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DEGREE OF IRRATIONALITY OF FANO THREEFOLD

HYPERSURFACES

IVAN CHELTSOV AND JIHUN PARK

Abstract. We study degree of irrationality of quasismooth anticanonically embedded
weighted Fano 3-fold hypersurfaces that have terminal singularities.

Throughout this paper, all varieties are assumed to be projective and defined over C.

1. Introduction

Let a1, . . . , a5 be positive integers with a1 6 a2 6 a3 6 a4 6 a5. Let Xd be a quasi-
smooth and well-formed ([16]) hypersurface of degree d in the weighted projective space
P(a1, a2, a3, a4, a5). Suppose that

d < a1 + a2 + a3 + a4 + a5.

and let I = a1+a2+a3+a4+a5−d. ThenXd is a Fano threefold with quotient singularities.
Note that there exists infinitely many possibilities for the septuple (a1, a2, a3, a4, a5, d, I).
If I = 1, all of them have been found in [19].

Suppose, in addition, that the singularities of the 3-fold hypersurface Xd are terminal.
Then it follows from the Birkar’s boundedness results ([4, 5]) that there are finitely many
possibilities for (a1, a2, a3, a4, a5, d, I). In fact, there are 130 such possibilities, excluding
weighted projective spaces, that define 130 families of weighted hypersurfaces ([6, 7, 16]).
Fano 3-folds in these families have been studied in [1, 8, 9, 10, 11, 12, 13, 14, 20, 25, 27, 28].
In particular, we know that Xd is irrational if I = 1, and we know all deformation families
with I > 2 such that their general members are irrational. In the following, we will label
these 130 deformation families by №1, №2, №3, . . ., №130 as in [1, 13, 14].

Remark. If Xd is smooth, then it belongs to one of the following deformation families:

№1: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 1, 1, 4, 1), i.e. Xd is a quartic 3-fold,
№3: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 1, 3, 6, 1), i.e. Xd is a sextic double solid.

№96: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 1, 1, 3, 2), i.e. Xd is a cubic 3-fold,
№97: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 1, 1, 3, 2), i.e. Xd is a quartic double solid,
№98: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 2, 3, 6, 2), i.e. Xd is a double Veronese cone,

№104: (a1, a2, a3, a4, a5, d, I) = (1, 1, 1, 1, 1, 2, 3), i.e. Xd is a quadric 3-fold.

All members of the remaining 124 deformation families are singular, and their singularities
are described in [6, 7, 14]. Note that I = 1 for the families №1, №2, №3, . . ., №94, №95.

In this paper, we study the degree of irrationality of Fano 3-folds in these 130 families.
Recall from [23] that the degree of irrationality d(V ) of a variety V is the smallest possible
degree of the generically finite dominant rational map V 99K Pn, where n = dim(V ). Then

the variety V is rational ⇐⇒ d(V ) = 1.
1
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If I > 2, then d < 3a5, so the projection P(1, a2, a3, a4, a5) 99K P(1, a2, a3, a4) induces a
dominant rational mapXd 99K P(1, a2, a3, a4) such that it is either birational or generically
two-to-one, so that d(Xd) ∈ {1, 2} in this case. For I = 1, we prove

Main Theorem. Suppose that I = 1. Then the following assertions hold:

(1) d(Xd) ∈ {2, 3};
(2) d(Xd) = 2 if the 3-fold Xd is not contained in the deformation families №1, №19,

№28, №39, №49, №59, №66, №84;

(3) d(Xd) = 3, if the 3-fold Xd is a general member of one of the eight deformation

families №1, №19, №28, №39, №49, №59, №66, №84.

Conjecture. Suppose that Xd is any quasismooth member in one of the eight deformation

families №1, №19, №28, №39, №49, №59, №66, №84. Then d(Xd) = 3.

