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K-STABILITY OF CASAGRANDE–DRUEL VARIETIES

IVAN CHELTSOV, TIAGO DUARTE GUERREIRO, KENTO FUJITA,
IGOR KRYLOV, JESUS MARTINEZ-GARCIA

Abstract. We introduce a new subclass of Fano varieties (Casagrande–Druel varieties),
that are n-dimensional varieties constructed from Fano double covers of dimension n−1.
We conjecture that a Casagrande–Druel variety is K-polystable if the double cover and its
base space are K-polystable. We prove this for smoothable Casagrande–Druel threefolds,
and for Casagrande–Druel varieties constructed from double covers of Pn−1 ramified over
smooth hypersurfaces of degree 2d with n > d > n

2
> 1. As an application, we describe

the connected components of the K-moduli space parametrizing smoothable K-polystable
Fano threefolds in the families №3.9 and №4.2 in the Mori-Mukai classification.

Throughout this paper, all varieties are defined over C.

1. Introduction

Let V be a Fano variety with Kawamata log terminal singularities, and let L be a line
bundle on V such that the divisor −(KV + L) is ample, and |2L| contains a non-zero
effective divisor. Let R be a divisor in |2L|, and let η : B → V be the double cover
ramified over R. Then B can be explicitly constructed as follows. Let

Y = P
(
OV ⊕OV (L)

)
,

let π : Y → V be the natural projection, and let ξ be the tautological line bundle on Y .
Set H = π∗(L). Then we have isomorphisms:

H0
(
Y,OY (ξ)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L)

)
,

H0
(
Y,OY (ξ −H)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L)

)
.

Using these isomorphisms, fix sections u+ ∈ H0(Y,OY (ξ)) and u
− ∈ H0(Y,OY (ξ − H))

that correspond to 1 ∈ H0(V,OV ) under the isomorphisms above. Set S± = {u± = 0}.
Then we have S− ∩ S+ = ∅ and S+ ∼ S− +H . Take f ∈ H0(V,OV (2L)) that defines R.
Then we can identify B with the divisor

{
π∗(f)(u−)2 = (u+)2

}
∈ |2S+|,

where the double cover η is induced by π.

Remark 1.1. We allow R to be singular, so B can be very singular (and even reducible).
However, if the log pair (V, 1

2
R) has Kawamata log terminal singularities, then the double

cover B is a Fano variety with Kawamata log terminal singularities [22]. So, for simplicity,
we will always say that B is a Fano double cover (even if B is non-normal or reducible).

Let F = π∗(R), and let φ : X → Y be the blow up of the intersection S+ ∩ F . Then

X is smooth ⇐⇒ Y and B are smooth ⇐⇒ V and R are smooth.

Moreover, the variety X is also a Fano variety (see Section 2).
1
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Definition 1.2. If the Fano variety X has at most Kawamata log terminal singularities,
then X is called the Casagrande–Druel variety constructed from η : B → V (or, from
the ramification divisor R ⊂ V ). Note that L ∈ PicV is uniquely determined by R.

The group Aut(Y ) contains a subgroup Γ ∼= Gm that fixes both S− and S+ pointwise,
and the action of Γ lifts to Aut(X), so we can identify Γ with a subgroup in Aut(X).
In Section 2, we will show that Aut(X) also contains an involution ι such that

〈Γ, ι〉 ∼= Gm ⋊ µ2,

and ι swaps the proper transforms of the sections S− and S+. Set G = 〈Γ, ι〉 and θ = π◦φ.
Then we have commutative diagram:

(1.3) X

θ

��

φ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

ι
// X

θ

��

φ

  ❅
❅❅

❅❅
❅❅

❅

Y

π
  
❅❅

❅❅
❅❅

❅❅
Y

π
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

V V

and the composition θ is a G-equivariant conic bundle such that G acts trivially on V .

Remark 1.4. Our construction of Casagrande–Druel varieties is inspired by the paper [8].
See [8, Lemma 3.1 (iii)]. But it goes back to the construction of de Jonquieres involutions
using hyperelliptic curves instead of Fano double covers. See also [26, 7, 37, 15].

The del Pezzo surface of degree 6 (blow up of P2 at three general points) is the unique
smooth Casagrande-Druel surface. Smooth Casagrande–Druel threefolds form 3 families.
To present them, we use labeling of smooth Fano threefolds from [6].

Example 1.5. Let V = P2, let L = OP2(1), let R be an arbitrary smooth conic in |2L|.
Then B ∼= P1 × P1, and X is the unique smooth Fano threefold in the family №3.19.

Example 1.6. Let V = P2, let L = OP2(2), let R be any smooth quartic curve in |2L|.
Then B is a del Pezzo surface of degree 2, and X is a Fano threefold in the family №3.9.

Example 1.7. Let V = P1 × P1, let L = OV (1, 1), let R be any smooth curve in |2L|.
Then B is a del Pezzo surface of degree 4, and X is a Fano threefold in the family №4.2.

All smooth Casagrande–Druel threefolds are K-polystable, see [21, Theorem 6.1] and [6].
In fact, K-polystable Casagrande–Druel varieties exist in every dimension:

Example 1.8 ([11, 12]). Suppose that V = Pn−1, L = OPn−1(1), R is smooth, n > 2.
Then X can be obtained by blowing up the n-dimensional smooth quadric at two points.
The variety X is spherical, and it is known that X is K-polystable [12, 4.4.2].

In this paper, we prove the following theorem:

Theorem 1.9. Suppose that V = Pn−1, L = OPn−1(r), R is smooth, and n > r > n
2
> 1.

Then X is K-polystable.

We obtain this result as an application of the following K-polystability criteria:
2



Theorem 1.10. Suppose that both V and R are smooth (or equivalently X is smooth),
and −KV ∼Q aL, where a ∈ Q>0 such that a > 1. Let µ be the smallest rational number
such that µL is very ample. Set n = dim(X) (so dim(V ) = n− 1), set d = Ln−1, set

kn(a, d, µ) =
an+1 − (a− 1)n+1

(n + 1)(an − (a− 1)n)
dµn−2 +

an+1 − (a + n)(a− 1)n

2(n+ 1)(an − (a− 1)n)

and set

γ = min

{
1

kn(a, d, µ)
,

(n + 1)(an − (a− 1)n)

(n+ 1− a)an + (a− 1)n+1
,
aδ(V )(n+ 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)

}
,

where δ(V ) is the δ-invariant of the Fano variety V . If n > 3, dµn−2 > 2 and γ > 1, then
the Casagrande–Druel variety X is K-polystable.

Remark 1.11. In the notations of Theorem 1.10, if n > 2 and dµn−2 < 2, then dµn−2 = 1,
which gives V = Pn−1 and L = OPn−1(1), so X is K-polystable, see Example 1.8.

In this paper, we also prove the following two theorems about K-polystability of several
singular Casagrande–Druel 3-folds:

Theorem 1.12. Suppose V = P1×P1, L = OV (1, 1), and R is one of the following curves:

(1) C1 + C2, where C1 and C2 are smooth curves in |L| such that |C1 ∩ C2| = 2;
(2) ℓ1 + ℓ2 + ℓ3 + ℓ4, where ℓ1 and ℓ2 are two distinct smooth curves of degree (1, 0),

and ℓ3 and ℓ4 are two distinct smooth curves of degree (0, 1);
(3) 2C, where C is a smooth curve in |L|.

Then X is K-polystable.

Theorem 1.13. Suppose V = P2, L = OP2(2), and R is one of the following curves:

(1) a singular reduced curve in |2L| with at most A1 or A2 singularities;
(2) C1 + C2, where C1 and C2 are smooth conics that are tangent at two points;
(3) C + ℓ1 + ℓ2, where C is a smooth conic, ℓ1 and ℓ2 are distinct lines tangent to C;
(4) 2C, where C is a smooth conic.

Then X is K-polystable.

To present their applications, let MKss
n,v be the K-moduli functor of Fano varieties that

have dimension n and anticanonical volume v ∈ Q>0 in the sense of [39, Theorem 2.17].
Then MKss

n,v is an Artin stack of finite type. Moreover, as in [23, Theorem 1.3], it admits

a good moduli spaceMKss
n,v −→MKps

n,v in the sense of [4], whereMKps
n,v is a projective scheme

whose points paramertize K-polystable Fano varieties of dimension n and anticanonical
volume v. LetMKps

(3.9) andM
Kps
(4.2) be the closed subvarieties ofMKps

3,26 andM
Kps
3,28 whose general

points parametrize smooth Fano theeefolds in the families №3.9 and №4.2, respectively.
Then Theorems 1.12 and 1.13 imply the following two results (see Section 6 and cf. [19]).

Corollary 1.14. Let V = P1 × P1, let L = OV (1, 1), let Γ = (SL2(C)× SL2(C)) ⋊ µ2,
let T = P

(
H0 (V,OV (2, 2))

∨), let T ss ⊂ T be the GIT semistable open subset with respect
to the natural Γ-action, and let M be the GIT quotient T ss //Γ. Then there is a morphism

Φ: M → MKps
3,28

∈ ∈

[f ] 7→ [Xf ],
3



where Xf is the Casagrande–Druel threefold that is constructed from R = {f = 0} ∈ |2L|.

Furthermore, the morphism Φ is an isomorphism onto MKps
(4.2), and M

Kps
(4.2) is a connected

component of the scheme MKps
3,28 .

Corollary 1.15. Let V = P2, L = OP2(2), let Γ = SL3(C), let T = P
(
H0 (P2,OP2(4))

∨)
,

let T ss ⊂ T be the GIT semistable open subset with respect to the natural Γ-action, and
let M be the GIT quotient T ss // Γ. Then there exists a morphism

Φ: M → MKps
3,26

∈ ∈

[f ] 7→ [Xf ],

where Xf is the Casagrande–Druel threefold that is constructed from R = {f = 0} ∈ |2L|.

Furthermore, the morphism Φ is an isomorphism onto MKps
(3.9), and M

Kps
(3.9) is a connected

component of the scheme MKps
3,26 .

If B is the smooth del Pezzo surface from Examples 1.5, 1.6, 1.7, then B is K-polystable.
If B is the Fano manifold from Theorem 1.9, then B is K-polystable [14, Theorem 1.1].
If B is the singular del Pezzo surface from Theorems 1.12 and 1.13 such that R is reduced,
then B is also K-polystable [28]. Inspired by this, we pose

Conjecture 1.16. If V and B are K-polystable Fano varieties, then X is K-polystable.

If B is a K-polystable Fano variety, the log Fano pair (V, 1
2
R) is also K-polystable [24].

Thus, our conjecture is closely related to the following recent result:

Theorem 1.17 ([25]). Suppose that −KV ∼Q aL, where a ∈ Q>0 such that a > 1. Set

λn(a) =
an+1 − (a + n)(a− 1)n

2(n+ 1)(an − (a− 1)n)
,

where n = dimX. Then X is K-semistable ⇐⇒ (V, λn(a)R) is K-semistable.

The K-polystability of V in Conjecture 1.16 is necessary.

Example 1.18 (Yuchen Liu). Let V = P(1, 1, 4), let L = OV (4), let R be a general curve
in |2L|, and let λ ∈

(
0, 3

4

)
∩Q. Then (V, λR) is a log Fano pair. One can show that

δ(V, λR) > 1 (δ(V, λR) > 1, respectively) ⇐⇒ λ > 3
8
(λ > 3

8
, respectively),

so that the singular del Pezzo surface B is K-polystable, but
(
V, 9

52
R
)
is not K-semistable.

Hence, the threefold X is not K-semistable by Theorem 1.17.

Let us say few words about the proofs of Theorems 1.10 and 1.13. In Section 2, we will
show that X/ι ∼= Y , and we have the following commutative diagram:

X

θ   ❅
❅❅

❅❅
❅❅

❅

ρ
// Y

π
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

V

where ρ is the quotient map, which is a double cover ramified over our divisor B ∈ |2S+|.
Thus, using [24], we see that

X is K-polystable ⇐⇒ the log Fano pair
(
Y, 1

2
B
)
is K-polystable.
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In Section 3, we will prove the following result, which implies Theorem 1.10.

Theorem 1.19. Suppose that V and R are smooth (so B is smooth), and −KV ∼Q aL,
where a ∈ Q>0 such that a > 1. Let µ be a rational number such that µL is very ample.
Set n = dimY (so dimV = n− 1) and d = Ln−1. Suppose n > 3 and dµn−2 > 2. Then

δ
(
Y,

1

2
B
)
> min

{
1

kn(a, d, µ)
,

(n + 1)(an − (a− 1)n)

(n + 1− a)an + (a− 1)n+1
,
aδ(V )(n+ 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)

}
,

where kn(a, d, µ) is defined in Theorem 1.10.

Let us describe the structure of this paper. First, in Section 2, we will prove few basic
properties of Casagrande–Druel varieties. Then, in Section 3, we will prove Theorem 1.19.
In Sections 4 and 5, we will give proofs of Theorem 1.12 and Theorem 1.13, respectively.
Finally, in Section 6, we will prove Corollary 1.14, and we will show thatMKps

(4.2)
∼= P(1, 2, 3).

We will omit the proof of Corollary 1.15, since it is similar to the proof of Corollary 1.14.
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2. Preliminaries

Let V be a (possibly non-projective) variety, let L1 and L2 be line bundles on V such
that L1+L2 6∼ 0 and |L1+L2| 6= ∅, and let f ∈ H0(V,OV (L1+L2)) that defines a nonzero
effective divisor R on V . Set

Y1 = P
(
OV ⊕O(L1)

)
,

Y2 = P
(
OV ⊕O(L2)

)
.

Now, let π1 : Y1 → V and π2 : Y2 → V be the natural projections, and let ξ1 and ξ2 be
the tautological line bundles on Y1 and Y2, respectively. We have isomorphisms:

H0
(
Y1,OY1(ξ1)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L1)

)
,

H0
(
Y1,OY1(ξ1 − π∗

1(L1))
)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L1)

)
,

H0
(
Y2,OY2(ξ2)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L2)

)
,

H0
(
Y2,OY2(ξ2 − π∗

2(L2))
)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L2)

)
.

Using these isomorphisms, fix sections

u+1 ∈ H0
(
Y1,OY1(ξ1)

)
,

u−1 ∈ H0
(
Y1,OY1(ξ1 − π∗

1(L1))
)
,

u+2 ∈ H0
(
Y2,OY2(ξ2)

)
,

u−2 ∈ H0
(
Y2,OY2(ξ2 − π∗

2(L2))
)
,

5



that correspond to the section 1 ∈ H0(V,OV ). Let

S−
1 = {u−1 = 0} ⊂ Y1,

S+
1 = {u+1 = 0} ⊂ Y1,

S−
2 = {u−2 = 0} ⊂ Y2,

S+
2 = {u+2 = 0} ⊂ Y2.

For i ∈ {1, 2}, the divisors S−
i and S+

i are disjoint sections of the natural projection πi such
that S−

i |S−

i
∼ −Li ∼ −S+

i |S+
i
, where we use isomorphisms S−

i
∼= V ∼= S+

i induced by πi.

