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K-STABLE SMOOTH FANO THREEFOLDS OF PICARD RANK TWO

IVAN CHELTSOV, ELENA DENISOVA, KENTO FUJITA

Abstract. We prove that all smooth Fano threefolds in the families №2.1, №2.2, №2.3,
№2.4, №2.6 and №2.7 are K-stable, and we also prove that smooth Fano threefolds in
the family №2.5 that satisfy one very explicit generality condition are K-stable.

1. Introduction

Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which
are labeled as №1.1, №1.2, . . ., №9.1, №10.1. See [3], for the description of these families.
In 76 families, K-polystable smooth Fano threefolds are classified [2, 3, 4, 7, 8, 12, 15, 17].
The remaining 29 deformation families are

№1.9, №1.10, №2.1, . . ., №2.7, №2.9, . . ., №2.21, №3.2, №3.4, . . ., №3.8, №3.11.

General members of these 29 families are K-polystable [3]. In this paper, we prove

Main Theorem. Let X be a smooth Fano threefold contained in one of the following
deformation families: №2.1, №2.2, №2.3, №2.4, №2.6, №2.7. Then X is K-stable.

and

Auxiliary Theorem. Let X be a smooth Fano threefold in the deformation family №2.5.
Recall that there exists the following Sarkisov link:

X
π

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ φ

  
❆❆

❆❆
❆❆

❆❆

V P1

where V is a smooth cubic threefold in P4, the morphism π is a blow up of a smooth plane
cubic curve, and φ is a morphism whose fibers are normal cubic surfaces. Suppose that

(⋆) no fiber of the morphism φ has a Du Val singular point of type D5 or E6.

Then X is K-stable.

Let us describe the structure of this paper. In Section 2, we prove Auxiliary Theorem,
and we prove that all smooth Fano threefolds in the families №2.1 and №2.3 are K-stable.
In Sections 3, 4, 5, 6, we prove that all smooth Fano threefolds in the families №2.2, №2.4,
№2.6, №2.7 are K-stable, respectively. Note that Section 6 is very technical and long.

In this paper, we use two applications of the Abban–Zhuang theory [1] which have been
discovered in [3, 15]. For the background material, we refer the reader to [3, 15, 19].
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Fujita has been supported by JSPS KAKENHI Grant №22K03269. This paper has been
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He thanks the institute for the hospitality and excellent working conditions.

Throughout this paper, all varieties are assumed to be projective and defined over C.
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2. Families №2.1, №2.3, №2.5

Fix d ∈ {1, 2, 3}. Let V be one of the following smooth Fano threefolds:

d = 1 a smooth sextic hypersurface in P(1, 1, 1, 2, 3);

d = 2 a smooth quartic hypersurface in P(1, 1, 1, 1, 2);

d = 3 a smooth cubic threefold in P4.

Then −KV ∼ 2H for an ample divisor H ∈ Pic(V ) such that H3 = d and Pic(V ) = Z[H ].
Let S1 and S2 be two distinct surfaces in the linear system |H|, and let C = S1 ∩ S2.
Suppose that the curve C is smooth. Then C is an elliptic curve by the adjunction formula.
Let π : X → V be the blow up of the curve C, and let E be the π-exceptional surface.

• If d = 1, then X is a smooth Fano threefold in the deformation family №2.1.
• If d = 2, then X is a smooth Fano threefold in the deformation family №2.3.
• If d = 3, then X is a smooth Fano threefold in the deformation family №2.5.

Moreover, all smooth Fano threefolds in these families can be obtained in this way.
Note that (−KX)

3 = 4d. Moreover, we have the following commutative diagram:

X
π

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ φ

  ❆
❆❆

❆❆
❆❆

❆

V //❴❴❴❴❴❴❴ P1

where V 99K P1 is the rational map given by the pencil that is generated by S1 and S2,
and φ is a morphism whose general fiber is a smooth del Pezzo surface of degree d.

The goal of this section is to show that X is K-stable in the case when d = 1 or d = 2,
and to show that X is K-stable in the case when d = 3 and X satisfies the condition (⋆).
To show that X is K-stable, it is enough to show that δO(X) > 1 for every point O ∈ X .
This follows from the valuative criterion for K-stability [14, 16].

Lemma 2.1. Let O be a point in X, let A be the fiber of the morphism φ such that O ∈ A.
Suppose that A has at most Du Val singularities at the point O. Then

δO(X) >





min
{16
11
,
16

15
δO(A)

}
if O 6∈ E,

min
{16
11
,

16δO(A)

δO(A) + 15

}
if O ∈ E.

Proof. Let u be a non-negative real number. Then −KX − uA ∼R (2 − u)A + E, which
implies that divisor −KX−uA is pseudoeffective if and only if u 6 2. For every u ∈ [0, 2],
let us denote by P (u) the positive part of Zariski decomposition of the divisor −KX−uA,
and let us denote by N(u) its negative part. Then

P (u) =

{
(2− u)A+ E if 0 6 u 6 1,

(2− u)H if 1 6 u 6 2,

and

N(u) =

{
0 if 0 6 u 6 1,

(u− 1)E if 1 6 u 6 2.
2



Integrating, we get SX(A) =
11
16
. Using [1, Theorem 3.3] and [3, Corollary 1.7.30], we get

(2.1) δO(X) > min





1

SX(A)
, inf

F/A
O∈CA(F )

AA(F )

S(WA
•,•;F )



 = min




16

11
, inf

F/A
O∈CA(F )

AA(F )

S(WA
•,•;F )





where the infimum is taken by all prime divisors F over the surface A with O ∈ CA(F ),
and S(WA

•,•;F ) can be computed using [3, Corollary 1.7.24] as follows:

S
(
WA

•,•;F
)
=

3

4d

∫ 2

1

(
P (u)

∣∣
A

)2
(u− 1)ordF

(
E
∣∣
A

)
du+

3

4d

∫ 2

0

∫ ∞

0

vol
(
P (u)

∣∣
A
− vF

)
dvdu.

Now, let F be any prime divisor over the surface A such that O ∈ CA(F ). Since

P (u)
∣∣
A
=

{
−KA if 0 6 u 6 1,

(2− u)(−KA) if 1 6 u 6 2,

we have

S
(
WA

•,•;F
)
=

3

4d

∫ 2

1

d(2− u)2(u− 1)ordF
(
E
∣∣
A

)
du+

+
3

4d

∫ 1

0

∫ ∞

0

vol
(
−KA − vF

)
dvdu+

3

4d

∫ 2

1

∫ ∞

0

vol
(
(2− u)(−KA)− vF

)
dvdu =

=
ordF

(
E
∣∣
A

)

16
+

3

4d

∫ ∞

0

vol
(
−KA− vF

)
dv+

3

4d

∫ 2

1

(2−u)3
∫ ∞

0

vol
(
−KA− vF

)
dvdu =

=
ordF

(
E
∣∣
A

)

16
+

3

4d

∫ ∞

0

vol
(
−KA − vF

)
dv +

3

16d

∫ ∞

0

vol
(
−KA − vF

)
dv =

=
ordF

(
E
∣∣
A

)

16
+

15

16d

∫ ∞

0

vol
(
−KA − vF

)
dv =

=
ordF

(
E
∣∣
A

)

16
+

15

16
SA(F ) 6

ordF
(
E
∣∣
A

)

16
+

15AA(F )

16δO(A)
.

Therefore, if O 6∈ E, then ordF (E|A) = 0, which implies that

S
(
WA

•,•;F
)
6

15AA(F )

16δP (A)
.

Similarly, if O ∈ E, then ordF (E|A) 6 AA(F ), because (A,E|A) is log canonical, so that

S
(
WA

•,•;F
)
=

ordF
(
E
∣∣
A

)

16
+

15

16
SA(F ) 6

AA(F )

16
+

15AA(F )

16δP (A)
=
δP (A) + 15

16δP (A)
AA(F ).

Now, using (2.1), we obtain the required inequality. �

Suppose X is not K-stable. Let us seek for a contradiction. Using the valuative criterion
for K-stability [14, 16], we see that there exists a prime divisor F over X such that

β(F) = AX(F)− SX(F) 6 0,

where AX(F) is a log discrepancy of the divisor F, and SX(F) is defined in [14] or [3, § 1.2].
Let Z be the center of the divisor F on X . Then Z is not a surface [3, Theorem 3.7.1].
We see that Z is an irreducible curve or a point. Let P be a point in Z. Then δP (X) 6 1.

3



Lemma 2.2. One has P 6∈ E.

Proof. Let us compute SX(E). Note that SX(E) < 1 by [3, Theorem 3.7.1]. Fix u ∈ R>0.
Then the divisor −KX −uE is pseudoeffective ⇐⇒ it is nef ⇐⇒ u 6 1. Thus, we have

SX(E) =
1

4d

∫ 1

0

(
−KX − uE

)3
du =

1

4d

∫ 1

0

d(2u3 − 6u+ 4)du =
3

8
.

Suppose that P ∈ E. Let us seek for a contradiction.
Note that E ∼= C ×P1. Let s be a fiber of the projection φ|E : E → P1 that contains P ,

and let f be a fiber of the projection π|E : E → C. Fix u ∈ [0, 1] and take v ∈ R>0. Then

−KX − uE
∣∣
E
− vs ≡ (1 + u− v)s+ d(1− u)f .

Thus, the divisor −KX − uE
∣∣
E
− vs is pseudoeffective ⇐⇒ it is nef ⇐⇒ v 6 1 + v.

Therefore, using [3, Corollary 1.7.26], we get

S
(
WE

•,•; s
)
=

3

4d

∫ 1

0

∫ 1+u

0

2d(1− u)(1 + u− v)dvdu =
11

16
.

Similarly, using [3, Theorem 1.7.30], we get

S
(
WE,s

•,•,•;P
)
=

3

4d

∫ 1

0

∫ 1+u

0

(
d(1− u)

)2
dvdu =

5d

16
.

Therefore, it follows from [3, Theorem 1.7.30] that

1 >
AX(F)

SX(F)
> min





1

SX(E)
,

1

S
(
WE

•,•, s
) , 1

S
(
W

E,s
•,•,•;P

)



 = min

{
8

3
,
16

11
,
16

5d

}
>

16

15
> 1,

which is a contradiction. �

Let A be the fiber of the del Pezzo fibration φ such that A passes through the point P .
Then A is a del Pezzo surface of degree d ∈ {1, 2, 3} that has at most isolated singularities.
In particular, we see that A is normal. Applying Lemmas 2.1 and 2.2, we obtain

Corollary 2.3. One has δP (A) 6
15
16
.

Proof. Since 1 >
AX(F)
SX(F)

> δP (X) , we get δP (A) 6
15
16

by Lemmas 2.1 and 2.2. �

Corollary 2.4. The surface A is singular.

Proof. If A is smooth, then δP (A) > δ(A) > 3
2
[3, § 2], which contradicts Corollary 2.3. �

Let S be a general surface in |H| that passes through π(P ), and let S be the proper
transform on X of the surface S. Then

• the surface S is a smooth del Pezzo surface of degree d,
• the surface S intersects the curve C transversally at d points,
• the induced morphism π|S : S → S is a blow up of the points S ∩ C.

Observe that φ|S : S → P1 is an elliptic fibration given by the pencil |−KS|. Set C = A
∣∣
S
.

Then C is a reduced curve of arithmetic genus 1 in |−KS| that has at most d components.
In particular, if d = 1, then C is irreducible. Therefore, the following cases may happen:

(1) the curve C is irreducible, and C is smooth at P ,
(2) the curve C is irreducible, and C has an ordinary node at P ,

4



(3) the curve C is irreducible, and C has an ordinary cusp at P ,
(4) the curve C is reducible.

Fix u ∈ R>0. Then −KX − uS is nef ⇐⇒ u 6 1 ⇐⇒ −KX − uS is pseudoeffective.
Using this, we see that

SX(S) =
1

4d

∫ 1

0

(−KX − uS)3du =
1

4d

∫ 1

0

d(4− u)(1− u)2du =
5

16
< 1,

which also follows from [3, Theorem 3.7.1]. Moreover, if u ∈ [0, 1], then

(−KX − uS)|S ∼R (1− u)(π|S)
∗(−KS)−KS ∼R (1− u)

d∑

i=1

ei + (2− u)(−KS),

where e1, . . . , ed are exceptional curves of the blow up π|S : S → S.

Lemma 2.5. Suppose that C is irreducible. Then C is singular at the point P .

Proof. As in the proof of Lemma 2.2, it follows from [3, Theorem 1.7.30] that

1 >
AX(F)

SX(F)
> min

{
1

SX(S)
,

1

S(W S
•,•;C)

,
1

S(W S,C
•,•,•;P )

}
,

where S(W S
•,•;C) and S(W

S,C
•,•,•;P ) are defined in [3, § 1.7]. Since we know that SX(S) < 1,

we see that S(W S
•,•;C) > 1 or S(W S,C

•,•,•;P ) > 1. Let us compute these numbers.
Let P (u, v) be the positive part of the Zariski decomposition of (−KX − uS)|S − vC,

and let N(u, v) be its negative part, where u ∈ [0, 1] and v ∈ R>0. Since

(−KX − uS)|S − vC ∼R (1− u)

d∑

i=1

ei + (2− u− v)C,

we see that (−KX − uS)|S − vC is pseudoeffective ⇐⇒ v 6 2− u. Moreover, we have

P (u, v) =





(1− u)
d∑

i=1

ei + (2− u− v)C if 0 6 v 6 1,

(2− u− v)
(
C +

d∑

i=1

ei

)
if 1 6 v 6 2− u,

and

N(u, v) =





0 if 0 6 v 6 1,

(v − 1)
d∑

i=1

ei if 1 6 v 6 2− u.

Thus, it follows from [3, Corollary 1.7.26] that

S
(
W S

•,•;C
)
=

3

4d

∫ 1

0

∫ 2−u

0

P (u, v)2dvdu =

=
3

4d

∫ 1

0

∫ 1

0

d(1− u)(3− u− 2v)dvdu+
3

4d

∫ 1

0

∫ 2−u

1

d(2− u− v)2dvdu =
11

16
< 1.

Thus, we conclude that S(W S,C
•,•,•;P ) > 1.

5



Since P 6∈ e1 ∪ · · · ∪ ed by Lemma 2.2, it follows from [3, Theorem 1.7.30] that

S
(
W S,C

•,•,•;P
)
=

3

4d

∫ 1

0

∫ 2−u

0

(
P (u, v) · C

)2
dvdu =

=
3

4d

∫ 1

0

∫ 1

0

d2(u− 1)2dvdu+
3

4d

∫ 1

0

∫ 2−u

1

d2(2− u− v)2dvdu =
5d

16
< 1,

which is a contradiction. �

Now, let us show that C is reducible for d ∈ {1, 2}.

Lemma 2.6. Suppose that C is irreducible. Then d = 3 and C has a cusp at P .

Proof. By Lemma 2.5, the curve C is singular at the point P .

Now, let σ : S̃ → S be the blow up of the point P , let f be the σ-exceptional curve, and
let ẽ1, . . . , ẽd, C̃ be the proper transforms on S̃ of the curves e1, . . . , ed, C, respectively.

Then the curve C̃ is smooth, and it follows from [3, Remark 1.7.32] that

1 >
AX(F)

SX(F)
> min

{
inf
O∈f

1

S(W S̃,f
•,•,•;O)

,
2

S(V S
•,•; f)

,
1

SX(S)

}
,

where S(W S̃,f
•,•,•;O) and S(V

S
•,•; f) are defined in [3, § 1.7]. Since we know that SX(S) < 1,

we see that S(V S
•,•; f) > 2 or there exists a point O ∈ f such that S(W S̃,f

•,•,•;O) > 1.

Let us compute S(V S
•,•; f). Fix u ∈ [0, 1] and v ∈ R>0. Since σ

∗(C) ∼ C̃ + 2f , we get

σ∗
(
(−KX − uS)|S

)
− vf ∼R (2− u)C̃ + (4− 2u− v)f + (1− u)

d∑

i=1

ẽi.

Then σ∗((−KX − uS)|S)− vf is pseudoeffective ⇐⇒ v 6 4− 2u.
Let P (u, v) be the positive part of the Zariski decomposition of σ∗((−KX−uS)|S)−vf ,

and let N(u, v) be its negative part. Then

P (u, v) =





(2− u)C̃ + (4− 2u− v)f + (1− u)

d∑

i=1

ẽi if 0 6 v 6
d− du

2
,

8 + d− 4u− du− 2v

4
C̃ + (4− 2u− v)f + (1− u)

d∑

i=1

ẽi if
1− u

2
6 v 6

4 + d− du

2
,

4− 2u− v

4− d

(
2C̃ + (4− d)f + 2

d∑

i=1

ẽi

)
if
4 + d− du

2
6 v 6 4− 2u,

and

N(u, v) =





0 if 0 6 v 6
d− du

2
,

2v + du− d

4
C̃ if

d− du

2
6 v 6

4 + d− du

2
,

2v + du− 2d

4− d
C̃ +

2v + du− 4− d

4− d

d∑

i=1

ẽi if
4 + d− du

2
6 v 6 4− 2u.

6



Thus, using [3, Corollary 1.7.26], we get

S
(
W S

•,•; f
)
=

3

4d

∫ 1

0

∫ d−du
2

0

(
du2 − 4du− v2 + 3d

)
dvdu+

+
3

4d

∫ 1

0

∫ 4+d−du
2

d−du
2

d(1− u)(12− du+ d− 4u− 4v)

4
dvdu+

+
3

4d

∫ 1

0

∫ 4−2u

4+d−du
2

d(4− 2u− v)2

4− d
dvdu =

44 + 5d

32
< 2.

Therefore, there exists a point O ∈ f such that S(W S̃,f
•,•,•;O) > 1.

Let us compute S(W S̃,f
•,•,•;O). Observe that

P (u, v) · f =





v if 0 6 v 6
d− du

2
,

d− du

2
if
d− du

2
6 v 6

4 + d− du

2
,

d(4− 2u− v)

4− d
if
4 + d− du

2
6 v 6 4− 2u.

Thus, it follows from [3, Remark 1.7.32] that

S(W S̃,f
•,•,•;O) =

3

4d

∫ 1

0

∫ 4−2u

0

((
P (u, v) · f

))2
dvdu+

+
6

4d

∫ 1

0

∫ 4−2u

0

(
P (u, v) · f

)
ordO

(
N(u, v)

∣∣
f

)
dvdu =

=
3

4d

∫ 1

0

∫ d−du
2

0

v2dvdu+
3

4d

∫ 4+d−du
2

d−du
2

(d− du

2

)2
dvdu+

3

4d

∫ 1

0

∫ 4−2u

4+d−du
2

(d(4− 2u− v)

4− d

)2
dvdu+

+
6

4d

∫ 1

0

∫ 4−2u

0

(
P (u, v) · f

)
ordO

(
N(u, v)

∣∣
f

)
dvdu =

=
5d

32
+

3

2

∫ 1

0

∫ 4−2u

0

(
P (u, v) · f

)
ordO

(
N(u, v)

∣∣
f

)
dvdu.

Therefore, if O 6∈ C̃, we obtain S(W S̃,f
•,•,•;O) =

5d
32
, which contradicts to S(W S̃,f

•,•,•;O) > 1.

Similarly, if O ∈ C̃ and C̃ intersects the curve f transversally at the point O, then

S(W S̃,f
•,•,•;O) =

5d

32
+

6

4d

∫ 1

0

∫ 4−2u

0

(
P (u, v) · f

)
ordO

(
N(u, v)

∣∣
f

)
dvdu =

44 + 5d

64
< 1.

which again contradicts S(W S̃,f
•,•,•;O) > 1. Therefore, the curves C̃ and f are tangent at O,

which implies that C has a cusp at the point P .
Thus, to proceed, we may assume that d = 1 or d = 2.

7



Now, let us consider the following commutative diagram:

S̃

σ

��

Ŝ
ρ

oo S
η

oo

ψ
��

S S
υ

oo

where ρ is the blow up of the point C̃ ∩ f , the morphism η is the blow up of the point

in the ρ-exceptional curve that is contained in the the proper transform of the curve C̃,
the map ψ is the contraction of the proper transforms of both (σ ◦ ρ)-exceptional curves,
and υ is the birational contraction of the proper transform of the η-exceptional curve.
Let F be the υ-exceptional curve, let C be the proper transform on S of the curve C.
Then F and C are smooth, C 2 = −6, F 2 = −1

6
, C · F = 1, and υ∗(C) = C + 6F .

Observe that F contains two singular points of the surfaces S , which are quotient
singular points of type 1

2
(1, 1) and 1

3
(1, 1). Denote these points by Q2 and Q3, respectively.

Note that C does not containQ2 andQ3. Write ∆F = 1
2
Q2+

2
3
Q3. Then, since AS(F ) = 5,

it follows from [3, Remark 1.7.32] that

1 >
AX(F)

SX(F)
> min

{
inf
Q∈F

1− ordQ(∆F )

S(WS ,F
•,•,• ;Q)

,
5

S(V S
•,•;F )

,
1

SX(S)

}
.

But we already proved that SX(S) < 1. Hence, we conclude that S(V S
•,•;F ) > 5 or there

exists a point Q ∈ F such that S(WS ,F
•,•,• ;Q) > 1− ordQ(∆F ).

