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BIRATIONAL RIGIDITY AND ALPHA INVARIANTS OF FANO VARIETIES

IVAN CHELTSOV, ARMAN SARIKYAN, ZIQUAN ZHUANG

To Slava Shokurov on the occasion of his 70th birthday.

Abstract. We prove that for every ǫ > 0, there is a birationally super-rigid Fano variety X such
that 1

2
6 α(X) 6 1

2
+ ǫ. Also we show that for every ǫ > 0, there is a Fano variety X and a finite

subgroup G ⊂ Aut(X) such that X is G-birationally super-rigid, and αG(X) < ǫ.
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Throughout this paper, we assume that all varieties are projective, normal and defined over C.

1. Introduction

LetX be a Fano variety with terminal singularities. If rkCl(X) = 1, thenX is a Mori fibre space.
In this case, we say that X is birationally rigid if X is not birational to other Mori fibre spaces [8].
Similarly, we say that X is birationally super-rigid if it is birationally rigid and Bir(X) = Aut(X).
Examples of birationally super-rigid smooth Fano varieties include

• smooth hypersurfaces in Pn+1 of degree n+ 1 > 4 [6, 29, 28, 31, 37, 42, 44, 51];
• smooth weighted hypersuraces in P(1n+1, n) of degree 2n > 6 [43].

Note that these examples of smooth Fano varieties are known to be K-stable [3, 7, 14, 16, 27, 30].
One can prove this by using Tian’s criterion. Namely, recall from [41, 49] that X is K-stable if

α(X) >
dim(X)

dim(X) + 1
,

where α(X) is the α-invariant of X that can be defined as follows:

α(X) = sup

{
λ ∈ Q

∣∣∣∣
the log pair (X, λD) is log canonical

for any effective Q-divisor D ∼Q −KX

}
.

If X is smooth, then X is also K-stable in the case when α(X) = dim(X)
dim(X)+1

and dim(X) > 2 [30].

On the other hand, if X is a smooth hypersurface in Pn+1 of degree n+ 1, then [7, 14] gives

α(X) >
n

n + 1
=

dim(X)

dim(X) + 1
.

1

http://arxiv.org/abs/2304.11333v1


2 IVAN CHELTSOV, ARMAN SARIKYAN, ZIQUAN ZHUANG

Similarly, if X is smooth hypersuraces in P(1n+1, n) of degree 2n > 2, then [16] gives

α(X) >
2n− 1

2n
>

n

n+ 1
=

dim(X)

dim(X) + 1
.

This shows that all smooth hypersurfaces in Pn+1 of degree n + 1 > 3 and all smooth weighted
hypersuraces in P(1n+1, n) of degree 2n > 4 are K-stable. This gives an evidence for

Conjecture 1.1 ([35]). Let X be a Fano variety with terminal singularities such that rkCl(X) = 1.
Suppose that X is birationally rigid. Then X is K-stable.

This conjecture has been already verified for many Fano varieties [10, 11, 12, 35, 15, 24, 51, 47],
but it is still open in full generality (cf. [40]). On the other hand, we have the following result:

Theorem 1.2 ([48]). Let X be a Fano variety with terminal singularities such that rkCl(X) = 1.
Suppose that X is birationally super-rigid and α(X) > 1

2
. Then X is K-stable.

This naturally leads to the question:

Question 1.3 ([48]). Is it true that α(X) > 1
2
for any birationally super-rigid Fano variety X?

In this paper we show that the bound 1
2
is optimal by proving the following theorem.

Theorem 1.4. For every ǫ > 0, there exists a singular Fano variety X with terminal singularities

such that rkCl(X) = 1, the variety X is birationally super-rigid, and

1

2
6 α(X) 6

1

2
+ ǫ.

We also answer a natural equivariant version of Question 1.3, which can be stated as follows.
Suppose that rkClG(X) = 1 for a finite subgroup G ⊂ Aut(X), so that X is a G-Mori fibre space.
Then X is G-birationally rigid if it is not G-birational to other G-Mori fibre spaces [21, § 3.1.1].
Similarly, the Fano variety X is said to be G-birationally super-rigid if X is G-birationally rigid,
and X does not have non-biregular G-birational selfmaps. Finally, we let

αG(X) = sup

{
λ ∈ Q

∣∣∣∣
the pair (X, λD) is log canonical for every

effective G-invariant Q-divisor D ∼Q −KX

}
.

If αG(X) > dim(X)
dim(X)+1

, then X is K-polystable by [52, Corollary 1.3].

Question 1.5. Is it true that αG(X) > 1
2
for any G-birationally super-rigid Fano variety X?

The answer to this question is positive in dimension two:

Exercise 1.6 ([9, 18, 46]). If dim(X) = 2 and X is G-birationally super-rigid, then αG(X) > 2
3
.

In dimension three we still do not know whether our Question 1.5 has a positive answer or not,
but many examples suggest that the answer is probably positive.

Example 1.7 ([19, 20, 22]). Suppose that X = P3, and let G be any finite subgroup in Aut(X).
Then X is G-birationally super-rigid if and only if the following four conditions are satisfied

(i) X does not have G-orbits of length 6 4;
(ii) X does not contains G-invariant lines;
(iii) X does not contains G-invariant pairs of skew lines;
(iv) G is not isomorphic to A5, S5, PSL2(F7), A6, µ

4
2 ⋊ µ5 and µ

4
2 ⋊ D10.

Using this criterion and [18], we see that αG(X) > 1
2
if X is G-birationally super-rigid.

In this paper, we prove that the answer to Question 1.5 is very negative in higher dimensions.
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Theorem 1.8. For every ǫ > 0, there is a smooth Fano variety X and a finite subgroup G ⊂ Aut(X)
such that rkPicG(X) = 1, the variety X is G-birationally super-rigid, and αG(X) < ǫ.

Let us describe the structure of this paper. In Section 2, we prove Theorem 1.4. In Section 3,
we study equivariant birational geometry of a smooth quadric threefold Q ⊂ P4 for the natural
action of the symmetric group S5, which should be interesting for mathematicians working on
finite subgroups of the space Cremona group (cf. [50, § 9]). This example inspired Theorem 1.8.
In Section 4, we present few results used in the proof of Theorem 1.8, which is done in Section 5.

Acknowledgements. Ivan Cheltsov was supported by the EPSRC grant number EP/V054597/1.

He worked on this paper during 2 months stay at Institut des Hautes Études Scientifiques (IHÉS).
Ivan would like to thank the institute for good working conditions. Ziquan Zhuang was supported
by the NSF Grant DMS-2240926 and a Clay research fellowship.

2. The proof of Theorem 1.4

We fix a positive integer a > 2. Then we let X be a quasi-smooth well-formed singular weighted
hypersurfaces of degree 2a+ 1 in P(1a+2, a) that is given by the following equation:

y2x1 + f2a+1(x1, . . . , xa+2) = 0,

where each xi is a coordinate of weight 1, y is a coordinate of weight a, and f2a+1 is a general
homogeneous polynomial of degree 2a+ 1. Then

• X is a Fano variety of dimension N = a+ 1,
• the class group of the variety X is of rank 1,
• the singularities of X consist of one singular point Oy = (0 : . . . : 0 : 1), which is a terminal
quotient singularity of type 1

a
(1, . . . , 1).

Further, it follows from [36] that

α(X) 6
a+ 1

2a+ 1
=

1

2
+

1

4a+ 2
.

In this section, we prove the following result, which implies Theorem 1.4.

Theorem 2.1. The Fano variety X is birationally super-rigid.

This theorem also answers positively [36, Question 7.2.3].

Remark 2.2. If a = 2, then X is known to be birationally super-rigid [15, 24].

Let π : X 99K PN be the projection from the point Oy. Then π contracts the following divisor:

D =
{
x1 = 0, f2a+1(x1, . . . , xa+2) = 0

}
⊂ P(1a+2, a).

Further, one has the following diagram:

X̃

f

��

ν
//

g

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
U

θ
��

X
π

//❴❴❴❴❴❴ PN

where f is the weighted blow-up of the point Oy with weights (1, . . . , 1), the map g is a morphism,
the variety U is a hypersurface in P(1a+2, a+ 1) of degree 2a+ 2 that is given by

z2 + x1f2a+1(x1, . . . , xa+2) = 0,

the morphism ν is a birational morphism that contracts the strict transform of the divisor D, and
the morphism θ is a double cover that is branched over the hypersurface x1f2a+1(x1, . . . , xa+2) = 0.
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Here, we consider x1, . . . , xa+2 as coordinates on PN and as coordinates of weight 1 on the weighted
projective space P(1a+2, a+ 1), where z is a coordinate of weight a+ 1.

Now, let us prove Theorem 2.1. Assume the contrary, i.e. there exist a birational map

Φ: X 99K W

to a Mori fibre space W that is not isomorphism. Let M be a birational transform of a very ample
complete linear system on W via Φ. Let λ ∈ Q>0 be the positive rational number such that

KX + λM ∼Q 0.

Then, by the Noether-Fano inequality [25], the singularities of the pair (X, λM) are not canonical.
Let Z be a center of non-canonical singularities of the log pair (X, λM).