Now, we set Q = Y1 ×V Y2. Then we have canonical isomorphisms

P

(
OY1 ⊕OY1

(
π∗
1(L2)

))
∼= Q ∼= P

(
OY2 ⊕OY2

(
π∗
2(L1)

))
,

so that we have commutative Cartesian diagram

Q
ρ1

xxqq
qq
qq
qq
qq
qq
q

ρ2

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

Y1

π1
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

Y2

π2
xxqq
qq
qq
qq
qq
qq
q

V

where ρ1 and ρ2 are natural projections. Set ϑ = π1 ◦ ρ1 = π2 ◦ ρ2.
Set F1 = π∗

1(R) ⊂ Y1. Let φ1 : X → Y1 be the blowup along the intersection F1 ∩ S
+
1 ,

and let E1 be the φ1-exceptional divisor. Since F1 + S−
1 corresponds to

π∗
1(f)u

−
1 ∈ H0

(
Y1,OY1

(
ξ1 + π∗

1(L2)
)
,

there is a natural closed embedding X →֒ Q over V such that its image is the effective
divisor defined by the zeroes of the section

ϑ∗(f)u−1 u
−
2 − u+1 u

+
2 ∈ H0

(
Q,OQ

(
ρ∗1(ξ1) + ρ∗2(ξ2)

))
,

where we identified H0(Q,OQ(ρ
∗
i (D))) = H0(Yi,OYi(D)) for every D ∈ Pic(Yi).

Let us identify X with its image in Q. Set θ = π1 ◦ φ1. Then θ is induced by ϑ, it is
a conic bundle, and R is its discriminant divisor. Set

S1 = φ∗
1(S

−
1 ),

S2 = φ∗
1(S

+
1 )− E1,

E2 = φ∗
1(F1)− E1.

Then S1, S2, E2 are effective Cartier divisors on the variety X — these are the proper
transforms of the divisors S−

1 , S
+
1 , F1, respectively. Moreover, the divisors S1 and S2 are

mutually disjoint sections of the conic bundle θ. Furthermore, we have

S1

∣∣
S1

∼ −L1 and S2

∣∣
S2

∼ −L2

where we use isomorphisms S1
∼= V and S2

∼= V induced by θ. Similarly, we see that
the divisor E1 + E2 is given by zeroes of the section

θ∗(f) ∈ H0
(
X,OX

(
θ∗(L1 + L2)

))
∼= H0

(
V,OV (L1 + L2)

)
.

6



Set F2 = π∗
2(R) ⊂ Y2, and let φ2 : X → Y2 be the morphism induced by ρ2 : Q → Y2.

Since the defining equation of X ⊂ Q is symmetric, we conclude that φ2 is the blowup
along the scheme-theoretic intersection F2 ∩ S+

2 , the φ2-exceptional divisor is E2, and
there exists the following commutative diagram:

(2.1) X
φ1

xxqq
qq
qq
qq
qq
qq
q

φ2

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

θ

��

Y1

π1
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

Y2

π2
xxqq
qq
qq
qq
qq
qq
q

V

This is an elementary transformation of the P1-bundle π1 in the sense of Maruyama [26].
Now, using [26, Theorem 1.4] and [26, Proposition 1.6], we see that

S1 = φ∗
2(S

+
2 )− E2,

S2 = φ∗
2(S

−
2 ),

E1 = φ∗
2(F1)− E2.

Remark 2.2. Let U = P(OV ⊕OV (−L1)⊕OV (−L2)), let ξU be the tautological line bundle
on the variety U , let πU : U → V be the natural projection. We have isomorphisms:

H0
(
U,OU(ξU)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L1)

)
⊕H0

(
V,OV (−L2)

)
,

H0
(
U,OU(ξU + π∗

U (L1))
)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L1)

)
⊕H0

(
V,OV (L1 − L2)

)
,

H0
(
U,OU(ξU + π∗

U (L2))
)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L2)

)
⊕H0

(
V,OV (L2 − L1

)
.

Using these isomorphisms, fix sections

v0 ∈ H0
(
U,OU(ξU)

)
,

v1 ∈ H0
(
U,OU(ξU + π∗

U (L1))
)
,

v2 ∈ H0
(
U,OU(ξU + π∗

U (L2))
)
,

which correspond to the section 1 ∈ H0(V,OV ). One can show that there exists a closed
embedding X →֒ U over V such that the image of X is defined by

π∗
U (f)v

2
0 − v1v2 = 0,

so that we can idendity X with a Cartier divisor on U such that X ∼ 2ξU + π∗
U(L1 +L2).

Starting from now, we assume, in addition, that V is projective.

Proposition 2.3. Suppose that V is normal, and KV is Q-Cartier. Then X is normal,
and KX is Q-Cartier. Moreover, the following assertion holds:

−KX is ample ⇐⇒ −KV , −KV − L1, −KV − L2 are ample.

Proof. The normality of the variety X follows from Remark 2.2 and [36, Proposition 5.24].
Similarly, using notations introduced in Remark 2.2, we see that

KU ∼Q −3ξU + π∗
U

(
KV − L1 − L2),

so KX is Q-Cartier by the adjunction formula, because X is a Cartier divisor on U .
7



To prove the remaining assertion, suppose that −KV , −KV −L1, −KV −L2 are ample.
Then ξU + π∗

U(−KV ) in Remark 2.2 is ample. Then so is −KX ∼Q (ξU + π∗
U (−KV )) |X .

Alternatively, we can prove the ampleness of −KX directly. Namely, observe that

(2.4) −KX ∼Q S1 + S2 + θ∗(−KV ).

Moreover, applying the adjunction formula to the sections S1 and S2, we get

−KX

∣∣
S1

∼Q −KV − L1,

−KX

∣∣
S2

∼Q −KV − L2,

where we used S1
∼= V and S2

∼= V . Hence, if −KV , −KV − L1, −KV − L2 are ample,
then the divisor −KX is also ample by Kleiman’s ampleness criterion.

This also shows that both divisors −KV −L1 and −KV −L2 are ample if −KX is ample.
Observe that E1 ∩ E2

∼= R. Using this isomorphism and (2.4), we get −KV |R ∼ −KX |R.
On the other hand, we have

−2KV ∼Q

(
−KV − L1

)
+
(
−KV − L2

)
+R.

Hence, using Kleiman’s criterion again, we see that −KV is ample if −KX is ample. �

Example 2.5. Suppose V = P1×P1, and L1 and L2 are divisors of degrees (1, 0) and (0, 1),
and R is a smooth divisor in |L1+L2|. Then X is a smooth Fano 3-fold by Proposition 2.3.
One can show that X is the unique smooth Fano 3-fold in the deformation family №4.7.
Note that X is K-polystable [6, §3.3].

Remark 2.6 ([16, Lemma 9.8]). Suppose that V is a smooth Fano variety, and−KV ∼Q aL,
where L is an ample divisor in Pic(V ), and a ∈ Q>0. Suppose R and X are smooth, and

L1 ∼Q a1L,

L2 ∼Q a2L,

where a1 and a2 are rational numbers such that a1 > a2. It follows from Proposition 2.3
that X is a Fano variety ⇐⇒ a > a1. Further, if X is a Fano variety, then it follows
from the proof of [16, Lemma 9.8] that

β(S2) < 0 ⇐⇒ a1 > a2.

Therefore, if a > a1 > a2, then X is a K-unstable Fano variety.

From now on, we also assume that L1 = L2. Set L = L1. Then R ∈ |2L|. Set

Y = P
(
OV ⊕O(L)

)
.

let π : Y → V be the natural projection, and let ξ be the tautological line bundle on Y .
Note that Y ∼= Y1 ∼= Y2. Using the isomorphisms

H0
(
Y,OY (ξ)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L)

)
,

H0
(
Y,OY (ξ − π∗(L))

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L)

)
,

fix u+ ∈ H0(Y,OY (ξ)) and u
− ∈ H0(Y,OY (ξ−π

∗(L))) that correspond to 1 ∈ H0(V,OV ).
Let S− = {u− = 0} and S+ = {u+ = 0}. Then S+ ∼ S− + π∗(L).

Proposition 2.7. There is a double cover X → Y ramified in a divisor B ∈ |2S+| such
that the projection π induces a double cover B → V that is ramified in R.
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Proof. Let T = P(OV ⊕OV (−L))⊕OV (−2L)), let ̟ : T → V be the natural projection,
and let ξT be the tautological line bundle on T . Observe that

H0
(
T,OT (ξT )

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (−L)

)
⊕H0

(
V,OV (−2L)

)
,

H0
(
T,OT (ξT +̟∗(L))

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (L)

)
⊕H0

(
V,OV (−L)

)
,

H0
(
T,OT (ξT +̟∗(2L)

)
∼= H0

(
V,OV

)
⊕H0

(
V,OV (2L)

)
⊕H0

(
V,OV (L)

)
.

Using these isomorphisms, fix sections

t0 ∈ H0
(
T,OT (ξT )

)
,

t1 ∈ H0
(
T,OT (ξT +̟∗(L))

)
,

t2 ∈ H0
(
T,OT (ξT +̟∗(2L)

)

that corresponds to 1 ∈ H0(V,OV ). Then

{t0 = 0} ∼= P
(
OV (−L))⊕OV (−2L)

)
,

{t1 = 0} ∼= P
(
OV ⊕OV (−2L)

)
,

{t2 = 0} ∼= P
(
OV ⊕OV (−L))

)
.

Now, we consider the homomorphism

(2.8) OQ ⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(2L)

)
→ OQ

(
ρ∗1(ξ1) + ρ∗2(ξ2)

)

defined by the composition of



1 0 0

0 1
2

0

0 1
2

0

0 0 1




: OQ⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(2L)

)
→ OQ⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(2L)

)

and the surjection

OQ ⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(L)

)
⊕OQ

(
ϑ∗(2L)

)
։ OQ

(
ρ∗1(ξ1) + ρ∗2(ξ2)

)

obtained by the tensor product of the pullbacks of the following natural surjections

OY1 ⊕OY1

(
π∗
1(L1)

)
։ OY1(ξ1),

OY2 ⊕OY2

(
π∗
2(L2)

)
։ OY2(ξ2).

Then (2.8) is surjective. This gives the morphism ρ : Q→ T over V with

ρ∗(t0) = u−1 u
−
2 ,

ρ∗(t1) =
1

2

(
u+1 u

−
2 + u−1 u

+
2

)
,

ρ∗(t2) = u+1 u
+
2 ,

where we identified H0(Q,OQ(ρ
∗
i (D))) = H0(Yi,OYi(D)) for D ∈ Pic(Yi).

Using the local criterion for flatness, we see that ρ is flat. Further, ρ is finite of degree 2.
Now, using [18, I (6.11)] and [18, I (6.12)], we see that the morphism ρ is branched over
the divisor BT ∈ |2(ξT +̟∗(L))| that is given by t21 − t0t2 = 0.

Let Y0 be the divisor in |ξT +̟∗(2L)| that is given by

̟∗(f)t0 − t2 = 0,
9



and let π0 : Y0 → V be the morphism induced by ̟. Then X = ρ∗(Y0) as Cartier divisors,
so that the restriction X → Y0 is a double cover branched over BT |Y0 . Moreover, using
the exact sequence

0 → OV (−2L)




f
0
−1




−−−−→ OV ⊕OV (−L)⊕OV (−2L)


1 0 f
0 1 0




−−−−−−−−→ OV ⊕OV (−L) → 0,

we get an isomorphism Y0 ∼= Y over V . Hence, we identify Y = Y0.
Set B = BT |Y . Then B is defined by

(u+)2 − π∗(f)(u−)2 = 0,

which implies the remaining assertions of the proposition. �

Let ι ∈ Aut(X) be the Galois involution of the double cover X → Y in Proposition 2.7.
Then ι(S1) = S2 and ι(E1) = E2, and it follows from the proof of Proposition 2.7 that
the conic bundle θ : X → V is 〈ι〉-equivariant with ι acting trivially on V .

Proposition 2.9. Suppose that V is smooth, L is nef, X has Kawamata log terminal
singularities, and −KX is ample. Then the deformations of X are unobstructed.

Proof. By Remark 2.2, X can be embedded into U = PV (OV ⊕OV (−L)⊕OV (−L))
such that X ∈ |2ξU + 2π∗

U(L)|, where ξU is the tautological line bundle and πU is the
natural projection. Therefore, since U is smooth, the variety X has at worst canonical
singularities, andX has at worst local complete intersection singularities. Hence, it follows
from [35, Theorem 2.3.2], [35, Theorem 2.4.1], [35, Corollary 2.4.2], [34, Proposition 2.4],
[34, Proposition 2.6] that the deformations of X are unobstructed if Ext2OX

(Ω1
X ,OX) = 0.

Let us show that Ext2OX
(Ω1

X ,OX) = 0. Set n = dim(X). As in [34, §1.2], we have

Ext2OX

(
Ω1
X ,OX

)
≃ Ext2OX

(
Ω1
X ⊗ ωX , ωX

)
≃ Hn−2

(
X,Ω1

X ⊗ ωX
)∨
.

Since −KV and −KV − L are ample and L is nef, we see that ξU + π∗
U (−KV ) is ample,

and ξU + π∗
U(L) is nef. In particular, both divisors

−KU ∼ 3ξU + π∗
U(−KV + 2L),

−KU −X ∼ ξU + π∗
U(−KV )

are ample. On the other hand, using the exact sequence of sheaves

0 −→ OU(−X)
∣∣
X
−→ Ω1

U

∣∣
X
−→ Ω1

X −→ 0,

we get the following exact sequence:

Hn−2
(
X,Ω1

U

∣∣
X
⊗ ωX

)
−→ Hn−2

(
X,Ω1

X ⊗ ωX
)
−→ Hn−1

(
X,OU(−X)

∣∣
X
⊗ ωX

)
.

Moreover, using the Kodaira-type vanishing theorem, we get

Hn−1
(
X,OU(−X)

∣∣
X
⊗ ωX

)
≃ H1

(
X,KX + (−KU)

∣∣
X

)∨
= 0.

Furthermore, using the exact sequence of sheaves

0 −→ Ω1
U ⊗ ωU −→ Ω1

U ⊗ ωU(X) −→ Ω1
U

∣∣
X
⊗ ωX −→ 0,

we get the exact sequence

Hn−2
(
U,Ω1

U ⊗ ωU(X)
)
−→ Hn−2

(
X,Ω1

U |X ⊗ ωX
)
−→ Hn−1

(
U,Ω1

U ⊗ ωU
)
.
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Since both ωU and ωU(X) are anti-ample, the Akizuki–Nakano vanishing theorem gives

Hn−2
(
U,Ω1

U ⊗ ωU(X)
)
= Hn−1

(
U,Ω1

U ⊗ ωU
)
= 0.

This gives Ext2OX
(Ω1

X ,OX) = 0, which completes the proof. �

3. K-polystability criteria

The goal of this section is to prove Theorem 1.19. To do this, fix a positive integer n > 3.
Let V be a smooth projective variety of dimension n− 1, and let L be an ample Cartier
divisor on V . Set d = Ln−1. Fix µ ∈ Q>0 such that µL is very ample. Let

Y = P
(
OV ⊕OV (L)

)
,

and let π : Y → V be the natural projection. Set H = π∗(L). Let S− and S+ be disjoint
sections of the projection π such that S+ ∼ S− +H .

