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ON GEOMETRY OF FANO THREEFOLD HYPERSURFACES

HAMID AHMADINEZHAD, IVAN CHELTSOV, JIHUN PARK

Abstract. We prove that a quasi-smooth Fano threefold hypersurface is birationally rigid if
and only if it has Fano index one.

1. Introduction

End points of Minimal Model Program are either Mori fibre spaces or minimal models. In
dimension three, Mori fibre spaces form three classes: Fano threefolds, del Pezzo fibrations over
curves, and conic bundles over surfaces. They are Q-factorial with at worst terminal singulari-
ties, and with relative Picard number one. The focus of this article is on Fano threefolds. They
lie in finitely many deformation families (see [5] and [13]), and studying birational relations
among them, as well as birational maps to other Mori fibre spaces is fundamental, as it sheds
light to birational classification of rationally connected threefolds in general.
For a Fano threefold X with terminal Q-factorial singularities, let A be a Weil divisor for

which −KX = ιXA with maximum ιX ∈ Z>0. This integer ιX is known as the Fano index of
X . It follows from [4] and [6] that there are precisely 130 families of Fano threefolds such that
the Z-graded ring

R(X,A) =
⊕

m>0

H0
(
X,−mA

)

has 5 generators. Denote these generators by x, y, z, t, w, respectively in degrees a0, a1, a2, a3, a4,
and let the algebraic relation amongst them be f(x, y, z, t, w) = 0 of weighted degree d. This
redefines X as a hypersurface in the weighted projective space P(a0, a1, a2, a3, a4) that is given
by the quasi-homogeneous equation

f(x, y, z, t, w) = 0,

and the Fano index of X is computed via ιX =
∑4

i=0 ai− d. Among these 130 families, exactly
95 have index one and their birational geometry is well-studied. Notably, the following theorem
holds.

Theorem 1.1 ([7, 10]). All index one quasi-smooth Fano threefold hypersurfaces are bira-
tionally rigid.

In particular, all index one quasi-smooth Fano threefold hypersurfaces are irrational. The
remaining families of Fano threefold hypersurfaces with ιX > 2 are listed in Table 1, and
their rationality has been studied by several people: the irrationality of every smooth cubic
threefold (family № 96) has been proved by Clemens and Griffiths [8], the irrationality of all
smooth threefolds in family № 97 has been proved by Voisin [18], and the irrationality all
smooth threefolds in family № 98 has been proved by Grinenko [11, 12]. Recently, the complete
classification of families whose general member is irrational was carried out by Okada [16].
Whether a general Fano threefold in a given family is rational or not is also indicated in
Table 1.
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№ Xd ⊂ P(a0, a2, a2, a3, a4) ιX Rational № Xd ⊂ P(a0, a2, a2, a3, a4) ιX Rational