Now, let E be the f -exceptional divisor, and let M̃ be the strict transform of the mobile linear

system M on the variety X̃ . Then E ∼= Pa, and

KX̃ ∼Q f ∗
(
KX

)
+ 1

a
E,

λM̃ ∼Q f ∗
(
λM

)
− µE,

for some µ ∈ Q>0. Therefore, we have

KX̃ + λM̃ ∼Q f ∗(KX + λM) +
(1
a
− µ

)
E.

Thus, if µ > 1
a
, then Oy is a center of non-canonical singularities of the log pair (X, λM).

Lemma 2.3 (cf. [32] for a = 2). Suppose that Oy ∈ Z. Then µ > 1
a
.

Proof. Suppose that µ 6 1
a
. Let us seek for a contradiction.

2.1. Case: Z 6= Oy. Let Z̃ be the strict transform of Z via f . Then mult
Z̃
(M̃) > 1

λ
and hence,

(2.4) multP
(
M̃
∣∣
E

)
>

1

λ

for any point P ∈ Z̃ ∩ E. Notice that

λM̃
∣∣
E
∼Q −µE

∣∣
E
∼Q aµH,

where H is a hyperplane in E ∼= Pa. Since aµ 6 1, this contradicts to (2.4).

2.2. Case: Z = Oy. We write

KX̃ + λM̃+
(
µ−

1

a

)
E ∼Q f ∗

(
KX + λM

)
.

Hence, the singularities of the log pair (X̃, λM̃+(µ− 1
a
)E) are not canonical at some point P ∈ E.

Then the singularities of the log pair (X̃, λM̃) are also not canonical at P , so that

multP
(
M̃
)
>

1

λ
.

Now, we argue as in the previous case to obtain a contradiction.

�

One the other hand, we have

Lemma 2.5. One has µ 6 1
a
.
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Proof. One has g∗(OPN (1)) ∼Q f ∗(−KX)−
1
a
E. Then

(
f ∗(−KX)−

1

a
E
)
· C = 0,

for any curve C contracted by g. Thus, if µ > 1
a
, then

M̃ · C =
1

λ

(
f ∗(−KX)− µE

)
< 0

for a general divisor M̃ ∈ M̃. This is a contradiction, because the linear system M̃ is mobile, and

the curves contracted by g span a divisor in X̃ — the proper transform of the divisor D. �

Corollary 2.6. One has Oy /∈ Z.

Thus, we see that Z is contained in the smooth locus of the variety X .

Lemma 2.7. One has dim(Z) = a− 1.

Proof. Suppose that dim(Z) < a − 1. Let M1 and M2 be sufficiently general divisors in M, and
let P be a sufficiently general point in Z. Then

(M1 ·M2)P >
4

λ2

by [44] or [26, Corollary 3.4]. Let L be the linear subsystem in |−KX | consisting of all divisors that
pass through the point P , and let H1, . . . , HN−2 be sufficiently general divisors in the system L.
If P 6∈ D, then the base locus of L does not contain curves, which gives

2a+ 1

aλ2
= M1 ·M2 ·H1 · . . . ·HN−2 > (M1 ·M2)P >

4

λ2
,

which is a contradiction. Thus, we see that P ∈ D.
Let L ⊂ D be the curve containing P that is contracted by π. Then L is the only curve contained

in the base locus of the linear system L. After a linear change of coordinates, we can assume that

P = (0 : 0 : 1 : 0 : . . . : 0 : 1)

and Hi = X ∩ {xi+3 = 0} for i = 1, . . . , N − 2. Consider the surface S defined as

S =
N−2⋂

i=1

Hi.

We can identify S with a surface in P(1, 1, 1, a) given by

y2x1 + f2a+1(x1, x2, x3, 0, . . . , 0) = 0.

Then L = S ∩ {x1 = x2 = 0}. Let MS = M|S. Then λMS = mL + λ∆ for some non-negative
rational number m ∈ Q>0 and some mobile linear system ∆ on the surface S. Moreover, applying
the inversion of adjunction [38, Theorem 5.50], we see that (S, λMS) is not log canonical at P .

Let H be a general curve in |OS(1)|, and let HL be a general curve in |OS(1)| that contains L.
Then H · L = 1

a
and

S ∩HL = L+R,

where R is a curve in S such that L 6⊂ Supp(R). One can check that L · R = 2 and H · R = 2.
Thus, using (L+R) · L = H · L = 1

a
, we get

L2 = −2 +
1

a
,

which can also be shown using the subadjunction formula on S.
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Now, using Corti’s inequality [26, Theorem 3.1], we get

4(1−m) < λ2
(
∆1 ·∆2

)
P
6 λ2∆1 ·∆2 =

=
(
H −mL

)2
= H2 − 2mH · L+m2L2 =

2a + 1

a
−

2m

a
+m2

(
−2 +

1

a

)
,

which gives

0 >
(2a− 1)(m− 1)2

a
.

This is a contradiction, since a > 2. �

Therefore, we see that dim(Z) = dim(X)− 2. Then

multZ
(
M
)
>

1

λ
.

Let M1 and M2 be general divisors in M. Then

3

λ2
>

2a+ 1

λ2a
=
(
−KX

)N−2
·M1 ·M2 > mult2Z(M)

(
−KX

)N−2
· Z >

1

λ2

(
−KX

)N−2
· Z,

so that (−KX)
N−2 · Z ∈ {1, 2}.

Now, let H1, . . . , HN−2 be general divisors in |−KX |. After a linear change of coordinate system
one can assume that Hi = X ∩ {xi+4 = 0} for i = 1, . . . , N − 3. Let V be the threefold defined as

V =

N−3⋂

i=1

Hi.

Then we can identify V with the hypersurface in P(14, a) given by

y2x1 + f2a+1(x1, . . . , x4, 0, . . . , 0) = 0.

Let C = V ∩ Z, MV = M|V , and let H be a general surface in |OV (1)|. Then

• C is an irreducible curve such that C ·H ∈ {1, 2},
• C is contained in the smooth locus of the hypersurface V ,
• C is a center of non-canonical singularities of the log pair (V, λMV ).

We set µ = λmultC(MV ). Then µ > 1.

Lemma 2.8. One has C ·H 6= 1.

Proof. Suppose that C ·H = 1. We can choose coordinates on P(14, a) such that

C =
{
x2 = 0, x3 = 0, y + F (x1, . . . , x4) = 0

}
⊂ P(14, a),

where F (x1, . . . x4) is a homogeneous polynomial of degree a. Note that C ∼= P1.

Now, we let β : Ṽ → V be the blow-up of the curve C, and let E be the β-exceptional divisor.

We claim that E3 = a−1. Indeed, let S̃1, S̃2, S̃3 be the strict transforms on Ṽ of the surfaces that
are cut out on V by the equations y + F (x1, . . . , x4) = 0, x2 = 0, x3 = 0, respectively. Then

0 = S̃1 · S̃2 · S̃3 = (aβ∗(H)−E) · (β∗(H)−E)2 = aH3 + (a+ 2)β∗(H) · E2 − E3 = a− 1− E3,

which gives E3 = a− 1 as claimed.

Let MṼ be the strict transform of the linear system MV on the threefold Ṽ . Then

λMṼ ∼Q β∗(H)− µE,

One the other hand, since M
Ṽ
is mobile and aβ∗(H)− E is nef, we get

0 6
(
aβ∗(H)−E

)
·
(
β∗(H)−µE

)2
= aH3+(2µ+aµ2)β∗(H)·E2−µ2E3 = (µ−1)2−2a(µ2−1) < 0,
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which is a contradiction. �

Thus, we see that C ·H = 2. Then we can change coordinates on P(14, a) such that

(A) either

C =
{
x4 = 0, x1x2 + x2

3 = 0, y + Fa(x1, . . . , x4) = 0
}
⊂ P(14, a)

for some homogeneous polynomial Fa(x1, . . . , x4) of degree a,
(B) or

C =
{
x2 = 0, x3 = 0, y2 + F2a(x1, . . . , x4) = 0

}
⊂ P(14, a)

for some homogeneous polynomial F2a(x1, . . . , x4) of degree 2a.

In case (A), we have C ∼= P1. In case (B), the curve C may have singularities.

In both cases, let β : Ṽ → V be the blow-up of the curve C, and let E be the β-exceptional
divisor. Then, arguing as in the proof of Lemma 2.8, we get

E3 =

{
2a− 4 in case (A),

− 2 in case (B).

Let MṼ be the strict transform of the linear system MV on the threefold Ṽ . Then

λM
Ṽ
∼Q β∗(H)− µE.

Moreover, in case (A), the divisor aβ∗(H)− E is nef, so that
(
aβ∗(H)− E

)
·
(
β∗(H)− µE

)2
> 0

because MṼ is mobile. But

(
aβ∗(H)−E

)
·
(
β∗(H)−µE

)2
= aH3+(2µ+aµ2)β∗(H) ·E2−µ2E3 = (2µ−1)2−2a(2µ2−1) < 0,

because µ > 1. Likewise, in case (B), the divisor 2aβ∗(H)−E is nef, which gives

0 6
(
2aβ∗(H)− E

)
·
(
β∗(H)− µE

)2
= 2aH3 + (2µ+ 2aµ2)β∗(H) · E2 − µ2E3 =

= −2(µ− 1)(1− µ+ 2a (1 + µ)) < 0.

