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K-STABLE FANO THREEFOLDS OF RANK 2 AND DEGREE 30
IVAN CHELTSOV AND JIHUN PARK

ABSTRACT. We find all K-stable smooth Fano threefolds in the family Ne2.22.

Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which
are labeled as Nel.1, Ne1.2, ... Ne9.1, Ne10.1. See [2], for the description of these families.
If X is a general member of the family Ne.#”, then [2 Main Theorem] gives

¢ 2.23,2.26,2.28,2.30, 2.31, 2.33,2.35, 2.36,
3.14,3.16,3.18, 3.21, 3.22, 3.23,

X is K-polystable <= 4 ¢ < 3.24,3.26,3.28, 3.29, 3.30, 3.31, S
4.5,4.8,4.9,4.10,4.11,4.12,
{ 0.2 J

The goal of this note is to find all K-polystable smooth Fano threefolds in the family Ne2.22.
This family contains both K-polystable and non-K-polystable smooth Fano threefolds, and
a conjectural characterization of all K-polystable members has been given in [2] § 7.4].
We will confirm this conjecture — this will complete the description of all K-polystable
smooth Fano threefolds of Picard rank 2 and degree 30 started in [2].

Starting from now, we suppose that X is a smooth Fano threefold in the family Ne2.22.
Then X can be described both as the blow up of P? along a smooth twisted quartic curve,
and the blow up of Vj, the unique smooth threefold Ne1.15, along an irreducible conic.
More precisely, there are a smooth twisted quartic curve Cy C P3, a smooth conic C' C V5,

and a commutative diagram
X
N
(4

Pg ______ >‘/:57

where 7 is the blow up of P* along Cy, ¢ is the blow up of V5 along C, and 4 is given by
the linear system of cubic surfaces containing Cy. Here, Vs is embedded in P® as described
in [2, § 5.10]. All smooth Fano threefolds in the family Ne2.22 can be obtained in this way.

The curve Cy is contained in a unique smooth quadric surface Q C P?, and ¢ contracts
the proper transform of this surface. Note that Aut(X) = Aut(P? Cy) = Aut(Q, Cy).
Choosing appropriate coordinates on IP?, we may assume that Q is given by xgrs = 2,29,
where [xg : 71 : 5 : 23] are coordinates on P?. Fix the isomorphism @ = P! x P! given by

([w:v],[z:y]) = [zu:av:yu: ya],

where ([u: v], [z : y]) are coordinates in P* x P!. Swapping [u : v] and [z : y] if necessary,
we may assume that Cjy is a divisor of degree (1,3) in @, so that Cy is given in @ by

Uf3(37, y) = ’Ugg(ﬂf, y)

for some non-zero cubic homogeneous polynomials f3(x,y) and g3(z,y).
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Let o: Cy — P! be the map given by the projection ([u : v], [z : y]) — [u: v]. Then o
is a triple cover, which is ramified over at least two points. After an appropriate change
of coordinates [u : v], we may assume that o is ramified over [1 : 0] and [0 : 1]. Then
both f3 and g3 have multiple zeros in P1. Changing coordinates [z : y|, we may assume
that these zeros are [0 : 1] and [1 : 0], respectively. Keeping in mind that the curve Cy is
smooth, we see that C is given by

u(z® + ax’y) = v(y® + by’x)
for some complex numbers a and b, after a suitable scaling of the coordinates. If a = b = 0,

then the curve Cy is given by ux® = vy?, which gives Aut(X) = Aut(Q,Cy) = G, X .
In this case, the threefold X is known to be K-polystable [2, § 4.4].

Example. Suppose that ab = 0, but a # 0 or b # 0. We can scale the coordinates further
and swap them if necessary, and assume that the curve Cy is given by uz® = v(y® + y%z).
In this case, the threefold X is not K-polystable [2 § 7.4].

