since | −KX | = ∅ the assertion follows. �

5.8. Lemma. Let M = | − 2KX |. Then the log pair (X, 3
2
M ) is lc.

Proof. Suppose that (X, 3
2
M ) is not lc. We seek a contradiction. Choose µ < 3

2
such that (X, µM ) is strictly lc. Let Z be a minimal center of lc singularities
of the log pair (X, µM ). Then Z is either a point or a curve, because the base
locus of | − 2KX | does not have surfaces by Lemma 5.7.4.
Observe that θ(Z) is also a minimal center of lc singularities of this log pair

for every θ ∈ G. Moreover, for every θ ∈ G, either Z ∩ θ(Z) = ∅ or Z = θ(Z) by
[Kaw97, Proposition 1.5]. Using the perturbation trick (see [CS16, Lemma 2.4.10]
or the proofs of [Kaw97, Theorem 1.10] and [Kaw98, Theorem 1]), for every
sufficiently small ǫ > 0, we can replace the boundary µM by an effective boundary
BX such that

BX ∼Q −2(µ+ ǫ)KX ,
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the log pair (X,BX) is strictly lc, and all its (not necessarily minimal) centers of lc
singularities are the subvarieties θ(Z) for θ ∈ G. In particular, there are minimal
log canonical centers of the log pair (X,BX). We may assume that µ + ǫ < 3

2
,

since µ < 3
2
.

Let Σ be the union of all log canonical centers θ(Z) for θ ∈ G. Then Σ is
either a G-orbit or a disjoint union of irreducible isomorphic curves, which are
transitively permuted by G. In the latter case, each such curve is smooth by
Kawamata’s [Kaw98, Theorem 1]. Let IΣ be the ideal sheaf of the locus Σ.
Then

h1
(
OX

(
− 2KX

)
⊗ IΣ

)
= 0,

by [Laz04, Theorem 9.4.17] or [Kol97, Theorem 2.16], because −2KX−(KX+BX)
is ample. In particular, if Z is a point, we see that

|Σ| = h0
(
OΣ ⊗ OX

(
− 2KX

))
=

= h0
(
OX

(
− 2KX

))
− h0

(
OX

(
− 2KX

)
⊗ IΣ

)
6 5,

which must be a point since 3.A7 does not have nontrivial subgroups of index
≤ 5. This is impossible by Lemma 2.7.
Thus, we see that Σ is a disjoint union of irreducible isomorphic smooth curves.

Denote them by C1 = Z,C2, . . . , Cr. Let d = −2KX · Ci and let g be the genus
of the curve C1. By Kawamata’s subadjunction [Kaw98, Theorem 1], for every
ample Q-divisor A on X , we have

(KX +BX + A)
∣∣∣
Ci

∼Q KCi
+BCi

for some effective Q-divisor BCi
on the curve Ci. This gives d > 2g − 2, so that

d > 2g − 1. Thus, we have

r(d− g + 1) = h0
(
OΣ ⊗ OX

(
− 2KX

))
=

= h0
(
OX

(
− 2KX

))
− h0

(
OX

(
− 2KX

)
⊗ IΣ

)
6 5

by the Riemann–Roch formula applied to each curve Ci. Now, using r(d−g+1) 6
5 and d > 2g − 1, we deduce that r = 1 and g 6 5. This implies that Z = C1 is
pointwise fixed by G, since G cannot act non-trivially on a smooth curve of genus
6 5. This is a contradiction, since G does not fix a point in X by Lemma 2.7. �

By (5.7.3) we have that the dimension of H0(X,OX(−2KX)) is at most 5.
Hence the action of G = 3.A7 on this space is trivial.
Let S be a general surface in | − 2KX |. We claim that S is normal. Indeed, it

follows from Lemma 5.8 that (X,M ) is lc. Then, by [Kol97, Theorem 4.8], the
log pair (X,S) is also lc, so that S has lc singularities by [Kol97, Theorem 7.5].
In particular, the surface S is normal. Take another general surface S ′ ∈ |−2KX|
and consider the invariant curve S ∩ S ′. Write

S ∩ S ′ =
∑

miCi.
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Put d := −2KX · Ci. Since −2KX is an ample Cartier divisor, the numbers di
are integral and positive. Then by (5.7.2)

∑
midi = (−2KX) · (S ∩ S ′) = (−2KX)

3 = 4(N − 12) = 8 or 12.