Thus, we get a contradiction in both cases (A) and (B). This completes the proof of Theorem 2.1.

3. S5-invariant quadric threefold

Let Q be a smooth quadric hypersurface in P4. We can choose coordinates x0, x1, x2, x3, x4 on
the projective space P4 such that Q is given by the following equation:

4∑

i=0

x2
i = 0.

In particular, we see that Q is faithfully acted on by the symmetric group S5, which permutes
the coordinates x0, x1, x2, x3, x4. Then αS5

(Q) 6 1
3
, because S5 leaves invariant the hyperplane

sections of the quadric Q that is cut out by x0 + x1 + x2 + x3 + x4 = 0. In fact, arguing as in [18],
one can show that αS5

(Q) = 1
3
.

Keeping in mind the results obtained in [20], one can expect that Q is S5-birationally rigid.
However, this is not the case — the quadric hypersurface Q contains two S5-orbits of length 5, and
each of them leads to a G-birational transformation of the quadric into other S5-Mori fibre space.



8 IVAN CHELTSOV, ARMAN SARIKYAN, ZIQUAN ZHUANG

Namely, let Σ5 be a S5-orbit of length 5 in X , and let π : X → Q be the blow up of this S5-orbit.
Then there exists the following S5-equivariant commutative diagram:

U
ζ

//❴❴❴❴❴❴

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

W
φ

  
❅❅

❅❅
❅❅

❅❅

Q
χ

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Y

where ζ is a small birational map that flops the proper transforms of 10 conics that contain three
points in Σ5, φ is a birational morphism that contracts the proper transforms of 5 hyperplane
sections of the quadric Q that pass through four points in Σ5, and Y is a cubic threefold in P4 such
that it has 5 isolated ordinary double points and rkCl(Y ) = 1. Since Y is a S5-Mori fibre space,
we see that Q is not S5-birationally rigid. Note that the cubic threefold Y is given in P4 by

x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0.

This is not difficult to prove [4, 5].
The goal of this section is to prove the following result.

Theorem 3.1. The only S5-Mori fiber spaces that are S5-birational to Q are Q and Y .

Let us prove Theorem 3.1. Let ι ∈ Aut(Q) be the Galois involution of the double cover Q → P3

given by the projection from the point (1 : 1 : 1 : 1 : 1). Then ι commutes with the S5-action on Q.
It is well-known [13, 17] that Theorem 3.1 follows from the following technical result:

Theorem 3.2. Let MQ be any non-empty mobile S5-invariant linear system on the quadric Q,

and let MY and M′
Y be its proper transform on the cubic threefolds Y via χ and χ◦ ι, respectively.

Choose positive rational numbers λ, µ, µ′ such that

λMQ ∼Q −KQ,

µMY ∼Q −KY ,

µ′M′
Y ∼Q −KY ′ .

Then one of the log pair (Q, λMQ), (Y, µMY ) or (Y ′, µ′M′
Y ) has canonical singularities.

To prove Theorem 3.2, let us use all notations and assumptions of this theorem. We must prove
that at least one of the log pair (Q, λMQ), (Y, µMY ) or (Y, µ′M′

Y ) has canonical singularities.
Set Σ′

5 = ι(Σ5). Then Σ′
5 is the second S5-orbit in the quadric Q.

Remark 3.3. Let G be a stabilizer in S5 of a point in P ∈ Σ5 ∪Σ′
5. Then G ∼= S4 and its induced

linear action on the Zariski tangent space TP (Q) is an irreducible representation.

Now using this remark, [1, Lemma 2.4] and [26, Theorem 3.10], we can easily derive the required
assertion from the following two propositions, arguing as in the proof of [13, Theorem 1.2].

Proposition 3.4. The log pair (Q, λMQ) is canonical away from Σ5 ∪ Σ′
5.

Proposition 3.5. The log pairs (Y, µMY ) and (Y, µ′M′
Y ) are canonical away from Sing(Y ).

In the remaining part of this section, we will prove Propositions 3.4 and 3.5. For both proofs,
we need the following technical observation, which improves [20, Lemma 2.2].

Remark 3.6. Let X be a variety with terminal singularities, let D be an effective Q-Cartier divisor

on the variety X , let ϕ : X̃ → X be birational morphism such that X̃ is normal, let D̃ be the proper

transform on X̃ of the divisor D, and let E1, . . . , En be ϕ-exceptional divisors. Then

K
X̃
+ D̃ +

n∑

i=1

a(Ei;X,D)Ei ∼Q ϕ∗
(
KX +D

)
,
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where each a(Ei;X,D) is a rational number known as the discrepancy of the pair (X,D) along Ei.
Let E be one of the ϕ-exceptional divisors. Then

a
(
E;X,D

)
= a(E;X)− ordE(D),

where a(E;X) is the discrepancy of X along E. Let a = a(E;X). If a(E;X,D) < 0, then

a
(
E;X,

(
1+

1

a

)
D
)
= a(E;X)−

(
1+

1

a

)
ordE(D) < ordE(D)−

(
1+

1

a

)
ordE(D) = −

ordE(D)

a
< −1,

so that the log pair (X, (1+ 1
a
)D) is not log canonical along ϕ(E). In particular, if a(E;X,D) < 0

and ϕ(E) is a smooth point of the variety X , then the log pair
(
X,

dim(X)

dim(X)− 1
D

)

is not log canonical at the point ϕ(E).

To prove Proposition 3.4, we have to present few standard basic facts about the S5-equivariant
geometry of the quadric Q. Observe that Q contains two S5-orbits Σ10 and Σ′

10 of length 10.

Lemma 3.7. If Σ is a S5-orbit in Q with |Σ| < 20, then Σ is one of the orbits Σ5, Σ
′
5, Σ10, Σ

′
10.

Proof. Left to the reader. �

Let H = {x0+x1+x2+x3+x4 = 0} ⊂ P4 and S2 = H∩Q. Then S2 is smooth and S5-invariant.
Moreover, the surface S2 does not contain Σ5, Σ

′
5, Σ10, Σ

′
10. Let B6 be the curve in Q given by





x0 + x1 + x2 + x3 + x4 = 0,

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0,

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0.

Then B6 is the unique smooth curve of genus 4 that admits an effective action of the group S5,
which is known as the Bring’s curve (see [21, Remark 5.4.2]). Note that B6 ⊂ Q ∩H .

Lemma 3.8. Let C be a S5-invariant curve in Q such that deg(C) 6 6. Then C = B6.

Proof. We may assume that C is S5-irreducible, i.e. the symmetric group S5 acts transitively on
the set of its irreducible components. Then S2 contains C, since otherwise |S2 ∩C| 6 S2 ·C = 12,
which contradicts Lemma 3.7. Thus, if C 6= B6, then

|C ∩ B6| 6 C · B6 = 18,

which is impossible by Lemma 3.7, since S2 does no contain Σ5, Σ
′
5, Σ10 and Σ′

10. �

Corollary 3.9. The log pair (Q, λMQ) has log canonical singularities.

Proof. Suppose that the log pair (Q, λMQ) is not log canonical. Let us seek for a contradiction.
If the log pair (Q, λMQ) is log canonical outside of finitely many points, then it is log canonical
outside of a single point by the Kollár–Shokurov connectedness, which must be S5-invariant point.
The latter contradicts Lemma 3.7. Thus, we see that there is a S5-irreducible curve C such that
the log pair (Q, λMQ) is not log canonical at general points of its irreducible components. Then

(
M1 ·M2

)
C
>

4

λ2

by [26, Theorem 3.1], whereM1 andM2 are general surfaces inMQ. Using this, we get deg(C) < 9
2
,

which is impossible by Lemma 3.8. �

Observe that S2
∼= P1 × P2, and the induced S5-action on S2 is faithful.
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Lemma 3.10 (cf. [23, Theorem 7.5]). One has αS5
(S2) =

3
2
.

Proof. Observe that PicS5(S2) = Z[H|S2
] and B6 ∈ |3H|S2

|. But |H|S2
| and |2H|S2

| do not contain
any S5-invariant curves. Hence, we have αS5

(S2) =
3
2
by [9, Lemma 5.1] and Lemma 3.7. �

Now we ready to prove Proposition 3.4.

Proof of Proposition 3.4. Suppose (Q, λMQ) is not canonical. Denote by Σ its non-canonical locus.
To complete the proof, we have to show that Σ ⊆ Σ5 ∪ Σ′

5.
First, let us show that the set Σ consists of finitely many points. Indeed, suppose that Σ contains

a S5-irreducible curve C. Then

(3.11) multC
(
MQ

)
>

1

λ
,

which easily implies that deg(C) < 18. Arguing as in the proof of Lemma 3.8, we see that C ⊆ S2.
Then (3.11) gives deg(C) < 6, which is impossible by Lemma 3.8. Hence, we see that Σ is finite.