Remark 3.1. Unlike Section 1, we do not assume that V is a Fano variety.

Fix a positive rational number a > 1. Let D(a) = S− + aH . Then D(a) is nef and big.
Moreover, if a > 1, then D(a) is ample.

Lemma 3.2 (cf. [40]). Let P be a point in S−. Then

δP (Y ;D(a)) > min

{
(n + 1)(an − (a− 1)n)

(n+ 1− a)an + (a− 1)n+1
,
δ(V ;L)(n+ 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)

}
,

where δP (Y ;D(a)) is the (local) δ-invariant of the variety Y polarized by the divisor D(a),
and δ(V ;L) is the δ-invariant of V polarized by L. Further, if δ(V ;L) 6 a, then

δP (Y ;D(a)) >
δ(V ;L)(n+ 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)
.

Proof. It follows from [2, 6] that

δP (Y ;D(a)) > min





1

SD(a)(S−)
, inf

F/S−

P∈CS−(F )

AS−(F )

S(W S−

•,• ;F )




,

where S(W S−

•,• ;F ) is defined in [6, Section 1.7], and the infimum is taken over all prime
divisors over S− whose centers on S− contain P . This easily implies the required assertion.

Indeed, take u ∈ R>0. Then D(a)− uS− ∼R (1− u)S− + aH , so that

D(a)− uS− is nef ⇐⇒ D(a)− uS− is pseudo-effective ⇐⇒ u 6 1.

Thus, since vol(D(a)) = D(a)n = d(an − (a− 1)n), we have

SD(a)(S
−) =

1

D(a)n

∫ ∞

0

vol(D(a)− uS−)du =

=
1

d(an − (a− 1)n)

∫ 1

0

((1− u− a)n(−1)n+1d+ and)du =
(n+ 1− a)an + (a− 1)n+1

(n + 1)(an − (a− 1)n)
.

Using S− ∼= V , we get (D(a)− uS−)|S− ∼R (a+ u− 1)H|S− ∼R (a+ u− 1)L.
11



Let F be any prime divisor over S−. Then it follows from [6, Section 1.7] that

S(W S−

•,• ;F ) =
n

D(a)n

∫ 1

0

∫ ∞

0

vol((D(a)− uS−)|S− − vF )dvdu

=
n

D(a)n

∫ 1

0

∫ ∞

0

vol((a+ u− 1)L− vF )dvdu

=
n

D(a)n

∫ 1

0

(a+ u− 1)n
∫ ∞

0

vol(L− vF )dvdu

=
n

d(an − (a− 1)n)
·
an+1 − (a− 1)n+1

n + 1

∫ ∞

0

vol(L− vF )dv

=
n

n + 1

an+1 − (a− 1)n+1

d(an − (a− 1)n)
· Ln−1SL(F )

=
n

n + 1

an+1 − (a− 1)n+1

an − (a− 1)n
SL(F ).

This gives

AS−(F )

S(W S−

•,• ;F )
=
AS−(F )

SL(F )
·
n + 1

n
·

an − (a− 1)n

an+1 − (a− 1)n+1
6 δP (V ;L) ·

n+ 1

n
·

an − (a− 1)n

an+1 − (a− 1)n+1
,

which implies the first part of the assertion.
We now assume δ(V ;L) 6 a and we want to show

(n+ 1)(an − (a− 1)n)

(n+ 1− a)an + (a− 1)n+1
>
δ(V ;L)(n + 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)
.

This inequality is equivalent to

δ(V ;L) 6
n(an+1 − (a− 1)n+1)

(n+ 1− a)an + (a− 1)n+1

We must show that the right hand side of the inequality above is at least a. But

n(an+1 − (a− 1)n+1)

(n+ 1− a)an + (a− 1)n+1
> a ⇐⇒ an+1(a− 1)− (a− 1)n+1(a + n) > 0,

which is clearly true. �

Now, fix a smooth divisor B ∈ |2S+|. Let η : B → V be the morphism induced by π.
Suppose that η is the double cover ramified over a smooth divisor R ∈ |2L|. Set

∆ =
1

2
B.

Note that B ∩ S− = ∅. Let kn(a, d, µ) be the number defined in Theorem 1.10.

Proposition 3.3. Let P be a point in Y \ S−. Suppose that dµn−2 > 2. Then

δP (Y,∆;D(a)) >
1

kn(a, d, µ)
,

where δP (Y,∆;D(a)) is the (local) δ-invariants of the pair (Y,∆) polarized by D(a).

This result together with Lemma 3.2 implies Theorem 1.19.
12



Proof of Theorem 1.19. Note that V is a Fano variety and −KV ∼Q aL. Then

−KY ∼ 2S+ − π∗(KV + L) ∼Q 2S+ + (a− 1)H,

which gives

−(KY +∆) ∼Q S
+ + (a− 1)H ∼Q S

− + aH = D(a),

so that (Y,∆) is the log Fano pair and

δ(Y,∆) = δ(Y,∆;D(a)),

where δ(Y,∆) is the δ-invariant of the log Fano pair (Y,∆). Now, we can apply Lemma 3.2
and Proposition 3.3 to get the required assertion. �

In the remaining part of the section, we will prove Proposition 3.3 by induction on n

3.1. Base of induction. Let V be a smooth projective surface, let L be an ample Cartier
divisor on V , let µ be the smallest rational number such that µL is very ample, let

Y = P
(
OV ⊕OV (L)

)
,

and let π : Y → V be the natural projection. Set H = π∗(L). Let S− and S+ be disjoint
sections of the projection π such that S+ ∼ S− +H , and let B be an irreducible normal
surface in |2S+| such that π induces a double cover B → V which is ramified in a reduced
curve R ∈ |2L|. Fix a ∈ Q such that a > 1. Let

D(a) = S− + aH.

Then D(a) is nef and big, and D(a) is ample for a > 1. Set ∆ = 1
2
B and d = L2.

Remark 3.4. Since µL is very ample and L is Cartier, we have dµ = (µL) · L ∈ Z>0 and

dµ2 = (µL)2 ∈ Z>0.

Moreover, if dµ = 1, then µ = 1, d = L2 = 1, V = P2 and L = OP2(1).

Suppose, in addition, that dµ > 2. Set

k3(a, d, µ) =
8dµa3 + 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3

8(3a2 − 3a+ 1)
.

Let P be a point in Y such that P 6∈ S− and P 6∈ Sing(B).

Proposition 3.5. One has δP (Y,∆;D(a)) > 1
k3(a,d,µ)

.

In the remaining part of this subsection, we will prove this result. We will only consider
the case P ∈ B, because the case P 6∈ B is much simpler.

Let V1 be a general curve in |µL| that contains the point π(P ), and let Y1 = π∗(V1).
Then V1 is a smooth curve, and Y1 is a smooth surface. For simplicity, we set D = D(a).
Take u ∈ R>0. Then

D − uY1 ∼R S
− + (a− µu)H,

so that D − uY1 is pseudo-effective ⇐⇒ u 6 a
µ
. We have

(D − uY1)
∣∣
S−

∼R (S− + (a− µu)H)
∣∣
S−

∼R (a− 1− µu)L,
13



where we use isomorphism S− ∼= V induced by π. Hence, the divisor D − uY1 is nef if
and only if u 6 a−1

µ
. Moreover, the Zariskis decomposition of D − uY1 is

P (u) ≡

{
S− + (a− µu)H if u ∈ [0, a−1

µ
],

(a− µu)(S− +H) = (a− µu)S+ if u ∈ [a−1
µ
, a
µ
],

and

N(u) =

{
0 if u ∈ [0, a−1

µ
],

(µu+ 1− a)S− if u ∈ [a−1
µ
, a
µ
],

where P (u) is the positive part, and N(u) is the negative part.
Note that H3 = 0, H2 · S− = d, H · (S−)2 = −d, (S−)3 = d. Then

SD(Y1) =
1

D3

∫ a
µ

0

vol(D − uY1)du

=
1

(S− + aH)3

(∫ a−1

µ

0

(S− + (a− µu)H)3du+

∫ a
µ

a−1

µ

((a− µu)(S− +H))3du

)

=
(2a− 1)(2a2 − 2a+ 1)

4µ(3a2 − 3a+ 1)
.

Let f be the fiber of the P1-bundle π that contains P . Then there are two cases to
consider: either B intersects f transversely at P or tangentially. For each case, we consider

an appropriate plt blow up h : Ỹ1 → Y1 at the point P with smooth exceptional curve E.
We let ∆1 = ∆|Y1 , and we denote by ∆̃1 the proper transform on Ỹ1 of the divisor ∆1.
Then it follows from [2, 6, 17] that

δP (Y,∆) > min

{
1

SD(Y1)
,
AY1,∆1

(E)

S(V Y1•,• ;E)
, inf
Q∈E

AE,∆E
(Q)

S(V Ỹ1,E
•,•,• ;Q)

}
.

where S(V Y1
•,• ;E) and S(V

Ỹ1,E
•,•,• ;Q) are defined in [6, Section 1.7], and ∆E is the different

computed via the adjunction formula

KE +∆E =
(
KỸ1

+ ∆̃1

)
|E.

For instance, if h is the ordinary blow up at the point P , then ∆E = ∆̃1|E. For simplicity,
we rewrite the last inequality as

(3.6)
1

δP (Y,∆)
6 max

{
SD(Y1),

S(V Y1
•,• ;E)

AY1,∆1
(E)

, sup
Q∈E

S(V Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

}
.

Thus, to prove Proposition 3.5, it is enough to bound each term in (3.6) by k3(a, d, µ).
We set S−

1 = S−|Y1, H1 := H|Y1, B1 := B|Y1, D1 = P (u)|Y1. Note that H1 ≡ dµf and

D1 ≡

{
S−
1 + (a− µu)dµf if u ∈ [0, a−1

µ
],

(a− µu)(S−
1 + dµf) if u ∈ [a−1

µ
, a
µ
].

We denote by S̃−
1 , B̃1, f̃ the proper transforms on Ỹ1 of the curves S

−
1 , B1, f , respectively.

Lemma 3.7. Suppose B intersects f transversally. Then δP (Y,∆;D(a)) > 1
k3(a,d,µ)

.
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Proof. Let h : Ỹ1 → Y1 be the ordinary blow up at P . Recall that E is the h-exceptional

curve. We have S̃−
1 ∼ h∗(S−

1 ) and f̃ ∼ h∗(f)− E. Take v ∈ R>0. Then

h∗(D1)− vE ≡

{
S̃−
1 + (a− µu)dµf̃ + ((a− µu)dµ− v)E if u ∈ [0, a−1

µ
],

(a− µu)(S̃−
1 + dµf̃) + ((a− µu)dµ− v)E if u ∈ [a−1

µ
, a
µ
].

We have the following intersection numbers:

• S̃−
1 f̃ E

S̃−
1 −dµ 1 0

f̃ 1 −1 1

E 0 1 −1

This shows that h∗(D1)− vE is pseudo-effective ⇐⇒ v 6 (a− µu)dµ.
If u ∈ [0, a−1

µ
], the positive part of the Zariski decomposition of h∗(D1)− vE is

P̃ (u, v) ≡





S̃−
1 + (a− µu)dµf̃ + ((a− µu)dµ− v)E if v ∈ [0, 1]

S̃−
1 + ((a− µu)dµ+ 1− v)f̃ + ((a− µu)dµ− v)E if v ∈ [1, 1− dµ2u+ adµ− dµ]

−dµ2u+adµ−v
dµ−1

(S̃−
1 + dµf̃ + (dµ− 1)E) if v ∈ [1− dµ2u+ adµ− dµ, (a− µu)dµ],

and the negative part is

Ñ(u, v) =





0 if v ∈ [0, 1]

(v − 1)f̃ if v ∈ [1, 1− dµ2u+ adµ− dµ]
dµ(µu−a+v)

dµ−1
f̃ + dµ2u−adµ+dµ+v−1

dµ−1
S̃−
1 if v ∈ [1− dµ2u+ adµ− dµ, (a− µu)dµ].

Similarly, if u ∈ [a−1
µ
, a
µ
], the positive part of the Zariski decomposition of h∗(D1)− vE is

P̃ (u, v) ≡

{
(a− µu)(S̃−

1 + dµf̃) + ((a− µu)dµ− v)E if v ∈ [0, a− µu]
1

dµ−1
(−dµ2u+ adµ− v)(S̃−

1 + dµf̃ + (dµ− 1)E) if v ∈ [a− µu, (a− µu)dµ].

and the negative part is

Ñ(u, v) =

{
0 if v ∈ [0, a− µu]

1
dµ−1

(dµ(µu− a+ v)f̃ + (µu− a+ v)S̃−
1 ) if v ∈ [a− µu, (a− µu)dµ].

Now, using results from [6, Section 1.7], we compute

S(W Ỹ1
•,•;E) =

3

D3

a
µ∫

0

(a−µu)dµ∫

0

vol(D1 − vF )dvdu =
3

(S− + aH)3

a
µ∫

0

(a−µu)dµ∫

0

P̃ (u, v)2dvdu

=
4a3dµ+ 6(1− dµ)a2 + 4(dµ− 2)a− dµ+ 3

4(3a2 − 3a+ 1)
.

Moreover, we have AY1,∆1
(E) = 2− 1

2
= 3

2
, so that

S(W Y1
•,•;E)

AY1,∆1
(E)

=
4a3dµ+ 6(1− dµ)a2 + 4(dµ− 2)a− dµ+ 3

6(3a2 − 3a + 1)
.
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Let Q be a point in E. Then, using results from [6, Section 1.7], we compute

S(W Ỹ1,E
•,•,• ;Q) =

3

(S− + aH)3

a
µ∫

0

(a−µu)dµ∫

0

(
P̃ (u, v) · E

)2
dvdu+ Fq(W

Ỹ1,E
•,•,• )

=
6a2 − 8a+ 3

4(3a2 − 3a + 1)
+ FQ

(
W Ỹ1,E

•,•,•
)
,

where

FQ
(
W Ỹ1,E

•,•,•
)
=

6

(S− + aH)3

a
µ∫

0

(a−µu)dµ∫

0

(
P̃ (u, v) · E

)
· ordQ

(
Ñ(u, v)|E

)
dvdu,

because P 6∈ Supp(N(u)) for u ∈ [0, a
µ
]. Notice that FQ(W

Ỹ1,E
•,•,• ) 6= 0 only when Q ∈ f̃ .

Thus, there are three cases to consider.

• Q = E ∩ f̃ . Then

FQ
(
W Ỹ1,E

•,•,•
)
=

3− 8a+ 6a2 + dµ− 4adµ+ 6a2dµ− 4a3dµ

4(3a2 − 3a+ 1)

and AE,∆E
(Q) = 1 since Q 6∈ B̃1. Hence, we have

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
dµ(2a− 1)(2a2 − 2a + 1)

4(3a2 − 3a+ 1)
.

• Q ∈ E ∩ B̃1. Then AE,∆E
(Q) = 1

2
, so that

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
6a2 − 8a+ 3

2(3a2 − 3a+ 1)
.