96 X3 ⊂ P(1, 1, 1, 1, 1) 2 No 114 X6 ⊂ P(1, 1, 2, 3, 4) 5 Yes

97 X4 ⊂ P(1, 1, 1, 1, 2) 2 No 115 X6 ⊂ P(1, 2, 2, 3, 3) 5 Yes

98 X6 ⊂ P(1, 1, 1, 2, 3) 2 No 116 X10 ⊂ P(1, 2, 3, 4, 5) 5 No

99 X10 ⊂ P(1, 1, 2, 3, 5) 2 No 117 X15 ⊂ P(1, 3, 4, 5, 7) 5 No

100 X18 ⊂ P(1, 2, 3, 5, 9) 2 No 118 X6 ⊂ P(1, 1, 2, 3, 5) 6 Yes

101 X22 ⊂ P(1, 2, 3, 7, 11) 2 No 119 X6 ⊂ P(1, 2, 2, 3, 5) 7 Yes

102 X26 ⊂ P(1, 2, 5, 7, 13) 2 No 120 X6 ⊂ P(1, 2, 3, 3, 4) 7 Yes

103 X38 ⊂ P(2, 3, 5, 11, 19) 2 No 121 X8 ⊂ P(1, 2, 3, 4, 5) 7 Yes

104 X2 ⊂ P(1, 1, 1, 1, 1) 3 Yes 122 X14 ⊂ P(2, 3, 4, 5, 7) 7 No

105 X3 ⊂ P(1, 1, 1, 1, 2) 3 Yes 123 X6 ⊂ P(1, 2, 3, 3, 5) 8 Yes

106 X4 ⊂ P(1, 1, 1, 2, 2) 3 Yes 124 X10 ⊂ P(1, 2, 3, 5, 7) 8 Yes

107 X6 ⊂ P(1, 1, 2, 2, 3) 3 No 125 X12 ⊂ P(1, 3, 4, 5, 7) 8 Yes

108 X12 ⊂ P(1, 2, 3, 4, 5) 3 No 126 X6 ⊂ P(1, 2, 3, 4, 5) 9 Yes

109 X15 ⊂ P(1, 2, 3, 5, 7) 3 No 127 X12 ⊂ P(2, 3, 4, 5, 7) 9 Yes

110 X21 ⊂ P(1, 3, 5, 7, 8) 3 No 128 X12 ⊂ P(1, 4, 5, 6, 7) 11 Yes

111 X4 ⊂ P(1, 1, 1, 2, 3) 4 Yes 129 X10 ⊂ P(2, 3, 4, 5, 7) 11 Yes

112 X6 ⊂ P(1, 1, 2, 3, 3) 4 Yes 130 X12 ⊂ P(3, 4, 5, 6, 7) 13 Yes

113 X4 ⊂ P(1, 1, 2, 2, 3) 5 Yes

Table 1: Fano threefold hypersurfaces of index ιX > 2 and their rationality data.

We are interested in irrational Fano threefolds, and their birational geometry. In this pa-
per, we prove that, contrary to index one case, there are no birationally rigid Fano threefold
hypersurfaces with ιX > 2. To be precise, our main result is

Theorem 1.2. Let X be a quasi-smooth Fano threefold in family №n in Table 1. Then

(i) there exists a birational map to a Mori fibration over a curve or a surface if

n 6∈ {100, 101, 102, 103, 110} (see Section 2),

(ii) there exists an elementary Sarkisov link from X to another Fano threefold if

n ∈ {100, 101, 102, 103, 110} (see Section 3).

In particular, if ιX > 2, then X is not birationally rigid.

Corollary 1.3. A quasi-smooth Fano threefold hypersurface with terminal singularities is bi-
rationally rigid if and only if it has index one.

Our results go beyond the proof of birational non-rigidity. They also provide evidence for
the following conjecture (see [2, Definition 1.4] for the definition of solid Fano varieties).
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Conjecture 1.4. A quasi-smooth Fano hypersurface X with ιX > 2 is solid if and only if it
belongs to one of the families №100, №101, №102, №103, №110.

In Section 2, we prove one direction of this conjecture, i.e., we show that if a quasi-smooth
Fano threefold hypersurface X with ιX > 2 is solid, then it must belong to one of the families
№100, №101, №102, №103, №110. In Section 4, we indicate how to prove the other direction
of our Conjecture 1.4. Unfortunately, the technical difficulties in the final step of the indicated
proof do not allow us to finish the proof. We encourage the reader to fill this gap.

Acknowledgement. This project was initiated during a Research-in-Teams programme at the
Erwin Schrödinger Institute for Mathematics and Physics during August 2018. The authors
would like to express their gratitude to the ESI and its staff for their support and hospitality.
The first author has been supported by EPSRC (grant EP/T015896/1), and the third author
has been supported by IBS-R003-D1, Institute for Basic Science in Korea.

2. Non-solid Fano threefolds

Let X be a quasi-smooth Fano threefold in family №n in Table 1. Then X is a hyper-
surface in the weighted projective space P(a0, a1, a2, a3, a4) of degree d. Suppose also that
n 6∈ {100, 101, 102, 103, 110}. Then the Fano index iX of X satisfies

a0a1 < iX = a0 + a1 + a2 + a3 + a4 − d.

Here, we assume that a0 6 a1 6 a2 6 a3 6 a4 as in Table 1.
Let ψ : X 99K P1 be the map given by the projection P(a0, a1, a2, a3, a4) 99K P(a0, a1). Then

there exists a commutative diagram

X̃
π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ φ

��
❅❅

❅❅
❅❅

❅❅

X
ψ

//❴❴❴❴❴❴❴ P1

where X̃ is a smooth threefold, π is a birational map, and φ is a surjective morphism. Let S

be a sufficiently general fibre of the rational map ψ, and let S̃ be its proper transform on the
threefold X̃ . If n 6∈ {122, 127, 129, 130}, then S is a hypersurface in the weighted projective
space P(a1, a2, a3, a4) of degree d. Similarly, if n ∈ {122, 127, 129, 130}, then the surface S is a
complete intersection in P(a0, a1, a2, a3, a4) of two hypersurfaces: the hypersurface X of degree
d, and the hypersurface of degree a0a1 that is given by

ya0 = λxa1

for some λ ∈ C, where x and y are coordinates on P(a0, a1, a2, a3, a4) of weights a0 and a1, re-
spectively. Thus, in all cases, the Kodaira dimension of the surfaces S is negative by adjunction
formula, so that S̃ is uniruled. In fact, one can show that S̃ is rational.