If Σ∩S2 6= ∅, then the log pair (S2, λMQ|S2
) is not log canonical by the inversion of adjunction,

which is impossible by Lemma 3.10. Thus, we have Σ ∩ S2 = ∅.
Applying Remark 3.6, we see that (Q, 3λ

2
MQ) is not log canonical at every point of the set Σ.

Take ε ∈ Q>0 such that Σ ⊂ Nklt(Q, 3λ−ε
2

MQ). Set Ω = Nklt(Q, 3λ−ε
2

MQ). Then Ω isS5-invariant.
Moreover, arguing as in the proof of Corollary 3.9, we see that the locus Ω does not contain curves,
so that Ω is a finite set. Now, applying Nadel vanishing theorem, we get h1(Q,J ⊗OQ(2H|Q)) = 0,
where J is the multiplier ideal sheaf of the log pair (Q, 3−ε

2
λMQ). This gives

|Σ| 6 |Ω| 6 h0
(
Q,OQ

(
2H|Q

))
= 14,

because Supp(J ) = Ω. Now, using Lemma 3.7, we see that one of the following possibilities holds:

• Σ ⊆ Σ5 ∪ Σ′
5;

• Ω = Σ = Σ10;
• Ω = Σ = Σ′

10.

If Σ ⊆ Σ5 ∪Σ′
5, we are done. Hence, without loss of generality, we may assume that Ω = Σ = Σ10.

Let us show that this assumption leads to a contradiction.
Let D be the linear subsystem in |2H| that consists of all surfaces in |2H| that pass through Σ10.

By counting parameters, we get dim(D) > 4. Arguing as in the proof of Lemma 3.8, we see that
the base locus of the linear system D contains no curves. Using [44] or [26, Corollary 3.4], we get

36

λ2
= D ·M1 ·M2 >

∑

P∈Σ10

(
M1 ·M2

)
P
>
∑

P∈Σ10

4

λ2
=

40

λ2
,

which is absurd. This completes the proof of Proposition 3.4. �

Now, let us present a few facts about the threefold Y . Its singular locus consists of five nodes:

P1 = (1 : 0 : 0 : 0 : 0),

P2 = (0 : 1 : 0 : 0 : 0),

P3 = (0 : 0 : 1 : 0 : 0),

P4 = (0 : 0 : 0 : 1 : 0),

P5 = (0 : 0 : 0 : 0 : 1).

Note that (3 : 3 : 3 : 3 : −2) ∈ Y \ Sing(Y ). Let Θ5 be the S5-orbit of this point. Then |Θ5| = 5.
For every 1 6 i < j 6 5, we let ℓij be the line in P4 that passes through the nodes Pi and Pj.
Let L10 be the union of these lines. Then L10 ⊂ Y , and L10 ∩ H is a S5-orbit Θ10 of length 10.
The cubic Y contains two more S5-orbits of length 10, which we denote by Θ′

10 and Θ′′
10.
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Lemma 3.12. The orbits Sing(Y ), Θ5, Θ10, Θ
′
10, Θ

′′
10 are all S5-orbit in Y of length < 20.

Proof. Left to the reader. �

Let S3 = Y ∩H . Then S3 is a smooth cubic surface known as the Clebsch diagonal cubic surface.
It follows from [21, Lemma 6.3.12] that Θ10 ⊂ S3, but S3 does not contain Sing(Y ), Θ5, Θ

′
10, Θ

′′
10.

Observe also that S3 contains the curve B6.

Lemma 3.13. Let C be a S5-invariant curve in Y such that deg(C) 6 10. Then C = B6 or L10.

Proof. If C ⊂ S3, the assertion follows from [21, Theorem 6.3.18]. Hence, we assume that C 6⊂ S3.
Then, arguing as in the proof of Lemma 3.8, we conclude that and C ·H = Θ10.

We suppose that the curve C is irreducible. Then C has to be singular at every point P ∈ Θ10,
because the stabilizer in S5 of the point P acts faithfully on the Zariski tangent space TP (C).
Thus, if C is irreducible, then 10 = C ·H > 2|Θ10|, which is absurd.

We see that C is reducible and deg(C) = 10. Let C1 be an irreducible components of the curve C,
and let G be the stabilizer in S5 of the curve C1. Then one of the following four cases holds:

(1) G ∼= A5 and C is a union of 2 irreducible curves of degree 5;
(2) G ∼= S4 and C is a union of 5 irreducible conics;
(3) G ∼= A4 the C is a union of 10 lines;
(4) G ∼= S3 × µ2 and C is a union of 10 lines.

In the case (1), Θ10 splits as two G-orbits of length 5, which is not the case by [21, Lemma 6.3.12].
In the cases (2) and (3), the only two-dimensional G-invariant linear subspace of P4 is contained in
the S5-invariant hyperplane H , so that C1 is contained in S3, which contradicts our assumption.
In the case (4), one can easily see that C = L10. �

Now, we are ready prove Proposition 3.5.

Proof of Proposition 3.5. It is enough to prove that (Y, µMY ) is canonical away from Sing(Y ).
Suppose that this log pair is not canonical. Let Σ be its non-canonical locus.

First, we claim that Σ is a finite set. Indeed, suppose that Σ contains a S5-irreducible curve.
Then multC(M) > 1

µ
. If C ⊂ S3, this implies that deg(C) < 6, which is impossible by Lemma 3.13.

Thus, we see that C 6⊂ S3. Then deg(C) < 12, so that H · C < 12. Using Lemmas 3.12 and 3.13,
we conclude that C = L10. Let H

′ be the hyperplane in P4 that contains the nodes P1, P2, P3, P4,
and let M be a general surface in MY . Then

H ′ ·M = m
(
ℓ12 + ℓ13 + ℓ14 + ℓ23 + ℓ24 + ℓ34

)
+∆

where a is an integer such that a > multC(M), and ∆ is an effective one-cycle whose support does
not contains the lines ℓ12, ℓ13, ℓ14, ℓ23, ℓ24, ℓ34. Therefore, we have

6

µ
=

2

µ
H3 = H ·H ′ ·M = 6m+H ·∆ > 6m > 6multC(M) >

6

µ
,

which is absurd. Thus, we see that Σ is a finite set.
Let Σ1 be the subset in Σ that consists of all smooth points of Y . We have to show that Σ1 = ∅.

If Σ1∩S3 6= ∅, then the log pair (S3, µMY |S3
) is not log canonical, which implies that αS5

(S3) < 2.
The latter contradicts [9, Example 1.11]. Thus, we have Σ1 ∩ S3 = ∅.

Now, using Remark 3.6, we see that (Y, 3µ
2
MY ) is not log canonical at every point of the set Σ1.

Moreover, arguing exactly as in the proof of Corollary 3.9 and using Lemma 3.13, we see that each
point of the subset Σ1 is an isolated center of non-log canonical singularities of the pair (Y, 3µ

2
MY ).

Now, using Nadel vanishing theorem as we did in the proof of Proposition 3.4, we see that |Σ1| 6 5.
Therefore, we have Σ1 = Θ5 by Lemma 3.12.
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Let M1 and M2 be general surfaces in MY . Then it follows from [44] or [26, Corollary 3.4] that

(
M1 ·M2

)
Q
>

4

µ2
,

for every point Q ∈ Θ5. Let Q1, Q2 and Q3 be three points in Θ5, let Π be the plane in P4 that
contains these three points, and let C = Y |Π. Then C is a smooth irreducible cubic curve. Write

M1 ·M2 = ǫC + Ω,

where ǫ is a non-negative rational number, and Ω is an effective one-cycle whose support does not
contain C. Let H ′ be a general hyperplane section of the cubic hypersurface Y that contains C.
Then H ′ does not contain any irreducible component of the one-cycle Ω. Thus, we have

12

µ2
− 3ǫ = H ′ · Ω > multQ1

(
Ω
)
+multQ2

(
Ω
)
+multQ3

(
Ω
)
> 3
( 4

µ2
− ǫ
)
=

12

µ2
− 3ǫ,

which is absurd. This completes the proof of Proposition 3.5. �

This completes the proof of Theorem 3.1, which also implies that Q is S5-solid [2, 13, 17].

4. Preliminary results

In this section, we prove a few results that will be used towards the proof of Theorem 1.8.
Let X be a variety with at most Kawamata log terminal singularities that is faithfully acted on

by a finite group G. The following result is a consequence of the technique developed in [45, §3].

Lemma 4.1. Suppose X is smooth. Let Z be a G-irreducible subvariety of X of codimension m,

let H be an ample divisor on X, and let D1, D2, . . . , Dm be effective divisors on X such that

D1 ∼Q D2 ∼Q · · · ∼Q Dm ∼Q H,

and Z is a G-irreducible component of the intersection ∩m
i=1Supp(Di). Let Y ⊂ X be an effective

cycle of codimension c 6 m. Then

multZ(Y )

deg(Y )
6

(
deg(Z) ·min

S

∏

i∈S

multZ(Di)

)−1

where the minimum is taken over all subsets S ⊆ {1, . . . , m} of cardinality m− c.

