K-STABLE FANO THREEFOLDS OF RANK 2 AND DEGREE 30

IVAN CHELTSOV AND JIHUN PARK

ABSTRACT. We find all K-stable smooth Fano threefolds in the family №2.22.

Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which are labeled as $\mathbb{N}_{2}1.1$, $\mathbb{N}_{2}1.2$, ..., $\mathbb{N}_{2}9.1$, $\mathbb{N}_{2}10.1$. See [2], for the description of these families. If X is a general member of the family $\mathbb{N}_{2}\mathscr{N}$, then [2, Main Theorem] gives

$$X \text{ is K-polystable} \iff \mathscr{N} \not\in \left\{ \begin{array}{l} 2.23, 2.26, 2.28, 2.30, 2.31, 2.33, 2.35, 2.36, \\ 3.14, 3.16, 3.18, 3.21, 3.22, 3.23, \\ 3.24, 3.26, 3.28, 3.29, 3.30, 3.31, \\ 4.5, 4.8, 4.9, 4.10, 4.11, 4.12, \\ 5.2 \end{array} \right\}.$$

The goal of this note is to find all K-polystable smooth Fano threefolds in the family $\mathbb{N}^2.22$. This family contains both K-polystable and non-K-polystable smooth Fano threefolds, and a conjectural characterization of all K-polystable members has been given in [2, § 7.4]. We will confirm this conjecture — this will complete the description of all K-polystable smooth Fano threefolds of Picard rank 2 and degree 30 started in [2].

Starting from now, we suppose that X is a smooth Fano threefold in the family Nº2.22. Then X can be described both as the blow up of \mathbb{P}^3 along a smooth twisted quartic curve, and the blow up of V_5 , the unique smooth threefold Nº1.15, along an irreducible conic. More precisely, there are a smooth twisted quartic curve $C_4 \subset \mathbb{P}^3$, a smooth conic $C \subset V_5$, and a commutative diagram

where π is the blow up of \mathbb{P}^3 along C_4 , ϕ is the blow up of V_5 along C, and ψ is given by the linear system of cubic surfaces containing C_4 . Here, V_5 is embedded in \mathbb{P}^6 as described in [2, § 5.10]. All smooth Fano threefolds in the family \mathbb{N}^2 .22 can be obtained in this way.

The curve C_4 is contained in a unique smooth quadric surface $Q \subset \mathbb{P}^3$, and ϕ contracts the proper transform of this surface. Note that $\operatorname{Aut}(X) \cong \operatorname{Aut}(\mathbb{P}^3, C_4) \cong \operatorname{Aut}(Q, C_4)$. Choosing appropriate coordinates on \mathbb{P}^3 , we may assume that Q is given by $x_0x_3 = x_1x_2$, where $[x_0: x_1: x_2: x_3]$ are coordinates on \mathbb{P}^3 . Fix the isomorphism $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ given by

$$([u:v],[x:y]) \mapsto [xu:xv:yu:yx],$$

where ([u:v], [x:y]) are coordinates in $\mathbb{P}^1 \times \mathbb{P}^1$. Swapping [u:v] and [x:y] if necessary, we may assume that C_4 is a divisor of degree (1,3) in Q, so that C_4 is given in Q by

$$uf_3(x,y) = vg_3(x,y)$$

for some non-zero cubic homogeneous polynomials $f_3(x, y)$ and $g_3(x, y)$.

Let $\sigma: C_4 \to \mathbb{P}^1$ be the map given by the projection $([u:v], [x:y]) \mapsto [u:v]$. Then σ is a triple cover, which is ramified over at least two points. After an appropriate change of coordinates [u:v], we may assume that σ is ramified over [1:0] and [0:1]. Then both f_3 and g_3 have multiple zeros in \mathbb{P}^1 . Changing coordinates [x:y], we may assume that these zeros are [0:1] and [1:0], respectively. Keeping in mind that the curve C_4 is smooth, we see that C_4 is given by

$$u(x^3 + ax^2y) = v(y^3 + by^2x)$$

for some complex numbers a and b, after a suitable scaling of the coordinates. If a = b = 0, then the curve C_4 is given by $ux^3 = vy^3$, which gives $\operatorname{Aut}(X) \cong \operatorname{Aut}(Q, C_4) \cong \mathbb{G}_m \rtimes \mu_2$. In this case, the threefold X is known to be K-polystable [2, § 4.4].

Example. Suppose that ab = 0, but $a \neq 0$ or $b \neq 0$. We can scale the coordinates further and swap them if necessary, and assume that the curve C_4 is given by $ux^3 = v(y^3 + y^2x)$. In this case, the threefold X is not K-polystable [2, § 7.4].

A conjecture in [2, § 7.4] says that the non-K-polystable Fano threefold described in this example is the unique non-K-polystable smooth Fano threefold in the family \mathbb{N}^{2} . Let us show that this is indeed the case. To do this, we may assume that $a \neq 0$ and $b \neq 0$. Then, scaling the coordinates, we may assume that C_4 is given by

$$u(x^3 + \lambda x^2 y) = v(y^3 + \lambda y^2 x)$$

for some non-zero complex number λ . Since the curve C_4 is smooth, we must have $\lambda \neq \pm 1$. Moreover, if $\lambda = \pm 3$, then we can change the coordinates on Q in such a way that C_4 would be given by $ux^3 = v(y^3 + y^2x)$, so that X is not K-polystable in this case.

We know from [2] that X is K-stable if C_4 is given by (\bigstar) with λ sufficiently general. In particular, we know from [2, § 4.4] that the threefold X is K-stable when $\lambda = \pm \sqrt{3}$. Our main result is the following theorem.

Theorem. Suppose that C_4 is given in (\bigstar) with $\lambda \notin \{0, \pm 1, \pm 3\}$. Then X is K-stable.