Now we can apply (relative) Minimal Model Program to X̃ over P1. One possibility is that
we obtain a commutative diagram

X̃

φ
��

χ
//❴❴❴❴❴❴ V

η

��

P1 P1
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where χ is a birational map, V is a threefold with terminal Q-factorial singularities, rk Pic(V ) =
2, and η is a fibration into del Pezzo surfaces. Another possibility is that we obtain a commu-
tative diagram

X̃

φ
��

χ
//❴❴❴❴❴❴ V

η

��

P1 S
υ

oo

where χ is a birational map, V is a threefold with terminal Q-factorial singularities, S is a
normal surface, η is a conic bundle, rk Pic(V ) = rkPic(S) + 1, and υ is a surjective morphism
with connected fibres. In fact, the surface S has Du Val singularities [15].

Corollary 2.1. Let X be a quasi-smooth Fano threefold in family №n in Table 1 such that
n 6∈ {100, 101, 102, 103, 110}. Then X is not solid.

In particular, if n 6∈ {100, 101, 102, 103, 110}, then X is not birationally rigid.

3. Birationally non-rigid Fano threefolds

In this section, we will complete the proof of Theorem 1.2. In each case, we regard the three-
fold as a hypersurface X inside the weighted projective ambient space P = P(a0, a1, a2, a3, a4),
and distinguish a quotient singularity p ∈ X ; for families № 100, № 101, № 102, № 103 this point
is p = p3 = (0 : 0 : 0 : 1 : 0) and for family № 110 it is p = p4 = (0 : 0 : 0 : 0 : 1). The extremal
extraction from this point is prescribed by Kawamata [14] in a local analytic neighbourhood
of p. We proceed by identifying a projective toric variety T with Picard rank 2 together with
a birational morphism Φ : T → P. We then demand that ϕ : Y → X viewed locally near p is
the Kawamata blow up at the point p, where Y = Φ−1

∗
(X) and ϕ is simply the restriction of Φ

to Y . Now, by construction, Y has Picard number two, and hence admits a 2-ray game. We
proceed by running the 2-ray game on T and restricting it to Y , and each time we recover the
2-ray game of Y , which ends with a divisorial contraction to a Fano threefold not isomorphic
to X . See [3] for a comprehensive explanation of explicit 2-ray games and the links obtained
from them.
We treat the first four families together, and then we consider family № 110 separately as it

has a higher index and behaves slightly differently. Let X ⊂ P be a quasi-smooth member in
one of the four families above with Fano index 2, and denote the variables by x0, . . . , x4. Note
that in each case the defining polynomial f(x0, · · · , x4) contains two monomial x24 and x33xk
with nonzero coefficient, where k = 2 in families № 100, № 102, № 103, and k = 0 in family
№ 101. This shows that p is locally described by the quotient singularity

1

a3
(a0, a1, a4 − a3) in the first three cases, and

1

a3
(a1, a2, a4 − a3) in family № 101.

In each case a0+ (a4− a3) ≡ 0 or a2+ (a4− a3) ≡ 0 mod a3, and the third local coordinate
weight is 2, the index of X . In order to consider the Kawamata blow up of a 3-fold quotient
singularity, the local description is expected to be of type

1

r
(1, a, b), where a+ b ≡ 0 mod r.

For this, we can multiply the local weights above by ⌈a3
2
⌉. If we denote the local coordinates

of 1
r
(1, a, b) with x, y, z, then the Kawamata blow up, with the new variable u, is given by

u
1

rx, u
a

r y, u
b

r z.
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This is because if the germ 1
r
(1, a, b) is viewed as an affine toric variety with rays ρx, ρy and

ρw, then the Kawamata blow up of this toric variety is realised by adding a primitive new ray
ρu with relation

r · ρu = 1 · ρx + a · ρy + b · ρz.