Let us compute S(V S
•,•;F ). Take v ∈ R>0. Then

υ∗
(
P (u)|S

)
− vF ∼R (2− u)C + (1− u)

d∑

i=1

Ei + (12− 6u− v)F ,

where Ei is the proper transform on S of the (−1)-curve ei. Using this, we conclude that
the divisor υ∗(P (u)|S)− vF is pseudoeffective ⇐⇒ v 6 12− 6u.

Let P(u, v) be the positive part of the Zariski decomposition of υ∗(P (u)|S)− vF , and
let N (u, v) be its negative part. Then

P(u, v) =





(2− u)C + (1− u)
d∑

i=1

Ei + (12− 6u− v)F if 0 6 v 6 d(1− u),

12 + d− (6 + d)u− v

6
C + (1− u)

d∑

i=1

Ei + (12− 6u− v)F if d(1− u) 6 v 6 6 + d− du,

12− 6u− v

6− d

(
C +

d∑

i=1

Ei + (6− d)F
)
if 6 + d− du 6 v 6 12− 6u,

and

N (u, v) =





0 if 0 6 v 6 d(1− u),

v + d(u− 1)

6
C if d(1− u) 6 v 6 6 + d− du,

v + du− 2d

6− d
C +

v + du− 6− d

6− d

d∑

i=1

Ei if 6 + d− du 6 v 6 12− 6u.
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This gives

P(u, v)2 =





6du2 − 24du− v2 + 18d

6
if 0 6 v 6 d(1− u),

d(1− u)(18− (d+ 6)u+ d− 2v)

6
if d(1− u) 6 v 6 6 + d− du,

d(12− 6u− v)2

6(6− d)
if 6 + d− du 6 v 6 12− 6u.

Thus, using [3, Remark 1.7.30] and integrating, we get

S(WS

•,•;F ) =
3

4d

∫ 1

0

∫ 12−6u

0

P(u, v)2dvdu =
66 + 5d

16
6

19

4
< 5 = AS(F ),

since d = 1 or d = 2. Thus, there is a pointQ ∈ F such that S(WS ,F
•,•,• ;Q) > 1−ordQ(∆F ).

Now, using [3, Remark 1.7.32] again, we see that

S
(
WS ,F

•,•,• ;Q
)
=

3

4d

∫ 1

0

∫ 12−6u

0

((
P(u, v) · F

))2
dvdu+

+
6

4d

∫ 1

0

∫ 12−6u

0

(
P (u, v) · F

)
ordQ

(
N (u, v)

∣∣
F

)
dvdu.

On the other hand, we have

P(u, v) · F =





v

6
if 0 6 v 6 d(1− u),

d(1− u)

6
if d(1− u) 6 v 6 6 + d− du,

d(12− 6u− v)

6(6− d)
if 6 + d− du 6 v 6 12− 6u,

and

N (u, v) · F =





0 if 0 6 v 6 d(1− u),

v − d(1− u)

6
if d(1− u) 6 v 6 6 + d− du,

v + du− 2d

6− d
if 6 + d− du 6 v 6 12− 6u.

In particular, we have

S(WS ,F
•,•,• ;Q) =

5d

96
+

6

4d

∫ 1

0

∫ 12−6u

0

(
P (u, v) · F

)
ordQ

(
N (u, v)

∣∣
F

)
dvdu.

Hence, if Q 6∈ C , then 1
3
6 1 − ordQ(∆F ) 6 S(WS ,F

•,•,• ;Q) = 5d
96
< 1

3
, which is absurd.

Thus, we conclude that Q = C ∩ F . Then

S(WS ,F
•,•,• ;Q) =

5d

96
+

6

4d

∫ 1

0

∫ 12−6u

0

(
P (u, v) · F

)
ordQ

(
N (u, v)

∣∣
F

)
dvdu 6

6
5d

96
+

6

4d

∫ 1

0

∫ 12−6u

0

(
P (u, v) · F

)(
N (u, v) · F

)
dvdu =

11

16
< 1,

which is a contradiction, since S(WS ,F
•,•,• ;Q) > 1− ordQ(∆F ) = 1. �

In particular, we conclude that either d = 2 or d = 3.
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Corollary 2.7. All smooth Fano threefolds in the family №2.1 are K-stable.

Recall that A is the fiber of the del Pezzo fibration φ : X → P1 that passes through P .
Note also that we have the following possibilities:

• d = 2, and A is a double cover of P2 branched over a reduced quartic curve;
• d = 3, and A is a normal cubic surface in P3.

Observe that C = S∩A, where S is a general surface in |π∗(H)| that contains the point P .
Since C is singular at P , the surface Amust be singular at P , which confirms Corollary 2.4.
Now, using classifications of reduced singular plane quartic curves and singular normal
cubic surfaces [6], we see that P = Sing(A), and one of the following three cases holds:

• d = 2, and A is a double cover of P2 branched over 4 lines intersecting in a point;
• d = 3, and A is a cone in P3 over a smooth plane cubic curve;
• d = 3, and A has Du Val singular point of type D4, D5, or E6.

Let us show that the first case is impossible.

Lemma 2.8. One has d = 3.

Proof. Suppose that d = 2. Then P = Sing(A), and A is a double cover of P2 branched
over a reduced reducible plane quartic curve that is a union of 4 distinct lines passing
through one point. Let us seek for a contradiction.

Let α : X̃ → X be the blow up of the point P , let EP be the α-exceptional divisor, and

let Ã be the proper transform on X̃ of the surface A. Then Ã∩EP is a line L ⊂ EP ∼= P2,
and the surface Ã is singular along this line. Let β : X → X̃ be the blow up of the line L,

let EL be the β-exceptional divisor, let A be the proper transform on X of the surface Ã,
and let EP be the proper transforms on X of the surface EP . Then

• EL ∼= F2,
• the intersection EP ∩ EL is the (−2)-curve in EL,
• the surface A is smooth, and the exists a P1-bundle A→ C,
• A ∩ EL is a smooth elliptic curve that is a section of the P1-bundle A→ C,
• the surfaces A and EP are disjoint,
• EP

∼= P2 and EP |EP

∼= OP2(−2).

There is a birational contraction γ : X → X̂ of the surface EP such that X̂ is a projective
threefold that has one singular point O = γ(EP ), which is a terminal cyclic quotient
singularities of type 1

2
(1, 1, 1). Thus, there exists the following commutative diagram

X
β

//

γ
��

X̃

α

��

X̂ σ
// X

where σ is a birational morphism that contracts the surface γ(EL) to the point P .

Let G = γ(EL), let Â = γ(A), and let Ê be the proper transform on X̂ of the surface E.

Then AX(G) = 4, σ∗(−KX) ∼ 2Â+ Ê + 8G and σ∗(A) ∼ Â + 4G.

Note that Â ∼= A and G ∼= P(1, 1, 2), so we can identify G with a quadric cone in P3.

Note also that O is the vertex of the cone G. Moreover, by construction, we have O 6∈ Â.

Furthermore, the exists a P1-bundle Â→ C such that G|Â is its section.
10



Let g be a ruling of the quadric cone G, let l be a fiber of the P1-bundle Â → C, and

let f be a fiber of the P1-bundle π ◦ σ|Ê : Ê → C. Then G|G ∼Q −g and Â|G ∼Q 4g.

Moreover, the intersections of the surfaces G, Â, Ê with the curves g, l, f are given here:

G Â Ê

g −1
2

2 0

l 1 −4 1

f 0 1 −1

Fix a non-negative real number u. We have σ∗(−KX)−uG ∼R 2Â+Ê+(8−u)G, which
implies that σ∗(−KX)−uG is pseudo-effective ⇐⇒ u ∈ [0, 8]. Furthermore, if u ∈ [0, 8],
then the Zariski decomposition of the divisor σ∗(−KX)−uG can be described as follows:

P (u) =





2Â+ Ê + (8− u)G if 0 6 u 6 1,

9− u

4
Â+ Ê + (8− u)G if 1 6 u 6 5,

8− u

3

(
Â + Ê + 3G

)
if 5 6 u 6 8,

and

N(u) =





0 if 0 6 u 6 1,

u− 1

4
Â if 1 6 u 6 5,

u− 2

3
Â +

u− 5

3
Ê if 5 6 u 6 8,

where P (u) and N(u) are the positive and the negative parts of the decomposition. Then

vol
(
σ∗(−KX)− uG

)
= P (u)3 =





8−
u3

8
if 0 6 u 6 1,

18− 3u

2
if 1 6 u 6 5,

(8− u)3

18
if 5 6 u 6 8.

Integrating, we get SX(G) =
27
8
< 4 = AX(G). But [15, Corollary 4.18] gives

1 >
AX(F)

SX(F)
> min

{
AX(G)

SX(G)
, inf
Q∈G

δQ
(
G, V G

•,•

)}
= min

{
32

27
, inf
Q∈G

δQ
(
G, V G

•,•

)}
,

where δQ(G, V
G
•,•) is defined in [15]. Moreover, if Q is a point in G and Z is a smooth

curve in G that passes through Q, then it follows from [15, Corollary 4.18] that

δQ
(
G, V G

•,•

)
> min

{
1

S
(
V G
•,•;Z

) , 1− ordQ(∆Z)

S
(
W

G,Z
•,•,•;Q

)
}
,

where S(V G
•,•;Z) and S(W

G,Z
•,•,•;Q) are defined in [15], and

∆Z =





0 if O 6∈ Z,

1

2
O if O ∈ Z.
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Let us show that δQ
(
G, V G

•,•

)
> 1 for every Q ∈ G, which would imply a contradiction.

Let C = Â|G, and let ℓ be a curve in |f | that passes through Q. Then O 6∈ ℓ and O ∈ ℓ,
so that ∆ℓ = 0 and ∆ℓ =

1
2
O. Take v ∈ R>0. Then

P (u)
∣∣
G
− vℓ ∼R





(u− v)g if 0 6 u 6 1,

(1− v)g if 1 6 u 6 5,

8− u− 3v

3
g if 5 6 u 6 8.

Now, using [15, Theorem 4.8], we get

S
(
WG

•,•; ℓ
)
=

3

8

∫ 8

0

∫ ∞

0

vol
(
P (u)

∣∣
G
− vℓ

)
dvdu =

3

8

∫ 1

0

∫ u

0

(u− v)2

2
dvdu+

+
3

12

∫ 5

1

∫ 1

0

(1− v)2

4
dvdu+

3

12

∫ 8

5

∫ 8−u
3

0

(8− u− 3v)2

18
dvdu =

5

16
.

Similarly, if Q 6∈ C , then it follows from [15, Theorem 4.17] that

S
(
WG,ℓ

•,•,•;Q
)
=

3

8

∫ 1

0

∫ u

0

((
P (u)

∣∣
G
−vℓ

)
·ℓ
)2
dvdu+

3

8

∫ 5

1

∫ 1

0

((
P (u)

∣∣
G
−vℓ

)
·ℓ
)2
dvdu+

+
3

8

∫ 8

5

∫ 8−u
3

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)2
dvdu+ FQ =

3

8

∫ 1

0

∫ u

0

(u− v)2

4
dvdu+

+
3

8

∫ 5

1

∫ 1

0

(1− v)2

4
dvdu+

3

8

∫ 8

5

∫ 8−u
3

0

(8− u− 3v)2

36
dvdu =

5

32
.

so that S(WG,ℓ
•,•,•;Q) =

5
32
, which implies that δQ(G, V

G
•,•) >

16
5
. Likewise, if Q ∈ C , then

S
(
WG

•,•;C
)
=

3

8

∫ 8

0

(
P (u)2 ·G

)
·ordC

(
N(u)

∣∣
G

)
du+

3

8

∫ 8

0

∫ ∞

0

vol
(
P (u)

∣∣
G
−vC

)
dvdu =

=
3

8

∫ 5

1

u− 1

8
du+

3

8

∫ 8

5

(u− 2)(8− u)2

54
du+

3

8

∫ 1

0

∫ u
4

0

(u− 4v)2

2
dvdu+

+
3

8

∫ 5

1

∫ 1

4

0

(1− 4v)2

2
dvdu+

3

8

∫ 8

5

∫ 8−u
12

0

(8− u− 12v)2

18
dvdu =

11

16

and

S
(
WG,C

•,•,•;Q
)
=

3

8

∫ 1

0

∫ u
4

0

((
P (u)

∣∣
G
− vC

)
· C
)2
dvdu+

+
3

8

∫ 5

1

∫ 1

4

0

((
P (u)

∣∣
G
− vC

)
· C
)2
dvdu+

3

8

∫ 8

5

∫ 8−u
12

0

((
P (u)

∣∣
G
− vC

)
· C
)2
dvdu =

=
3

8

∫ 1

0

∫ u
4

0

(2u− 8v)2dvdu+
3

8

∫ 5

1

∫ 1

4

0

(2− 8v)2dvdu+

+
3

8

∫ 8

5

∫ 8−u
12

0

(
(16− 2u− 24v)2

9
dvdu =

5

8
.

This implies that δQ(G, V
G
•,•) > min

{
16
11
, 8
5

}
= 16

11
, which is a contradiction. �
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Corollary 2.9. All smooth Fano threefolds in the family №2.3 are K-stable.

We see that d = 3, so that A is a singular cubic surface in P3 such that P = Sing(A).

Let σ : X̂ → X be the blow up of the point P , and let G be the σ-exceptional surface.

Denote by Â and Ê the proper transforms on X̂ of the surfaces A and E, respectively.

Lemma 2.10. The surface A has Du Val singularities.

Proof. Suppose that A is a cone in P3 with vertex P . Take u ∈ R>0. Then

σ∗(−KX)− vG ∼R 2Â+ Ê + (6− u)G.

Thus, the divisor σ∗(−KX)−vG is pseudo-effective ⇐⇒ u ∈ [0, 6]. Moreover, if u ∈ [0, 6],
then the Zariski decomposition of the divisor σ∗(−KX)− vG can be described as follows:

P (u) =





2Â+ E + (6− u)G if 0 6 u 6 1,

7− u

3
Â+ Ê + (6− u)G if 1 6 u 6 4,

6− u

2
(Â+ Ê + 2G) if 4 6 u 6 6,

and

N(u) =





0 if 0 6 u 6 1,

u− 1

3
Â if 1 6 u 6 4,

u− 2

2
Â +

u− 4

2
Ê if 4 6 u 6 6,

where P (u) and N(u) are the positive and the negative parts of the Zariski decomposition,
respectively. Using this, we compute

SX(G) =
3

12

∫ 1

0

u3du+
3

12

∫ 4

1

udu+
3

12

∫ 6

4

u(6− u)2

4
du =

43

16
< 3 = AX(G).

Let us apply [15, Theorem 4.8], [15, Corollary 4.17], [15, Corollary 4.18] using notations
introduced in [15, § 4]. To start with, we apply [15, Corollary 4.18] to get

(2.2) 1 >
AX(F)

SX(F)
> min

{
AX(G)

SX(G)
, inf
Q∈G

δQ
(
G, V G

•,•

)}
= min

{
48

43
, inf
Q∈G

δQ
(
G, V G

•,•

)}
,

where δQ(G, V
G
•,•) is defined in [15, § 4]. Let Q be an arbitrary point in the surface G, and

let ℓ is a general line in G ∼= P2 that contains Q. Then [15, Corollary 4.18] gives

δQ
(
G, V G

•,•

)
> min

{
1

S
(
V G
•,•; ℓ

) , 1

S
(
W

G,ℓ
•,•,•;Q

)
}
,

where S(V F
•,•; ℓ) and S(W

G,ℓ
•,•,•;Q) are defined in [15, § 4]. Take v ∈ R>0. Then

P (u)
∣∣
G
− vℓ ∼R





(u− v)ℓ if 0 6 u 6 1,

(1− v)ℓ if 1 6 u 6 4,

6− u− 2v

2
ℓ if 4 6 u 6 6.
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Let C = Â|G. Then C is a smooth cubic curve in G ∼= P2. Let

N ′(u) = N(u)
∣∣
G
=





0 if 0 6 u 6 1,

u− 1

3
C if 1 6 u 6 4,

u− 2

2
C if 4 6 u 6 6.

Now, using [15, Theorem 4.8], we get

S
(
WG

•,•; ℓ
)
=

3

12

∫ 6

0

∫ ∞

0

vol
(
P (u)

∣∣
G
− vℓ

)
dvdu =

3

12

∫ 1

0

∫ u

0

(u− v)2dvdu+

+
3

12

∫ 4

1

∫ 1

0

(1− v)2dvdu+
3

12

∫ 6

4

∫ 6−u
2

0

(
6− u− 2v

2

)2

dvdu =
5

16
.

Similarly, it follows from [15, Theorem 4.17] that

S
(
WG,ℓ

•,•,•;Q
)
=

3

12

∫ 1

0

∫ u

0

((
P (u)

∣∣
G
−vℓ

)
·ℓ
)2
dvdu+

3

12

∫ 4

1

∫ 1

0

((
P (u)

∣∣
G
−vℓ

)
·ℓ
)2
dvdu+

+
3

12

∫ 6

4

∫ 6−u
2

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)2
dvdu+ FQ =

3

12

∫ 1

0

∫ u

0

(u− v)2dvdu+

+
3

12

∫ 4

1

∫ 1

0

(1− v)2dvdu+
3

12

∫ 6

4

∫ 6−u
2

0

(
6− u− 2v

2

)2

dvdu+ FQ =
5

16
+ FQ,

where

FQ =
6

12

∫ 4

1

∫ 1

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)
ordQ

(
N ′(u)

∣∣
ℓ

)
dvdu+

+
6

12

∫ 6

4

∫ 6−u
2

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)
ordQ

(
N ′(u)

∣∣
ℓ

)
dvdu 6

6
6

12

∫ 4

1

∫ 1

0

(1− v)(u− 1)

3
dvdu+

6

12

∫ 6

4

∫ 6−u
2

0

(6− u− 2v)(u− 2)

4
dvdu =

7

12
.

So, we have S(WG,ℓ
•,•,•;Q) 6

43
48
. Then δQ(G, V

G
•,•) > 1, which contradicts (2.2). �

Thus, we see that P is a Du Val singular point of the surface A of type D4, D5, E6.
Now, arguing as in the proof of [19, Lemma 9.11], we see that β(F) > 0 if

(1) the inequality β(G) > 0 holds,
(2) and for every prime divisor E over X such that CX(E) is a curve containing P ,

the following inequality holds:

AX(E)

SX(E)
>

4

3
.

Since β(F) 6 0 by our assumption, we see that at least one of these conditions must fail.

Lemma 2.11. One has β(G) > 465
2048

.
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Proof. Let Â and Ê be the proper transforms on X̂ of the surfaces A and E, respectively.
Take u ∈ R>u. Then

σ∗(−KX)− uG ∼ σ∗(2H − E)− uG ∼ σ∗(2A+ E)− uG ∼ 2Â+ Ê + (4− u)G,

which easily implies that the divisor −KX̂ − G is pseudoeffective ⇐⇒ u 6 4, because

we can contract the surfaces Â and Ê simultaneously after flops. Then

β(G) = AX(G)− SX(G) = 3−
1

12

∫ 4

0

vol
(
σ∗(−KX)− uG

)
du.

Note that σ∗(−KX)− uG is nef for u ∈ [0, 1], because the divisor −KX is very ample.
Thus, if u ∈ [0, 1], then

vol
(
σ∗(−KX)− uG

)
=
(
σ∗(−KX)− uG

)3
= 12− u3.

Similarly, if 1 6 u 6 3
2
, then

vol
(
σ∗(−KX)− uG

)
66 vol

(
σ∗(−KX)−G

)
=
(
σ∗(−KX)−G

)3
= 11.

Finally, let us estimate vol(σ∗(−KX)− uG) in the case when 4 > u > 3
2
.

Let Z be a general hyperplane section of the cubic surface A that passes through P ,

and let Ẑ be its proper transform on the threefold X̂ . Then Z is an irreducible cuspidal

cubic curve, and Ẑ ⊂ Â. Observe that (σ∗(−KX) − uG) · Ẑ = 3 − 2u and Â · Ẑ = −4,

so Â is contained in the asymptotic base locus of the divisor σ∗(−KX) − uG for u > 3
2
.

Moreover, if σ∗(−KX)− uG ∼R D̂ + λÂ for λ ∈ R>0 and an effective R-divisor D̂ whose

support does not contain Â, then Ẑ 6⊂ D̂, which implies that

0 6 D̂ · Ẑ =
(
σ∗(−KX)− uG− λÂ

)
· Ẑ = 3− 2u− 4λ,

so that λ > 3−2u
4

. Thus, if 4 > u > 3
2
, then

vol
(
σ∗(−KX)− uG

)
6 vol

(
σ∗(2H − E)− uG−

2u− 3

4
Â
)
.

Moreover, if 4 > u > 3
2
, then

σ∗(2H −E)− uG−
2u− 3

4
Â ∼R

11− 2u

4
σ∗(H)−

7− 2u

2
σ∗(E)−

3

2
G.

Therefore, if 4 > u > 3
2
, then

vol
(
σ∗(−KX)−uG

)
6 vol

(11− 2u

4
σ∗(H)−

7− 2u

2
σ∗(E)

)
= vol

(11− 2u

4
H−

7− 2u

2
E
)
.

Furthermore, if 7
2
> u > 3

2
, then 11−2u

4
H − 7−2u

2
E is nef, so that

vol
(11− 2u

4
H −

7− 2u

2
E
)
=
(11− 2u

4
H −

7− 2u

2
E
)3

=
25− 6u

16
.

