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BIRATIONAL SELF-MAPS OF THREEFOLDS OF
(UN)-BOUNDED GENUS OR GONALITY

JÉRÉMY BLANC, IVAN CHELTSOV, ALEXANDER DUNCAN,
AND YURI PROKHOROV

Abstract. We study the complexity of birational self-maps of a projective
threefold X by looking at the birational type of surfaces contracted. These
surfaces are birational to the product of the projective line with a smooth
projective curve. We prove that the genus of the curves occuring is unbounded
if and only if X is birational to a conic bundle or a fibration into cubic surfaces.
Similarly, we prove that the gonality of the curves is unbounded if and only if
X is birational to a conic bundle.
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1. Introduction

Let X be a smooth projective complex algebraic variety. One way of studying
the complexity of the geometry of elements of the group Bir(X) of birational self-
maps of X consists of studying the complexity of the irreducible hypersurfaces
contracted by elements of Bir(X). If X is a curve, then Bir(X) = Aut(X), so
there is nothing to be said. If X is a surface, every irreducible curve contracted by
an element of Bir(X) is rational. The case of threefolds is then the first interesting
to study in this context.
If dim(X) = 3, then every irreducible surface contracted by a birational trans-

formation ϕ ∈ Bir(X) is birational to P1×C for some smooth projective curve C.
There are then two natural integers that one can associate to C in this case,
namely its genus g(C) and its gonality gon(C) (the minimal degree of a domi-
nant morphism C P1). We then define the genus g(ϕ) (respectively the gonality
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gon(ϕ)) of ϕ to be the maximum of the genera g(C) (respectively of the gonal-
ities gon(C)) of the smooth projective curves C such that a hypersurface of X
contracted by ϕ is birational to P1 × C.
This notion of genus of elements of Bir(X) was already defined in [Fru73] with

another definition, which is in fact equivalent to ours by [Lam14]. Moreover,
for each g, the set of elements of Bir(X) of genus ≤ g form a subgroup, so we
get a natural filtration on Bir(X), studied in [Fru73, Lam14]. This naturally
raises the question of finding the threefolds X for which this filtration is infinite,
namely the threefolds X for which the genus of Bir(X) is unbounded (see [Lam14,
Question 11]). Analogously, we get a filtration given by the gonality. Of course,
the gonality being bounded if the genus is bounded, the unboundedness of the
gonality is stronger than the unboundedness of the genus.
Note that the boundedness of the genus (respectively of the gonality) of ele-

ments of Bir(X) is a birational invariant. Our main result (Theorem 1.1) describes
the threefolds having this property.
Recall that a variety Y is a conic bundle (respectively a del Pezzo fibration of

degree d) if Y admits a morphism Y S such that the generic fibre is a conic
(respectively a del Pezzo surface of degree d) over the field of rational functions
of S. If the conic has a rational point (or equivalently the conic bundle has a
rational section), then it is isomorphic to P1 and in this case we say that the conic
bundle is trivial.

1.1. Theorem. Let X be a smooth projective complex algebraic threefold.

(i) If X is birational to a conic bundle, the gonality and the genus of the
elements Bir(X) are both unbounded.

(ii) If X is birational to a del Pezzo fibration of degree 3, the genus of the
elements of Bir(X) is unbounded.

(iii) If X is not birational to a conic bundle, the gonality of the elements of
Bir(X) is bounded.

(iv) If X is not birational to a conic bundle and to a del Pezzo fibration of
degree 3, then both the genus and the gonality of elements of Bir(X) are
bounded.

We can generalise the above notions to higher dimensions. If X is a smooth
projective variety of dimension d ≥ 3, every irreducible hypersurface contracted
by an element of Bir(X) is birational to P1 × S for some variety S of dimension
d − 2. When d ≥ 4, dim(S) ≥ 2 and there are then many ways to study the
complexity of this variety. One possibility is the covering gonality cov.gon(S) of
S, namely the smallest integer c such that through a general point of S there is an
irreducible curve Γ ⊆ S birational to a smooth curve of gonality ≤ c. As before,
we say that the covering gonality of Bir(X) is bounded if the covering gonality
of the irreducible varieties S such that a hypersurface contracted by an element
Bir(X) is birational to S×P1 is bounded. Since the covering gonality of a smooth
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curve is its gonality, this notion is the same as the gonality defined before, in the
case of threefolds. As in dimension 3, this is again a birational invariant.
In Corollary 4.4, we prove that that if X is a solid Fano variety (see [AO18,

Definition 1.4]), then the covering gonality of elements of Bir(X) are bounded by
a constant that depends only on dim(X). In particular, the covering gonality of
birational selfmaps of birationally rigid Fano varieties of dimension n (see [CP17,
Definition 1.1.2]) are bounded by a constant that depends only on n.
In Proposition 2.4, we prove that if π : X B is a trivial conic bundle of any

dimension ≥ 3, then the covering gonality of the elements of

Bir(X/B) = {ϕ ∈ Bir(X) | π ◦ ϕ = π} ⊆ Bir(X)

is unbounded. This raises the following two questions:

1.2. Question. Let B be a projective variety of dimension ≥ 3 and let X B
be a non-trivial conic bundle. Is the covering gonality of elements of Bir(X/B)
unbounded?