From Table 3, we see that G = 3.A7 has at least one invariant component, say
C1. We have

−2KS · C1 =
(∑

miCi

)
· C1 ≤ (−2KX) ·

(∑
miCi

)
≤ (−2KX)

3 ≤ 12.

In particular, C2
1 ≤ 12 and KS · C1 ≤ 6. Then by the genus formula

2pa(C1)− 2 = (KS + C1) · C1 ≤ 18, pa(C1) ≤ 10.

But the according to the Hurwitz bound the action of G = 3.A7 on C1 must be
trivial. This contradicts Lemma 2.7. Thus the case | −KX | = ∅ does not occur.

5.9. Consider the case dim | −KX | = 0. Then (−KX)
3 = 1

2
N − 4 ≤ 7

2
. Let S ∈

|−KX | be the unique anticanonical member. By Theorem 2.9.1 the singularities
of S are worse than Du Val. Since G has no fixed points, by Lemma 3.5 the pair
(X,S) is lc and S is reducible: S =

∑m
i=1 Si. Then

∑
(−2KX)

2 · Si ≤ 14. So
the cardinality of the orbit of S1 equals 7. Let ν : S ′ → S1 be the normalization.
Then by the adjunction KS′ +D′ = ν∗(KX + S)|S1

∼ 0 and the pair (S ′, D′) is
lc. Since D′ 6= 0, the surface S ′ is either rational or birationally equivalent to a
ruled surface over an elliptic curve. On the other hand, The pair (S ′, D′) has a
faithful action of the stabilizer 3.A6 ⊂ 3.A7. This is impossible.

5.10. Now we consider the case dim | −KX | > 0.

5.10.1. Lemma ([Pro12, Lemma 6.6]). The pair (X, | − KX |) is canonical and
therefore a general member S ∈ |−KX | is a K3 surface with Du Val singularities.

Let σ : Y → X be the blowup of all non-Gorenstein points and let E =
∑

Ei

be the exceptional divisor. Thus Y has at worst terminal Gorenstein singularities
and it is smooth near E. Since (X, |−KX |) is canonical, the linear system |−KY |
is the birational transform of | −KX |. Put

g := dim | −KX | − 1 = 1
2
(−KX)

3 − 1
4
N + 1,

5.10.2. Lemma ([Pro12, Lemma 6.7]). The image of the (G-equivariant) rational
map Φ : X → Pg+1 given by the linear system | −KX | is three-dimensional.

Proof. Suppose that dimΦ(X) < 3. Since X is rationally connected, G acts
trivially on Φ(X) and on Pg+1, this contradicts Theorem 2.9.1. �

5.10.3. Lemma. The divisor −KY is nef and big.

Proof. Assume that −KY is not nef. Then −KY · C ′ < 0 for some curve C ′. Let
C be the G-orbit of C ′. Then −KY · C < 0 and C is G-invariant. Note that
C ∩ Ei is contained in the base locus of the restricted linear system | − KY ||Ei
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which is a linear system of lines. Thus C ∩ Ei is a GEi
-invariant point on Ei.

This contradicts Corollary 5.6. Thus −KY is nef. By Lemma 5.10.2 it is big. �

5.10.4. Lemma. The linear system |−KY | is base point free and defines a crepant
birational morphism

Φ : Y −→ Ȳ ⊂ Pg+1

whose image Ȳ is a Fano threefold with at worst canonical Gorenstein singulari-
ties. Moreover, Ȳ is an intersection of quadrics.