We take advantage of this. We view P as a projective toric variety defined by 5 primitive
rays in Z4 and one relation amongst them, namely

4∑

i=0

ai · ρi = 0,

where ρi is the primitive ray corresponding to the toric divisor Di = {xi = 0}. Using this, we
define a rank two toric variety T with coordinate weights given by the matrix

(3.1)




u y3 y4 y2 y1 y0
0 a3 a4 a2 a1 a0

−a3 0 b4 b2 b1 b0





where bi is the smallest positive integer congruent to ⌈a3
2
⌉ · ai modulo a3 when xi appears as a

local coordinate of the singular point p ∈ X , otherwise bi = a4 − a3. Let us explain this by an
example. Suppose X is in family № 100. Then the defining equation of X is of the form

x33x2 = x24 + x91 + x32x4 + · · · .

In an analytic neighbourhood of p we can eliminate the (tangent) variable x2, which gives local
coordinates x0, x1, x4 with a finite group action of Z5 by

1

a3
(a0, a1, a4 − a3) =

1

5
(1, 2, 4),

which can be seen as
1

a3
(b0, b1, b4) =

1

5
(3, 1, 2).

Clearly, the Kawamata blow up is locally given by

(u, y0, y1, y4) 7→ (u
3

5y0, u
1

5y1, u
2

5 y4) = (x0, x1, x4).

Plugging these into the equation of X above shows that the multiplicity of u in the right hand
side of the equation is exactly 4

5
, precisely due to the presence of x24 in the equation. Other

cases are similar.
The map Φ : T → P is defined by the restriction to the y3-wall, which defines

(u, y3, y4, y2, y1, y0) 7→ (u
b0

a3 y0 : u
b1

a3 y1 : u
b2

a3 y2 : y3 : u
b4

a3 y4) = (x0 : x1 : x2 : x3 : x4).

Consequently, Y ⊂ T is defined by the vanishing of the polynomial

g(u, y0, · · · , y4) =
1

u
a3

a4−a3

· f(u
b0

a3 x0, u
b1

a3 x1, u
b2

a3 x2, x3, u
b4

a3 x4).

The nonzero determinants of the 2 × 2 minors of the matrix above are all divisible by a3,
which makes this particular description of T “not well-formed” (see [1] for a general treatment).
However, this can easily be fixed by an action of the matrix

(
1/a3 −2/a3
0 1

)
,
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which, for example, transforms (3.1) in the case of family № 100 into



u y3 y4 y1 y2 y0
2 1 1 0 −1 −1
−5 0 2 1 4 3




Note that we have also rearranged the columns of the matrix (easily tractable using the variables
order). This is because we will run the 2-ray game on T according to the GIT chambers of the
action of (C∗)2.
Restricting the wall-crossing to Y over the y4-wall is an isomorphism on Y as g includes the

term y24. Crossing the next wall on T is locally the flip (2, 1, 1,−1,−1), read-off from the first
row of the wellformed (3.1) after setting yi = 1, the variable corresponding to the next wall
(i = 1 for families № 100, 101, 102 and i = 0 for family № 103). This restricts to an Atiyah
flop (1, 1,−1,−1) as g includes the monomial uyαi with nonzero coefficient, where α = deg f

2
.

Note that this coefficient is nonzero as a consequence of X being quasi-smooth. The last wall,
that is the y2-wall, contracts the divisor {x = 0} on T (or {x = 0} in the case of № 103). The
restriction to Y is always a divisorial contraction to a Fano 3-fold with a singular point at the
image of the contraction. Table 2 contains the information on the image in each case.

№ p3 ∈ Xd ⊂ P(a0, a2, a2, a3, a4) New Model

100 1
5
(3, 1, 2) ∈ X18 ⊂ P(1, 2, 3, 5, 9) cE6 ∈ Z10 ⊂ P(1, 1, 1, 3, 5)

101 1
7
(1, 5, 2) ∈ X22 ⊂ P(1, 2, 3, 7, 11) cE7 ∈ Z12 ⊂ P(1, 1, 1, 4, 6)

102 1
7
(4, 1, 3) ∈ X26 ⊂ P(1, 2, 5, 7, 13) 1

2
(1, 1, 1, 0; 0) ∈ Z14 ⊂ P(1, 1, 2, 4, 7)

103 1
11
(1, 7, 4) ∈ X38 ⊂ P(2, 3, 5, 11, 19) cE8 ∈ Z22 ⊂ P(1, 1, 3, 7, 11)

Table 2: Birational models for Fano hypersurfaces in families № 100, 101, 102, 103.