A conjecture in [2 § 7.4] says that the non-K-polystable Fano threefold described in
this example is the unique non-K-polystable smooth Fano threefold in the family Ne2.2.
Let us show that this is indeed the case. To do this, we may assume that a # 0 and b # 0.
Then, scaling the coordinates, we may assume that Cjy is given by

(%) u(2® + A*y) = v(y® + Ay’x)
for some non-zero complex number A. Since the curve C} is smooth, we must have A # +1.
Moreover, if A = £3, then we can change the coordinates on () in such a way that Cy

would be given by ux® = v(y* + y%z), so that X is not K-polystable in this case.
We know from [2] that X is K-stable if Cy is given by with A\ sufficiently general.

In particular, we know from [2, § 4.4] that the threefold X is K-stable when \ = £+/3.
Our main result is the following theorem.

Theorem. Suppose that Cy is given in (k) with A\ ¢ {0, £1,£3}. Then X is K-stable.

Let us prove this theorem. We suppose that Cj is given by (%k]) with A & {0, +1, +3}.
Then the triple cover o: Cy — P! is ramified in four distinct points Py, P», Ps, Py, which
implies that Aut(Q, Cy) is a finite group, since Aut(Q, Cy) C Aut(Cy, P, + P, + P3 + Py).
Without loss of generality, we may assume that

Pr=([1:0,[0:1])=[0:1:0:0]
Py=([0:1],1:0])=[0:0:1:0],

where we use both the coordinates on Q = P! x P! and P? simultaneously.
Observe that the group Aut(Q, Cy) contains an involution 7 that is given by

([w:v], [z :y]) = ([v:ul, [y 2]).
Let us identify Aut(P?, Cy) = Aut(Q, Cy) using the isomorphism @ = P! x P! fixed above.
Then 7 is given by [zg : 1 : X9 : 23] — [23 : X9 : 21 : zg]. Note that 7 swaps P and P,
and the 7-fixed points in Cy are ([1 : 1],[1 : 1]) and ([1 : —1],[1 : —1]), which are not
ramification points of the triple cover o. This shows that 7 swaps the points P; and P;.
In fact, the group Aut(Q, Cy) is larger than its subgroup (7) = p,. Indeed, one can change
coordinates ([u : v], [z : y]) on @ such that P, = ([1:0],[0:1]), Py = ([0:1],[1:0]), and
the curve C} is given by
u(z® + XNz?y) = v(y® + Ny’z)
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for some complex number X' ¢ {0, £1,+3}. This gives an involution ¢ € Aut(Q, Cy) such
that «(Py) = Py and 1(P,) = Ps. Let G be the subgroup (7,:) C Aut(Q, Cy) = Aut(P3,Cy).
Then G = p3. Note that the group Aut(P?, Cy) can be larger for some A € C\ {0, £1, £3}.
For instance, if A = 4v/3, then Aut(P3,C,) = 2y, c.f. [2 Example 4.4.6].

The G-action on (Y is faithful, so that the curve C4 does not contains G-fixed points.
Hence, the quadric () does not G-fixed points, since otherwise ) would contain a G-
invariant curve of degree (1,0), which would intersect C; by a G-fixed point. This im-
plies that the space P? contains exactly four G-fixed points. Denote these points by
O1, Oz, O3, O4. These four points are not co-planar. For every 1 < i < j <4, let L;; be
the line in P? that passes through O; and O;. Then the lines Lyo, L3, L1, Los, Los, L3a
are G-invariant, and they are the only G-invariant lines in P2. For each 1 <7 < 4, let II;
be the plane in P? determined by the three points {Oy, Os, O3, O4} \ {O;}. Then the four
planes II;, II,, II3, II4 are the only G-invariant planes in P3.

Remark. Each plane II; intersects Cy at four distinct points. Indeed, if [II; N Cy| < 4, then
IT; N Cy is a G-orbit of length 2, and II; is tangent to Cy at both the points of this orbit.
Therefore, without loss of generality, we may assume that the intersection II; N Cy is just
the fixed locus of the involution 7. Then I, NCy = ([1 : 1],[1: 1]) U ([1 : —1],[1 : —1]),
so that IT;| ¢ is a smooth conic that is given by a(ve—uy) = b(uz—wvy) for some [a : b] € P'.
But the conic II;|g cannot tangent C, at the points ([1: 1],[1: 1]) and ([1 : —1],[1 : —1]),
so that [II; N Cy| = 4.