Proof. Follows from Lemmas 3.2, 3.3, and 3.4. �

Let Πi := Φ(Ei). Then Π1, . . . ,ΠN are planes in Pg+1. Fix a plane, say Π1 and
let G1 ⊂ G be its stabilizer. Suppose that Π1 ∩Πi := l is a line for some i. Then
the G1-orbit of l is given on Π1 ≃ P2 by an invariant polynomial, say φ, which
is a product of linear terms. By [Coh76, P. 412] one can see that deg φ ≥ 45 if
G1 ≃ 3.A6 and deg φ ≥ 21 if G1 ≃ PSL2(F7)×µ3. But this implies that N ≥ 21,
a contradiction.
If Π1 ∩ Πi := p is a point for some i, then we can argue as above because by

duality the G1-orbit of p has at least 21 elements.
Therefore, the planes Π1, . . . ,ΠN are disjoint. Then Φ is an isomorphism and

Y is a Fano threefold with terminal Gorenstein singularities and rkPic(Y ) ≥ 8
because the divisors Ei are linear independent elements of Pic(Y ). Moreover, Y
is GQ-factorial and rkPic(Y )G = 2. There exists an G-extremal Mori contraction
ϕ : Y → Z which is different from σ : Y → X . Now ϕ is birational and not small.
But then the ϕ-exceptional divisor D meets E and so none of the components of
D are contracted to points. Therefore, Z is a Fano threefolds with GQ-factorial
terminal Gorenstein singularities and rkPic(Y )G = 1. This contradicts the above
considered case 5.2.

6. Amitsur Subgroup

Here we review linearizations of line bundles and define a useful equivariant
birational invariant. Much of this simply mirrors known results in the arithmetic
setting, but our proofs have a more geometric flavor. First, we review some facts
about linearization of line bundles; see §1 and §2 of [Dol99] for a more thorough
discussion.
Let X be a proper complex variety with a faithful action of a finite group G.

One defines a morphism of G-linearized line bundles to be a morphism of line
bundles such that the map on the total spaces is equivariant. We denote the
group of isomorphism classes of G-linearized line bundles by Pic(X,G). Note
that a line bundle L is G-invariant if and only if [L ] ∈ Pic(X)G. There is an
evident group homomorphism Pic(X,G) → Pic(X)G obtained by forgetting the
linearization.
Given a G-invariant line bundle L , one constructs a cohomology class δ(L ) ∈

H2(G,C×) as follows. Select an arbitrary isomorphism φg : g∗L → L for
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each g ∈ G. Recall that any automorphism of a line bundle corresponds to
muliplication by a non-zero scalar sinceX is proper. Define a function c : G×G →
C× via

c(g, h) := φ(gh) (φh ◦ h∗(φg))
−1

for all g, h ∈ G. One checks that c is a 2-cocycle and its cohomology class is
independent of the isomorphism class of the line bundle.
We have the following exact sequence of abelian groups:

1 → Hom(G,C×) → Pic(X,G) → Pic(X)G → H2(G,C×) .

We define the Amitsur subgroup as the group

Am(X,G) := im(Pic(X)G → H2(G,C×)) .

This is the name used for the arithmetic version in [Lie17].
Note that Am(X,G) is a contravariant functor inX via pullback of line bundles.

In fact, it is actually a birational invariant of smooth projective G-varieties. This
is well known in the arithmetic case (see, for example, §5 of [CKM08]).

6.1.Theorem. IfX and Y are smooth projective G-varieties that are G-equivariantly
birationally equivalent, then Am(X,G) = Am(Y,G).

Proof. First, assume that the theorem holds in the case where X → Y is a blow-
up of a smooth G-invariant subvariety.
Let f : X 99K Y be a G-equivariant birational map. By [RY02], we may

resolve indeterminacies and obtain a sequence of equivariant blow-ups Z → X
with smooth G-invariant centers and an equivariant birational morphism Z → Y .
By functoriality, we have an inclusion Am(Y,G) ⊆ Am(Z,G). By assumption,
we have equality Am(Z,G) = Am(X,G). Thus Am(Y,G) is naturally a subset
of Am(X,G). Repeating the same argument for f−1 shows that the two sets are
equal.
We now may assume that π : X → Y is a blow up of a smooth G-invariant

subvariety C. Let E be the exceptional divisor on X . We have Pic(X)G =
π∗ Pic(Y )G ⊕ Z[OX(E)] and so Am(X,G) = Am(Y,G) + Zδ([OX(E)]). To com-
plete the proof, we show that OX(E) is G-linearizable.
Let L be a very ample line bundle on X giving an embedding X ⊆ Pn for some

n. Since H2(G,C×) is torsion, by replacing L by a sufficiently divisible power
L ⊗n we may assume that L is G-linearizable and that C = X ∩ L where L is a
linear subspace of Pn. We obtain E as the pullback of the exceptional divisor of
the blow-up of Pn along L.
Thus, the theorem reduces to showing that the exceptional divisor E on the

blow-up X of a linear subspace L of Pn with dimension m, is G-linearizable where
G has a linearizable action on Pn. This follows from Lemma 6.2 below. �

6.2. Lemma. Let X be the blow-up of Pn along a linear subspace L of dimension
m. Let G be a finite group acting faithfully on X. Then the line bundle associated
to the exceptional divisor is G-linearizable.
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Proof. In this case, X is a toric variety whose Cox ring R may be described as
the polynomial ring

R := C[x0, . . . , xm, y1, . . . , yn−m, z]

where the monomials are graded by the Picard group. If H is the pullback of the
hyperplane section of X and and E is the exceptional divisor, then deg(xi) = [H ],
deg(yi) = [H − E] and deg(z) = [E]. Let S be the Neron-Severi torus dual to
Pic(X). For a multihomogeneous element m ∈ R with grading aH + bE, then
(λ, µ) ∈ S acts on S via (λ, µ) · (m) = λaµb. The variety X is obtained as the
quotient of Spec(R) \ C by S where C is the union of the subspaces defined by
x0 = · · · = xm = 0 and y1 = · · · = yn−m = z = 0.
From §4 of [Cox95], the group of invertible elements among the graded ring of

endomorphisms of R form a group Ãut(X) normalizing S with quotient Aut(X).

The group Ãut(X) is isomorphic to U⋊(GLm+1(C)×GLn−m(C)×C×) where C×

acts by scalar multiplication on z, GLm+1 acts linearly on x0, . . . , xm, GLn−m acts
linearly on y1, . . . , yn−m and elements u ∈ U are all of the form id+n where n is
a linear map from the span of x0, . . . , xm to zy1, . . . , zyn−m. Since G is finite, we
may assume that G has a preimage in G̃ in the subgroup SLm+1(C)× SLn−m(C)

of Ãut(X). Thus G̃ ∩ S = (µd, 1) where d = gcd(m+ 1, n−m).
Recall that the canonical bundle on Pn is always linearizable, so to show that E

is linearizable it suffices to show that that G has an action on the global sections
of the very ample line bundle OX(E+d(n+1)H). From [Cox95], the vector space
H0(X,OX(E + d(n + 1)H)) is isomorphic to vector subspace of R with grading
[E + d(n + 1)H ]. This is spanned by monomials xa

i y
b
jz

c where a + b = d(n + 1)

and c = b + 1. Now s = (λ, µ) ∈ S acts via s(m) = λd(n+1)µm on every such
monomial, thus G̃ ∩ S acts trivially. We conclude the action G̃ factors through
G as desired. �

6.3. Remark. Note that there is much shorter proof of Theorem 6.1 when X
and Y are surfaces (which is actually the only case we need). One reduces to the
case where π : X → Y is a blow-up of a G-orbit of points. We only need to show
that the exceptional divisor E is G-linearizable as before. This is immediate since
KX = π∗KY + E and both KX and KY are G-linearizable. This proof fails in
higher dimensions since the exceptional divisor may appear with multiplicity.

We have the following due to Proposition 2.2 of [Dol99]:

6.4. Proposition. If X is a smooth curve with a faithful action of G, then
Am(X,G) = H2(G,C×) for all subgroups G ⊆ Aut(X).

Since the canonical bundle is always linearizable, we have the following:

6.5. Proposition. If X is a smooth Fano variety of index 1 with rkPic(X)G = 1,
then Am(X,G) is trivial for all subgroups G ⊆ Aut(X).
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6.6. Lemma. If f : X → Y is a G-equivariant morphism, then the morphism
f ∗ : Am(Y,G) → Am(X,G) is injective. If moreover, f has a G-equivariant
section, then Am(Y,G) is a direct summand of Am(X,G).

Proof. Let L be an element of Pic(Y )G and suppose E is the extension of G that
acts on the total space of L . Then E also acts on f ∗L . If f ∗L is G-linearizable,
then E splits; thus L must also be linearizable. Now suppose s : Y → X
is a section. By definition f ◦ s = idY , so the map induced by functoriality
Am(Y,G) → Am(X,G) → Am(Y,G) is the identity. �

It is easy to determine the possible values of the invariant for rational surfaces
(c.f. Proposition 5.3 of [CKM08] for the arithmetic case).