1.3. Question. Let X be a projective variety of dimension ≥ 4 that is not bira-
tional to a conic bundle. Is the covering gonality of elements of Bir(X) bounded?

A rough idea of the proof of Theorem 1.1 is as follows. Since the boundedness
of the genus and gonality is a birational invariant, we can run the MMP and
replace X with a birational model (with terminal singularities) such that either
KX is nef or X has a Mori fibre space structure X/B. In the former case any
birational self-map is a pseudo-automorphism [Han87, Lemma 3.4] and so the
genus and gonality are bounded in this case. If X/B is a Mori fibre space, then
any birational map X 99K X is a composition of Sarkisov links (see Sect. 3). If a
link involves a Mori fibre space Xi/Bi which is (generically) a conic bundle, then
we apply an explicit construction of Sect. 2 to get unboundedness (and thus obtain
Theorem 1.1(i)). If a link involves Mori fibre spaces Xi/Bi and Xi+1/Bi+1, then
we use the boundedness result for Fano threefolds [KMMT00] (see also [Bir16]).
This result is also used to prove the assertions 1.1(iii)-(iv) (see Lemma 4.5). The
unboundeness of the genus for del Pezzo fibrations of degree 3 (Theorem 1.1(ii))
is obtained by finding 2-sections of large genus and applying Bertini involutions
associated to these curves, see Section 5 for the detailed construction.
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“Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in
2018. Jérémy Blanc acknowledges support by the Swiss National Science Foun-
dation Grant “Birational transformations of threefolds” 200020 178807. Ivan
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grant No. IES\R1\180205, and the Russian Academic Excellence Project 5-100.
Alexander Duncan was partially supported by National Security Agency grant
H98230-16-1-0309. We thank Serge Cantat, Stéphane Lamy and Egor Yasinsky
for interesting discussions during the preparation of this text.
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2. The case of conic bundles

Every conic bundle is square birational equivalent to a conic bundle that can
be seen as a conic in a (Zariski locally trivial) P2-bundle. Using a rational section
of the P2-bundle, one can do the following construction:

2.1. Construction. Let π : Q B be a conic bundle over an irreducible normal
variety B and let Qη be its generic fibre. Then Qη is a conic over the function field
C(B). The anicanonical linear system |−KQη

| defines an embedding Qη →֒ P2
C(B).

Fix a C(B)-point sη ∈ P2
C(B) \ Qη. The projection pr : Qη P1

C(B) from sη is a
double cover. Let ιη : Qη Qη be the corresponding Galois involution. It induces
a fibrewise birational involution ι : Q 99K Q.
Suppose now that our conic bundle π : Q B is embedded into a P2-bundle

π̂ : P B and suppose that we are given a section s : B P whose image is
not contained in Q. This section defines a point sη ∈ P2

C(B) \ Qη and therefore
defines an involution ι : Q 99K Q as above.

2.2. Lemma. [BL15, Lemma 15] If, in the above notation, Γ ⊆ B is an irre-
ducible hypersurface that is not contained in the discriminant locus of π and such
that s(Γ) ⊆ Q, the hypersurface V = π−1(Γ) of Q is contracted by ι onto the
codimension 2 subset s(Γ).

2.3. Corollary. Let π : Q B be a conic bundle over an irreducible normal va-
riety B, given by the restriction of a P2-bundle π̂ : P B. Let Γ ⊆ B be an
irreducible hypersurface such that the restriction of π gives a trivial conic bundle
V = π−1(Γ) Γ. Then, there exists an involution

ι ∈ Bir(Q/B) = {ϕ ∈ Bir(Q) | πϕ = π}

that contracts the hypersurface V onto the image of a rational section of Γ 99K V .

Proof. Since the restriction of π gives a trivial conic bundle V = π−1(Γ) Γ,
there is a rational section sΓ : Γ 99K V ⊆ Q ⊆ P . We then extend this section to
a rational section s : B 99K P whose image is not contained in Q. This can be
done locally, on a open subset where P B is a trivial P2-bundle. Lemma 2.2
provides an involution ι ∈ Bir(Q/B) that contracts V onto the image of sΓ. �

We can now give the proof of Theorem 1.1(i) (and of the small generalisation
to higher dimensions mentioned in the introduction):

2.4. Proposition. Let B be a projective variety of dimension ≥ 2, let π : Q B
be a conic bundle and let us assume that either π is trivial (admits a rational
section) or that dim(B) = 2. Then, the covering gonality (and the genus if
dim(Q) = 3) of elements of Bir(Q/B) is unbounded.