Proof. We may assume that Y is irreducible and Z ⊆ Y . We construct a sequence of irreducible
subvarieties Yc, . . . , Ym and a permutation D′

1, . . . , D
′
m of D1, . . . , Dm such that

• Yc = Y ;
• codimX(Yi) = i;
• Yi 6⊂ Supp(D′

i+1);
• Yi+1 is a component of Yi ·D

′
i+1 that contains Z;

• for all c 6 i 6 m− 1 one has

multZ(Yi+1)

deg(Yi+1)
> multZ(D

′
i+1) ·

multZ(Yi)

deg(Yi)
.

Once this is done, the lemma follows immediately from the trivial equality Ym = Z.
Suppose that Yc, . . . , Yi and D′

c+1, . . . , D
′
i have been constructed for some i < m. Then

Yi ⊆

i⋂

j=c+1

Supp(Dj).
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Since ∩m
i=1Supp(Di) has codimension m in a neighbourhood of Z by assumption and

codimX(Yi) = i < m,

then there exists some Dj , which is necessary different from D′
c+1, . . . , D

′
i, which gives Yi 6⊆ Dj.

We may then take D′
i+1 = Dj and Yi+1 an irreducible component of (Yi ·Dj) such that

multZ(Yi+1)

deg(Yi+1)
>

multZ(Yi ·Dj)

deg(Yi ·Dj)
> multZ Dj ·

multZ(Yi)

deg(Yi)
.

By induction this finishes the construction. �

Now, let D be either an effective Q-divisor on X (a boundary), or a movable (mobile) boundary:

D =
r∑

i=1

aiMi,

where each ai ∈ Q>0, and each Mi is a linear system on X that does not have fixed components.
Suppose, in addition, that D is G-invariant.

Lemma 4.2. Suppose that (X,D) is not log canonical, and D is ample. Then there exists positive

rational number ǫ < 1 such that the following assertions hold:

• if D is a Q-divisor, there exists a G-invariant effective Q-divisor D′ ∼Q (1− ǫ)D such that

the log pair (X,D′) has log canonical singularities, and Nklt(X,D′) is a non-empty disjoint

union of minimal log canonical centers of the log pair (X,D′),
• if D is a mobile boundary, there exists a G-invariant mobile boundary D′ ∼Q (1− ǫ)D such

that the log pair (X,D′) has log canonical singularities, and Nklt(X,D′) is a non-empty

disjoint union of minimal log canonical centers of the log pair (X,D′).

Furthermore, irreducible components of Nklt(X,D′) are normal, and G transitively permutes them.

Proof. This is an equivariant version of the tie breaking. See [21, Lemma 2.4.10] or [33, 34]. �

Lemma 4.3. Let H be a very ample divisor in Pic(X), and let L be a divisor in Pic(X) such that

the divisor L− (KX +D+dim(X)H) is ample. Then |L| contains a non-empty G-invariant linear

subsystem L such that Nklt(X,D) = Bs(L).

Proof. Let J = J (X,D) be the multiplier ideal. Then the support of OX/J is exactly Nklt(X,D).
By [39, Proposition 9.4.26], J ⊗ OX(L) is generated by global sections. The G-invariant linear
system L = |J ⊗ OX(L)| then satisfies the statement of the lemma. �

Now, we fix d, n ∈ Z>0. Let W be the subgroup in GLn+1(C) consisting of all permutation
matrices, let T be the subgroup in GLn+1(C) consisting of diagonal matrices whose (non-zero)
entries are d-th roots of unity, and let G be the subgroup in GLn+1(C) generated by T and W.
Then W ∼= Sn+1, T ∼= µ

n+1
d , and

G ∼= T ⋊W ∼= µ
n+1
d ⋊Sn+1.

Let W , T , G be the images in PGLn+1(C) via the quotient map of the groupsW, T, G, respectively.
Then W ∼= Sn+1, T ∼= µ

n
d , and G ∼= T ⋊W . Note that G leaves invariant the Fermat hypersurface

Xd :=
{ d∑

i=0

xd
i = 0

}
⊂ Pn,

where x0, . . . , xn are homogeneous coordinates on Pn. If n > 2 and d > 3, then G = Aut(Pn, Xd).
The examples for Theorem 1.8 are complete intersections in Pn of some Fermat hypersurfaces.

The main result of this section is the following proposition. We will use it in the next section.
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Proposition 4.4. Let M be a W -invariant linear subsystem in |OPn(m)|, let Z be an irreducible

component of the intersection Bs(M), and let Z be the W -irreducible subvariety in Pn, whose

irreducible component is Z. Then at least one of the following two cases holds:

(1) a general point in Z has at most d different coordinates, and dim(Z) 6 m− 1;
(2) the subvariety Z is an irreducible component of a set-theoretic intersection of W -invariant

hypersurfaces of degree at most m, and dim(Z) > n−m.

Moreover, in case (1), if m 6 n and n > 4, then either Z has at least n+1 irreducible components,

or Z = Z = (1 : 1 : . . . : 1).

In particular, the base locus of a W -invariant linear subsystem in |OPn(m)| either has dimension
at most m− 1, or has codimension at most m. This can be illustrated by the following example.

Example 4.5. In the assumptions and notations of Proposition 4.4, suppose m = 1 and Y = Pn.
Then either M = |OPn(1)|, so it is base point free, or one of the following two cases holds:

(1) M is the linear system of hyperplanes containing the W -invariant point (1 : 1 : . . . : 1);
(2) M is the W -invariant hyperplane X1 = {x0 + . . .+ xn = 0} ⊂ Pn.

In case (1), we have Z = Z = (1 : 1 : . . . : 1). In case (2), we have Z = Z = X1.

To prove Proposition 4.4, we need to prove a few auxiliary results.

Lemma 4.6. Fix s ∈ {1, . . . , n}, and take positive integers a1, . . . , as such that n = a1 + . . .+ as.
Let N be the number of unordered partitions of the set {1, . . . , n} into subsets of a1, . . . , as elements,

respectively. Then N > n unless s = 1, s = n, or n = 4, s = 2, a1 = a2 = 2.

Proof. We may assume a1 6 a2 6 . . . 6 ak. If a1 = . . . = ai < ai+1 for some i ∈ {1, . . . , k−1}, then

N >

(
n

ia1

)
> n.

Hence, we may assume that a1 = . . . = as = r for some r ∈ {2, . . . , n− 1}. Then s = n
r
> 2 and

N =
n!

(r!)s · s!
>

n(n− 1) · . . . · (n− r + 1)

r! · s
.

Thus, since n > 2s, we get

N > (n− 1) ·
n

2s
·
r−3∏

j=0

n− 2− j

r − j
> n− 1,

with equality only if n = 2s and n − 2 = r, i.e. when r = s = 2. Since N is a positive integer,
the assertion follows. �

For the second result, we need the following two conventions. A color set is a finite multiset,
where elements (i.e. colors) may appear with multiplicities. If K = (V,E) is a graph and C is
a color set, then a coloring of the graph K by C is a map φ : V → C such that

• every color is used at most once, i.e. we have |φ−1(c)| 6 1 for every c ∈ C ,
• and every pair of adjacent vertices have different color, i.e. we have φ(u) 6= φ(v) as integers
whenever (u, v) ∈ E.

Lemma 4.7. Let K = (V,E) be a graph such that K contains at least s > 1 connected components,

and let C be a color set of size at least |V | such that C has at least |V | − s + 1 different colors.

Then there exists a coloring of the graph K by C .
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Proof. We use induction on |V | − s > 0. The result is clear when |V | − s = 0, since in this case
there are no edges in K. Suppose now that the result has been proved for smaller values of |V |−s.
We can assume that every connected component of K contains at least 2 vertices, since we can
assign any color to isolated points. In particular, the number |V |−s drops if we remove connected
components from V . It is also clear that we may assume s > 2 and at least one of the colors has
multiplicity > 2 (otherwise there are already |V | different colors).

Now, we let K1 = (V1, E1) be a connected component of the graph K, and we set r = |V1| > 2.
Let K ′ = (V ′, E ′) be the subgraph of the graph K that is obtained by removing the component K1.
We may choose a subset C1 ⊆ C that consists of r distinct colors (each with multiplicity 1) such
that the complement C \C1 has at least |V | − s+2− r different color (here we use the assumption
that at least one color in C has multiplicity > 2). Note that we can color the graph K1 by C1.
By induction hypothesis, we can also color K ′ by C \C1, since |V | − s+ 2− r = |V ′| − (s− 1) + 1.
This gives us a coloring of K by C . �

Let us identify H0(Pn,OPn(m)) with the subspace in C[x0, . . . , xn] consisting of all homogeneous
polynomials of degree m. For f ∈ H0(Pn,OPn(m)) and a (possibly reducible) subvariety Y ⊂ Pn,
we define f |Y to be the image of the polynomial f inH0(Y,OPn(m)|Y ) via the restriction morphism.
For any f ∈ H0(Pn,OPn(m)), we denote by Mf the linear subsystem in |OPn(m)| that is given by
the supspace in H0(Pn,OPn(m)) spanned by τ ∗(f) for all τ ∈ W. Finally, we fix V = {0, 1, . . . , n}.
For every graph K = (V,E), let c(K) be the number of its connected components, and let

fK = ±
∏

(i,j)∈E

(xi − xj) ∈ H0
(
Pn,OPn(|E|)

)
.