Similarly, if 4 > u > 7
2
, then

vol
(11− 2u

4
H −

7− 2u

2
E
)
=
(11− 2u

4
H
)3

=
(11− 2u)3

256
.
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Now, we can estimate β(G) as follows

β(G) = 3−
1

12

∫ 4

0

vol
(
σ∗(−KX)− uG

)
du > 3−

1

12

∫ 1

0

(12− u3)du−
1

12

∫ 3

2

1

11du−

−
1

12

∫ 7

2

3

2

25− 6u

16
du−

1

12

∫ 4

7

2

(11− 2u)3

256
du = 3−

5679

2048
=

465

2048

as claimed. �

Therefore, there exists a prime divisor E overX such that CX(E) is a curve, P ∈ CX(E),
and AX(E) <

4
3
SX(E). Set Z = CX(E). Then δO(X) < 4

3
for every point O ∈ Z.

Lemma 2.12. One has Z ⊂ A, and Z is a line in the cubic surface A.

Proof. Let O be a general point in Z, and let AO be the fiber of φ that passes through O.
If Z 6⊂ A, then AO is smooth, so that δO(AO) >

3
2
by [3, Lemma 2.13], which gives

4

3
>
AX(E)

SX(E)
> δO(X) > min

{
16

11
,

16δO(AO)

16δO(AO) + 15

}
> min

{
16

11
,
16× 3

2
3
2
+ 15

}
=

16

11
>

4

3
,

by Lemma 2.1. This shows that Z ⊂ A and AO = A.
To complete the proof of the lemma, we have to show that Z is a line in the surface A.

Suppose that Z is not a line. Then the point O is not contained in a line in the surface A,
because A contains finitely many lines [6]. Now, arguing as in the proof of [3, Lemma 2.13],
we get δO(A) >

3
2
. So, applying Lemma 2.1 again, we get a contradiction as above. �

Now, our Auxiliary Theorem follows from the following lemma:

Lemma 2.13. The surface A does not have a singular point of type D4.

Proof. Suppose A has singularity of type D4. Then, it follows from [6] that, for a suitable
choice of coordinates x, y, z, t on the projective space P3, one of the following cases hold:

(A) A = {tx2 = y3 − z3} ⊂ P3,
(B) A = {tx2 = y3 − z3 + xyz} ⊂ P3.

Note that P = [0 : 0 : 0 : 1], and A contains 6 lines [6]. In case (A), these lines are

L1 = {x = y − z = 0},

L2 = {x = y − ω3z = 0},

L3 = {x = y + ω2
3z = 0},

L4 = {t = y − z = 0},

L5 = {t = y + ω3z = 0},

L6 = {t = y + ω2
3z = 0},

16



where ω3 is a primitive cube root of unity. In case (B), these lines are

L1 = {x = y − z = 0},

L2 = {x = y − ω3z = 0},

L3 = {x = y − ω2
3z = 0},

L4 = {x+ 3(y − z) = y − z − 9t = 0},

L5 = {x+ 3ω3(y − ω3z) = ω3y − ω2
3z − 9t = 0},

L6 = {x+ 3ω2
3(y − ω2

3z) = ω2
3y − ω3z − 9t = 0}.

Note that P = L1∩L3∩L3, P 6∈ L4∪L5∪L6 and −KA ∼ 2L1+L4 ∼ 2L2+L5 ∼ 2L3+L6.
By Lemma 2.12, we may assume that Z = L1.
Recall that SX(A) =

11
16
, see the proof of Lemma 2.1. Using [3, Theorem 1.7.30], we get

4

3
>
AX(E)

SX(E)
> min

{
1

SX(A)
,

1

S(WA
•,•;L1)

}
= min

{
16

11
,

1

S(WA
•,•;L1)

}
,

where S(WA
•,•;L1) is defined in [3, § 1.7]. Therefore, we conclude that S(WA

•,•;L1) <
4
3
.

Let us compute S(WA
•,•;L1) using [3, Corollary 1.7.26].

To do this, we use notations introduced in the proof of Lemma 2.1 applied to O = P .
Then, using [3, Corollary 1.7.26] and computations from the proof of Lemma 2.1, we get

S
(
WA

•,•;L1

)
=

1

4

∫ 1

0

∫ ∞

0

vol
(
−KA−vL1

)
dvdu+

1

4

∫ 2

1

∫ ∞

0

vol
(
(2−u)(−KA)−vL1

)
dvdu,

since L1 6⊂ Supp(N(u)), since L1 6⊂ E. Let us compute S(WA
•,•;L1). Take v ∈ R>0. Then

−KA − vL1 ∼R (2− v)L1 + L4.

Thus, the divisor −KA−vL1 is pseudoeffective ⇐⇒ v 6 2, since L2
4 = −1. Fix v ∈ [0, 2].

Let P (u, v) be the positive part of the Zariski decomposition of the divisor −KA − vL1,
and let N(u, v) be its negative part. Then

P (u, v) =

{
(2− v)L1 + L4 if 0 6 v 6 1,

(2− v)(L1 + L4) if 1 6 v 6 2,

and

N(u, v) =

{
0 if 0 6 v 6 1,

(v − 1)L4 if 1 6 v 6 2.

Thus, if 0 6 v 6 1, then vol(−KA − vL1) = 3 − 2v, because L2
1 = 0 and L1 · L4 = 0.

Similarly, if 1 6 v 6 2, then vol(−KA − vL1) = (v − 2)2. This gives

1

4

∫ 1

0

∫ ∞

0

vol
(
−KA − vL1

)
dvdu =

1

4

∫ 1

0

∫ 1

0

(3− 2v)dvdu+
1

4

∫ 1

0

∫ 2

1

(v − 2)2dvdu =
7

12

and

1

4

∫ 2

1

∫ ∞

0

vol
(
(2− u)(−KA)− vL1

)
dvdu =

1

4

∫ 2

1

∫ ∞

0

(2− u)3vol
(
(−KA)− vL1

)
dvdu =

=
1

4

∫ 2

1

∫ 1

0

(2− u)3(3− 2v)dvdu+
1

4

∫ 2

1

∫ 2

1

(2− u)3(v − 2)2dvdu =
7

48
.

Combining, we get S(WA
•,•;L1) =

35
48
< 3

4
. This is a contradiction. �
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3. Family №2.2.

Let R be a smooth surface of degree (2, 4) in P1 × P2, let π : X → P1 × P2 be a double
cover ramified over surface R. ThenX is a Fano threefold in the deformation family № 2.2.
Moreover, all smooth Fano threefolds in this family can be obtained this way.

Let pr1 : P
1 × P2 → P1 and pr2 : P

1 × P2 → P2 be the projections to the first and
the second factors, respectively. Set p1 = pr1 ◦ π and p2 = pr2 ◦ π. We have the following
commutative diagram:

X

π
��

p1

��

p2

��

P1 × P2

pr1

{{✈✈
✈✈
✈✈
✈✈
✈✈ pr2

##❍
❍❍

❍❍
❍❍

❍❍
❍

P1 P2

where p1 is a fibration into del Pezzo surfaces of degree 2, and p2 is a conic bundle.

Lemma 3.1. Let S be a fiber of the morphism p1. Then S is irreducible and normal.

Proof. Left to the reader. �

Lemma 3.2. Let S be a fiber of the morphism p1, let C be a fiber of the morphism p2,
and let P be a point in S ∩ C. Then S or C is smooth at P .

Proof. Local computations. �

Now, we are ready to prove that X is K-stable. Recall from [9] that Aut(X) is finite.
Thus, the threefold X is K-stable if and only if it is K-polystable [19].

Let τ be the Galois involution of the double cover π : X → P1 × P2, and let G = 〈τ〉.
Suppose that X is not K-polystable. Then it follows from [20, Corollary 4.14] that there
exists a G-invariant prime divisor F over X such that

β(F) = AX(F)− SX(F) 6 0.

Let Z be the center of this divisor on X . Then Z is not a surface by [3, Theorem 3.7.1].
Hence, we see that either Z is a G-invariant irreducible curve, or Z is a G-fixed point.
Let us seek for a contradiction.

Let P be a general point in Z, and let S be the fiber of p1 that passes through P .

Lemma 3.3. The surface S is singular at P .

Proof. Suppose that S is smooth at P . Let C be a general curve in |−KS | that contains P .
Then C is smooth. Applying [3, Theorem 1.7.30] to the flag P ∈ C ⊂ S, we get

1 >
AX(F)

SX(F)
> min

{
1

SX(S)
,

1

S(W S
•,•;C)

,
1

S(W S,C
•,•,•;P )

}
.

Since SX(S) < 1 by [3, Theorem 3.7.1], we see that S(W S
•,•;C) > 1 or S(W S,C

•,•,•;P ) > 1.

We refer the reader to [3, § 1.7] for definitions of SX(S), S(W
S
•,•;C), S(W

S,C
•,•,•;P ).

Note that [3, Theorem 1.7.30] requires S to have Du Val singularities, but S may have
non-Du Val singularities. Nevertheless, we still can apply [3, Theorem 1.7.30] here, since
the proof of [3, Theorem 1.7.30] remains valid in our case, because S is smooth along C.

Let us compute S(W S
•,•;C) and S(W

S,C
•,•,•;P ). Take u ∈ R>0 and v ∈ R>0. Then

18



−KX − uS is nef ⇐⇒ −KX − uS is pseudoeffective ⇐⇒ u 6 1,

Similarly, if u ∈ [0, 1], then (−KX − uS)|S − vC ∼R (1− v)(−KS), so

(−KX − uS)|S − vC is nef ⇐⇒ (−KX − uS)|S − vC is pseudoeffective ⇐⇒ v 6 1.

Now, applying [3, Corollary 1.7.26], we get

S(W S
•,•;C) =

3

6

∫ 1

0

∫ 1

0

(
(1− v)(−KS)

)2
dvdu =

1

2

∫ 1

0

∫ 1

0

2(1− v)2dv =
1

3
< 1.

Similarly, using [3, Theorem 1.7.30], we get

S(W S,C
•,•,•, P ) =

3

6

∫ 1

0

∫ 1

0

(
(1− v)(−KS) · C

)2
dvdu =

2

3
< 1.

But we already know that S(W S
•,•;C) > 1 or S(W S,C

•,•,•;P ) > 1. This is a contradiction. �

If Z is a curve, then S is smooth at P by Lemma 3.1, because P is a general point in Z.
Hence, we conclude that Z = P , because S is singular at the point P by Lemma 3.3.
Recall that Z is G-invariant. This implies that τ(P ) ∈ R.

Let C be the fiber of p2 that passes through P . Then C is smooth at P by Lemma 3.2,
because S is singular at P . Since τ(P ) ∈ R, we see that C is irreducible and smooth.

Let T be a sufficiently general surface in linear system |π∗
2(OP2(1))| that contains C.

Since C is smooth, it follows from Bertini’s theorem that the surface T is smooth.
As in the proof of Lemma 3.3, it follows from [3, Theorem 1.7.30] that

1 >
AX(F)

SX(F)
> min

{
1

SX(T )
,

1

S(W T
•,•;C)

,
1

S(W T,C
•,•,•;P )

}
.

Moreover, it follows from [3, Theorem 3.7.1] that SX(T ) < 1. Thus, we conclude that

max
{
S(W T

•,•;C), S(W
T,C
•,•,•;P )

}
> 1.

In fact, since P is the center of the divisor F on X , [3, Theorem 3.7.1] gives

(3.1) max
{
S(W T

•,•;C), S(W
T,C
•,•,•;P )

}
> 1.

Now, let us compute S(W T
•,•;C) and S(W

T,C
•,•,•;P ) using the results obtained in [3, § 1.7].

Take u ∈ R>0 and v ∈ R>0. Then

−KX − uT is nef ⇐⇒ −KX − uT is pseudoeffective ⇐⇒ u 6 1,

Similarly, if u ∈ [0, 1], then

(−KX − uT )|T − vC is nef ⇐⇒ (−KX − uT )|T − vC is pseudoeffective ⇐⇒ v 6 1− u,

because (−KX−uT )|T −vC ∼R S|T +(1−u−v)C. So, using [3, Corollary 1.7.26], we get

S(W T
•,•;C) =

3

6

∫ 1

0

∫ 1−u

0

(
S|T+(1−u−v)C

)2
dvdu =

1

2

∫ 1

0

∫ 1−u

0

4(1−u−v)dvdu =
1

3
< 1.

Hence, it follows from (3.1) that S(W T,C
•,•,•, P ) > 1. Now, using [3, Theorem 1.7.30], we get

S(W T,C
•,•,•, P ) =

3

6

∫ 1

0

∫ 1−u

0

((
S|T + (1− u− v)C

)
· C
)2
dvdu =

3

6

∫ 1

0

∫ 1−u

0

4 dvdu = 1,

which is a contradiction. This shows that X is K-stable.

Corollary 3.4. All smooth Fano threefolds in the family №2.2 are K-stable.
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4. Family №2.4.

Let S and S ′ be smooth cubic surfaces in P3 such that their intersection is a smooth
curve of genus 10. Set C = S ∩ S ′, and let π : X → P3 be the blow up of the curve C .
Then X is a smooth Fano threefold in the family №2.4, and every smooth Fano threefold
in this family can be obtained in this way. Moreover, there exists a commutative diagram

X
π

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ φ

  ❆
❆❆

❆❆
❆❆

❆

P3 //❴❴❴❴❴❴❴ P1

where P3 99K P1 is a map that is given by the pencil generated by the surfaces S and S ′,
and φ is a fibration into cubic surfaces. Note that −K3

X = 10 and Aut(X) is finite [9].
Let H = π∗(OP3(1)), and let E be the π-exceptional surface. Then −KX ∼ 4H − E,

the morphism φ is given by the linear system |3H − E|, and E ∼= S × P1.
The goal of this section is to prove that X is K-stable. Suppose that X is not K-stable.

Let us seek for a contradiction. First, using the valuative criterion for K-stability [14, 16],
we see that there exists a prime divisor F over X such that

β(F) = AX(F)− SX(F) 6 0.

Let Z be the center of the divisor F on X . Then Z is not a surface by [3, Theorem 3.7.1].
Therefore, either Z is an irreducible curve or Z is a point. Fix a point P ∈ Z.

Let A be the surface in |3H−E| that contains P . Fix u ∈ R>0. Let P(u) be the positive
part of the Zariski decomposition of −KX −uA, and let N (u) be its negative part. Then

−KX − uA ∼R (4− 3u)H − (1− u)E ∼R

(4
3
− u
)
A +

1

3
E.

This implies that −KX − uA is pseudoeffective ⇐⇒ u 6 4
3
. Moreover, we have

P(u) =





(4− 3u)H − (1− u)E if 0 6 u 6 1,

(4− 3u)H if 1 6 v 6
4

3
,

and

N (u) =





0 if 0 6 u 6 1,

(u− 1)E if 1 6 u 6
4

3
.

Integrating, we obtain SX(A) =
67
120

< 1, which also follows from [3, Theorem 3.7.1].
Note that π(A) is a normal cubic surface in P3, and π(A) is smooth along the curve C .

In particular, we see that A ∼= π(A), and A is smooth along the intersection E ∩ A.

Lemma 4.1. The surface A is singular at the point P .

Proof. Suppose that A is smooth at P . Let C be a general curve in | −KA| that passes
through the point P . Then C is a smooth irreducible elliptic curve. Take v ∈ R>0. Then

P(u)|S − vC ∼R





(1− v)C if 0 6 u 6 1,

(4− 3u− v)C if 1 6 u 6
4

3
.
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Therefore, using [3, Corollary 1.7.26], we obtain

S
(
WA

•,•;C
)
=

3

10

∫ 1

0

∫ 1

0

3(1− v)2dvdu+
3

10

∫ 4

3

1

∫ 4−3u

0

3(4− 3u− v)2dvdu =
13

40
.

Similarly, using [3, Theorem 1.7.30], we obtain

S
(
WA,C

•,•,•;P
)
6

3

10

∫ 1

0

∫ 1

0

(
3(1− v)

)2
dvdu+

3

10

∫ 4

3

1

∫ 4−3u

0

(
3(4− 3u− v)

)2
dvdu+

+
6

10

∫ 4

3

1

∫ 4−3u

0

3(4− 3u− v)(u− 1)dvdu

︸ ︷︷ ︸
if P∈E

=
39

40
+

1

120
=

59

60
.

Therefore, it follows from [3, Theorem 1.7.30] that

1 >
AX(F)

SX(F)
> min

{
1

SX(A)
,

1

S(WA
•,•;C)

,
1

S(WA,C
•,•,•;P )

}
> min

{
120

67
,
40

13
,
60

59

}
> 1,

which is absurd. �

Corollary 4.2. The point P is not contained in the surface E.

Since A ∼= π(A), we may consider A as a cubic surface in P3. Then

• either multP (A) = 2 and A has Du Val singularities.
• or multP (A) = 3 and A is a cone over a plane smooth cubic curve with vertex P .

Lemma 4.3. One has multP (A) 6= 3.

Proof. Let σ : X̂ → X be a blow up of the point P , and let G be the σ-exceptional surface.

Denote by Â and Ê the proper transforms on X̂ of the surfaces A and E, respectively.
Suppose that multP (A) = 3. Take u ∈ R>0. Then

σ∗(−KX)− vG ∼R

1

3
Ê +

4

3
Â + (4− u)G.

Thus, the divisor σ∗(−KX)−vG is pseudo-effective ⇐⇒ u ∈ [0, 4]. Moreover, if u ∈ [0, 4],
then the Zariski decomposition of the divisor σ∗(−KX)− vG can be described as follows:

P (u) =





1

3
Ê +

4

3
Â+ (4− u)G if 0 6 u 6 1,

1

3
Ê +

5− u

3
Â + (4− u)Gif 1 6 u 6 4,

and

N(u) =





0 if 0 6 u 6 1,

u− 1

3
Â if 1 6 u 6 4,

where P (u) and N(u) are the positive and the negative parts of the Zariski decomposition,
respectively. Using this, we compute

SX(G) =
3

10

∫ 1

0

u3, du+
3

10

∫ 4

1

udu =
93

40
< 3 = AX(G).
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As in the proof of Lemma 2.10, let us use results obtained in [15, § 4] to get a contra-
diction. Namely, applying [15, Corollary 4.18], we get

1 >
AX(F)

SX(F)
> min

{
AX(G)

SX(G)
, inf
Q∈G

δQ
(
G, V G

•,•

)}
= min

{
40

31
, inf
Q∈G

δQ
(
G, V G

•,•

)}
,

where δQ(G, V
G
•,•) is defined in [15, § 4]. So, there is Q ∈ G such that δQ(G, V

G
•,•) <

40
31
.

Let ℓ is a general line in G ∼= P2 that contains Q. Then [15, Corollary 4.18] gives

δQ
(
G, V G

•,•

)
> min

{
1

S
(
V F
•,•; ℓ

) , 1

S
(
W

G,ℓ
•,•,•;Q

)
}
.

Let us compute S(V G
•,•; ℓ) and S(W

G,ℓ
•,•,•;Q). Take v ∈ R>0. Then

P (u)
∣∣
G
− vℓ ∼R

{
(u− v)ℓ if 0 6 u 6 1,

(1− v)ℓ if 1 6 u 6 4.

Let C = Â|G. Then C is a smooth cubic curve in G ∼= P2. Let

N ′(u) = N(u)
∣∣
G
=





0 if 0 6 u 6 1,

u− 1

3
C if 1 6 u 6 4.

Now, using [15, Theorem 4.8], we get

S
(
WG

•,•; ℓ
)
=

3

10

∫ 4

0

∫ ∞

0

vol
(
P (u)

∣∣
G
− vℓ

)
dvdu =

=
3

10

∫ 1

0

∫ u

0

(u− v)2dvdu+
3

10

∫ 4

1

∫ 1

0

(1− v)2dvdu =
13

40
.

Similarly, it follows from [15, Theorem 4.17] that S(WG,ℓ
•,•,•;Q) can be computes as follows:

3

10

∫ 1

0

∫ u

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)2
dvdu+

3

10

∫ 4

1

∫ 1

0

((
P (u)

∣∣
G
− vℓ

)
· ℓ
)2
dvdu+ FQ =

=
3

12

∫ 1

0

∫ u

0

(u− v)2dvdu+
3

10

∫ 4

1

∫ 1

0

(1− v)2dvdu+ FQ =
13

40
+ FQ,

where FQ = 0 if Q 6∈ Â|G, and

FQ =
6

10

∫ 4

1

∫ 1

0

(1− v)(u− 1)

3
dvdu =

9

20

otherwise. This gives S(WG,ℓ
•,•,•;Q) 6

31
40
. Combining the estimates, we get δQ(G, V

G
•,•) >

40
31
,

which is a contradiction. This completes the proof of the lemma. �

Hence, we see that the surface A has Du Val singularities. Let S be a general surface in
the linear system |H| that contains P . Then S is smooth, and −KX−uS ∼R (4−u)H−E.
Thus, the divisor −KX − uS is pseudoeffective ⇐⇒ it is nef ⇐⇒ u 6 1. Then

SX(S) =
3

10

∫ 1

0

(−KX − uS)3du =
3

10

∫ 1

0

u(1− u)(7− u)du =
13

40
< 1.