Let us prove this theorem. We suppose that C_4 is given by (\bigstar) with $\lambda \notin \{0, \pm 1, \pm 3\}$. Then the triple cover $\sigma \colon C_4 \to \mathbb{P}^1$ is ramified in four distinct points P_1, P_2, P_3, P_4 , which implies that $\operatorname{Aut}(Q, C_4)$ is a finite group, since $\operatorname{Aut}(Q, C_4) \subset \operatorname{Aut}(C_4, P_1 + P_2 + P_3 + P_4)$. Without loss of generality, we may assume that

$$P_1 = ([1:0], [0:1]) = [0:1:0:0]$$

 $P_2 = ([0:1], [1:0]) = [0:0:1:0],$

where we use both the coordinates on $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^3 simultaneously.

Observe that the group $\operatorname{Aut}(Q, C_4)$ contains an involution τ that is given by

$$([u:v],[x:y]) \mapsto ([v:u],[y:x]).$$

Let us identify $\operatorname{Aut}(\mathbb{P}^3, C_4) = \operatorname{Aut}(Q, C_4)$ using the isomorphism $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ fixed above. Then τ is given by $[x_0 : x_1 : x_2 : x_3] \mapsto [x_3 : x_2 : x_1 : x_0]$. Note that τ swaps P_1 and P_2 , and the τ -fixed points in C_4 are ([1 : 1], [1 : 1]) and ([1 : -1], [1 : -1]), which are not ramification points of the triple cover σ . This shows that τ swaps the points P_3 and P_4 . In fact, the group $\operatorname{Aut}(Q, C_4)$ is larger than its subgroup $\langle \tau \rangle \cong \mu_2$. Indeed, one can change coordinates ([u : v], [x : y]) on Q such that $P_1 = ([1 : 0], [0 : 1])$, $P_4 = ([0 : 1], [1 : 0])$, and the curve C_4 is given by

$$u(x^3 + \lambda' x^2 y) = v(y^3 + \lambda' y^2 x)$$

for some complex number $\lambda' \notin \{0, \pm 1, \pm 3\}$. This gives an involution $\iota \in \operatorname{Aut}(Q, C_4)$ such that $\iota(P_1) = P_4$ and $\iota(P_2) = P_3$. Let G be the subgroup $\langle \tau, \iota \rangle \subset \operatorname{Aut}(Q, C_4) = \operatorname{Aut}(\mathbb{P}^3, C_4)$. Then $G \cong \mu_2^2$. Note that the group $\operatorname{Aut}(\mathbb{P}^3, C_4)$ can be larger for some $\lambda \in \mathbb{C} \setminus \{0, \pm 1, \pm 3\}$. For instance, if $\lambda = \pm \sqrt{3}$, then $\operatorname{Aut}(\mathbb{P}^3, C_4) \cong \mathfrak{A}_4$, c.f. [2, Example 4.4.6].

The G-action on C_4 is faithful, so that the curve C_4 does not contains G-fixed points. Hence, the quadric Q does not G-fixed points, since otherwise Q would contain a G-invariant curve of degree (1,0), which would intersect C_4 by a G-fixed point. This implies that the space \mathbb{P}^3 contains exactly four G-fixed points. Denote these points by O_1, O_2, O_3, O_4 . These four points are not co-planar. For every $1 \leq i < j \leq 4$, let L_{ij} be the line in \mathbb{P}^3 that passes through O_i and O_j . Then the lines $L_{12}, L_{13}, L_{14}, L_{23}, L_{24}, L_{34}$ are G-invariant, and they are the only G-invariant lines in \mathbb{P}^3 . For each $1 \leq i \leq 4$, let Π_i be the plane in \mathbb{P}^3 determined by the three points $\{O_1, O_2, O_3, O_4\} \setminus \{O_i\}$. Then the four planes $\Pi_1, \Pi_2, \Pi_3, \Pi_4$ are the only G-invariant planes in \mathbb{P}^3 .

Remark. Each plane Π_i intersects C_4 at four distinct points. Indeed, if $|\Pi_i \cap C_4| < 4$, then $\Pi_i \cap C_4$ is a G-orbit of length 2, and Π_i is tangent to C_4 at both the points of this orbit. Therefore, without loss of generality, we may assume that the intersection $\Pi_i \cap C_4$ is just the fixed locus of the involution τ . Then $\Pi_i \cap C_4 = ([1:1], [1:1]) \cup ([1:-1], [1:-1])$, so that $\Pi_i|_Q$ is a smooth conic that is given by a(vx-uy) = b(ux-vy) for some $[a:b] \in \mathbb{P}^1$. But the conic $\Pi_i|_Q$ cannot tangent C_4 at the points ([1:1], [1:1]) and ([1:-1], [1:-1]), so that $|\Pi_i \cap C_4| = 4$.

The curve C_4 contains exactly three G-orbits of length 2, and these G-orbits are just the fixed loci of the involutions τ , ι , $\tau \circ \iota$ described earlier. Let L, L' and L'' be the three lines in \mathbb{P}^3 such that $L \cap C_4$, $L' \cap C_4$ and $L'' \cap C_4$ are the fixed loci of the involutions τ , ι and $\tau \circ \iota$, respectively. Then L, L' and L'' are G-invariant lines, so that they are three lines among L_{12} , L_{13} , L_{14} , L_{23} , L_{24} , L_{34} . In fact, one can show that the lines L, L', L'' meet at one point. Therefore, we may assume that $L \cap L' \cap L'' = O_4$ and $L = L_{14}$, $L' = L_{24}$, $L'' = L_{34}$. Then

 $\Pi_1 \cap C_4 = (L' \cap C_4) \cup (L'' \cap C_4), \Pi_2 \cap C_4 = (L \cap C_4) \cup (L'' \cap C_4), \Pi_3 \cap C_4 = (L \cap C_4) \cup (L' \cap C_4).$ On the other hand, the intersection $\Pi_4 \cap C_4$ is a G-orbit of length 4.

