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K-STABLE FANO 3-FOLDS IN THE FAMILIES №2.18 AND №3.4

IVAN CHELTSOV, KENTO FUJITA, TAKASHI KISHIMOTO, JIHUN PARK

Abstract. We prove that smooth Fano 3-folds in the families №2.18 and №3.4 are K-stable.
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Throughout this paper, all varieties are assumed to be projective and defined over C.

1. Introduction

Smooth Fano threefolds are classified into 105 families labeled as №1.1, №1.2, №1.3, . . ., №10.1.
For the description of these families, see [18]. It has been proved in [3, 14, 16] that the families

№2.23, №2.26, №2.28, №2.30, №2.31, №2.33, №2.35, №2.36, №3.14,
№3.16, №3.18, №3.21, №3.22, №3.23, №3.24, №3.26, №3.28, №3.29,

№3.30, №3.31, №4.5, №4.8, №4.9, №4.10, №4.11, №4.12, №5.2

do not have smooth K-polystable members, and general members of other families are K-polystable.
For 56 families, K-polystable smooth Fano 3-folds are described in [2, 3, 4, 6, 8, 11, 17, 20, 22, 24, 7].
The remaining 21 deformation families are:

№1.9, №1.10, №2.5, №2.9, №2.10, №2.11, №2.12, №2.13, №2.14, №2.16,
№2.17, №2.18, №2.19, №2.20, №3.2, №3.4, №3.5, №3.6, №3.7, №3.8, №3.11.

The families №1.10, №2.20, №3.5, №3.8 contain both K-polystable and non-K-polystable members,
and all smooth Fano threefolds in the families

№1.9, №2.5, №2.9, №2.10, №2.11, №2.12, №2.13, №2.14,
№2.16, №2.17, №2.18, №2.19, №3.2, №3.4, №3.6, №3.7, №3.11

are conjectured to be K-stable [3]. In this paper, we verify this conjecture for two families:

Main Theorem. All smooth Fano 3-folds in the families №2.18 and №3.4 are K-stable.

Hence, to find all smooth K-polystable Fano 3-folds, one have to deal with 19 families

№1.9, №1.10, №2.5, №2.9, №2.10, №2.11, №2.12, №2.13, №2.14,
№2.16, №2.17, №2.19, №2.20, №3.2, №3.5, №3.6, №3.7, №3.8, №3.11.
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To describe smooth Fano 3-folds in the families №2.18 and №3.4, let V → P1 × P2 be a double
cover branched along a smooth surface of degree (2, 2), let V → P2 be the composition of this
double cover and the projection P1 × P2 → P2, and let X → V be the blow up of a smooth fiber
of this composition morphism. Then we have the following commutative diagram:

X //

��

V

��

P1 × F1
// P1 × P2

where F1 is the first Hirzebruch surface, the morphism X → P1 × F1 is a double cover ramified
over the proper transform on P1 ×F1 of the ramification surface of the double cover V → P1 ×P2,
and P1 × F1 → P1 × P2 is a birational morphism induced by the blow up F1 → P2. Then

• V is a smooth Fano 3-fold in the deformation family №2.18,
• X is a smooth Fano 3-fold in the deformation family №3.4.

Furthermore, all smooth Fano 3-folds in these deformation families can be obtained in this way.
Let us say few words about the proof of Main Theorem. To prove that V is K-stable, we recall

from [12, 15, 21, 25] that

the Fano 3-fold V is K-stable ⇐⇒ the log Fano pair
(
P1 × P2, 1

2
R
)
is K-stable,

where R is the ramification surface of the double cover V → P1 × P2. In Section 2, we prove that
the log Fano pair (P1 × P2, cR) is K-stable for every c ∈ (0, 1) ∩ Q using Abban–Zhuang theory
and the technique developed in [3, 16]. We refer the reader to [3, § 1.7] and [16, § 4] for details.
Similarly, to prove that X is K-stable, we prove that the log Fano pair (P1 × F1,

1
2
R) is K-stable,

where now R is the ramification surface of the double cover X → P1×F1. The proof is much more
involved in this case, because we have to resolve two deadlocks arising when R is quite special.
To overcome these difficulties, we apply Abban–Zhuang theory to exceptional surfaces of toric
weighted blow ups of the 3-fold P1×F1, and use toric geometry to compute Zariski decompositions.
This is a new approach, which can resolve deadlocks in similar problems.

The structure of this paper is simple: we prove Main Theorem for the family №2.18 in Section 2,
and we prove Main Theorem for the family №3.4 in Section 3. In Appendix A, we put all the tables
necessary for the Zariski decompositions discussed in Section 3.
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2. Smooth Fano 3-folds in the family №2.18

Let Y = P1 × P2, let R be a smooth surface in Y of degree (2, 2), and let V → Y be the double
cover branched over R. Then Aut(V ) is finite [9], so V is K-stable if and only if V is K-polystable.
On the other hand, it follows from [12, 15, 21, 25] that

V is K-polystable ⇐⇒ (Y, 1
2
R) is K-polystable.

Let ∆Y = cR for c ∈ [0, 1) ∩Q. Then (Y,∆Y ) is a log Fano pair for every c ∈ [0, 1) ∩Q.

Theorem 2.1. The log Fano pair (Y,∆Y ) is K-stable for every c ∈ (0, 1) ∩Q.
2



Let us prove Theorem 2.1. Set L = −KY −∆Y . Then L is a divisor of degree (2−2c, 3−2c), so

L3 = 6(1− c)(3− 2c)2.

Fix c ∈ (0, 1) ∈ Q. Let P be a point in Y . Recall that

δP (Y,∆Y ) = inf
E/Y

P∈CY (E)

AY,∆Y
(E)

SL(E)
,

where the infimum is taken over all prime divisors E over Y whose centers on Y contain P , and

SL(E) =
1

L3

∞∫

0

vol
(
L− uE

)
du.

By [19, 14], to prove that (Y,∆Y ) is K-stable, it is enough to show that δP (Y,∆Y ) > 1.

Lemma 2.2. Suppose that P 6∈ R. Then δP (Y,∆Y ) > 1.

Proof. Let S be the surface in Y of degree (1, 0) that contains P , let RS = R|S, and let ∆S = cRS.
Take u ∈ R>0. Then L−uS is pseudoeffective ⇐⇒ L−uS is nef ⇐⇒ u ∈ [0, 2−2c]. This gives

SL(S) =
1

L3

2−2c∫

0

(
L− uS

)3
du =

1

L3

2−2c∫

0

3(3− 2c)2(2− 2c− u)du = 1− c < 1.

Note that S ∼= P2. Let ℓ be a general line in S that passes through P , and let v be a non-negative
real number. Then (L− uS)|S − vℓ is a divisor of degree 3− 2c− v. Thus, we have

(L− uS)|S − vℓ is pseudoeffective ⇐⇒ (L− uS)|S − vℓ is nef ⇐⇒ v ∈ [0, 3− 2c].

Now, following [1, 3, 16], we set

SL
(
W S

•,•; ℓ
)
=

3

L3

2−2c∫

0

3−2c∫

0

(
(L− uS)

∣∣
S
− vℓ

)2
dvdu

and

SL
(
W S,ℓ

•,•,•;P
)
=

3

L3

2−2c∫

0

3−2c∫

0

((
L− uS)

∣∣
S
− vℓ

)
· ℓ
)2
dvdu.

Integrating, we get SL(W
S
•,•; ℓ) = SL(W

S,ℓ
•,•,•;P ) =

3−2c
3

. Thus, it follows from [1, 3, 16] that

δP (Y,∆Y ) > min

{
1− ordP

(
∆S

∣∣
ℓ

)

SL(W
S,ℓ
•,•,•;P )

,
1

SL(W S
•,•; ℓ)

,
1

SL(S)

}
=

3

3− 2c
> 1,

since ordP (∆S|ℓ) = 0, because P 6∈ R by assumption. �

Thus, to prove Theorem 2.1, we may assume that P ∈ R.

Lemma 2.3. Let f be the fiber of the projection Y → P2 such that P ∈ f . Suppose that f 6⊂ R.
Then δP (Y,∆Y ) > 1.

Proof. Let S be a general surface in Y of degree (0, 1) that contains f , let RS = R|S, let ∆S = cRS.
Then S ∼= P1×P1, and RS is a smooth curve such that RS ∼ 2s+2f , where s is the smooth curve
in the surface S such that s2 = 0, s · f = 1 and P ∈ s. Note that L|S ∼R (2− 2c)s+ (3− 2c)f .
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Take u ∈ R>0. Then L− uS is pseudoeffective ⇐⇒ L− uS is nef ⇐⇒ u ∈ [0, 3− 2c], so

SL(S) =
1

L3

3−2c∫

0

(
L− uS

)3
du =

1

L3

3−2c∫

0

6(1− c)(3− 2c− u)2du =
3− 2c

3
< 1.

Note that (L− uS)|S ∼R (2− 2c)s+ (3− 2c− u)f .

Now, let α : S̃ → S be the blow up of the point P , let e be the exceptional curve of the blow up α,

let s̃, f̃ and RS̃ be the proper transforms on S̃ of the curves s, f and RS, respectively. Set ∆S̃ = cRS̃.

Then S̃ is the smooth del Pezzo surface of degree 7, s̃ ∩ f̃ = ∅, and s̃, f̃ , e are (−1)-curves in S̃.
Let v be a non-negative real number. Then

α∗
(
(L− uS)

∣∣
S

)
− ve ∼R (2− 2c)̃s+ (3− 2c− u)f̃ + (5− 4c− u− v)e,

and it is pseudoeffective ⇐⇒ v 6 5−4c−u. For v ∈ [0, 5−4c−u], we let P̃ (u, v) be the positive

part of the Zariski decomposition of α∗((L− uS)
∣∣
S
)− ve, and we let Ñ(u, v) be its negative part.

As in the proof of Lemma 2.2, we set

SL
(
W S

•,•; e
)
=

3

L3

3−2c∫

0

5−4c−u∫

0

(
P̃ (u, v)

)2
dvdu.

Similarly, for every point O ∈ e, we set

S
(
W S̃,e

•,•,•;O
)
=

3

L3

3−2c∫

0

5−4c−u∫

0

(
P̃ (u, v) · e

)2
dvdu+ FO

(
W S̃,e

•,•,•

)
,

where

FO
(
W S̃,e

•,•,•

)
=

6

L3

3−2c∫

0

5−4c−u∫

0

(
P̃ (u, v) · e

)
· ordO

(
Ñ(u, v)

∣∣
e

)
dvdu.

Then it follows from [1, 3, 16] that

(2.1) δP (Y,∆Y ) > min

{
min
O∈e

1− ordO
(
∆S̃

∣∣
e

)

SL(W
S̃,e
•,•,•;O)

,
AS,∆S

(e)

SL(W S
•,•; e)

,
1

SL(S)

}
,

where AS,∆S
(e) = 2− c. On the other hand, if 0 6 u 6 1, then

P̃ (u, v) ∼R





(2− 2c)̃s+ (3− 2c− u)f̃ + (5− 4c− u− v)e if 0 6 v 6 2− 2c,

(2− 2c)̃s+ (5− 4c− u− v)
(
f̃ + e

)
if 2− 2c 6 v 6 3− 2c− u,

(5− 4c− u− v)
(
s̃ + f̃ + e

)
if 3− 2c− u 6 v 6 5− 4c− u,

and

Ñ(u, v) =





0 if 0 6 v 6 2− 2c,

(v + 2c− 2)f̃ if 2− 2c 6 v 6 3− 2c− u,

(v + 2c− 2)f̃ + (v + u− 3 + 2c)̃s if 3− 2c− u 6 v 6 5− 4c− u,

which gives

(
P̃ (u, v)

)2
=





8c2 + 4cu− v2 − 20c− 4u+ 12 if 0 6 v 6 2− 2c,

4(1− c)(4− 3c− u− v) if 2− 2c 6 v 6 3− 2c− u,

(5− 4c− u− v)2 if 3− 2c− u 6 v 6 5− 4c− u,
4



and

P̃ (u, v) · e =





v if 0 6 v 6 2− 2c,

2− 2c if 2− 2c 6 v 6 3− 2c− u,

5− 4c− u− v if 3− 2c− u 6 v 6 5− 4c− u.

Similarly, if 1 6 u 6 3− 2c, then

P̃ (u, v) ∼R





(2− 2c)̃s+ (3− 2c− u)f̃ + (5− 4c− u− v)e if 0 6 v 6 3− 2c− u,

(5− 4c− u− v)
(
s̃+ e

)
+ (3− 2c− u)f̃ if 3− 2c− u 6 v 6 2− 2c,

(5− 4c− u− v)
(
s̃+ f̃ + e

)
if 2− 2c 6 v 6 5− 4c− u,

and

Ñ(u, v) =





0 if 0 6 v 6 3− 2c− u,

(v + u− 3 + 2c)̃s if 3− 2c− u 6 v 6 2− 2c,

(v + 2c− 2)f̃ + (v + u− 3 + 2c)̃s if 2− 2c 6 v 6 5− 4c− u,

which gives

(
P̃ (u, v)

)2
=





8c2 + 4cu− v2 − 20c− 4u+ 12 if 0 6 v 6 3− 2c− u,

(3− 2c− u)(7− 6c− u− 2v) if 3− 2c− u 6 v 6 2− 2c,

(5− 4c− u− v)2 if 2− 2c 6 v 6 5− 4c− u,

and

P̃ (u, v) · e =





v if 0 6 v 6 3− 2c− u,

3− 2c− u if 3− 2c− u 6 v 6 2− 2c,

5− 4c− u− v if 2− 2c 6 v 6 5− 4c− u.

Thus, integrating, we get SL(W
S
•,•; e) =

6−5c
3

and

SL
(
W S̃,e

•,•,•;O
)
=





1− c−
2(5− 3c)(1− c)2

3(3− 2c)2
if O 6∈ f̃ ∪ s̃,

1− c if O ∈ s̃,

3− 2c

3
if O ∈ f̃ .

Therefore, if s̃ ∩ RS̃ ∩ e = ∅ and f̃ ∩RS̃ ∩ e = ∅, then (2.1) gives δP (Y,∆Y ) > 1.

Thus, to complete the proof, we may assume that either s̃ ∩ RS̃ ∩ e 6= ∅ or f̃ ∩ RS̃ ∩ e 6= ∅.
Then exactly one of the following two (mutually excluding) cases holds:

(♥) the curve s̃ contains the point RS̃ ∩ e, i.e. the curves s and RS are tangent at P ,

(♦) the curve f̃ contains the point RS̃ ∩ e, i.e. the curves f and RS are tangent at P .

In both cases, we consider the following commutative diagram:

S̃

α

��

S
β

oo

γ
��

S Ŝρ
oo

where β is the blow up of the intersection point RS̃ ∩ e, the map γ is the contraction of the proper

transform of the curve e to an ordinary double point of the surface Ŝ, and ρ is the contraction of
the proper transform of the β-exceptional curve. Then Ŝ is a singular del Pezzo surface of degree 6,
and ρ is a weighted blow up of the point P with weights (1, 2).
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Let f̂ , ŝ and RŜ be the proper transforms on the surface Ŝ of the curves f , s and RS, respectively,
and let z be the ρ-exceptional curve. In the case (♥), we have

ρ∗
(
(L− uS)|S

)
− vz ∼R (2− 2c)̂s+ (3− 2c− u)f̂ + (7− 6c− u− v)z,

and the intersections of the curves z, f̂ and ŝ are given in the following table:

z f̂ ŝ

z −1
2

1
2

1

f̂ 1
2

−1
2

0

ŝ 1 0 −2

Similarly, in the case (♦), we have

ρ∗
(
(L− uS)|S

)
− vz ∼R (2− 2c)̂s+ (3− 2c− u)f̂ + (8− 6c− 2u− v)z,

and the intersections of the curves z, f̂ and ŝ are given in the following table:

z f̂ ŝ

z −1
2

1 1
2

f̂ 1 −2 0

ŝ 1
2

0 −1
2

In both cases, let t̂(u) be the largest v ∈ R>0 such that ρ∗
(
P (u)

∣∣
S

)
− vz is pseudoeffective. Then

t̂(u) =

{
7− 6c− u in the case (♥),

8− 6c− 2u in the case (♦).

For each v ∈ [0, t̂(u)], let P̂ (u, v) be the positive part of the Zariski decomposition of this divisor,

and let N̂(u, v) be its negative part. Set

SL
(
W S

•,•; z
)
=

3

L3

3−2c∫

0

t̂(u)∫

0

(
P̂ (u, v)

)2
dvdu.

Similarly, for every point O ∈ z, we set

S
(
W Ŝ,z

•,•,•;O
)
=

3

L3

3−2c∫

0

t̂(u)∫

0

(
P̂ (u, v) · z

)2
dvdu+ FO

(
W Ŝ,z

•,•,•

)
,

where

FO
(
W Ŝ,z

•,•,•

)
=

6

L3

3−2c∫

0

t̂(u)∫

0

(
P̂ (u, v) · z

)
· ordO

(
N̂(u, v)

∣∣
z

)
dvdu.

Let Q be the singular point of the surface Ŝ. Then Q 6∈ RŜ, since

Q =

{
f̂ ∩ z in the case (♥),

ŝ ∩ z in the case (♦).
6



Let ∆Ŝ = cRŜ and ∆z =
1
2
Q+∆Ŝ|z. Then it follows from [1, 3, 16] that

(2.2) δP (Y,∆Y ) > min

{
min
O∈z

Az,∆z
(O)

SL(W
Ŝ,z
•,•,•;O)

,
AS,∆S

(z)

SL(W S
•,•; z)

,
AY,∆Y

(S)

SL(S)

}
,

where AY,∆Y
(S) = 1, AS,∆S

(z) = 3− 2c and Az,∆z
(O) = 1− ordO(∆z) for every point O ∈ z.

Let us compute SL(W
S
•,•; z) and SL(W

Ŝ,z
•,•,•;O) for every point O ∈ z.

First, we deal with the case (♥). In this case, if c 6 1
2
or if c > 1

2
and 2c− 1 6 u 6 3− 2c, then

P̂ (u, v) ∼R





(2− 2c)̂s+ (3− 2c− u)f̂ + (7− 6c− u− v)z if 0 6 v 6 3− 2c− u,

7− 6c− u− v

2

(
ŝ + 2z

)
+ (3− 2c− u)f̂ if 3− 2c− u 6 v 6 4− 4c,

7− 6c− u− v

2

(
ŝ + 2z+ 2f̂

)
if 4− 4c 6 v 6 7− 6c− u,

and

N̂(u, v) =





0 if 0 6 v 6 3− 2c− u,

v + u+ 2c− 3

2
ŝ if 3− 2c− u 6 v 6 4− 4c,

v + u+ 2c− 3

2
ŝ+ (v − 4 + 4c)f̂ if 4− 4c 6 v 6 7− 6c− u,

which gives

(
P̂ (u, v)

)2
=





8c2 + 4cu+ 12− 20c− 4u−
v2

2
if 0 6 v 6 3− 2c− u,

(3− 2c− u)(11− 10c− u− 2v)

2
if 3− 2c− u 6 v 6 4− 4c,

(7− 6c− u− v)2

2
if 4− 4c 6 v 6 7− 6c− u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 3− 2c− u,

3− u− 2c

2
if 3− 2c− u 6 v 6 4− 4c,

7− 6c− u− v

2
if 4− 4c 6 v 6 7− 6c− u.