Let C = A|S. Then C is a reduced curve in |−KS| that is singular at P , and C ∼= π(C).
Moreover, the curve π(C) is a general hyperplane section of the cubic surface π(A) ⊂ P3
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that passes through the point π(P ). Therefore, since π(A) is not a cone by Lemma 4.3,
we conclude that the curve C is irreducible. Hence, one of the following two cases holds:

(1) the curve C has an ordinary node at P ,
(2) the curve C has an ordinary cusp at P .

Let Π = π(S). Then Π is a plane in P3 such that π(P ) ∈ Π and Π∩ π(A) = π(C), and
the morphism π|S : S → Π is a composition of blow ups of 9 intersection points Π ∩ C ,
which we denote by O1, . . . , O9. Note that π(C) is a reduced plane cubic curve that passes
through these nine points, and π(C) is smooth away from π(P ).

Lemma 4.4. The curve C cannot have an ordinary double point at the point P .

Proof. For each i ∈ {1, . . . , 9}, let Li be the proper transform on S of the line in Π that
passes through P and Oi. Then Li 6= Lj for i 6= j, since π(C) is irreducible. We have

(−KX − uS)
∣∣
S
∼R

1− u

6

9∑

i=1

Li

Let σ : Ŝ → S be the blow up of S at the point P , let f be the σ-exceptional curve,

let Ĉ, L̂1, . . . , L̂9 be the proper transforms on Ŝ of the curves C,L1, . . . , L9, respectively.

Then L̂1, . . . , L̂9 are disjoint. On the surface Ŝ, we have f2 = −1 and

Ĉ2 = −4, Ĉ · L̂1 = · · · = Ĉ · L̂9 = 0, Ĉ · f = 2, L̂2
1 = · · · = L̂2

9 = −1, L̂1 · f = · · · = L̂9 · f = 1.

Fix u ∈ [0, 1]. Let v be a non-negative real number. Then

(4.1) σ∗
(
(−KX − uS)

∣∣
S

)
− vf ∼R

5 + u

6
Ĉ +

1− u

6

9∑

i

L̂i +
19− 7u− 6v

6
f .

Thus, the divisor σ∗((−KX−uS)|S)−vf is pseudoeffective ⇐⇒ it is nef ⇐⇒ v 6 19−7u
6

.
Let P (u, v) and N(u, v) be the positive and the negative parts of its Zariski decomposition.
Then, using (4.1), we compute

P (u, v) =





5 + u

6
Ĉ +

1− u

6

9∑

i

L̂i +
19− 7u− 6v

6
f if 0 6 v 6

3− 3u

2
,

19− 7u− 6v

12
Ĉ +

1− u

6

9∑

i

L̂i +
19− 7u− 6v

6
f if

3− 3u

2
6 v 6 3− u,

19− 7u− 6v

12

(
Ĉ + 2

9∑

i

L̂i + 2f
)
if 3− u 6 v 6

19− 7u

6
,

N(u, v) =





0 if 0 6 v 6
3− 3u

2
,

−3 + 3u+ 2v

4
Ĉ if

3− 3u

2
6 v 6 3− u,

2v + 3u− 3

4
Ĉ + (v + u− 3)

9∑

i

L̂i if 3− u 6 v 6
19− 7u

6
,
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vol
(
σ∗
(
(−KX − uS)

∣∣
S

)
− vf

)
=





(1− u)(7− u)− v2 if 0 6 v 6
3− 3u

2
,

(1− u)(37− 13u− 12v)

4
if
3− 3u

2
6 v 6 3− u,

(19− 7u− 6v)2

4
if 3− u 6 v 6

19− 7u

6
,

P (u, v) · f =





v if 0 6 v 6
3− 3u

2
,

3(1− u)

2
if
3− 3u

2
6 v 6 3− u,

3(19− 7u− 6v)

2
if 3− u 6 v 6

19− 7u

6
.

Now, using [3, Corollary 1.7.26], we get

S
(
W Ŝ

•,•; f
)
=

3

10

∫ 1

0

∫ 19−7u
6

0

vol
(
σ∗
(
(−KX − uS)

∣∣
S

)
− vf

)
dudv =

=
3

10

∫ 1

0

∫ 3−3u
2

0

(
(1− u)(7− u)− v2

)
dv +

3

10

∫ 1

0

∫ 3−u

3−3u
2

(1− u)(37− 13u− 12v)

4
dv+

+
3

10

∫ 1

0

∫ 19−7u
6

3−u

(19− 7u− 6v)2

4
dvdu =

767

480
< 2 = AS(f).

Moreover, if Q is a point in f , then [3, Remark 1.7.32] gives

S
(
W Ŝ,f

•,•,•;Q
)
= FQ +

3

10

∫ 1

0

∫ 19−7u
6

0

(
P (u, v) · f

)2
dvdu = FQ +

3

10

∫ 1

0

∫ 3−3u
2

0

v2dv+

+
3

10

∫ 1

0

∫ 3−u

3−3u
2

(
3(1− u)

2

)2

dv+
3

10

∫ 1

0

∫ 19−7u
6

3−u

(
3(19− 7u− 6v)

2

)2

dvdu = FQ+
147

320
,

where

FQ =
6

10

∫ 1

0

∫ 19−7u
6

0

(
P (u, v) · f

)
ordQ

(
N(u, v)

∣∣
f

)
dvdu,

which implies the following assertions:

• if Q 6∈ Ĉ ∪ L̂1 ∪ · · · ∪ L̂9, then FQ = 0;

• if Q ∈ L̂1 ∪ · · · ∪ L̂9, then

FQ =
6

10

∫ 1

0

∫ 19−7u
6

3−u

3(19− 7u− 6v)(v + u− 3)

2
dvdu =

1

960
;

• if Q ∈ Ĉ and Ĉ intersects f transversally at P , then

FQ =
6

10

∫ 1

0

∫ 3−u

3−3u
2

3(1− u)(2v + 3u− 3)

8
dvdu+

6

10

∫ 1

0

∫ 19−7u
6

3−u

3(19− 7u− 6v)(2v + 3u− 3)

8
dvdu =

643

1920
;

• if Q ∈ Ĉ and Ĉ is tangent to f at the point P , then FQ = 643
960

.
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Thus, if C has a node at P , then S(W Ŝ,f
•,•,•;Q) 6

305
384

, so [3, Remark 1.7.32] gives

1 >
AX(F)

SX(F)
> min

{
inf
Q∈f

1

S(W Ŝ,f
•,•,•;Q)

,
2

S(V S
•,•; f)

,
1

SX(S)

}
> min

{
384

305
,
960

767
,
40

13

}
=

960

767
> 1,

which is a contradiction. This shows that C has a cusp at P . �

Lemma 4.5. The curve C cannot have an ordinary cusp at the point P .

Proof. Suppose C has a cusp. Let L be an irreducible curve in S such that π(L) is a line
and π(L) ∩ π(C) = π(P ). Then (−KX − uS)|S ∼R (1− u)L+ C.

Now, we consider the following commutative diagram:

S1

σ1
��

S2
σ2

oo S3
σ3

oo

υ
��

S Ŝ
σ

oo

where σ1 is the blow up of P , σ2 is the blow up of the point in the σ1-exceptional curve
contained in the proper transform of C, σ3 is the blow up of the point in the σ2-exceptional
curve contained in the proper transform of C, υ is the birational contraction of the proper
transforms of σ1 ◦ σ2-exceptional curves, and σ is the birational contraction of the proper

transform of the σ3-exceptional curve. Then Ŝ has two singular points:

(1) a cyclic quotient singularity of type 1
2
(1, 1), which we denote by Q2;

(2) a cyclic quotient singularity of type 1
3
(1, 1), which we denote by Q3.

Let f be the σ-exceptional curve, let Ĉ be the proper transform on Ŝ of the curve C,

and let L̂ be the proper transform of the curve L. Then the curves f , Ĉ, L̂ are smooth.

Moreover, it is not very difficult to check that Q2 ∈ f ∋ Q3, Q2 6∈ Ĉ 6∋ Q3, Q2 ∈ L̂ 6∋ Q2.
Further, we have AS(f) = 5, σ∗(C) ∼ Ĉ + 6f , σ∗(L) ∼ L̂+ 3f . On the surface Ŝ, we have

L̂2 = −
1

2
, L̂ · Ĉ = 0, Ĉ · f =

1

2
, Ĉ2 = −6, Ĉ · f = 1, f2 = −

1

6
.

Note that Q2 = f ∩ L̂, and Ĉ intersects f transversally by one point.
Fix u ∈ [0, 1]. Let v be a non-negative real number. Then

(4.2) σ∗
(
(−KX − uS)

∣∣
S

)
− vf ∼R (1− u)L̂+ Ĉ + (9− 3u− v)f .

Thus, the divisor σ∗((−KX−uS)|S)−vf is pseudoeffective ⇐⇒ it is nef ⇐⇒ v 6 9−3u.
Let P (u, v) and N(u, v) be the positive and the negative parts of its Zariski decomposition.
Then using (4.2), we compute

P (u, v) =





(1− u)L̂+ Ĉ + (9− 3u− v)f if 0 6 v 6 3− 3u,

(1− u)L̂+
9− 3u− v

6
Ĉ + (9− 3u− v)f if 3− 3u 6 v 6 8− 2u,

9− 3u− v

6

(
6L̂+ Ĉ + 6f

)
if 8− 2u 6 v 6 9− 3u,
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and

N(u, v) =





0 if 0 6 v 6 3− 3u,

v + 3u− 3

6
Ĉ if 3− 3u 6 v 6 8− 2u,

v + 3u− 3

6
Ĉ + (v + 2u− 8)L̂ if 8− 2u 6 v 6 9− 3u.

This gives

vol
(
σ∗
(
(−KX − uS)

∣∣
S

)
− vf

)
=





(1− u)(7− u)−
v2

6
if 0 6 v 6 3− 3u,

(1− u)(17− 5u− 2v)

2
if 3− 3u 6 v 6 8− 2u,

(9− 3u− v)2

2
if 8− 2u 6 v 6 9− 3u,

and

P (u, v) · f =





v

6
if 0 6 v 6 3− 3u,

1− u

2
if 3− 3u 6 v 6 8− 2u,

9− 3u− v

2
if 8− 2u 6 v 6 9− 3u.

Now, we use [3, Corollary 1.7.26] to get

S
(
W Ŝ

•,•; f
)
=

3

10

∫ 1

0

∫ 3−3u

0

(
(1− u)(7− u)−

v2

6

)
dv+

+
3

10

∫ 1

0

∫ 8−2u

3−3u

(1− u)(17− 5u− 2v)

2
dv +

3

10

∫ 1

0

∫ 9−3u

8−2u

(9− 3u− v)2

2
dvdu =

173

40
.

Similarly, if Q is a point in f , then [3, Remark 1.7.32] gives

S
(
W Ŝ,f

•,•,•;Q
)
= FQ +

3

10

∫ 1

0

∫ 9−3u

0

(
P (u, v) · f

)2
dvdu =

= FQ +
3

10

∫ 1

0

∫ 3−3u

0

(v
6

)2
dvdu+

3

10

∫ 1

0

∫ 8−2u

3−3u

(1− u

2

)2
dvdu+

+
3

10

∫ 1

0

∫ 9−3u

8−2u

(9− 3u− v

2

)2
dvdu = FQ +

5

32
,

where FQ can be computes as follows:

• if Q 6= Ĉ ∩ f and Q 6= L̂ ∩ f , then FQ = 0;

• if Q = L̂ ∩ f , then

FQ =
6

10

∫ 1

0

∫ 9−3u

8−2u

(9− 3u− v)(v + 2u− 8)

2
dvdu =

1

80
;
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• if Q = Ĉ ∩ f , then

FQ =
6

10

∫ 1

0

∫ 8−2u

3−3u

(1− u)(v + 3u− 3)

12
dv+

+
6

10

∫ 1

0

∫ 9−3u

8−2u

(9− 3u− v)(v + 3u− 3)

12
dudv =

193

480
.

Therefore, we conclude that

S
(
W Ŝ,f

•,•,•;Q
)
=





5

32
if Q 6∈ Ĉ ∪ L̂,

27

80
if Q = L̂ ∩ f ,

67

120
if Q = Ĉ ∩ f .

Let ∆f =
1
2
Q2 +

2
3
Q3. Then, using [3, Remark 1.7.32] and our computations, we get

1 >
AX(F)

SX(F)
> min

{
inf
Q∈f

1− ordQ
(
∆f

)

S(W Ŝ,f
•,•,•;Q)

,
5

S(V S
•,•; f)

,
1

SX(S)

}
> min

{
40

13
,
200

173
,
120

67

}
=

200

173
> 1,

which is a contradiction. �

Combining Lemmas 4.4 and 4.5, we obtain a contradiction.

Corollary 4.6. All smooth Fano threefolds in the family №2.4 are K-stable.

5. Family №2.6 (Verra threefolds)

Smooth Fano threefolds in the family №2.6 can be described as follows:

(a) smooth divisors of degree (2, 2) in P2 × P2, which are known as Verra threefolds,
(b) double covers of the (unique) smooth divisor in P2 × P2 of degree (1, 1) branched

over smooth anticanonical K3 surfaces.

Note that every double cover of the smooth divisor in P2 × P2 of degree (1, 1) branched
over a smooth anticanonical surface is K-stable [13, Example 4.4]. In fact, this also implies
that general Verra threefold is K-stable [3, Example 3.5.8].

The goal of this section is to prove that all smooth Verra threefolds are K-stable.
Let X be a smooth divisor of degree (2, 2) in P2×P2, let π1 : X → P2 be the projection

to the first factor of P2 × P2, and let π2 : X → P2 be the projection to the second factor.
Then π1 and π2 are conic bundles [18]. Set H1 = π∗

1(OP2(1)) and H2 = π∗
2(OP2(1)). Then

−KX ∼ H1 +H2,

and the group Pic(X) is generated by H1 andH2. Note that the group Aut(X) is finite [9].
Thus, the threefold X is K-stable ⇐⇒ it is K-polystable. See [19] for details.

Lemma 5.1. Fix a point P ∈ X. Let C1 be the fiber of the conic bundle π1 that contains P ,
and let C2 be the fiber of the conic bundle π2 contains P . Then C1 or C2 is smooth at P .

Proof. Local computations. �
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Let ∆1 and ∆2 be the discriminant curves of the conic bundles π1 and π2, respectively.
Then ∆1 and ∆2 are reduced curves of degree 6 that have at most ordinary double points
as singularities. For basic properties of the discriminant curves ∆1 and ∆2, see [18, § 3.8].
In particular, we know that no line in P2 can be an irreducible component of these curves.

Lemma 5.2. Fix a point P ∈ X. Let C2 be the fiber of the conic bundle π2 that contains P ,
let S be a general surface in |H2| that contains C2. Then one of the following cases holds:

(1) C2 is smooth, S is smooth, the divisor −KS is ample;
(2) C2 is smooth, S is smooth, the divisor −KS is nef, the surface S has exactly four

irreducible curves that have trivial intersection with the divisor −KS, these curves
are disjoint and none of them passes through P , and C2 ⊂ Sing(π−1

1 (∆1));
(3) C2 is singular and reduced, S is smooth, the divisor −KS is ample;
(4) C2 is not reduced, P 6∈ Sing(S) ⊂ Supp(C2), and Sing(S) consists of two points,

which are ordinary double points of the surface S, and −KS is ample.

Proof. The assertion about the singularities of the surface S are local and well-known.
We have −KS ∼ H1|S and K2

S = 2, so S is a weak del Pezzo surface of degree 2, and
the restriction π1|S : S → P2 is the anticanonical morphism. Let ℓ be an irreducible curve
in the surface S such that

−KS · ℓ = 0.

Then ℓ is an irreducible component of the fiber π−1
1 (π1(ℓ)). But π2(ℓ) is the line π2(S),

which implies that the scheme fiber π−1
1 (π1(ℓ)) is singular, which implies that π1(ℓ) ∈ ∆1.

Since ℓ1 ∩ C2 6= ∅ and π2(S) is a general line in P2 that passes through the point π2(P ),
we see that π1(C2) ⊂ ∆1. This implies that C2 is irreducible and reduced.

Let R = π−1
1 (π1(C2)). Then the surface R is singular along a curve that is isomorphic

to the conic π1(C2) ∼= C2. Let f : R̃ → R be the blow up of this curve. Then R̃ is smooth,

and the composition morphism π1 ◦ f induces a P1-bundle R̃ → C̃2, where C̃2 is double
cover of the conic π1(C2) that is branched over the eight points π1(C2) ∩ (∆1 − π1(C2)).

In particular, we see that C̃2 is an irrational curve, which implies that C2 = Sing(R̃).
Vice versa, if the fiber C2 is a smooth conic, and the conic π1(C2) is an irreducible

component of the discriminant curve ∆1, then it follows from the Bertini theorem that

S · π−1
1 (π1(C2)) = 2C2 + ℓ1 + ℓ2 + · · ·+ ℓk

where ℓ1, ℓ2, . . . , ℓk are k distinct irreducible reduced curves in X that are irreducible
components of the fibers of the natural projection π−1

1 (π1(C2)) → π1(C2). Since

4 = 2H2
2 ·H1 = H2 · S · π−1

1 (π1(C2)) = H2 ·
(
2C2 +

k∑

i=1

ℓi

)
= k,

we see that S contains exactly 4 irreducible curves that intersects trivially with −KS .
Now, the generality in the choice of S implies that none of these curves contains P . �

Example 5.3. Actually, the case (2) in Lemma 5.2 can happen. Indeed, in the assumption
and notations of Lemma 5.2, let P = ([0 : 0 : 1], [0 : 0 : 1]), and suppose that X is given by

(u2 + 2uw + v2 + 2w2)x2 + (uv − w2)xy + (uw − 2uv + 3v2 + w2)y2 + (uw + v2)z2 = 0,

where ([u : v : w], [x : y : z]) are coordinates on P2 ×P2. Then the threefold X is smooth.
For instance, this can be checked using the following Magma script:
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Q:=RationalField();

PxP<x,y,z,u,v,w>:=ProductProjectiveSpace(Q,[2,2]);

X:=Scheme(PxP,[(u^2+2*u*w+v^2+2*w^2)*x^2+(u*v-w^2)*x*y+

((-2*v+w)*u+3*v^2+w^2)*y^2+(u*w+v^2)*z^2]);

IsNonsingular(X);

Observe that the fiber C1 is a singular reduced curve given by u = v = 2x2−xy+ y2 = 0,
the fiber C2 is a smooth curve that is given by x = y = uw+ v2 = 0, and the discriminant
curve ∆1 is a union of the conic π1(C2) and the irreducible quartic plane curve given by

8u3v − 4u3w − 11u2v2 + 16u2vw − 12u2w2 + 8uv3−

− 28uv2w + 14uvw2 − 16uw3 − 12v4 − 28v2w2 − 7w4 = 0.

As in case (2) in Lemma 5.2, we have C2 = Sing(π−1
1 (π1(C2))).

Let us prove that X is K-stable. Suppose it is not. Using the valuative criterion [14, 16],
we see that there exists a prime divisor F over X such that

β(F) = AX(F)− SX(F) 6 0.

Let Z be the center of the divisor F on X . Then Z is not a surface by [3, Theorem 3.7.1].
Let P be any point in Z, let C1 be the fiber of the conic bundle π1 that contains P ,

and let C2 be the fiber of the conic bundle π2 that contains P . By Lemma 5.1, at least
one curve among C1 or C2 is smooth at P . We may assume that C2 is smooth at P .

Let S be a general surface in |H2| that contains C2. Then S is smooth by Lemma 5.2.
Moreover, one of the following three cases holds:

(1) C2 is smooth, the divisor −KS is ample;
(2) C2 is smooth, π1(C2) ⊂ ∆1, the divisor −KS is nef, the surface S has exactly four

irreducible curves that have trivial intersection with the divisor −KS, these curves
are disjoint and none of them passes through P ;

(3) C2 is singular and reduced, the divisor −KS is ample.

Let C be the curve in X that is defined as follows:

• if C2 is smooth and irreducible, we let C = C2.
• if C2 is reducible, we let C be its irreducible component that contains P .

Note that −KS ∼ H1|S and K2
S = 2. Let η : S → P2 be the restriction morphism π1|S.

Then η is an anticanonical morphism of the surface S, which is generically two-to-one.
Hence, the morphism η induces an involution τ ∈ Aut(S). We let C ′ = τ(C).

Now, let u be a non-negative real number. Then we have −KX−uS ∼R H1+(1−u)H2,
so the divisor −KX−uS is nef ⇐⇒ it is pseudoeffective ⇐⇒ u 6 1. Then SX(S) =

5
12
.

Now, let us use notations introduced in [3, § 1.7]. Using [3, Theorem 1.7.30], we get

1 >
AX(F)

SX(F)
> min

{
1

SX(S)
,

1

S(W S
•,•;C)

,
1

S(W S,C
•,•,•;P )

}
,

where S(W S
•,•;C) and S(W

S,C
•,•,•;P ) are defined in [3, § 1.7]. Hence, since SX(S) < 1, we get

(5.1) max
{
S(W S

•,•;C), S(W
S,C
•,•,•;P )

}
> 1.