Since C_4 is G-invariant, the action of the group G lifts to the threefold X, so that we also identify G with a subgroup of the group Aut(X). Let E be the π -exceptional surface,

let \widetilde{Q} be the proper transform of the quadric Q on the threefold X, let H_1 , H_2 , H_3 and H_4 be the proper transforms on X of the G-invariant planes Π_1 , Π_2 , Π_3 and Π_4 , respectively, and let H be the proper transform on X of a general hyperplane in \mathbb{P}^3 . Then

$$-K_X \sim 2\widetilde{Q} + E \sim \widetilde{Q} + 2H_1 \sim \widetilde{Q} + 2H_2 \sim \widetilde{Q} + 2H_3 \sim \widetilde{Q} + 2H_4 \sim 4H - E$$

and the surfaces E, \widetilde{Q} , H_1 , H_2 , H_3 , H_4 are G-invariant. Observe that $\widetilde{Q} \cong Q \cong \mathbb{P}^1 \times \mathbb{P}^1$, and H_1 , H_2 , H_3 , H_4 are smooth del Pezzo surfaces of degree 5.

Claim. Let S be a possibly reducible G-invariant surface in X such that $-K_X \sim_{\mathbb{Q}} \mu S + \Delta$, where Δ is an effective \mathbb{Q} -divisor, and μ is a positive rational number such that $\mu > \frac{4}{3}$. Then S is one of the surfaces \widetilde{Q} , H_1 , H_2 , H_3 , H_4 .

Proof. This follows from the fact that the cone $\mathrm{Eff}(X)$ is generated by E and \widetilde{Q} .

Suppose X is not K-stable. Since $\operatorname{Aut}(X)$ is finite, the threefold X is not K-polystable. Then, by [3, Corollary 4.14], there is a G-invariant prime divisor F over X with $\beta(F) \leq 0$, see [2, § 1.2] for the precise definition of $\beta(F)$. Let us seek for a contradiction.

Let Z be the center of F on X. Then Z is not a surface by [2, Theorem 3.7.1], so that Z is either a G-invariant irreducible curve or a G-fixed point. In the latter case, the point $\pi(Z)$ must be one of the G-fixed points O_1 , O_2 , O_3 , O_4 , so that the point Z is not contained in $\widetilde{Q} \cup E$. Let us use Abban–Zhuang theory [1] to show that Z does not lie on $\widetilde{Q} \cup E$ in the former case.

Lemma. The center Z cannot be contained in $\widetilde{Q} \cup E$.

Proof. We suppose that $Z \subset \widetilde{Q} \cup E$. Then Z is an irreducible G-invariant curve, because neither \widetilde{Q} nor E contains G-fixed points. Let us use notations introduced in $[2, \S 1.7]$. Namely, we fix $u \in \mathbb{R}_{\geq 0}$. Then

$$-K_X - u\widetilde{Q} \sim_{\mathbb{R}} (4 - 2u)H + (u - 1)E \sim_{\mathbb{R}} (1 - u)\widetilde{Q} + 2H,$$

so that $-K_X - u\widetilde{Q}$ is nef for $0 \le u \le 1$, and not pseudo-effective for u > 2. Thus, we have

$$P(-K_X - u\widetilde{Q}) = \begin{cases} -K_X - u\widetilde{Q} & \text{if } 0 \le u \le 1, \\ (4 - 2u)H & \text{if } 1 \le u \le 2, \end{cases}$$

and

$$N(-K_X - u\widetilde{Q}) = \begin{cases} 0 & \text{if } 0 \le u \le 1, \\ (u - 1)E & \text{if } 1 \le u \le 2. \end{cases}$$

If $Z \subset \widetilde{Q}$, then [2, Corollary 1.7.26] gives

$$1 \geqslant \frac{A_X(F)}{S_X(F)} \geqslant \min \left\{ \frac{1}{S_X(\widetilde{Q})}, \frac{1}{S(W_{\bullet,\bullet}^{\widetilde{Q}}; Z)} \right\},$$

where

$$S_X(\widetilde{Q}) = \frac{1}{(-K_X)^3} \int_{0}^{2} \text{vol}(-K_X - u\widetilde{Q}) du = \frac{1}{(-K_X)^3} \int_{0}^{2} (P(-K_X - u\widetilde{Q}))^3 du$$

and

$$S(W_{\bullet,\bullet}^{\widetilde{Q}}; Z) = \frac{3}{(-K_X)^3} \left\{ \int_0^2 \left(P(-K_X - u\widetilde{Q})^2 \cdot \widetilde{Q} \right) \cdot \operatorname{ord}_Z \left(N(-K_X - u\widetilde{Q}) \big|_{\widetilde{Q}} \right) du + \int_0^2 \int_0^\infty \operatorname{vol} \left(P(-K_X - u\widetilde{Q}) \big|_{\widetilde{Q}} - vZ \right) dv du \right\}.$$

Therefore, we conclude that $S(W_{\bullet,\bullet}^{\widetilde{Q}};Z) \geq 1$, because $S_X(\widetilde{Q}) < 1$, see [2, Theorem 3.7.1]. Similarly, if $Z \subset E$, then we get $S(W_{\bullet,\bullet}^E;Z) \geq 1$.