Lemma 4.8. Let Y be an intersection in Pn of some W -invariant hypersurfaces, and fix ℓ ∈ Z>0.

Take some g ∈ H0(Pn,OPn(ℓ)) such that g|Y is not W-invariant, and let K = (V,E) be a graph.

Then there exists a graph K ′ = (V,E ′) containing K as a subgraph and g′ ∈ H0(Pn,OPn(ℓ − 1))
such that c(K ′) > c(K)− 1, g′|Y 6= 0 and

Bs
(
Mh

)
⊆ Bs

(
Mh′

)

for h = fKg and h′ = fK ′g′.

Proof. Since g|Y is not W-invariant, there is a transposition τ = (ij) ∈ W such that τ ∗(g)|Y 6= g|Y .
Then τ ∗(g)− g = (xi − xj)g

′ for some g′ ∈ H0(Pn,OPn(ℓ− 1)) such that g′|Y 6= 0, since otherwise
we would have τ ∗(g)|Y = g|Y .

Let τ(K) be the graph obtained from K by switching the labeling of the vertices i and j without
changing any edges, and let K ′ be the graph obtained by adding the edge (ij) to K ∪ τ(K) (take
the union of edges). Then c(K ′) > c(K)− 1.

Let h = fKg and h′ = fK ′g′. Then τ ∗(h) = fτ(K)τ
∗(g), and Bs(Mh) ⊆ Bs(Mh′), because h′ has

the same factors (ignoring multiplicities) as

fK∪τ(K) · (xi − xj)g
′ = fK∪τ(K)

(
τ ∗(g)− g

)
= fK−τ(K)τ

∗(h)− fτ(K)−Kh,

where K − τ(K) is the graph obtained by removing from K the edges of τ(K). �

Corollary 4.9. Let Y be an intersection in Pn of W -invariant hypersurfaces, let f be a polynomial

in H0(Pn,OPn(m)) such that f |Y 6= 0. Then there are r ∈ {0, 1, . . . , m}, a graph K = (V,E), and
a W-invariant polynomial g0 ∈ H0(Pn,OPn(m− r)) such that g0|Y 6= 0, c(K) > n+ 1− r, and

(4.10) Bs
(
Mf

)
∩ Y ⊆ Bs

(
Mg

)

for g = fKg0.
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Proof. Let us apply Lemma 4.8 repeatedly starting with the graph (V,∅) and g = f . This process
must stop after at most m steps. Therefore, we obtain a graph K(V,E) and a polynomial g = fKh
such that deg(h) = m− r for r 6 m, c(K) > n + 1− r, the restriction h|Y is W-invariant, and

Bs
(
Mf

)
⊆ Bs

(
Mg

)
.

Then we can replace h by aW -invariant polynomial g0 of the same degree such that g0|Y = h|Y . �

Proof of Proposition 4.4. The assertions on dim(Z) and the assertion on the number of irreducible
components of the subvariety Z follow from Lemma 4.6. Thus, we have to prove that

(1) either a general point in Z has at most m different coordinates,
(2) or the subvariety Z is an irreducible component of a set-theoretic intersection ofW -invariant

hypersurfaces of degree at most m.

Let D1, . . . , Dk be W -invariant hypersurfaces of degree at most m that contain Z, and let Y be
the set theoretic intersection D1 ∩ · · · ∩Dk (if there exist no such hypersurfaces, we set Y = X).
We may assume Z $ Y (otherwise (2) clearly holds). Hence, there is f ∈ M such that f |Y 6= 0.
Note that this gives Z ⊆ Bs(Mf) ∩ Y .

By Corollary 4.9, we find a graph K = (V,E) with c(K) > n + 1 − r and a W-invariant
polynomial g0 ∈ H0(Pn,OPn(m− r)) such that g0|Y 6= 0 and (4.10) holds, where r ∈ {0, 1, . . . , m}.
By the construction of Y , we see that g0|Z 6= 0, thus (4.10) gives

Z ⊆ Bs
(
MfK

)
.

Pick a general point z ∈ Z with coordinates [z0 : . . . : zn] and consider the color set C = {z0, . . . , zn}.
If (1) does not hold, then there are at least m > r different colors in C. By Lemma 4.7, we may
color the graph K by C. After unwinding the definitions, this implies that there is σ ∈ W such
that σ∗(fK) does not vanish on Z. But this is a contradiction as σ∗(fK) ∈ MfK . So, we conclude
that (1) holds in this case and this completes the proof of the proposition. �

Let us apply Proposition 4.4. Recall that Xd is the Fermat hypersurface in Pn of degree d.

Proposition 4.11. If d 6 n 6 3d− 1, then αG(X) > 1. If n > 3d, then αG(X) = 2d
n+1−d

.

Proof. We suppose that n > d. Let H be a hyperplane section of Xd, let r = min{2d, n+ 1 − d},
and let D be a G-invariant effective divisor on Xd such that D ∼Q rH . We have αG(X) 6 2d

n+1−d
,

where the right hand side is computed by the G-invariant Fermat hypersurface X2d. Hence, both
statements of the proposition would follow once we prove that the log pair (X,D) is log canonical.
Suppose that (X,D) is not log canonical. Let us seek for a contradiction.

Let λ = lct(X,D) and Z = Nklt(X, λD). Then (X, λD) is log canonical, λ < 1 and Z 6= ∅.
Applying Lemma 4.2, we may assume that Z is a disjoint union of irreducible normal subvarieties.
But, on the other hand, since −(KX + λD) is ample, applying Kollár–Shokurov’s connectedness,
we conclude that Z is an irreducible subvariety. By Lemma 4.3, there exists a G-invariant linear
subsystem L ⊂ |(3d− 2)H| such that Z = Bs(L).

Let V be the vector subspace in H0(X,OX((3d−2)H)) that corresponds to the linear system L.
Then V is a G-subrepresentation in H0(X,OX((3d− 2)H)). As T-representation, we have

V =
⊕

χ

Vχ,

where the summand runs over all characters χ of the group T. For each χ, we have Vχ = xχ ·Wχ,
where xχ is a monomial of degree at most d − 1 in each homogeneous coordinate x0, x1, . . . , xn,
while T acts trivially on Wχ. Each Wχ is the image in H0(X,OX(mdH)) of a subspace of

Symm(U) ⊆ H0(Pn,OPn(md)),
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where U = span(xd
0, . . . , x

d
n) ⊆ H0(Pn,OPn(d)) and m 6 2, because md = deg(Wχ) 6 3d− 2.

Since the action of the group G on the vector space H0(Pn,OPn(1)) is irreducible, we see that
the subvariety Z is not contained in a hyperplane, so Z is not contained in {xχ = 0} for any χ.
Then Z is a set-theoretic intersection of zeroes of all polynomials in all Wχ. Since Z is invariant
under the G-action, we see that σ∗(f) vanishes on Z for any f ∈ Wχ and any σ ∈ W ∼= Sn+1.

Now, let us consider a morphism υ : Pn → Pn defined as

υ(x0 : . . . : xn) =
(
xd
0 : . . . : x

d
n

)
.

Then the induced action of G on Im(f) = Pn is isomorphic (as an action) to the permutational
action of the group W ∼= Sn+1 on Pn. Further, we observe that

(1 : . . . : 1) 6∈ υ(Xd).

Moreover, since Z is connected and W -invariant, so is υ(Z). Thus, from the previous discussion,
we conclude that Z is the base locus of some W -invariant linear system of degree at most 2d,
generated by all the polynomials in Wχ. Then υ(Z) is the base locus of some W -invariant linear
system of degree at most 2. Applying Proposition 4.4 to υ(Z), we see that Z is an irreducible
component of a set-theoretic intersection of G-invariant hypersurfaces of degree at most 2d. Then

Z = Xd ∩X2d.

On the other hand, since the log pair (Xd, D) is not log canonical along Z, we have multZ(D) > 1.
This contradicts to Z ∼Q 2dH and r 6 2d. �

Similarly, we prove the following result.

Proposition 4.12. Let X = Xd ∩X2d ∩ . . . ∩Xrd for r > 1, let H be a hyperplane section of X,

and let D be a G-invariant effective Q-divisor on X such that D ∼Q qH for a positive rational

number q < (r + 1)d. Suppose, in addition, that dim(X) > 1, n > 4, and dH − (KX +D) is nef.

Then the log pair (X,D) is log canonical.

Proof. Replacing q by ⌈q⌉, and D by ⌈q⌉
q
D, we may assume that the number q is actually integer.

Suppose that (X,D) is not log canonical. Let us seek for a contradiction.
Let λ = lct(X,D) and Z = Nklt(X, λD). Then (X, λD) is log canonical, λ < 1 and Z 6= ∅.

Applying Lemma 4.2, we may assume that Z is a disjoint union of irreducible normal subvarieties,
and Z is G-irreducible. Moreover, using Lemma 4.3, we see that Z = Bs(L) for some G-invariant
linear subsystem L ⊂ |aH|, where

a =
r(r + 1)

2
d+ q − (r − 1)

that satisfies KX +D + (n− r)H ∼Q aH .
Now, let V be the vector subspace in H0(X,OX(aH)) that corresponds to the linear system L.