Moreover, if Z = P , then it also follows from [3, Theorem 1.7.30] that

(5.2) max
{
S(W S

•,•;C), S(W
S,C
•,•,•;P )

}
> 1.
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Let us estimate S(W S
•,•;C) and S(W

S,C
•,•,•;P ) using results obtained in [3, § 1.7].

Let P (u) = −KX − uS. Then [3, Corollary 1.7.26] gives

S
(
W S

•,•;C
)
=

1

4

∫ 1

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu,

Let P (u, v) be the positive part of the Zariski decomposition of the divisor P (u)|S − vC,
and let N(u, v) be its negative part, where u ∈ [0, 1] and v ∈ R>0. Then

S
(
W S,C

•,•,•;P
)
= FP +

1

4

∫ 1

0

∫ ∞

0

(
P (u, v) · C

)2
dvdu

by [3, Theorem 1.7.30], where

FP =
1

2

∫ 1

0

∫ ∞

0

(
P (u, v) · C

)
ordP

(
N(u, v)

∣∣
C

)
dvdu.

Lemma 5.4. Suppose that C2 is smooth, and −KS is ample. Then

S(W S
•,•;C) =

13

24
,

S(W S,C
•,•,•;P ) = 1.

Proof. We have C · C ′ = 4 and (C ′)2 = C2 = 0. Fix u ∈ [0, 1] and v ∈ R>0. Then

P (u)|S − vC ∼Q

(3
2
− u− v

)
C +

1

2
C ′.

which implies that P (u)|S−vC is pseudoeffective ⇐⇒ P (u)|S−vC is nef ⇐⇒ v 6 3
2
−u.

If 0 6 u 6 1 and 0 6 v 6 3
2
− u, then P (u, v) = (3

2
− u− v)C + 1

2
C ′ and N(u, v) = 0, so

S
(
W S

•,•;C
)
=

1

4

∫ 1

0

∫ 3

2
−u

0

((3
2
−u−v)C+

1

2
C ′

)2

dvdu =
1

4

∫ 1

0

∫ 3

2
−u

0

6−4u−4v dvdu =
13

24
.

Similarly, we see that FP = 0 and P (u, v) · C = 2, which gives S(W S,C
•,•,•;P ) = 1. �

Lemma 5.5. Suppose that C2 is smooth, −KS is not ample. Then

S(W S
•,•;C) =

7

12
,

S(W S,C
•,•,•;P ) =

5

6
.

Proof. In this case, we have the following commutative diagram:

S
φ

����
��
��
�� η

��
❄❄

❄❄
❄❄

❄❄

S
π

// P2

where φ is a birational map that contracts four disjoint (−2)-curves, and S is a del Pezzo
surface of degree 2 that has 4 isolated ordinary double points, and π is a double cover
that is ramified in a reducible quartic curve that is a union of two irreducible conics such
that η(C) is one of these two conics. In particular, we have C = τ(C).

Let E1, E2, E3, E4 be the φ-exceptional curves. Fix u ∈ [0, 1] and v ∈ R>0. Then

P (u)|S − vC ∼Q (2− u− v)C +
1

2
(E1 + E2 + E3 + E4)
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so the divisor P (u)|S − vC is pseudoeffective ⇐⇒ v 6 2− u. Moreover, we have

P (u, v) =





(2− u− v)C +
1

2
(E1 + E2 + E3 + E4) if 0 6 v 6 1− u,

(2− u− v)
(
C +

1

2
(E1 + E2 + E3 + E4)

)
if 1− u 6 v 6 2− u,

N(u, v) =





0 if 0 6 v 6 1− u,

u+ v − 1

2
(E1 + E2 + E3 + E4) if 1− u 6 v 6 2− u,

vol
(
P (u)|S − vC

)
=

{
(6− 4u)− 4 if 0 6 v 6 1− u,

2(2− u− v)2 if 1− u 6 v 6 2− u.

Now, integrating vol(P (u)|S − vC), we obtain S(W S
•,•;C) =

7
12
.

To compute S(W S,C
•,•,•;P ), we first observe that FP = 0, because P 6∈ E1 ∪E2 ∪E3 ∪E4,

since S is a general surface in |H2| that contains C2. On the other hand, we have

P (u, v) · C =

{
2 if 0 6 v 6 1− u,

4− 2u− 2v if 1− u 6 v 6 2− u.

Hence, integrating (P (u, v) · C)2, we get S(W S,C
•,•,•;P ) =

5
6
as required. �

Lemma 5.6. Suppose that C2 is singular. Then

S(W S
•,•;C) =

3

4
,

S(W S,C
•,•,•;P ) 6

11

12
.

Proof. The curve C2 consists of two irreducible components: the curve C and another
curve, which we denote by L. The curves C and L are smooth and intersects transversally
at one point. Note that P 6= C ∩ L, since C2 is smooth at the point P by assumption.

The intersections of the curves C, L and C ′ = τ(C) on S are given in the table below.

• C L C ′

C −1 1 2

L 1 −1 0

C ′ 2 0 −1

Fix u ∈ [0, 1] and v ∈ R>0. Since C + C ′ ∼ −KS , we have

P (u)|S − vC ∼Q (2− u− v)C + (1− u)L+ C ′,

so P (u)|S − vC is pseudoeffective ⇐⇒ v 6 2− u. Moreover, if 0 6 u 6 1
2
, then

P (u, v) =





(2− u− v)C + (1− u)L+ C ′ if 0 6 v 6 1,

(2− u− v)(C + L) + C ′ if 1 6 v 6
3

2
− u,

(2− u− v)(C + L+ C ′) if
3

2
− u 6 v 6 2− u,
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N(u, v) =





0 if 0 6 v 6 1,

(v − 1)L if 1 6 v 6
3

2
− u,

(v − 1)L+ (2v + 2u− 3)C ′ if
3

2
− u 6 v 6 2− u,

vol
(
P (u)|S − vC

)
=





6− v2 − 4u− 2v if 0 6 v 6 1,

7− 4u− 4v if 1 6 v 6
3

2
− u,

4(u+ v − 2)2 if
3

2
− u 6 v 6 2− u.

Similarly, if 1
2
6 u 6 1, then

P (u, v) =





(2− u− v)C + (1− u)L+ C ′ if 0 6 v 6
3

2
− u,

(2− u− v)(C + 2C ′) + (1− u)L if
3

2
− u 6 v 6 1,

(2− u− v)(C + L+ C ′) if 1 6 v 6 2− u,

N(u, v) =





0 if 0 6 v 6
3

2
− u,

(2v + 2u− 3)C ′ if
3

2
− u 6 v 6 1,

(v − 1)L+ (2v + 2u− 3)C ′ if 1 6 v 6 2− u,

vol
(
P (u)|S − vC

)
=





6− v2 − 4u− 2v if 0 6 v 6
3

2
− u,

(5− 2u− 3v)(3− 2u− v) if
3

2
− u 6 v 6 1,

4(u+ v − 2)2 if 1 6 v 6 2− u.

Hence, integrating vol(P (u)|S − vC), we get S(W S
•,•;C) =

3
4
.

Now, let us compute S(W S,C
•,•,•;P ). If 0 6 u 6 1

2
, then

P (u, v) · C =





1 + v if 0 6 v 6 1,

2 if 1 6 v 6
3

2
− u,

8− 4u− 4v if
3

2
− u 6 v 6 2− u.

Similarly, if 1
2
6 u 6 1, then

P (u, v) · C =





1 + v if 0 6 v 6
3

2
− u,

7− 4u− 3v if
3

2
− u 6 v 6 1,

8− 4u− 4v if 1 6 v 6 2− u.

Then, integrating, we get S(W S,C
•,•,•;P ) =

145
192

+FP . To compute FP , let us recall that P 6∈ L.

Hence, if P 6∈ C ′, then FP = 0, which implies that S(W S,C
•,•,•;P ) =

145
192

< 11
12

as required.
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We may assume that P ∈ C ∩ C ′. If C ′ intersects C transversally at P , then

ordP

(
N(u, v)

∣∣
C

)
=





0 if 0 6 v
3

2
− u,

2u+ 2v − 3 if
3

2
− u 6 v 6 2− u,

which gives

FP =
1

2

∫ 1

2

0

∫ 2−u

3

2
−u

(8− 4u− 4v)(2u+ 2v − 3)dvdu+

+
1

2

∫ 1

1

2

∫ 3

2
−u

1

(7−4u−3v)(2u+2v−3)dvdu+
1

2

∫ 1

1

2

∫ 2−u

3

2
−u

(8−4u−4v)(2u+2v−3)dvdu =
31

384
,

so S(W S,C
•,•,•;P ) =

145
192

+ 31
384

= 107
128

< 11
12
. If C ′ is tangent to C at the point P , then

ordP

(
N(u, v)

∣∣
C

)
=





0 if 0 6 v
3

2
− u,

2(2u+ 2v − 3) if
3

2
− u 6 v 6 2− u,

which gives FP = 31
192

, so S(W S,C
•,• ;P ) = 145

192
+ 31

192
= 11

12
. �

Now, using (5.2) and Lemmas 5.4, 5.5, 5.6, we see that Z is a curve.

Lemma 5.7. One has H1 · Z > 1 and H2 · Z > 1.

Proof. If H2 · Z = 0, then Z = C, which is impossible by (5.1) and Lemmas 5.4, 5.5, 5.6.
Hence, we see that H2 · Z > 1 and π2(Z) is a curve. Let us show that H1 · Z > 1.

Suppose that H1 · Z = 0. Then Z must be an irreducible component of the curve C1.
If C1 is reduced, then arguing exactly as in the proofs of Lemmas 5.4, 5.5, 5.6, we obtain
a contradiction with [3, Corollary 1.7.26]. Thus, we see that C1 is not reduced.

So far, the point P was a point in Z. Let us choose P ∈ Z such that π2(P ) ∈ π2(Z)∩∆2.
Then C2 is singular. But it is smooth at P by Lemma 5.1, which fits our assumption above.
Then S(W S

•,•;C) =
3
4
and S(W S,C

•,•,•;P ) 6
11
12

by Lemma 5.6, which contradicts (5.1). �

Both π1(Z) and π2(Z) are curves. Similar to what we did in the proof of Lemma 5.7,
let us choose the point P ∈ Z such that π1(P ) ∈ ∆1. Then C1 is singular at P , which
implies that C2 is smooth at P by Lemma 5.1. Now, using (5.1) and Lemmas 5.5 and 5.6,
we see that C = C2, the curve C2 is smooth, the divisor −KS is ample.

We see that S is a del Pezzo surface, and η : S → P2 is a double cover ramified in
a smooth quartic curve, so we are almost in the same position as in the proof of Lemma 5.4.
But now, we have one small advantage: the point η(P ) is contained in the ramification
divisor of the double cover η, because C1 is singular at P . Then |−KS| contains a unique
curve that is singular at P . Denote this curve by R. We have the following possibilities:

(a) R is an irreducible curve that has a nodal singularity at P ;
(b) R is an irreducible curve that has a cuspidal singularity at P ;
(c) R = R1 +R2 for two (−1)-curves in S that intersect transversally at P ;
(d) R = R1 +R2 for two (−1)-curves in S that are tangent at P .
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Let f : S̃ → S be the blow up of the point P . Denote by R̃ and C̃ the proper transforms

on the surface S̃ of the curves R and C, respectively. Fix u ∈ [0, 1] and v ∈ R>0. Then

f ∗
(
P (u)|S

)
− vE ∼Q R̃ + (1− u)C̃ + (3− u− v)E.

Let P̃ (u, v) be the positive part of the Zariski decomposition of R̃+(1−u)C̃+(3−u−v)E,

and let Ñ(u, v) its negative part. Then it follows from [3, Remark 1.7.32] that

(5.3) 1 >
AX(F)

SX(F)
> min

{
1

SX(S)
,

2

S(W S̃
•,•;E)

, inf
O∈E

1

S(W S̃,E
•,•,•;O)

}
,

where S(W S̃
•,•;E) and S(W

S̃,E
•,•,•;O) are defined in [3] similar to S(W S

•,•;C) and S(W
S,C
•,•,•;P ).

These two numbers can be computed using [3, Remark 1.7.32]. Namely, we have

S
(
W S̃

•,•;E
)
=

1

4

∫ 1

0

∫ ∞

0

(
P̃ (u, v)

)2
dvdu

and

S
(
W S̃,E

•,•,•;O
)
=

1

4

∫ 1

0

∫ ∞

0

((
P̃ (u, v) · E

))2
dvdu+ FO,

where O is a point in E and

FO =
1

2

∫ 1

0

∫ ∞

0

(
P̃ (u, v) · E

)
ordO

(
Ñ(u, v)

∣∣
E

)
dvdu.

Let us use these formulas to estimate S(W S̃
•,•;E) and S(W

S̃,E
•,•,•;O).

If the curve R is irreducible, the intersections of the curves C̃, R̃, E can be computed

as follows: C̃2 = −1, C̃ · R̃ = 0, C̃ ·E = 1, R̃2 = −2, R̃ ·E = 2, E2 = −1. If R is reducible,

then R̃ = R̃1 + R̃2 for two smooth irreducible curves R̃1 + R̃2 such that the intersection
form of the curves C̃, R̃1, R̃1 and E is given in the following table:

• C̃ R̃1 R̃1 E

C̃ −1 0 0 1

R̃1 0 −2 1 1

R̃1 0 1 −2 1

E 1 1 1 −1

Then R̃+ (1− u)C̃ + (3− u− v)E is pseudoeffective ⇐⇒ v 6 3− u. Moreover, we have

P̃ (u, v) =





R̃ + (1− u)C̃ + (3− u− v)E if 0 6 v 6 2− u,

(1− u)C̃ + (3− u− v)(E + R̃) if 2− u 6 v 6 2,

(3− u− v)(E + R̃ + C̃) if 2 6 v 6 3− u,

Ñ(u, v) =





0 if 0 6 v 6 2− u,

(v + u− 2)R̃ if 2− u 6 v 6 2,

(v + u− 2)R̃ + (v − 2)C̃ if 2 6 v 6 3− u,
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(
P̃ (u, v)

)2
=





6− v2 − 4u if 0 6 v 6 2− u,

14 + 2u2 + 4uv + v2 − 12u− 8v if 2− u 6 v 6 2,

2(3− u− v)2 if 2 6 v 6 3− u,

Now, integrating, we obtain S(W S̃
•,•;E) =

17
12
.

Fix a point O ∈ E. To estimate S(W S̃,E
•,•,•;O), first we observe that

P̃ (u, v) · E =





v if 0 6 v 6 2− u,

4− 2u− v if 2− u 6 v 6 2,

6− 2u− 2v if 2 6 v 6 3− u.

Therefore, integrating (P̃ (u, v) · E)2, we obtain S(W Y,S̃
•,•,•;O) =

13
24

+ FO.

If O 6∈ C̃ ∪ R̃, then FO = 0. Similarly, if O ∈ C̃, then O 6∈ R̃, which gives

FO =
1

2

∫ 1

0

∫ 3−u

2

(6− 2u− 2v)(v − 2)dvdu =
1

24
.

Finally, if O ∈ R̃, then O 6∈ C̃, which gives

FO 6
1

2

∫ 1

0

∫ 2

2−u

2(4−2u−v)(v+u−2)dvdu+
1

2

∫ 1

0

∫ 3−u

2

2(6−2u−2v)(v+u−2)dvdu =
7

24
.

Summarizing, we get S(W S̃,E
•,•,•;O) 6 5

6
for every point O ∈ E, which contradicts (5.3),

because SX(S) =
5
12

and S(W S̃
•,•;E) =

17
12
< 2. This shows that X is K-stable.

Corollary 5.8. All smooth Fano threefolds in the family №2.6 are K-stable.

6. Family №2.7

Now, let us fix three smooth quadric hypersurfaces Q, Q′ and Q′′ in P4 such that
their intersection is a smooth curve of degree 8 and genus 5. We set C = Q ∩ Q′ ∩ Q′′.
Let π : X → Q be the blow up of the smooth curve C . Then X is a smooth Fano threefold,
which is contained in the family №2.7. Moreover, all smooth Fano threefolds in this family
can be obtained in this way. Note that −K3

X = 14 and Aut(X) is finite [9].
The pencil generated by the surfaces Q′|Q and Q′′|Q gives a rational map Q 99K P1,

which fits the following commutative diagram:

X
π

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ φ

  ❆
❆❆

❆❆
❆❆

❆

Q //❴❴❴❴❴❴❴ P1

where φ is a fibration into quartic del Pezzo surfaces. Let E be the π-exceptional surface,
and let H = π∗(OP4(1)|Q). Then −KX ∼ 3H −E, the morphism φ is given by the linear
system |2H −E|, and E ∼= C × P1.

Lemma 6.1. Let S be a fiber of the morphism φ. Then S has at most Du Val singularities.

Proof. Since E|S is a smooth curve, the surface S is smooth along E|S, which implies that
it has at most isolated singularities. Hence, we conclude that S is normal and irreducible.

Note that S ∼= π(S). Suppose that the singularities of the surface π(S) are not Du Val.
Then it follows from [5, Theorem 1] that π(S) is a cone in P4 over a quartic elliptic curve.
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Let P be the vertex of the cone π(S), and let TP be the hyperplane section of the quadric
hypersurface Q that is singular at P . Then TP contains all lines in Q that pass through P ,
which implies that TP contains π(S). This is impossible, since TP is a quadric cone. �

The goal of this section is to prove that X is K-stable. To do this, we fix a point P ∈ X .
By [14, 16], to prove that X is K-stable, it is enough to show that δP (X) > 1.

Let S be the fiber of the morphism φ containing P . Then S is a quartic del Pezzo surface,
and S has at most Du Val singularity at P by Lemma 6.1. Moreover, if S is singular at P ,
then P is a singular point of the surface S of type A1, A2, A3, A4, D4 or D5, see [11].

Lemma 6.2. If δP (S) >
54
55

or P ∈ Sing(S) and δP (S) >
27
28
, then δP (X) > 1.

Proof. Take u ∈ R>0. Since S ∼ 2H −E, we have

−KX − uS ∼R (3− 2u)H − (u− 1)E ∼R

(3
2
− u
)
S +

1

2
E.

Using this, we conclude that the divisor −KX−uS is pseudoeffective if and only if u 6 3
2
.

For u 6 3
2
, let P (u) be the positive part of Zariski decomposition of the divisor −KX−uS,

and let N(u) be the negative part of Zariski decomposition of the divisor −KX−uS. Then

P (u) =





−KX − uS if 0 6 u 6 1,

(3− 2u)H if 1 6 u 6
3

2
,

and

N(u) =





0 if 0 6 u 6 1,

(u− 1)E if 1 6 u 6
3

2
.

This gives

SX(S) =
1

14

∫ 3

2

0

(
P (u)

)3
du =

1

14

∫ 1

0

(14− 12u)du+
1

14

∫ 3

2

1

2(3− 2u)3du =
33

56
< 1.

Now, using [1, Theorem 3.3] and [3, Corollary 1.7.30], we get

(6.1) δP (X) > min





1

SX(S)
, inf

F/S
P∈CS(F )

AS(F )

S(W S
•,•;F )



 ,

where the infimum is taken by all prime divisors F over the surface S such that P ∈ CS(F ),
and S(W S

•,•;F ) can be computed using [3, Corollary 1.7.24] as follows:

S
(
W S

•,•;F
)
=

3

14

∫ 3

2

0

(
P (u)

∣∣
S

)2
ordF

(
N(u)

∣∣
S

)
du+

3

14

∫ 3

2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vF

)
dvdu.

Let ES = E|S. Then ES ∈ | − 2KS| and ES ∼= C . Moreover, the surface S is smooth
in a neighborhood of the curve ES. Furthermore, we have

P (u)
∣∣
S
=





−KS if 0 6 u 6 1,

(3− 2u)(−KS) if 1 6 u 6
3

2
,
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and

N(u)
∣∣
S
=





0 if 0 6 u 6 1,

(u− 1)ES if 1 6 u 6
3

2
.

Let F be any prime divisor over S such that P ∈ CS(F ). Then

S
(
W S

•,•;F
)
=

3

14

∫ 3

2

1

4(u− 1)(3− 2u)2ordF
(
ES
)
du+

+
3

14

∫ 1

0

∫ ∞

0

vol
(
−KS − vF

)
dvdu+

+
3

14

∫ 3

2

1

∫ ∞

0

vol
(
(3− 2u)(−KS)− vF

)
dvdu =

=
ordF

(
ES
)

56
+

3

14

∫ ∞

0

vol
(
−KS − vF

)
dv+

3

14

∫ 3

2

1

(3− 2u)3
∫ ∞

0

vol
(
−KS− vF

)
dvdu =

=
ordF

(
ES
)

56
+

3

14

∫ ∞

0

vol
(
−KS − vF

)
dv +

3

112

∫ ∞

0

vol
(
−KS − vF

)
dv =

=
ordF

(
ES
)

56
+

27

112

∫ ∞

0

vol
(
−KS−vF

)
dv =

ordF
(
ES
)

56
+
27

28
SS(F ) 6

AS(F )

56
+
27AS(F )

28δP (S)
,

because log pair (S,ES) is log canonical. Thus, if δP (S) >
54
55
, then (6.1) gives δP (X) > 1.