Similarly, in the case (♥), if c > 1
2
and 0 6 u 6 2c− 1, then

P̂ (u, v) ∼R





(2− 2c)̂s+ (3− 2c− u)f̂ + (7− 6c− u− v)z if 0 6 v 6 4− 4c,

(2− 2c)̂s+ (7− 6c− u− v)
(
f̂ + ẑ

)
if 4− 4c 6 v 6 3− 2c− u,

7− 6c− u− v

2

(
ŝ+ 2z+ 2f̂

)
if 3− 2c− u 6 v 6 7− 6c− u,

and

N̂(u, v) =





0 if 0 6 v 6 4− 4c,

(v − 4 + 4c)f̂ if 4− 4c 6 v 6 3− 2c− u,

v + u+ 2c− 3

2
ŝ+ (v − 4 + 4c)f̂ if 3− 2c− u 6 v 6 7− 6c− u,

7



which gives

(
P̂ (u, v)

)2
=





8c2 + 4cu+ 12− 20c− 4u−
v2

2
if 0 6 v 6 4− 4c,

4(1− c)(5− 4c− u− v) if 4− 4c 6 v 6 3− 2c− u,

(7− 6c− u− v)2

2
if 3− 2c− u 6 v 6 7− 6c− u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 4− 4c,

2− 2c if 4− 4c 6 v 6 3− 2c− u,

7− 6c− u− v

2
if 3− 2c− u 6 v 6 7− 6c− u.

Now, integrating, we get SL(W
S
•,•; z) = 3− 8

3
c < 3− 2c = AS,∆S

(z) and

SL
(
W Ŝ,z

•,•,•;O
)
=





1− c−
68c2 − 124c+ 57

96(1− c)
if O 6∈ f̂ ∪ ŝ and c 6

1

2
,

1− c−
8(2− c)(1− c)2

3(3− 2c)2
if O 6∈ f̂ ∪ ŝ and c >

1

2
,

1− c if O ∈ ŝ,

1

2
−
c

3
if O ∈ f̂ .

Hence, using (2.2), we obtain δP (Y,∆Y ) > 1.
Now, we deal with the case (♦). If 0 6 u 6 2− c, then

P̂ (u, v) ∼R





(2− 2c)̂s+ (3− 2c− u)f̂ + (8− 6c− 2u− v)z if 0 6 v 6 2− 2c,

(2− 2c)̂s+
8− 6c− 2u− v

2

(
f̂ + 2z

)
if 2− 2c 6 v 6 6− 4c− 2u,

8− 6c− 2u− v

2

(
2ŝ+ f̂ + 2z

)
if 6− 4c− 2u 6 v 6 8− 6c− 2u,

and

N̂(u, v) =





0 if 0 6 v 6 2− 2c,

v − 2 + 2c

2
f̂ if 2− 2c 6 v 6 6− 4c− 2u,

v − 2 + 2c

2
f̂ + (v + 2u− 6 + 4c)̂s if 6− 4c− 2u 6 v 6 8− 6c− 2u,

which gives

(
P̂ (u, v)

)2
=





8c2 + 4cu+ 12− 20c− 4u−
v2

2
if 0 6 v 6 2− 2c,

2(1− c)(7− 5c− 2u− v) if 2− 2c 6 v 6 6− 4c− 2u,

(8− 6c− 2u− v)2

2
if 6− 4c− 2u 6 v 6 8− 6c− 2u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 2− 2c,

1− c if 2− 2c 6 v 6 6− 4c− 2u,

8− 6c− 2u− v

2
if 6− 4c− 2u 6 v 6 8− 6c− 2u.

8



Similarly, if 2− c 6 u 6 3− 2c, then

P̂ (u, v) ∼R





(2− 2c)̂s+ (3− 2c− u)f̂ + (8− 6c− 2u− v)z if 0 6 v 6 6− 4c− 2u,

(8− 6c− 2u− v)
(
ŝ + z

)
+ (3− 2c− u)f̂ if 6− 4c− 2u 6 v 6 2− 2c,

8− 6c− 2u− v

2

(
2ŝ+ f̂ + 2z

)
if 2− 2c 6 v 6 8− 6c− 2u,

and

N̂(u, v) =





0 if 0 6 v 6 6− 4c− 2u,

(v + 2u− 6 + 4c)̂s if 6− 4c− 2u 6 v 6 2− 2c,

v − 2 + 2c

2
f̂ + (v + 2u− 6 + 4c)̂s if 2− 2c 6 v 6 8− 6c− 2u,

which gives

(
P̂ (u, v)

)2
=





8c2 + 4cu+ 12− 20c− 4u−
v2

2
if 0 6 v 6 6− 4c− 2u,

2(3− 2c− u)(5− 4c− u− v) if 6− 4c− 2u 6 v 6 2− 2c,

(8− 6c− 2u− v)2

2
if 2− 2c 6 v 6 8− 6c− 2u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 6− 4c− 2u,

3− 2c− u if 6− 4c− 2u 6 v 6 2− 2c,

8− 6c− 2u− v

2
if 2− 2c 6 v 6 8− 6c− 2u.

Now, integrating, we get SL(W
S
•,•; z) = 3− 7

3
c < 3− 2c = AS,∆S

(z) and

SL
(
W Ŝ,z

•,•,•;O
)
=





1− c−
(1− c)(31c2 − 90c+ 65)

12(3− 2c)2
if O 6∈ f̂ ∪ ŝ,

1

2
−
c

2
if O ∈ ŝ,

1−
2c

3
if O ∈ f̂ .

Hence, using (2.2), we get δP (Y,∆Y ) > 1. This completes the proof of the lemma. �

Finally, we prove

Lemma 2.4. Let f be the fiber of the projection Y → P2 such that P ∈ f . Suppose that f ⊂ R.
Then δP (Y,∆Y ) > 1.

Proof. Let ν : Y → Y be the blow up of the smooth curve f , let E be the ν-exceptional surface.
Take u ∈ R>0. Then ν

∗(L)− uE is pseudoeffective ⇐⇒ ν∗(L)− uE is nef ⇐⇒ u 6 3− 2c, so

SL(E) =
1

L3

3−2c∫

0

(
ν∗(L)−uE

)3
du =

1

6(1− c)(3− 2c)2

3−2c∫

0

6(1−c)(3−2c−u)(3−2c+u)du = 2−
4

3
c,

which gives

δP (Y,∆Y ) 6
AY,∆Y

(E)

SL(E)
= 1 +

c

2(3− 2c)
.
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Now, let RY be the proper transform on Y of the surface R, let RE = RY |E, let ∆E = cRE,
and let l be the fiber of the projection E → f such that ν(l) = P . Then RE is a smooth curve,
which implies that (E,∆E) has Kawamata log terminal singularities. For every point P ∈ l, set

δP
(
E,∆E ;W

E
•,•

)
= inf

F/E,
P∈CE(F )

AE,∆E
(F )

S(WE
•,•;F )

,

where the infimum is taken over all prime divisors F over E whose centers on E contain P, and

S
(
WE

•,•;F
)
=

3

L3

3−2c∫

0

∞∫

0

vol
((
ν∗(L)− uE

)∣∣
E
− vF

)
dvdu.

Then it follows from [1, 3, 16] that

δP (Y,∆Y ) > min

{
inf
P∈l

δP
(
E,∆E ;W

E
•,•

)
,
AY,∆Y

(E)

SL(E)

}
= min

{
inf
P∈l

δP
(
E,∆E ;W

E
•,•

)
, 1+

c

2(3− 2c)

}
.

Thus, to complete the proof, it is enough to show that δP(E,∆E ;W
E
•,•) > 1 for every point P ∈ l.

Fix a point P ∈ l. Let s be the smooth curve in E ∼= P1×P1 such that s2 = 0, s · l = 1, P ∈ s.
Then E|E ∼ −s, RE ∼ 2l+ s, and (ν∗(L)− uE)

∣∣
E
∼R (2− 2c)l+ us.

Let α : Ẽ → E be the blow up of the point P, let e be the exceptional curve of the blow up α,

and let s̃, l̃, RẼ be the proper transforms on Ẽ of the curves s, l, RE , respectively. Set ∆Ẽ = cRẼ.

Then Ẽ is a smooth del Pezzo surface of degree 7, s̃ ∩ l̃ = ∅, and s̃, l̃, e are all (−1)-curves in Ẽ.
Let v be a non-negative real number. Then

α∗

((
ν∗(L)− uE

)∣∣
E

)
− ve ∼R (2− 2c)̃l+ us̃+ (2− 2c+ u− v)e,

and it is pseudoeffective ⇐⇒ v 6 2 − 2c + u. For v ∈ [0, 2− 2c+ u], let P̃ (u, v) be the positive

part of the Zariski decomposition of this divisor, and let Ñ(u, v) be its negative part. Set

SL
(
WE

•,•; e
)
=

3

L3

3−2c∫

0

2−2c+u∫

0

(
P̃ (u, v)

)2
dvdu.

Likewise, for every point O ∈ e, we set

S
(
W Ẽ,e

•,•,•;O
)
=

3

L3

3−2c∫

0

2−2c+u∫

0

(
P̃ (u, v) · e

)2
dvdu+ FO

(
W Ẽ,e

•,•,•

)
,

where

FO
(
W Ẽ,e

•,•,•

)
=

6

L3

3−2c∫

0

2−2c+u∫

0

(
P̃ (u, v) · e

)
· ordO

(
Ñ(u, v)

∣∣
e

)
dvdu.

Then it follows from [1, 3, 16] that

(2.3) δP
(
E,∆E;W

E
•,•

)
> min

{
min
O∈e

1− ordO
(
∆Ẽ

∣∣
e

)

SL(W
Ẽ,e
•,•,•;O)

,
AE,∆E

(e)

SL(WE
•,•; e)

}
,

where

AE,∆E

(
e
)
=

{
2− c if P ∈ RE ,

2 if P 6∈ RE .
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On the other hand, if 0 6 u 6 2− 2c, then

P̃ (u, v) ∼R





(2− 2c)̃l+ us̃+ (2− 2c+ u− v)e if 0 6 v 6 u,

(2− 2c+ u− v)
(
e+ l̃

)
+ us̃ if u 6 v 6 2− 2c,

(2− 2c+ u− v)
(
e+ l̃ + s̃

)
if 2− 2c 6 v 6 2− 2c+ u,

and

Ñ(u, v) =





0 if 0 6 v 6 u,

(v − u)̃l if u 6 v 6 2− 2c,

(v − u)̃l+ (v − 2 + 2c)̃s if 2− 2c 6 v 6 2− 2c+ u,

which gives

(
P̃ (u, v)

)2
=





(4− 4c)u− v2 if 0 6 v 6 u,

u(4− 4c+ u− 2v) if u 6 v 6 2− 2c,

(2− 2c+ u− v)2 if 2− 2c 6 v 6 2− 2c+ u,

and

P̃ (u, v) · e =





v if 0 6 v 6 u,

u if u 6 v 6 2− 2c,

2− 2c+ u− v if 2− 2c 6 v 6 2− 2c+ u.

Similarly, if 2− 2c 6 u 6 3− 2c, then

P̃ (u, v) ∼R





(2− 2c)̃l+ us̃+ (2− 2c+ u− v)e if 0 6 v 6 2− 2c,

(2− 2c)̃l+ (2− 2c+ u− v)
(
e+ s̃

)
if 2− 2c 6 v 6 u,

(2− 2c+ u− v)
(
e+ l̃ + s̃

)
if u 6 v 6 2− 2c+ u,

and

Ñ(u, v) =





0 if 0 6 v 6 2− 2c,

(v − 2 + 2c)̃s if 2− 2c 6 v 6 u,

(v − u)̃l+ (v − 2 + 2c)̃s if u 6 v 6 2− 2c+ u,

which gives

(
P̃ (u, v)

)2
=





(4− 4c)u− v2 if 0 6 v 6 2− 2c,

4(1− c)(1− c+ u− v) if 2− 2c 6 v 6 u,

(2− 2c+ u− v)2 if u 6 v 6 2− 2c+ u,

and

P̃ (u, v) · e =





v if 0 6 v 6 2− 2c,

2− 2c if 2− 2c 6 v 6 u,

2− 2c+ u− v if u 6 v 6 2− 2c+ u.

Thus, integrating, we get SL(W
E
•,•; e) = 2− 5

3
c < 2− c and

SL
(
W Ẽ,e

•,•,•;O
)
=





1− c−
2(5− 3c)(1− c)2

3(3− 2c)2
if O 6∈ l̃ ∪ s̃,

1−
2

3
c if O ∈ s̃,

1− c if O ∈ l̃.
11



Therefore, if P 6∈ RE , then (2.3) gives δP(E,∆E;W
E
•,•) > 1. Similarly, if P ∈ RE, then l̃∩RẼ = ∅,

the set s̃∩RẼ∩e consists of at most 1 point, and (2.3) gives δP(E,∆E;W
E
•,•) > 1 if s̃∩RẼ∩e = ∅.

To complete the proof, we may assume that the intersection s̃ ∩ RẼ ∩ e consists of one point,
which means that the curves s and RE are tangent at the point P . As in the proof of Lemma 2.3,
let us consider the following commutative diagram:

Ẽ

α

��

E
β

oo

γ
��

E Êρ
oo

where β is the blow up of the point s̃ ∩ RẼ ∩ e, the morphism γ is the contraction of the proper

transform of the curve e to an ordinary double point of the surface Ê, and ρ is the contraction of
the proper transform of the β-exceptional curve.

Let ŝ, l̂, RÊ be the proper transforms on Ê of the curves s, l, RE , respectively. Then RÊ∩ ŝ = ∅,

and the curves ŝ, l̂, RÊ are smooth. Let z be the ρ-exceptional curve. Then RÊ∩ l̂∩z = ∅, z ∼= P1,

and the intersections of the curves z, ŝ and l̂ are given in the following table:

z ŝ l̂

z −1
2

1 1
2

ŝ 1 −2 0

l̂ 1
2

0 −1
2

Furthermore, we have

ρ∗
((
ν∗(L)− uE

)∣∣
E

)
− vz ∼R (2− 2c)̂l+ uŝ+ (2− 2c+ 2u− v)z,

and it is pseudoeffective ⇐⇒ v 6 2− 2c+2u. For v ∈ [0, 2− 2c+2u], let P̂ (u, v) be the positive

part of the Zariski decomposition of this divisor, and let N̂(u, v) be its negative part. Set

SL
(
WE

•,•; z
)
=

3

L3

3−2c∫

0

2−2c+2u∫

0

(
P̂ (u, v)

)2
dvdu.

Similarly, for every point O ∈ z, we set

S
(
W Ê,z

•,•,•;O
)
=

3

L3

3−2c∫

0

2−2c+2u∫

0

(
P̂ (u, v) · z

)2
dvdu+ FO

(
W Ê,z

•,•,•

)
,

where

FO
(
W Ê,z

•,•,•

)
=

6

L3

3−2c∫

0

2−2c+2u∫

0

(
P̂ (u, v) · z

)
· ordO

(
N̂(u, v)

∣∣
z

)
dvdu.

Let Q be the singular point of the surface Ê. Then Q = l̂∩z. Let ∆Ê = cRÊ and ∆z =
1
2
Q+∆Ê|z.

Then it follows from [1, 3, 16] that

(2.4) δP
(
E,∆E ;W

E
•,•

)
> min

{
min
O∈z

Az,∆z
(O)

SL(W
Ê,z
•,•,•;O)

,
AE,∆E

(z)

SL(WE
•,•; z)

}
,
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where AE,∆E
(z) = 3− 2c and Az,∆z

(O) = 1− ordO(∆z). On the other hand, if 0 6 u 6 1− c, then

P̂ (u, v) ∼R





(2− 2c)̂l+ uŝ+ (2− 2c+ 2u− v)z if 0 6 v 6 2u,

(2− 2c+ 2u− v)
(
z+ l̂

)
+ uŝ if 2u 6 v 6 2− 2c,

(2− 2c+ 2u− v)
(
z+ l̂+ ŝ

)
if 2− 2c 6 v 6 2− 2c+ 2u,

and

N̂(u, v) =





0 if 0 6 v 6 2u,

(v − 2u)̂l if 2u 6 v 6 2− 2c,

(v − 2u)̂l+
v − 2 + 2c

2
ŝ if 2− 2c 6 v 6 2− 2c+ 2u,

which gives

(
P̂ (u, v)

)2
=





(4− 4c)u−
v2

2
if 0 6 v 6 2u,

2u(2− 2c+ u− v) if 2u 6 v 6 2− 2c,

(2− 2c+ 2u− v)2

2
if 2− 2c 6 v 6 2− 2c+ 2u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 2u,

u if 2u 6 v 6 2− 2c,

2− 2c+ 2u− v

2
if 2− 2c 6 v 6 1 + u.

Similarly, if 1− c 6 u 6 3− 2c, then

P̂ (u, v) ∼R





(2− 2c)̂l+ uŝ+ (2− 2c+ 2u− v)z if 0 6 v 6 2− 2c,

2− 2c+ 2u− v

2

(
2z+ ŝ

)
+ (2− 2c)̂l if 2− 2c 6 v 6 2u,

2− 2c+ 2u− v

2

(
2z+ 2̂l+ ŝ

)
if 2u 6 v 6 2− 2c+ 2u,

and

N̂(u, v) =





0 if 0 6 v 6 2− 2c,

v − 2 + 2c

2
ŝ if 2− 2c 6 v 6 2u,

(v − 2u)̂l+
v − 2 + 2c

2
ŝ if 2u 6 v 6 2− 2c+ 2u,

which gives

(
P̂ (u, v)

)2
=





(4− 4c)u−
v2

2
if 0 6 v 6 2− 2c,

2(1− c)(1− c+ 2u− v) if 2− 2c 6 v 6 2u,

(2− 2c+ 2u− v)2

2
if 2u 6 v 6 1 + 2u,

and

P̂ (u, v) · z =





v

2
if 0 6 v 6 2− 2c,

1− c if 2− 2c 6 v 6 2u,

2− 2c+ 2u− v

2
if 2u 6 v 6 1 + u.
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Now, integrating, we get SL(W
E
•,•; z) = 3− 7

3
c < 3− 2c = AE,∆E

(z) and

SL
(
W Ê,z

•,•,•;O
)
=





1− c−
(1− c)(31c2 − 90c+ 65)

12(3− 2c)2
if O 6∈ l̂ ∪ ŝ,

1

2
−
c

2
if O ∈ l̂,

1−
2c

3
if O ∈ ŝ.