6.7. Proposition. Suppose X is a rational surface with G ⊆ Aut(X). We have
the following possibilities:

(i) X is G-equivariantly birationally equivalent to P2 and Am(X,G) is iso-
morphic to Z/3Z or 0.

(ii) X is G-equivariantly birationally equivalent to P1×P1, and Am(X,G) is
isomorphic to Z/2Z× Z/2Z, Z/2Z or 0.

(iii) X is G-equivariantly birationally equivalent to Fn. If n is odd then
Am(X,G) = 0. If n ≥ 2 is even, then Am(X,G) is isomorphic to Z/2Z
or 0.

(iv) If X is G-equivariantly birationally equivalent to a minimal conic bundle
surface with singular fibers, then Am(X,G) is isomorphic to Z/2Z or 0.

(v) Otherwise, X is isomorphic to a del Pezzo surface of degree ≤ 6 and
Am(X,G) is trivial.

Proof. It suffices to assume X is a G-minimal surface.
If X is a G-minimal del Pezzo surface, then either X = P2, X = P1 × P1, or it

has Fano index 1. In the last case, Am(X,G) = 0 by Proposition 6.5.
For P2, the index is 3 and there exist non-linearizable line bundles. Thus

Am(X,G) = 0 or Z/3Z.
For P1 × P1, we consider two cases. First, assume the fibers are interchanged

by G. Then Pic(X)G ≃ Z and −KX has index 2. Not every group is linearizable,
so we have Am(X,G) = 0 or Z/2Z.
Now suppose the fibers are not interchanged. Taking G = G1×G2 with each Gi

acting on each P1 separately, one may have O(1, 0) and O(0, 1) be non-linearizable
with distinct classes in H2(G,C×). Thus Z/2Z×Z/2Z and all its subgroups are
a possibility for Am(X,G).
Suppose X is a ruled surface Fn. Since we have a G-invariant section, by

Lemma 6.6 Am(X,G) = Am(P1, G) so it only depends on the group G. From
[DI09], we see that the reductive part of Aut(X) is isomorphic to C× ⋊PSL2(C)
if n is even and C× ⋊ SL2(C) if n is odd. The subgroup C× acts trivially on the
base, so Am(X,G) = 0 if n is odd, but can be Am(X,G) = Z/2Z if n is even.
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If X → P1 is a minimal G-conic bundle, then Pic(X)G is generated by −KX

and π∗ Pic(P1, G). Since −KX is always linearizable, Am(X) is either trivial or
Z/2Z. Note that, for example, Z/2Z × A5 acts on an exceptional conic bundle
(see Proposition 5.3 of [DI09]). Thus Am(X) can be non-trivial. �

Note that the Amitsur subgroup can distinguish between equivariant birational
equivalence classes quickly that might be more involved using other methods.

6.8. Example. The action of the group A5 on P2 has trivial Amitsur subgroup
Am(P2,A5) since A5 ⊆ PGL3(C) lifts to GL3(C). The action of A5 on P1 × P1 is
not linearizable since A5 ⊆ PGL2(C) does not lift to GL2(C). Thus Am(P2,A5)
and Am(P1 × P1,A5) are not equal. Thus P

2 and P1 × P1 are not A5-birationally
equivalent. This also follows from [CS16, Theorem 6.6.1].

7. Conic bundles

Let X be a smooth projective variety, and let G be a finite subgroup in Aut(X).
Suppose that there exists a G-equivariant conic bundle η : X → Y such that Y
is smooth, and the morphism η is flat. These assumptions mean that η is regular
conic bundle in the sense of [Sar82, Definition 1.4]. Note that G naturally acts
on Y . But this action is not necessarily faithful. In general, we have an exact
sequence of groups

1 −→ Gη −→ G −→ GY −→ 1,

where GY is a subgroup in Aut(Y ), and the subgroup Gη acts trivially on Y . If

Pic(X)G = η∗ Pic(Y )GY ⊕ Z,

we say that the conic bundle η : X → Y is a G-minimal or G-standard (cf. [Pro18,
§1] and [Sar82, Definition 1.12]). In this case, the conic bundle η : X → Y is a
G-Mori fiber space.