Fix an isomorphism $\widetilde{Q} \cong Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ such that $E|_{\widetilde{Q}}$ is a divisor in \widetilde{Q} of degree (1,3). For $(a,b) \in \mathbb{R}^2$, let $\mathcal{O}_{\widetilde{Q}}(a,b)$ be the class of a divisor of degree (a,b) in $\operatorname{Pic}(\widetilde{Q}) \otimes \mathbb{R}$. Then

$$P(-K_X - u\widetilde{Q})|_{\widetilde{Q}} \sim_{\mathbb{R}} \begin{cases} \mathcal{O}_{\widetilde{Q}}(3 - u, u + 1) & \text{if } 0 \leqslant u \leqslant 1, \\ \mathcal{O}_{\widetilde{Q}}(4 - 2u, 4 - 2u) & \text{if } 1 \leqslant u \leqslant 2. \end{cases}$$

Therefore, if $Z = E \cap \widetilde{Q}$, then

$$S(W_{\bullet,\bullet}^{\widetilde{Q}}; Z) = \frac{1}{10} \left\{ \int_{1}^{2} 2(4 - 2u)^{2}(u - 1)du + \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(3 - u - v, u + 1 - 3v)\right) dv du + \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(4 - 2u - v, 4 - 2u - 3v)\right) dv du \right\}$$

$$= \frac{2}{30} + \frac{1}{10} \left\{ \int_{0}^{1} \int_{0}^{\frac{u+1}{3}} 2(u + 1 - 3v)(3 - u - v) dv du + \int_{1}^{2} \int_{0}^{\frac{4-2u}{3}} 2(4 - 2u - 3v)(4 - 2u - v) dv du \right\}$$

$$= \frac{161}{540}.$$

To estimate $S(W_{\bullet,\bullet}^{\widetilde{Q}};Z)$ in the case when $Z\subset\mathbb{Q}$ and $Z\neq E\cap\widetilde{Q}$, observe that $|Z-\Delta|\neq\varnothing$, where Δ is the diagonal curve in \widetilde{Q} . Indeed, this follows from the fact that \widetilde{Q} contains neither G-invariant curves of degree (0,1) nor G-invariant curves of degree (1,0), which in turns easily follows from the fact that the curve $C_4\cong\mathbb{P}^1$ does not have G-fixed points.

Thus, if $Z \subset \widetilde{Q}$ and $Z \neq E \cap \widetilde{Q}$, then

$$S(W_{\bullet,\bullet}^{\widetilde{Q}}; Z) \leq \frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(P(-K_{X} - u\widetilde{Q})|_{\widetilde{Q}} - v\Delta\right) dv du$$

$$= \frac{1}{10} \left\{ \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(3 - u - v, u + 1 - v)\right) dv du + + \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(4 - 2u - v, 4 - 2u - v)\right) dv du \right\}$$

$$= \frac{1}{10} \left\{ \int_{0}^{1} \int_{0}^{u+1} 2(u + 1 - v)(3 - u - v) dv du + \int_{1}^{2} \int_{0}^{4-2u} 2(4 - 2u - v)^{2} dv du \right\}$$

$$= \frac{17}{30}.$$

Therefore, $Z \not\subset \widetilde{Q}$, and hence $Z \subset E$ and $Z \neq \widetilde{Q} \cap E$.

One has $E \cong \mathbb{F}_n$ for some integer $n \geqslant 0$. It follows from the argument as in the proof of [2, Lemma 4.4.16] that n is either 0 or 2. Indeed, let \mathbf{s} be the section of the projection $E \to C_4$ such that $\mathbf{s}^2 = -n$, and let \mathbf{l} be its fiber. Then $-E|_E \sim \mathbf{s} + k\mathbf{l}$ for some integer k. But

$$-n + 2k = E^3 = -c_1(\mathcal{N}_{C_4/\mathbb{P}^3}) = -14,$$

so that $k = \frac{n-14}{2}$. Then

$$\widetilde{Q}\big|_{E} \sim (2H - E)\big|_{E} \sim \mathbf{s} + (k+8)\mathbf{l} = \mathbf{s} + \frac{n+2}{2}\mathbf{l},$$

which implies that $\widetilde{Q}|_E \not\sim \mathbf{s}$. Moreover, we know that $\widetilde{Q}|_E$ is a smooth irreducible curve, since the quadric surface Q is smooth. Thus, since $\widetilde{Q}|_E \neq \mathbf{s}$, we have

$$0 \leqslant \widetilde{Q}|_{E} \cdot \mathbf{s} = \left(\mathbf{s} + \frac{n+2}{2}\mathbf{l}\right) \cdot \mathbf{s} = -n + \frac{n+2}{2} = \frac{2-n}{2}$$

so that n = 0 or n = 2. Now, let us show that $S(W_{\bullet,\bullet}^E; Z) < 1$ in both cases. For $u \ge 0$,

$$-K_X - uE \sim 2\widetilde{Q} + (1 - u)E,$$

so that $-K_X - uE$ is pseudo-effective if and only if $u \leq 1$, and it is nef if and only if $u \leq \frac{1}{3}$. Furthermore, if $\frac{1}{3} \leq u \leq 1$, then

$$P(-K_X - uE) = (2 - 2u)(3H - E)$$

and $N(-K_X - uE) = (3u - 1)\widetilde{Q}$. Thus, if n = 0, we have

$$P(-K_X - uE)|_E = \begin{cases} (1+u)\mathbf{s} + (9-7u)\mathbf{l} & \text{if } 0 \le u \le \frac{1}{3}, \\ (2-2u)\mathbf{s} + (10-10u)\mathbf{l} & \text{if } \frac{1}{3} \le u \le 1. \end{cases}$$

Similarly, if n=2, then

$$P(-K_X - uE)\big|_E = \begin{cases} (1+u)\mathbf{s} + (10-6u)\mathbf{l} & \text{if } 0 \le u \le \frac{1}{3}, \\ (2-2u)\mathbf{s} + (12-12u)\mathbf{l} & \text{if } \frac{1}{3} \le u \le 1. \end{cases}$$

Recall that $Z \neq \widetilde{Q} \cap E$. Moreover, we have $Z \not\sim \mathbf{l}$, since $\pi(Z)$ is not one of the G-fixed points O_1, O_2, O_3, O_4 . Thus, using [2, Corollary 1.7.26], we get

$$S(W_{\bullet,\bullet}^E;Z) = \frac{1}{10} \int_0^1 \int_0^\infty \operatorname{vol}\Big(P(u)\big|_E - vZ\Big) dv du \leqslant \frac{1}{10} \int_0^1 \int_0^\infty \operatorname{vol}\Big(P(u)\big|_E - v\mathbf{s}\Big) dv du,$$

because the divisor $|Z - \mathbf{s}| \neq \emptyset$.