Now we turn our attention to Family № 110. A quasi-smooth member in this family is
hypersurface X21 ⊂ P(1, 3, 5, 7, 8) and contains a singular point of type 1

8
(1, 3, 7) as the defining

polynomial contain the monomial x24x2. In Kawamata format this singularity is of type 1
8
(3, 2, 5).

Similar to the computations above, the toric variety T is given by the matrix




u y4 y1 y3 y2 y0
0 8 3 7 5 1
−8 0 1 5 7 3



 ,

which can be wellformed to



u y4 y1 y3 y2 y0
5 7 2 3 0 −1
−8 0 1 5 7 3


 ,

The 2-ray game of T restricts to Y via an isomorphism followed by a flip of type (5, 1,−3,−2),
then it ends with a divisorial contraction to a singular point of type cE7 on a hypersurface
Z7 ⊂ P(1, 1, 1, 2, 3).



ON GEOMETRY OF FANO THREEFOLD HYPERSURFACES 7

4. Evidence for Conjecture 1.4

Let us first prove that no smooth point or curve on any quasi-smooth member in families
№ 100, 101, 102, 103, 110 can be a centre of maximal singularities (see [17] for an introduction
to the theory of maximal singularities).

Lemma 4.1. Let X be a quasi-smooth Fano hypersurface of degree d in the weighted projective
space P(a0, a1, a2, a3, a4) that belongs to one of the families № 100, 101, 102, 103, or 110. Let M
be a mobile linear subsystem in | − nKX | for some positive integer n. Then any smooth point
in X cannot be a centre of non-canonical singularities of the pair (X, 1

n
M).

Proof. Let p be a smooth point ofX and suppose that p is a centre of non-canonical singularities
of the pair (X, 1

n
M). We then obtain

multp(M
2) > 4n2

from [9, Corollary 3.4]. We now seek for a contradiction case by case. For the families
№ 100, 101, 102, 103 we consider a general member H in |OX(a1a2a3)| that passes through the
point p. Since the linear subsystem of |OX(a1a2a3)| consisting of members passing through the
point p has a zero-dimensional base locus, H contains no 1-dimensional components of the base
locus of M. Then

4a1a2a3n
2d

a0a1a2a3a4
= H ·M2 > multp(H)multp(M

2) > 4n2,

which yields an absurd inequality 2 > a0.
For the family № 110 we consider a general member H in |OX(15)| that passes through the

point p. It is easy (but a bit tedious) to check that the base locus of the linear subsystem
of |OX(15)| consisting of members passing through the point p is zero-dimensional. Then

27n2

8
= H ·M2 > multp(H)multp(M

2) > 4n2,

which is absurd. �

Lemma 4.2. Under the same condition as Lemma 4.1, any curve contained in the smooth
locus of X cannot be a centre of non-canonical singularities of the pair (X, 1

n
M).

Proof. Let C be a curve that is contained in the smooth locus of X and suppose that C is a
centre of non-canonical singularities of the pair (X, 1

n
M). We then obtain

multC(M) > n.

Choose two general members H1 and H2 from the mobile linear system M. We then obtain

n2 (−KX)
3 = −KX ·H1 ·H2 > (multC(M))2 (−KX · C) > n2 (−KX · C) .

Since the curve C is contained in the smooth locus of X , the inequality above implies that

(−KX)
3 > 1.

However, the anticanonical classes of the families № 100, 101, 102, 103, 110 have self-intersection
numbers less than 1. This completes the proof. �

Together with [14, Theorem 5], the lemma above shows that a curve on X cannot be a centre
of non-canonical singularities of the pair (X, 1

n
M). In conclusion, it follows from Lemmas 4.1

and 4.2 that only singular points of X can be centres of non-canonical singularities of the pair
(X, 1

n
M).
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It remains to study the singular points on X . Recall from Section 3 that in each family
there exists a birational map to another Fano threefold constructed via an elementary Sarkisov
link starting from the Kawamata blow up of the highest index quotient singularity. We now
concentrate on lower index singularities and show that in each case of Fano index 2 these
singular points produce no elementary link, and in the index 3 case we obtain a new birational
map to a Fano threefold. Let us proceed with the latter.
A quasi-smooth X21 ⊂ P(1, 3, 5, 7, 8) contains two singular points of type 1

8
(1, 3, 7) and

1
5
(3, 2, 3). A typical equation for this hypersurface is

f = x42x0 + x24x2 + x33 + x71 + · · · .