• Q ∈ E away from f̃ and B̃1. Then AE,∆E
(Q) = 1, so that

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
6a2 − 8a+ 3

4(3a2 − 3a+ 1)
.

The third case is smaller than the previous one (exactly half) so we do not consider it.
So, using (3.6), we obtain the inequality

(3.8)
1

δP (Y,∆)
6 max

{
(2a− 1)(2a2 − 2a+ 1)

4µ(3a2 − 3a+ 1)
,

4a3dµ+ 6(1− dµ)a2 + 4(dµ− 2)a− dµ+ 3

6(3a2 − 3a+ 1)
,

dµ(2a− 1)(2a2 − 2a+ 1)

4(3a2 − 3a+ 1)
,

6a2 − 8a+ 3

2(3a2 − 3a+ 1)

}
.

Recall from Remark 3.4 that dµ2 > 1. This allows us to conclude

dµ(2a− 1)(2a2 − 2a + 1)

4(3a2 − 3a+ 1)
>

(2a− 1)(2a2 − 2a+ 1)

4µ(3a2 − 3a+ 1)
16



so we can discard the first term in (3.8). Moreover, since dµ > 2, we have

4a3dµ+ 6(1− dµ)a2 + 4(dµ− 2)a− dµ+ 3

6(3a2 − 3a + 1)
6 k3(a, d, µ),

dµ(2a− 1)(2a2 − 2a+ 1)

4(3a2 − 3a+ 1)
6 k3(a, d, µ),

6a2 − 8a+ 3

2(3a2 − 3a+ 1)
6 k3(a, d, µ),

which gives δP (Y,∆;D(a)) > 1
k3(a,d,µ)

. �

Now, we deal with the case when f is tangent to B at the point P .

Lemma 3.9. Suppose B and f are tangent at P . Then δP (Y,∆;D(a)) > 1
k3(a,d,µ)

.

Proof. Now, we let h : Ỹ1 → Y1 be the (1, 2)-weighted blowup of the point P such that

the curves B̃1 and f̃ are disjoint. Then f̃ = h∗(f)− 2E. Take v ∈ R>0. Then

h∗(D1)− vE ≡

{
S̃−
1 + (a− µu)dµf̃ + (2(a− µu)dµ− v)E if u ∈ [0, a−1

µ
],

(a− µu)(S̃−
1 + dµf̃) + (2(a− µu)dµ− v)E if u ∈ [a−1

µ
, a
µ
].

Moreover, we have the following intersection numbers:

• S̃−
1 f̃ E

S̃−
1 −dµ 1 0

f̃ 1 −2 1

E 0 1 −1
2

Thus, the divisor h∗(D1)− vE is pseudo-effective ⇐⇒ v 6 2(a− µu)dµ.
If u ∈ [0, a−1

µ
], the positive part of the Zariski decomposition of h∗(D1)− vE is

P̃ (u, v) ≡





S̃−
1 + (a− µu)dµf̃ + (2(a− µu)dµ− v)E if v ∈ [0, 1]

S̃−
1 + ((a− µu)dµ+ 1−v

2
)f̃ + (2(a− µu)dµ− v)E if v ∈ [1,−2dµ2u+ 2adµ− 2dµ+ 1]

−2dµ2u+2adµ−v
2dµ−1

(S̃−
1 + dµf̃ + (2dµ− 1)E) if v ∈ [−2dµ2u+ 2adµ− 2dµ+ 1, 2(a− µu)dµ],

and the negative part is

Ñ(u, v) =





0 if v ∈ [0, 1]
v−1
2
f̃ if v ∈ [1,−2dµ2u+ 2adµ− 2dµ+ 1]

dµ(µu−a+v)
2dµ−1

f̃ + 2dµ2u−2adµ+2dµ+v−1
2dµ−1

S̃−
1 if v ∈ [−2dµ2u+ 2adµ− 2dµ+ 1, 2(a− µu)dµ].

Similarly, if u ∈ [a−1
µ
, a
µ
], the positive part of the Zariski decomposition of h∗(D1)− vE is

P̃ (u, v) ≡

{
(a− µu)(S̃−

1 + dµf̃) + (2(a− µu)dµ− v)E if v ∈ [0, a− µu]
−2dµ2u+2adµ−v

2dµ−1
(S̃−

1 + dµf̃ + (2dµ− 1)E) if v ∈ [a− µu, 2(a− µu)dµ],
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and the negative part is

Ñ(u, v) =

{
0 if v ∈ [0, a− µu]
dµ(µu−a+v)

2dµ−1
f̃ + µu−a+v

2dµ−1
S̃−
1 if v ∈ [a− µu, 2(a− µu)dµ].

Now, using results from [6, Section 1.7], we compute

S(W Y1
•,•;E) =

3

D3

a
µ∫

0

2(a−µu)dµ∫

0

vol(D1 − vF )dvdu =
3

(S− + aH)3

a
µ∫

0

2(a−µu)dµ∫

0

P̃ (u, v)dvdu

=
1

4
·
8a3dµ+ 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3

3a2 − 3a+ 1

Moreover, since AY1,∆1
(E) = 2, we have

S(W Y1
•,•;E)

AY1,∆1
(E)

=
1

8
·
8a3dµ+ 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3

3a2 − 3a+ 1
.

Let Q be a point in E. Using results from [6, Section 1.7], we get

S(W Ỹ1,E
•,•,• ;Q) =

3

(S− + aH)3

a
µ∫

0

2(a−µu)dµ∫

0

(
P̃ (u, v) · E

)2
dvdu+ FQ

(
W Ỹ1,E

•,•,•
)

=
1

8
·
6a2 − 8a+ 3

3a2 − 3a+ 1
+ FQ

(
W Ỹ1,E

•,•,•
)

where

FQ
(
W Ỹ1,E

•,•,•
)
=

6

(S− + aH)3

a
µ∫

0

2(a−µu)dµ∫

0

(P̃ (u, v) · E) · ordQ(Ñ(u, v)|E)dvdu.

There are three cases to consider.

• Q = E ∩ f̃ . Then

FQ(W
Ỹ1,E
•,•,• ) =

1

8

8a3dµ− 6(2dµ− 1)a2 + 8(dµ+ 1)a− 2dµ− 3

3a2 − 3a+ 1

and AE,∆E
(Q) = 1 since Q 6∈ B̃1. Hence, we have

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
dµ

4
·
(2a− 1)(2a2 − 2a + 1)

3a2 − 3a+ 1
.

• Q ∈ E ∩ B̃. Then AE,∆E
(Q) = 1

2
, so that

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
1

4
·
6a2 − 8a+ 3

3a2 − 3a+ 1
.

• Q ∈ E is the A1 singularity. Then AE,∆E
(Q) = 1

2
and so

S(W Ỹ1,E
•,•,• ;Q)

AE,∆E
(Q)

=
1

4
·
6a2 − 8a+ 3

3a2 − 3a+ 1
.
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We have the inequality:

(3.10)
1

δP (Y,∆)
6 max

{
(2a− 1)(2a2 − 2a+ 1)

4µ(3a2 − 3a+ 1)
,

1

8
·
8a3dµ+ 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3

3a2 − 3a+ 1
,

dµ

4
·
(2a− 1)(2a2 − 2a+ 1)

3a2 − 3a + 1
,
1

4
·
6a2 − 8a+ 3

3a2 − 3a+ 1

}
.

Now, arguing as in the end of the proof of Lemma 3.7, we find

1

δP (Y,∆)
6

1

8
·
8a3dµ+ 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3

3a2 − 3a+ 1
,

and the result follows. �

Proposition 3.5 is proved.

3.2. The induction. Let us use all assumption and notations introduced in Section 3.
Recall that µ is the smallest rational number for which µL is a very ample Cartier divisor
on the variety V and d = Ln−1. Then

µn−1d = (µL)n−1 > 1.

Let us prove Proposition 3.3 by induction on dim(Y ) = n > 3 — the base of induction
(the case when n = 3) is done in Section 3.

Therefore, we suppose that Proposition 3.3 holds for varieties of dimension n− 1 > 3.
Let P be a point in Y such that P 6∈ S−. We must prove that

δP (Y,∆;D(a)) >
1

kn(a, d, µ)
,

where kn(a, d, µ) is presented in Theorem 1.10. We will only consider the case when P ∈ B,
since the case P 6∈ B is simpler and similar. Thus, we suppose that P ∈ B.

Let Vn−1 be a general divisor in |µL| that contains the point π(P ). Set Yn−1 = π∗(Vn−1).
For simplicity, set D = D(a). First, let us compute SD(Yn−1). Take u ∈ R>0. Then

D(a)− uYn−1 ∼R S
− + (a− µu)H,

so D(a)− uYn−1 is pseudo-effective ⇐⇒ u 6 a
µ
. For u ∈ [0, a

µ
], let P (u) be the positive

part of the Zariski decomposition of D(a) − uYn−1, and let N(u) be its negative part.
Then

P (u) ≡

{
S− + (a− µu)H = D(a− µu) if u ∈ [0, a−1

µ
],

(a− µu)(S− +H) = (a− µu)D(1) if u ∈ [a−1
µ
, a
µ
],

and

N(u) =

{
0 if u ∈ [0, a−1

µ
],

(µu+ 1− a)S− if u ∈ [a−1
µ
, a
µ
].

Recall that S− ∩ S+ = ∅. Note that (S−)n = (−1)n+1d and (S+)n = d. Hence, we have

D(a)n = (S− + aH)n = ((1− a)S− + aS+)n = d(an − (a− 1)n).
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Now, we compute

SD(Yn−1) =
1

D(a)n

∫ ∞

0

vol(D(a)− uYn−1)du

=
1

D(a)n

∫ a−1

µ

0

(S− + (a− µu)H)ndu+
1

D(a)n

∫ a
µ

a−1

µ

((a− µu)(S− +H))ndu

=
1

D(a)n

∫ a−1

µ

0

d((−1)n+1(1− a+ µu)n + (a− µu)n)du+
1

D(a)n

∫ a
µ

a−1

µ

d(a− µu)ndu

=
an+1 − (a− 1)n+1

µ(n+ 1)(an − (a− 1)n)
.

Set

Resn(a) =
an+1 − (a+ n)(a− 1)n

2(n+ 1)(an − (a− 1)n)
.

Lemma 3.11. One has kn(a, d, µ) = SD(a)(Yn−1)dµ
n−1 + Resn(a) and Resn(a) > 0.

Proof. The equality follows from the formulas for kn(a, d, µ) and SD(a)(Yn−1).
Let us show that Resn(a) > 0. We may assume that a > 1. The denominator is clearly

positive. Hence, we only need to verify that an+1 − (a+ n)(a− 1)n > 0. But
(

a

a− 1

)n
=

(
1 +

1

a− 1

)n
=

n∑

i=0

(
n

i

)(
1

a− 1

)i
> 1 +

n

a− 1
> 1 +

n

a
=
a + n

a
,

which gives an+1 − (a + n)(a− 1)n > 0. This shows that Resn(a) > 0. �

Set ∆n−1 = ∆|Yn−1
. Then SD(Yn−1) 6 kn(a, d, µ) by Lemma 3.11, since dµn−1 > 1.

Therefore, using [2], we see that δP (Y,∆;D) > 1
kn(a,d,µ)

provided that

(3.12) S(V Yn−1

•,• ;E) 6 kn(a, d, µ)AYn−1,∆n−1
(E),

for every prime divisor E over the variety Yn−1 such that its center on Yn−1 contains P ,

where AYn−1,∆n−1
(E) is the log discrepancy, and S(V

Yn−1
•,• ;E) is defined in [6, Section 1.7].

Suppose that n > 4. Let us prove (3.12) using Proposition 3.3 applied to (Yn−1,∆n−1).
Let E be a prime divisor over Yn−1 whose center in Yn−1 contains P . Since P 6∈ S−, it

follows from [6, Corollary 1.108] that

S(V Yn−1

•,• ;E) =
n

Dn

a
µ∫

0

( ∞∫

0

vol(P (u)|Yn−1
− vE)dv

)
du =

=
n

Dn

a−1

µ∫

0

∞∫

0

vol(S−+(a−µu)H−vE)dvdu+
n

Dn

a
µ∫

a−1

µ

∞∫

0

vol((a−µu)(S−+H)−vE)dvdu =

=
n

Dn

a−1

µ∫

0

∞∫

0

vol(S−+(a−µu)H−vE)dvdu+
n

Dn

a
µ∫

a−1

µ

(a−µu)n
∞∫

0

vol(S−+H−vE)dvdu.
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Now, applying Proposition 3.3 (induction step), we get
∞∫

0

vol(S− + (a− µu)H − vE)dv 6 kn−1(a− µu, dµ, µ)(S− + (a− µu)H)n−1AYn−1,∆n−1
(E)

and
∞∫

0

vol(S− +H − vE)dv 6 kn−1(1, dµ, µ)(S
− +H)n−1AYn−1,∆n−1

(E).

Hence, combining, we obtain

S(V Yn−1

•,• ;E) 6
n

Dn

a−1

µ∫

0

kn−1(a− µu, dµ, µ)(S− + (a− µu)H)n−1AYn−1,∆n−1
(E)du+

+
n

Dn

a
µ∫

a−1

µ

(a− µu)nkn−1(1, dµ, µ)(S
− +H)n−1AYn−1,∆n−1

(E)du =

= AYn−1,∆n−1
(E)

n

Dn

a−1

µ∫

0

kn−1(a− µu, dµ, µ)(S− + (a− µu)H)n−1du+

+ AYn−1,∆n−1
(E)

n

Dn

a
µ∫

a−1

µ

(a− µu)nkn−1(1, dµ, µ)(S
− +H)n−1du.

Let us compute these two integrals separately. We have

A1 :=

a−1

µ∫

0

kn−1(a− µu, dµ, µ)(S− + (a− µu)H)n−1du =

= dµn−1

a−1

µ∫

0

dµ((−1)n−1(1− a+ µu)n + (a− µu)n)

µn
du+

+

a−1

µ∫

0

dµ((a− µu)n − (a− µu+ n− 1)(a− µu− 1)n−1)

2n
du =

=
d2µn−1

µn(n+ 1)
(an+1 − (a− 1)n+1 − 1) +

d

2n(n+ 1)
(an+1 − (a+ n)(a− 1)n − 1)

and

A2 :=

a
µ∫

a−1

µ

(an−µu)
nkn−1(1, dµ, µ)(S

−+H)n−1du =
d(2dµn−2 + 1)

2n(n+ 1)
=

d2µn−1

µn(n+ 1)
+

d

2n(n+ 1)
.
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Adding these two integrals we get

n

D(a)n
(A1 + A2) =

dµn−1

µ(n+ 1)

an+1 − (a− 1)n+1

an − (a− 1)n
+

1

2(n+ 1)

an+1 − (a+ n)(a− 1)n

an − (a− 1)n

= SD(a)(Yn−1)dµ
n−1 + Resn(a).

This gives S(V
Yn−1

•,• ;E) 6 kn(a, d, µ)AYn−1,∆n−1
(E) by Lemma 3.11, which proves (3.12)

and completes the proof of Proposition 3.3.