Then V is a G-subrepresentation in H0(X,OX(aH)). As before, we have

V =
⊕

χ

Vχ,

where the summand runs over all characters χ of the group T. For each χ, we have Vχ = xχ ·Wχ,
where xχ is a monomial of degree at most d − 1 in each homogeneous coordinate x0, x1, . . . , xn,
and each Wχ is the image in H0(X,OX(ℓdH)) of a subspace of

Symℓ(U) ⊆ H0(Pn,OPn(ℓd)),

where U = span(xd
0, . . . , x

d
n) ⊆ H0(Pn,OPn(d)) and ℓ 6 ⌊a

d
⌋.
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Now, let Z1, . . . , Zs be the T -irreducible components of the locus Z. Then we claim that s 6 n.
Indeed, using Nadel vanishing theorem and the nefness of the divisor dH − (KX +D), we get

H1
(
X,J

(
X, λD

)
⊗OX

(
dH
))

= 0,

where J (X, λD) is the multiplier ideal sheaf of the log pair (X, λD). Now, let Υ be the subscheme
defined by the multiplier ideal sheaf J (X, λD) of the log pair (X, λD), and let Υi be its irreducible
component supported on Zi for i ∈ {1, . . . , s}. Then the natural restriction

H0
(
X,OX

(
dH
))

→ H0
(
Υ,OΥ

(
dH|Υ

))

is surjective. Taking the T-invariant parts, we see that

s 6
s∑

i=1

dim

(
H0
(
Υi,OΥi

(
dH|Υi

))T
)

6 dim

(
H0
(
Υ,OΥ

(
dH|Υ

))T
)

6

6 dim

(
H0
(
X,OX

(
dH
))T
)

= dim(U)− 1 = n.

Here, the first inequality holds because H0(Υi,OΥi
(dH|Υi

))T contains U |Υi
6= 0.

We claim that no T -irreducible components of Z are contained in coordinate hyperplanes.
Indeed, otherwise, such component would be contained in the (unique) minimal T -invariant linear
subspace in Pn, which would imply that Z has at least n+ 1 T -irreducible components.

Let m = ⌊a
d
⌋. Arguing as in the proof of Proposition 4.11, we see that Z is the base locus of

the W -invariant subsystem of |OPn(md)| generated by Bs(Wχ) and hypersurfaces containing X .
Now, using Proposition 4.4 and the same morphism υ : Pn → Pn as in Proposition 4.11, we conclude
(as in the proof of Proposition 4.11) that Z is a G-irreducible component of the set-theoretic
intersection of some G-invariant hypersurfaces of degree at most md, because the other possibility
in Proposition 4.4 is excluded, since υ(Z) has at most n irreducible components and

{
xd
0 = xd

1 = . . . = xd
n

}
6⊂ X.

In particular, we see that the pair (X,D) is not log canonical along Y = Xd∩X2d∩ . . .∩Xmd, and
hence multY (D) > 1. But as n > m under our assumption (we leave to the reader to verify this),
we see that Y is irreducible. Now, applying Lemma 4.1 to Dk = 1

kd
(Xkd ·X) for k = r + 1, . . . , m,

we get

multY (D) 6
deg(D)

deg(Y )

m∏

i=k+2

kd 6
deg(H)

deg(Y )

m∏

k=r+1

kd = 1,

which is a contradiction. �

5. The proof of Theorem 1.8

Let us use all assumptions and notations of Section 4. Let X be the complete intersection in
the projective space Pn of the Fermat hypersurfaces X2d, X3d, . . . , Xrd for some integer r > 2, and
let H be a hyperplane section of the variety X . Suppose that

−KX ∼ qH

for some q 6 (r+1)d
2

. Then αG(X) 6 d
q
, since −KX ∼Q

q

d
Xd|X . So, we can make αG(X) arbitrarily

small by choosing q = ⌊1
2
(r+ 1)d⌋ and letting r ≫ 0. Therefore, to prove Theorem 1.8, it remains

to show that X is G-birationally super-rigid.
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In order to prove this, we use a similar strategy as in Proposition 4.12. Let M be a G-invariant
mobile linear system, and let λ be a positive rational number such that

KX + λM ∼Q 0.

As in the proof of the Theorem 1.4 we need to show that (X, λM) has canonical singularities.
Suppose the singularities of the pair (X, λM) are non-canonical. Let us seek for a contradiction.

Let B be a center of non-canonical singularities of the log pair (X, λM). Let us create some
non-log canonical behaviour using the center B. In the following Lemma 5.1, we first treat the case
when B is contained in some special divisor Y ⊂ X , so that (Y, λM|Y ) is not log canonical by
the inversion of adjunction. As in the proof of Proposition 4.12, we will use Nadel vanishing to get
an estimate of the possible number of irreducible components of the non-log canonical locus, and
then use Proposition 4.4 to derive a contradiction.

Lemma 5.1. Let r, d > 2, n > 4 be integers, let H be a divisor in |OPn(1)|X|, and set Y = X∩Xd.

Assume that D ∼Q lH is a G-invariant effective divisor on X for some l 6 (r + 1)d such that

the divisor H − (KX +D) is nef. Assume also that dimX > 2. Then

(1) if D does not contain Y in its support, then (X,D) is log canonical;

(2) the non-log canonical locus of (X,D) is contained in Y .

Proof. As in the proof of Proposition 4.12, we may assume that l ∈ N. Suppose that (1) is proved.
To prove (2), write

D = t ·
l

d
Y + (1− t)D0

for some 0 6 t 6 1 and D0 ∼Q lH such that Y 6⊆ Supp(D0). Then (X,D0) is log canonical by (1).
Hence, every non-log canonical center of (X,D) is a non-log canonical center of the pair (X, l

d
Y ).

In particular, the non-log canonical locus of (X,D) is contained in Y . This proves (2).
Now, let us prove (1). Suppose that Y 6⊆ Supp(D), and the log pair (X,D) is not log canonical.

Let us seek for a contradiction. Let λ = lct(X,D) and Z = Nklt(X, λD). By Lemmas 4.2 and 4.3,
we may further assume that Z is G-irreducible, Z is a disjoint union of its irreducible components,
and Z = Bs(L) for a G-invariant linear system L ⊂ |aH|, where

a =

(
r(r + 1)

2
− 1

)
d+ l − r

satisfies

KX +D + (n− r + 1)H ∼Q aH.

Let s be the number of irreducible components of Z, and let Z1, . . . , Zs be these components.
By Nadel vanishing applied to the multiplier ideal sheaf J

(
X, λD

)
, we have a surjection

H0
(
X,OX(H)

)
→ H0

(
Z,OZ(H|Z)

)
=

s⊕

i=1

H0
(
Zi,OZi

(H|Zi
)
)
,

so s 6 h0(X,OX(H)) = n + 1. But h0(Zi,OZi
(H|Zi

)) > 1 with strict inequality for dim(Zi) > 0.
Thus, if s = n + 1, then

n+ 1 = h0
(
Z,OZ(H|Z)

)
=

s∑

i=1

h0
(
Zi,OZi

(H|Zi
)
)
,

which gives dim(Z) = 0, so that we obtain a contradiction n+1 > |Z| > d(n+1) > n+1 as d > 2,
since the length of a G-orbit in X is at least d(n+ 1). This shows that s 6 n.
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Arguing as in the proof of Proposition 4.12, we see that Z is a component of the set-theoretic
intersection of some G-invariant hypersurfaces of degree at most md, where m = ⌊a

d
⌋ < n. Set

R = Xd ∩X2d ∩ . . . ∩Xmd.

Then the pair (X,D) is not log canonical along R. So, since one has Y 6⊆ Supp(D), we have

multR(D|Y ) > multR(D) > 1.

On the other hand, as in the proof of Proposition 4.12, we obtain multR(D|Y ) 6 1 by Lemma 4.1.
The obtained contradiction completes the proof of the lemma. �

Finally we treat the general case. Here the main observation is that if the center of non-canonical
singularities is not contained in the special divisors, then, as a consequence of Proposition 4.4,
it has small dimension, and in this case we can prove the G-birational super-rigidity by a similar
application of the method of [51].

Theorem 5.2. Let d ≫ 0, r > 2 be integers. Assume that −KX ∼ qH where H is the hyperplane

class and 1 6 q 6
(r+1)d

2
. Then X is G-birationally super-rigid.

Proof. Assume the contrary. Then, using Noether-Fano inequality [8], we obtain a non-canonical
log pair (X, λM) such that M is a mobile linear system, and λ ∈ Q>0 such that KX + λM ∼Q 0.
Let B be a center of non-canonical singularities of the pair (X, λM). Let us seek for a contradiction.

Observe that the center B is not contained in the Fermat hypersurface Xd. Indeed, otherwise,
by the inverse of adjunction, the log pair (Y,M |Y ) is not log canonical, where Y = X ∩Xd. But

dH − (KY + λM|Y ) = −(KX + λM)|Y ∼Q 0,

which is impossible by Proposition 4.12.
We claim that B is not contained in any T -invariant hyperplane. Indeed, suppose B ⊆ {xi = 0}.