Similarly, if P ∈ Sing(S), then P 6∈ ES, so that ordF (ES) = 0, which implies that

S
(
W S

•,•;F
)
=

27

28
SS(F ) 6

27AS(F )

28δP (S)
.

Hence, in this case, it follows from (6.1) that δP (X) > 1 provided that δP (S) >
27
28
. �

Corollary 6.3. If S is smooth, then δP (X) > 1.

Proof. If S is smooth, then δ(S) = 4
3
by [3, Lemma 2.12]. Now apply Lemma 6.2. �

Corollary 6.4. If P is not contained in a line in S, then δP (X) > 1.

Proof. If P is not contained in a line in S, then P is a smooth point of the surface S,
and the blow up of the surface S at this point is a (possibly singular) cubic surface in P3.
Thus, arguing exactly as in the end of the proof of [3, Lemma 2.12], we obtain δP (S) >

3
2
,

which implies that δP (X) > 1 by Lemma 6.2. �

Now, let T be a surface in the linear system |H| such that P ∈ T , and let Q = π(T ).
Then Q is a hyperplane section of the hypersurface Q, so both Q and T are irreducible.
In the following, we will choose T such that the surface Q is smooth, so that Q ∼= P1×P1.

Lemma 6.5. Suppose that T is a general surface in the linear system |H| such that P ∈ T .
Then the (scheme) intersection S ∩ T is an irreducible reduced curve.

Proof. Let ρ : S̃ → S be a blow up of the quartic del Pezzo surface S at the point P , and

let Z be the proper transform of the curve T |S on the surface S̃. Then |Z| has no base
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points and gives the morphism η : S̃ → P3 that fits the following commutative diagram:

S̃
ρ

��✁✁
✁✁
✁✁
✁✁ η

��
❄❄

❄❄
❄❄

❄❄

S //❴❴❴❴❴❴❴ P3

where S 99K P3 is a projection from P . Moreover, if P is a smooth point of the surface S,
then Z2 = 3, and the image of the morphism η is an irreducible cubic surface in P3.
Similarly, if P is a singular point of the surface S, then we have Z2 = 4−multP (S) = 2,
and the image of the morphism η is an irreducible quadric surface. Therefore, we conclude
that the curve Z must be irreducible and reduced (by Bertini theorem), which implies
that the intersection S ∩ T is also irreducible and reduced. �

Remark 6.6. Suppose that S is singular at P , and T is a general surface in |H| that passes
through the point P . Then, choosing appropriate coordinates [x : y : z : t : w] on P4,
we may assume that π(P ) = [0 : 0 : 0 : 0 : 1], and the surface π(S) is given in P4 by

{
at2 + btx+ f2(x, y, z) = 0,

wt = g2(x, y, z),

where a and b are complex numbers, f2(x, y, z) and g2(x, y, z) are non-zero quadratic
homogeneous polynomials. In the chart w 6= 0, the surface π(S) is given by

{
at2 + btx+ f2(x, y, z) = 0,

t = g2(x, y, z),

where now we consider x, y, z, t as affine coordinates on C4. Then π(S) ∩ Q is cut out
on the surface π(S) by c1x+ c2y+ c3z + c4t = 0, where c1, c2, c3, c4 are general numbers.
The affine part of the surface π(S) is isomorphic to the hypersurface in C3 given by

ag22(x, y, z) + bxg2(x, y, z) + f2(x, y, z) = 0,

and the affine part of the curve π(S)∩Q is cut out by c1x+ c2y + c3z + c4g2(x, y, z) = 0.
If P is a singular point of the surface S of type D4 or D5, then S∩T has an ordinary cusp
at the point P , which easily implies that the intersection S∩T is reduced and irreducible.
Similarly, if P is a Du Val singular point of the surface S of type A1, A2, A3 or A4, then
the intersection S ∩ T has an isolated ordinary double singularity at P .

Observe that the morphism π : X → Q induces a birational morphism ̟ : T → Q,
and the morphism φ : X → P1 induces a fibration ϕ : T → P1 that both fit the following
commutative diagram:

T
̟

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ ϕ

��
❅❅

❅❅
❅❅

❅

Q //❴❴❴❴❴❴❴ P1

where Q 99K P1 is a map given by the pencil generated by the curves Q′|Q and Q′′|Q.
In the following, we will always choose T ∈ |H| such that the quadric surface Q is smooth,
and T is either smooth or has one isolated ordinary singularity, which would imply that
a general fiber of the induced fibration ϕ : T → P1 is a smooth elliptic curve. Let C = S|T .
Then C is the fiber of the (elliptic) fibration ϕ that contains the point P .
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Let u be a non-negative real number. Then −KX−uT ∼R (3−u)H−E ∼R (1−u)H+S,
which implies that −KX − uT is nef ⇐⇒ −KX − uT is pseudoeffective ⇐⇒ u ∈ [0, 1].
Integrating, we get SX(T ) =

9
28
< 1. For simplicity, we let P (u) = −KX − uT .

Lemma 6.7. Suppose that S is singular at P . Then δP (X) > 1.

Proof. Now, let us choose T ∈ |H| such that T is a general surface in |H| that contains P .
Then T and Q are smooth, and ̟ is a blow up of the eight intersection points C ∩ Q.
Moreover, by Lemma 6.5, the curve C is an irreducible singular curve of arithmetic genus 1.
Thus, we have P = Sing(C). Furthermore, using Remark 6.6, we see that

• either C has an isolated ordinary double singularity at P ,
• or the curve C has an ordinary cusp at the point P .

Recall that Q is a smooth quadric surface, so that it contains exactly two lines that
pass though π(P ). Since T is chosen to be general, these lines are disjoint from C ∩ Q.
Denote by L1 and L2 the proper transforms of these lines on T . Then

P (u)
∣∣
T
∼R

(
(1− u)H + S

)∣∣
T
∼R (1− u)(L1 + L2) + C.

Now, we let σ : T̃ → T be the blow up of the point P , we let e be the σ-exceptional curve,
and we denote by C̃, L̃1, L̃2 the proper transforms on T̃ of the curves C, L1, L2, respectively.
Take a non-negative real number v. Then

(6.2) σ∗
(
P (u)

∣∣
T

)
− ve ∼R C̃ + (1− u)(L̃1 + L̃2) + (4− 2u− v)e.

Note that the curves C̃, L̃1, L̃2 are disjoint. Moreover, we have L̃2
1 = L̃2

2 = −1 and C̃2 = −4.
Thus, using (6.2), we see that σ∗(P (u)|T )− ve is pseudoeffective ⇐⇒ v 6 4− 2u.

Let P̃ (u, v) be the positive part of Zariski decomposition of the divisor σ∗(P (u)|T )−ve,

and let Ñ(u, v) be its negative part. Then it follows from [3, Remark 1.7.32] that

(6.3) δP (X) > min

{
1

SX(T )
,

2

S(W T̃
•,•; e)

, inf
O∈e

1

S(W T̃ ,e
•,•,•;O)

}
,

where S(W T̃
•,•; e) and S(W

T̃ ,e
•,•,•;O) are defined in [3, § 1.7], and these two numbers can be

computed using formulas described in [3, Remark 1.7.32]. Namely, we have

S
(
W T̃

•,•; e
)
=

3

14

∫ 1

0

∫ 4−2u

0

(
P̃ (u, v)

)2
dvdu

and

S
(
W T̃ ,e

•,•,•;O
)
=

3

14

∫ 1

0

∫ 4−2u

0

((
P̃ (u, v)·e

))2
dvdu+

3

7

∫ 1

0

∫ 4−2u

0

(
P̃ (u, v)·e

)
ordO

(
Ñ(u, v)

∣∣
e

)
dvdu,

where O is a point in e. Moreover, using (6.2), we compute P̃ (u, v) and Ñ(u, v) as follows:

P̃ (u, v) =





C̃ + (1− u)(L̃1 + L̃2) + (4− 2u− v)e if 0 6 v 6 2− 2u,

4− 2u− v

2
C̃ + (1− u)(L̃1 + L̃2) + (4− 2u− v)e if 2− 2u 6 v 6 3− u,

4− 2u− v

2

(
C̃ + 2(L̃1 + L̃2) + 2e

)
if 3− u 6 v 6 4− 2u,
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and

Ñ(u, v) =





0 if 0 6 v 6 2− 2u,

v − 2 + 2u

2
C̃ if 2− 2u 6 v 6 3− u,

v − 2 + 2u

2
C̃ + (v − 3 + u)(L̃1 + L̃2) if 3− u 6 v 6 4− 2u.

Thus, we have

(
P̃ (u, v)

)2
=





2(1− u)(5− u)− v2 if 0 6 v 6 2− 2u,

2(1− u)(7− 3u− 2v) if 2− 2u 6 v 6 3− u,

2(4− 2u− v)2 if 3− u 6 v 6 4− 2u,

and

P̃ (u, v) · e =





v if 0 6 v 6 2− 2u,

2(1− u) if 2− 2u 6 v 6 3− u,

2(4− 2u− v) if 3− u 6 v 6 4− 2u.

Now, integrating, we get S(W T̃
•,•; e) =

51
28
< 2.

Let O be an arbitrary point in e. If O 6∈ L̃1∪ L̃2∪C̃, then we compute S(W T̃ ,e
•,•,•;O) =

4
7
.

Similarly, if O ∈ L̃1 ∪ L̃2, then S(W
T̃ ,e
•,•,•;O) =

17
28
. Finally, if O ∈ C̃, then

S
(
W T̃ ,e

•,•,•;O
)
=

4

7
+

3

7

∫ 1

0

∫ 3−u

2−2u

2(1− u)
v − 2 + 2u

2
ordO

(
C̃
∣∣
e

)
dvdu+

+
3

7

∫ 1

0

∫ 4−2u

3−u

2(4− 2u− v)
v − 2 + 2u

2
ordO

(
C̃
∣∣
e

)
dvdu =

4

7
+

17

56
ordO

(
C̃
∣∣
e

)
.

Hence, if C̃ intersects e transversally, then S(W T̃ ,e
•,•,•;O) < 1, so that δP (X) > 1 by (6.3).

Therefore, to complete the proof of the lemma, we may assume that C̃ is tangent to e.
This means that C has a cusp at P , and the intersection C̃ ∩ e consists of a single point.

Now, as in the proof of Lemma 4.5, we consider the following commutative diagram:

T̃

σ

��

T
γ

oo

υ
��

T T̂
ς

oo

where γ is a composition of the blow up of the point C̃ ∩e with the blow up of the unique

intersection point of the proper transforms of the curves C̃ and e, υ is the birational
contraction of all (σ◦γ)-exceptional curves that are not (−1)-curve, and ς is the birational
contraction of the proper transform of the unique γ-exceptional curve that is (−1)-curve.

Then T̂ has two singular points:

(1) a cyclic quotient singularity of type 1
2
(1, 1), which we denote by O2;

(2) a cyclic quotient singularity of type 1
3
(1, 1), which we denote by O3.

Let f be the ς-exceptional curve, let Ĉ be the proper transform on T̂ of the curve C,

and let L̂1 and L̂2 be the proper transforms on T̂ of the curves L1 and L2, respectively.
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Then the curves f , Ĉ, L̂1, L̂2 are smooth, and the curve f contains both points O2 and O3,

which are not contained in Ĉ. Moreover, we have

L̂1 ∩ L̂2 = L̂1 ∩ f = L̂2 ∩ f = O3.

Furthermore, we have AT (f) = 5, ς∗(C) ∼ Ĉ+6f , ς∗(L1) ∼ L̂1+2f , ς∗(L2) ∼ L̂2+2f , and

the intersection form of the curves f , Ĉ, L̂1 and L̂2 is given in the following table:

f Ĉ L̂1 L̂2

f −1
6

1 1
3

1
3

Ĉ 1 −6 0 0

L̂1
1
3

0 −2
3

1
3

L̂2
1
3

0 1
3

−2
3

For a non-negative real number v, we have

ς∗
(
P (u)

∣∣
T

)
− vf ∼R C̃ + (1− u)(L̃1 + L̃2) + (10− 4u− v)f ,

which implies that the divisor ς∗(P (u)|T )−vf is pseudoeffective if and only if v 6 10−4u,

because the intersection form of the curves Ĉ, L̂1, L̂2 is negative definite.
Let P̂ (u, v) be the positive part of Zariski decomposition of the divisor ς∗(P (u)|T )−vf ,

and let N̂(u, v) be its negative part. Set ∆f =
1
2
O2 +

2
3
O3. By [3, Remark 1.7.32], we get

(6.4) δP (X) > min

{
1

SX(T )
,

5

S(W T̂
•,•; f)

, inf
O∈f

1− ordO
(
∆f

)

S(W T̂ ,f
•,•,•;O)

}
,

where S(W T̂
•,•; f) and S(W

T̂ ,f
•,•,•;O) are defined as S(W T̃

•,•; e) and S(W
T̃ ,e
•,•,•;O) used earlier.

Moreover, it follows from [3, Remark 1.7.32] that

S
(
W T̂

•,•; f
)
=

3

14

∫ 1

0

∫ 10−4u

0

(
P̂ (u, v)

)2
dvdu

and

S
(
W T̂ ,f

•,•,•;O
)
=

3

14

∫ 1

0

∫ 10−4u

0

((
P̂ (u, v)·f

))2
dvdu+

3

7

∫ 1

0

∫ 10−4u

0

(
P̂ (u, v)·f

)
ordO

(
N̂(u, v)

∣∣
f

)
dvdu.

Moreover, we compute P̂ (u, v) and N̂(u, v) as follows:

P̂ (u, v) =





C̃ + (1− u)(L̃1 + L̃2) + (10− 4u− v)f if 0 6 v 6 4− 4u,

10− 4u− v

6
C̃ + (1− u)(L̃1 + L̃2) + (10− 4u− v)f if 4− 4u 6 v 6 9− 3u,

10− 4u− v

6

(
Ĉ + 6(L̂1 + L̂2) + 6f

)
if 9− 3u 6 v 6 10− 4u,

and

N̂(u, v) =





0 if 0 6 v 6 4− 4u,

v − 4 + 4u

6
Ĉ if 4− 4u 6 v 6 9− 3u,

v − 4 + 4u

6
Ĉ + (v − 9 + 3u)(L̃1 + L̃2) if 9− 3u 6 v 6 10− 4u.
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This gives

(
P̂ (u, v)

)2
=





2(1− u)(5− u)−
v2

6
if 0 6 v 6 4− 4u,

2(1− u)(19− 7u− 2v)

3
if 4− 4u 6 v 6 9− 3u,

2(10− 4u− v)2

3
if 9− 3u 6 v 6 10− 4u,

and

P̂ (u, v) · f =





v

6
if 0 6 v 6 4− 4u,

2(1− u)

3
if 4− 4u 6 v 6 9− 3u,

2(10− 4u− v)

3
if 9− 3u 6 v 6 10− 4u.

Now, integrating, we get S(W T̂
•,•; f) =

135
28
< AT (f) = 5.

Let O be a point in f . If O 6∈ L̂1 ∪ L̂2 ∪ Ĉ, then

S
(
W T̂ ,f

•,•,•;O
)
=

3

14

∫ 1

0

∫ 4−4u

0

(v
6

)2
dvdu+

3

14

∫ 1

0

∫ 9−3u

4−4u

(
2(1− u)

3

)2

dvdu+

+
3

14

∫ 1

0

∫ 10−4u

9−3u

(
2(10− 4u− v)

3

)2

dvdu =
13

63
.

Similarly, if O = f ∩ C̃, then

S
(
W T̂ ,f

•,•,•;O
)
=

13

63
+

3

7

∫ 1

0

∫ 9−3u

4−4u

2(1− u)

3
×
v − 4 + 4u

6
dvdu+

+
3

7

∫ 1

0

∫ 10−4u

9−3u

2(10− 4u− v)

3
×
v − 4 + 4u

6
dvdu =

13

63
+

193

504
=

33

56
.

Likewise, if O = O3, we compute S(W T̂ ,f
•,•,•;O) =

3
14
. So, using (6.4), we get δP (X) > 1. �

Thus, to prove that δP (X) > 1, we may assume that S is singular, but P 6∈ Sing(S).

Lemma 6.8. Suppose that P 6∈ E. Then δP (X) > 1.

Proof. By Corollary 6.4, we may assume that S contains a line L that passes through P .
Then π(L) is a line in Q. Note that π(L) ∩ C 6= ∅, and one of the following cases holds:

Case 1: the line π(L) intersects the curve C transversally at 2 points,
Case 2: the line π(L) is tangent to the curve C at their single intersection point.

Now, let us choose T to be a sufficiently general surface in |H| that passes through L.
If the intersection π(L) ∩ C consists of two points, then ̟ : T → Q is a blow up of eight
distinct points of the transversal intersection Q ∩ C , which implies that T is smooth.
On the other hand, if L∩C consists of one point, then T has one ordinary double point,
which is not contained in the curve L. We have C = S|T = L+ Z, where Z is a smooth
rational irreducible curve such that π(Z) is a smooth twisted cubic in Q that intersects the
curve C transversally by six distinct points, which we denote by Q3, Q4, Q5, Q6, Q7, Q8.
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Moreover, if π(L)∩C consists of two distinct points, we denote these points by Q1 and Q2.
Likewise, if π(L) ∩ C consists of one point, we let Q1 = Q2 = π(Z) ∩ C . Then

Case 1: the morphism ̟ : T → Q is the blow up of the points Q1, Q2, . . . , Q8,
Case 2: the morphism ̟ : T → Q is a composition of the blow up of the points Q3, . . . , Q8

with a weighted blow up with weights (1, 2) of the point Q1 = Q2.

Since T is a general surface in |H| that contains the line L, we may assume that P 6∈ Z.
Likewise, we may assume further that Z is contained in the smooth locus of the surface T .
Moreover, we may also assume that the quadric surface Q does not contain lines that pass
through one point in the set {Q1, Q2, π(P )} and one point in {Q3, Q4, Q5, Q6, Q7, Q8}.
Indeed, let Q′, Q′′, Q′′′ be the hyperplane sections of the quadric Q that are singular at
the points Q1, Q2, π(P ), respectively. Then Q′, Q′′, Q′′′ are cones, π(L) ⊂ Q′ ∩Q′′ ∩Q′′′,
and every line in Q containing a point in {Q1, Q2, π(P )} is a ruling of one of these cones.
On the other hand, we have C 6⊂ Q′∪Q′′∪Q′′′, because C is not contained in a hyperplane.
This implies that the quadric threefold Q contains at most finitely many lines that pass
through a point in {Q1, Q2, π(P )} and a point in C \ {Q1, Q2}. Therefore, we can choose
the surface T ∈ |H| such that L ⊂ T , but Q = π(T ) does not contain any of these lines.

Let us identify Q = P1 × P1 such that the line π(L) is a curve in Q of degree (0, 1).
Denote by e1, . . . , e8 the ̟-exceptional curves such that ̟(e1) = Q1, . . . , ̟(e8) = Q8.
Let g3, . . . , g8 be the strict transforms on T of the curves in Q of degree (1, 0) that pass
through the points Q3, . . . , Q8, respectively. Then L,Z, e1, . . . , e8, g3, . . . , g8 are smooth
irreducible rational curves. In Case 1, their intersections are given in the following table:

L Z e1 e2 e3 e4 e5 e6 e7 e8 g3 g4 g5 g6 g7 g8

L −2 2 1 1 0 0 0 0 0 0 1 1 1 1 1 1

Z 2 −2 0 0 1 1 1 1 1 1 0 0 0 0 0 0

e1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

e2 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

e3 0 1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0

e4 0 1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0

e5 0 1 0 0 0 0 −1 0 0 0 0 0 1 0 0 0

e6 0 1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0

e7 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0

e8 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 1

g3 1 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0

g4 1 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0

g5 1 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0

g6 1 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0

g7 1 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0

g8 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1

In Case 2, we have e1 = e2, and e1 contains the singular point of T , so that e21 = −1
2
.

The remaining intersection numbers are exactly the same as in Case 1.
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Observe that P 6∈ Z ∪ g3 ∪ g4 ∪ g5 ∪ g6 ∪ g7 ∪ g8 ∪ e1 ∪ e2, since P 6∈ E by assumption.
Recall that P (u) = −KX − uT is nef ⇐⇒ P (u) is pseudoeffective ⇐⇒ u ∈ [0, 1].

Let v be a non-negative real number. Then, in both Cases 1 and 2, we have

(6.5) P (u)
∣∣
T
− vL ∼R

9− 5u− 4v

4
L+

3 + u

4
Z +

5− 5u

4

(
e1 + e2

)
+

1− u

4

8∑

i=3

gi,

which implies that the divisor P (u)|T − vL is pseudoeffective ⇐⇒ v 6 9−5u
4

.
Let P (u, v) be the positive part of Zariski decomposition of the divisor P (u)|T − vL,

and let N(u, v) be its negative part. Then it follows from [3, Theorem 1.7.30] that

(6.6) δP (X) > min

{
1

SX(T )
,

1

S(W T
•,•;L)

,
1

S(W T,L
•,•,•;P )

}
,

where

S
(
W T

•,•;L
)
=

3

14

∫ 1

0

∫ 9−5u
4

0

(
P (u, v)

)2
dvdu

and

S
(
W T,L

•,•,•;P
)
=

3

14

∫ 1

0

∫ 9−5u
4

0

((
P (u, v)·L

))2
dvdu+

3

7

∫ 1

0

∫ 9−5u
4

0

(
P (u, v)·L

)
ordP

(
N(u, v)

∣∣
L

)
dvdu.