3.3. Applications. The only application of Theorem 1.10 we could find is Theorem 1.9.
Let us use assumptions and notations of Theorem 1.10. Let V = Pn−1 and L = OPn−1(r).
Suppose that 1 < n

2
< r < n. Then µ = 1

r
, d = rn−1 and a = n

r
.

Lemma 3.13. One has kn(a, d, µ) < 1.

Proof. One has

kn(a, d, µ) =
(2dµn−2 + 1)an+1 − (a+ n)(a− 1)n − 2dµn−2(a− 1)n+1

2(n+ 1)(an − (a− 1)n)
.

Thus, it is enough to show that

2(n+ 1)(an − (a− 1)n)−
(
(2dµn−2 + 1)an+1 − (a+ n)(a− 1)n − 2dµn−2(a− 1)n+1

)
> 0.

Substituting µ = 1
r
, d = rn−1, a = n

r
, and multiplying by rn+1, we get the inequality

(nn − (n− r)n(r + 1))(2r − n) > 0,

which holds since 2r − n > 0 and n > r > n
2
by assumption. �

Lemma 3.14. One has

(n+ 1)(an − (a− 1)n)

(n+ 1− a)an + (a− 1)n+1
> 1.

Proof. The inequality is equivalent to

(n+ 1)(an − (a− 1)n) > (n+ 1− a)an + (a− 1)n+1.

Substituting a = n
r
, multiplying by rn, and dividing by n, we get nn− (r+1)(n− r)n > 0,

which holds since 1 < n
2
< r < n. �

Lemma 3.15. One has

aδ(V )(n+ 1)(an − (a− 1)n)

n(an+1 − (a− 1)n+1)
> 1.

Proof. We have δ(V ) = δ(Pn−1) = 1. Thus, the required inequality is equivalent to

n(an+1 − (a− 1)n+1)− a(n + 1)(an − (a− 1)n) < 0.

Substituting a = n
r
, multiplying by rn+1, and dividing by n, we get nn−(r+1)(n−r)n > 0,

which holds since 1 < n
2
< r < n. �

Theorem 1.9 follows from Lemmas 3.13, 3.14, 3.15 and Theorem 1.10.
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4. Proof of Theorem 1.12

The goal of this section is to prove Theorem 1.12 and describe singular K-polystable
limits of smooth Fano 3-folds in the deformation family №4.2. We start with the following
(probably well-known) result, which we fail to find in the literature.

Proposition 4.1. Let C be a (2, 2)-curve in P1 × P1. Then C is

• GIT stable for PGL2(C)× PGL2(C)-action ⇐⇒ it is smooth,
• GIT strictly polystable ⇐⇒ it is one of the curves in Theorem 1.12.

Proof. Choose homogeneous coordinates x, y of degree (1, 0) on P1 × P1, and choose
homogeneous coordinates u, v of degree (0, 1). Then C is given by

2∑

i=0

2∑

j=0

aijx
2−iyiu2−jvj = 0.

Observe that any one parameter subgroup λ : C∗ → PSL2(C)× PSL2(C) is conjugate to
a diagonal one of the form

t 7−→

((
tr0 0
0 t−r0

)
,

(
tr1 0
0 t−r1

))

for some integers r1 > r0 > 0 and r1 > 0, which we will write as λ = (r0,−r0, r1,−r1).
Then the Hilbert–Mumford function is

µ(f, λ) = max{r0(2− 2i) + r1(2− 2j), aij 6= 0}.

Clearly, if µ(f, λ) 6 0, then a00 = a10 = a01 = 0. Moreover, if this inequality is strict,
then we additionally have a11 = 0. Furthermore, we have

µ(x2v2, λ) = −µ(y2u2, λ).

So, at least one of a20 and a02 is zero. Without loss of generality, we assume that a20 = 0.
Therefore, if µ(f, λ) < 0, then a00 = a10 = a01 = a11 = a20 = 0.

Suppose that C is singular at the point ([1 : 0], [1 : 0]), so that a00 = a10 = a01 = 0,
and consider the one parameter subgroup λ = (1,−1, 1,−1). Then

µ(f, λ) = 4− 2(i+ j),

which is non-positive if and only if i + j > 2. But, since aij = 0 whenever i + j < 2, we
conclude that µ(f, λ) 6 0 and C is not stable.

Conversely, suppose there exists a one parameter subgroup λ for which µ(f, λ) 6 0.
Note that

µ(x2−iyiu2−jvj, λ) > 0

for any one parameter subgroup λ provided that i+j < 2. This gives a00 = a10 = a01 = 0,
so that the curve C is singular at ([1 : 0], [1 : 0]).

Now, let us describe the unstable locus. Suppose that a00 = a10 = a01 = a11 = a20 = 0.
Consider the one parameter subgroup λ = (1,−1, 2,−2). Then

µ(f, λ) = 6− 2(i+ 2j)

which is negative if and only if i+2j > 3. But since aij = 0 whenever i+2j 6 3 it follows
that µ(f, λ) < 0. Similarly, one can show that C is GIT-unstable if it can be given by

a02x
2v2 + a12xyv

2 + a21y
2uv + a22y

2v2 = 0.
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This describes all possibilities for the curve C to be GIT-semistable, which easily implies
the description of GIT-polystable (2, 2)-curves. �

Now, we set V = P1 × P1. Let L = OV (1, 1), let R be a curve in |2L|, set

Y = P
(
OV ⊕OV (L)

)
,

let π : Y → V be the natural projection, let S− and S+ be disjoint sections of π such that

S+ ∼ S− + π∗(L).

Finally, we set F = π∗(R), and let φ : X → Y be the blow up at the intersection S+ ∩ F .
If R is smooth, then X is K-polystable [6]. Theorem 1.12 says that X is also K-polystable
in the case when R is one of the following singular curves:

(1) C1 + C2, where C1 and C2 are smooth curves in |L| such that |C1 ∩ C2| = 2;
(2) ℓ1 + ℓ2 + ℓ3 + ℓ4, where ℓ1 and ℓ2 are two distinct smooth curves of degree (1, 0),

and ℓ3 and ℓ4 are two distinct smooth curves of degree (0, 1);
(3) 2C, where C is a smooth curve in |L|.

Now, let us prove Theorem 1.12. We start with

Remark 4.2. Suppose that R = ℓ1 + ℓ2 + ℓ3 + ℓ4, where ℓ1 and ℓ2 are two distinct smooth
curves in V of degree (1, 0), and ℓ3 and ℓ4 are two distinct smooth curves of degree (0, 1).
Then X is toric, and it corresponds to the moment polytope in MR whose vertices are

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1),
(1, 1, 0), (−1, 1, 0), (−1,−1, 0), (1,−1, 0),
(0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1).

The barycenter of the moment polytope is the origin, so X is K-polystable.

Our next step is the following simple lemma:

Lemma 4.3. Suppose R = 2C for a smooth curve C ∈ |L|. Then X is K-polystable.

Proof. In this case, the morphism φ is a weighted blow up at the intersection π∗(C)∩S+,
and X has non-isolated singularities along a smooth curve, which we will denote by C.
The threefold X can be obtained in a slightly different way. Let us describe it.

SetW = V ×P1, let ̟ : W → V be the natural projection, let S̃− and S̃+ be its disjoint

sections, and let Ẽ = ̟∗(C). Then there exists commutative diagram

U
α

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ψ

  
❅❅

❅❅
❅❅

❅❅

W

̟
  
❆❆

❆❆
❆❆

❆❆
X

π◦φ~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

V

where α blows up the intersection curves Ẽ ∩ S̃− and Ẽ ∩ S̃+, and ψ contracts the proper

transform of the surface Ẽ to the curve C. Moreover, we may assume that φ ◦ ψ maps

the proper transforms of the surfaces S̃− and S̃+ to the surfaces S− and S+, respectively.

Let Ê be the proper transform on the threefold U of the surface Ẽ. We may assume
that the curve C is the diagonal curve in V = P1 × P1.Using this, we see that

Aut(X) ∼= Aut(U) ∼= Aut
(
W, Ẽ + S̃− + S̃+

)
∼= PGL2(C)× (Gm ⋊ µ2)× µ2,
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and Ê is the only Aut(X)-invariant prime divisor over X . Thus, using [41], we conclude

that the threefold X is K-polystable if β(Ê) > 0. Let us compute β(Ê).

We let F− and F+ be α-exceptional surfaces such that α(F−) ⊂ S̃− and α(F+) ⊂ S̃+,

let Ŝ− and Ŝ+ be the proper transforms on U of the surfaces S− and S+, respectively.
Further, set H1 = (pr1 ◦ α)

∗(OP1(1)), H2 = (pr2 ◦ α)
∗(OP1(1)), H3 = (pr3 ◦ α)

∗(OP1(1)),
where pr1, pr2, pr3 are projections W → P1 such that pr1 and pr2 factors through ̟.
Then

ψ∗(−KX) ∼ −KU ∼ 2(H1 +H2 +H3)− F− − F+ ∼ 2Ê + Ŝ− + Ŝ+ + 2(F− + F+).

Now, we take u ∈ R>0. Then the divisor ψ∗(−KX)− uÊ is R-rationally equivalent to

(2− u)(H1 +H2) + 2H3 + (u− 1)(F− + F+) ∼R (2− u)Ê + Ŝ− + Ŝ+ + 2(F− + F+),

and Ŝ− + Ŝ+ + 2(F− + F+) is not big, so ψ∗(−KX)− uÊ is pseudoeffective ⇐⇒ u 6 2.

Moreover, if u ∈ [0, 1], then the divisor ψ∗(−KX)− uÊ is nef. Furthermore, if u ∈ [1, 2],

then the Zariski decomposition of the divisor ψ∗(−KX)− uÊ is given by

ψ∗(−KX)− uÊ ∼R (2− u)(H1 +H2) + 2H3︸ ︷︷ ︸
positive part

+ (u− 1)(F− + F+)︸ ︷︷ ︸
negative part

.

Hence, we have

β(Ê) = 1−
1

(−KX)3

∫ 2

0

vol
(
ψ∗(−KX)− uÊ

)
du =

= 1−
1

28

∫ 1

0

(
(2−u)(H1+H2)+2H3+(u−1)(F−+F+)

)3
du−

1

28

∫ 2

1

(
(2−u)(H1+H2)+2H3

)3
du =

= 1−

∫ 1

0

8u3 − 24u2 + 28du−

∫ 2

1

12(2− u)2du =
1

14
> 0,

which implies that X is K-polystable. �

To complete the proof of Theorem 1.12, let us present X as a codimension two complete
intersection in a toric variety. Let T = (C7 \ Z(I))/G2

m, where the G2
m-action is given by




x y z w u v s
1 1 1 1 1 0 2
0 0 0 0 1 1 0


 ,

and I is the irrelevant ideal 〈x, y, z, w, s〉 ∩ 〈u, v〉. Let P̃ = Proj(OP3 ⊕OP3(1)). Then we

can identify P̃ with the hypersurface in T given by

s = f(x, y, z, w),

where f(x, y, z, w) is any non-zero homogeneous polynomial of degree 2. Since Y can be
obtained by blowing up the quadric cone over the surface {xy = zw} ⊂ P3 at the vertex,
we can identify Y with the complete intersection in T given by

{
xy = zw,

s = f(x, y, z, w),

Then the projection π : T → V is given by

(x, y, z, w, u, v, s) 7→ (x, y, z, w),
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where we identify V with {xy = zw} ⊂ P3. Then the surface S− is cut out on Y by v = 0.
Moreover, we can assume that S+ is cut out on Y by u = 0, and we can identify R with
the curve in S+ that is cut out by s = 0.

Let ϕ : T → T be the blow up of T along u = s = 0. Then T = (C8 \Z(I))/G3
m, where

the torus action is given by the matrix


x y z w u v s t
1 1 1 1 1 0 2 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 −1


 ,

and the irrelevant ideal

I = 〈x, y, z, w, s〉 ∩ 〈x, y, z, w, t〉 ∩ 〈u, v〉 ∩ 〈u, s〉 ∩ 〈v, t〉.

Then ϕ induces the blow up of Y along R. Thus, we can identify X with the complete
intersection in the toric variety T given by

{
xy = zw,

st = f(x, y, z, w).

Now, the subgroup Γ ∼= Gm of the group Aut(X) mentioned in Section 1 can be explicitly
seen — it consists of all automorphisms

(x, y, z, w, u, v, s, t) 7→ (x, y, z, w, λu, v, s, t),

where λ ∈ C∗. Similarly, we can choose the involution ι ∈ Aut(X) to be the involution

(x, y, z, w, u, v, s, t) 7→ (x, y, z, w, v, u, t, s).

Note that ι is not canonically defined, since we can conjugate it with an element in Γ.
Suppose that R = C1 + C2, where C1 and C2 are smooth curves in |L| that meet

transversally at two points. Then, up to a change of coordinates, we may assume that

f(x, y, z, t) = xy − λ(z2 + w2).

where λ ∈ C such that λ 6∈ {0, 2,−2}. Then X is the complete intersection in T given by
{
xy = zw,

st = xy − λ(z2 + w2),

Note that Aut(X) contains automorphisms

(x, y, z, w, u, v, s, t) 7→
(
µx,

y

µ
, z, w, u, v, s, t

)
,

where µ ∈ C∗. Similarly, the group Aut(X) contains two involutions:

(x, y, z, w, u, v, s, t) 7→ (y, x, z, w, u, v, s, t)

and
(x, y, z, w, u, v, s, t) 7→ (x, y, w, z, u, v, s, t).

Let G be the subgroup in Aut(X) that is generated by all automorphisms described above.
Then G ∼= G2

m ⋊ µ2, and we have the following result:

Lemma 4.4. The following assertions hold:

(a) X does not contain G-fixed points,
(b) X does not contain G-invariant irreducible curves,
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(c) X contains two G-invariant irreducible surfaces — they are cut out by z±w = 0.

Proof. Left to the reader. �

Now, we can complete the proof of Theorem 1.12. Suppose that X is not K-polystable.
Using [41], we see that there is a G-invariant prime divisor F over X such that β(F) 6 0.
Let Z be the center of this divisor on X . By Lemma 4.4, Z is a surface and

Z ∼ (π ◦ φ)∗(L).

Then, as in [16], we compute β(F) = β(Z) > 0. This shows that X is K-polystable.

5. Proof of Theorem 1.13

In this section, we prove Theorem 1.13. This result describes all singular K-polystable
limits of smooth Fano 3-folds in the family №3.9. To show this, we need

Theorem 5.1 ([20, Theorem 2], [27, Example 7.13], [3]). Let C be a quartic curve in P2.
Then the curve C is

• GIT stable for PGL3(C)-action ⇐⇒ it is smooth or has A1 or A2-singularities,
• GIT strictly polystable ⇐⇒ it is one of the remaining curves in Theorem 1.13.

Let us prove Theorem 1.13. Set V = P2, set L = OP2(2), and set Y = P(OV ⊕OV (L)).
Let π : Y → V be the natural projection, set H = π∗(L), let S− and S+ be disjoint
sections of π such that S+ ∼ S− +H , and let R be one of the following curves:

(1) a reduced quartic curve with at most A1 or A2 singularities;
(2) C1 + C2, where C1 and C2 are smooth conics that are tangent at two points;
(3) C + ℓ1 + ℓ2, where C is a smooth conic, ℓ1 and ℓ2 are distinct lines tangent to C;
(4) 2C, where C is a smooth conic in |L|.