Hence, using (2.4), we get δP(E,∆E ;W
E
•,•) > 1, which gives δP (Y,∆Y ) > 1. �

Now, combining Lemmas 2.2, 2.3 and 2.4, we obtain Theorem 2.1.

3. Smooth Fano 3-folds in the family №3.4

Let Y = P1 × F1. Identify Y = (A2 \ 0)3/G3
m for the G3

m-action

(
(x0, x1), (y0, y1), (z0, z1)

)
7→

(
(
λx0, λx1

)
,
((
µy0, µy1

)
,
νz0
µ
, νz1

)
,

)

where (λ, µ, ν) ∈ G3
m, and ((x0, x1), (y0, y1), (z0, z1)) are coordinates on (A2)3. We will use

• ([x0 : x1], [y0 : y1; z0 : z1]) as coordinates on P1 × F1,
• [x0 : x1] as coordinates on the first factor of Y = P1 × F1,
• [y0 : y1; z0 : z1] as coordinates on the second factor of Y = P1 × F1,
• [y0 : y1] as coordinates on the base of the natural projection F1 → P1.

To distinguish the first factor of Y = P1 × F1 and the base of the natural projection F1 → P1,
we will use notations P1

x0,x1
and P1

y0,y1
for them, respectively. Then Y = P1

x0,x1
× F1, and we have

the following commutative diagram:

Y

φ
��

π1

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

ψ

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙
π2

// F1

��

P1
x0,x1

P1
x0,x1

× P1
y0,y1

//oo P1
y0,y1

where π1 and π2 are projections to the first and the second factors, respectively, φ is the P1-bundle
(
[x0 : x1], [y0 : y1; z0 : z1]

)
7→ ([x0 : x1], [y0 : y1]),

the morphism ψ is the P1×P1-bundle ([x0 : x1], [y0 : y1; z0 : z1]) 7→ [y0 : y1], and all other morphisms
are natural projections. Let F be a fiber of the morphism π1, let S be a fiber of the morphism ψ,
let E be the exceptional surface of the birational contraction Y → P1

x0,x1 × P2 given by
(
[x0 : x1], [y0 : y1; z0 : z1]

)
7→
(
[x0 : x1]; [y0z0 : y1z0 : z1]

)
,

let R be a smooth surface in |2F +2E+2S|, and let η : X → P1
x0,x1

×F1 be a double cover ramified
in the surface R. Then X is a smooth Fano threefold in the family №3.4.

Recall that X is K-stable ⇐⇒ X is K-polystable, because Aut(X) is finite [9]. Let ∆Y = 1
2
R.

Then it follows from [12, 15, 21, 25] that

X is K-polystable ⇐⇒ (Y,∆Y ) is K-polystable.

The goal of this section is to prove the following result.

Theorem 3.1. The log Fano pair (Y,∆Y ) is K-stable.
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Before proving Theorem 3.1, observe that E = {z0 = 0} ⊂ Y , and R is given in Y by

(3.1) x20

((
a0y

2
0 + b0y0y1 + c0y

2
1

)
z20 +

(
d0y0 + e0y1

)
z0z1 + f0z

2
1

)
+

+ x0x1

((
a1y

2
0 + b1y0y1 + c1y

2
1

)
z20 +

(
d1y0 + e1y1

)
z0z1 + f1z

2
1

)
+

+ x21

((
a2y

2
0 + b2y0y1 + c2y

2
1

)
z20 +

(
d2y0 + e2y1

)
z0z1 + f2z

2
1

)
= 0,

where a0, b0, c0, d0, e0, f0, a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2 are some numbers.

Lemma 3.2. Set RE = R|E, RS = R|S, RF = R|F . Then

(i) RE is a disjoint union of two fibers of the projection π1|E : E → P1
x0,x1

,

(ii) the curve RS is reduced,

(iii) if RF is reduced, then it has one or two ordinary double points,

(iv) if RF is not reduced, then Sing(RF ) = F ∩ E.

Let P be a point in F ∩S such that P 6∈ E and P ∈ R, let Z be the fiber of φ that contains P , and
let C be the fiber of π2 that contains P . Then

(v) if Z ⊂ R, then RF and RS are singular at some points in Z,
(vi) if C ⊂ R, then RS is singular at some point in C.
(vii) at least one of the surfaces RF and RS is smooth at P ,
(viii) if RS is singular at P , and Z 6⊂ R, then RF is smooth.

Proof. First, let us choose appropriate coordinates on Y such that F = {x1 = 0} and S = {y1 = 0}.
To prove (i), observe that

RE =
{
z0 = 0, f0x

2
0 + f1x0x1 + f2x

2
1 = 0

}
⊂ Y.

Moreover, if f0x
2
0 + f1x0x1 + f2x

2
1 is a square, then R is singular. This proves (i).

Let us prove (ii). Using (3.1), we see that RS = {f = 0} ⊂ S for

f = x20(a0z
2
0 + d0z0z1 + f0z

2
1) + x0x1(a1z

2
0 + d1z0z1 + f1z

2
1) + x21(a2z

2
0 + d2z0z1 + f2z

2
1),

where we consider ([x0 : x1], [z0 : z1]) as coordinates on S ∼= P1 × P1. Hence, if RS is not reduced,
then f = gh2 for a non-constant polynomial h and a polynomial g. Then we can rewrite (3.1) as

y1

(
x20
(
(b0y0+c0y1)z

2
0+e0z0z1

)
+x0x1

(
(b1y0+c1y1)z

2
0+e1z0z1

)
+x21

(
(b2y0+c2y1)z

2
0+e2z0z1

))
+gh2 = 0,

which implies that the surface R is singular at every point of the non-empty subset
{
y1 = 0, x20

(
b0y0z

2
0 + e0z0z1

)
+ x0x1

(
b1y0z

2
0 + e1z0z1

)
+ x21

(
b2y0z

2
0 + e2z0z1

)
, h = 0

}
⊂ Y,

which is impossible by assumption. Hence, we see that RS is reduced. This proves (ii).
Let us prove (iii) and (iv). Identify F = F1 with coordinates [y0 : y1; z0 : z1]. Then

RF =
{
(a0y

2
0 + b0y0y1 + c0y

2
1)z

2
0 + (d0y0 + e0y1)z0z1 + f0z

2
1 = 0

}
⊂ F.

Let υ : F1 → P2 be the blow up [y0 : y1; z0 : z1] 7→ [y0z0 : y1z0 : z1], and let e be its exceptional curve.
Then υ(RF ) is a reduced conic. Furthermore, if f0 6= 0, then RF ∩e = ∅, and either RF is smooth,
or the curve RF is a union of two smooth irreducible curves intersecting transversally at one point.
Thus, we may assume that f0 = 0. Then υ(RF ) contains υ(e), and RF = e +R′

F , where

R′

F =
{
(a0y

2
0 + b0y0y1 + c0y

2
1)z0 + (d0y0 + e0y1)z1 = 0

}
⊂ F.

If d0 6= 0 or e0 6= 0, then R′

F is the proper transform of the conic υ(RF ), which is smooth at υ(e).
In this case, if υ(RF ) is irreducible, then the curve R′

F is smooth, and RF has one ordinary double
point — the intersection point e ∩R′

F . Similarly, if υ(RF ) is reducible, then RF has two ordinary
double points — the intersection point e ∩ R′

F , and the unique singular point of the curve R′

F .
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Finally, if d0 = 0 and e0 = 0, then RF = 2e+ l+ l′, where l+ l′ = {a0y
2
0 + b0y0y1 + c0y

2
1 = 0} ⊂ F ,

so that l and l′ are distinct fibers of the projection F1 → P1
y0,y1. This proves (iii) and (iv).

Now, choosing appropriate coordinates on Y , we may assume that P = ([1 : 0], [1 : 0; 1 : 0]).
Then a0 = 0, since P ∈ R. Note also that Z = {x1 = 0, y1 = 0} and C = {y1 = 0, z1 = 0}.

Both assertions (v) and (vi) are obvious. Now, let us prove (vii). In the affine chart x0y0z0 6= 0,
the surface R is given by

a1x+ b0y + d0z + higher order terms = 0,

where x = x1
x0
, y = y1

y0
, z = z1

z0
. which implies that (a1, b0, d0) 6= (0, 0, 0), because R is smooth at P .

If RF is singular at P , then b0 = 0 and d0 = 0. If RS is singular at P , then a1 = 0 and d0 = 0.
Hence, if both RF and RS are singular at P , then (a1, b0, d0) = (0, 0, 0). This proves (vii).

Let’s prove (viii). Suppose that RS is singular at P , and Z 6⊂ R. Then a1 = d0 = 0 and b0f0 6= 0.
Observe that RF ∩e = ∅, since f0 6= 0. Now, computing the defining equation of the conic υ(RF ),
we see that this conic is smooth, because b0f0 6= 0. Then RF is also smooth. This proves (viii). �

3.1. The proof. Set L = −(KY +∆Y ). Then L ∼Q F+E+2S and L3 = 9. To prove Theorem 3.1,
we must show that βY,∆Y

(E) = AY,∆Y
(E)− SL(E) > 0 for every prime divisor E over Y , where

SL(E) =
1

L3

∞∫

0

vol
(
L− uE

)
du.

Fix a prime divisor F over Y . Let us show that βY,∆Y
(F) > 0. Set C = CY (F). Then

(1) either C is a point,
(2) or C is an irreducible curve,
(3) or C is an irreducible surface.

In each case, let P be some point in C. If βY,∆Y
(F) 6 0, then δP (Y,∆Y ) 6 1, where

δP (Y,∆Y ) = inf
E/Y

P∈CY (E)

AY,∆Y
(E)

SL(E)
,

where the infimum is taken over all prime divisors E over Y whose centers on Y contain P .
Changing coordinates on Y , we may assume that P = ([1 : 0], [1 : 0; a : b]) for some [a : b] ∈ P1

such that ab = 0. Thus, we have the following two possibilities:

(♣) P = ([1 : 0], [1 : 0; 0 : 1]) ∈ E,
(♠) P = ([1 : 0], [1 : 0; 1 : 0]) 6∈ E.

Moreover, we can choose S to be the fiber of the morphism ψ : Y → P1
y0,y1

that contains the point P ,

and we can choose F to be the fiber of the morphism π1 : Y → P1
x0,x1

that contains P . Then

E = {z0 = 0} ∼= P1 × P1,

S = {y1 = 0} ∼= P1 × P1,

F = {x1 = 0} ∼= F1.

Lemma 3.3. Suppose that C is a surface. Then βY,∆Y
(F) > 0.

Proof. Since C ∼ nFF +nEE+nSS for some non-negative integers nF , nE , nS that are not all zero,
we have

βY,∆Y
(F) = βY,∆Y

(C) > min
{
βY,∆Y

(F ), βY,∆Y
(E), βY,∆Y

(S)
}
,
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but βY,∆Y
(F ) = 1

2
, βY,∆Y

(E) = 4
9
, βY,∆Y

(S) = 2
9
. Indeed, let us compute βY,∆Y

(E). Take u ∈ R>0.
Then L− uE is pseudoeffective ⇐⇒ L− uE is nef ⇐⇒ u ∈ [0, 1]. Using this, we compute

βY,∆Y
(E) = 1− SL(E) = 1−

1

L3

1∫

0

(L− uE)3du = 1−
1

9

1∫

0

6u(1 + u)du =
4

9
.

Similarly, we compute βY,∆Y
(F ) = 1

2
and βY,∆Y

(S) = 2
9
. �

Let RE = R|E and ∆E = 1
2
RE . Then, by Lemma 3.2, the curve RE is a union of two distinct

fibers of the morphisms π1|E : E → P1
x0,x1

.

Lemma 3.4. Suppose that P ∈ E. Then δP (Y,∆Y ) > 1. Moreover, if C ⊂ E, then βY,∆Y
(F) > 0.

Proof. Take u ∈ R>0. From the proof of Lemma 3.3, we know that

L− uE is pseudoeffective ⇐⇒ L− uE is nef ⇐⇒ u ∈ [0, 1].

Let l and s be some fibers of the morphisms π1|E : E → P1
x0,x1

and ψ|E : E → P1
y0,y1

, respectively.
Choose l and s such that P ∈ l ∩ s. Take v ∈ R>0. Then (L− uE)|E − vl ∼R (1− v)l+ (1 + u)s,
and this divisor is pseudoeffective ⇐⇒ it is nef ⇐⇒ v ∈ [0, 1]. Now, following [1, 3, 16], we set

SL
(
WE

•,•; l
)
=

3

L3

1∫

0

1∫

0

(
(L− uE)

∣∣
E
− vl

)2
dvdu

and

SL
(
WE,l

•,•,•;P
)
=

3

L3

1∫

0

1∫

0

((
L− uE)

∣∣
E
− vl

)
· l
)2
dvdu.

Integrating, we get SL(W
E
•,•; l) =

1
2
and SL(W

E,l
•,•,•;P ) =

7
9
.

If l is not an irreducible component of the curve RE , then it follows from [1, 3, 16] that

AY,∆Y
(F)

SL(F)
> δP (Y,∆Y ) > min

{
1

SL(W
E,l
•,•,•;P )

,
1

SL(WE
•,•; l)

,
1

SL(E)

}
=

9

7
,

because we computed SL(E) =
5
9
in the proof of Lemma 3.3. Similarly, if l ⊂ Supp(RE), then

AY,∆Y
(F)

SL(F)
> δP (Y,∆Y ) > min

{
1

SL(W
E,l
•,•,•;P )

,
1− ordl(∆E)

SL(WE
•,•; f)

,
1

SL(E)

}
= 1.

Moreover, if C = P , then it follows from [1, 3, 16] that βY,∆Y
(F) > 0.

Thus, we see that δP (Y,∆Y ) > 1. In particular, we have βY,∆Y
(F) > 0.

To complete the proof, we may assume that C is a curve in E. Let us show that βY,∆Y
(F) > 0.

Suppose that βY,∆Y
(F) = 0. Let us seek for a contradiction. As above, we let

SL
(
WE

•,•;C
)
=

3

L3

1∫

0

∞∫

0

vol
(
L|E − vC

)
dvdu.

Then it follows from [1, 3, 16] that

1 =
AY,∆Y

(F)

SL(F)
>

1− ordC(∆E)

SL(WE
•,•;C)

.
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If C is an irreducible component of the curve RE , then C = l, so SL(W
E
•,•; l) =

1
2
and ordl(∆E) =

1
2
,

which gives us a contradiction. Thus, we have ordC(∆E) = 0, which gives SL(W
E
•,•;C) > 1. But

SL
(
WE

•,•;C
)
6 min

{
SL
(
WE

•,•; l
)
, SL
(
WE

•,•; s
)}
,

because |C− l| 6= ∅ or |C− s| 6= ∅. Hence, we conclude that SL(W
E
•,•; s) > 1.

Let us compute SL(W
E
•,•; s). For v ∈ R>0, we have (L− uE)|E − vs ∼R l+ (1+ u− v)s, and this

divisor is pseudoeffective ⇐⇒ it is nef ⇐⇒ v ∈ [0, 1 + u]. Hence, we have

1 < SL
(
WE

•,•; s
)
=

3

L3

1∫

0

1−u∫

0

(
l+ (1 + u− v)s

)2
dvdu =

3

L3

1∫

0

1+u∫

0

2(1 + u− v)dvdu =
7

9
,

which is a contradiction. �

Let RF = R|F and ∆F = 1
2
RF . Set Z = S · F . Then Z = {x1 = 0, y1 = 0} ⊂ Y .

Lemma 3.5. Suppose that RF is smooth. Then δP (Y,∆Y ) > 1. If C = P , then βY,∆Y
(F) > 0.

Proof. We recall that F = {x1 = 0} ⊂ Y . Let us identify F = F1 with coordinates [y0 : y1; z0 : z1].
Let υ : F → P2 be the blow up [y0 : y1; z0 : z1] 7→ [y0z0 : y1z0 : z1], and let e be its exceptional curve.
Then RF ∩ e = ∅, and υ(RF ) is a smooth conic in P2. Moreover, we have

RF ∼ 2
(
Z + e

)
,

and Z is the fiber of the natural projection F → P1
y0,y1

over the point [0 : 1].
Take u ∈ R>0. Then L− uF is pseudoeffective ⇐⇒ L− uF is nef ⇐⇒ u 6 1. Set

δP
(
F,∆F ;W

F
•,•

)
= inf

f/F,
P∈CF (f)

AF,∆F
(f)

SL(W F
•,•; f)

,

where

SL
(
W F

•,•; f
)
=

3

L3

1∫

0

∞∫

0

vol
(
(L− uF )

∣∣
F
− vf

)
dvdu,

and the infimum is taken over all prime divisors f over the surface F whose centers on F contain P .
Then it follows from [1, 3, 16] that

AY,∆Y
(F)

SL(F)
> δP (Y,∆Y ) > min

{
δP
(
F,∆F ;W

F
•,•

)
,

1

SL(F )

}
.

Further, if both these inequalities are equalities and C = P , then [1, 3, 16] gives δP (Y,∆Y ) =
1

SL(F )
.

Moreover, we know from the proof of Lemma 3.3 that SL(F ) =
1
2
. Hence, to complete the proof,

it is enough to show that δP (F,∆F ;W
F
•,•) > 1. Let us do this.

Note that (F,∆F ) is a log Fano pair. Recall from [3] that its δ-invariant is the number

δ(F,∆F ) = inf
f/F

AF,∆F
(f)

SF,∆F
(f)

,

where

SF,∆F

(
f
)
=

1

(KF +∆F )2

∞∫

0

vol
(
− (KF +∆F )− vf

)
dv,

and the infimum is taken over all prime divisors f over the surface F . We claim that δ(F,∆F ) > 1.
Indeed, either one can check this explicitly similar to what is done in [3, § 2], or one can use the fact
that the double cover of the surface F branched over the curve RF is a smooth del Pezzo of degree 6,
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which is known to be K-polystable, so (F,∆F ) is also K-polystable [15], which gives δ(F,∆F ) > 1.
Then, using the idea of the proof of [7, Nemuro Lemma], we get

SL
(
W F

•,•; f
)
=

3

L3

1∫

0

∞∫

0

vol
(
(L− uF )

∣∣
F
− vf

)
dvdu =

3

L3

1∫

0

∞∫

0

vol
(
L
∣∣
F
− vf

)
dvdu =

=
3

L3

∞∫

0

vol
(
L
∣∣
F
− vf

)
dv =

1

(KF +∆F )2

∞∫

0

vol
(
− (KF +∆F )− vf

)
dvdu 6 AF,∆F

(f)

for every divisor f over the surface F . This exactly means that δP (F,∆F ;W
F
•,•) > 1. �

Let RS = R|S and ∆S = 1
2
RS. Recall that S = {y1 = 0} and Z = {x1 = 0, y1 = 0} ⊂ S. Set

C = {y1 = 0, az1 = bz0} ⊂ Y.

Then Z and C are rulings of the surface S ∼= P1 × P1 such that P = Z ∩ C.