The curve C4 contains exactly three G-orbits of length 2, and these G-orbits are just
the fixed loci of the involutions 7, ¢, 7 ot described earlier. Let L, L' and L” be the three
lines in P? such that LN Cy, L' N Cy and L” N C, are the fixed loci of the involutions
7, v and 7 o ¢, respectively. Then L, L' and L” are G-invariant lines, so that they are
three lines among Lo, L13, L14, Los, Loy, L3s. In fact, one can show that the lines L, L/,
L” meet at one point. Therefore, we may assume that LN L' N L" = O, and L = Ly,
L = L24, L' = L34. Then

ILNCy = (L'NCy)U(L"NCy), HoNCy = (LNCy)U(L"NCY), T3NCy = (LNCy) U(L'NCY).
On the other hand, the intersection II, N C} is a G-orbit of length 4.

L12

Since Cy is G-invariant, the action of the group G lifts to the threefold X, so that we
also identify G with a subgroup of the group Aut(X). Let E be the m-exceptional surface,
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let @ be the proper transform of the quadric () on the threefold X, let Hy, Hy, H3 and Hy
be the proper transforms on X of the G-invariant planes 11y, I, I3 and I14, respectively,
and let H be the proper transform on X of a general hyperplane in P3. Then

—Kx ~2Q+E~Q+2H, ~Q+2Hy ~ Q +2H; ~ Q +2H, ~4H — E,

and the surfaces E, Q, Hy, Ho, Hs, H, are G-invariant. Observe that Q & Q = P! x P!,
and Hy, Hy, H3, H; are smooth del Pezzo surfaces of degree 5.

Claim. Let S be a possibly reducible G-invariant surface in X such that —Kx ~qg pS+A,
where A is an effective Q-divisor, and u is a positive rational number such that p > %.

Then S is one of the surfaces @, H,, Hy, H3, H,.
Proof. This follows from the fact that the cone Eff(X) is generated by E and Q. O

Suppose X is not K-stable. Since Aut(X) is finite, the threefold X is not K-polystable.
Then, by [3, Corollary 4.14], there is a G-invariant prime divisor F" over X with S(F') < 0,
see [2], § 1.2] for the precise definition of B(F). Let us seek for a contradiction.

Let Z be the center of F' on X. Then Z is not a surface by [2, Theorem 3.7.1], so
that Z is either a G-invariant irreducible curve or a G-fixed point. In the latter case, the
point 7(Z) must be one of the G-fixed points Oy, Oy, O3, Oy, so that the point Z is not

contained in Q U E. Let us use Abban-Zhuang theory [I] to show that Z does not lie
on QU F in the former case.

Lemma. The center Z cannot be contained in @ UFE.

Proof. We suppose that Z C @ U E. Then Z is an irreducible G-invariant curve, because
neither @) nor F contains G-fixed points. Let us use notations introduced in [2, § 1.7].
Namely, we fix u € R5o. Then

—Kx —uQ ~g (4 —2u)H + (u—1)E ~g (1 —u)Q + 2H,

so that —Kx — u@ is nef for 0 < u < 1, and not pseudo-effective for u > 2. Thus, we
have

~ — Ky —uQ if0<u<l,
P(- Ky —uQ) = x—uQ it0su
(4—2u)H if1<u<2,
and
N N 0 ifo<u<l,
(- X_UQ%_&U—DE if1<u<2

If Z C @, then [2, Corollary 1.7.26] gives

where
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and

) -ordy (N (= Kx = u@)|5)dut

+f]ovol(P( Kx —uQ) ~—vZ>dvdU}

Therefore, we conclude that S(WQ Z) > 1, because Sx(Q) < 1, see [2, Theorem 3.7.1].

e.0)

Similarly, if Z C E, then we get S(VV,E.7 Z) > 1.