Proof. We can assume that π is the restriction of a P2-bundle π̂ : P B.
Let Γ ⊆ B be an irreducible hypersurface which is not contained in the dis-

criminant locus of π. Then the restriction of π gives a conic bundle πΓ : V =
4



π−1(Γ) Γ. If π is a trivial conic bundle, then so is πΓ. If dim(B) = 2, then Γ is
a curve, and π is again a trivial conic bundle by Tsen’s Theorem [Kol96, Corol-
lary 6.6.2 p. 232]. In both cases, we can apply Corollary 2.3 to find an element
of Bir(Q/B) that contracts the hypersurface V ⊆ Q, birational to P1 × Γ.
This can be done for any irreducible hypersurface of B not contained in the

discriminant locus. Thus, the covering gonality of elements of Bir(Q/B) are
unbounded (to see this, simply embed B in a projective space and take a general
hypersurface of large degree). The same argument applies to the genus when
dim(Q) = 3. �

We recall the following classical result:

2.5. Lemma. Let B be a projective curve. A del Pezzo fibration X/B of degree
≥ 4 is birational to a conic bundle X ′/B′.

Proof. The generic fibre of X/B is a del Pezzo surface F of degree d ≥ 4 over the
function field C(B). Applying a MMP over B, we can assume that the generic
fibre satisfies rkPic(F ) = 1 or has a structure of conic bundle. In the latter case,
the proof is over, so we assume that rkPic(F ) = 1. It is sufficient to show that
F birationally has a conic bundle structure F C, where C is a curve defined
over C(B); this is for instance the case if F is rational. As B is a curve, the field
C(B) has the C1 property, so F has a rational C(B)-point x ∈ F (see [Kol96,
Theorem IV.6.8, page 233]).
If d = 9, the existence of x implies that F is isomorphic to P2. If d = 8, the

fact that rkPic(F ) = 1 implies that F is isomorphic to a smooth quadric in P3,
and the projection from x gives a birational map to P2. We cannot have d = 7,
as the unique (−1)-curve of F

C(B) would be defined over C(B), contradicting the

assumption rkPic(F ) = 1.
It remains to study the cases where d ∈ {4, 5, 6}. Since rkPic(F ) = 1, the

C(B)-rational point x ∈ F does not lie on a (−1)-curve. Therefore, by blowing-
up x ∈ F we obtain a del Pezzo surface Y over C(B) of degree d − 1 with
rkPic(Y ) = 2. Thus on Y there exists a Mori contraction Y Y ′ which is
different from Y F . The type of Y F can be computed explicitely (see
[Isk96, Theorem 2.6]): If d = 5 (resp. d = 6), then Y Y ′ is a birational
contraction to P2

C(B), (resp. to a quadric in P3
C(B) having a rational point), so F

is again rational. If d = 4, then Y ′ ≃ P1
C(B) and Y Y ′ is a conic bundle. This

proves our lemma. �

3. Reminders on the Sarkisov program

3.1. Definition. A variety X with a surjective morphism η : X B is a Mori
fibre space if the following conditions hold:

(i) η has connected fibres, B is normal, dimX > dimB ≥ 0 and the relative
Picard rank ρ(X/B) = ρ(X)− ρ(B) is equal to 1;
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(ii) X is Q-factorial with at most terminal singularities;
(iii) The anticanonical divisor −KX is η-ample.

The Mori fibre space is denoted X/B.
An isomorphism of fibre spaces X/B ≃ X ′/B′ is an isomorphism ϕ : X X ′

that sits in a commutative diagram

X

��

ϕ
// X ′

��

B
ψ

// B′

where ψ : B ≃ B′ is an isomorphism.

3.2. Remark. In the case that we study, namely when dim(X) = 3, we obtain
three possible cases for a Mori fibre space X/B:

(i) If dim(B) = 0, then X is a Fano variety of Picard rank 1;
(ii) If dim(B) = 1, then X is a del Pezzo fibration over the curve B;
(iii) If dim(B) = 2, then X is a conic bundle over the surface B.

3.3. Definition. A Sarkisov link χ : X1 X2 between two Mori fibre spaces
X1/B1 and X2/B2 is a birational map which fits into one of the following com-
mutative diagrams.

Y1 X2

X1 B2

B1 = Z

div fib
χ

fib

Y1 Y2

X1 X2

B1 = Z = B2

div div

χ

fib fib

I II

X1 Y2

B1 X2

Z = B2

χ
fib div

fib

X1 X2

B1 B2

Z

χ

fib fib

III IV

Here the dotted arrows are pseudo-isomorphisms (isomorphisms outside of codi-
mension ≥ 2 subsets) given by a sequence of log-flips, the plain arrows are surjec-
tive morphisms of relative Picard rank 1, the arrows written “div” are divisorial
contractions, and the variety Z is normal with at most Kawamata log terminal
singularities. We say that the base of the Sarkisov link is the variety Z (which is
dominated by, but not necessarily equal to, the bases B1 and B2 of the two Mori
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fibre spaces), and that the above diagram is the Sarkisov diagram associated to
χ.

The notion of Sarkisov links is important, because of the following result.

3.4. Theorem. Every birational map between Mori fibre spaces decomposes into
a composition of Sarkisov links and isomorphisms of Mori fibre spaces.