Lemma 3.6. Suppose that P 6∈ E. Then

(1) if C ⊂ S and C is a curve, then βY,∆Y
(F) > 0,

(2) if P 6∈ R, then δP (Y,∆Y ) > 1,
(3) if P ∈ R and RS is smooth at P , then δP (Y,∆Y ) > 1,
(4) if P ∈ R, RS is smooth at P , and C = P , then βY,∆Y

(F) > 0,
(5) if P ∈ R, RS is smooth at P , and Z 6⊂ Supp(RS), then δP (Y,∆Y ) > 1.

Proof. Let u be a non-negative real number. Then L− uS is pseudoeffective if and only if u 6 2.
For u ∈ [0, 2], let P (u) be the positive part of the Zariski decomposition of the divisor L−uS, and
let N(u) be the negative part of the Zariski decomposition of the divisor L− uS. Then

P (u) ∼R

{
F + E + (2− u)S for 0 6 u 6 1,

F + (2− u)(E + S) for 1 6 u 6 2,

and

N(u) =

{
0 for 0 6 u 6 1,

(u− 1)E for 1 6 u 6 2.

Observe that RS ∼ 2(Z + C) and

P (u)
∣∣
S
∼R

{
Z + C for 0 6 u 6 1,

Z + (2− u)C for 1 6 u 6 2.

Let G be an irreducible curve in S that passes though P . Take v ∈ R>0. Set

t(u) = inf
{
v ∈ R>0

∣∣ the divisor P (u)
∣∣
S
− vG is pseudoeffective

}
.

Since S ∼= P1 × P1, the divisor P (u)|S − vG is nef ⇐⇒ v 6 t(u). Set

SL
(
W S

•,•;G
)
=

3

L3

2∫

0

t(u)∫

0

(
P (u)

∣∣
S
− vG

)2
dvdu

and

SL
(
W S,G

•,•,•;P
)
=

3

L3

2∫

0

t(u)∫

0

((
P (u)|S − vG

)
·G
)2
dvdu.
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If G = C is a curve in S, it follows from [1, 3, 16] that

AY,∆Y
(F)

SL(F)
> min

{
1− ordC(∆S)

SL(W S
•,•;G)

,
1

SL(S)

}
.

Moreover, if this inequality is an equality, it further follows from [1, 3, 16] that

AY,∆Y
(F)

SL(F)
=

1

SL(S)
.

On the other hand, we know from the proof of Lemma 3.3 that SL(S) =
7
9
. Moreover, we have

SL
(
W S

•,•;G
)
6 min

{
SL
(
W S

•,•;Z
)
, SL
(
W S

•,•;C
)}
.

Therefore, to prove assertion (1), it is enough to check that SL(W
S
•,•;Z) 6

1
2
and SL(W

S
•,•;C) 6

1
2
.

This is not difficult. Indeed, if G = Z, then t(u) = 1 for every u ∈ [0, 2], and

SL(W
S
•,•;Z) =

1

3

1∫

0

1∫

0

2(1− v)dudu+
1

3

2∫

1

1∫

0

2(1− v)(2− u)dudu =
1

2
.

Similarly, if G = C, then

t(u) =

{
1 for 0 6 u 6 1,

2− u for 1 6 u 6 2,

and

SL(W
S
•,•;C) =

1

3

1∫

0

1∫

0

2(1− v)dudu+
1

3

2∫

1

2−u∫

0

2(2− u− v)dudu =
4

9
.

This proves (1).
Let G be one of the curves Z or C. If G 6⊂ Supp(RS), then it follows from [1, 3, 16] that

(3.2)
AY,∆Y

(F)

SL(F)
> δP (Y,∆Y ) > min

{
1− ordP (∆S|G)

SL(W
S,G
•,•,•;P )

,
1

SL(W S
•,•;G)

,
1

SL(S)

}
.

On the other hand, we compute

SL(W
S,G
•,•,•;P ) =





4

9
if G = Z,

1

2
if G = C.

If P 6∈ R, then Z 6⊂ Supp(RS) and C 6⊂ Supp(RS), so (3.2) gives δP (Y,∆Y ) >
9
7
. This proves (2).

Now, we suppose that P ∈ R and RS is smooth at P . Then Z 6⊂ Supp(RS) or C 6⊂ Supp(RS).
Moreover, if Z 6⊂ Supp(RS) and RS intersects Z transversally at P , then (3.2) gives δP (Y,∆Y ) >

9
8
.

Therefore, to prove (3), (4) and (5) we may assume that

• either Z is an irreducible component of the curve RS,
• or the curve RS is tangent to Z at the point P .

Then C is not an irreducible component of the curve RS, and RS intersects C transversally at P .
Hence, using (3.2), we obtain δP (Y,∆Y ) > 1. This proves (3).

We have βY,∆Y
(F) > 0. If C = P and βY,∆Y

(F) = 0, then both inequalities in (3.2) are equalities.
In this case, it follows from [1, 3, 16] that δP (Y,∆Y ) =

1
SL(S)

= 9
7
, which contradicts βY,∆Y

(F) 6 0.

Therefore, if C = P , then βY,∆Y
(F) > 0. This proves (4).

Finally, let us prove (5). We suppose that Z is not an irreducible component of the curve RS.

Then RS is tangent to the curve Z at the point P . Let α : S̃ → S be the blow up of the point P ,
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and let β : S → S̃ be the blow up of the intersection point of the α-exceptional curve and the proper
transform of the curve Z. Then there exists the following commutative diagram:

S̃

α

��

S
β

oo

γ
��

S Ŝρ
oo

where γ is the contraction of the proper transform of the α-exceptional curve to an ordinary double

point of the surface Ŝ, and ρ is the contraction of the proper transform of the β-exceptional curve.

Then Ŝ is a singular del Pezzo surface of degree 6, and ρ is a weighted blow up with weights (1, 2).

Denote by Ẑ, Ĉ, RŜ the proper transforms on Ŝ via ρ of the curves Z, C, RS, respectively.
Let e be the ρ-exceptional curve, and let

t̂(u) = inf
{
v ∈ R>0

∣∣ the divisor ρ∗
(
P (u)

∣∣
S

)
− ve is pseudoeffective

}
.

Observe that

ρ∗
(
P (u)

∣∣
S

)
− ve ∼R

{
Ẑ + Ĉ + (3− v)e for u ∈ [0, 1],

Ẑ + (2− u)Ĉ + (4− u− v)e for u ∈ [1, 2].

Thus, we conclude that

t̂(u) =

{
3 for u ∈ [0, 1],

4− u for u ∈ [1, 2].

Now, for every u ∈ [0, 2] and every v ∈ [0, t̂(u)], we let P̂ (u, v) be the positive part of the Zariski

decomposition of the divisor ρ∗(P (u)|S)− ve, and let N̂(u, v) be its negative part. Let

SL
(
W S

•,•; e
)
=

3

L3

2∫

0

t̂(u)∫

0

(
P̂ (u, v)

)2
dvdu.

For every point O ∈ e, let

S
(
W Ŝ,e

•,•,•;O
)
=

3

L3

2∫

0

t̂(u)∫

0

(
P̂ (u, v) · e

)2
dvdu+ FO

(
W Ŝ,e

•,•,•

)
,

where

FO
(
W Ŝ,e

•,•,•

)
=

6

L3

2∫

0

t̂(u)∫

0

(
P̂ (u, v) · e

)
· ordO

(
N̂(u, v)

∣∣
e

)
dvdu.

Let Q be the singular point of the surface Ŝ. Then Q = Ĉ∩e. Let ∆Ŝ = 1
2
RŜ and ∆e =

1
2
Q+∆Ŝ|e.

Then it follows from [1, 3, 16] that

(3.3) δP (Y,∆Y ) > min

{
min
O∈e

Ae,∆e
(O)

SL(W
Ŝ,e
•,•,•;O)

,
AS,∆S

(e)

SL(W S
•,•; e)

,
AY,∆Y

(S)

SL(S)

}
,
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where AY,∆Y
(S) = 1, AS,∆S

(e) = 2 Ae,∆e
(O) = 1− ordO(∆e). Moreover, if 0 6 u 6 1, then

P̂ (u, v) ∼R





Ẑ + Ĉ + (3− v)e if 0 6 v 6 1,

Ĉ +
3− v

2

(
Ẑ + 2e

)
if 1 6 v 6 2,

3− v

2

(
2Ĉ + Ẑ + 2e

)
if 2 6 v 6 3,

and

N̂(u, v) =





0 if 0 6 v 6 1,

v − 1

2
Ẑ if 1 6 v 6 2,

v − 1

2
Ẑ + (v − 2)Ĉ if 2 6 v 6 3,

which gives

(
P̂ (u, v)

)2
=





2−
v2

2
if 0 6 v 6 1,

5

2
− v if 1 6 v 6 2,

(3− v)2

2
if 2 6 v 6 3,

and

P̂ (u, v) · e =





v

2
if 0 6 v 6 1,

1

2
if 1 6 v 6 2,

3− v

2
if 2 6 v 6 3.

Similarly, if 1 6 u 6 2, then

P̂ (u, v) ∼R





Ẑ + (2− u)Ĉ + (4− u− v)e if 0 6 v 6 2− u,

4− u− v

2

(
Ẑ + 2e

)
+ (2− u)Ĉ if 2− u 6 v 6 2,

4− u− v

2

(
2Ĉ + Ẑ + 2e

)
if 2 6 v 6 4− u,

and

N̂(u, v) =





0 if 0 6 v 6 2− u,

v + u− 2

2
Ẑ if 2− u 6 v 6 2,

v + u− 2

2
Ẑ + (v − 2)Ĉ if 2 6 v 6 4− u,

which gives

(
P̂ (u, v)

)2
=





4− 2u−
v2

2
if 0 6 v 6 2− u,

(u− 2)(u+ 2v − 6)

2
if 2− u 6 v 6 2,

(4− u− v)2

2
if 2 6 v 6 4− u,
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and

P̂ (u, v) · e =





v

2
if 0 6 v 6 2− u,

1−
u

2
if 2− u 6 v 6 2,

4− u− v

2
if 2 6 v 6 4− u.

Now, integrating, we get SL(W
S
•,•; e) =

13
9
< 2 = AS,∆S

(e) and

SL
(
W Ŝ,e

•,•,•;O
)
=





3

16
if O 6∈ Ẑ ∪ Ĉ,

2

9
if O ∈ Ĉ,

1

2
if O ∈ Ẑ.

Hence, using (3.3), we obtain δP (Y,∆Y ) > 1 as required. �

Now, we are ready to prove

Lemma 3.7. Suppose that βY,∆Y
(F) 6 0. Then C is a point.

Proof. Suppose C is not a point. By Lemma 3.3, the center C is not a surface. Then C is a curve.
We may assume that P is a general point in C. By Lemma 3.4, we have C 6⊂ E, so P 6∈ E either.

If ψ(C) = P1
y0,y1

, then S is a general fiber of the morphism ψ, which implies that RS is smooth, so
that Z 6⊂ R by Lemma 3.2. Then δP (Y,∆Y ) > 1 by Lemma 3.6, which contradicts βY,∆Y

(F) 6 0.
Thus, we see that ψ(C) is point in P1

y0,y1
. This means that C ⊂ S.

Now, applying Lemma 3.6, we get βY,∆Y
(F) > 0, which is a contradiction. �

Now, we suppose that βY,∆Y
(F) 6 0. Let us seek for a contradiction. First, applying Lemma 3.7,

we see that the center C = CY (F) is a point. Using notations we introduced earlier, we have P = C.
Moreover, applying Lemmas 3.2, 3.4, 3.5, 3.6, we obtain the following assertions:

• P 6∈ E by Lemma 3.4,
• RF is singular by Lemma 3.5,
• P ∈ R by Lemma 3.6,
• RS is singular at P by Lemma 3.6,
• RF is smooth at P by Lemma 3.2,
• Z ⊂ R by Lemma 3.6.

In particular, the curve RS is reducible. Namely, we have RS = Z + T , where T is a possibly
reducible reduced curve in |Z + 2C| such that P ∈ T .

Lemma 3.8. The curve RS does not have an ordinary double singularity at P .

Proof. Suppose that RS has an ordinary double singularity at P . Let us seek for a contradiction.
Let us use notations introduced in the proof of Lemma 3.6. Then we have

P (u)
∣∣
S
∼R

{
C + Z for 0 6 u 6 1,

(2− u)C + Z for 1 6 u 6 2.

Let α : S̃ → S be the blow up of the point P , let e be the α-exceptional curve. For u ∈ [0, 2], let

t̃(u) = max
{
v ∈ R>0

∣∣ α∗
(
P (u)|S

)
− ve is pseudoeffective

}
.
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For v ∈ [0, t̃(u)], let P̃ (u, v) be the positive part of the Zariski decomposition of α∗(P (u)|S)− ve,

and let Ñ(u, v) be the negative part of the Zariski decomposition of this divisor. Set

S
(
W S

•,•; e
)
=

3

L3

2∫

0

t̃(u)∫

0

P̃ (u, v)2dvdu.

Then, for every point O ∈ e, we set

S
(
W S̃,e

•,•,•;O
)
=

3

L3

2∫

0

t̃(u)∫

0

(
P̃ (u, v) · e

)2
dvdu+ FO

(
W S̃,e

•,•,•

)
,

where

FO
(
W S̃,e

•,•,•

)
=

6

L3

2∫

0

t̃(u)∫

0

(
P̃ (u, v) · e

)
· ordO

(
Ñ(u, v)

∣∣
e

)
dvdu.

Let C̃, Z̃, T̃ be the proper transforms on S̃ of the curves C, Z, T , respectively. Set ∆S̃ = 1
2
Z̃+ 1

2
T̃ .

Then Z̃ and T̃ intersect e transversally at two distinct points, since T and Z do not tangent at P .
Set ∆e = ∆S̃|e. Then it follows from [1, 3, 16] that

1 >
AY,∆Y

(F)

SL(F)
> δP (Y,∆Y ) > min

{
min
O∈e

Ae,∆e
(O)

S(W S̃,e
•,•,•;O)

,
AS,∆S

(e)

S(W S
•,•; e)

,
AY,∆Y

(S)

SL(S)

}
,

and not all inequalities here are equalities. Note that AY,∆Y
(S) = 1, AS,∆S

(e) = 1, and

Ae,∆e
(O) = 1− ordO(∆e) =





1

2
if O = Z̃ ∩ e,

1

2
if O = T̃ ∩ e,

1 if O 6∈ Z̃ ∪ T̃ .

Since SL(S) =
7
9
, we conclude that S(W S

•,•; e) > 1 or there exists a point O ∈ e such that

S
(
W S̃,e

•,•,•;O
)
> 1− ordO

(
∆e

)
.

Let us compute S(W S
•,•; e), and let us compute S(W S̃,e

•,•,•;O) for every point O ∈ e.
Let v be a non-negative real number. Then

α∗
(
P (u)|S

)
− ve ∼R

{
C̃ + Z̃ + (2− v)e for 0 6 u 6 1,

(2− u)C̃ + Z̃ + (3− u− v)e for 1 6 u 6 2.

Since Z̃ and C̃ are disjoint (−1)-curves in S̃, we have

t̃(u) =

{
2 for 0 6 u 6 1,

3− u for 1 6 u 6 2.

Furthermore, if 0 6 u 6 1, then

P̃ (u, v) ∼R

{
C̃ + Z̃ + (2− v)e for 0 6 v 6 1,

(2− v)
(
C̃ + Z̃ + e

)
for 1 6 v 6 2,
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and

Ñ(u, v) =

{
0 for 0 6 v 6 1,

(v − 1)
(
C̃ + Z̃

)
for 1 6 v 6 2,

which gives

(
P̃ (u, v)

)2
=

{
2− v2 for 0 6 v 6 1,

(2− v)2 for 1 6 v 6 2,

and

P̃ (u, v) · e =

{
v for 0 6 v 6 1,

2− v for 1 6 v 6 2.

Similarly, if 1 6 u 6 2, then

P̃ (u, v) ∼R





(2− u)C̃ + Z̃ + (3− u− v)e for 0 6 v 6 2− u,

(2− u)C̃ + (3− u− v)
(
Z̃ + e

)
for 2− u 6 v 6 1,

(3− u− v)
(
C̃ + Z̃ + e

)
for 1 6 v 6 3− u,

and

Ñ(u, v) =





0 for 0 6 v 6 2− u,

(v + u− 2)Z̃ for 2− u 6 v 6 1,

(v + u− 2)Z̃ + (v − 1)C̃ for 1 6 v 6 3− u,

which gives

(
P̃ (u, v)

)2
=





4− 2u− v2 for 0 6 v 6 2− u,

(2− u)(4− u− 2v) for 2− u 6 v 6 1,

(3− u− v)2 for 1 6 v 6 3− u,

and

P̃ (u, v) · e =





v for 0 6 v 6 2− u,

2− u for 2− u 6 v 6 1,

3− u− v for 1 6 v 6 3− u.

Therefore, integrating, we get S(W S̃
•,•; e) =

17
18
< 1 and

S
(
W S̃,e

•,•,•;O
)
=

11

36
+ FO

(
W S̃,e

•,•,•

)
=





11

36
if O 6∈ C̃ ∪ Z̃

4

9
if O ∈ C̃,

1

2
if O ∈ Z̃,

which gives S(W S̃,e
•,•,•;O) 6 1− ordO(∆e) for every point O ∈ e. This is a contradiction. �

Now, using Lemma 3.8, we see that one of the following two remaining cases occurs:

(A3) RS = Z + T , where T is a smooth curve in |Z + 2C| that is tangent to Z at the point P ,
(D4) RS = Z + T = Z + C + T ′, where T ′ is a smooth curve in |Z + C| such that P ∈ T ′.

This imposes certain constraints on the equation (3.1), which can be listed as follows:

• a0 = 0, since P = ([1 : 0], [1 : 0; 1 : 0]) ∈ R,
• a1 = 0 and d0 = 0, since RS is singular at P ,
• f0 = 0 and d0 = 0, since Z ⊂ R,
• d1 = 0, since RS does not have ordinary double point at P .
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Changing coordinates on Y , we can simplified (3.1) a bit more. First, we may assume that b0 = 1,
since R is smooth at P . Second, we have R∩E = {z0 = 0, x1(f2x0+f1x1) = 0}, but R∩E is smooth.
Hence, we can change the coordinate x0 such that f2 = 0 and f1 = 1. This simplifies (3.1) as

(3.4) x20
(
(c0y

2
1 + y0y1)z

2
0 + e0y1z0z1

)
+

+ x0x1
(
(b1y0y1 + c1y

2
1)z

2
0 + e1y1z0z1 + z21

)
+

+ x21
(
(a2y

2
0 + b2y0y1 + c2y

2
1)z

2
0 + (d2y0 + e2y1)z0z1

)
= 0.

Recall that S = {y1 = 0} ⊂ Y , so we can identify S = P1×P1 with coordinates ([x0 : x1], [z0 : z1]).
Using this identification, we see that Z = {x1 = 0} ⊂ S, C = {z1 = 0} ⊂ S, and

T =
{
a2x1z

2
0 + d2x1z0z1 + x0z

2
1 = 0

}
⊂ S.

that T is irreducible ⇐⇒ a2 6= 0. Further, if a2 = 0, then T = C + T ′ for T ′ = {d2sx+ ty = 0},
where d2 6= 0, since RS is reduced. Thus, the cases (A3) and (D4) can be described as follows:

(A3) a2 6= 0,
(D4) a2 = 0 and d2 6= 0.