Fix an isomorphism Q = Q = P! x P! such that E|g is a divisor in Q of degree (1,3).
For (a,b) € R?, let Og(a,b) be the class of a divisor of degree (a,b) in Pic(Q) ® R. Then

Pk _ O@(?)—u,u—l—l) if0<u<l,
(—Hx —uQ)lg ~= Op(4 —2u,4—2u) if1<u<2,
Therefore, if Z = EN @, then
1 oo
Q _ _ _
S(W,ﬂZ 10{}2 2u)?(u 1du+0fofvol< —v,u+1 3v)>dvdu

+ fTvol(O@(ﬁl —2u—wv,4—2u— 3v))dvdu}
10
u+1

1 73
2 1
i 2u+1— o
30+10 Ofoj (u+ 30)(3 — u — v)dvdu

4—2u

2 —3
+1J OJ 2(4 —2u —3v)(4 — 2u — v)dvdu

_lot
©540°

To estimate S(W,é?,; Z) in the case when Z € Q and Z # ENQ, observe that |Z—A| # @,

where A is the diagonal curve in @ Indeed, this follows from the fact that @ contains
neither G-invariant curves of degree (0, 1) nor G-invariant curves of degree (1,0), which
in turns easily follows from the fact that the curve Cy = P! does not have G-fixed points.
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Thus, if Z C @ and Z # Eﬂ@, then

S(W.Q;;Z) < %jjvol(P( Kx — uQ)‘~ —vA)dvdu
= 1_10 {Oflofvol(O@(B—u—v,ujtl—v))dvdu—l—
+ffvol( (4—2u— v,4—2u—v))dvdu}
L Lwd Y 2 4-2u )
:1—0{! Oj 2(u+1—v)(3—u—v)dvdu+f f 2(4 —2u —v) dvdu}
a7
=3

Therefore, Z ¢ ), and hence Z C E and Z # QN E.

One has F = T, for some integer n > 0. It follows from the argument as in the proof
of [2, Lemma 4.4.16] that n is either 0 or 2. Indeed, let s be the section of the projection
E — C, such that s> = —n, and let 1 be its fiber. Then —E}E ~ s+ kl for some integer k.
But

—n + 2k = E3 = _Cl(NC4/IP3) = —14,
so that k£ = "‘TM. Then

Q| ~ (2H - E)|, ~s+(k+8)l—s+%2l

which implies that @ | 7 s. Moreover, we know that @ | is a smooth irreducible curve,
since the quadric surface () is smooth. Thus, since Q‘ 5 7 S, we have

~ n 4+ 2 n+2 2—n

so that n =0 or n = 2. Now, let us show that S(W[,; Z) < 1 in both cases.
For u > 0,

—Kx —uE ~2Q + (1 — u)E,

so that —Kx — uF is pseudo-effective if and only if v < 1, and it is nef if and only if
u < % Furthermore, if % < wu < 1, then

P(—Kx —uFE)=(2—-2u)(3H — E)
and N(—Kx — ukE) = (3u — 1)Q. Thus, if n = 0, we have

(1+wu)s+ (9 —Tu)l if0<u<
P(—Kx —uE)|, =

— Wl

1
(2-2w)s+ (10~ 10wl if 3 <u<
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Similarly, if n = 2, then

(14 u)s+ (10 — 6u)l if0<u<
P(—Kx —uE)|, =

— W=

1
(2—2u)s+ (12 — 12u)l if 3 <u<

Recall that Z # Q N E. Moreover, we have Z # 1, since m(Z) is not one of the G-fixed
points Oy, Os, O3z, O4. Thus, using [2, Corollary 1.7.26], we get

S(W, ,,7 1Ojjvol( —vZ)dvdu iO fvol( —vs)dvdu,

00
because the divisor |Z — s| # @.
Consequently, if n = 0, then

SWE; Z) <

. @)

1 §
w1
0

Vol< (1+w)s+ (9 — Tu)l - us) dvdu-+

0;38

+ TVOI( 2 —2u)s + (10 — 10u)1 — vs) dvdu
0

w\»—t%,_,

1
=551/ J 20u-wo- 7U)dvdu+J f 2(2 — 2u — v)(10 — 10u)dvdu
0 O 1
3
1783
32407
Similarly, if n = 2, then