Consequently, if n=0, then

$$S(W_{\bullet,\bullet}^{E}; Z) \leqslant \frac{1}{10} \left\{ \int_{0}^{\frac{1}{3}} \int_{0}^{\infty} \text{vol} \Big((1+u)\mathbf{s} + (9-7u)\mathbf{l} - v\mathbf{s} \Big) dv du + \int_{\frac{1}{3}}^{1} \int_{0}^{\infty} \text{vol} \Big((2-2u)\mathbf{s} + (10-10u)\mathbf{l} - v\mathbf{s} \Big) dv du \right\}$$

$$= \frac{1}{10} \left\{ \int_{0}^{\frac{1}{3}} \int_{0}^{1+u} 2(1+u-v)(9-7u) dv du + \int_{\frac{1}{3}}^{1} \int_{0}^{2-2u} 2(2-2u-v)(10-10u) dv du \right\}$$

$$= \frac{1783}{3240}.$$

Similarly, if n=2, then

$$S(W_{\bullet,\bullet}^{E}; Z) \leqslant \frac{1}{10} \left\{ \int_{0}^{\frac{1}{3}} \int_{0}^{\infty} \text{vol}\left((1+u)\mathbf{s} + (10-6u)\mathbf{l} - v\mathbf{s}\right) dv du + \int_{\frac{1}{3}}^{1} \int_{0}^{\infty} \text{vol}\left((2-2u)\mathbf{s} + (12-12u)\mathbf{l} - v\mathbf{s}\right) dv du \right\}$$

$$= \frac{1}{10} \left\{ \int_{0}^{\frac{1}{3}} \int_{0}^{1+u} 2(1+u-v)(10-6u) dv du + \int_{\frac{1}{3}}^{1} \int_{0}^{2-2u} 2(2-2u-v)(12-12u) dv du \right\}$$

$$= \frac{1043}{1620}.$$

In both cases, we have $S(W_{\bullet,\bullet}^E; Z) < 1$, which is a contradiction.

Now, we prove our main technical result using Abban–Zhuang theory, see also [2, § 1.7].

Proposition. The center Z is not contained in $H_1 \cup H_2 \cup H_3 \cup H_4$.

Proof. Suppose that $Z \subset H_1 \cup H_2 \cup H_3 \cup H_4$. Without loss of generality, we may assume that either $Z \subset H_1$ or $Z \subset H_4$. We will only consider the case when $Z \subset H_1$, because the proof is very similar and simpler in the other case. Thus, we assume that $Z \subset H_1$. Then $\pi(Z) \subset \Pi_1$. Therefore, we see that one of the following two subcases are possible:

- either $\pi(Z)$ is one of the G-fixed points O_2 , O_3 , O_4 ,
- or Z is a G-invariant irreducible curve in H_1 .

We will deal with these subcases separately. In both subcases, we let $S = H_1$ for simplicity. Recall that S is a smooth del Pezzo surface of degree 5, the surface S is G-invariant, and the action of the group G on the surface S is faithful. Note also that $Z \not\subset \widetilde{Q}$ by Lemma.

Let us use notations introduced in [2, § 1.7]. Take $u \in \mathbb{R}_{\geq 0}$. Then

$$-K_X - uS \sim_{\mathbb{R}} (4 - u)H - E \sim_{\mathbb{R}} \widetilde{Q} + (2 - u)H \sim_{\mathbb{R}} (u - 1)\widetilde{Q} + (2 - u)(3H - E).$$

Let $P(u) = P(-K_X - uS)$ and $N(u) = N(-K_X - uS)$. Then
$$(-K_X - uS) \quad \text{if } 0 < u < 1$$

$$P(u) = \begin{cases} -K_X - uS & \text{if } 0 \le u \le 1, \\ (2-u)(3H - E) & \text{if } 1 \le u \le 2, \end{cases}$$

and

$$N(u) = \begin{cases} 0 & \text{if } 0 \leqslant u \leqslant 1, \\ (u-1)\widetilde{Q} & \text{if } 1 \leqslant u \leqslant 2. \end{cases}$$

Note that $S_X(S) < 1$, see [2, Theorem 3.7.1]. In fact, one can compute $S_X(S) = \frac{17}{30}$.

Let $\varphi \colon S \to \Pi_1$ be birational morphism induced by π . Then φ is a G-equivariant blow up of the four intersection points $\Pi_1 \cap C_4$. Let ℓ be the proper transform on S of a general line in Π_1 , and let e_1 , e_2 , e_3 , e_4 be φ -exceptional curves, and let ℓ_{ij} be the proper transform on the surface S of the line in Π_1 that passes through $\varphi(e_i)$ and $\varphi(e_j)$, where $1 \leqslant i < j \leqslant 4$. Then the cone $\overline{\text{NE}(S)}$ is generated by the curves e_1 , e_2 , e_3 , e_4 , ℓ_{12} , ℓ_{13} , ℓ_{14} , ℓ_{23} , ℓ_{24} , ℓ_{34} . Recall also that

$$\Pi_1 \cap C_4 = (L_{24} \cap C_4) \cup (L_{34} \cap C_4).$$

Therefore, we may assume that $L_{24} \cap C_4 = \varphi(e_1) \cup \varphi(e_2)$ and $L_{34} \cap C_4 = \varphi(e_3) \cup \varphi(e_4)$, so that we have $\varphi(\ell_{12}) = L_{24}$ and $\varphi(\ell_{34}) = L_{34}$.