We will exclude the remaining cases (D4) and (A3) in Sections 3.2 and 3.3, respectively.

3.2. Exclusion of the case (D4). Let us continue the proof of Theorem 3.1 started in Section 3.1.
Now, we assume that the surface R is given by (3.4) and we have a2 = 0, i.e. we are in the case (D4).
In the chart A3

x,y,z = {x0y0z0 6= 0} with coordinates x = x1
x0
, y = y1

y0
, z = z1

z0
, we have P = (0, 0, 0),

and the surface R is given by the following equation:

y + xz2 + d2x
2z +

(
b1xy + e0yz + b2x

2y + e1xyz + e2x
2yz + c0y

2 + c1xy
2 + c2x

2y2
)
= 0,

where y+xz2+ d2x
2z is the smallest degree term for the weights wt(x) = 1, wt(y) = 3, wt(z) = 1.

Let λ : W0 → Y be the corresponding weighted blow up of the point P with weights (1, 3, 1), and
let G be the λ-exceptional surface. Then G ∼= P(1, 3, 1).

Let RW0
, FW0

and SW0
be the proper transforms on Y of the surfaces R, S and F , respectively.

Set RG = RW0
|G, ∆G = 1

2
RG and ∆W0

= 1
2
RW0

. Note that
(
KW0

+∆W0
+G

)∣∣
G
∼Q KG +∆G.

Let us also consider (x, y, z) as coordinates on G ∼= P(1, 3, 1) with wt(x) = 1, wt(y) = 3, wt(z) = 1.
Then FW0

|G = {x = 0}, SW0
|G = {y = 0}, and

RG =
{
y + xz2 + d2x

2z = 0
}
⊂ R.

Recall from the end of Section 3.1 that d2 6= 0. Since ordG(R) = 3, we have AY,∆Y
(G) = 7

2
. Then

δP (Y,∆Y ) 6
AY,∆Y

(G)

SL(G)
=

7

2SL(G)
,

where

SL(G) =
1

L3

∞∫

0

vol
(
λ∗(L)− uG

)
du.

Let us compute SL(G). To do this, note that Y is toric, and the blow up λ : W0 → Y is also toric
for the torus action on Y with an open orbit {x0y0z0x1y1z1 6= 0} ⊂ Y , so the threefold W0 is toric,
and G is a torus invariant divisor. Let us present toric data for the threefolds Y and W0.

Let ΣY be the simplicial fan in R3 defined by the following data:

• the list of primitive generators of rays of ΣY is

v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0), v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);
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• the list of maximal cones of ΣY is

[1, 2, 3], [1, 3, 4], [1, 4, 5], [1, 2, 5], [2, 3, 6], [3, 4, 6], [4, 5, 6], [2, 5, 6],

where [i, j, k] is the cone generated by the rays vi, vj , and vk.

Then Y is defined by ΣY . Let ΣW0
be the simplicial fan in R3 defined by the following data:

• the list of primitive generators of rays in ΣW0
is

v0 = (1, 3,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);

• the list of maximal cones in ΣW0
is

[0, 1, 3], [0, 1, 4], [0, 3, 4], [1, 2, 3], [1, 2, 5], [1, 4, 5], [2, 3, 6], [2, 5, 6], [3, 4, 6], [4, 5, 6].

Then the toric threefold W0 is given by the fan ΣW0
, which can be diagramed as follows:

v0

v1

v2

v3
v4

v5

v6

Let us compute SL(G). Let PL be the convex polytope in the dual space of R3 associated to L.
Then, since L corresponds to the lattice point (1, 2, 1), we have

PL =
{
x1 > −1, x3 > −1, x2 > −2,−x3 > 0,−x2 + x3 > 0,−x1 > 0

}
.

Thus, since G corresponds to v0 = (1, 3,−1), it follows from [5, Corollary 7.7] that

SL(G) = − min
v∈PL∩Z

3

v · (1, 3,−1) +
3!

L3

∫∫∫

PL

(x1, x2, x3) · (1, 3,−1)dx1dx2dx3 =
59

18
.

where · is the standard inner product in R3. Consequently, we obtain
AY,∆Y

(G)

SL(G)
= 63

58

Now, let us exclude the case (D4) using the results obtained in [1, 3, 16]. To do this, we must
find the Zariski decomposition of the divisor λ∗(L)− uG for every u ∈ R>0. First, let us compute
intersections of torus invariant divisors in W0. Let Ti be the torus invariant divisor corresponding
to the ray vi. Then T0 = G, and it follows from [10, §6.4] that

(3.5) TiTjTk =





1

|[i, j, k]|
if [i, j, k] belongs to the list of maximal cones in ΣW0

0 otherwise,

where |[i, j, k]| stands for the absolute value of the determinant of the 3×3 matrix given by vi, vj, vk.
This gives T0T1T4 =

1
3
and

T0T1T3 = T0T3T4 = T1T2T3 = T1T4T5 = T1T2T5 = T2T3T6 = T3T4T6 = T4T5T6 = T2T5T6 = 1,
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while all other TiTjTk = 0 with distinct indices i, j, k. The characters χ1, χ2, χ3 corresponding
to the lattice points (1, 0, 0), (0, 1, 0), (0, 0, 1) in the dual lattice generate the following relations
among the torus invariant divisors:

(3.6)

0 ∼ div(χ1) = T0 + T1 − T6,

0 ∼ div(χ2) = 3T0 + T3 − T5,

0 ∼ div(χ3) = −T0 + T2 − T4 + T5.

Now, using these relations, we can determine the intersection numbers T 2
i Tj for i 6= j. For instance,

we have T 2
3 T6 = (T5 − 3T0)T3T6 = 0 and T 2

2 T6 = (T0 + T4 − T5)T2T6 = −1.
For all possible indices i 6= j, let us denote by TiTj the torus invariant curve that is given by

the intersection of the divisors Ti and Tj provided that Ti ∩ Tj 6= ∅. Note that

Ti ∩ Tj 6= ∅ ⇐⇒ the 2-dimensional cone generated by vi and vj belongs to the fan ΣW0
.

If Ti ∩ Tj 6= ∅, then TiTj is not necessarily reduced, but its support coincides with the torus
invariant curve that corresponds to the 2-dimensional cone generated by the rays vi and vj , which
we will denote by ⌊TiTj⌋.

Let u be a non-negative real number. For simplicity, set Lu = λ∗(L)− uT0. Then

Lu = (7− u)T0 + T1 + T2 + 2T3.

Now, we can compute the intersection of the R-divisor Lu with each torus invariant curve in W0.
For instance we have

LuT0T1 = ((7− u)T0 + T1 + T2 + 2T3)T0T1 = (7− u)T 2
0 T1 + T0T

2
1 + T0T1T2 + 2T0T1T3 =

u

3
,

LuT0T3 = ((7− u)T0 + T1 + T2 + 2T3)T0T3 = (7− u)T 2
0 T3 + T0T1T3 + T0T2T3 + 2T0T

2
3 = u,

LuT0T4 = ((7− u)T0 + T1 + T2 + 2T3)T0T4 = (7− u)T 2
0 T4 + T0T1T4 + T0T2T4 + 2T0T3T4 =

u

3
.

Similarly, we compute

LuT1T2 = 1, LuT1T3 = 1− u, LuT1T4 =
6− u

3
, LuT1T5 = 1, LuT2T3 = 1, LuT2T5 = 1,

LuT2T6 = 1, LuT3T4 = 1− u, LuT3T6 = 1, LuT4T5 = 1, LuT4T6 = 2, LuT5T6 = 1.

Therefore, we see that Lu is nef for 0 6 u 6 1.
To find Zariski decomposition of the divisor Lu for small u > 1, we must perform a small

birational map W0 99KW1 along the two torus invariant curves ⌊T1T3⌋ and ⌊T3T4⌋, because these
are the only curves that intersect Lu negatively for small u > 1. The corresponding change of fans
can be diagramed as follows:

v0

v1

v2

v3
v4

v5

v6

v0

v1

v2

v3
v4

v5

v6

The toric 3-fold W1 is defined by the simplicial fan ΣW1
in R3 determined by the following data:
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• the list of primitive generators of rays of ΣW1
is

v0 = (1, 3,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);

• the list of maximal cones of ΣW1
is

[0, 1, 2], [0, 2, 3], [0, 3, 6], [0, 4, 6], [0, 1, 4], [1, 4, 5], [1, 2, 5], [2, 3, 6], [4, 5, 6], [2, 5, 6].

On the 3-fold W1, we use the same notations for the transformed Lu, the torus invariant divisors
and curves as on W0. Since the formula (3.5) is valid on W1, we get

T0T1T2 = T0T1T4 = T0T4T6 =
1

3
,

T0T2T3 = T0T3T6 = T1T4T5 = T1T2T5 = T2T3T6 = T4T5T6 = T2T5T6 = 1,

and all other TiTjTk = 0 with distinct indices i, j, k. Since we have the same list of primitive
generators of rays as on ΣW0

, the relations (3.6) are valid on W1. This gives

LuT0T1 =
1

3
, LuT0T2 =

u− 1

3
, LuT0T3 = 2− u, LuT0T4 =

1

3
, LuT0T6 =

u− 1

3
,

LuT1T2 =
4− u

3
, LuT1T4 =

6− u

3
, LuT1T5 = 1, LuT2T3 = 2− u, LuT2T5 = 1,

LuT2T6 = 1, LuT3T6 = 2− u, LuT4T5 = 1, LuT4T6 =
7− u

3
, LuT5T6 = 1.

Therefore, the divisor Lu is nef for 1 6 u 6 2.
The unique torus invariant surface T3 that contains ⌊T0T3⌋, ⌊T2T3⌋, ⌊T3T6⌋ is of Picard rank 1.

Since (Lu − aT3)T0T3 = 2 − u + 3a for any non-negative real number a, the Nakayama–Zariski
decomposition Lu = P (u) +N(u) for u > 2 on the 3-fold W1 must satisfy

N(u) >
u− 2

3
T3,

where P (u) is the positive part of the decomposition, and N(u) is the negative part. Set

P 1
u = Lu −

u− 2

3
T3 = (7− u)T0 + T1 + T2 +

8− u

3
T3.

Then

P 1
uT0T1 =

1

3
, P 1

uT0T2 =
1

3
, P 1

uT0T3 = 0, P 1
uT0T4 =

1

3
, P 1

uT0T6 =
1

3
,

P 1
uT1T2 =

4− u

3
, P 1

uT1T4 =
6− u

3
, P 1

uT1T5 = 1, P 1
uT2T3 = 0, P 1

uT2T5 = 1,

P 1
uT2T6 =

5− u

3
, P 1

uT3T6 = 0, P 1
uT4T5 = 1, P 1

uT4T6 =
7− u

3
, P 1

uT5T6 = 1.

Therefore, if 2 6 u 6 4, then P 1
u is nef, and hence Lu = P 1

u + u−2
3
T3 is the Zariski decomposition,

i.e. P 1
u is the positive part, and u−2

3
T3 is the negative part.

For small enough u > 4, the curve ⌊T1T2⌋ is the only curve in W1 that intersects P 1
u negatively.

LetW1 99KW2 be the small birational map of this curve. Then the change of fans can be diagramed
as follows:
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v0

v1

v2

v3
v4

v5

v6

v0

v1

v2

v3
v4

v5

v6

The toric 3-fold W2 is defined by the simplicial fan ΣW2
in R3 determined by the following data:

• the list of primitive generators of rays of ΣW2
is

v0 = (1, 3,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);

• the list of maximal cones of ΣW2
is

[0, 1, 5], [0, 2, 5], [0, 2, 3], [0, 3, 6], [0, 4, 6], [0, 1, 4], [1, 4, 5], [2, 3, 6], [4, 5, 6], [2, 5, 6].

As before, we keep the same notations for the transformed Lu and P
1
u , the torus invariant divisors

and curves on W2. It follows from (3.5) that

T0T4T6 = T0T1T4 =
1

3
,

T0T1T5 =
1

2
,

T0T2T5 = T0T2T3 = T0T3T6 = T1T4T5 = T2T3T6 = T4T5T6 = T2T5T6 = 1,

and all other TiTjTk = 0 with distinct i, j, k. We have

P 1
u = (7− u)T0 + T1 + T2 +

8− u

3
T3,

and we compute

P 1
uT0T1 =

6− u

6
, P 1

uT0T2 =
5− u

3
, P 1

uT0T3 = 0, P 1
uT0T4 =

1

3
, P 1

uT0T5 =
u− 4

2
,

P 1
uT0T6 =

1

3
, P 1

uT1T4 =
6− u

3
, P 1

uT1T5 =
6− u

2
, P 1

uT2T3 = 0, P 1
uT2T5 = 5− u,

P 1
uT2T6 =

5− u

3
, P 1

uT3T6 = 0, P 1
uT4T5 = 1, P 1

uT4T6 =
7− u

3
, P 1

uT5T6 = 1.

Hence, if u ∈ [4, 5], then P 1
u is nef onW2, so Lu = P 1

u+
u−2
3
T3 is the required Zariski decomposition.

Observe that T2 is the unique torus invariant surface that contains the curves T0T2, T2T5, T2T6,
and T0T2 is nef on T2, since (T0|T2)

2 = T 2
0 T2 = 0. For non-negative real numbers a and b, we have

(P 1
u − aT2 − bT3)T0T2 =

5− u

3
+ a− b,

(P 1
u − aT2 − bT3)T0T3 = −a + 3b.

These intersections are non-negative for a > u−5
2

and b > u−5
6
. Therefore, the Nakayama-Zariski

decomposition Lu = P (u) +N(u) on W2 satisfies

N(u) >
u− 2

3
T3 +

(
u− 5

2
T2 +

u− 5

6
T3

)
=
u− 5

2
T2 +

u− 3

2
T3,
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where P (u) stands for the positive part, and N(u) stands for the negative part. Put

P 2
u = P 1

u −

(
u− 5

2
T2 +

u− 5

6
T3

)
.

Then

P 2
uT0T1 =

6− u

6
, P 2

uT0T2 = 0, P 2
uT0T3 = 0, P 2

uT0T4 =
1

3
, P 2

uT0T5 =
1

2
,

P 2
uT0T6 =

7− u

6
, P 2

uT1T4 =
6− u

3
, P 2

uT1T5 =
6− u

2
, P 2

uT2T3 = 0, P 2
uT2T5 = 0,

P 2
uT2T6 = 0, P 2

uT3T6 = 0, P 2
uT4T5 = 1, P 2

uT4T6 =
7− u

3
, P 2

uT5T6 =
7− u

2
.

Hence, the divisor P 2
u is nef for u ∈ [5, 6], which implies that P (u) = P 2

u and

N(u) =
u− 5

2
T2 +

u− 3

2
T3.

This gives the Zariski decomposition of the divisor Lu on the 3-fold W2 for u ∈ [5, 6].
The surface T1 is the unique torus invariant surface that contains the curves T0T1, T1T4, T1T5,

it has Picard rank 1, and it is disjoint from T2 and T3. But

(P 2
u − aT1)T0T1 =

6− u

6
+
a

6
.

Therefore, the Nakayama-Zariski decomposition Lu = P (u) +N(u) on W2 for u > 6 satisfies

N(u) > (u− 6)T1 +
u− 5

2
T2 +

u− 3

2
T3,

where P (u) is the positive part, and N(u) is the negative part. Set P 3
u = P 2

u − (u− 6)T1. Then

P 3
uT0T1 = 0, P 3

uT0T2 = 0, P 3
uT0T3 = 0, P 3

uT0T4 =
7− u

3
, P 3

uT0T5 =
7− u

2
,

P 3
uT0T6 =

7− u

6
, P 3

uT1T4 = 0, P 3
uT1T5 = 0, P 3

uT2T3 = 0, P 3
uT2T5 = 0,

P 3
uT2T6 = 0, P 3

uT3T6 = 0, P 3
uT4T5 = 7− u, P 3

uT4T6 =
7− u

3
, P 3

uT5T6 =
7− u

2
.

Then P (u) = P 3
u is the positive part of the Zariski decomposition of Lu on W2 for u ∈ [6, 7], and

the negative part is

N(u) = (u− 6)T1 +
u− 5

2
T2 +

u− 3

2
T3.

If u > 7, then Lu is not pseudoeffective.

Remark 3.9. The toric varieties W0, W1, W2 are projective. Indeed, the variety W0 is obtained by
taking a weighted blowup of a projective variety. On W1, the transformed L 3

2

is an ample divisor.

On W2, we can obtain an ample divisor from P 1
9

2

+ 1
m
T2 by taking sufficiently large integer m.

To apply [1, 3, 16], we must consider a common partial resolution of the 3-folds W0, W1, W2.

Namely, let W̃ be the toric 3-fold defined by the simplicial fan ΣW̃ in R3 given by

• the list of primitive generators of rays of ΣW̃ is

v0 = (1, 3,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0), v4 = (0, 0,−1), v5 = (0,−1, 1),

v6 = (−1, 0, 0), v7 = (0, 3,−1), v8 = (1, 3, 0), v9 = (1, 2, 0), v10 = (1, 0, 2);
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• the list of maximal cones of ΣW̃ is

[0, 1, 4], [0, 1, 9], [0, 3, 7], [0, 3, 8], [0, 4, 7], [0, 8, 9], [1, 4, 5], [1, 5, 10], [1, 9, 10],

[2, 3, 6], [2, 3, 8], [2, 5, 6], [2, 5, 10], [2, 8, 10], [3, 6, 7], [4, 5, 6], [4, 6, 7], [8, 9, 10].

The fan ΣW̃ can be diagramed as follows:

v1

v2

v3

v4

v5

v6

v7

v8
v0

v9

v10

v5

Then there exists the following commutative diagram:

W̃
ζ0

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

ζ2

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

ζ1
��

W0
//❴❴❴❴❴❴

λ
��

W1
//❴❴❴❴❴❴ W2

Y

where ζ0, ζ1 and ζ2 are toric birational morphisms.

Let us denote by T̃i the torus invariant divisor on W̃ corresponding to the ray vi in the fan ΣW̃ .
Then the formula (3.5) implies that

(3.7)

T̃1T̃9T̃10 =
1

4
,

T̃0T̃1T̃4 = T̃0T̃4T̃7 = T̃2T̃8T̃10 = T̃4T̃6T̃7 =
1

3
,

T̃0T̃1T̃9 = T̃1T̃5T̃10 = T̃8T̃9T̃10 =
1

2
,

T̃0T̃3T̃7 = T̃0T̃3T̃8 = T̃0T̃8T̃9 = T̃1T̃4T̃5 = T̃2T̃3T̃6 = 1,

T̃2T̃3T̃8 = T̃2T̃5T̃6 = T̃2T̃5T̃10 = T̃3T̃6T̃7 = T̃4T̃5T̃6 = 1,
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and other T̃iT̃jT̃k with distinct indices i, j, k are 0. Further, the characters χ1, χ2, χ3 corresponding
to the lattice points (1, 0, 0), (0, 1, 0), (0, 0, 1) in the dual lattice yield the following relations:

(3.8)

0 ∼ div(χ1) = T̃0 + T̃1 − T̃6 + T̃8 + T̃9 + T̃10,

0 ∼ div(χ2) = 3T̃0 + T̃3 − T̃5 + 3T̃7 + 3T̃8 + 2T̃9,

0 ∼ div(χ3) = −T̃0 + T̃2 − T̃4 + T̃5 − T̃7 + 2T̃10.