7.1. Lemma. Let G1 ⊂ Gη be a non-trivial subgroup and let Fix(G1) be its fixed
point set. Then Fix(G1) does not contain any component of a reduced fiber.

Proof. Let C = η−1(Q) be a reduced fiber and let C1 ⊂ C be an irreducible com-
ponent and let P ∈ C be a smooth point Assume that Fix(G1) ⊃ C1. Consider
the exact sequence

(7.1.1) 0 −→ TP,C −→ TP,X −→ η∗
(
TQ,Y

)
−→ 0.

If G1 does not act faithfully on the curve C1, then it does not act faithfully on the
tangent space TP,C , and it also acts trivially on the tangent space TP,Y . Thus, in
this case, G1 does not act faithfully on TP,X , which is impossible by Lemma 2.3,
since G1 acts faithfully on X by assumption. �

Suppose, in addition, that Gη ≃ µn for n > 2. Let B be the union of codimen-
sion one subvarieties in X that are pointwise fixed by the subgroup Gη. Then
B is smooth (see Lemma 2.3). Since all smooth fibers of the conic bundle η are
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isomorphic to P1, we see that the subgroup Gη fixes exactly two points in each
(see Lemma 7.1). Thus, if C is a general fiber of η, then the intersection B ∩ C
consists of two distinct points. This implies that B · C = 2 for every fiber C
of the conic bundle η. Hence, the morphism η induces a generically two-to-one
morphism φ : B → Y .

7.2. Lemma. Let C be a reduced fiber of the conic bundle η. If n = |Gη| > 3,
then Gη leaves invariant every irreducible component of C.

Proof. We may assume that C is reducible. Then C = C1 ∪C2, where C1 and C2

are smooth irreducible rational curves that intersects transversally at one point.
Denote this point by O. Then O is fixed by Gη.
If n = |Gη| is odd, then both C1 and C2 are Gη-invariant. Thus, to complete

the proof, we may assume that n is even and neither C1 nor C2 is Gη-invariant.
Let us seek for a contradiction.
Let z be a generator of the group Gη. Then z swaps the curves C1 and C2. In

particular, this shows that

B ∩ C = B ∩ C1 = B ∩ C2 = C1 ∩ C2 = O.

On the other hand, the element z2 leaves both curves C1 and C2 invariant. By
Lemma 7.1, we see that z2 acts faithfully on both these curves. Since C1 ≃ P1,
the element z2 fixes a point P ∈ C1 such that P 6= O. Moreover, using (7.1.1),
we see that there exists a two-dimensional subspace in the tangent space TP,X

consisting of zero eigenvalues of the element z2. By [BB73, Theorem 2.1] this
shows that z2 pointwise fixes a surface B1 in X such that P ∈ B1.
Since P 6∈ B, we see that B1 is not an irreducible component of the surface

B. On the other hand, the surface B is also pointwise fixed by z2, because it is
pointwise fixed by z. Let C ′ be a general fiber of the conic bundle η. Then Gη

acts faithfully on C ′ by Lemma 7.1, so that z2 fixes exactly two points in C ′. On
the other hand, it also fixes all points of the intersection B1∩C ′ and all points of
the intersection B∩C ′. This shows that z2 fixes at least three points in C ′, which
is absurd. The obtained contradiction shows that z does not swap the curves C1

and C2, which completes the proof of the lemma. �

Let ∆ ⊂ Y be the discriminant locus of η, i.e. the locus consisting of points
P ∈ Y such that the scheme fiber η−1(P ) is not isomorphic to P1. Then ∆
is a (possibly reducible) reduced GY -invariant divisor that has at most normal
crossing singularities in codimension 2. If P is a smooth point of ∆, then the fiber
of η over P is isomorphic to a reducible reduced conic in P2. If P is a singular
point of ∆, then F is isomorphic to a non-reduced conic in P2.