Observe that, the group $\operatorname{Pic}^G(S)$ is generated by the divisor classes ℓ , $e_1 + e_2$, $e_3 + e_4$, because both $L_{24} \cap C_4$ and $L_{34} \cap C_4$ are G-orbits of length 2. Therefore, if Z is a curve, then $\varphi(Z)$ is a curve of degree $d \geq 1$, so that $Z \sim d\ell - m_{12}(e_1 + e_2) - m_{34}(e_3 + e_4)$ for some non-negative integers m_{12} and m_{34} , which gives

$$Z \sim (d - 2m_{12})\ell + m_{12}(2\ell - e_1 - e_2 - e_3 - e_4) + (m_{12} - m_{34})(e_3 + e_4)$$
$$\sim (d - 2m_{12})(\ell_{12} + e_1 + e_2) + m_{12}(\ell_{12} + \ell_{34}) + (m_{12} - m_{34})(e_3 + e_4)$$

and

$$Z \sim (d - 2m_{34})\ell + m_{34}(2\ell - e_1 - e_2 - e_3 - e_4) + (m_{34} - m_{12})(e_1 + e_2)$$
$$\sim (d - 2m_{34})(\ell_{34} + e_3 + e_4) + m_{34}(\ell_{12} + \ell_{34}) + (m_{34} - m_{12})(e_1 + e_2).$$

Moreover, if $Z \neq \ell_{12}$ and $Z \neq \ell_{34}$, then $d - 2m_{12} = Z \cdot \ell_{12} \geqslant 0$ and $d - 2m_{34} = Z \cdot \ell_{34} \geqslant 0$. Hence, if Z is a curve, then $|Z - \ell_{12}| \neq \emptyset$ or $|Z - \ell_{34}| \neq \emptyset$.

On the other hand, if Z is a curve, then [2, Corollary 1.7.26] gives

$$1 \geqslant \frac{A_X(F)}{S_X(F)} \geqslant \min\left\{\frac{1}{S_X(S)}, \frac{1}{S(W_{\bullet,\bullet}^S; Z)}\right\} = \min\left\{\frac{30}{17}, \frac{1}{S(W_{\bullet,\bullet}^S; Z)}\right\},\,$$

where

$$S(W_{\bullet,\bullet}^S; Z) = \frac{3}{(-K_X)^3} \int_0^2 \int_0^\infty \operatorname{vol}(P(u)|_S - vZ) dv du,$$

because $Z \not\subset \widetilde{Q}$. Moreover, if $S(W_{\bullet,\bullet}^S; Z) = 1$, then [2, Corollary 1.7.26] gives

$$1 \geqslant \frac{A_X(E)}{S_X(E)} = \frac{1}{S_X(S)} = \frac{30}{17},$$

which is absurd. Thus, if Z is a curve, then $S(W_{\bullet,\bullet}^S; Z) > 1$, which gives

$$1 < S(W_{\bullet,\bullet}^S; Z) = \frac{1}{30} \int_0^2 \int_0^\infty \operatorname{vol}(P(u)|_S - vZ) dv du$$

$$\leq \max \left\{ \frac{1}{10} \int_0^2 \int_0^\infty \operatorname{vol}(P(u)|_S - v\ell_{12}) dv du, \frac{1}{10} \int_0^2 \int_0^\infty \operatorname{vol}(P(u)|_S - v\ell_{34}) dv du \right\},$$

because $|Z - \ell_{12}| \neq \emptyset$ or $|Z - \ell_{34}| \neq \emptyset$. Note also that

$$S(W_{\bullet,\bullet}^S; \ell_{12}) = \frac{1}{10} \int_0^2 \int_0^\infty \text{vol}(P(u)|_S - v\ell_{12}) dv du = \frac{1}{10} \int_0^2 \int_0^\infty \text{vol}(P(u)|_S - v\ell_{34}) dv du.$$

Hence, if Z is a curve, then

$$1 < S(W_{\bullet,\bullet}^S; Z) \leqslant S(W_{\bullet,\bullet}^S; \ell_{12}) = \frac{1}{10} \int_0^2 \int_0^\infty \operatorname{vol}(P(u)|_S - v\ell_{12}) dv du.$$

Let us compute $S(W_{\bullet,\bullet}^S; \ell_{12})$. For $0 \leq u \leq 1$ and $v \geq 0$, we have

$$P(u)|_{S} - v\ell_{12} = (-K_X - uS)|_{S} - v\ell_{12} \sim_{\mathbb{R}} (4 - u - v)\ell - (1 - v)(e_1 + e_2) - e_3 - e_4.$$

Therefore, if $0 \le v \le 1$, then this divisor is nef, and its volume is $u^2 + 2uv - v^2 - 8u - 4v + 12$. Similarly, if $1 \le v \le 2 - u$, then its Zariski decomposition is

$$P(u)|_{S} - v\ell_{12} \sim_{\mathbb{R}} \underbrace{(4 - u - v)\ell - e_3 - e_4}_{\text{positive part}} + \underbrace{(v - 1)(e_1 + e_2)}_{\text{negative part}},$$

so that its volume is $u^2 + 2uv + v^2 - 8u - 8v + 14$. Likewise, if $2 - u \le v \le 3 - u$, then the Zariski decomposition of the divisor $P(u)|_S - v\ell_{12}$ is

$$P(u)|_{S} - v\ell_{12} \sim_{\mathbb{R}} \underbrace{(3-u-v)(2\ell-e_3-e_4)}_{\text{positive part}} + \underbrace{(v-1)(e_1+e_2) + (v-2+u)\ell_{34}}_{\text{negative part}},$$