Set F = π∗(R), and let φ : X → Y be the blow up at the complete intersection S+ ∩ F .
Then X is a singular Fano threefold, and our Theorem 1.13 claims that X is K-polystable.
To prove this, we start with the most singular (and the most symmetric case).

Lemma 5.2. Suppose that R = 2C for a smooth conic C ⊂ P2. Then X is K-polystable.

Proof. In this case, the threefold X has non-isolated singularities along a smooth curve,
and the proof is very similar to the proof of Lemma 4.3. Namely, we have

(5.3) Aut(X) ∼= PGL2(C)× (Gm ⋊ µ2),

and there exists exactly one Aut(X)-invariant prime divisor over X — the exceptional
divisor of the blow up of X along the curve Sing(X). So, to check that X is K-polystable,
it is enough to compute the β-invariant of this prime divisor. Let us give details.

As in the proof of Lemma 4.3, we set W = V × P1. Let ̟ : W → V be the natural

projection, let S̃− and S̃+ be its disjoint sections, and let Ẽ = ̟∗(C). Then there exists
the following commutative diagram:

(5.4) U
α

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ψ

  
❅❅

❅❅
❅❅

❅❅

W

̟
  ❆

❆❆
❆❆

❆❆
❆ X

π◦φ~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

V
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such that

• α is a blow up along the curves Ẽ ∩ S̃− and Ẽ ∩ S̃+,

• ψ is a contraction of the proper transform of Ẽ to the curve Sing(X),

• φ ◦ ψ maps the proper transforms of S̃− and S̃+ to S− and S+, respectively.

This easily implies (5.3). Similarly, we see that (5.4) is Aut(X)-equivariant.

Let Ê be the ψ-exceptional divisor. Then Ê is the only Aut(X)-invariant prime divisor

over the threefold X . Thus, if β(Ê) > 0, them X is K-polystable [41].

We let F− and F+ be α-exceptional surfaces such that α(F−) ⊂ S̃− and α(F+) ⊂ S̃+,

let Ŝ− and Ŝ+ be the proper transforms on U of the surfaces S− and S+, respectively.
Set H1 = (pr1 ◦ α)

∗(OP1(1)) for the projection pr1 : W → P1, set H2 = (̟ ◦ α)∗(OV (1)).

Then Ê ∼ 2H2 − F− − F+, which gives

ψ∗(−KX) ∼ −KU ∼ 2H1 + 3H2 − F− − F+ ∼Q 2H1 +
3

2
Ê +

1

2
(F− + F+).

Take u ∈ R>0. Then

ψ∗(−KX)−uÊ ∼R 2H1+(3−2u)H2+(u−1)(F−+F+) ∼R 2H1+
3− 2u

2
Ê+

1

2
(F−+F+).

This shows that ψ∗(−KX) − uÊ is pseudoeffective ⇐⇒ u 6 3
2
. Moreover, if u ∈ [0, 1],

then the divisor ψ∗(−KX)− uÊ is nef. If 1 < u 6 3
2
, its Zariski decomposition is

ψ∗(−KX)− uÊ ∼R 2H1 + (3− 2u)H2︸ ︷︷ ︸
positive part

+ (u− 1)(F− + F+)︸ ︷︷ ︸
negative part

.

Hence, we have

β(Ê) = 1−
1

(−KX)3

∫ 3
2

0

vol
(
ψ∗(−KX)− uÊ

)
du =

= 1−
1

26

∫ 1

0

(
2H1+(3−2u)H2+(u−1)(F−+F+)

)3
du−

1

26

∫ 3

2

1

(
2H1+(3−2u)H2

)3
du =

= 1−
1

26

∫ 1

0

16u3 − 36u2 + 26du−
1

26

∫ 3
2

1

24u2 − 72u+ 54du =
7

26
> 0,

which implies that X is K-polystable. �

Similarly, we can show that X is K-polystable if R = C1 + C2, where C1 and C2 are
smooth conics that are tangent at two points. Indeed, in this case, the full automorphism
group Aut(X) contains a subgroup G such that

G ∼=
(
Gm

)2
⋊ µ

2
2,

the threefold X does not contains G-fixed points, and the only G-invariant irreducible
curve in X is a smooth fiber of the conic bundle π ◦ φ. Therefore, arguing exactly as in
the proofs of [6, Lemma 4.64] and [6, Lemma 4.66], we see that X is K-polystable.

However, this approach fails in the case when R has a singular point of type A1 or A2.
To overcome this difficulty, we will use another approach described in the end of Section 1.
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Namely, we proved in Section 2 that Aut(X) contains an involution ι such that ι swaps
the proper transforms of S− and S+, X/ι ∼= Y , and the following diagram commutes:

X
φ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ ρ

  
❅❅

❅❅
❅❅

❅❅

Y

π
  ❅

❅❅
❅❅

❅❅
❅ Y

π
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

V

where ρ is the quotient map. Moreover, we also proved that the double cover ρ is ramified
over a divisor B ∈ |2S+| such that the morphism B → V induced by π is a double cover
ramified in the curve R. Set ∆ = 1

2
B. Then

−KX ∼Q ρ
∗(KY +∆

)
,

and (Y,∆) has Kawamata log terminal singularities. Therefore, (Y,∆) is a log Fano pair.
Moreover, it follows from [24] that

X is K-polystable ⇐⇒
(
Y, 1

2
B
)
is K-polystable.

However, everything in life comes with a price: the action of the group Γ ∼= Gm described
earlier in Section 1 does not descent to Y via ρ, because Γ does not commute with ι.
Thus, the group Aut(Y,∆) is much smaller than the group Aut(X).

To explicitly describe B ⊂ Y , consider Y as the toric variety (C5 \Z(I))/G2
m such that

the torus action is given by the matrix



x1 x2 x3 x4 x5
1 1 1 2 0
0 0 0 1 1


 ,

with irrelevant ideal I = 〈x1, x2, x3〉∩〈x4, x5〉. Let us also consider x1, x2, x3 as coordinates
on V = P2, so that the projection π is given by

(x1, x2, x3, x4, x5) 7→ (x1, x2, x3).

Then S− = {x5 = 0}. Moreover, we may assume that S+ = {x4 = 0}, and B is given by

x24 − f4(x1, x2, x3)x
2
5 = 0,

where f4(x1, x2, x3) is a quartic polynomial such that R = {f4(x1, x2, x3) = 0}.
In the remaining part of the section, we will prove that the pair (Y,∆) is K-polystable.

Recall that H = π∗(L). Note also that

−(KY +∆) ∼Q S
− +

3

2
H.

We will split the proof in several lemmas and propositions. We start with

Lemma 5.5. Let P be a point in S−. Then δP (Y,∆) > 1.

Proof. Let us apply Lemma 3.2. We have

δP (Y,∆) = δP (Y ;D(a)) > min
{ 4(a3 − (a− 1)3)

(4− a)a3 + (a− 1)4
,
4(a3 − (a− 1)3)

3(a4 − (a− 1)4)
δ(V ;L)

}
,
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where D(a) = −(KY +∆) and a = 3
2
. Thus, we have

δP (Y,∆) > min
{26
17
,
13

15
δ(V ;L)

}
.

But

δ(V ;L) = δ
(
V ;

2

3
(−KV )

)
=

3

2
δ(V ;−KV ) =

3

2
δ(V ) =

3

2
δ(P2) =

3

2
,

so that δP (Y,∆) > 13
10
. �

Similarly, applying Proposition 3.5, we obtain

Lemma 5.6. Let P be a point Y such that P 6∈ Sing(B). Then δP (Y,∆) > 1.

Proof. By Lemma 5.5, we may assume that P 6∈ S−. Then Proposition 3.5 gives

δP (Y,∆) = δP (Y ;D(a)) >
8(3a2 − 3a+ 1)

8dµa3 + 6(1− 2dµ)a2 + 8(dµ− 1)a− 2dµ+ 3
,

where D(a) = −(KY +∆), a = 3
2
, d = L2 = 4, µ = 1

2
. This gives δP (Y,∆) > 52

49
. �

The two most difficult parts of the proof that (Y,∆) is K-polystable are the following
two propositions, which will be proved in Subsections 5.1 and 5.2 later.

Proposition 5.7. Let P be a point in B that such B has singular point of type A1 at P ,
and let F be a prime divisor over Y such that P = CY (F). Then βY,∆(F) > 0.

Proposition 5.8. Let P be a point in B such that B has singular point of type A2 at P ,
and let F be a prime divisor over Y such that P = CY (F). Then βY,∆(F) > 0.

By Lemmas 5.5 and 5.6 and Propositions 5.7 and 5.8, the log pair (Y,∆) is K-stable in
the case when R is a reduced plane quartic curve that has at most A1 or A2 singularities.
Therefore, to complete the proof, we may assume that R is one of the following curves:

(2) C1 + C2, where C1 and C2 are smooth conics that are tangent at two points;
(3) C + ℓ1 + ℓ2, where C is a smooth conic, ℓ1 and ℓ2 are distinct lines tangent to C;
(4) 2C, where C is a smooth conic in |L|.

Hence, appropriately changing coordinates x1, x2, x3, we may assume that

f4(x1, x2, x3) = (x1x2 − x23)(x1x2 − λx23),

where one of the following three cases holds:

(2) λ 6∈ {0, 1}, R = C1 + C2, where C1 = {x1x2 = x23} and C2 = {x1x2 = λx23};
(3) λ = 0, R = C+ ℓ1+ ℓ2, where C = {x1x2 = x23}, ℓ1 = {x1 = 0} and ℓ2 = {x2 = 0};
(4) λ = 1, R = 2C, where C = {x1x2 = x23}.

In each case, the group Aut(Y,∆) contains an involution τ such that

τ(x1, x2, x3, x4, x5) = (x2, x1, x3, x4, x5).

Lemma 5.9. Suppose that λ 6∈ {0, 1}. Then (Y,∆) is K-polystable.

Proof. Suppose (Y,∆) is not K-polystable. It follows from [41] that there is a 〈τ〉-invariant
prime divisor F over Y such that βY,∆(F) 6 0. Let P be a general point in CY (F). Then

δP
(
Y,∆

)
6 1.

But P 6∈ Sing(B), since Sing(B) consists of two singular points that are swapped by τ .
Then δP (Y,∆) > 1 by Lemmas 5.5 and 5.6, which is a contradiction. �
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Lemma 5.10. Suppose λ = 0. Then (Y,∆) is K-polystable.

Proof. The surface B has a singular point of type A1, and two singular points of type A3,
that are swapped by τ . Arguing as in the proof of Lemma 5.9 and using Propositions 5.7,
we see that X is K-polystable. �

Lemma 5.11 (cf. Lemma 5.2). Suppose λ = 1. Then (Y,∆) is K-polystable.

Proof. In this case, we have R = 2C, where C is an irreducible conic. Then B = B1+B2,
where B1 and B2 are smooth surfaces in |S+| that intersect transversally along a smooth
curve such that π(B1 ∩ B2) = C.

We already know from Lemma 5.2 that the threefold X is K-polystable in this case,
so that (Y,∆) is also K-polystable [24]. Let us prove this directly for consistency.

LetW = V ×P1, let ̟ : W → V be the natural projection, let S̃−, B̃1, B̃2 be its disjoint

sections, and let Ẽ = ̟∗(C). Then there exists the following commutative diagram:

U
α

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ ψ

  
❅❅

❅❅
❅❅

❅❅

W

̟
  
❆❆

❆❆
❆❆

❆❆
Y

π
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

V

such that α is a blow up along the curve Ẽ ∩ S̃−, the morphism ψ is a contraction of

the proper transform of the surface Ẽ to the intersection curve B1 ∩B2 such that ψ maps

the proper transforms of the surfaces S̃−, B̃1, B̃2 to the surfaces S−, B1, B2, respectively.
Then

Aut(Y,∆) ∼= Aut(U) ∼= Aut
(
W, B̃1 + B̃2 + Ẽ + S̃−) ∼= PGL2(C)× µ2.

Note that the commutative diagram above is Aut(Y,∆)-equivariant.

Let F be α-exceptional surface, let Ê be the ψ-exceptional surface, let B̂1 and B̂2 be
the proper transforms on U of the surfaces B1 and B2, respectively. Set ∆̂ = 1

2
(B̂1 + B̂2).

Then KU + ∆̂ ∼Q ψ
∗(KY +∆), so that ψ is log crepant for (U, ∆̂). Then AY,∆(Ê) = 1.

First, we compute βY,∆(Ê). Set H1 = (pr1 ◦ α)
∗(OP1(1)) and H2 = (̟ ◦ α)∗(OV (1)),

where pr1 is the natural projection W → P1. Then ∆̂ ∼Q H1 and Ê ∼ 2H2 − F , so that

ψ∗(KY +∆
)
∼Q KU + ∆̂ ∼Q H1 + 3H2 − F ∼Q H1 +

3

2
Ê +

1

2
F.

Let u be a non-negative real number. Then

ψ∗(KY +∆
)
− uÊ ∼R H1 + (3− 2u)H2 + (u− 1)F ∼R H1 +

3− 2u

2
Ê +

1

2
F,

and this divisor is pseudoeffective ⇐⇒ u 6 3
2
. For u ∈ [0, 3

2
], let P (u) be the positive

part of the Zariski decomposition of ψ∗(KY +∆)−uÊ, and let N(u) be the negative part.
Then

P (u) ∼R





H1 + (3− 2u)H2 + (u− 1)F if 0 6 u 6 1,

H1 + (3− 2u)H2 if 1 6 u 6
3

2
,
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and

N(u) =





0 if 0 6 u 6 1,

(u− 1)F if 1 6 u 6
3

2
.

This gives

βY,∆(Ê) = AY,∆(Ê)−
1

(−KY −∆)3

∫ 3
2

0

(
P (u)

)3
du =

= 1−
1

13

∫ 1

0

(
2H1 + (3− 2u)H2 + (u− 1)F

)3
du−

1

13

∫ 3
2

1

(
2H1 + (3− 2u)H2

)3
du =

= 1−

∫ 1

0

8u3 − 18u2 + 13du−

∫ 3
2

1

12u2 − 36u+ 27du =
7

26
> 0.

Suppose that (Y,∆) is not K-polystable. By [41], there exists an Aut(Y,∆)-invariant
prime divisor F over Y such that βY,∆(F) 6 0. Let Z be its center on Y . Then

δP (Y,∆) 6 1

for every point P ∈ Z. Hence, it follows from Lemmas 5.5 and 5.6 that Z ⊂ B1 ∩ B2.
Hence, since Z is a Aut(Y,∆)-invariant irreducible subvariety, we see that Z = B1 ∩ B2.

Let Ẑ be the center of the divisor F on the threefold U . Then Ẑ 6= Ê, since β(Ê) > 0.