Moreover, we have

ζ∗0 (T0) = T̃0, ζ∗0 (T1) = T̃1 + T̃8 + T̃9 + T̃10,

ζ∗0 (T2) = T̃2 + 2T̃10, ζ∗0 (T3) = T̃3 + 3T̃7 + 3T̃8 + 2T̃9,

ζ∗1 (T0) = T̃0 + T̃7 + T̃8 +
2
3
T̃9, ζ∗1 (T1) = T̃1 +

1
3
T̃9 + T̃10,

ζ∗1 (T2) = T̃2 + T̃8 +
2
3
T̃9 + 2T̃10, ζ∗1 (T3) = T̃3,

ζ∗2 (T0) = T̃0 + T̃7 + T̃8 + T̃9 + T̃10, ζ∗2 (T1) = T̃1,

ζ∗2 (T2) = T̃2 + T̃8, ζ∗2 (T3) = T̃3.

Let us briefly explain how we get these expressions. For instance, the divisor T0 on W0 does not

contain centers of ζ0-exceptional surfaces, so ζ
∗

0 (T0) = T̃0. Similarly, the divisor T0 on W2 contains

centers of the following ζ2-exceptional divisors: T̃7, T̃8, T̃9, T̃10, which implies that

ζ∗2 (T0) = T̃0 + a7T̃7 + a8T̃8 + a9T̃9 + a10T̃10

for some positive rational numbers a7, a8, a9, a10. Then we obtain

0 =
(
T̃0 + a7T̃7 + a8T̃8 + a9T̃9 + a10T̃10

)
T̃3T̃7 = 1− a7,

0 =
(
T̃0 + a7T̃7 + a8T̃8 + a9T̃9 + a10T̃10

)
T̃3T̃8 = 1− a8,

0 =
(
T̃0 + a7T̃7 + a8T̃8 + a9T̃9 + a10T̃10

)
T̃8T̃10 = −

1

3
a8 +

1

2
a9 −

1

6
a10,

0 =
(
T̃0 + a7T̃7 + a8T̃8 + a9T̃9 + a10T̃10

)
T̃1T̃10 =

1

4
a8 −

1

4
a10,

which gives a7 = a8 = a9 = a10 = 1. Here, all intersections are derived from (3.7) and (3.8).

For every u ∈ [0, 7], the Zariski decomposition of the divisor ζ∗0 (Lu) exists on the 3-fold W̃ .
Let PW̃ (u) and NW̃ (u) be its positive and negative parts, respectively. Then their expressions as

linear combinations of the torus invariant divisors on W̃ are given in Table 1.
We now consider the toric surface T̃0. Its fan is the image of the fan ΣW̃ under the quotient lattice

homomorphism Z3 → Z3/Zv0 ∼= Z2. We may assume that v1 7→ w1 = (1, 0) and v3 7→ w4 = (0, 1),
which determines the quotient homomorphism. Then the list of primitive generators of the rays
in the fan consists of

w1 = (1, 0), w2 = (1, 2), w3 = (1, 3), w4 = (0, 1), w5 = (−1, 0), w6 = (−1,−3).

Let ζ be the restriction morphism ζ0|T̃0 : T̃0 → T0. Then ζ contracts the torus invariant curves

defined by w5, w3, w2, since ζ0 contracts ⌊T̃0T̃7⌋, ⌊T̃0T̃8⌋, ⌊T̃0T̃9⌋. This can be illustrated as follows.
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w3

w4

w2

w1

w6

w5

w4

w1

w6

ζ

T̃0 T0

Let α1, . . . , α6 be the torus invariant curves in T̃0 defined by the rays w1, . . . , w6, respectively.
Set α1 = ζ(α1), α4 = ζ(α4), α6 = ζ(α6). Note that α1+α2+α3 = α5+α6 and 2α2+3α3+α4 = 3α6.
With these relations, [10, §6.4] yields the following intersection matrix:

A := (αiαj) =




−1
6

1
2

0 0 0 1
3

1
2

−3
2

1 0 0 0

0 1 −1 1 0 0

0 0 1 −3 1 0

0 0 0 1 −1
3

1
3

1
3

0 0 0 1
3

0




.

It follows from [10, Lemma 12.5.2] that

T̃1
∣∣
T̃0

= α1, T̃3
∣∣
T̃0

= α4, T̃4
∣∣
T̃0

= α6, T̃7
∣∣
T̃0

= α5, T̃8
∣∣
T̃0

= α3, T̃9
∣∣
T̃0

= α2.

Moreover, (3.8) implies

T̃0
∣∣
T̃0

= −
(
T̃1 − T̃6 + T̃8 + T̃9 + T̃10

)∣∣
T̃0

= −
(
α1 + α2 + α3

)
.

Set P̃ (u) = PW̃ (u)|T̃0 and Ñ(u) = NW̃ (u)|T̃0. Then we can express P̃ (u) and Ñ(u) as linear
combinations of the curves α1, α2, α3, α4, α5, α6. These expressions are presented in Table 2.

We are ready to apply [1, 3, 16] to estimate δP (Y,∆Y ) from below. Let Q be a point in G = T0,

let C be a smooth curve in G such that Q ∈ C 6⊂ ∆G, and let C̃ be its proper transform on T̃0.

Then ζ induces an isomorphism C̃ ∼= C. For every u ∈ [0, 7], let

t(u) = inf
{
v ∈ R>0

∣∣ P̃ (u)− vC is pseudoeffective
}
.

For every v ∈ [0, t(u)], let P (u, v) be the positive part of the Zariski decomposition of P̃ (u)− vC,
and let N(u, v) be its negative part. Set

SL
(
WG

•,•;C
)
=

3

L3

7∫

0

(
P̃ (u)

)2
ordC

(
Ñ(u)

)
du+

3

L3

7∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.

Now, we write ζ∗(C) = C̃ + Σ for an effective R-divisor Σ on the surface T̃0. For every u ∈ [0, 7],

write Ñ(u) = d(u)C +N ′(u), where d(u) = ordC(Ñ(u)), and N ′(u) is an effective R-divisor on T̃0.
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Now, as in [15, Definition 4.16], we set

FQ
(
WG,C

•,•,•

)
=

6

L3

7∫

0

t(u)∫

0

(
P (u, v) · C̃

)
· ordQ

((
N ′(u) +N(u, v)− (v + d(u))Σ

)∣∣
C̃

)
dvdu,

where we consider Q as a point in C̃ using the isomorphism C̃ ∼= C induced by ζ . Finally, we set

S
(
WG,C

•,•,•;Q
)
=

3

L3

7∫

0

t(u)∫

0

(
P (u, v) · C̃

)2
dvdu+ FQ

(
WG,C

•,•,•

)
.

We have (KG +C +∆G)|C ∼R KC +∆C for an effective divisor ∆C known as the different [23],
which can be computed locally near any point in C. Using [16, Corollary 4.18], we obtain

δP (Y,∆Y ) > min

{
AY,∆Y

(G)

SL(G)
, inf
Q∈G

min

{
AG,∆G

(C)

SL(WG
•,•;C)

,
AC,∆C

(Q)

S(WG,C
•,•,•;Q)

}}
,

where AG,∆G
(C) = 1, because C 6⊂ ∆G by assumption. On the other hand, we assumed that there

exists a prime divisor F over Y such that βY,∆Y
(F) 6 0. Moreover, we proved that CY (F) = P , so

1 >
AY,∆Y

(F)

SL(F)
> δP (Y,∆Y ) > min

{
AY,∆Y

(G)

SL(G)
, inf
Q∈G

min

{
AG,∆G

(C)

SL(WG
•,•;C)

,
AC,∆C

(Q)

S(WG,C
•,•,•;Q)

}}
.

Therefore, since
AY,∆Y

(G)

SL(G)
= 63

58
, it follows from [16, Corollary 4.18] and [1, Theorem 3.3] that

inf
Q∈G

min

{
AG,∆G

(C)

SL(WG
•,•;C)

,
AC,∆C

(Q)

S(WG,C
•,•,•;Q)

}
< 1.

Therefore, to exclude the case (D4), it is enough to show that for every point Q ∈ G, there exists
a smooth irreducible curve C ⊂ G such that Q ∈ C 6⊂ ∆G and

(3.9) SL
(
WG

•,•;C
)
6 1 6

AC,∆C
(Q)

S(WG,C
•,•,•;Q)

This is what we will do in the rest of this section.
Let Q be a point in G = T0 ∼= P(1, 3, 1). Recall that α1, α4, α6 are all torus invariant curves in G.

Let Q14 = α1 ∩α4, Q16 = α1 ∩α6, Q46 = α4 ∩α6, where Q16 is the singular point of the surface G.
Recall that RG meets the curve α4 transversally at three distinct points including Q14 and Q46.
Let us denote by Q4 the point in RG ∩ α4 that is different from Q14 and Q46.

Now, let us choose the curve C. If Q ∈ α1 ∪ α4 ∪ α6, we choose C as follows:

• if Q ∈ α1, Q 6= Q14, Q 6= Q16, we let C = α1,
• if Q ∈ α4, Q 6= Q14, Q 6= Q46, we let C = α4,
• if Q ∈ α6, Q 6= Q16, Q 6= Q46, we let C = α6,
• if Q = Q14, we let C = α1 or C = α4,
• if Q = Q16, we let C = α1 or C = α6,
• if Q = Q46, we let C = α4 or C = α6.

Similarly, if Q 6∈ α1 ∪ α4 ∪ α6, there exists a unique curve α0 ∈ |OG(1)| such that α0 contains Q.

In this case, we let C = α0, and we let α0 be the proper transform of the curve α0 on the surface T̃0.
Then the divisor Σ and the different ∆C can be described as follows:

(α1) if C = α1, then Σ = α2 + α3 and ∆C = 2
3
Q16 +

1
2
Q14,

(α4) if C = α4, then Σ = 2α2 + 3α3 + 3α5 and ∆C = 1
2
Q14 +

1
2
Q46 +

1
2
Q4,

(α6) if C = α6, then Σ = α5 and ∆C = 1
2
Q46 +

2
3
Q16,

(α0) if C = α0, then Σ = 0 and ∆C = ∆G|C + 2
3
Q16.
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In the last case, we have ordQ(∆C) 6
1
2
, because the curves α0 and RG meet transversally.

In each possible case, we compute t(u) as follows in Table 3.
For each u ∈ [0, 7] and v ∈ [0, t(u)], we can express the divisors P (u, v) and N(u, v) as linear

combinations of the curves α1, α2, α3, α4, α5, α6. These expressions are listed in Tables 4, 5, 6, 7.
We now regard the divisor P (u, v) as a row vector p(u, v) ∈ R6 defined as

p(u, v) =
(
c1(u, v), c2(u, v), c3(u, v), c4(u, v), c5(u, v), c6(u, v)

)
,

where P (u, v) = c1(u, v)α1 + c2(u, v)α2 + c3(u, v)α3 + c4(u, v)α4 + c5(u, v)α5 + c6(u, v)α6. Then
(
P (u, v)

)2
= p(u, v)Ap(u, v)T .

Thus, we have

SL
(
WG

•,•;C
)
=

3

9

7∫

0

p(u, 0)Ap(u, 0)T · d(u)du+
3

9

7∫

0

t(u)∫

0

p(u, v)Ap(u, v)Tdvdu.

Now, integrating we get

SL
(
WG

•,•;C
)
=





1

2
if C = α1,

7

9
if C = α4,

4

9
if C = α6,

11

36
if C = α0.

In each case, we have SL(W
G
•,•;C) < 1 as required for (3.9).

To present a formula for SL(W
G,C
•,•,•;Q), let e1, e2, e3, e4, e5, e6 be the standard basis for R6,

and let e0 = e1 + e2 + e3. If C = αi for i ∈ {1, 4, 6, 0}, then

SL
(
WG,C

•,•,•;Q
)
=

3

9

7∫

0

t(u)∫

0

(
p(u, v)AeTi

)2
dvdu+ FQ

(
WG,C

•,•,•

)
,

where

FQ
(
WG,C

•,•,•

)
=

6

9

7∫

0

t(u)∫

0

(
p(u, v)AeTi

)
· ordQ

((
N ′(u) +N(u, v)− (v + d(u))Σ

)∣∣
C̃
dvdu.

In particular, if Q 6∈ α1 ∪ α4 ∪ α6, then C = α0, so that

SL
(
WG,C

•,•,•;Q
)
=

3

9

7∫

0

t(u)∫

0

(
p(u, v)AeT0

)2
dvdu =

5

24
<

1

2
6 1− ordQ(∆C) = AC,∆C

(Q),

which gives (3.9). Similarly, if Q ∈ α1 and C = α1, then

SL
(
WG,C

•,•,•;Q
)
=

3

9

7∫

0

t(u)∫

0

(
p(u, v)AeT1

)2
dvdu+FQ

(
WG,C

•,•,•

)
=

4

27
+FQ

(
WG,C

•,•,•

)
=





83

108
if Q = Q14,

4

27
if Q 6= Q14,
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while ∆C = 2
3
Q16+

1
2
Q14. This gives (3.9) for Q ∈ α1 \ {Q14}. If Q ∈ α6 \ {Q16} and C = α6, then

SL
(
WG,C

•,•,•;Q
)
=

3

9

7∫

0

t(u)∫

0

(
p(u, v)AeT6

)2
dvdu+ FQ

(
WG,C

•,•,•

)
==





126

162
if Q = Q46,

25

162
if Q 6= Q46,

while ∆C = 1
2
Q46 +

2
3
Q16, which gives (3.9) for Q ∈ α6 \ {Q46, Q16}. If Q ∈ α4 and C = α4, then

SL
(
WG,C

•,•,•;Q
)
=

3

9

7∫

0

t(u)∫

0

(
p(u, v)AeT4

)2
dvdu+ FQ

(
WG,C

•,•,•

)
=





1

2
if Q = Q46,

8

18
if Q = Q14,

11

36
if Q 6= Q46 and Q 6= Q14,

while ∆C = 1
2
Q14 +

1
2
Q46 +

1
2
Q4. This gives (3.9) for Q ∈ α4.

Therefore, we see that (3.9) holds for every Q ∈ G for an appropriate choice of the curve C,
which excludes the case (D4) as we explained earlier.

3.3. Exclusion of the case (A3). Let us finish the proof of Theorem 3.1. Now, we assume that
the surface R is given by the equation (3.4) with a2 6= 0. In the chart A3

x,y,z = {x0y0z0 6= 0} with
coordinates x = x1

x0
, y = y1

y0
, z = z1

z0
, we have P = (0, 0, 0), and the surface R is given by

y + xz2 + a2x
2 +

(
e0yz + d2x

2z + b1xy + e1xyz + c0y
2 + b2x

2y + e2x
2yz + c1xy

2 + c2x
2y2
)
= 0,

where y + xz2 + a2x
2 is the smallest degree term for the weights wt(x) = 2, wt(y) = 4, wt(z) = 1.

Let λ : W0 → Y be the corresponding weighted blow up of the point P with weights (2, 4, 1), and
let G be the λ-exceptional surface. Then G ∼= P(1, 2, 1), and we can also consider (x, y, z) as global
coordinates on G with wt(x) = 1, wt(y) = 2, wt(z) = 1.

Let RW0
, FW0

and SW0
be the proper transforms on W0 of the surfaces R, S and F , respectively.

Set RG = RW0
|G, let nG be the curve {z = 0} ⊂ G, set ∆G = 1

2
RG + 1

2
nG and ∆W0

= 1
2
RW0

. Then
(
KW0

+∆W0
+G

)∣∣
G
∼Q KG +∆G.

Note that FW0
|G = {x = 0}, SW0

|G = {y = 0} and RG = {y + xz + a2x
2 = 0}.

The remaining part of this subsection is very similar to what has been done in Section 3.2, so we
will omit some details here. We have AY,∆Y

(G) = 5. Using [5, Corollary 7.7], we get SY,∆Y
(G) = 41

9
.

Both 3-folds Y and W0 are toric, and the weighted blow up λ is also toric. Let ΣY and ΣW0
be

the fans of the 3-folds Y and W0, respectively. Then the fan ΣY is presented in Section 3.2, and
the fan ΣW0

is the simplicial fan in R3 defined by the following data:

• the list of primitive generators of rays in ΣW0
is

v0 = (2, 4,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);

• the list of maximal cones in ΣW0
is

[0, 1, 3], [0, 1, 4], [0, 3, 4], [1, 2, 3], [1, 2, 5], [1, 4, 5], [2, 3, 6], [2, 5, 6], [3, 4, 6], [4, 5, 6],

where [i, j, k] is the cone generated by the rays vi, vj , and vk.

As in Section 3.2, let us denote by Ti the torus invariant divisor that corresponds to the ray vi.
Note that T0 is the exceptional divisor G.

Take u ∈ R>0. As in Section 3.2, we let Lu = λ∗(L)− uT0. Then

Lu ∼R (10− u)T0 + T1 + T2 + 2T3,
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which implies that Lu is pseudoeffective if and only if u ∈ [0, 10].
Let W1, W2, W3 be the toric 3-folds defined by the simplicial fans ΣW1

, ΣW2
, ΣW3

in R3,
respectively, which are determined by the following data:

• the list of primitive generators of rays of the fans ΣW1
, ΣW2

, ΣW3
is

v0 = (2, 4,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0),

v4 = (0, 0,−1), v5 = (0,−1, 1), v6 = (−1, 0, 0);

• the list of maximal cones of ΣW1
is

[0, 1, 2], [0, 2, 3], [0, 1, 4], [0, 3, 4], [1, 4, 5], [1, 2, 5], [2, 3, 6], [3, 4, 6], [4, 5, 6], [2, 5, 6];

• the list of maximal cones of ΣW2
is

[0, 3, 4], [0, 4, 6], [0, 1, 2], [0, 2, 3], [0, 1, 4], [1, 4, 5], [1, 2, 5], [2, 3, 6], [4, 5, 6], [2, 5, 6];

• the list of maximal cones of ΣW3
is

[0, 1, 5], [0, 2, 5], [0, 3, 6], [0, 4, 6], [0, 2, 3], [0, 1, 4], [1, 4, 5], [2, 3, 6], [4, 5, 6], [2, 5, 6].