7.3. Lemma. Suppose that Gη leaves invariant every irreducible component of
each reduced fiber of the conic bundle η. Then φ : B → Y is an étale double cover
over Y \ Sing(∆).
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Proof. Fix a point Q ∈ Y such that Q 6∈ Sing(∆). Let C be the fiber of the conic
bundle of η over the point Q. By Lemma 7.2, the center Gη acts faithfully on
every irreducible component of the fiber C. In particular, we see that C 6⊂ B.
Since B · C = 2, we see that either |B ∩ C| consists of two distinct points or
|B ∩ C| consists of a single point. In the former case, the morphism φ is étale
over Q. Thus, we may assume that the intersection B ∩ C consists of a single
point. Denote this point by P .
Suppose first that C is smooth. Then C is tangent to B at the point P . Then

TP,C ⊂ TP,B, so that Gη acts trivially on TP,C . This is impossible by Lemma 2.3,
since Gη acts faithfully on C.
We see that C = C1 ∪ C2, where C1 and C2 are smooth irreducible rational

curves that intersects transversally at one point. Denote this point by O. If
P 6= O, then TP,C1

⊂ TP,B. As above, this leads to a contradiction, since Gη acts
faithfully on the curve C1. Thus, we have O = P .
Recall that Gη is cyclic by assumption. Denote by z its generator. Then z

must fix a point P ′ ∈ C1 that is different from P . Using the exact sequence

0 −→ TP ′,C1
−→ TP ′,X −→ η∗

(
TQ,Y

)
−→ 0,

we see that there exists a two-dimensional subspace in the tangent space TP ′,X

consisting of zero eigenvalues of the element z. By [BB73, Theorem 2.1] this
shows that z pointwise fixes a surface B′ in X such that P ′ ∈ B′.
Since P = B∩C, we see that P ′ 6∈ B, so that B′ is not an irreducible component

of the surface B. On the other hand, the surface B′ is also pointwise fixed by z.
This contradicts the definition of the surface B. �

7.4. Corollary. If |Gη| > 3, then φ : B → Y is an étale double cover over Y \
Sing(∆).

7.5. Corollary. Suppose that |Gη| > 3 or Gη leaves invariant every irreducible
component of each reduced fiber of the conic bundle η. Suppose also that η : X →
Y is G-minimal, and Y is simply connected. Then ∆ = 0, and there exists a

central extension G̃Y of the group GY such that

X ≃ P
(
L1 ⊕ L2

)

for some G̃Y -linearizable line bundles L1 and L2 on Y , where the splitting L1⊕
L2 is also G̃Y -invariant, and η : X → Y is a natural projection.

Proof. By Lemma 7.3 and Corollary 7.4, the morphism φ : B → Y is an étale
double cover over Y \ Sing(∆). Since Y is simply connected, we see that

B = B1 ∪B2,

where B1 and B2 are rational sections of the conic bundle η. Now G-minimality
implies that ∆ = 0, so that η is a P1-bundle. Since φ : B → Y is an étale double
cover, we see that B is a disjoint union of the divisors B1 and B2, and both B1
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and B2 are sections of the P1-bundle η. This implies the remaining assertions of
the corollary. �

Now we are ready to prove

7.6. Theorem. Let X be a rationally connected threefold that is faithfully acted
by the group 6.A6. Then there exists no 6.A6-equivariant dominant rational map
π : X 99K S such that its general fibers are irreducible rational curves irreducible
rational surfaces.

Proof. Using 6.A6-equivariant resolution of singularities and indeterminacies, we
may assume that both X and S are smooth, and π is a morphism. If S is a curve,
then we immediately obtain a contradiction, since A6 cannot faithfully act on a
rational curve, and 6.A6 cannot faithfully act on a rational surface. Thus, we may
assume that S is a surface, and general fiber of π is P1. Using [Avi14, Theorem 1],
we may assume that π : X → S is 6.A6-minimal standard conic bundle.
Since X is rationally connected, we see that S is rational. Thus, none of the

groups 6.A6, 3.A6 and 2.A6 can faithfully act on S. This shows that there exists
an exact sequence of groups

1 −→ Gπ −→ 6.A6 −→ GS −→ 1,

where GS is a subgroup in Aut(S) that is isomorphic to A6, and Gπ is the center
of the group 6.A6 that acts trivially on S. Applying Corollary 7.5, we see that

there exists a central extension G̃S of the group GS ≃ A6 such that

X ≃ P
(
L1 ⊕ L2

)

for some G̃S-linearizable line bundles L1 and L2 on S, where the splitting L1⊕L2

is also G̃S-invariant.
A priori, we know that G̃S is one of the following groups A6, 2.A6, 3.A6 or 6.A6.