Proof. In dimension 2, this is essentially due to Castelunovo [Cas01], although
not stated directly in these terms. The case of dimension 3 was done for the first
time in [Cor95, Theorem 3.7]. The proof in any dimension is available in [HM13,
Theorem 1.1]. �

3.5. Remark. In fact, it follows from the definition that there are strong con-
straints on the sequence of anti-flips, flops and flips (that is, about the sign of the
intersection of the exceptional curves against the canonical divisor). Precisely, as
explained in [BLZ19, Remark 3.10], the top (dotted) row of a Sarkisov diagram
has the following form:

Ym . . . Y0 Y ′

0 . . . Y ′

n

Ȳ

Z

where Y0 Y ′

0 is a flop over Z (or an isomorphism),m,n ≥ 0, and each Yi Yi+1,
Y ′

i Y ′

i+1 is a flip over Z (or an isomorphism). Indeed, one can decompose the
pseudo-isomorphism into a sequence of log-flips and for Y = Yi or Y = Y ′

i , a
general contracted curve C of the fibration Y/Z satisfies KY · C < 0, hence at
least one of the two extremal rays of the cone NE(Y/Z) is strictly negative against
KY . In particular, both Y0/Z and Y ′

0/Z are relatively weak Fano (or Fano if the
flop is an isomorphism) over Z.
If Y0 Y ′

0 is an isomorphism, we choose Ȳ to be isomorphic to both; if Y0 Y ′

0

is a flop and not an isomorphism, the map is naturally associated to a variety
Ȳ , that is a Fano with terminal (but not Q-factorial) singularities such that
rkCl(Ȳ /Z) = 2. It is called the central model in [CS11]. Two contractions
Y0 Ȳ and Y ′

0 Ȳ are small Q-factorialisations of Ȳ . Hence the whole diagram
is uniquely determined by Ȳ /Z.

3.6. Remark. In the sequel, we will mostly work with varieties of dimension 3
not birational to conic bundles, as the case of conic bundles as already treated in
Section 2. The Mori fibre spaces will be then either Fano of rank 1 or del Pezzo
fibrations. As a Fano is rationally connected, a del Pezzo fibration over a base
not equal to P1 is not birational to a Fano variety. All the Sarkisov links that we
can have between Mori fibre spaces not birational to conic bundles are then as
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follows:

Y1 X2

X1 P1

point

div fib
χ

fib

Y1 Y2

X1 X2

point or curve

div div

χ

fib fib

I II

X1 Y2

P1 X2

point

χ
fib div

fib

X1 X2

P1 P1

point

χ

fib fib

III IV

3.7. Lemma. Let us consider a Sarkisov link of type II between three-dimensional
Mori fibre spaces X1/B and X2/B over a base B of dimension 1.

Y1 Y2

X1 X2

B

div div

χ

fib fib

Denoting by Ei ⊂ Yi the exceptional divisor of Yi/Xi and by ei ⊂ Xi its image,
one of the following case holds:

(i) χ induces an isomorphism between the generic fibres of X1/B and X2/B,
and ei is contained in a fibre of Xi/B for i = 1, 2.

(ii) χ induces a birational map between the generic fibres of X1/B and X2/B
which is not an isomorphism and ei is a curve of Xi such that ei/B is a
finite morphism of degree ri ∈ {1, . . . , 8}, for i = 1, 2.

Moreover, in case (ii), if one of the degree di of the del Pezzo fibration Xi/B is
≤ 3, then d1 = d2 and r1 = r2, and (di, ri) ∈ {(3, 2), (3, 1), (2, 1)}, and the generic
fibres of X1/B and X2/B are isomorphic. In particular, ei is birational to B if
di ≤ 2.

Proof. The image ei is a curve or a point, so is either (a) contained in a fibre of
Xi/Z, or (b) maps surjectively to Z via a finite morphism of degree di ≥ 1. Case
(a) happens if and only if the generic fibres of Xi/Z and Yi/Z are isomorphic. As
the generic fibres of Xi/Z are del Pezzo surfaces of rank 1, for i = 1, 2, case (a)
happens for i = 1 if and only if it happens for i = 2. This provides the dichotomy
(i)-(ii) above.

8



In case (ii), we look at the birational map between the generic fibres Xi/Z
which are del Pezzo surfaces of degree 1. The classification of such maps, given
in [Isk96, Theorem 2.6], implies that ri ≤ 8 for i = 1, 2 and that if di ≤ 3 then
d1 = d2, r1 = r2, and (di, ri) ∈ {(3, 2), (3, 1), (2, 1)}, and the generic fibres of
X1/B and X2/B are isomorphic. �

In Case (ii) in Lemma 3.7, the case of del Pezzo fibrations of degree 3 is the
most interesting one, as the degree ≤ 2 only gives curves ei of bounded genus,
and the case of degree ≥ 4 is covered by Lemma 2.5.