If Xd is contained in one of the families №1, №19, №28, №39, №49, №59, №66, №84,
then the septuple (a1, a2, a3, a4, a5, d, I) is described in the following table below.

№ a1 a2 a3 a4 a5 d I

1 1 1 1 1 1 4 1

19 1 2 3 3 4 12 1

28 1 3 3 4 5 15 1

39 1 3 4 5 6 18 1

49 1 3 5 6 7 21 1

59 1 3 6 7 8 24 1

66 1 5 6 7 9 27 1

84 1 7 8 9 12 36 1

It would be interesting to study degree of irrationality of rationally connected threefolds
in a more general setting. If a rationally connected 3-fold is birational to a conic bundle,
its degree of irrationality is 1 or 2. Similarly, if a rationally connected 3-fold is birational
to a fibration into del Pezzo surfaces, it is birational to an elliptic fibration with a section,
which implies that the degree of irrationality of the threefold is either 1 or 2.

Proposition. Let V be a smooth Fano 3-fold that is not a quartic 3-fold. Then d(V ) is

either 1 or 2.

Proof. We may assume that V is not birational neither to a conic bundle nor to an elliptic
fibration with a section. Then V is sextic double solid. This gives d(V ) 6 2. �

Applying Minimal Model Program, we see that every rationally connected threefold
whose degree of irrationality is larger than 2 is birational to a Fano 3-fold with terminal Q-
factorial singularities that has Picard rank 1, which is birational neither to a conic bundle
nor to a fibration into del Pezzo surfaces. Such a Fano 3-fold is said to be solid ([3]). It
would be interesting to study the degree of irrationality of solid Fano 3-folds.

Let us describe the structure of this paper. In Sections 2, 3, and 4, we study weighted
Fano 3-fold hypersurfaces in the deformation families №1, №19, №28, №39, №49, №59,
№66, №84. Then, in Section 5, we prove out Main Theorem.
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From now on, we denote by Aut(X) the group of automorphisms of a threefold X and
by Bir(X) the group of birational automorphisms of X . We use coordinates x, y, z, t, w
for P(a1, a2, a3, a4, a5) with wt(x) = a1, wt(y) = a2, wt(z) = a3, wt(t) = a4, wt(w) = a5.

Acknowledgements. Cheltsov has been supported by EPSRC Grant EP/V054597/1.
Park has been supported by IBS-R003-D1, Institute for Basic Science in Korea.

2. Family №1

Let X4 be a smooth quartic 3-fold in P4. Then X4 is irrational ([18]). Thus, considering
a projection X4 99K P3 from a point in X4, we get d(V ) ∈ {2, 3}.

Lemma 2.1. If X4 is general, then d(X4) = 3.

Proof. Suppose that d(X4) = 2. Then there exists a rational map X4 99K P3 that is
generically two-to-one. This map induces a birational involution τ ofX4. The involution τ
is biregular since

Bir(X4) = Aut(X4).

by [18]. However, if X4 is general, the group Aut(X4) is trivial ([22]). �

We expect that d(X4) = 3. Indeed, suppose d(X4) = 2. As in the proof of Lemma 2.1,
we obtain a biregular involution τ of X4 such that the quotient Y = X4/τ is rational.
Then the fixed locus of the involution τ is either

• a smooth quartic surface,
• or a disjoint union of a smooth plane quartic curve and four different points.

In the former case, the threefold Y is a double cover of P3 ramified along a smooth quartic,
which is irrational ([29]). Therefore, we conclude that τ fixes disjoint union of smooth
plane quartic curve and four points. Now, changing coordinates on P4, we may assume
that

X4 =
{

h4(x, y, z) + t2a2(x, y, z) + twb2(x, y, z) + w2c2(x, y, z) + g4(t, w) = 0
}

⊂ P4

while τ acts as

τ(x : y : z : t : w) = (x : y : z : −t : −w),

where hi, ai, bi, ci, gi are homogeneous polynomials of degree i. Then τ fixes the smooth
irreducible curve