so that its volume is $2(3-u-v)^2$. If v > 3-u, then $P(u)|_S - v\ell_{12}$ is not pseudo-effective, so that the volume of this divisor is zero. Thus, we have

$$\begin{split} \frac{1}{10} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol} \Big(P(u) \big|_{S} - v \ell_{12} \Big) dv du \\ &= \frac{1}{10} \int_{0}^{1} \int_{0}^{3-u} \operatorname{vol} \Big(P(u) \big|_{S} - v \ell_{12} \Big) dv du \\ &= \frac{1}{10} \left\{ \int_{0}^{1} \int_{0}^{1} \left(u^{2} + 2uv - v^{2} - 8u - 4v + 12 \right) dv du + \right. \\ &\left. + \int_{0}^{1} \int_{1}^{2-u} \left(u^{2} + 2uv + v^{2} - 8u - 8v + 14 \right) dv du + \int_{0}^{1} \int_{2-u}^{3-u} 2(3 - u - v)^{2} dv du \right\} \\ &= \frac{107}{120}. \end{split}$$

Similarly, if $1 \leq u \leq 2$, then

$$P(u)|_{S} - v\ell_{12} \sim_{\mathbb{R}} (6 - 3u - v)\ell + (v + u - 2)(e_1 + e_2) + (u - 2)(e_3 + e_4).$$

If $0 \le v \le 2 - u$, this divisor is nef, and its volume is $5u^2 + 2uv - v^2 - 20u - 4v + 20$. Likewise, if $2 - u \le v \le 4 - 2u$, then its Zariski decomposition is

$$P(u)|_{S} - v\ell_{12} \sim_{\mathbb{R}} \underbrace{(4-2u-)(2\ell-e_3-e_4)}_{\text{positive part}} + \underbrace{(v-2+u)(e_1+e_2+\ell_{34})}_{\text{negative part}},$$

and its volume is $2(v-2+u)^2$. If v>4-2u, this divisor is not pseudo-effective, so that

$$\frac{1}{10} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(P(u)\big|_{S} - v\ell_{12}\right) dv du$$

$$= \frac{1}{10} \int_{1}^{2} \int_{0}^{4-2u} \operatorname{vol}\left(P(u)\big|_{S} - v\ell_{12}\right) dv du$$

$$= \frac{1}{10} \left\{ \int_{1}^{2} \int_{0}^{2-u} \left(5u^{2} + 2uv - v^{2} - 20u - 4v + 20\right) dv du + \int_{1}^{2} \int_{2-u}^{4-2u} 2(v - 2 + u)^{2} dv du \right\}$$

$$= \frac{19}{24}.$$

Therefore, we see that

$$\begin{split} S\big(W_{\bullet,\bullet}^S;\ell_{12}\big) &= \frac{1}{10} \int_0^2 \int_0^\infty \text{vol}\big(P(u)\big|_S - v\ell_{12}\big) dv du \\ &= \frac{1}{10} \int_0^1 \int_0^\infty \text{vol}\Big(P(u)\big|_S - v\ell_{12}\Big) dv du + \frac{1}{10} \int_1^2 \int_0^\infty \text{vol}\Big(P(u)\big|_S - v\ell_{12}\Big) dv du \\ &= \frac{107}{120} + \frac{19}{24} = 1, \end{split}$$

which implies, in particular, that Z is not a curve.

Hence, we see that $\pi(Z)$ is one of the points O_2 , O_3 , O_4 . Without loss of generality, we may assume that either $\pi(Z) = O_2$ or $\pi(Z) = O_4$, so that $Z \in \ell_{12}$ in both subcases. Now, using [2, Theorem 1.7.30], we see that

$$1 \geqslant \frac{A_X(F)}{S_X(F)} \geqslant \min\left\{\frac{1}{S(W_{\bullet,\bullet,\bullet}^{S,\ell_{12}}; Z)}, \frac{1}{S(W_{\bullet,\bullet}^{S}; \ell_{12})}, \frac{1}{S_X(S)}\right\} = \min\left\{\frac{1}{S(W_{\bullet,\bullet,\bullet,\bullet}^{S,\ell_{12}}; Z)}, 1\right\},$$

where $S(W^{S,\ell_{12}}_{\bullet,\bullet,\bullet};Z)$ is defined in [2, § 1.7]. In fact, [2, Theorem 1.7.30] implies the strict inequality $S(W^{S,\ell_{12}}_{\bullet,\bullet,\bullet};Z) < 1$, because $S_X(S) < 1$. Let us compute $S(W^{S,\ell_{12}}_{\bullet,\bullet,\bullet};Z)$.

For $0 \le u \le 2$ and $v \ge 0$, let P(u, v) be the positive part of the Zariski decomposition of the divisor $P(u)|_S - v\ell_{12}$, and let N(u, v) be its negative part.

If $0 \leq u \leq 1$, then

$$P(u,v) = \begin{cases} (4-u-v)\ell - (1-v)(e_1+e_2) - e_3 - e_4 & \text{if } 0 \le v \le 1, \\ (4-u-v)\ell - e_3 - e_4 & \text{if } 1 \le v \le 2 - u, \\ (3-u-v)(2\ell - e_3 - e_4) & \text{if } 2-u \le v \le 3 - u, \end{cases}$$

and

$$N(u,v) = \begin{cases} 0 & \text{if } 0 \leqslant v \leqslant 1, \\ (v-1)(e_1 + e_2) & \text{if } 1 \leqslant v \leqslant 2 - u, \\ (v-1)(e_1 + e_2) + (v-2 + u)\ell_{34} & \text{if } 2 - u \leqslant v \leqslant 3 - u. \end{cases}$$