3.8. Remark. Let X/B be a Mori fibre space such that dim(B) ∈ {0, 1}. It may
happen that no Sarkisov link starts from X . If dim(B) = 0, this means (almost
by definition) that X is a birationally super-rigid Fano threefold. Many examples
of such Fano threefolds can be found in [CP17]. Similarly, if dim(B) = 1 and no
Sarkisov link starts from X , then X/B is a del Pezzo fibration of degree 1 that
is birationally rigid over B (see [Cor00, Definition 1.3]). Vice versa, if X/B is
a del Pezzo fibration of degree 1 that is birationally rigid over B, then the only
Sarkisov links that can start at X are described in Case (i) of Lemma 3.7. For
some (birationally rigid over the base) del Pezzo fibrations such links do not exist
(see [Kry18]). However, in general they may exist and are not well understood
(see [Par01, Par03]).

4. Bounding the gonality and genus of curves

We first state a consequence of the boundedness of weak-Fano terminal vari-
eties. The next lemma applies to Sarkisov links involving a Fano threefold of
rank 1 (when one of the Bi has dimension 0) and to Sarkisov links of type IV
between del Pezzo fibrations (when dim(B1) = dim(B2) = 1 and dim(Z) = 0).

4.1. Lemma. There are integers g0, c0 ≥ 1 such that, for each Sarkisov link
χ : X1 X2 between two Mori fibre spacesX1/B1 and X2/B2 such that dim(X1) =
dim(X2) = 3 over a base Z of dimension 0, the following hold:

(i) Each divisorial contraction involved in the Sarkisov diagram of χ con-
tracts a divisor birational to P1 × Γ where gon(Γ) ≤ c0, and where the
genus of Γ is smaller than or equal to g0.

(ii) For each i ∈ {1, 2}, if dim(Bi) = 1, then each fibre of Xi/Bi is birational
to P1 × Γ with gon(Γ) ≤ c0, and where the genus of Γ is smaller than or
equal to g0.

Proof. As in Remark 3.5, we consider the variety Y0 which is pseudo-isomorphic
to the top varieties in the Sarkisov diagram and which is a weak-Fano variety of
rank 2, since the base Z of the Sarkisov link is of dimension 0.
By [KMMT00] (see also [Bir16, Theorem 1.1]), the set of Fano threefolds with

terminal singularities is bounded. As explained in Remark 3.5, the Sarkisov link
is determined by the Fano variety Y . The two rational maps Y0 99K Xi Bi are
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then determined by the two extremal rays of the cone NE(Y0), so their fibres and
contracted divisors are also in bounded families. This achieves the result. �

The following result is a direct consequence of Lemma 4.1.

4.2. Corollary. There are integers g0, c0 ≥ 1 such that for each Mori fibre space
X/B where dim(X) = 3, dim(B) = 0, not birational to a conic bundle or a del
Pezzo fibration, the genus and the gonality of elements of Bir(X) are bounded by
g0 and c0 respectively.

Proof. Every element of Bir(X) decomposes into a product of Sarkisov links and
isomorphisms of Mori fibre spaces (Theorem 3.4). The base of each of these
Sarkisov links has dimension 0, as X is not birational to a conic bundle or a
del Pezzo fibration. Hence the genus and the gonality of each Sarkisov link are
bounded by g0 and c0 respectively by Lemma 4.1(i). This provides the result. �

In fact, Corollary 4.2 can be easily extended to higher dimension, and concerns
then the solid Fano varieties, defined as below (see [AO18, Definition 1.4]):

4.3. Definition. A Fano variety X being a Mori fibre space over a point is said
to be (birationally) solid if it is not birational to any Mori fibre space over a
positive dimensional base.

4.4. Corollary. For every integer n ≥ 3, there is an integer cn ≥ 1 (that only
depends on n) such that for each solid Fano variety X of dimension n, the covering
gonality of elements of Bir(X) are bounded by cn.

Proof. The proof is similar as the one of Lemma 4.1 and Corollary 4.2:
By [Bir16, Theorem 1.1], the set of Fano varieties of dimension n with terminal

singularities is bounded. As explained in Remark 3.5, any Sarkisov link over a
base Z of dimension 0 is determined by the Fano variety Y . The covering gonality
of the divisors contracted by such Sarkisov links are thus bounded. The result
then follows, as every element of Bir(X) is a composition of Sarkisov links over a
base of dimension 0. �

We can now extend Corollary 4.2 to a more general situation:

4.5. Lemma. There are integers g0, c0 ≥ 1 such that the following holds:
Suppose X/B is a Mori fibre space with dim(X) = 3 and there exists a Sarkisov

link over a base of dimension 0 involving X/B. Then, for every element ϕ ∈
Bir(X) having a decomposition into Sarkisov links that involves no conic bundles,
the gonality of ϕ is bounded by c0. Moreover, if no del Pezzo fibration of degree
≥ 3 arises in the decomposition of ϕ, the genus of ϕ is bounded by g0.

Proof. We choose integers g0 and c0 from Lemma 4.1, and assume that c0 ≥ 8.
If dim(B) = 0, then X a Fano variety, and is thus rationally connected [Zha06].