C =
{

h4(x, y, z) = 0, t = 0, w = 0
}

⊂ P4

and four points O1, O2, O3, O4 that are cut out on X4 by x = y = z = 0.
Let η : X4 → Y be the quotient map. Then Y is singular along the smooth curve η(C),

and Y has 4 singular points η(O1), η(O2), η(O3), and η(O4), which are cyclic quotient
singular points of type 1

2
(1, 1, 1). Let H be the pencil on Y generated by the images of

the surfaces cut out on X4 by t = 0 and w = 0, respectively. Then we have the following
commutative diagram:

V
π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ φ

  
❅❅

❅❅
❅❅

❅❅

Y //❴❴❴❴❴❴❴ P1
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where π is the blow up of the curve η(C), the map Y 99K P1 is given by the pencil H,
and φ is a Mori fibre space whose general fiber is a smooth del Pezzo surfaces of degree 2.
Now, one can try to apply the technique from [2, 21, 24] to show that Y is irrational.

3. Families №19 and №28

Before we proceed, let us introduce a lemma which is useful in handling automorphisms
for Families №19 and №28.

Lemma 3.1. Let Σ be a subset in P1 that consists of 5 distinct points in general position.

Then the group of automorphisms of the pair (P1,Σ) is trivial.

Proof. This is a well-known fact. See, for example, [15, § 6.4] or [26]. �

Let Y be a general quasismooth hypersurface in the family №19. Then Y is given by
quasihomogeneous equation of degree 12

f := w3 + w2f4(x, y, z, t) + wf8(x, y, z, t) + f12(x, y, z, t) = 0

in P(1, 2, 3, 3, 4), where each fk is a quasihomogeneous polynomial of degree k in x, y, z, t.
We now change the coordinates in the following way:

(1) by using the following type of coordinate change

w 7→ w + ∗y2 + ∗yx2 + ∗xz + ∗xt,

we may assume that f has wy4 but none of y6, y5x2, y4xz, y4xt;
(2) by using the following type of coordinate change

y 7→ y + ∗x2,

we may assume that f does not have wy3x2;
(3) by using the following type of coordinate change

z 7→ z + ∗xy + ∗x3,

we may assume that f has neither t3xy nor t3x3;
(4) by using the following type of coordinate change

t 7→ t + ∗xy + ∗x3,

we may assume that f has neither z3xy nor z3x3,

where ∗ means an appropriate constant. Note that our choice of coordinates implies that
the sections by w = 0 and y = 0 are preserved by Aut(Y ). Furthermore, the section by
x = 0 is also preserved by Aut(Y ), since the 0-dimensional space |OY (1)| is invariant.
These imply that all members of Aut(Y ) are given by

[x : y : z : t;w] 7→ [x : A1y : α1z + α2t : α3z + α4t : A2w],

where A1 and A2 are non-zero constants, and αi’s are constants such that the matrix
(

α1 α2

α3 α4

)

is invertible. Observe also that

f12(x, y, z, t) = y3g6(z, t) + y2h8(x, z, t) + yh10(x, z, t) + h12(x, z, t),
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where g6 is a quasihomogeneous polynomial of degree 6 in z, t, and hk’s are quasihomo-
geneous polynomials of degree k in x, z, t. The hypersurface Y has four distinct points

g12(z, t) = 0

on the curve C defined by x = y = w = 0. Moreover, since Y is general, we may assume
that g6(z, t) = 0 gives two distinct points on the curve C, and hence

g12(z, t)g6(z, t) = 0

defines 6 distinct points Σ in C ∼= P1 which are in general position. Every automorphism
of Y induces an automorphism of C that leaves Σ invariant. Then Lemma 3.1 implies
that α2 = α3 = 0 and α1 = α4. Consequently, every automorphism of Y must be induced
by