SWE; Z) <

.0

1
1 3
TRl

0

0;38

vol( (1+u)s + (10 — 6u)l — vs)dvdu—i—

+ vol<(2 —2u)s + (12 — 12u)l — us) dvdu

wl»—';w_l
0;38

14+u 1 2—2u

j2 (14w —v)(10 — 6u)dvdu+f j 2(2 — 2u — v)(12 — 12u)dvdu
0 1

‘3

[u—
o;;ww

1043
1620
In both cases, we have S (W,fi; Z) < 1, which is a contradiction. O

Now, we prove our main technical result using Abban—Zhuang theory, see also [2, § 1.7].

Proposition. The center Z is not contained in Hy U Hy U H3 U Hy.
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Proof. Suppose that Z C Hy U Hy U H3 U Hy. Without loss of generality, we may assume
that either Z C Hy; or Z C H,. We will only consider the case when Z C H;, because
the proof is very similar and simpler in the other case. Thus, we assume that Z C H;.
Then 7(Z) C II;. Therefore, we see that one of the following two subcases are possible:
e cither 7(Z) is one of the G-fixed points Oy, O3, Oy,
e or Z is a G-invariant irreducible curve in H;.
We will deal with these subcases separately. In both subcases, we let S = H; for simplicity.
Recall that S is a smooth del Pezzo surface of degree 5, the surface S is G-invariant, and
the action of the group G on the surface S is faithful. Note also that Z ¢ @) by Lemma.
Let us use notations introduced in [2, § 1.7]. Take u € R(. Then

~Kx —uS~g (4—u)H - E~g Q+ (2 —u)H ~g (u—1)Q + (2 —u)(3H — E).
Let P(u) = P(—Kx —uS) and N(u) = N(—Kx — uS). Then

p —KX—US 1f0<u<
(u) = 2-wBH-E) ifl<us<

and

0 1
N(u) = ~
() (u—1)Q fl<u<2.
Note that Sx(S) < 1, see [2, Theorem 3.7.1]. In fact, one can compute Sx(S) = iI.
Let ¢: S — II; be birational morphism induced by 7. Then ¢ is a G-equivariant
blow up of the four intersection points Iy N Cy. Let ¢ be the proper transform on S of
a general line in II;, and let ey, eq, e3, e4 be p-exceptional curves, and let £;; be the proper

transform on the surface S of the line in II; that passes through ¢(e;) and ¢(e;), where

1 <i < j < 4. Then the cone NE(S) is generated by the curves ey, es, €3, €4, {12, {13, {14,
loz, lay, U34. Recall also that

I, NCy = (Laa N Cy) U (Lgs N Cy).
Therefore, we may assume that Loy N Cy = @(e1) U p(ez) and Lgs N Cy = p(e3) U @(ey),
so that we have ()0(612) = L24 and ()0(634) = L34.

Observe that, the group Pic®(S) is generated by the divisor classes £, e; + e, e3 + ey,
because both Loy N Cy and Ly N Cy are G-orbits of length 2. Therefore, if Z is a curve,
then ¢(Z) is a curve of degree d > 1, so that Z ~ dl — mqs(e; + e3) — may(es + e4) for
some non-negative integers mqo and msy, which gives

7~ (d — leg)g + m12(2€ — €1 — €9 — €3 — 64) + (m12 - m34)(63 + 64)
~ (d — 2m12)(€12 +e; + 62) + m12(£12 + 634) + (mlg — m34)(€3 + 64)
and
7~ (d — 2m34)€ -+ m34(2£ — €1 — €3 — €3 — 64) -+ (m34 — mlg)(el -+ 62)
~ (d — 2m34)(€34 + €3 + 64) + m34(€12 + €34) + (m34 — mlg)(ﬁ’l + 62).
MOI‘GOV@I‘, if Z % 612 and Z §£ 634, then d — 2m12 =7 612 = 0 and d — 2m34 =7- 634 = 0.
Hence, if Z is a curve, then |Z — l15| # @ or |Z — l34] # .
On the other hand, if Z is a curve, then [2 Corollary 1.7.26] gives