Moreover, since Ẑ ⊂ Ê and Ẑ is Aut(U)-invariant, we see that Ẑ is a Aut(U)-invariant

section of the natural projection Ê → Z. Set A = KU + ∆̂. Then

0 > βY,∆(F) = AY,∆(F)− SA(F) = AU,∆̂(F)− SA(F),

because KU + ∆̂ ∼Q ψ
∗(KY +∆). Moreover, it follows from [2, 6, 17] that

1 >
AU,∆̂(F)

SA(F)
> min

{
1

SA(Ê)
,

1

SA
(
W Ê

•,•; Ẑ
)
}
,

where SA(W
Ê
•,•; Ẑ) is defined in [6, Section 1.7]. But SA(Ê) =

19
26
, so SA(W

Ê
•,•; Ẑ) > 1.

Let us compute SA(W
Ê
•,•; Ẑ). Using [6, Corollary 1.109], we see that

SA
(
W Ê

•,•; Ẑ
)
=

3

A3

∫ 3
2

0

(
P (u)

∣∣
Ê

)2
ordẐ

(
N(u)

∣∣
Ê

)
+

3

A3

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Ê
− vẐ

)
dvdu,

which is easy to compute, because Ê ∼= P1 × P1. Let us do this.

Let s = F ∩ Ê. Then s is a section of the projection Ê → Z. Let f be a fiber of this
projection. Then

P (u)
∣∣
Ê
=





(6− 4u)f + us if 0 6 u 6 1,

(6− 4u)f + s if 1 6 u 6
3

2
,

and

N(u)
∣∣
Ê
=





0 if 0 6 u 6 1,

(u− 1)s if 1 6 u 6
3

2
.
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Thus, we see that SA(W
Ê
•,•; Ẑ) 6 SA(W

Ê
•,•; s) and

SA
(
W Ê

•,•; s
)
=

3

13

∫ 3
2

1

(
(6−4u)f+s

)2
(u−1)du+

3

13

∫ 1

0

∫ u

0

(
(6−4u)f+(u−v)s

)2
dvdu+

+
3

13

∫ 3
2

1

∫ 1

0

(
(6− 4u)f + (1− v)s

)2
dvdu =

3

13

∫ 3
2

1

2(6− 4u)(u− 1)du+

+
3

13

∫ 1

0

∫ u

0

2(6− 4u)(u− v)dvdu+
3

13

∫ 3

2

1

∫ 1

0

2(6− 4u)(1− v)dvdu =
5

13
< 1,

which is a contradiction. �

In the remaining part of this sections, we will prove Proposition 5.7 and 5.8.

5.1. Proof of Proposition 5.7. Let us use notations introduced in earlier in this section
before Proposition 5.7, and let P be an isolated ordinary double point of the surface B.
Then, up to a change of coordinates, we may assume that P = (0, 0, 1, 0, 1) and

f4(x1, x2, 1) = x21 + x22 + higher order terms.

Let ρ : Y0 → Y be the blow up at P . Then Y0 is the toric variety (C6 \ Z(I0))/G
3
m for

the torus action given by

M =




x0 x1 x2 x3 x4 x5
0 1 1 1 2 0
0 0 0 0 1 1
1 0 0 1 1 0




with irrelevant ideal I0 = 〈x1, x2, x3〉∩〈x1, x2, x4〉∩〈x4, x5〉∩〈x0, x3〉∩〈x0, x5〉. To describe
its fan, denote the vector generating the ray corresponding to xi by vi. Then

v0 = (1, 1, 1), v1 = (1, 0, 0), v2 = (0, 1, 0),

v3 = (−1,−1,−2), v4 = (0, 0, 1), v5 = (0, 0,−1).

The cone structure can be derived from the irrelevant ideal I0, and it can can be visualized
via the following diagram:

v0

v1

v2

v3

v4 v5
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Let Fi = {xi = 0} ⊂ Y0, and let Cij = Fi ∩ Fj for i 6= j such that dim(Fi ∩ Fj) = 1.
Consider the Z3-grading of Pic(Y0) given by M . If D1 and D2 are two divisors in Pic(Y0),
then it follows from [10, Chapter 5] that

D1 ∼ D2 ⇐⇒ degM(D1) = degM(D2).

Moreover, we have

Eff(Y0) = 〈F0, F1, F5〉

and

NE(Y0) = 〈C12, C15, C01〉.

In particular, a divisor D with degM(D) = (a, b, c) is effective ⇐⇒ all a, b, c > 0.

Lemma 5.12. Intersections of divisors F0, F1, F5 are given the following table:

F 3
0 F 2

0F1 F 2
0F5 F0F

2
1 F0F1F5 F0F

2
5 F 3

1 F 2
1F5 F1F

2
5 F 3

5

1 −1 0 1 0 0 −1 1 −2 4

Proof. Recall that for distinct torus-invariant divisors Fi, Fj, Fk we may compute their
intersection using the fan and the cone structure (or the irrelevant ideal)

FiFjFk =




0 xixjxk ∈ I0

1∣∣det{vi,vj ,vk}
∣∣ otherwise.

This fact together with the linear equivalences implies the required assertion. �

Using Lemma 5.12, we obtain the following intersection table:

• F0 F1 F5

C12 1 −1 1

C15 0 1 −2

C01 −1 1 0

Now, we set A = −(KY +∆). Take u ∈ R>0. Set

L(u) = ρ∗(A)− uF0.

Then L(u) ∼R (3− u)F0 +3F1 +F5. So, the divisor L(u) is pseudo-effective ⇐⇒ u 6 3.
Let us find a Zariski decomposition of the divisor L(u) for u ∈ [0, 3].

The divisor L(u) is nef for u ∈ [0, 1]. We have L(1) · C12 = 0. Since C12 is a flopping
curve, we have to consider a small Q-factorial modification Y0 99K Y1 such that

Y1 =
(
C6 \ Z(I1)

)
/G3

m,

where the torus-action is the same (given by the matrix M) and the irrelevant ideal

I1 = 〈x1, x2〉 ∩ 〈x4, x5〉 ∩ 〈x0, x3〉,

which is obtained from I0 by replacing 〈x0, x5〉 with 〈x1, x2〉. The fan of Y1 is generated
by the same vectors, but the cone structure is different:
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v0

v1

v2

v3

v4 v5

Abusing our previous notations, we denote the divisor {xi = 0} ⊂ Y1 also by Fi, and
we let Cij = Fi ∩ Fj for i 6= j such that Fi ∩ Fj is a curve. As above, we see that

NE(Y1) = 〈C01, C15, C05〉.

Moreover, intersections of divisors on Y1 are described in the following table:

F 3
0 F 2

0F1 F 2
0F5 F0F

2
1 F0F1F5 F0F

2
5 F 3

1 F 2
1F5 F1F

2
5 F 3

5

0 0 −1 0 1 −1 0 0 −1 3

Using these intersections, we obtain the following intersection table:

• F0 F1 F5

C05 −1 1 −1

C15 1 0 −1

C01 0 0 1

The proper transform on Y1 of the divisor L(u) is nef for u ∈ [1, 2], and it intersects
the curve C15 trivially for u = 2. Note that C15 ∼ C25 on the surface F5, which implies that
the divisor F5 is contained in the negative part of the Zariski decomposition of the proper
transform of the divisor L(u). In fact, we have N(u) = (u− 2)F5 and

P (u) = (3− u)(F0 + F5) + 3F1,

where N(u) is the negative part of the decomposition, and P (u) is the positive part.

Lemma 5.13. One has AY,∆(F0) = 2 and SA(F0) =
49
26
, so that

AY,∆(F0)

SA(F0)
=

52

49
.

Proof. The equality AY,∆(F0) = 2 is obvious. Moreover, we have

vol(L(u)) =





−u3 + 13 u ∈ [0, 1]

−3u2 + 3u+ 12 u ∈ [1, 2]

3u3 − 18u2 + 27u u ∈ [2, 3].
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Thus, we compute

SA(F0) =
1

A3

∫ 3

0

vol(L(u))du =
49

26

as claimed. �

Now, we construct a common toric resolution Ỹ for Y0 and Y1. Such variety is easy to
see from the fans of Y0 and Y1, we want to add the following ray:

v6 = (1, 1, 0) ∈ 〈v1, v2〉 ∩ 〈v0, v5〉,

Set Ỹ to be the toric variety corresponding to v0, . . . , v6 with the following cone structure:

v0

v1

v2

v3

v4 v5v6

Let ϕ0 : Ỹ → Y0 and ϕ1 : Ỹ → Y1 be the corresponding toric birational maps. Then

• ϕ0 is the blow up of Y0 along the curve C12,
• ϕ1 is the blow up of Y1 along the curve C05.

Set F̃i = {xi = 0} ⊂ Ỹ . Then F̃6 is the exceptional divisor of ϕ0 and ϕ1.
The Zariski decomposition of the divisor ϕ∗

0(L(u)) can be described as follows:

P̃ (u) ∼R





(3− u)F̃0 + 3F̃1 + F̃5 + 3F̃6 u ∈ [0, 1],

(3− u)F̃0 + 3F̃1 + F̃5 + (4− u)F̃6 u ∈ [1, 2],

(3− u)(F̃0 + F̃5) + 3F̃1 + (6− 2u)F̃6 u ∈ [2, 3],

and

Ñ(u) =





0 u ∈ [0, 1],

(u− 1)F̃6 u ∈ [1, 2],

(u− 2)F̃5 + (2u− 3)F̃6 u ∈ [2, 3],

where P̃ (u) is the positive part, and Ñ(u) is the negative part. Note that

Let σ : F̃0 → F0 be the morphism induced by φ0. Then σ is a blow up at one point.

So, we have F̃0
∼= F1. Let e be the σ-exceptional curve, and let f be a fiber of the natural

projection F̃0 → P1. Then F̃0|F̃0
∼ −e− f , F̃1|F̃0

∼ f , F̃5|F̃0
∼ 0, F̃6|F̃0

= e, which gives

P̃ (u)
∣∣
F̃0

=





u(f + e) u ∈ [0, 1],

uf + e u ∈ [1, 2],

uf + (3− u)e u ∈ [2, 3],
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and

Ñ(u)
∣∣
F̃0

=





0 u ∈ [0, 1],

(u− 1)e u ∈ [1, 2],

(2u− 3)e u ∈ [2, 3].

We are ready to apply [2, 6, 17]. Set BF0
= ρ−1

∗ (B)|F0
and ∆F0

= 1
2
BF0

. Set

δ
(
F0,∆F0

;V F̃0

•,•
)
= inf

E/F̃0

AF0,∆F0
(E)

S(W F̃0•,•;E)

where the infimum is taken over all prime divisors E over F̃0, and

S(W F̃0

•,•;E) =
3

A3

3∫

0

(
P̃ (u)

∣∣
F̃0

)2
ordE

(
Ñ(u)

∣∣
F̃0

)
du+

3

A3

3∫

0

∞∫

0

vol
(
P̃ (u)

∣∣
F̃0

− vE
)
dvdu.

Let F be a prime divisor over Y such that P = CY (F). Recall that

βY,∆(F) = AY,∆(F)− SA(F) = AY,∆(F)−
1

A3

∫ ∞

0

vol
(
A− uF

)
du.

It follows from [17, Theorem 4.8] and [17, Corollary 4.9] that

(5.14)
AY,∆(F)

SA(F)
> δP (Y,∆) > min

{
AY,∆(F0)

SA(F0)
, δ
(
F0,∆F0

;V F̃0

•,•
)}

.

Suppose βY,∆(F) 6 0. Then it follows from (5.14) and Lemma 5.13 that there is a prime

divisor E over F̃0 such that

(5.15) S(W F̃0

•,•;E) > AF0,∆F0
(E).

Let Z be the center of the divisor E on the surface F̃0. Note that σ(e) 6∈ BF0
.

Lemma 5.16. One has Z ∩ e = ∅.

Proof. Note that AF0,∆F0
(e) = 2. Let us compute S(W F̃0

•,•; e). For u ∈ [0, 3], let

t(u) = sup
{
v ∈ R>0

∣∣ P̃ (u)|F̃0
− ve is pseudoeffective

}
.

For every v ∈ [0, t(u)], let us denote by P (u, v) and N(u, v) the positive and the negative

parts of the Zariski decompositions of the divisor P̃ (u)|F̃0
− ve, respectively. Then

S(W F̃0

•,•; e) =
3

A3

3∫

0

(
P (u, 0)

)2
orde

(
Ñ(u)

∣∣
F̃0

)
du+

3

A3

3∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.

Observe that

orde

(
Ñ(u)

∣∣
F̃0

)
=





0 u ∈ [0, 1],

u− 1 u ∈ [1, 2],

2u− 3 u ∈ [2, 3].

Moreover, we have

t(u) =





u u ∈ [0, 1],

1 u ∈ [1, 2],

3− u u ∈ [2, 3].
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Furthermore, we have N(u, v) = 0 for every u ∈ [0, 3] and v ∈ [0, t(u)]. Finally, we have

P (u, v) =





uf + (u− v)e u ∈ [0, 1], v ∈ [0, u],

uf + (1− v)e u ∈ [1, 2], v ∈ [0, 1],

uf + (3− u− v)e u ∈ [2, 3], v ∈ [0, 3− u],

which gives

(
P (u, v)

)2
=





u2 − v2 u ∈ [0, 1], v ∈ [0, u],

u2 − (1− v − u)2 u ∈ [1, 2], v ∈ [0, 1],

u2 − (3− 2u− v)2 u ∈ [2, 3], v ∈ [0, 3− u].

Integrating, we get S(W F̃0
•,•; e) =

20
13
< 2 = AF0,∆F0

(e), so that Z 6= e by (5.15).
Suppose that Z ∩ e 6= ∅. Let O be a point of the intersection Z ∩ e. Then it follows

from [17, Theorem 4.17] and [17, Corollary 4.18] that

AF0,∆F0
(E)

S(W F̃0•,•;E)
> min

{
2

S(W F̃0•,•; e)
,

1

S(W F̃0,e
•,•,•,;O)

}
= min

{
13

10
,

1

S(W F̃0,e
•,•,• ;O)

}
,

where

S
(
W F̃0,e

•,•,• ;O
)
=

3

A3

3∫

0

t(u)∫

0

(
P (u, v) · e

)2
dvdu.

Integrating, we get S(W F̃0,e
•,•,• ;O) =

20
13
, which contradicts (5.15). �

Thus, we see that Z is disjoint from e. In particular, we see that

Z ∩ Supp
(
Ñ(u)

∣∣
F̃0

)
= ∅

for every u ∈ [0, 3]. This will simplify some formulas in the following.

Let BF̃0
be the strict transform on F̃0 of the curve BF0

. Then BF̃0
is a smooth irreducible

curve in |2(e+ f)|. Set ∆F̃0
= 1

2
BF̃0

. Let O be a point in Z. We may assume that O ∈ f .
Then there are three cases to consider:

(1) O 6∈ BF̃0
,

(2) O ∈ BF̃0
∩ f , and f intersects BF̃0

transversely at the point O,
(3) O = BF̃0

∩ f , and f is tangent to BF̃0
at the point O.

Let θ : F̂0 → F̃0 be a plt blow up of the point O defined as follows:

• the map θ is an ordinary blow up in the case when O 6∈ BF̃0
, or when O ∈ BF̃0

∩ f ,
and the fiber f intersects the curve BF̃0

transversely at the point O,
• the map θ is a weighted blow up at the point O = BF̃0

∩ f with weights (1, 2) such

that the proper transforms on F̂0 of the curves BF̃0
and f are disjoint in the case

when the fiber f is tangent to the curve BF̃0
at the point O.