[x : y : z : t : w] 7→ [x : a1y : a2z : a2t : a3w]

where ai’s are non-zero constants.
Let W be a general quasismooth hypersurface in the family №28. The hypersurface W

is given by quasihomogeneous equation of degree 15

w3 + w2f5(x, y, z, t) + wf10(x, y, z, t) + f15(x, y, z, t) = 0

in P(1, 3, 3, 4, 5), where fk(x, y, z, t) is a quasihomogeneous polynomial of degree k in
x, y, z, t. By using the coordinate change

w 7→ w +
1

3
f5(x, y, z, t)

we may assume that W is defined by quasihomogeneous equation of degree 15

w3 + wf10(x, y, z, t) + f15(x, y, z, t) = 0

in P(1, 3, 3, 4, 5). Since W is quasismooth, we may further change coordinates z and y
such that f15 has t3z but not t3y. Then, we change the coordinates in the following way:

(1) use the following type of coordinate change

z 7→ z + ∗x3

in such a way that f15 does not have t3x3;
(2) use the following type of coordinate change

y 7→ y + ∗x3

in such a way that f15 has y5 but not y4x3;
(3) use the following type of coordinate change

t 7→ t + ∗zx+ ∗yx+ ∗x4

in such a way that none of t2z2x, t2zyx, t2zx4 appear in f15,

where ∗ means a suitable constant. As above, we see that each member in Aut(W ) is
given by

[x : y : z : t;w] 7→ [x : α1y + α2z : α3y + α4z : A1t : A2w]

where Ai’s are non-zero constants, and αi’s are constants such that the matrix
(

α1 α2

α3 α4

)
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is invertible. Observe that the hypersurface W has five distinct points on the curve C
defined by x = t = w = 0, and every automorphism of W induces an automorphism of C
that permutes these five points. Since W is general, we may assume that these points are
in general position. Thus, applying Lemma 3.1, we see that α2 = α3 = 0 and α1 = α4.
Consequently, every automorphism of W must be induced by

[x : y : z : t : w] 7→ [x : a1y : a1z : a3t : a4w]

where ai’s are non-zero constants.
The following table shows all monomials that appear in the quasihomogenous polyno-

mial for each of the families №19 and №28 after required coordinate changes.

№ d monomials of degree d

19 12

w3, zt3, z2t2, z3t, yt2w, yztw, yz2w, y2w2, y3t2, y3zt, y3z2, y4w, xyzt2, xyz2t,
xy2tw, xy2zw, xzw2, xtw2, x2t2w, x2ztw, x2z2w, x2y2t2, x2y2zt, x2y2z2,

x3zt2, x3z2t, x3ytw, x3yzw, x3y3t, x3y3z, x4yt2, x4yzt, x4yz2, x4y2w, x4y4,
x4w2, x5tw, x5zw, x5y2t, x5y2z, x6t2, x6zt, x6z2, x6yw, x6y3, x7yt, x7yz,

x8w, x8y2, x9t, x9z, x10y, x12

28 15

w3, zt3, z2tw, yt3, yztw, yz4, y2tw, y2z3, y3z2, y4z, xz3w, xyz2w, xy2t2,
xy2zw, xy3w, x2t2w, x2z3t, x2yz2t, x2y2zt, x2y3t, x3ztw, x3ytw, x3yz3,

x3y2z2, x3y3z, x4z2w, x4yt2, x4yzw, x4y2w, x5z2t, x5yzt, x5y2t, x6tw, x6z3,
x6yz2, x6y2z, x6y3, x7t2, x7zw, x7yw, x8zt, x8yt, x9z2, x9yz, x9y2, x10w, x11t,

x12z, x12y, x15

Using this, it is not difficult to see that the automorphism group of a general hypersurface
in each of the families №19 and №28 is trivial. In particular, it contains no involutions.