Let us compute S(W T
•,•;L) and S(W

T,L
•,•,•;P ). If 0 6 u 6 1

3
, then, using (6.5), we get

P (u, v) =





9− 5u− 4v

4
L+

3 + u

4
Z +

5− 5u

4

(
e1 + e2

)
+

1− u

4

8∑

i=3

gi if 0 6 v 6 1,

9− 5u− 4v

4

(
L+ e1 + e2

)
+

3 + u

4
Z +

1− u

4

8∑

i=3

gi if 1 6 v 6
3− 3u

2
,

9− 5u− 4v

4

(
L+ Z + e1 + e2

)
+

1− u

4

8∑

i=3

gi if
3− 3u

2
6 v 6 2− u,

9− 5u− 4v

4

(
L+ Z + e1 + e2 +

8∑

i=3

gi

)
if 2− u 6 v 6

9− 5u

4
,

N(u, v) =





0 if 0 6 v 6 1,

(v − 1)
(
e1 + e2

)
if 1 6 v 6

3− 3u

2
,

(v − 1)
(
e1 + e2

)
+

2v + 3u− 3

2
Z if

3− 3u

2
6 v 6 2− u,

(v − 1)
(
e1 + e2

)
+

2v + 3u− 3

2
Z + (v − 2 + u)

8∑

i=3

gi if 2− u 6 v 6
9− 5u

4
,
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(
P (u, v)

)2
=





2u2 + (2v − 12)u− 2v2 − 2v + 10 if 0 6 v 6 1,

2u2 + (2v − 12)u− 6v + 12 if 1 6 v 6
3− 3u

2
,

13u2 + 16uv + 4v2 − 42u− 24v + 33

2
if
3− 3u

2
6 v 6 2− u,

(9− 5u− 4v)2

2
if 2− u 6 v 6

9− 5u

4
,

and

P (u, v) · L =





1− u+ 2v if 0 6 v 6 1,

3− u if 1 6 v 6
3− 3u

2
,

6− 4u− 2v if
3− 3u

2
6 v 6 2− u,

2(9− 5u− 4v) if 2− u 6 v 6
9− 5u

4
,

Similarly, if 1
3
6 u 6 1, then, using (6.5), we get

P (u, v) =





9− 5u− 4v

4
L+

3 + u

4
Z +

5− 5u

4

(
e1 + e2

)
+

1− u

4

8∑

i=3

gi if 0 6 v 6
3− 3u

2
,

9− 5u− 4v

4
(L+ Z) +

5− 5u

4

(
e1 + e2

)
+

1− u

4

8∑

i=3

gi if
3− 3u

2
6 v 6 1,

9− 5u− 4v

4

(
L+ Z + e1 + e2

)
+

1− u

4

8∑

i=3

gi if 1 6 v 6 2− u,

9− 5u− 4v

4

(
L+ Z + e1 + e2 +

8∑

i=3

gi

)
if 2− u 6 v 6

9− 5u

4
,

N(u, v) =





0 if 0 6 v 6
3− 3u

2
,

2v + 3u− 3

2
Z if

3− 3u

2
6 v 6 1,

(v − 1)
(
e1 + e2

)
+

2v + 3u− 3

2
Z if 1 6 v 6 2− u,

(v − 1)
(
e1 + e2

)
+

2v + 3u− 3

2
Z + (v − 2 + u)

8∑

i=3

gi if 2− u 6 v 6
9− 5u

4
,

(
P (u, v)

)2
=





2u2 + (2v − 12)u− 2v2 − 2v + 10 if 0 6 v 6
3− 3u

2
,

(1− u)(29− 13u− 16v)

2
if
3− 3u

2
6 v 6 1,

13u2 + 16uv + 4v2 − 42u− 24v + 33

2
if 1 6 v 6 2− u,

(9− 5u− 4v)2

2
if 2− u 6 v 6

9− 5u

4
,
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and

P (u, v) · L =





1− u+ 2v if 0 6 v 6
3− 3u

2
,

4− 4u if
3− 3u

2
6 v 6 1,

6− 4u− 2v if 1 6 v 6 2− u,

2(9− 5u− 4v) if 2− u 6 v 6
9− 5u

4
,

Therefore, we have P 6∈ Supp(N(u, v)), because P 6∈ Z∪g3∪g4∪g5∪g6∪g7∪g8∪e1∪e2.
So, integrating (P (u, v))2 and (P (u, v)·L)2, we get S(W T

•,•;L) =
423
448

and S(W T,L
•,•,•;P ) =

79
84
,

which implies that δP (X) > 1 by (6.6). �

By Lemma 6.8, to show that δP (X) > 1, we may assume that P ∈ E. Then π(P ) ∈ C .
Now, let us choose T to be a sufficiently general surface in |H| that contains the point P ,
so that Q is a sufficiently general hyperplane section of the quadric Q that contains π(P ).
Then T is smooth, and ̟ : T → Q is a blow up of eight points of the intersection Q∩C .

Let Q1 = π(P ), let Q2, . . . , Q8 be the remaining seven points of the intersection Q∩C ,
and let e1, . . . , e8 be the ̟-exceptional curves such that ̟(e1) = Q1, . . . , ̟(e8) = Q8.
For every u ∈ [0, 1], we set

t(u) = inf
{
v ∈ R>0

∣∣ the divisor P (u)
∣∣
T
− ve1 is pseudo-effective

}
.

Then t(u) is not very easy to compute explicitly in terms of u ∈ [0, 1]. Fix v ∈ [0, t(u)].
Let P (u, v) be the positive part of the Zariski decomposition of the divisor P (u)|T − ve1,
and let N(u, v) be its negative part. Then it follows from [3, Theorem 1.7.30] that

(6.7) δP (X) > min

{
1

SX(T )
,

1

S(W T
•,•; e1)

,
1

S(W T,e1
•,•,• ;P )

}
,

where

S
(
W T

•,•; e1
)
=

3

14

∫ 1

0

∫ t(u)

0

(
P (u, v)

)2
dvdu

and

S
(
W T,e1

•,•,• ;P
)
=

3

14

∫ 1

0

∫ t(u)

0

((
P (u, v) · e1

))2
dvdu+

+
3

7

∫ 1

0

∫ t(u)

0

(
P (u, v) · e1

)
ordP

(
N(u, v)

∣∣
e1

)
dvdu.

Let us compute S(W T
•,•; e1) and S(W

T,e1
•,•,• ;P ). This will take a while.

Recall that ϕ : T → P1 is an elliptic fibration, which is given by the linear system |−KT |.
As in the proof of Lemma 6.8, let us identify Q = P1 × P1.

Lemma 6.9. Let F be a curve in | −KT |. Then F is irreducible and reduced.

Proof. Suppose that F is reducible or non-reduced. Then the curve π(F ) is also reducible
or non-reduced, and every irreducible component of the curve F is a smooth (−2)-curve.
But π(F ) is a curve in Q of degree (2, 2) that passes through the points Q1, Q2, . . . , Q8.
Therefore, we have one of the following possibilities:

(1) Q contains a line that passes through Q1 and one point among Q2, . . . , Q8,
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(2) Q contains a line that passes through two points among Q2, . . . , Q8,
(3) Q contains a conic that passes through Q1 and three points among Q2, . . . , Q8.

Recall thatQ is a general hyperplane section of the quadric Q that contains Q1 = π(P ).
As we already mentioned in the proof of Lemma 6.8, the quadric Q contains finitely many
lines that pass through Q1 and a point in C \Q1. Thus, since Q is assumed to be general,
the quadric Q does not contain any of these lines, so that Q does not contain a line that
passes through Q1 and a point among Q2, . . . , Q8.

Similarly, a parameter count implies thatQ does not contain secant lines of the curve C ,
so that Q does not contain a line that passes through two points among Q2, . . . , Q8,

Finally, we suppose that Q contains an irreducible conic C that passes through Q1 and
three points among Q2, . . . , Q8. Let ρ : Q 99K P3 be a linear projection from the point Q1.
Then ρ(C ) is a curve of degree 7, and the induced map C 99K ρ(C ) is an isomorphism,
because C is an intersection of quadrics. Similarly, all points ρ(Q2), . . . , ρ(Q8) are distinct.
Then ρ(C) is a three-secant line of the curve ρ(C ). Note that ρ(C ) contains one-parameter
family of three-secants [10, Appendix A]. But ρ(Q) is a general plane in P3, which implies
that ρ(Q) does not contain three-secant lines of the curve ρ(C ) — a contradiction. �

Corollary 6.10. Let γ be a class in the group Pic(T ) such that −KT ·γ = 1 and γ2 = −1.
Then the linear system |γ| consists of a unique (−1)-curve.

Proof. Apply the Riemann–Roch theorem, Serre duality and Lemma 6.9. �

Let us use Corollary 6.10, to describe infinitely many (−1)-curves in the surface T .
Namely, let ℓ1 and ℓ2 be any curves in Q = P1×P1 of degrees (1, 0) and (0, 1), respectively.
For n ∈ Z>0 and i ∈ {2, 3, 4, 5, 6, 7, 8}, let Bn,1,1, Bn,1,2, Bn,2,i, Bn,3, Bn,4,i be the classes

̟∗
(
a1ℓ1 + a2ℓ2

)
−

8∑

i=1

biei ∈ Pic(T ),

where a1, a2, b1, . . . , b8 are non-negative integers given in the following table:

a1 a2 b1 b2, b3, b4, b5, b6, b7, b8

Bn,1,1 14n2 + 7n + 1 14n2 + 7n 7n2 + 7n + 1 ∀j bj = 7n2 + 3n

Bn,1,2 14n2 + 7n 14n2 + 7n+ 1 7n2 + 7n + 1 ∀j bj = 7n2 + 3n

Bn,2,i 14n2 + 13n+ 3 14n2 + 13n+ 3 7n2 + 10n+ 3
bi = 7n2 + 6n+ 2

∀j 6= i bj = 7n2 + 6n+ 1

Bn,3 14n2 + 21n+ 7 14n2 + 21n+ 7 7n2 + 14n+ 6 ∀j bj = 7n2 + 10n+ 3

Bn,4,i 14n2 + 29n+ 15 14n2 + 29n+ 15 7n2 + 18n+ 11
bi = 7n2 + 14n+ 6

∀j 6= i bj = 7n2 + 14n+ 7

By Corollary 6.10, each linear system |Bn,1,1|, |Bn,1,2|, |Bn,2,i|, |Bn,3|, |Bn,4,i| contains
a unique (−1)-curve. Hence, we can identify the classes Bn,1,1, Bn,1,2, Bn,2,i, Bn,3, Bn,4,i

with (−1)-curves in |Bn,1,1|, |Bn,1,2|, |Bn,2,i|, |Bn,3|, |Bn,4,i|, respectively. Set

Bn,1 = Bn,1,1 +Bn,1,2,

Bn,2 = Bn,2,2 +Bn,2,3 +Bn,2,4 +Bn,2,5 +Bn,2,6 +Bn,2,7 +Bn,2,8,

Bn,4 = Bn,4,2 +Bn,4,3 +Bn,4,4 +Bn,4,5 +Bn,4,6 +Bn,4,7 +Bn,4,8.
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Note that irreducible components of each curve Bn,1, Bn,2, Bn,4 are disjoint (−1)-curves,
and Bn,1 ∩Bn,2 = ∅, Bn,2 ∩Bn,3 = ∅, Bn,3 ∩Bn,4 = ∅, Bn,4 ∩Bn+1,1 = ∅ for each n > 0.

Now, we let I ′0,1 = [0, 1
3
] and I ′′0,1 = [1

3
, 3
8
]. For every n ∈ Z>0, we also let

I ′n,1 =

[
−1 + 4n+ 14n2

6n+ 14n2
,
1 + 13n+ 21n2

3 + 16n+ 21n2

]
,

I ′′n,1 =

[
1 + 13n+ 21n2

3 + 16n+ 21n2
,
3 + 35n+ 49n2

8 + 42n+ 49n2

]
.

For every n ∈ Z>0, we let

I ′n,2 =

[
3 + 35n+ 49n2

8 + 42n+ 49n2
,
3 + 22n+ 28n2

6 + 26n+ 28n2

]
,

I ′′n,2 =

[
3 + 22n+ 28n2

6 + 26n+ 28n2
,
2 + 7n

3 + 7n

]
,

I ′n,3 =

[
2 + 7n

3 + 7n
,
21 + 50n+ 28n2

26 + 54n+ 28n2

]
,

I ′′n,3 =

[
21 + 50n+ 28n2

26 + 54n+ 28n2
,
39 + 91n+ 49n2

48 + 98n+ 49n2

]
,

I ′n,4 =

[
39 + 91n+ 49n2

48 + 98n+ 49n2
,
19 + 41n+ 21n2

23 + 44n+ 21n2

]
,

I ′′n,4 =

[
19 + 41n+ 21n2

23 + 44n+ 21n2
,
17 + 32n+ 14n2

20 + 34n+ 14n2

]
.

Set In,1 = I ′n,1 ∪ I
′′
n,1, In,2 = I ′n,2 ∪ I

′′
n,2, In,3 = I ′n,3 ∪ I

′′
n,3, In,4 = I ′n,4 ∪ I

′′
n,4. Then

[0, 1) =
⋃

n∈Z>0

(
In,1 ∪ In,2 ∪ In,3 ∪ In,4

)
,

the intervals In,1, In,2, In,3, In,4 have positive volumes, and all their interiors are disjoint.
Let us analyze P (u, v) and N(u, v) when u is contained in one of these intervals.

First, we deal with u ∈ In,1. If u ∈ I ′n,1 and v ∈
[
0, 2+14n+28n2−u(1+14n+28n2)

1+7n+7n2

]
, then

P (u, v) =
19 + 70n+ 84n2 − u (16 + 70n+ 84n2)− v (8 + 28n+ 21n2)

8 + 28n+ 21n2
e1+

+
3 + 35n+ 49n2 − u (8 + 42n+ 49n2)

8 + 28n+ 21n2
Bn,1 +

1− 4n− 14n2 + u (6n + 14n2)

8 + 28n+ 21n2
Bn,2

and N(u, v) = 0. The same holds if u ∈ I ′′n,1 and v ∈
[
0, 7+26n+28n2−u(6+26n+28n2)

3+10n+7n2

]
. Then

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2,

P (u, v) · e1 = 1 + v.
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Similarly, if u ∈ I ′n,1 and v ∈

[
2+14n+28n2−u(1+14n+28n2)

1+7n+7n2 ,
7+26n+28n2−u(6+26n+28n2)

3+10n+7n2

]
, then

P (u, v) =
19 + 70n+ 84n2 − u(16 + 70n+ 84n2)− v(8 + 28n+ 21n2)

8 + 28n+ 21n2
e1+

+

(
19 + 70n+ 84n2 − u(16 + 70n+ 84n2)− v(8 + 28n+ 21n2)

)
(1 + 7n+ 7n2)

8 + 28n+ 21n2
Bn,1+

+
1− 4n− 14n2 + u(6n+ 14n2)

8 + 28n+ 21n2
Bn,2

and

N(u, v) =
(
u
(
1 + 14n+ 28n2

)
+ v

(
1 + 7n+ 7n2

)
− 2− 14n− 28n2

)
Bn,1.

Then

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 2
(
u
(
1 + 14n+ 28n2

)
+ v

(
1 + 7n+ 7n2

)
− 2− 14n− 28n2

)2

and

P (u, v) · e1 = 5 + 56n+ 280n2 + 588n3 + 392n4−

− 2u(1 + 7n + 7n2)(1 + 14n+ 28n2)− v(1 + 28n+ 126n2 + 196n3 + 98n4).

Likewise, if u ∈ I ′′n,1 and v ∈

[
7+26n+28n2−u(6+26n+28n2)

3+10n+7n2 ,
2+14n+28n2−u(1+14n+28n2)

1+7n+7n2

]
, then

P (u, v) =
(19 + 70n+ 84n2 − u(16 + 70n+ 84n2)− v(8 + 28n+ 21n2)

8 + 28n+ 21n2
e1+

+

(
19 + 70n+ 84n2 − u(16 + 70n+ 84n2)− v(8 + 28n+ 21n2)

)
(1 + n)(3 + 7n)

8 + 28n+ 21n2
Bn,2+

+
3 + 35n+ 49n2 − u (8 + 42n+ 49n2)

8 + 28n+ 21n2
Bn,1

and

N(u, v) =
(
u
(
6 + 26n+ 28n2

)
+ v

(
3 + 10n+ 7n2

)
− 7− 26n− 28n2

)
Bn,2.

Then

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 7
(
u
(
6 + 26n+ 28n2

)
+ v

(
3 + 10n+ 7n2

)
− 7− 26− 28n2

)2

and

P (u, v) · e1 = 148 + 1036n+ 2751n2 + 3234n3 + 1372n4−

− 14u(1 + n)(1 + 2n)(3 + 7n)2 − v
(
62 + 420n+ 994n2 + 980n3 + 343n4

)
.
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If u ∈ I ′n,1 and v ∈

[
7+26n+28n2−u(6+26n+28n2)

3+10n+7n2 ,
19+70n+84n2−u(16+70n+84n2)

8+28n+21n2

]
, then

P (u, v) =
19 + 70n+ 84n2 − u (16 + 70n+ 84n2)− v (8 + 28n+ 21n2)

8 + 28n+ 21n2
e1+

+

(
19 + 70n+ 84n2 − u (16 + 70n+ 84n2)− v (8 + 28n+ 21n2)

)
(1 + 7n+ 7n2)

8 + 28n+ 21n2
Bn,1+

+

(
19 + 70n+ 84n2 − u (16 + 70n+ 84n2)− v (8 + 28n+ 21n2)

)
(1 + n)(3 + 7n)

8 + 28n+ 21n2
Bn,2

and

N(u, v) =
(
u
(
1 + 14n+ 28n2

)
+ v

(
1 + 7n+ 7n2

)
− 2− 14n− 28n2

)
Bn,1+

+
(
u
(
6 + 26n+ 28n2

)
+ v

(
3 + 10n+ 7n2

)
− 7− 26n− 28n2

)
Bn,2.

The same holds if u ∈ I ′′n,1 and v ∈

[
2+14n+28n2−u(1+14n+28n2)

1+7n+7n2 ,
19+70n+84n2−u(16+70n+84n2)

8+28n+21n2

]
.

In both cases, we have
(
P (u, v)

)2
=
(
19 + 70n+ 84n2 − u

(
16 + 70n+ 84n2

)
− v

(
8 + 28n+ 21n2

))2
,

P (u, v) · e1 =
(
8 + 28n+ 21n2

) (
19 + 70n+ 84n2 − u

(
16 + 70n+ 84n2

)
− v

(
8 + 28n+ 21n2

))
.

Hence, if u ∈ In,1, then

t(u) =
19 + 70n+ 84n2 − u (16 + 70n+ 84n2)

8 + 28n+ 21n2
.

Now, we deal with u ∈ In,2. If u ∈ I ′n,2 and v ∈

[
0,

7+26n+28n2−u(6+26n+28n2)
3+10n+7n2

]
, then

P (u, v) =
17 + 56n+ 56n2 − u (15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

7(1 + n)(1 + 2n)
e1+

+
(1 + n)(2 + 7n)− u(1 + n)(3 + 7n)

7(1 + n)(1 + 2n)
Bn,2 +

u (8 + 42n+ 49n2)− 3− 35n− 49n2

7(1 + n)(1 + 2n)
Bn,3

and N(u, v) = 0. The same holds if u ∈ I ′′n,2 and v ∈

[
0,

15+42n+28n2−u(14+42n+28n2)
6+14n+7n2

]
. Then

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2,

P (u, v) · e1 = v + 1.

If u ∈ I ′n,2 and v ∈

[
7+26n+28n2−u(6+26n+28n2)

3+10n+7n2 ,
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2

]
, then

P (u, v) =
17 + 56n+ 56n2 − u(15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

7(1 + n)(1 + 2n)
e1+

+
(1 + n)(3 + 7n)

(
17 + 56n+ 56n2 − u(15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

)

7(1 + n)(1 + 2n)
Bn,2+

+
u (8 + 42n+ 49n2)− 3− 35n− 49n2

7(1 + n)(1 + 2n)
Bn,3,
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N(u, v) =
(
u
(
6 + 26n+ 28n2

)
+ v

(
3 + 10n+ 7n2

)
− 7− 26n− 28n2

)
Bn,2,

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 7
(
u
(
6 + 26n+ 28n2

)
+ v

(
3 + 10n+ 7n2

)
− 7− 26n− 28n2

)2
,

P (u, v) · e1 = 148 + 1036n+ 2751n2 + 3234n3 + 1372n4−

− 14u(1 + n)(1 + 2n)(3 + 7n)2−

− v
(
62 + 420n+ 994n2 + 980n3 + 343n4

)
.