Similarly, if $1 \leq u \leq 2$, then

$$P(u,v) = \begin{cases} (6-3u-v)\ell + (v+u-2)(e_1+e_2) + (u-2)(e_3+e_4) & \text{if } 0 \le v \le 2-u, \\ (v-2+u)(e_1+e_2+\ell_{34}) & \text{if } 2-u \le v \le 4-2u, \end{cases}$$

and

$$N(u,v) = \begin{cases} 0 & \text{if } 0 \leqslant v \leqslant 1, \\ (v-2+u)(e_1 + e_2 + \ell_{34}) & \text{if } 2 - u \leqslant v \leqslant 4 - 2u. \end{cases}$$

Recall from [2, Theorem 1.7.30] that

$$S(W_{\bullet,\bullet}^{S,\ell_{12}};Z) = F_Z(W_{\bullet,\bullet}^{S,\ell_{12}}) + \frac{3}{(-K_X)^3} \int_0^2 \int_0^\infty (P(u,v) \cdot \ell_{12})^2 dv du$$

for

$$F_Z(W_{\bullet,\bullet}^{S,\ell_{12}}) = \frac{6}{(-K_X)^3} \int_0^2 \int_0^\infty (P(u,v) \cdot \ell_{12}) \operatorname{ord}_Z(N_S'(u)|_{\ell_{12}} + N(u,v)|_{\ell_{12}}) dv du,$$

where $N'_S(u)$ is the part of the divisor $N(u)|_S$ whose support does not contain ℓ_{12} , so that $N'_S(u) = N(u)|_S$ in our case, which implies that $\operatorname{ord}_Z(N'_S(u)|_{\ell_{12}}) = 0$ for $0 \le u \le 2$, because $Z \notin \widetilde{Q}$. Thus, if $\pi(Z) = O_2$, then $Z \notin \ell_{34} \cup e_1 \cup e_2$, which gives $F_Z(W^{S,\ell_{12}}) = 0$.

On the other hand, if $\pi(Z) = O_4$, then $Z = \ell_{12} \cap \ell_{34}$ and $Z \notin e_1 \cup e_2$, so that

$$F_{Z}(W_{\bullet,\bullet}^{S,\ell_{12}}) = \frac{1}{5} \int_{0}^{2} \int_{0}^{\infty} (P(u,v) \cdot \ell_{12}) \operatorname{ord}_{Z} \left(N(u,v) \big|_{\ell_{12}} \right) dv du$$

$$= \frac{1}{5} \left\{ \int_{0}^{1} \int_{2-u}^{3-u} (6 - 2u - 2v + 6)(v - 2 + u) dv du + \int_{1}^{2} \int_{2-u}^{4-2u} (8 - 4u - 2v + 8)(v - 2 + u) dv du \right\}$$

$$= \frac{1}{12}.$$

Therefore, we see that

$$S(W_{\bullet,\bullet}^{S,\ell_{12}};Z) \leqslant \frac{1}{12} + \frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} (P(u,v) \cdot \ell_{12})^{2} dv du$$

$$= \frac{1}{12} + \frac{1}{10} \left\{ \int_{0}^{1} \int_{0}^{1} (2-u+v)^{2} dv du + \int_{0}^{1} \int_{1}^{2-u} (4-u-v)^{2} dv du + \int_{0}^{1} \int_{2-u}^{2-u} (6-2u-2v)^{2} dv du + \int_{1}^{2} \int_{0}^{2-u} (2-u+v)^{2} dv du + \int_{1}^{2} \int_{2-u}^{4-2u} (8-4u-2v)^{2} dv du \right\}$$

$$= 1$$

However, as we already mentioned, one has $S(W_{\bullet,\bullet}^{S,\ell_{12}};Z) < 1$ by [2, Theorem 1.7.30]. The obtained contradiction completes the proof of Proposition.

Corollary. Both Z and $\pi(Z)$ are irreducible curves, and $\pi(Z)$ is not entirely contained in $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \Pi_4 \cup Q$.

Using [2, Lemma 1.4.4], we see that $\alpha_{G,Z}(X) < \frac{3}{4}$. Now, using [2, Lemma 1.4.1], we see that there are a G-invariant effective \mathbb{Q} -divisor D on the threefold X and a positive rational number $\mu < \frac{3}{4}$ such that $D \sim_{\mathbb{Q}} -K_X$ and Z is contained in the locus Nklt $(X, \mu D)$. Moreover, it follows from Claim that Nklt $(X, \mu D)$ does not contain G-irreducible surfaces except maybe for \widetilde{Q} , H_1 , H_2 , H_3 , H_3 . Now, applying [2, Corollary A.1.13] to $(\mathbb{P}^3, \mu \pi(D))$, we see that $\pi(Z)$ must be a G-invariant line in \mathbb{P}^3 . But this is impossible by Corollary, since all G-invariant lines in \mathbb{P}^3 are contained in $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \Pi_4$.

The obtained contradiction completes the proof of our Theorem.

Acknowledgements. Ivan Cheltsov has been supported by Leverhulme grant RPG-2021-229. Jihun Park has been supported by IBS-R003-D1, Institute for Basic Science in Korea.

References

- [1] H. Abban, Z. Zhuang, K-stability of Fano varieties via admissible flags, arXiv:2003.13788 (2020).
- [2] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß, N. Viswanathan, *The Calabi problem for Fano threefolds*, MPIM preprint 2021-31.
- [3] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), 195–223.

 ${\it Ivan~Cheltsov} \\ {\it School~of~Mathematics, The~University~of~Edinburgh~Edinburgh~Edinburgh~EH9~3JZ, Scotland}$

I.Cheltsov@ed.ac.uk

 $Jihun\ Park$

Center for Geometry and Physics, Institute for Basic Science 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea

Department of Mathematics, POSTECH 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea wlog@postech.ac.kr