Then W1, W2, W3 are projective, and there are small birational maps W0 99KW1 99K W2 99KW3,
which can be illustrated by the following self-explanatory toric diagrams:

v0

v1

v2

v3
v4

v5

v6

v0

v1

v2

v3
v4

v5

v6

v0

v1

v2

v3
v4

v5

v6

v0

v1

v2

v3
v4

v5

v6

As in Section 3.2, let us use the same notations for the corresponding torus invariant divisors
and torus invariant curves on each 3-foldWi. Similarly, we will use the same notation for the strict
transforms of the divisor Lu on each 3-fold Wi. As in Section 3.2, we see that

• Lu is nef on W0 for u ∈ [0, 1];
• Lu is nef on W1 for u ∈ [1, 2];
• Lu is nef on W2 for u ∈ [2, 3].

Moreover, the Zariski decomposition of the divisor Lu exists on the 3-fold W2 for each u ∈ [3, 5],
and the Zariski decomposition exists on W3 for u ∈ [5, 10]. Let us denote by P (u) its positive part,
and let us denote by N(u) its negative part. Then P (u) = Lu −N(u), where

N(u) =





u− 3

4
T3 for u ∈ [3, 5],

u− 3

4
T3 for u ∈ [5, 7],

u− 7

3
T2 +

u− 4

3
T3 for u ∈ [7, 8],

u− 8

2
T1 +

u− 7

3
T2 +

u− 4

3
T3 for u ∈ [8, 10].

Here, the divisor Lu −
u−3
4
T3 is nef on W2 for u ∈ [3, 5], and it is nef on W3 for [5, 7].

Now, let us consider a common partial toric resolution W̃ of the toric 3-foldsW0,W1,W2 andW3.

Namely, let W̃ be the toric 3-fold defined by the simplicial fan ΣW̃ in R3 given by the following data:
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• the list of primitive generators of rays of ΣW̃ is

v0 = (2, 4,−1), v1 = (1, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0), v4 = (0, 0,−1), v5 = (0,−1, 1),

v6 = (−1, 0, 0), v7 = (0, 4,−1), v8 = (1, 2, 0), v9 = (2, 3, 0), v10 = (2, 0, 3);

• the list of maximal cones of ΣW̃ is

[0, 1, 4], [0, 1, 9], [0, 3, 7], [0, 3, 8], [0, 4, 7], [0, 8, 9], [1, 4, 5], [1, 5, 10], [1, 9, 10],

[2, 3, 6], [2, 3, 8], [2, 5, 6], [2, 5, 10], [2, 8, 10], [3, 6, 7], [4, 5, 6], [4, 6, 7], [8, 9, 10].

The fan ΣW̃ can be diagramed as follows:

v1

v2

v3

v4

v5

v6

v7

v8
v0

v9

v10

v5

Then there exists the following toric commutative diagram

W̃ζ0

}}

ζ2

  ❆
❆❆

❆❆
❆❆

❆

ζ1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ζ3

!!

W0
//❴❴❴❴❴❴

λ
��

W1
//❴❴❴❴❴❴❴ W2

//❴❴❴❴❴❴ W3

Y

where ζ0, ζ1, ζ2, ζ3 are toric birational morphisms.

Let T̃i be the torus invariant divisor on W̃ corresponding to the ray vi in the fan ΣW̃ . Then

ζ∗0 (T0) = T̃0, ζ∗0 (T1) = T̃1 + T̃8 + 2T̃9 + 2T̃10,

ζ∗0 (T2) = T̃2 + 3T̃10, ζ∗0 (T3) = T̃3 + 4T̃7 + 2T̃8 + 3T̃9,

ζ∗1 (T0) = T̃0 +
1
2
T̃8 +

3
4
T̃9, ζ∗1 (T1) = T̃1 +

1
2
T̃9 + 2T̃10,

ζ∗1 (T2) = T̃2 +
1
2
T̃8 +

3
4
T̃9 + 3T̃10, ζ∗1 (T3) = T̃3 + 4T̃7,

ζ∗2 (T0) = T̃0 + T̃7 +
1
2
T̃8 +

3
4
T̃9, ζ∗2 (T1) = T̃1 +

1
2
T̃9 + 2T̃10,

ζ∗2 (T2) = T̃2 +
1
2
T̃8 +

3
4
T̃9 + 3T̃10, ζ∗2 (T3) = T̃3,

ζ∗3 (T0) = T̃0 + T̃7 +
1
2
T̃8 + T̃9 + T̃10, ζ∗3 (T1) = T̃1,

ζ∗3 (T2) = T̃2 +
1
2
T̃8, ζ∗3 (T3) = T̃3.
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On the 3-fold W̃ , the Zariski decomposition of the divisor ζ∗0 (Lu) does exist for every u ∈ [0, 10].
Let PW̃ (u) be its positive part, and let NW̃ (u) be its negative part. We can express them as linear
combinations of the torus invariant divisors. These expressions are presented in Table 8.

Fix the quotient homomorphism Z3 → Z3/Zv0 ∼= Z2 such that v1 7→ (1, 0) and v3 7→ (0, 1).
Then ΣW̃ is mapped to the fan in R2 whose rays are generated by the following vectors:

w1 = (1, 0), w2 = (2, 3), w3 = (1, 2), w4 = (0, 1), w5 = (−1, 0), w6 = (−1,−2).

This two-dimensional fan defines the surface T̃0. Let ζ = ζ0|T̃0 : T̃0 → T0 be the restriction map.

Then ζ is described by a map from the fan of the toric surface T̃0 to the fan of the surface T0,
which can be illustrated by the following toric picture:

w2

w4

w3

w1

w6

w5

w4

w1

w6

ζ

T̃0 T0

It contracts the curves of the rays w5, w3, w2 to points on the surface T0.

Let α1, . . . , α6 be the torus invariant curves in T̃0 defined by w1, . . . , w6, respectively. Then

T̃1
∣∣
T̃0

= α1, T̃3
∣∣
T̃0

= α4, T̃4
∣∣
T̃0

=
1

2
α6, T̃7

∣∣
T̃0

=
1

2
α5, T̃8

∣∣
T̃0

= α3, T̃9
∣∣
T̃0

= α2, T̃0
∣∣
T̃0

= −
1

2
(α1+2α2+α3).

Set α1 = ζ(α1), α4 = ζ(α4), α6 = ζ(α6). Then α1 = {x = 0}, α4 = {y = 0}, α6 = nG = {z = 0}.
Set Q14 = α1 ∩ α4, Q16 = α1 ∩ α6, Q46 = α4 ∩ α6. Then Q16 is the singular point of the surface G.
Note that the curve RG meets α1 transversally at Q14, it meets the curve α4 transversally at two
distinct points (one of them is Q14), and RG meets the curve α6 transversally at a single point,
which is different from Q16 and Q46. Let Q4 be the point in RG ∩ α4 that is different from Q14,
and let Q6 be the intersection point RG ∩ α6.

Arguing as in Section 3.2, we obtain the following intersection matrix:

A := (αiαj) =




−1
6

1
3

0 0 0 1
2

1
3

−2
3

1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −1
2

1
2

1
2

0 0 0 1
2

0




Now, set P̃ (u) = PW̃ (u)|T̃0 and Ñ(u) = NW̃ (u)|T̃0. We can express P̃ (u) and Ñ(u) as linear
combinations of the curves α1, α2, α3, α4, α5, α6. These expressions are presented in Table 9.
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Let Q be a point in the surface G = T0, let C be a smooth curve in G that passes through P ,

and let C̃ be its proper transform on T̃0. For every u ∈ [0, 10], let

t(u) = inf
{
v ∈ R>0

∣∣ P̃ (u)− vC is pseudoeffective
}
.

For every v ∈ [0, t(u)], let P (u, v) be the positive part of the Zariski decomposition of P̃ (u)− vC,
and let N(u, v) be its negative part. Set

SL
(
WG

•,•;C
)
=

3

L3

10∫

0

(
P̃ (u)

)2
ordC

(
Ñ(u)

)
du+

3

L3

10∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.

Now, we write ζ∗(C) = C̃ +Σ for an effective R-divisor Σ on the surface T̃0. For every u ∈ [0, 10],

write Ñ(u) = d(u)C+N ′(u), where d(u) = ordC(Ñ(u)), and N ′(u) is an effective divisor on T̃0. Set

S
(
WG,C

•,•,•;Q
)
=

3

L3

10∫

0

t(u)∫

0

(
P (u, v) · C̃

)2
dvdu+ FQ

(
WG,C

•,•,•

)

for

FQ
(
WG,C

•,•,•

)
=

6

L3

10∫

0

t(u)∫

0

(
P (u, v) · C̃

)
· ordQ

((
N ′(u) +N(u, v)− (v + d(u))Σ

)∣∣
C̃

)
dvdu,

where we consider Q as a point in C̃ using the isomorphism C̃ ∼= C induced by ζ .
If C 6⊂ Supp(∆G), we have (KG + C + ∆G)|C ∼R KC + ∆C , where ∆C is an effective divisor

known as the different. If C 6⊂ Supp(∆G), we still can define the different ∆C using
(
KG + C +∆G − ordC(∆G)

)∣∣
C
∼R KC +∆C .

The different ∆C can be computed locally near any point in C. Now, arguing as in Section 3.2,
we see that to exclude the case (A3), it is enough to show that for every point Q ∈ G, there exists
a smooth irreducible curve C ⊂ G passing through Q such that

(3.10) SL
(
WG

•,•;C
)
6 AG,∆G

(C)

and

(3.11) S(WG,C
•,•,•;Q) 6 AC,∆C

(Q).

Let us do this in the rest of this section, which would complete the proof of Theorem 3.1.
Let Q be a point in G = T0 ∼= P(1, 2, 1). Let us choose the curve C as follows. If Q ∈ α1∪α4∪α6,

we let C be a curve among α1, α4, α6 that contains Q. If Q 6∈ α1 ∪ α4 ∪ α6, then there is a unique
curve α0 ∈ |OG(1)| that contains Q. In this case, we let C = α0, and we denote by α0 the proper

transform of the curve α0 on the surface T̃0. Then Σ and ∆C can be described as follows:

(α1) if C = α1, then Σ = 2α2 + α3 and ∆C = 1
2
Q16 +

1
2
Q14,

(α4) if C = α4, then Σ = 3α2 + 2α3 + 2α5 and ∆C = 1
2
Q14 +

1
2
Q4,

(α6) if C = α6, then Σ = α5 and ∆C = 3
4
Q16 +

1
2
Q6,

(α0) if C = α0, then Σ = 0 and ∆C = ∆G|C + 3
4
Q16.

In the last case, we have ordQ(∆C) 6
1
2
, because α0 and RG meet transversally.

In each possible case, we compute t(u) in Table 10.
For each u ∈ [0, 10] and v ∈ [0, t(u)], we can express both divisors P (u, v) and N(u, v) as linear

combinations of the curves α1, α2, α3, α4, α5, α6. They are listed in Tables 11, 12, 13, 14.
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Now, arguing as in Section 3.2, we compute

SL
(
WG

•,•;C
)
=





1

2
if C = α1,

7

9
if C = α4,

2

9
if C = α6,

3

16
if C = α0.

This gives (3.10). Note that AG,∆G
(α6) =

1
2
.

If Q ∈ α1 \ {Q14}, let C = α1, then SL(W
G,α1

•,•,• ;Q) =
1
9
. If Q ∈ α4 \ {Q46}, let C = α4, then

SL
(
WG,α4

•,•,• ;Q
)
=





1

2
if Q = Q14,

3

16
if Q 6= Q14.

If Q ∈ α6 \ {Q16}, we let C = α1, which gives

SL
(
WG,α6

•,•,• ;Q
)
=





7

9
if Q = Q46,

2

9
if Q 6= Q46.

If Q 6∈ α1 ∪ α4 ∪ α6), we let C = α0, which gives SL(W
G,α0

•,•,• ;Q) =
1729
6912

. In each case we get (3.11).
This excludes the case (A3), and completes the proof of Theorem 3.1.

Appendix A. Tables

Table 1: Zariski decomposition of the divisor ζ∗0 (Lu)

u PW̃ (u) & NW̃ (u) T̃0 T̃1 T̃2 T̃3 T̃7 T̃8 T̃9 T̃10

[0, 1] PW̃ (u) 7− u 1 1 2 6 7 5 3

NW̃ (u) 0 0 0 0 0 0 0 0

[1, 2] PW̃ (u) 7− u 1 1 2 7− u 8− u 17−2u
3

3

NW̃ (u) 0 0 0 0 u− 1 u− 1 2
3
(u− 1) 0

[2, 4] PW̃ (u) 7− u 1 1 8−u
3

7− u 8− u 17−2u
3

3

NW̃ (u) 0 0 0 u−2
3

u− 1 u− 1 2
3
(u− 1) 0

[4, 5] PW̃ (u) 7− u 1 1 8−u
3

7− u 8− u 7− u 7− u

NW̃ (u) 0 0 0 u−2
3

u− 1 u− 1 u− 2 u− 4

[5, 6] PW̃ (u) 7− u 1 7−u
2

7−u
2

7− u 3
2
(7− u) 7− u 7− u

NW̃ (u) 0 0 u−5
2

u−3
2

u− 1 3u−7
2

u− 2 u− 4

[6, 7] PW̃ (u) 7− u 7− u 7−u
2

7−u
2

7− u 3
2
(7− u) 7− u 7− u

NW̃ (u) 0 u− 6 u−5
2

u−3
2

u− 1 3u−7
2

u− 2 u− 4
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Table 2: Expressions for P̃ (u) and Ñ(u)

u α1 α2 α3 α4 α5 α6

[0, 1] P̃ (u) u− 6 u− 2 u 2 6 0

Ñ(u) 0 0 0 0 0 0

[1, 2] P̃ (u) u− 6 u−4
3

1 2 7− u 0

Ñ(u) 0 2
3
(u− 1) u− 1 0 u− 1 0

[2, 4] P̃ (u) u− 6 u−4
3

1 8−u
3

7− u 0

Ñ(u) 0 2
3
(u− 1) u− 1 u−2

3
u− 1 0

[4, 5] P̃ (u) u− 6 0 1 8−u
3

7− u 0

Ñ(u) 0 u− 2 u− 1 u−2
3

u− 1 0

[5, 6] P̃ (u) 6− u 0 7−u
2

7−u
2

7− u 0

Ñ(u) 0 u− 2 3u−7
2

u−3
2

u− 1 0

[6, 7] P̃ (u) 0 0 7−u
2

7−u
2

7− u 0

Ñ(u) u− 6 u− 2 3u−7
2

u−3
2

u− 1 0

Table 3: Values of t(u)

C

u
[0, 1] [1, 2] [2, 4] [4, 5] [5, 6] [6, 7]

α1 u 1 1 1 1 7− u

α4
u
3

u
3

2
3

2
3

9−u
6

7−u
2

α6 u 1 1 1 7−u
2

7−u
2

α0 u 1 1 7−u
3

7−u
3

7−u
3

Table 4: Expressions for P (u, v) and N(u, v) in the case C = α1

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u] P (u, v) u− 6− v u− 2− v u− v 2 6 0

N(u, v) 0 v v 0 0 0

[1, 2] [0, u− 1] P (u, v) u− 6− v u−4−v
3

1 2 7− u 0

N(u, v) 0 v
3

0 0 0 0

[1, 2] [u− 1, 1] P (u, v) u− 6− v u− 2− v u− v 2 7− u 0

N(u, v) 0 3v−2u+2
3

v − u+ 1 0 0 0

43



[2, 4] [0, 1] P (u, v) u− 6− v u−4−v
3

1 8−u
3

7− u 0

N(u, v) 0 v
3

0 0 0 0

[4, 5] [0, u− 4] P (u, v) u− 6− v 0 1 8−u
3

7− u 0

N(u, v) 0 0 0 0 0 0

[4, 5] [u− 4, 1] P (u, v) u− 6− v u−4−v
3

1 8−u
3

7− u 0

N(u, v) 0 u−4−v
6

0 0 0 0

[5, 6] [0, 1] P (u, v) 6− u− v 0 7−u
2

7−u
2

7− u 0

N(u, v) 0 0 0 0 0 0

[6, 7] [0, 7− u] P (u, v) −v 0 7−u
2

7−u
2

7− u 0

N(u, v) 0 0 0 0 0 0

Table 5: Expressions for P (u, v) and N(u, v) in the case C = α4

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u
3
] P (u, v) u− 6 u− 2− 2v u− 3v 2− v 6− 3v 0

N(u, v) 0 2v 3v 0 3v 0

[1, 2] [0, u−1
3
] P (u, v) u− 6 u−4

3
1 2− v 7− u 0

N(u, v) 0 0 0 0 0 0

[1, 2] [u−1
3
, u
3
] P (u, v) u− 6 u− 2− 2v u− 3v 2− v 6− 3v 0

N(u, v) 0 6v−2u+2
3

3v − u+ 1 0 3v − u+ 1 0

[2, 4] [0, 1
3
] P (u, v) u− 6 u−4

3
1 8−u−3v

3
7− u 0

N(u, v) 0 0 0 0 0 0

[2, 4] [1
3
, 2
3
] P (u, v) u− 6 u−2−6v

3
2− 3v 8−u−3v

3
8− u− 3v 0

N(u, v) 0 6v−2
3

3v − 1 0 3v − 1 0

[4, 5] [0, 5−u
3
] P (u, v) u− 6 0 1 8−u−3v

3
7− u 0

N(u, v) 0 0 0 0 0 0

[4, 5] [5−u
3
, 1
3
] P (u, v) u− 6 0 8−u−3v

3
8−u−3v

3
7− u 0

N(u, v) 0 0 3v+u−5
3

0 0 0

[4, 5] [1
3
, u−2

6
] P (u, v) u− 6 0 8−u−3v

3
8−u−3v

3
8− u− 3v 0

N(u, v) 0 0 3v+u−5
3

0 3v − 1 0

[4, 5] [u−2
6
, 2
3
] P (u, v) u− 6 u−2−6v

3
2− 3v 8−u−3v

3
8− u− 3v 0

N(u, v) 0 6v+2−u
3

3v − 1 0 3v − 1 0
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[5, 6] [0, 7−u
6
] P (u, v) u− 6 0 7−u−2v

2
7−u−2v

2
7− u 0

N(u, v) 0 0 v 0 0 0

[5, 6] [7−u
6
, 1
2
] P (u, v) u− 6 0 7−u−2v

2
7−u−2v

2
21−3u−6v

2
0

N(u, v) 0 0 v 0 6v+u−7
2

0

[5, 6] [1
2
, 9−u

6
] P (u, v) u− 6 1− 2v 9−u−6v

2
7−u−2v

2
21−3u−6v

2
0

N(u, v) 0 2v − 1 3v − 1 0 6v+u−7
2

0

[6, 7] [0, 7−u
6
] P (u, v) 0 0 7−u−2v

2
7−u−2v

2
7− u 0

N(u, v) 0 0 v 0 0 0

[6, 7] [7−u
6
, 7−u

2
] P (u, v) 0 0 7−u−2v

2
7−u−2v

2
21−3u−6v

2
0

N(u, v) 0 0 0 0 6v+u−7
2

0

Table 6: Expressions for P (u, v) and N(u, v) in the case C = α6

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u] P (u, v) u− 6 u− 2 u 2 6− v −v