1> Ax(F) > min L ! min 50 !
= = 1 M == 1 _7 At r o )\ M
Sx(F) Sx(S) S(W,?,;Z) 17 S(Wf,;Z)
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where

S(We Z) E ITVOI(P(U)}S —vZ)dvdu,

because Z ¢ Q). Moreover, if S (Wes:

. 0)

Z) =1, then [2, Corollary 1.7.26] gives

which is absurd. Thus, if Z is a curve, then S(WJ;

e.0)

Z) > 1, which gives

2 oo
1< S(W-Sﬂ = JI —UZ)dvdu
039
1 2 o0 1 2 oo
{—Oojojvol —vﬁlg)dvd ﬁojojV()l(P(u)‘S_U€34)dvdu}’

because |Z — (15| # @ or |Z — l34] # @. Note also that

2 oo 2 oo
S( ”7612 = %JJ —1)612 dvdu = 11_()IIV01 —0634)dvdu
00 0 0
Hence, if Z is a curve, then
1 2 oo
1< S(W.S., ) S( ..,612 = —OJJ — Uelg)d’(]du
00

Let us compute S(W72

o0’

;l12). For 0 <u <1 and v > 0, we have
P(u)‘s—vﬁlgz(—KX—uS)}S—vflgwR(4—u—v)€—(1—v)(el—l—62)—63—64.

Therefore, if 0 < v < 1, then this divisor is nef, and its volume is u?42uv—v?—8u—4v+12.
Similarly, if 1 < v < 2 — u, then its Zariski decomposition is

P(u)

¢ — vl ~r (4—u—v)€—63—e4+(v—1)(61+62),

L A
positive part negative part

so that its volume is u? + 2uv + v? — 8u — 8v + 14. Likewise, if 2 —u < v < 3 — u, then
the Zariski decomposition of the divisor P(u)|s — vfis is

P(u)‘ — ’0612 ~R £3 —Uu— U)(Qg — €3 — €4Z—|—£’U — 1)(61 + 62) + (’U -2 +u)€3i,

L Y
positive part negative part

S




10 IVAN CHELTSOV AND JIHUN PARK

so that its volume is 2(3 —u —v)?. If v > 3 —u, then P(u)|g— vfy5 is not pseudo-effective,
so that the volume of this divisor is zero. Thus, we have

% OJ 0JVOI( - Uﬁlg)dvdu

1 13 u
= 10 J VO ( - 1)612> dvdu
00
(L
1—0{!0} u? + 2uv — v? — 8u — 4v 4 12)dvdu+
1 2—u 1 3—u
+jf u? + 2uv + v —8u—8v+14)dvdu+f j 2(3—u—v)2dvdu}
0 1 0 2—u
107
120°

Similarly, if 1 < u < 2, then
u)‘s —vlyg ~p (6 —3u—v)l+ (v+u—2)(e; + ea) + (u— 2)(e3 + e4).

If 0 < v <2 — u, this divisor is nef, and its volume is 5u? + 2uv — v? — 20u — 4v + 20.
Likewise, if 2 — u < v < 4 — 2u, then its Zariski decomposition is

P(u)‘s — vl ~r &4 —2u—)(20 — e3 — e4l+£v —24u) (61 +ey+ €34)1,

. .v Vv
positive part negative part

and its volume is 2(v — 2+ u)%. If v > 4 — 2u, this divisor is not pseudo-effective, so that

—u 2 4—2u
J (50 + 2uv — v* —20u—4v+20)dvdu+J f 20—2+u)2dvdu}
0

2—u

Therefore, we see that

S( oo’ 612 = % f jovol - Uﬁlg)dvdu
00
— % fl ]ovol( — v€12>dvdu 11—0 f Tvol (P(u) ‘S — v€12>dvdu
1070 ’ 19 Y
- m + ﬂ = 1,

which implies, in particular, that Z is not a curve.
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Hence, we see that m(Z) is one of the points Oy, Oz, O4. Without loss of generality, we
may assume that either 7(Z) = Oy or w(Z) = Oy, so that Z € {15 in both subcases. Now,
using [2, Theorem 1.7.30], we see that

AX@w>qnn{ 1 1 1 } mh{ 1 1}
= 1 M = 1 —7 )
Sx(F) S(Weke, ) S(WE, )" Sx(S) S(Wke, 7)

where S(WJ3/?; Z) is defined in [2, § 1.7]. In fact, [2, Theorem 1.7.30] implies the strict

0,00 )

inequality S(WS 22 Z) < 1, because Sx(S) < 1. Let us compute S(W>'; Z).