If dim(B) ≥ 1, then dim(B) = 1 as X is not birational to a conic bundle. By
assumption, X/B is involved in a Sarkisov link over a base of dimension 0. The
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variety X is then birational to a Fano variety (the variety Ȳ of Remark 3.5), so
is again rationally connected. Moreover, Lemma 4.1(ii) implies that each fibre of
X/B is birational to C × P1 for some curve of genus and gonality bounded by g0
and c0.
We take an element ϕ ∈ Bir(X) that we decompose, using Theorem 3.4), as

ϕ = θr ◦ χr ◦ · · · ◦ θ1 ◦ χ1 ◦ θ0,

where each χi is a Sarkisov link between X ′

i−1/B
′

i−1 and Xi/Bi, each θi is an
isomorphism of Mori fibre spaces

Xi X ′

i

Bi B′

i

θi

≃

where X0/B0 = X ′

r/B
′

r = X/B. By assumption, none of the Xi/Bi (or X
′

i/B
′

i) is
a conic bundle, which means that dim(Bi) ∈ {0, 1} for each i ∈ {0, . . . , r}.
By Remark 3.6 and Lemma 3.7, we obtain three different types of Sarkisov

links χi:
a) Sarkisov links χi with a base of dimension 0.
b) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing no isomorphism

between the generic fibres of X ′

i−1/Bi−1 and Xi/Bi.
c) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing an isomorphism

between the generic fibres of X ′

i−1/Bi−1 and Xi/Bi.
The genus and the gonality of the Sarkisov link in case a) are bounded by g0

and c0 respectively (Lemma 4.1(i)).
In Case b)−c), the Sarkisov link is between two del Pezzo fibrations X ′

i−1/B
′

i−1

and Xi/Bi over a curve B′

i−1 = Bi. As Xi−1 and Xi are rationally connected
(because they are birational to X), we obtain B′

i−1 = Bi ≃ P1.
Case b) corresponds to Case (ii) of Lemma 3.7). The two divisorial contractions

contract divisors onto curves ofX ′

i−1/B
′

i−1 and Xi/Bi of gonality at most 8, which
are moreover rational (and thus of genus bounded by g0) if the degree of the del
Pezzo fibrations is ≤ 2 (Lemma 3.7).
The remaining “bad” case is Case c) (Case (i) of Lemma 3.7). In this case,

the surfaces Fi−1 ⊆ X ′

i−1 and Fi ⊆ Xi contracted by χi and χ−1
i correspond to

fibres of the del Pezzo fibrations X ′

i−1/B
′

i−1 and Xi/Bi. If the fibre is general, it
is rational and we are done, but it could be that it is birational to P1 × C for
some non-rational curve C, a priori of large genus / gonality (see Question 4.6).
To solve the problem, we denote by 1 ≤ j ≤ i ≤ k ≤ r the smallest integer
j ∈ {1, . . . , i} and the biggest integer k ∈ {i, . . . , r} such that χj , . . . , χk are links
of type II, and obtain that

ν = θk ◦ χk ◦ θk−1 ◦ χk−1 ◦ · · · ◦ χj+1 ◦ θj ◦ χj ◦ θj
11



is a birational map between del Pezzo fibrations Xj−1/Bi and X
′

k/B
′

k which fits
in a commutative diagram

Xj−1 X ′

k

Bi B′

k ≃ P1.

ν

≃

Every surface contracted by ν is either a fibre, or birational to a surface contracted
by a Sarkisov link in χj, . . . , χk of type b). We now prove that the fibres contracted
by ν are birational to C × P1 for some curve C of genus and gonality bounded
by g0 and c0 respectively. If j = 1, this is because X0/B0 = X/B and we already
observed at the beginning that each fibre of X/B had this property. If j > 1,
then the Sarkisov link χj−1 is not of type II, so is over a base of dimension 0, i.e.
is in Case a). Hence, each fibre of Xj−1/Bj−1 is birational to C × P1 for some
curve C of genus ≤ g0 and gonality ≤ c0 (Lemma 4.1(ii)).
Hence, even if χi can a priori be of arbitrary large genus or gonality, the gonality

of ν is bounded by c0, and the genus is bounded by g0 if no del Pezzo fibration
of degree 3 appears in the decomposition.
As ϕ decomposes into links of type a) and maps having the same form as ν

(compositions of Sarkisov links of type II), the gonality of ν is bounded by c0,
and the genus is bounded by g0 if no del Pezzo fibration of degree 3 appears in
the decomposition. �

The following question is naturally raised by the proof of Lemma 4.5.

4.6. Question. Is there an integer g ≥ 1 such that for each Mori fibre space
X B which is a del Pezzo fibration, each fibre is birational to C × P1 for some
curve C of genus (respectively gonality) ≤ g?

In the case of birational maps between del Pezzo fibrations, we do not have an
absolute bound (which would follow from a positive answer to Question 4.6), but
we can easily obtain the following result on birational maps involving links over
a base of dimension 1. This is for instance the case for all elements of Bir(X) if
X/B is a Mori fibre space not birational to a conic bundle with X not rationally
connected.

4.7. Lemma. Let X/B be a Mori fibre space such that dim(X) = 3 and dim(B) = 1
(a del Pezzo fibration over a curve). There are integers c, g ≥ 0 (depending on
X/B) such that the following holds:
For each birational map ϕ ∈ Bir(X) that decomposes into Sarkisov links of type

II, each over a base of dimension 1, the gonality of ϕ is bounded by c. Moreover,
the genus of ϕ is bounded by g if no del Pezzo fibration of degree ≥ 3 occurs in
the decomposition.