Let X ′ = X ∩ {xi = 0}, and let G′ be the stabilizer subgroup in G of the hyperplane {xi = 0}.
Then G′ ∼= µ

n
d ⋊Sn, and X ′ is G′-invariant. Let M′ = M|X′. Then (X ′, λM′) is not log canonical

along B by the inverse of adjunction. But KX′ + λM′ ∼Q H , which gives B ⊂ Xd by Lemma 5.1.
However, we already proved that B 6⊂ Xd.

Now by Remark 3.6, the log pair (X, 2λM) is not log canonical along B. Let µ be the smallest
positive rational number such that B ⊂ Nklt(X, µM), and let Z be an irreducible component of
the locus Nklt(X, µM) containing B. Then µ < 2λ, and it follows from [26, Theorem 3.1] that

multB(M1 ·M2) > 4/µ2,

for general divisors M1 and M2 in the linear system M. Moreover, it follows from Lemma 4.3 that
the subvariety Z is a component of Bs(L) for some G-invariant linear system L ⊆ |OX(a)|, where

a =

(
r(r + 1)

2
− 1

)
d+ 2q − r

satisfies

KX + 2λM+ (n− r + 1)H ∼Q aH.

Furthermore, we know that Z is not contained in any T -invariant hyperplane, because B is not
contained in any T -invariant hyperplane.

Set m = ⌊a
d
⌋. Then m < n. Now, arguing as in the proof of Proposition 4.11 or Proposition 4.12,

and using Proposition 4.4, we see that either the subvariety Z is a component of a set-theoretic
intersection of G-invariant hypersurfaces of degree at most md, or dim(B) 6 dim(Z) 6 m− 1.
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Suppose that the subvariety Z is a component of a set-theoretic intersection of G-invariant
hypersurfaces of degree at most md. Let Γ′ be an irreducible component of M1 ·M2 such that

multZ(Γ
′)

deg(Γ′)
>

multZ(M1 ·M2)

deg(M1 ·M2)
>

1

µ2deg(M1 ·M2)
.

Since Z 6⊂ Xd, we observe that Γ = Γ′ ·Xd is a codimension 2 cycle on Y = X ∩Xd such that

multZ′(Γ)

deg(Γ)
>

multZ(Γ
′)

deg(Γ′)
>

1

µ2deg(M1 ·M2)
,

where Z ′ = Xd ∩ . . . ∩ Xmd ⊆ Z. On the other hand, let H1 and H2 be general divisors in |H|.
Then, as in the proof of Proposition 4.12, we get

multZ′(Γ)

deg(Γ)
6

1

degZ ′

m∏

k=r+3

kd =
1

d2(r + 1)(r + 2)deg(H1 ·H2)
<

1

µ2deg(M1 ·M2)
,

by Lemma 4.1 applied to the divisors Y ·Xkd, for r + 1 6 k 6 m on the complete intersection Y ,
where the last inequality follows from 2q 6 (r + 1)d. This gives us a contradiction.

Thus, we have dimB 6 dimZ 6 m − 1. Let P be a sufficiently general point in the center B,
and let Y be a general codimension m linear section of the complete intersection X containing P .
Set MY = M|Y . Then the pair (Y, λMY ) is not log canonical at P by the inverse of adjunction,
but the pair (Y, 2λMY ) is log canonical in a punctured neighbourhood of the point P . Note that

KY + 2λMY ∼Q (m+ q)H.

Using [51, Corollary 1.8] and the lower bound in [37, Paragraph 56] for the number of lattice points,
we obtain the following inequality:

(5.3) h0
(
Y,OY ((m+ q)H|Y )

)
>

1

n−m− r

(
2(n−m− r)

n−m− r

)
>

1

(n−m− r)2
4n−m−r

On the other hand, since Y is a complete intersection in Pn−m, we also have

(5.4) h0
(
Y,OY ((m+ q)H|Y )

)
6 h0(Pn−m,OPn−m(m+ q)) =

(
n+ q

m+ q

)
< 2n+q.

Recall that m = ⌊a
d
⌋ 6 r(r+1)

2
+ 2r is bounded by a constant (that does not depend on d), and, by

assumption, we have

n =

(
r(r + 1)

2
− 1

)
d+ q − 1 >

1

r + 1

(
r(r + 1)

2
− 1

)
q + q − 1 >

5

3
q − 1.

Therefore, using (5.4), we obtain

h0
(
Y,OY ((m+ q)H)

)
< 21.6n+1 <

1

(n−m− r)2
4n−m−r

when n ≫ 0, which is equivalent to d ≫ 0. This contradicts to (5.3). The proof is complete. �

References

[1] H. Abban, I. Cheltsov, J. Park, C. Shramov, Double Veronese cones with 28 nodes,
to appear in L’Enseignement Mathematique.

[2] H. Abban, T. Okada, Birationally rigid Pfaffian Fano 3-folds,
Algebraic Geometry 5 (2017), 160–199.

[3] H. Abban, Z. Zhuang, Seshadri constants and K-stability of Fano manifolds,
to appear in Duke Mathematical Journal.

[4] A. Avilov, Automorphisms of three-dimensional singular cubic hypersurfaces and the Cremona group,
Mathematical Notes 100 (2016), 482–485.



22 IVAN CHELTSOV, ARMAN SARIKYAN, ZIQUAN ZHUANG

[5] A. Avilov, Automorphisms of singular three-dimensional cubic hypersurfaces,
European Journal of Mathematics 4 (2018), 761–777.

[6] I. Cheltsov, On a smooth four-dimensional quintic,
Sbornik: Mathematics 191 (2000), 139–160.

[7] I. Cheltsov, Log canonical thresholds on hypersurfaces,
Sbornik: Mathematics 192 (2001), 1241–1257.

[8] I. Cheltsov, Birationally rigid Fano varieties,
Russian Mathematical Surveys 60 (2005), 875–965.

[9] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces,
Geometric and Functional Analysis 18 (2008), 1118–1144.

[10] I. Cheltsov, Fano varieties with many selfmaps,
Advances in Mathematics 217 (2008), 97–124.

[11] I. Cheltsov, Log canonical thresholds of three-dimensional Fano hypersurfaces,
Izvestia: Mathematics 73 (2009), 727–795.

[12] I. Cheltsov, Extremal metrics on two Fano varieties,
Sbornik: Mathematics 200 (2009), 95–132.

[13] I. Cheltsov, A. Dubouloz, T. Kishimoto, Toric G-solid Fano threefolds,
to appear in Selecta Mathematica.

[14] I. Cheltsov, J. Park, Global log-canonical thresholds and generalized Eckardt points,
Sbornik: Mathematics 193 (2002), no. 5–6, 779–789.

[15] I. Cheltsov, J. Park, Birationally rigid Fano threefold hypersurfaces,
Memoirs of the American Mathematical Society 246 (2017), 117 pages.

[16] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces,
Mathematische Zeitschrift 276 (2014), 51–79.

[17] I. Cheltsov, A. Sarikyan, Equivariant pliability of the projective space,
preprint, arXiv:2202.09319 (2022).

[18] I. Cheltsov, C. Shramov, On exceptional quotient singularities,
Geometry and Topology 15 (2011), 1843–1882

[19] I. Cheltsov, C. Shramov, Three embeddings of the Klein simple group into the Cremona group of rank three,
Transformation Groups 17 (2012), 303–350.

[20] I. Cheltsov, C. Shramov, Five embeddings of one simple group,
Transactions of the American Mathematical Society 366 (2014), 1289–1331.

[21] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron,
CRC Press, Boca Raton, FL, 2016.

[22] I. Cheltsov, C. Shramov, Finite collineation groups and birational rigidity,
Selecta Mathematica 25 (2019), paper 71, 68 pages.

[23] I. Cheltsov, A. Wilson, Del Pezzo surfaces with many symmetries,
Journal of Geometric Analysis 23 (2013), 1257–1289.

[24] A. Corti, A. Pukhlikov, M. Reid, Fano 3-fold hypersurfaces,
LMS Lecture Note Series 281 (2000), 175–258.

[25] A. Corti, Factoring birational maps of threefolds after Sarkisov,
Journal of Algebraic Geometry 4 (1995), 223—254.

[26] A. Corti, Singularities of linear systems and 3-fold birational geometry,
LMS Lecture Note Series 281 (2000), 259–312.

[27] R. Dervan, On K-stability of finite covers,
Bulletin of the London Mathematical Society 48 (2016), 717–728.

[28] T. de Fernex, Birationally rigid hypersurfaces,
Inventiones Mathematicae 192 (2013), 533–566.

[29] T. de Fernex, L. Ein, M. Mustata, Bounds for log canonical thresholds with applications to birational rigidity,
Mathematical Research Letters 10 (2003), 219–236.

[30] K. Fujita, K-stability of Fano manifolds with not small alpha invariants,
Journal of the Institute of Mathematics of Jussieu 18 (2019), 519–530.

[31] V. Iskovskikh, Yu. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem,
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