Similarly, if u ∈ I ′′n,2 and v ∈

[
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2 ,
7+26n+28n3−u(6+26n+28n2)

3+10n+7n2

]
, then

P (u, v) =
17 + 56 + 56n2 − u (15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

7(1 + n)(1 + 2n)
e1+

+
(6 + 14n+ 7n2)

(
17 + 56 + 56n2 − u (15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

)

7(1 + n)(1 + 2n)
Bn,3+

+
(1 + n)(2 + 7n)− u(1 + n)(3 + 7n)

7(1 + n)(1 + 2n)
Bn,2,

N(u, v) =
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)
Bn,3,

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)2
,

P (u, v) · e1 = 7(1 + n)(13 + 53n+ 70n2 + 28n3)−

− 14u(1 + n)(1 + 2n)
(
6 + 14n+ 7n2

)
− 7v(1 + n)2

(
5 + 14n+ 7n2

)
.

Likewise, if u ∈ I ′n,2 and v ∈

[
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2 ,
17+56n+56n2−u(15+56n+56n2)

7(1+n)(1+2n)

]
, then

P (u, v) =
17 + 56n+ 56n2 − u (15 + 56n+ 56n2)− v(7(1 + n)(1 + 2n))

7(1 + n)(1 + 2n)
e1+

+
(1 + n)(3 + 7n)

(
17 + 56n+ 56n2 − u (15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

)

7(1 + n)(1 + 2n)
Bn,2+

+
(6 + 14n+ 7n2)

(
17 + 56n+ 56n2 − u (15 + 56n+ 56n2)− 7v(1 + n)(1 + 2n)

)

7(1 + n)(1 + 2n)
Bn,3

and

N(u, v) =
(
u(6 + 26n+ 28n2) + v(3 + 10n+ 7n2)− 7− 26n− 28n2

)
Bn,2+

+
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)
Bn,3.
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The same holds if u ∈ I ′′n,2 and v ∈

[
7+26n+28n2−u(6+26n+28n2)

3+10n+7n2 ,
17+56n+56n2−u(15+56n+56n2)

7(1+n)(1+2n)

]
.

Moreover, in both cases, we have

P (u, v)·e1 = 14(1+n)(1+2n)
(
17 + 56n+ 56n2 − u

(
15 + 56n+ 56n2

)
− 7v(1 + n)(1 + 2n)

)

and
(
P (u, v)

)2
= 2

(
17 + 56n+ 56n2 − u

(
15 + 56n+ 56n2

)
− 7v(1 + n)(1 + 2n)

)2
.

Thus, if u ∈ In,2, then

t(u) =
17 + 56n+ 56n2 − u (15 + 56n+ 56n2)

7(1 + n)(1 + 2n)
.

Now, we deal with u ∈ In,3. If u ∈ I ′n,3 and v ∈

[
0,

15+42n+28n2−u(14+42n+28n2)
6+14n+7n2

]
, then

P (u, v) =
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

7(1 + n)(3 + 2n)
e1+

+
39 + 91n+ 49n2 − u (48 + 98n+ 49n2)

7(1 + n)(3 + 2n)
Bn,3+

u(1 + n)(3 + 7n)− (1 + n)(2 + 7n)

7(1 + n)(3 + 2n)
Bn,4

and N(u, v) = 0. The same holds if u ∈ I ′′n,3 and v ∈

[
0,

31+58n+28n2−u(30+58n+28n2)
11+18n+7n2

]
. Then

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2,

P (u, v) · e1 = 1 + v.

If u ∈ I ′n,3 and v ∈

[
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2 ,
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2

]
, then

P (u, v) =
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

7(1 + n)(3 + 2n)
e1+

+
(6 + 14n+ 7n2)

(
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

)

7(1 + n)(3 + 2n)
Bn,3+

+
u(1 + n)(3 + 7n)− (1 + n)(2 + 7n)

7(1 + n)(3 + 2n)
Bn,4

N(u, v) =
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)
Bn,3,

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)2
,

P (u, v) · e1 = 7(1 + n)
(
13 + 53n+ 70n2 + 28n3

)
−

− 14u(1 + n)(1 + 2n)
(
6 + 14n+ 7n2

)
− 7v(1 + n)2

(
5 + 14n+ 7n2

)
.
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Similarly, if u ∈ I ′′n,3 and v ∈

[
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2 ,
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2

]
, then

P (u, v) =
59 + 112n+ 56n2 − u(57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

7(1 + n)(3 + 2n)
e1+

+
(1 + n)(11 + 7n)

(
59 + 112n+ 56n2 − u(57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

)

7(1 + n)(3 + 2n)
Bn,4+

+
39 + 91n+ 49n2 − u (48 + 98n+ 49n2)

7(1 + n)(3 + 2n)
Bn,3,

N(u, v) =
(
u
(
30 + 58n+ 28n2

)
+ v

(
11 + 18n+ 7n2

)
− 31− 58n− 28n2

)
Bn,4,

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 7
(
u
(
30 + 58n+ 28n2

)
+ v

(
11 + 18n+ 7n2

)
− 31− 58n− 28n2

)2
,

P (u, v) · e1 = 2388 + 8372n+ 10983n2 + 6370n3 + 1372n4−

− 14u(1 + n)2(11 + 7n)(15 + 14n)− v
(
846 + 2772n+ 3346n2 + 1764n3 + 343n4

)
.

If u ∈ I ′n,3 and v ∈

[
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2 ,
59+112n+56n2−u(57+112n+56n2)

7(1+n)(3+2n)

]
, then

P (u, v) =
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

7(1 + n)(3 + 2n)
e1+

+
(6 + 14n+ 7n2)

(
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

)

7(1 + n)(3 + 2n)
Bn,3+

+
(1 + n) (11 + 7n)

(
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)− 7v(1 + n)(3 + 2n)

)

7(1 + n)(3 + 2n)
Bn,4

and

N(u, v) =
(
u
(
14 + 42n+ 28n2

)
+ v

(
6 + 14n+ 7n2

)
− 15− 42n− 28n2

)
Bn,3+

+
(
u
(
30 + 58n+ 28n2

)
+ v

(
11 + 18n+ 7n2

)
− 31− 58n− 28n2

)
Bn,4.

The same holds if u ∈ I ′′u,3 and v ∈

[
15+42n+28n2−u(14+42n+28n2)

6+14n+7n2 ,
59+112n+56n2−u(57+112n+56n2)

7(1+n)(3+2n)

]
.

In both cases, we have

P (u, v)·e1 = 14(1+n)(3+2n)
(
59 + 112n+ 56n2 − u

(
57 + 112n+ 56n2

)
− 7v(1 + n)(3 + 2n)

)
.

and
(
P (u, v)

)2
= 2

(
59 + 112n+ 56n2 − u

(
57 + 112n+ 56n2

)
− 7v(1 + n)(3 + 2n)

)2
.

Therefore, if u ∈ In,3, then

t(u) =
59 + 112n+ 56n2 − u (57 + 112n+ 56n2)

7(1 + n)(3 + 2n)
.
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Finally, we deal with u ∈ In,4. If u ∈ I ′n,4 and v ∈

[
0,

31+58n+28n2−u(30+58n+28n2)
11+18n+7n2

]
, then

P (u, v) =
103 + 182n+ 84n2 − u (100 + 182n+ 84n2)− v (36 + 56n+ 21n2)

36 + 56n+ 21n2
e1+

+
17 + 32n+ 14n2 − u (20 + 34n+ 14n2)

36 + 56n+ 21n2
Bn,4+

u (48 + 98n+ 49n2)− 39− 91n− 49n2

36 + 56n+ 21n2
Bn+1,1

and N(u, v) = 0. The same holds when u ∈ I ′′n,4 and v ∈

[
0,

44+70n+28n2−u(43+70n+28n2)
15+21n+7n2

]
.

In both cases, we compute
(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2,

P (u, v) · e1 = 1 + v.

If u ∈ I ′n,4 and v ∈

[
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2 ,
44+70n+28n2−u(43+70n+28n2)

15+21n+7n2

]
, then

P (u, v) =
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

36 + 56n+ 21n2
e1+

+
(1 + n)(11 + 7n)

(
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

)

36 + 56n+ 21n2
Bn,4+

+
u(48 + 98n+ 49n2)− 39− 91n− 49n2

36 + 56n+ 21n2
Bn+1,1,

N(u, v) =
(
u
(
30 + 58n+ 28n2

)
+ v

(
11 + 18n+ 7n2

)
− 31− 58n− 28n2

)
Bn,4,

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 7
(
u
(
30 + 58n+ 28n2

)
+ v

(
11 + 18n+ 7n2

)
− 31− 58n− 28n2

)2
,

P (u, v) · e1 = 2388 + 8372n+ 10983n2 + 6370n2 + 1372n4−

− 14u(1 + n)2(11 + 7n)(15 + 14n)−

− v
(
846 + 2772n+ 3346n2 + 1764n3 + 343n4

)
.

If u ∈ I ′′n,4 and v ∈

[
44+70n+28n2−u(43+70n+28n2)

15+21n+7n2 ,
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2

]
, then

P (u, v) =
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

36 + 56n+ 21n2
e1+

+
(15 + 21n+ 7n2)

(
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

)

36 + 56n+ 21n2
Bn+1,1+

+
17 + 32n+ 14n2 − u (20 + 34n+ 14n2)

36 + 56n+ 21n2
Bn,4

and

N(u, v) =
(
u
(
43 + 70n+ 28n2

)
+ v

(
15 + 21n+ 7n2

)
− 44− 70n− 28n2

)
Bn+1,1.
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Moreover, in this case, we have

(
P (u, v)

)2
= 10− 12u+ 2u2 − 2v − v2+

+ 2
(
u
(
43 + 70n+ 28n2

)
+ v

(
15 + 21n+ 7n2

)
− 44− 70n− 28n2

)2

and

P (u, v) · e1 = 1321 + 3948n+ 4396n2 + 2156n3 + 392n4−

− 2u
(
15 + 21n+ 7n2

) (
43 + 70n+ 28n2

)
−

− v
(
449 + 1260n+ 1302n2 + 588n3 + 98n4

)
.

If u ∈ I ′n,4 and v ∈

[
44+70n+28n2−u(43+70n+28n2)

15+21n+7n2 ,
103+182n+84n2−u(100+182n+84n2)

36+56n+21n2

]
, then

P (u, v) =
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

36 + 56n+ 21n2
e1+

+
(1 + n)(11 + 7n)

(
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

)

36 + 56n+ 21n2
Bn,4+

+
(15 + 21n+ 7n2)

(
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

)

36 + 56n+ 21n2
Bn+1,1

and

N(u, v) =
(
u(30 + 58n+ 28n2) + v(11 + 18n+ 7n2)− 31− 58n− 28n2

)
Bn,4+

+
(
u(43 + 70n+ 28n2) + v(15 + 21n+ 7n2)− 44− 70n− 28n2

)
Bn+1,1.

The same holds when u ∈ I ′′n4 and v ∈

[
31+58n+28n2−u(30+58n+28n2)

11+18n+7n2 ,
103+182n+84n2−u(100+182n+84n2)

36+56n+21n2

]
.

Moreover, in both cases, we have

P (u, v)·e1 = (36+56n+21n2)
(
103+182n+84n2−u(100+182n+84n2)−v(36+56n+21n2)

)

and
(
P (u, v)

)2
=
(
103 + 182n+ 84n2 − u(100 + 182n+ 84n2)− v(36 + 56n+ 21n2)

)2

Thus, if u ∈ In,4, then

t(u) =
103 + 182n+ 84n2 − u (100 + 182n+ 84n2)

36 + 56n+ 21n2
.

Now, we are ready to compute S(W T
•,•; e1). Namely, for every i ∈ {1, 2, 3, 4}, we set

Sn,i =
3

14

∫

In,i

∫ t(u)

0

(
P (u, v)

)2
dvdu.

Then

S
(
W T

•,•; e1
)
=

∞∑

n=0

(
Sn,1 + Sn,2 + Sn,3 + Sn,4

)
.
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On the other hand, integrating, we get

Sn,1 =





84365

114688
if n = 0,

(8 + 28n+ 21n2)An,1
448n4(1 + n)(2 + 7n)4(3 + 7n)4(4 + 7n)4(1 + 7n+ 7n2)

if n > 1,

where

An,1 = 1536 + 109312n+ 2935552n2 + 42681728n3 + 386407488n4 + 2335296292n5+

+ 9789648099n6 + 29038364761n7 + 61312905318n8 + 91454579804n9+

+ 94035837280n10 + 63317750608n11 + 25088413952n12 + 4427367168n13.

Similarly, we get

Sn,2 =
(1 + 2n)An,2

4(1 + n)(2 + 7n)4(3 + 7n)4(4 + 7n)4(6 + 14n+ 7n2)
,

where

An,2 = 1618654+31459234n+271069253n2+1362423916n3+4419070194n4+9654348284n5+

+ 14368501182n6 + 14362052096n7 + 9209328422n8 + 3412762192n9 + 553420896n10

Likewise, we get

Sn,3 =
(3 + 2n)An,3

4(1 + n)(3 + 7n)4(6 + 7n)4(8 + 7n)4(11 + 7n)(6 + 14n+ 7n2)
,

where

An,3 = 1167997914 + 15454923336n+ 91492878645n2 + 319934133575n3+

+ 734395997090n4 + 1162203105378n5 + 1294197714054n6 + 1014406754242n7+

+ 548632346402n8 + 195059453722n9 + 41045383120n10 + 3873946272n11.

Finally, we get

Sn,4 =
(36 + 56n+ 21n2)An,4

448(1 + n)4(6 + 7n)4(8 + 7n)4(10 + 7n)4(11 + 7n)(15 + 21n+ 7n2)
,

where

An,4 = 365613573312 + 4021500121920n+ 20341847967024n2+

+62650071283024n3+131072047236004n4+196698030664492n5+217823761840153n6+

+180219167765455n7+111395400841326n8+50802960251820n9+16615457209344n10+

+ 3690223711216n11 + 498816700928n12 + 30991570176n13.

Then, adding, we get

S
(
W T

•,•; e1
)
=

∞∑

n=0

(
Sn,1 + Sn,2 + Sn,3 + Sn,4

)
≈ 0.976712233 . . . < 1.
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Finally, let us compute S(W T,e1
•,•,• ;P ). For every i ∈ {1, 2, 3, 4}, we set

M ′
n,i =

3

14

∫

I′n,i

∫ t(u)

0

((
P (u, v) · e1

))2
dvdu,

M ′′
n,i =

3

14

∫

I′′n,i

∫ t(u)

0

((
P (u, v) · e1

))2
dvdu.

Then

S
(
W T,e1

•,•,• ;P
)
=

∞∑

n=0

4∑

i=1

(
M ′

n,i +M ′′
n,i

)
+

3

7

∫ 1

0

∫ t(u)

0

(
P (u, v) · e1

)
ordP

(
N(u, v)

∣∣
e1

)
dvdu.

On the other hand, integrating, we get

M ′
n,1 =





1403

22268
if n = 0,

(1 + n)A′
n,1

448n4(1 + 3n)4(3 + 7n)4(1 + 7n + 7n2)
if n > 1,

where

A′
n,1 = 1 + 81n+ 2535n2 + 37209n3 + 301046n4 + 1459736n5+

+ 4420190n6 + 8425410n7 + 9821448n8 + 6392736n9 + 1778112n10.

Similarly, we get

M ′′
n,1 =

(1 + 7n+ 7n2)A′′
n,1

28(1 + n)(1 + 3n)4(2 + 7n)4(3 + 7n)4(4 + 7n)4
,

where

A′′
n,1 = 480574 + 12906866n+ 157271760n2 + 1149521334n3 + 5612285145n4+

+ 19278934535n5 + 47770884833n6 + 86016481159n7 + 111679016743n8+

+ 101939513907n9 + 62077730148n10 + 22635902898n11 + 3735591048n12.

Likewise, we have

M ′
n,2 =

(6 + 14n+ 7n2)A′
n,2

224(1 + n)(1 + 2n)3(2 + 7n)4(3 + 7n)4(4 + 7n)4
,

and

M ′′
n,2 =

11780 + 111142n+ 430951n2 + 875637n3 + 978656n4 + 566832n5 + 131712n6

224(1 + 2n)3(3 + 7n)4(6 + 14n+ 7n2)
.

where

A′
n,2 = 1561176 + 35176776n+ 356105548n2 + 2137950448n3+

+ 8458603286n4 + 23158717414n5 + 44778314889n6 + 61151030584n7+

+ 57807289939n8 + 36026947376n9 + 13321631568n10 + 2213683584n11.

Similarly, we have

M ′
n,3 =

(11 + 7n)A′
n,3

224(1 + n)3(3 + 7n)4(13 + 14n)4(6 + 14n+ 7n2)
,
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where

A′
n,3 = 13726028 + 164541190n+ 859036123n2 + 2564002455n3 + 4823323519n4+

+ 5933644367n5 + 4776917782n6 + 2428774768n7 + 708314208n8 + 90354432n9.

Likewise, we have

M ′′
n,3 =

(6 + 14n+ 7n2)A′′
n,3

224(1 + n)3(6 + 7n)4(8 + 7n)4(11 + 7n)(13 + 14n)4
,

where

A′′
n,3 = 67760261208 + 703706084640n+ 3313300067388n2 + 9335574166156n3+

+ 17489294547578n4 + 22873117200584n5 + 21308562209725n6 + 14139587568253n7+

+ 6548997703738n8 + 2016283621072n9 + 371345421216n10 + 30991570176n11.

Similarly, we see that

M ′
n,4 =

(15 + 21n+ 7n2)A′
n,4

28(1 + n)4(6 + 7n)4(8 + 7n)4(11 + 7n)(23 + 21n)4
,

where

A′
n,4 = 88135013250 + 967134809574n+ 4853884596732n2+

+ 14732868828434n3 + 30120687035243n4 + 43697011451345n5 + 46124583653603n6+

+ 35692827118809n7 + 20096052100397n8 + 8028312817917n9+

+ 2160120347280n10 + 351456857766n11 + 26149137336n12.

Finally, we have

M ′′
n,4 =

(11 + 7n)A′′
n,4

448(1 + n)4(10 + 7n)4(23 + 21n)4(15 + 21n+ 7n2)
,

where

A′′
n,4 = 7582266167 + 59702225967n+ 210973884925n2 + 440580768679n3+

+ 602090743422n4 + 562572998512n5 + 363945674554n6 + 160955181870n7+

+ 46566357768n8 + 7957643904n9 + 609892416n10.

Now, adding terms together, we see that

(6.8) S
(
W T,e1

•,•,• ;P
)
6 0.974 +

3

7

∫ 1

0

∫ t(u)

0

(
P (u, v) · e1

)
ordP

(
N(u, v)

∣∣
e1

)
dvdu.
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Now, for every i ∈ {1, 2, 3, 4} and any irreducible component ℓ of the curve Bn,i, we let

Fn,i =
3

7

∫ 1

0

∫ t(u)

0

(
P (u, v) · e1

)
ordℓ

(
N(u, v)

)(
ℓ · e1

)
dvdu =

=
3

7

∫

In,i−1

∫ t(u)

0

(
P (u, v) · e1

)
ordℓ

(
N(u, v)

)(
ℓ · e1

)
dvdu+

+
3

7

∫

In,i

∫ t(u)

0

(
P (u, v) · e1

)
ordℓ

(
N(u, v)

)(
ℓ · e1

)
dvdu+

+
3

7

∫

In,i+1

∫ t(u)

0

(
P (u, v) · e1

)
ordℓ

(
N(u, v)

)(
ℓ · e1

)
dvdu,

where I0,0 = ∅ and In,5 = In+1,1. Since irreducible components of Bn,i are disjoint, we get

3

7

∫ 1

0

∫ t(u)

0

(
P (u, v) · e1

)
ordP

(
N(u, v)

∣∣
e1

)
dvdu 6

∞∑

n=0

4∑

i=1

Fn,i.

On the other hand, each Fn,i is not difficult to compute. For instance, we have

F0,1 =
3

7

∫ 1

3

0

∫ 7−6u
3

2−u

(v + u− 2)(5− 2u− v)dvdu+

+
3

7

∫ 1

3

0

∫ 19−16u
8

7−6u
3

8(u+ v − 2)(19− 16u− 8v)dvdu+

+
3

7

∫ 3

8

1

3

∫ 19−16u
8

2−u

8(u+ v − 2)(19− 16u− 8v)dvdu =
281

32256
.

Similarly, we see that

Fn,1 =
3(1 + 7n + 7n2)2

2n2(1 + 3n)(−1 + 7n)(1 + 7n)(2 + 7n)(3 + 7n)2(4 + 7n)(2 + 21n)

for n > 1. Likewise, we get

Fn,2 =





5

3584
if n = 0,

1 + n

112n(1 + 2n)(1 + 3n)(2 + 7n)(3 + 7n)2(4 + 7n)
if n > 1.

Likewise, for every n > 0, we have

Fn,3 =
15(6 + 14n+ 7n2)2

4(1 + n)2(1 + 2n)(2 + 7n)(3 + 7n)2(4 + 7n)(6 + 7n)(8 + 7n)(13 + 14n)

and

Fn,4 =
(11 + 7n)2

112(1 + n)2(3 + 7n)(6 + 7n)(8 + 7n)(10 + 7n)(13 + 14n)(23 + 21n)
.

Now, one can easily check that the total sum of all Fn,1, Fn,2, Fn,3, Fn,4 is at most 0.014.
This and (6.8) give S(W T,e1

•,•,• ;P ) 6 0.974 + 0.014 = 0.988. Using (6.7), we get δP (X) > 1.

Corollary 6.11. All smooth Fano threefolds in the family №2.7 are K-stable.
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