Proof. As each Sarkisov link occuring in the decomposition of ϕ is of type II, the
base of the Sarkisov link is isomorphic to B, and so are all bases of the Mori fibre
spaces involved.

12



The map ϕ is a square birational map, i.e. sends a general fibre of X/B onto
a general fibre. There are finitely many fibres of X/B that are not rational, so
we only need to bound the gonality and the genus of the curves C such that
C × P1 is birational to a surface contracted by ϕ that is not a fibre. Such a
surface is contracted by a Sarkisov link χ between del Pezzo fibrations Xi−1/Bi−1

and Xi/Bi, which is not an isomorphism between the generic fibres. We proceed
as in the proof of Lemma 4.5: The two divisorial contractions contract divisors
onto multisections of Xi−1/Bi−1 and Xi/Bi. As the variety Y0 in the middle (see
Remark 3.5) is a weak del Pezzo fibration over the base, we can only blow-up
curves with gonality at most 8. Moreover, the curves are rational if Xi−1/Bi−1

and Xi/Bi are del Pezzo fibrations of degree ≤ 2. This achieves the result. �

We can now apply Lemma 4.5 and obtain the following result, which gives the
proof of parts (iii) and (iv) of Theorem 1.1. Note that here the bound depends
on X and is not an absolute bound as in Lemma 4.5. This is of course needed,
as one can consider the blow-up of any threefold along a curve of arbitrary large
genus.

4.8. Proposition. Let X be a projective threefold not birational to a conic bundle.
Then, then the following hold:

(i) The gonality of the elements of Bir(X) is bounded.
(ii) If X is not birational to a del Pezzo fibration of degree 3, the genus of

the elements of Bir(X) is also bounded.

Proof. Using the minimal model program (MMP), we see that X is birational
to a Q-factorial variety X ′ with at most terminal singularities, which is either a
Mori fibre space X ′/B′ or where KX′ is nef. We may replace X with X ′, as this
does not change the boundedness (but can a priori change the bound).
IfKX is nef, then the genus and the gonality of elements of Bir(X) are bounded,

as no element of Bir(X) contracts any hypersurface.
We can then assume that X/B is a Mori fibre space. We have dim(B) ∈ {0, 1}

as X is not birational to a conic bundle. If no Sarkisov link starts from X , the
result is trivially true, since in this case Theorem 3.4 gives

Bir(X) = Aut(X).

Note that such threefolds do exists (see Remark 3.8). To complete the proof, we
may assume that Bir(X) 6= Aut(X), so that, in particular, there is a Sarkisov
link that starts from X . If X/B is involved in a Sarkisov link over a base of
dimension 0, the result follows from Lemma 4.5. So we may assume that the base
of every Sarkisov link between Mori fibre spaces birational to X has dimension 1.
Then dim(B) = 1 and every Sarkisov link involved in any decomposition of any
element ϕ ∈ Bir(X) is of type II between two del Pezzo fibrations. In particular,
the del Pezzo fibrationX/B is birationally rigid over B (see [Cor00, Definition 1.3]
and Remark 3.8). Now the result then follows from Lemma 4.7. �
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5. Del Pezzo fibrations of degree 3

We recall the following result, proven in [Cor96] (see also [Kol97] for generali-
sations):

5.1. Proposition ([Cor96, Theorem 1.10]). Let B be a smooth curve and let
X B be a del Pezzo fibration of degree 3 (cubic surface fibration). Then, there
exists a birational map

X

  ❅
❅❅

❅❅
❅❅

❅

ϕ
//❴❴❴❴❴❴❴ X ′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

B

such that X ′/B is another del Pezzo fibration of degree 3 having the following
properties:

(i) X ′ is a projective threefold with terminal singularities of index 1;
(ii) every fibre of X ′/B is reduced and irreducible, and is a Gorenstein del

Pezzo surface;
(iii) the anti-canonical system −KX′ is relatively very ample and defines an

embedding in a P3-bundle over B.

We will also need the following lemma:

5.2. Lemma. Let 0 ∈ V ⊂ C4 be an isolated cDV singularity and let C ⊂ V be a
smooth curve. Let σ : V̂ V be the blowup of C. Then V̂ is normal.