For 0 <u<2andv> 0, let P(u,v) be the positive part of the Zariski decomposition
of the divisor P(u)|s — vf12, and let N(u,v) be its negative part.
If 0 <u<1, then

1>

(A—u—v)l—(1—v)(e1+e) —es—es if0<v<l,
Pu,v) =< (4d—u—v)l —e3—ey ifl<v<2—u,
(B—u—v)(20 —e3—ey) if2—u<v<3—u,
and
0 if0<o<1,
N(u,v) = (U_l)(€1+62) ifl<v<2—u,
(v—1)(e1+e)+(v—24u)lzy f2—u<v<3—uw

Similarly, if 1 < u < 2, then

p (6—3u—v)l+(v+u—2)(eg+e)+(u—2)(es+es) HfO<v<2—u,
(u.v) (U—2+U)(€1+€2+€34) if 2—u<v<4—2u,

and
0 if0<v<l,
(U—2+U)(61+62—|—f34> if2—u<v<4—2u.

N(u,v):{

Recall from [2, Theorem 1.7.30] that

2 o0
SV 2) = F2(W3l) + s | [ (Plao) - ) o
00

for

2 oo
6
FZ(W.Sj.m) — Ky II 612 ordZ<N5( )‘61 + N(u,v ‘g )dvdu,
0 0

where N§(u) is the part of the divisor N(u)|s whose support does not contain ¢y5, so
that Ni(u) = N(u)|s in our case, which implies that ordz(N§(u)|e,) = 0 for 0 < u < 2,
because Z ¢ Q. Thus, if 7(Z) = O, then Z & l34 U ey U ey, which gives F(W52) = 0.
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On the other hand, if 7(Z) = Oy, then Z = {15, N {34 and Z & e; U ey, so that

FZ (W.Sj,.gm = (P 612 OI'dZ (N(U, ’U) ‘512> dvdu

o] =

Cﬂl}—‘
/—/HO%

]

0

1 3—u
J f — 2u— 20+ 6)(v — 2 + w)dvdu+
v 2 4—2u

+{ (8—4u—2v+8)(v—2+u)dvdu}

1
12
Therefore, we see that
2 oo
1 2
5512 _ _
S(WEh2; 2) 2 n ff ) - )" dudu
00
1 11 12—u
=5+ {IJ (2—u+v) ?dvdu + JJ —u—v) dvdu+
00 0 1
1 3—u 2 2— 2 4-2u
+J —2u—2v *dvdu + f 2—u+v) dvdu+J f 8 4u—21)) dvdu}
0 2—u 1 0 2—u
=1.
However, as we already mentioned, one has S (Wf’f”;Z) < 1 by [2, Theorem 1.7.30].
The obtained contradiction completes the proof of Proposition. O

Corollary. Both Z and w(Z) are irreducible curves, and w(Z) is not entirely contained
ZTLH1UH2UH3UH4UQ

Using [2, Lemma 1.4.4], we see that ag z(X) < 2. Now, using [2, Lemma 1.4.1], we
see that there are a G-invariant effective Q-divisor D on the threefold X and a positive
rational number z < 3 such that D ~g —Ky and Z is contained in the locus Nklt(X, D).
Moreover, it follows from Claim that Nklt(X, D) does not contain G-irreducible surfaces
except maybe for Q, Hy, Hy, H3, H3. Now, applying [2, Corollary A.1.13] to (P3, um(D)),
we see that 7(Z) must be a G-invariant line in P3. But this is impossible by Corollary,
since all G-invariant lines in P? are contained in IT; U II, U II5 U I1,.

The obtained contradiction completes the proof of our Theorem.
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