Suppose that for a general hypersurface X in the families №19 and №28, d(X) = 2.
Then Bir(X) has an involution. However, since X is birationally super-rigid ([13]), we
have

Bir(X) = Aut(X),

and hence Aut(X) has an involution. This is a contradiction. Therefore, d(X) = 3.

4. Families №39, №49, №59, №66, №84

Let Xd be a quasismooth and well-formed hypersurface of degree d in the weighted
projective space P(a1, a2, a3, a4, a5). Suppose that Xd belongs to one of the families №39,
№49, №59, №66, №84. Since the hypersurface Xd is birationally super-rigid ([13]), we
have

Bir(Xd) = Aut(Xd).

It follows from the same argument in Section 3 that in order to have d(Xd) = 3, it is
enough to show that Aut(Xd) is trivial.

We have d = 3a5 and the hypersurface is defined by quasihomogeneous equation

f(x, y, z, t, w) := w3 + w2fa5(x, y, z, t) + wf2a5(x, y, z, t) + fd(x, y, z, t) = 0,

where fk(x, y, z, t) is a quasihomogeneous polynomial of degree k in x, y, z, t.
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By using the coordinate change

w 7→ w +
1

3
fa5(x, y, z, t),

we may assume that fa5(x, y, z, t) = 0, that is, the hypersurface is is defined by quasiho-
mogeneous equation

(4.1) w3 + wf2a5(x, y, z, t) + fd(x, y, z, t) = 0.

The section by x = 0 is preserved by Aut(Xd) since the 0-dimensional space |OXd
(1)|

is invariant. Due to the assumption (4.1), the section by w = 0 is also invariant under
the action of Aut(Xd).

We now suppose that Xd is general. Using the monomials in the first column, we
perform appropriate coordinate changes described in the third column of Table 4.2 so
that we might assume that the monomials in the second column do not appear in the
defining equation (4.1). For instance, if f = · · ·+at3y+bt3x3+ · · · in the first line of №39,
where a 6= 0, b are constants, then we perform the coordinate change

y 7→ y +
b

a
x3

so that we could remove the monomial t3x3 from f . If f = · · ·+at3y+ bt2yzx+ ct2y2x2+
dt2yx5 + · · · in the second line of №39, where a 6= 0, b, c, d are constants, then we use
the coordinate change

t 7→ t +
1

3a

(

bxz + cx2y + dx5
)

to get rid of the monomials t2yzx, t2y2x2, t2yx5 from f .

(4.2)

№ f contains f does not contain coordinate changes

39
t3y
t3y
z3w

t3x3

t2yzx, t2y2x2, t2yx5

z2wyx, z2wx4

y 7→ y + ∗x3

t 7→ t+ ∗xz + ∗x2y + ∗x5

z 7→ z + ∗xy + ∗x4

49
t3y
y5t
z4x

t3x3

y5xz, y5x6, y6x3, y7

z3x3y, z3x6,

y 7→ y + ∗x3

t 7→ t+ ∗xz + ∗x3y + ∗x6 + ∗y2

z 7→ z + ∗x2y + ∗x5

59
t3y
t3y
y6z

t3x3

t2y3x, t2yxz, t2yx7

y6x6, y7x3, y8

y 7→ y + ∗x3

t 7→ t+ ∗xy2 + ∗xz + ∗x7

z 7→ z + ∗y2 + ∗yx3 + x6

66
t3z
y4t
y4t

t3xy, t3x6

y4xz, y4x7, y5x2

y3tx5

z 7→ z + ∗xy + ∗x6

t 7→ t+ ∗xz + ∗x2y + ∗x7

y 7→ y + ∗x5

84
y4z
y4z
t4

y4x8, y5x
y3zx7

t3xz, t3x2y, t3x9

z 7→ z + ∗xy + ∗x8

y 7→ y + ∗x7

t 7→ t+ ∗xz + ∗x2y + ∗x9
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where ∗ means an appropriate constant. It then follows that Aut(Xd) fixes the sections
defined by y = 0, by z = 0, and by t = 0. Consequently, all members of Aut(Xd) are
given by

[x : y : z : t : w] 7→ [x : a1y : a2z : a3t : a4w]

where ai’s are non-zero constants.
The following table shows all the monomials that appear in the quasihomogenous poly-

nomial (4.1) for each of the families №39, №49, №59, №66, №84. Note that all the
assumptions of Table 4.2 for (4.1) are applied to the table below.