Proof. Let x1, . . . , x4 be coordinates in C4. We may assume that C is the x1-axis,
given by x2 = x3 = x4 = 0. As V contains C, it is given by the equation

φ = x2φ2 + x3φ3 + x4φ4 = 0,

where the functions φi = φi(x1, . . . , x4) vanish at the origin. The origin being a
cDV singularity, at least one of φi’s contains a linear term and at least one of
the φi’s contains a term xk1 for some k > 0 (because V is smooth at a general
point of C). By changing coordinates x2, x3, x4 linearly, we may assume that φ4

contains a non-zero linear term ℓ(x1, x4) (which depends on x1, x4). Note that

the fibre σ−1(0) ⊂ V̂ is a plane P2 and V̂ is a hypersurface in a nonsingular

fourfold. By Serre’s criterion it is sufficient to show that V̂ is smooth at some
point of σ−1(0). Consider the affine chart U4 := {x′4 6= 0}. Then σ−1(U4) is given
by

{x′2φ
′

2 + x′3φ
′

3 + φ′

4 = 0} ⊂ C4
x′
1
,...,x′

4

,

where φ′

i = φi(x
′

1, x
′

2x
′

4, x
′

3x
′

4, x
′

4). The fibre σ−1(0) ∩ U4 in this chart is given by
x′1 = x′4 = 0. Then

mult0(x
′

2φ
′

2) ≥ 2, mult0(x
′

3φ
′

3) ≥ 2,

and the linear part ℓ(x1, x4) of φ′

4 is nontrivial. Therefore, V̂ is smooth at the
origin of σ−1(U4). �
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5.3. Proposition. Let B be a smooth curve and let X B be a del Pezzo fibra-
tion of degree 3. Then, the genus of elements of Bir(X/B) is unbounded (even if
the gonality can be bounded).

Proof. We can assume that B is projective, and apply Proposition 5.1 to reduce
to the case where X,B satisfy the conditions (i)-(iii) of this proposition.
We then take a curve C ⊂ X which is a section of X/B (this exists as the field

C(B) has the C1 property, as before by [Kol96, Theorem IV.6.8, page 233]). We
can moreover assume that a general point of C is not contained in any of the 27
lines of the corresponding fibre ([Kol96, Theorem IV.6.10, page 234]).

We denote by η : X̂ X the blow-up of C. Note that X̂ is embedded in the
blow-up P̂ of P along C as a hypersurface. In particular, the canonical class KX̂

is a well-defined Cartier divisor. By Lemma 5.2, X̂ is normal. Consider, for some
large integer n, the divisor

D = −KX̂ + nF̂ ,

where F̂ is a general fibre of X̂ B.
We first observe that D is base-point-free (for n big enough). To see this,

we view X as a closed hypersurface of a P3-bundle P B (Condition (iii) of

Proposition 5.1), and then view X̂ as a closed hypersurface of the blow-up P̂
of P along C. By the adjunction formula, the divisor D is the restriction of a
divisor DP on P̂ which is equal, on each fibre of P̂ B, to a strict transform of
a hyperplane of P3 through the point blown-up. Taking n big enough, we obtain
that DP is without base-points, and this implies that D is base-point free.
Take two general elements D1, D2 of the linear system of D and consider the

curve Q̂ = D1∩D2. Observe that Q̂ intersects a general fibre F̂ of X̂ B at two
points. Indeed, for i = 1, 2, the intersection of Di with a general fibre F̂ is the
strict transform of a hyperplane section of the cubic surface F , fibre of X B,
passing through the point C ∩ F blown-up by η. The two hyperplane sections
intersect F into 3 points, so 2 outside of C ∩ F .
We can then associate to Q = η(Q̂) the birational involution ϕ ∈ Bir(X/B)

which performs a Bertini involution on a general fibre F of X/B, associated to
the two points Q ∩ F : the fibre F is a smooth cubic surface in P3 and the blow-
up of the two points Q ∩ F is a del Pezzo surface of degree 1 on which there is
the unique Bertini involution associated to the double covering (see for instance
[Isk96, Page 613]). Hence, the involution ϕ lifts to a birational involution of the
blow-up Y X of Q, which is an isomorphism on a general fibre. There is then
a surface birational to Q × P1 contracted by ϕ, which corresponds to the union
of two curves contracted onto the two points in each fibre.
It remains to see that Q̂ is smooth and irreducible, with unbounded genus when

n is taken big enough. This will give the result, as Q is then birational to Q̂.
Since the linear system |D| is base point free and ample, it is not composed with

a pencil. Since X̂ is normal, it is smooth in codimension one and by Bertini’s
15



theorem we see that Q̂ = D1 ∩D2, where D1, D2 ∈ |D| are general members, is

a smooth curve contained in the smooth locus of X̂ .
By adjunction formula we get, for i = 1, 2,

KD1
= (KX̂ +D1)|D1

= n · (F̂ |D1
),

KQ = (KD1
+Q)|D1

= (nF̂ |D1
+D2|D1

)|Q,

which gives

deg(−KQ) = (nF̂ +D2) ·D1 ·D2

= (nF̂ +D) ·D2

= (−KX̂ + 2nF̂ ) · (−KX̂ + nF̂ )2

= 4nF̂ · (KX̂)
2 − (KX̂)

3

= 4n− (KX̂)
3

For n large enough, the curve Q̂ cannot be reducible as its genus would then
be bounded (because it would be the union of two disjoint curves isomorphic to

B). The curve Q, birational to Q̂, is again of unbounded genus, when n is large
enough. �

The proof of Theorem 1.1 is now finished:

Proof of Theorem 1.1. Part (i) is given by Proposition 2.4.
Part (ii) is given by Proposition 5.3.
Parts (iii) and (iv) are respectively parts (i) and (ii) of Proposition 4.8. �
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