N(u, v) 0 0 0 0 v 0

[1, 2] [0, u− 1] P (u, v) u− 6 u−4
3

1 2 7− u −v

N(u, v) 0 0 0 0 0 0

[1, 2] [u− 1, 1] P (u, v) u− 6 u−4
3

1 2 6− v −v

N(u, v) 0 0 0 0 v − u+ 1 0

[2, 4] [0, 1] P (u, v) u− 6 u−4
3

1 8−u
3

7− u −v

N(u, v) 0 0 0 0 0 0

[4, 5] [0, 6−u
2
] P (u, v) u− 6 0 1 8−u

3
7− u −v

N(u, v) 0 0 0 0 0 0

[4, 5] [6−u
2
, 1] P (u, v) −2v 0 1 8−u

3
7− u −v

N(u, v) 2v − 6 + u 0 0 0 0 0

[5, 6] [0, 6−u
2
] P (u, v) 6− u 0 7−u

2
7−u
2

7− u −v

N(u, v) 0 0 0 0 0 0

[5, 6] [6−u
2
, 7−u

2
] P (u, v) −2v 0 7−u

2
7−u
2

7− u −v

N(u, v) 2v + u− 6 0 0 0 0 0

[6, 7] [0, 7−u
2
] P (u, v) −2v 0 7−u

2
7−u
2

7− u −v

N(u, v) 2v 0 0 0 0 0
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Table 7: Expressions for P (u, v) and N(u, v) in the case C = α0

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u] P (u, v) u− 6− v u− 2− v u− v 2 6 0

N(u, v) 0 0 0 0 0 0

[1, 2] [0, 2− u] P (u, v) u− 6− v u−4−3v
3

1− v 2 7− u 0

N(u, v) 0 0 0 0 0 0

[1, 2] [2− u, 1] P (u, v) u− 6− v u−4−3v
3

1− v 8−u−v
3

7− u 0

N(u, v) 0 0 0 v+u−2
3

0 0

[2, 4] [0, 1] P (u, v) u− 6− v u−4−3v
3

1− v 8−u−v
3

7− u 0

N(u, v) 0 0 0 v
3

0 0

[4, 5] [0, 5− u] P (u, v) u− 6− v −v 1− v 8−u−v
3

7− u 0

N(u, v) 0 0 0 v
3

0 0

[4, 5] [5− u, 6−u
2
] P (u, v) u− 6− v −v 7−u−3v

2
7−u−v

2
7− u 0

N(u, v) 0 0 u+v−5
2

u+3v−5
6

0 0

[4, 5] [6−u
2
, 7−u

3
] P (u, v) −3v −v 7−u−3v

2
7−u−v

2
7− u 0

N(u, v) u− 6 + 2v 0 u+v−5
2

u+3v−5
6

0 0

[5, 6] [0, 6−u
2
] P (u, v) u− 6− v −v 7−u−3v

2
7−u−v

2
7− u 0

N(u, v) 0 0 v
2

v
2

0 0

[5, 6] [6−u
2
, 7−u

3
] P (u, v) −3v −v 7−u−3v

2
7−u−v

2
7− u 0

N(u, v) u− 6 + 2v 0 v
2

v
2

0 0

[6, 7] [0, 7−u
3
] P (u, v) −2v −v 7−u−3v

2
7−u−v

2
7− u 0

N(u, v) 2v 0 v
2

v
2

0 0

Table 8: Zariski decomposition of the divisor ζ∗0 (Lu)

u PW̃ (u) & NW̃ (u) T̃0 T̃1 T̃2 T̃3 T̃7 T̃8 T̃9 T̃10

[0, 1] PW̃ (u) 10− u 1 1 2 8 5 8 5

NW̃ (u) 0 0 0 0 0 0 0 0

[1, 2] PW̃ (u) 10− u 1 1 2 8 11−u
2

35−3u
4

5

NW̃ (u) 0 0 0 0 0 u−1
2

3(u−1)
4

0

[2, 3] PW̃ (u) 10− u 1 1 2 10− u 11−u
2

35−3u
4

5

NW̃ (u) 0 0 0 0 u− 2 u−1
2

3(u−1)
4

0
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[3, 5] PW̃ (u) 10− u 1 1 11−u
4

10− u 11−u
2

35−3u
4

5

NW̃ (u) 0 0 0 u−3
4

u− 2 u−1
2

3(u−1)
4

0

[5, 7] PW̃ (u) 10− u 1 1 11−u
4

10− u 11−u
2

10− u 10− u

NW̃ (u) 0 0 0 u−3
4

u− 2 u−1
2

u− 2 u− 5

[7, 8] PW̃ (u) 10− u 1 10−u
3

10−u
3

10− u 2(10−u)
3

10− u 10− u

NW̃ (u) 0 0 u−7
3

u−4
3

u− 2 2u−5
3

u− 2 u− 5

[8, 10] PW̃ (u) 10− u 10−u
2

10−u
3

10−u
3

10− u 2(10−u)
3

10− u 10− u

NW̃ (u) 0 u−8
2

u−7
3

u−4
3

u− 2 2u−5
3

u− 2 u− 5

Table 9: Expressions for P̃ (u) and Ñ(u)

u P̃ (u) & Ñ(u) α1 α2 α3 α4 α5 α6

[0, 1] P̃ (u) u−8
2

u− 2 u
2

2 4 0

Ñ(u) 0 0 0 0 0 0

[1, 2] P̃ (u) u−8
2

u−5
4

1
2

2 4 0

Ñ(u) 0 3(u−1)
4

u−1
2

0 0 0

[2, 3] P̃ (u) u−8
2

u−5
4

1
2

2 10−u
2

0

Ñ(u) 0 3(u−1)
4

u−1
2

0 u−2
2

0

[3, 5] P̃ (u) u−8
2

u−5
4

1
2

11−u
4

10−u
2

0

Ñ(u) 0 3(u−1)
4

u−1
2

u−3
4

u−2
2

0

[5, 7] P̃ (u) u−8
2

0 1
2

11−u
4

10−u
2

0

Ñ(u) 0 u− 2 u−1
2

u−3
4

u−2
2

0

[7, 8] P̃ (u) u−8
2

0 10−u
6

10−u
3

10−u
2

0

Ñ(u) 0 u− 2 2u−5
3

u−4
3

u−2
2

0

[8, 10] P̃ (u) 0 0 10−u
6

10−u
3

10−u
2

0

Ñ(u) u−8
2

u− 2 2u−5
3

u−4
3

u−2
2

0

Table 10: Values of t(u)

C

u
[0, 1] [1, 2] [2, 3] [3, 5] [5,6] [6, 7] [7, 8] [8, 10]

α1
u
2

u
2

1 1 1 1 1 10−u
2

α4
u
4

u
4

u
4

3
4

3
4

3
4

16−u
12

10−u
3
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α6
u
2

1
2

1
2

1
2

1
2

1
2

10−u
6

10−u
6

α0
u
2

1
2

1
2

1
2

1
2

10−u
8

10−u
8

10−u
8

Table 11: Expressions for P (u, v) and N(u, v) in the case C = α1

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u
2
] P (u, v) u−8

2
− v u− 2− 2v u

2
− v 2 4 0

N(u, v) 0 2v v 0 0 0

[1, 2] [0, u−1
2
] P (u, v) u−8

2
− v u−5−2v

4
1
2

2 4 0

N(u, v) 0 v
2

0 0 0 0

[1, 2] [u−1
2
, u
2
] P (u, v) u−8

2
− v u− 2− 2v u−2v

2
2 4 0

N(u, v) 0 3−3u+8v
4

2v−u+1
2

0 0 0

[2, 3] [0, u−1
2
] P (u, v) u−8

2
− v u−5−2v

4
1
2

2 10−u
2

0

N(u, v) 0 v
2

0 0 0 0

[2, 3] [u−1
2
, 1] P (u, v) u−8

2
− v u− 2− 2v u−2v

2
2 10−u

2
0

N(u, v) 0 3−3u+8v
4

2v−u+1
2

0 0 0

[3, 5] [0, 1] P (u, v) u−8
2

− v u−5−2v
4

1
2

11−u
4

10−u
2

0

N(u, v) 0 v
2

0 0 0 0

[5, 7] [0, u−5
2
] P (u, v) u−8

2
− v 0 1

2
11−u
4

10−u
2

0

N(u, v) 0 0 0 0 0 0

[5, 7] [u−5
2
, 1] P (u, v) u−8

2
− v u−5−2v

4
1
2

11−u
4

10−u
2

0

N(u, v) 0 2v−u+5
4

0 0 0 0

[7, 8] [0, 1] P (u, v) u−8
2

− v 0 10−u
6

10−u
3

10−u
2

0

N(u, v) 0 0 0 0 0 0

[8, 10] [0, 10−u
2

] P (u, v) −v 0 10−u
6

10−u
3

10−u
2

0

N(u, v) 0 0 0 0 0 0

Table 12: Expressions for P (u, v) and N(u, v) in the case C = α4

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u
4
] P (u, v) u−8

2
u− 2− 3v u

2
− 2v 2− v 4− 2v 0

N(u, v) 0 3v 2v 0 2v 0
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[1, 2] [0, u−1
4
] P (u, v) u−8

2
u−5
4

1
2

2− v 4− 2v 0

N(u, v) 0 0 0 0 2v 0

[1, 2] [u−1
4
, u
4
] P (u, v) u−8

2
u− 2− 3v u

2
− 2v 2− v 4− 2v 0

N(u, v) 0 3(4v−u+1)
4

4v−u+1
2

0 2v 0

[2, 3] [0, u−2
4
] P (u, v) u−8

2
u−5
4

1
2

2− v 10−u
2

0

N(u, v) 0 0 0 0 0 0

[2, 3] [u−2
4
, u−1

4
] P (u, v) u−8

2
u−5
4

1
2

2− v 4− 2v 0

N(u, v) 0 0 0 0 4v−u+2
2

0

[2, 3] [u−1
4
, u
4
] P (u, v) u−8

2
u− 2− 3v u

2
− 2v 2− v 4− 2v 0

N(u, v) 0 3(4v−u+1)
4

4v−u+1
2

0 4v−u+2
2

0

[3, 5] [0, 1
4
] P (u, v) u−8

2
u−5
4

1
2

11−u−4v
4

10−u
2

0

N(u, v) 0 0 0 0 0 0

[3, 5] [1
4
, 1
2
] P (u, v) u−8

2
u−5
4

1
2

11−u−4v
4

11−u−4v
2

0

N(u, v) 0 0 0 0 4v−1
2

0

[3, 5] [1
2
, 3
4
] P (u, v) u−8

2
u+1−12v

4
3−2v
2

11−u−4v
4

11−u−4v
2

0

N(u, v) 0 3(2v−1)
2

2v − 1 0 4v−1
2

0

[5, 6] [0, 1
4
] P (u, v) u−8

2
0 1

2
11−u−4v

4
10−u
2

0

N(u, v) 0 0 0 0 0 0

[5, 6] [1
4
, 7−u

4
] P (u, v) u−8

2
0 1

2
11−u−4v

4
11−u−4v

2
0

N(u, v) 0 0 0 0 4v−1
2

0

[5, 6] [7−u
4
, 1+u

12
] P (u, v) u−8

2
0 11−u−4v

8
11−u−4v

4
11−u−4v

2
0

N(u, v) 0 0 4v+u−7
8

0 4v−1
2

0

[5, 6] [1+u
12
, 3
4
] P (u, v) u−8

2
1+u−6v

4
3−4v
2

11−u−4v
4

11−u−4v
2

0

N(u, v) 0 12v+u−1
4

2v − 1 0 4v−1
2

0

[6, 7] [0, 7−u
4
] P (u, v) u−8

2
0 1

2
11−u−4v

4
10−u
2

0

N(u, v) 0 0 0 0 0 0

[6, 7] [7−u
4
, 1
4
] P (u, v) u−8

2
0 11−u−4v

8
11−u−4v

4
10−u
2

0

N(u, v) 0 0 4v+u−7
8

0 0 0

[6, 7] [1
4
, 1+u

12
] P (u, v) u−8

2
0 11−u−4v

8
11−u−4v

4
11−u−4v

2
0

N(u, v) 0 0 4v+u−7
8

0 4v−1
2

0

[6, 7] [1+u
12
, 3
4
] P (u, v) u−8

2
1+u−6v

4
3−4v
2

11−u−4v
4

11−u−4v
2

0

N(u, v) 0 12v+u−1
4

2v − 1 0 4v−1
2

0

49



[7, 8] [0, 10−u
12

] P (u, v) u−8
2

0 10−u−3v
6

10−u−3v
3

10−u
2

0

N(u, v) 0 0 v
2

0 0 0

[7, 8] [10−u
12

, 2
3
] P (u, v) u−8

2
0 10−u−3v

6
10−u−3v

3
2(10−u−3v)

3
0

N(u, v) 0 0 v
2

0 12v+u−10
6

0

[7, 8] [2
3
, 16−u

12
] P (u, v) u−8

2
2− 3v 16−u−12v

6
10−u−3v

3
2(10−u−3v)

3
0

N(u, v) 0 3v − 2 2v − 1 0 12v+u−10
6

0

[8, 10] [0, 10−u
12

] P (u, v) 0 0 10−u−3v
6

10−u−3v
3

10−u
2

0

N(u, v) 0 0 v
2

0 0 0

[8, 10] [10−u
12

, 10−u
3

] P (u, v) 0 0 10−u−3v
6

10−u−3v
3

2(10−u−3v)
3

0

N(u, v) 0 0 v
2

0 12v+u−10
6

0

Table 13: Expressions for P (u, v) and N(u, v) in the case C = α6

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u
2
] P (u, v) u−8

2
u− 2 u

2
2 4− v −v

N(u, v) 0 0 0 0 v 0

[1, 2] [0, 1
2
] P (u, v) u−8

2
u−5
4

u
2

2 4− v −v

N(u, v) 0 0 0 0 v 0

[2, 3] [0, u−2
2
] P (u, v) u−8

2
u−5
4

1
2

2 10−u
2

−v

N(u, v) 0 0 0 0 0 0

[2, 3] [u−2
2
, 1
2
] P (u, v) u−8

2
u−5
4

1
2

10−u
2

4− v −v

N(u, v) 0 0 0 0 2v+2−u
2

0

[3, 5] [0, 1
2
] P (u, v) u−8

2
u−5
4

1
2

11−u
4

10−u
2

−v

N(u, v) 0 0 0 0 0 0

[5, 7] [0, 8−u
6
] P (u, v) u−8

2
0 1

2
11−u
4

10−u
2

−v

N(u, v) 0 0 0 0 0 0

[5, 7] [8−u
6
, 1
2
] P (u, v) −3v 0 1

2
11−u
4

10−u
2

−v

N(u, v) 6v+u−8
2

0 0 0 0 0

[7, 8] [0, 8−u
6
] P (u, v) u−8

2
0 10−u

6
10−u
3

10−u
2

−v

N(u, v) 0 0 0 0 0 0

[7, 8] [8−u
6
, 10−u

6
] P (u, v) −3v 0 10−u

6
10−u
3

10−u
2

−v

N(u, v) 6v+u−8
2

0 0 0 0 0
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[8, 10] [0, 10−u
6

] P (u, v) −3v 0 10−u
6

10−u
3

10−u
2

−v

N(u, v) 3v 0 0 0 0 0

Table 14: Expressions for P (u, v) and N(u, v) in the case C = α0

u v P (u, v) & N(u, v) α1 α2 α3 α4 α5 α6

[0, 1] [0, u
2
] P (u, v) u−8

2
− v u− 2− 2v u

2
− v 2 4 0

N(u, v) 0 0 0 0 0 0

[1, 2] [0, 1
2
] P (u, v) u−8

2
− v u−5−8v

4
1
2
− v 2 4 0

N(u, v) 0 0 0 0 0 0

[2, 3] [0, 3−u
2
] P (u, v) u−8

2
− v u−5−8v

4
1
2
− v 2 10−u

2
0

N(u, v) 0 0 0 0 0 0

[2, 3] [3−u
2
, 1
2
] P (u, v) u−8

2
− v u−5−8v

4
1
2
− v 11−u−2v

4
10−u
2

0

N(u, v) 0 0 0 2v+u−3
4

0 0

[3, 5] [0, 1
2
] P (u, v) u−8

2
− v u−5−8v

4
1
2
− v 11−u−2v

4
10−u
2

0

N(u, v) 0 0 0 v
2

0 0

[5, 6] [0, 8−u
6
] P (u, v) u−8

2
− v −2v 1

2
− v 11−u−2v

4
10−u
2

0

N(u, v) 0 0 0 v
2

0 0

[5, 6] [8−u
6
, 1
2
] P (u, v) −4v −2v 1

2
− v 11−u−2v

4
10−u
2

0

N(u, v) 6v+u−8
2

0 0 v
2

0 0

[6, 13
2
] [0, 8−u

6
] P (u, v) u−8

2
− v −2v 1

2
− v 11−u−2v

4
10−u
2

0

N(u, v) 0 0 0 v
2

0 0

[6, 13
2
] [8−u

6
, 7−u

2
] P (u, v) −4v −2v 1

2
− v 11−u−2v

4
10−u
2

0

N(u, v) 6v+u−8
2

0 0 v
2

0 0

[6, 13
2
] [7−u

2
, 10−u

8
] P (u, v) −4v −2v 10−u−8v

6
10−u−2v

3
10−u
2

0

N(u, v) 6v+u−8
2

0 2v+u−7
6

8v+u−7
12

0 0

[13
2
, 7] [0, 7−u

2
] P (u, v) u−8

2
− v −2v 1

2
− v 11−u−2v

4
10−u
2

0

N(u, v) 0 0 0 v
2

0 0

[13
2
, 7] [7−u

2
, 8−u

6
] P (u, v) u−8

2
− v −2v 10−u−8v

6
10−u−2v

3
10−u
2

0

N(u, v) 0 0 2v+u−7
6

8v+u−7
12

0 0

[13
2
, 7] [8−u

6
, 10−u

8
] P (u, v) −4v −2v 10−u−8v

6
10−u−2v

3
10−u
2

0

N(u, v) 6v+u−8
2

0 2v+u−7
6

8v+u−7
12

0 0
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[7, 8] [0, 8−u
6
] P (u, v) u−8

2
− v −2v 10−u−8v

6
10−u−2v

3
10−u
2

0

N(u, v) 0 0 v
3

2v
3

0 0

[7, 8] [8−u
6
, 10−u

8
] P (u, v) −4v −2v 10−u−8v

6
10−u−2v

3
10−u
2

0

N(u, v) 6v+u−8
2

0 v
3

2v
3

0 0

[8, 10] [0, 10−u
8

] P (u, v) −4v −2v 10−u−8v
6

10−u−2v
3

10−u
2

0

N(u, v) 3v 0 v
3

2v
3

0 0
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