№ d monomials of degree d

39 18

w3, z2t2, z3w, yt3, yztw, y2z3, y3zt, y4w, y6, xz3t, xy2tw, xy3z2, xy4t, x2t2w,
x2z4, x2yz2t, x2y2zw, x2y4z, x3ztw, x3yz3, x3y2zt, x3y3w, x3y5, x4zt2, x4ytw,
x4y2z2, x4y3t, x5z2t, x5yzw, x5y3z, x6z3, x6yzt, x6y2w, x6y4, x7tw, x7yz2,
x7y2t, x8t2, x8zw, x8y2z, x9zt, x9yw, x9y3, x10z2, x10yt, x11yz, x12w, x12y2,

x13t, x14z, x15y, x18

49 21

w3, z3t, yt3, yztw, y2z3, y3t2, y3zw, y5t, xz4, xyzt2, xyz2w, xy3zt, x2t2w,
x2yz2t, x2y2tw, x2y3z2, x2y4w, x3ztw, x3y2t2, x3y2zw, x3y4t, x4zt2, x4z2w,
x4y2zt, x4y4z, x5z2t, x5ytw, x5y2z2, x5y3w, x6yt2, x6yzw, x6y3t, x7yzt,
x7y3z, x8tw, x8yz2, x8y2w, x9t2, x9zw, x9y2t, x9y4, x10zt, x10y2z, x11z2,

x11yw, x12yt, x12y3, x13yz, x14w, x15t, x15y2, x16z, x18y, x21

59 24

w3, z4, yt3, yztw, y2z3, y3tw, y4z2, y6z, xyz2w, xy3zw, xy5w, x2t2w, x2yz2t,
x2y3zt, x2y5t, x3ztw, x3yz3, x3y2tw, x3y3z2, x3y5z, x4zt2, x4z2w, x4y2t2,
x4y2zw, x4y4w, x5z2t, x5y2zt, x5y4t, x6z3, x6ytw, x6y2z2, x6y4z, x7yzw,
x7y3w, x8yzt, x8y3t, x9tw, x9yz2, x9y3z, x9y5, x10t2, x10zw, x10y2w, x11zt
x11y2t, x12z2, x12y2z, x12y4, x13yw, x14yt, x15yz, x15y3, x16w, x17t, x18z,

x18y2, x21y, x24

66 27

w3, zt3, z3w, yztw, y3z2, y4t, xz2t2, xyz2w, xy2tw, x2z3t, x2yzt2, x2y2zw,
x3z4, x3yz2t, x3y2t2, x3y3w, x4t2w, x4yz3, x4y2zt, x5ztw, x5y2z2, x6z2w,

x6ytw, x6y3z, x7zt2, x7yzw, x8z2t, x8yt2, x8y2w, x9z3, x9yzt, x10yz2, x10y2t,
x11tw, x11y2z, x12zw, x12y3, x13t2, x13yw, x14zt, x15z2, x15yt, x16yz, x17y2,

x18w, x20t, x21z, x22y, x27

84 36

w3, t4, z3w, yztw, y4z, xyz2w, xy2tw, x2z2t2, x2y2zw, x3z3t, x3yzt2, x3y3w,
x4z4, x4yz2t, x4y2t2, x5yz3, x5y2zt, x6t2w, x6y2z2, x6y3t, x7ztw, x8z2w,

x8ytw, x9yzw, x10zt2, x10y2w, x11z2t, x11yt2, x12z3, x12yzt, x13yz2, x13y2t,
x14y2z, x15tw, x15y3, x16zw, x17yw, x18t2, x19zt, x20z2, x20yt, x21yz, x22y2,

x24w, x27t, x28z, x29y, x36

Using this, we see that the automorphism group of a general hypersurface in each of
the families №39, №49, №59, №66, №84 is trivial. In particular, it does not contain any
involutions. Therefore, d(X) = 3.
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5. Proof of Main Theorem