On the other hand, the induced action of G̃S on X gives our action of 6.A6 on
the threefold X . This shows that Am(S,A6) ≃ µ6. On the other hand, it follows
from [DI09] that S is A6-birational to P2, where Am(P2,A6) ≃ µ3, contradicting
Lemma 6.1. �
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Group Dim Invariants in Low Degrees
1 2 3 4 5 6 7 8 9 10

PSL2(F7)

3 1 1 1 1
6 1 2 3 4 8 10 15 22 30
7 1 1 4 2 10 10 25 28 58
8 1 2 3 5 15 19 44 72 120

SL2(F7)
4 1 1 3 2
6 1 2 10 16
8 2 10 44 106

PSL2(F11)

5 1 1 2 1 2 3 3
10 1 4 1 16 10 54 56 176
10 1 2 4 8 16 28 54 98 176
11 1 1 3 4 20 24 78 134 300
12 1 1 4 8 25 49 124 258 558

SL2(F11)

6 1 1 4 4
10 1 6 44 124
10 3 6 44 134
12 4 15 124 516

A6

5 1 1 2 2 4 3 6 6 9
8 1 1 2 3 9 9 23 34 60
9 1 2 4 7 14 23 46 80 140
10 1 7 2 25 20 94 108 308

2.A6

4 2
8 1 4 23 46
10 4 11 80 248

3.A6

3 1
6 2 7 16
9 2 14 80
15 2 126 2234

6.A6

6 1
12 29

A7

6 1 1 2 2 4 4 6 7 10
10 3 6 2 20 11 54
14 1 2 4 8 21 42 105 233 506
14 1 2 5 9 22 46 109 237 518
15 1 1 5 4 25 45 150 320 826
21 1 2 8 24 110 362 1284 4023 12046
35 1 4 37 225 1582 8864 47098 223591 985678

2.A7

4 1
14 1 8 94 438
20 3 64 919 7845
20 7 68 929 7905
36 38 1749 57807 1264859

3.A7

6 1 3 5
15 1 23 314
15 3 33 404
21 2 110 4023
21 120 3806
24 2 208 11146

6.A7

6
24 177
36 1749

Table 1. Representations and invariants of low degrees.
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Group Dim Invariants in Low Degrees
1 2 3 4 5 6 7 8 9 10

PSp4(F3)

5 1 1 1 2
6 1 1 1 2 1 3 2 4
10 1 2 5 2 8
15 1 1 3 6 13 21 48 90 180
15 1 1 3 2 9 9 30 44 115
20 1 2 5 10 26 56 151 380 980
24 1 2 6 12 41 117 409 1268 4006
30 1 9 7 108 267 1785 5816 26198
30 2 5 15 89 361 1560 6526 25024
40 9 38 361 1987 12432 64242 318717
45 14 65 655 4365 29347 170291 925070
60 1 4 34 320 3316 30266 252784 1903375 13127051
64 1 2 38 409 4706 46253 411176 3283749 23975553
81 1 4 94 1258 18430 225424 2483426 24523546 220742112

Sp4(F3)

4
20 1 7 103 765
20 2 9 106 783
20 6 96 755
36 3 184 5631 122657
60 26 3148 252182 13116046
60 29 3153 252155 13116416
64 34 4579 411176 23967693
80 79 16801 2256083 196172329

Table 2. Representations and invariants of low degrees (continued).

A5 A6 A7 PSL2(F7) PSL2(F11) PSp4(F3)

A4 5 A5 6 A6 7 S4 7 A5 11 µ
4
2 ⋊ A5 27

D10 6 A5 6 PSL2(F7) 15 S4 7 A5 11 S6 36
S3 10 µ

2

3 ⋊ µ4 10 PSL2(F7) 15 µ7 ⋊ µ3 8 µ11 ⋊ µ5 12 SU3(F2)⋊ µ3 40
S4 15 S5 21 D12 55 µ

3

3 ⋊S4 40
S4 15 (A4 × µ3)⋊ µ2 35 µ2 · (A4 ≀ µ2) 45

Table 3. Conjugacy classes of maximal subgroups with indices.
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