Indeed, the tangent space to p = p2 is determined by x0 and the local coordinates of the tangent
space are x1, x3, x4. In Kawamata format this singularity is of type 1

5
(1, 4, 1) and the local blow

up is given by

(u, y1, y3, y4) 7→ (u
1

5x1, u
4

5x3, u
1

5x4).

So we can define the rank two toric variety T via the matrix



u y2 y4 y1 y3 y0
0 5 8 3 7 1
−5 0 1 1 4 2





together with the map

Φ(u, y2, y4, y1, y3, y0) = (u
2

5x0 : u
1

5x1 : x2 : u
4

5x3 : u
1

5x4) ∈ P(1, 3, 5, 7, 8).

Note that the blow up weight of the variable x0 is determined by the multiplicity of f , which is
2
5
. It is easy to see that Y does not follow the 2-ray game of T . This is because g, the defining

equation of Y , belong to the irrelevant ideal (u, y2) ∩ (y4, y1, y3, y0) as

g = u(y71 + uy33 + · · · ) + y2(y
2
4 + y32y0 + · · · ).

This can be resolved by replacing T with a higher dimensional toric variety (see [3] for an
explanation and examples), using an unprojection defined by the cross-ratio

y =
y71 + uy33 + · · ·

−y2
=
y24 + y32y0 + · · ·

u
,

which defines an isomorphism between Y and the complete intersection of

yy2 + y71 + uy33 + · · · = −uy + y24 + y32y0 + · · · = 0

inside the toric variety defined by



u y2 y4 y1 y y3 y0
0 5 8 3 16 7 1
−5 0 1 1 7 4 2




which can be wellformed into


u y2 y4 y1 y y3 y0
3 1 1 0 −1 −1 −1
21 7 8 1 0 −3 −5


 .

The 2-ray game of the toric variety restricts to a 2-ray game on Y by two isomorphisms followed
by a flip of type (8, 1,−3,−5) and ends in a divisorial contraction into a cE7/2 singular point
on the complete intersection Z6,7 ⊂ P(1, 1, 2, 2, 3, 5).
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The exclusion in all other quotient singularities for the 4 families of index 2 follow the same
principle. We first identify the quotient singularity, with a “key monomial”, which defines
the tangent space. Then we construct the rank two toric variety with weights prescribed by
Kawamata blow up and one weight dictated by the tangent multiplicity. If needed, we perform
an unprojection as above. In each case we either obtain no link, when −KY is outside the
closure of the cone of movable divisors, or we obtain a bad link, when −KY is in the boundary
of the cone of movable divisors (see [3] for justification of exclusions). So, neither case results
in an elementary Sarkisov link. We capture these in Table 3, with the essential data needed
to carry on the computation. Instead of writing the full matrix of T in each case we only
write the blow up weights indexed by the corresponding variable in anticlockwise order of the
GIT chambers. Whenever an unprojection is needed there is an extra variable y in the list of
weight-variables denoted by my(n), where m is weight corresponding to the blow up and n is
the other weight (in relation to the weighted projective space P).

№ singularity key monomial blow up exclusion

100 2× 1
3
(1, 2, 2) x24 + x4x

2
2 −3u, 0y2 , 1y3 , 3y4 , 6y(15), 1y1 , 2y2 bad link

101 1
3
(1, 2, 2) x32x4 or x72x0 −3u, 0y2 , 1y4 , 2y4 , 1y1 , 2y0 bad link

102 1
5
(2, 2, 3) x52x0 −5u, 0y2 , 1y3 , 4y4 , 8y(21), 1y1 , 3y0 bad link

103 1
3
(1, 1, 1)

x91x4

x111 x2

x131 x0

−3u, 0y1 , 2y4 , 1y2 , 4y3 , 1y0

−3u, 0y1 , 1y3 , 2y4 , 1y0 , 4y2

−3u, 0y1 , 1y3 , 2y4 , 1y2 , 4y0

no link

bad link

no link

103 1
5
(2, 1, 4) x72x1 −5u, 0y2 , 2y4 , 3y3 , 1y0 , 4y1 bad link

Table 3: Exclusion of links in families № 100, 101, 102, 103.
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