Let us use assumptions and notations of Section 1. Suppose, in addition, that I = 1. If
Xd is a general member of the families №1, №19, №28, №39, №49, №59, №66, №84, then
it follows from the results proved earlier in Sections 2, 3, and 4 that deg(Xd) = 3. Thus,
to prove Main Theorem, we may assume that Xd is not contained is the deformation
families №1, №19, №28, №39, №49, №59, №66, №84. Let us show that d(Xd) = 2.

We know from [13, 14, 17] that Xd is irrational. Thus, we have d(Xd) > 2. Moreover,
the natural projection

P(1, a2, a3, a4, a5) 99K P(1, a2, a3, a4)

induces a dominant map Xd 99K P(1, a2, a3, a4) that is generically two-to-one if d < 3a5.
Thus, if d < 3a5, then d(Xd) = 2.

Hence, to complete the proof of Main Theorem, we may further assume that d > 3a5.
Then the 3-fold Xd is contained in one of the deformation families №9, №17, №27, and
the septuple (a1, a2, a3, a4, a5, d, I) is described in the following table below.

№ a1 a2 a3 a4 a5 d I

9 1 1 2 3 3 9 1

17 1 1 3 4 4 12 1

27 1 2 3 5 5 15 1

In each of these three cases, we can change quasi-homogeneous coordinates on
P(1, a2, a3, a4, a5) such that the hypersurface Xd is given by

wt(w − t) + w2fa5(x, y, z) + t2ga5(x, y, z) + wtha5(x, y, z)+

+ wf2a5(x, y, z) + tg2a5(x, y, z) + hd(x, y, z) = 0,

where fℓ, gℓ, hℓ are quasihomogeneous polynomials of degrees ℓ in x, y, z. Note that Xd

has three singular points of type 1

a5
(1, a2, a3) at [0 : 0 : 0 : 0 : 1], [0 : 0 : 0 : 1 : 0], and

[0 : 0 : 0 : 1 : 1]. The map Xd 99K P(1, a2, a3, a4) given by (x : y : z : t : w) 7→ (x : y : z : t)
is a dominant rational map that is undefined in [0 : 0 : 0 : 0 : 1]. Moreover, this map is
generically two-to-one, which implies that d(Xd) = 2.

Remark 5.1. Let η : P(1, a2, a3, a4, a5) 99K P(1, a2, a3) be the natural projection. Then,
arguing as in [8], we can resolve the indeterminacy of the rational map η via the following
commutative diagram

U1

π1

��

U2

π2
oo U

π3
oo

ζ

��

Xd η
//❴❴❴❴❴❴❴❴❴❴❴❴❴ P(1, a2, a3)

where π1 is the weighted blow up of the point [0 : 0 : 0 : 0 : 1] with weights (1, a2, a3),
π2 is the weighted blow up with weights (1, a2, a3) of the point in U1 corresponding to
[0 : 0 : 0 : 1 : 0], and π3 is the weighted blow up with weights (1, a2, a3) of the point in U2

corresponding to [0 : 0 : 0 : 1 : 1]. Then ζ is an elliptic fibration, since the fibre of η over
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a general point on P(1, a2, a3) is isomorphic to a smooth cubic curve on P2. Furthermore,
the exceptional surface of the weighted blow up πi, which is isomorphic to P(1, a2, a3),
yields a section of the elliptic fibration. This again implies that d(Xd) = 2.
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