Let C be the θ-exceptional curve. We have C ∼= P1. Let BF̂0
be the proper transform on

the surface F̂0 of the curve BF̂0
. Set ∆F̂0

= 1
2
BF̂0

. Let ∆C be the effective Q-divisor on
the curve C known as the different, which can be defined via the adjunction formula:

KC +∆C =
(
KF̂0

+∆F̂0

)∣∣
C
.
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If θ is a usual blow up, then ∆C = ∆F̂0
|C . Similarly, if θ is a weighted blow up, then

∆C = ∆F̂0

∣∣
C
+

1

2
o,

where o is the singular point of the surface F̂0 contained in C — o is an ordinary double
point, which is not contained in the proper transforms of the curves BF̃0

and f .
Now, for u ∈ [0, 3], we let

t̂(u) = sup
{
v ∈ R>0

∣∣ θ∗
(
P̃ (u)|F̃0

)
− vC is pseudoeffective

}
.

For every v ∈ [0, t̂(u)], let us denote by P̂ (u, v) and N̂(u, v) the positive and the negative

parts of the Zariski decompositions of the divisor θ∗(P̃ (u)|F̃0
)− vC, respectively. Then

(5.17) 1 >
AF0,∆F0

(E)

S(W F̃0•,•;E)
> min

{
AF0,∆F0

(C)

S(W F̃0•,•;C)
, inf
Q∈C

AC,∆C
(Q)

S
(
W F̂0,C

•,•,• ;Q
)

}

by (5.15) and [17, Corollary 4.18], where the infimum is taken by all points Q ∈ C, and

S
(
W F̂0,C

•,•,•,;Q
)
=

3

A3

3∫

0

t̂(u)∫

0

(
P̂ (u, v) · C

)2
dvdu+ FQ

(
W F̂0,C

•,•,•
)

for

FQ
(
W F̂0,C

•,•,•
)
=

6

A3

3∫

0

t̂(u)∫

0

(
P̂ (u, v) · C

)
ordQ

(
N̂(u, v)

∣∣
C

)
dvdu.

Denote by ê and f̂ the proper transforms of the curves e and f , respectively.

Lemma 5.18. Suppose that θ is an ordinary blow up. Let Q be a point in C. Then

AF0,∆F0
(C)

S(W F̃0•,•;C)
>

39

29

and
AC,∆C

(Q)

S
(
W F̂0,C

•,•,• ;Q
) >

13

10
.

Proof. One has

θ∗
(
P̃ (u)|F̃0

)
∼R





u(f̂ + ê+ C) u ∈ [0, 1],

u(f̂ + C) + ê u ∈ [1, 2],

u(f̂ + C) + (3− u)ê u ∈ [2, 3].

This easily implies that t̂(u) = u and

N̂(u, v) =





0 u ∈ [0, 1], v ∈ [0, u],

0 u ∈ [1, 2], v ∈ [0, 1],

(v − 1)f̂ u ∈ [1, 2], v ∈ [1, u],

0 u ∈ [2, 3], v ∈ [0, 3− u],

(v + u− 3)f̂ u ∈ [2, 3], v ∈ [3− u, u],
39



so that

P̂ (u, v) =





u(f̂ + ê) + (u− v)C u ∈ [0, 1], v ∈ [0, u],

uf̂ + (u− v)C + ê u ∈ [1, 2], v ∈ [0, 1],

(u− v + 1)f̂ + (u− v)C + ê u ∈ [1, 2], v ∈ [1, u],

uf̂ + (u− v)C + ê u ∈ [2, 3], v ∈ [0, 3− u],

(3− v)f̂ + (u− v)C + (3− u)ê u ∈ [2, 3], v ∈ [3− u, u],

which gives

(
P̂ (u, v)

)2
=





u2 − v2 u ∈ [0, 1], v ∈ [0, u],

−v2 + 2u− 1 u ∈ [1, 2], v ∈ [0, 1],

2u− 2v u ∈ [1, 2], v ∈ [1, u],

−3u2 − v2 + 12u− 9 u ∈ [2, 3], v ∈ [0, 3− u],

−2u2 + 2uv + 6u− 6v u ∈ [2, 3], v ∈ [3− u, u].

Thus, integrating, we get S(W F̃0
•,•;C) =

29
26
. Note that

AF0,∆F0
(C) =

{
3
2

O ∈ BF̃0
,

2 O 6∈ BF̃0
.

This gives the first required inequality. Similarly, we compute

S
(
W F̂0,C

•,•,• ;Q
)
=

9

26
+ FQ

(
W F̂0,C

•,•,•
)

where

FQ
(
W F̂0,C

•,•,•
)
=

{
11
26

Q = f̂ ∩ C,

0 otherwise.

Observe that

AC,∆C
(Q) =

{
1
2

Q ∈ BF̂0
,

1 Q 6∈ BF̂0
.

Moreover, if O ∈ BF̃0
∩ f , the intersection C ∩ f̂ consists of a single point, which is not

contained in BF̂0
. Thus, we have

AC,∆C
(Q)

S
(
W F̂0,C

•,•,• ;Q
) =





13
10

Q = C ∩ f̂ ,
13
9

Q = C ∩BF̂0
,

26
9

otherwise.

which implies the second required inequality. �

Thus, it follows from (5.17) and Lemma 5.18 that O = BF̃0
∩f , so f and BF̃0

are tangent
at the point O. Then θ is a weighted blow up with weights (1, 2). We have

θ∗
(
P̃ (u)

∣∣
F̃0

)
∼R





u(f̂ + ê + 2C) u ∈ [0, 1],

u(f̂ + 2C) + ê u ∈ [1, 2],

u(f̂ + 2C) + (3− u)ê u ∈ [2, 3].
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This gives t̂(u) = 2u. Moreover, we have

N̂(u, v) =





0 u ∈ [0, 1], v ∈ [0, u],

(v − u)(f̂ + ê) u ∈ [0, 1], v ∈ [u, 2u],

0 u ∈ [1, 2], v ∈ [0, 1],
v−1
2
f̂ u ∈ [1, 2], v ∈ [1, 2u− 1],

(v − u)f̂ + (v − 2u+ 1)ê u ∈ [1, 2], v ∈ [1, 2u− 1],

0 u ∈ [2, 3], v ∈ [0, 3− u],
v+u−3

2
f̂ u ∈ [2, 3], v ∈ [0, 3u− 3],

(v − u)f̂ + (v + 3− 3u)ê u ∈ [2, 3], v ∈ [3u− 3, 2u],

and

P̂ (u, v) =





(2u− v)C + uf̂ + uê u ∈ [0, 1], v ∈ [0, u],

(2u− v)(C + f̂ + ê) u ∈ [0, 1], v ∈ [u, 2u],

(2u− v)C + uf̂ + ê u ∈ [1, 2], v ∈ [0, 1],

(2u− v)C + 2u−v+1
2

f̂ + ê u ∈ [1, 2], v ∈ [1, 2u− 1],

(2u− v)(C + f̂ + ê) u ∈ [1, 2], v ∈ [1, 2u− 1],

(2u− v)C + uf̂ + (3− u)ê u ∈ [2, 3], v ∈ [0, 3− u],

(2u− v)C + u−v+3
2

f̂ + (3− u)ê u ∈ [2, 3], v ∈ [0, 3u− 3],

(2u− v)(C + f̂ + ê) u ∈ [2, 3], v ∈ [3u− 3, 2u].

Then

(
P̂ (u, v)

)2
=





u2 − v2

2
u ∈ [0, 1], v ∈ [0, u],

(2u−v)2
2

u ∈ [0, 1], v ∈ [u, 2u],

2u− 1− v2

2
u ∈ [1, 2], v ∈ [0, 1],

2u− v − 1
2

u ∈ [1, 2], v ∈ [1, 2u− 1],
(2u−v)2

2
u ∈ [1, 2], v ∈ [1, 2u− 1],

12u− 9− 3u2 − v2

2
u ∈ [2, 3], v ∈ [0, 3− u],

(5u−2v−3)(u−3)
2

u ∈ [2, 3], v ∈ [0, 3u− 3],
(2u−v)2

2
u ∈ [2, 3], v ∈ [3u− 3, 2u].

Now, integrating, we get S(W F̃0
•,•;C) =

49
26
. Thus, since AF0,∆F0

(C) = 2, we get

AF0,∆F0
(C)

S(W F̃0•,•;C)
=

52

49
,

so it follows from (5.17) that there is a point Q ∈ C such that S(W F̂0,C
•,•,• ;Q) > AC,∆C

(Q).
On the other hand, we compute

S
(
W F̂0,C

•,•,• ;Q
)
=

9

52
+ FQ

(
W F̂0,C

•,•,•
)

where

FQ
(
W F̂0,C

•,•,•
)
=

{
3
4

Q = C ∩ f̂ ,

0 otherwise.
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Recall that BF̂0
and f̂ are disjoint and do not contain the singular point of the surface F̂0.

Moreover, we have

AC,∆C
(Q) =





1
2

Q = C ∩BF̂0
,

1
2

Q = Sing(F̂0),

1 otherwise.

Thus, summarizing, we get

AC,∆C
(Q)

S
(
W F̂0,C

•,•,• ;Q
) =





13
12

Q = C ∩ f̂ ,
26
9

Q = C ∩ BF̂0
,

26
9

Q = Sing(F̂0),
52
9

otherwise.

In particular, we see that S(W F̂0,C
•,•,• ;Q) < AC,∆C

(Q) in every possible case. The obtained
contradiction completes the proof of Proposition 5.7.

5.2. Proof of Proposition 5.8. Let us use notations introduced earlier in this section
before Proposition 5.8, and let P be a singular point of type A2 of the surface B ∈ |2S+|.
Then, up to a change of coordinates, we may assume that P = (0, 0, 1, 0, 1) and

f4(x1, x2, 1) = x21 + x32 + higher order terms.

Let ρ : Y0 → Y be the blow up if the point P with weights (3, 2, 3) with respect to
variables (x1, x2, x4). We may describe Y0 as a toric variety given as (C6 \ Z(I0))/G

3
m,

where the action is given by the matrix

M =




x0 x1 x2 x3 x4 x5
0 1 1 1 2 0
0 0 0 0 1 1
1 0 1 3 3 0


 ,

where the irrelevant ideal I0 = 〈x1, x2, x3〉 ∩ 〈x1, x2, x4〉 ∩ 〈x4, x5〉 ∩ 〈x0, x3〉 ∩ 〈x0, x5〉.
To describe the fan of the toric threefold Y0, we denote by vi the vector generating the ray
corresponding to xi. Then

v0 = (3, 2, 3), v1 = (1, 0, 0), v2 = (0, 1, 0),

v3 = (−1,−1,−2), v4 = (0, 0, 1), v5 = (0, 0,−1),

and the cone structure can be visualized with the following diagram:

v0

v1

v2

v3

v4 v5
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Let Fi = {xi = 0} ⊂ Y0 and Cij = Fi ∩ Fj for i 6= j such that dim(Fi ∩ Fj) = 1. Then

Eff(Y0) = 〈F0, F1, F5〉

and

NE(Y0) = 〈C12, C15, C01〉.

Intersections of divisors F0, F1, F5 are described in following table:

F 3
0 F 2

0F1 F 2
0F5 F0F

2
1 F0F1F5 F0F

2
5 F 3

1 F 2
1F5 F1F

2
5 F 3

5

1
18

−1
6

0 1
2

0 0 −3
2

1 −2 4

This gives the following intersection table:

• F0 F1 F5

C12
1
3

−1 1

C15 0 1 −2

C01 −1
6

1
2

0

Now, we set A = −(KY +∆). Take u ∈ R>0. Set L(u) = ρ∗(A)− uF0. Then

L(u) ∼R (9− u)F0 + 3F1 + F5,

so L(u) is pseudo-effective ⇐⇒ u 6 9. Let us find the Zariski decomposition for L(u).
Observe that L(u) is nef for u ∈ [0, 3]. Since L(3) · C12 = 0 and C12 is unique in its

numerical equivalence class, we consider a small Q-factorial modification Y0 99K Y1 along
the curve C12 such that

Y1 =
(
C6 \ Z(I1)

)
/G3

m,

where the torus-action is the same, and the irrelevant ideal

I1 = 〈x1, x2〉 ∩ 〈x4, x5〉 ∩ 〈x0, x3〉.

The fan of Y1 is generated by the same vectors, but the cone structure is different:

v0

v1

v2

v3

v4 v5

Abusing our previous notations, we denote the divisor {xi = 0} ⊂ Y1 also by Fi, and

we let Cij = Fi ∩Fj for i 6= j such that Fi ∩Fj is a curve. Then NE(Y1) = 〈C01, C15, C05〉,
and intersections on Y1 are described in the following two tables:
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F 3
0 F 2

0F1 F 2
0F5 F0F

2
1 F0F1F5 F0F

2
5 F 3

1 F 2
1F5 F1F

2
5 F 3

5

0 0 −1
6

0 1
2

−1
2

0 −1
2

−1
2

5
2

• F0 F1 F5

C05 −1
6

1
2

−1
2

C15
1
2

−1
2

−1
2

C01 0 0 1
2

Thus, we see that the proper transform on Y1 of the divisor L(u) is nef for u ∈ [3, 5],
and it intersects the curve C15 trivially for u = 5. Since C15 is unique in its numerical
equivalence class, we consider another small Q-factorial modification Y1 99K Y2 such that

Y2 =
(
C6 \ Z(I2)

)
/G3

m,

where the torus-action is again given by the matrix M and the irrelevant ideal

I2 = 〈x1, x2〉 ∩ 〈x4, x5〉 ∩ 〈x1, x5〉 ∩ 〈x0, x2, x3〉 ∩ 〈x0, x3, x4〉.

Then the fan of Y2 is generated by the same vectors, but the cone structure is different:

v0

v1

v2

v3

v4 v5

We abuse our notations again and denote the divisor {xi = 0} ⊂ Y2 also by Fi. Similarly,
we let Cij = Fi ∩Fj for i 6= j such that Fi ∩Fj is a curve. Then NE(Y2) = 〈C01, C03, C05〉,
and intersections on Y2 are described in the following two tables:

F 3
0 F 2

0F1 F 2
0F5 F0F

2
1 F0F1F5 F0F

2
5 F 3

1 F 2
1F5 F1F

2
5 F 3

5

−1
2

1
2

1
3

−1
2

0 −1 1
2

0 0 3

• F0 F1 F5

C05
1
3

0 −1

C03
−2
3

1 1

C01
1
2

−1
2

0
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The proper transform on Y2 of the divisor L(u) is nef for u ∈ [5, 6], and it intersects
both curves C01 and C05 trivially for u = 6. Furthermore, if u ∈ [6, 9], then the negative
part of the Zariski decomposition of the divisor L(u) on the threefold Y2 is

N(u) = (u− 6)F1 +
u− 6

3
F5,

while the positive part is P (u) ∼R (9− u)(F0 + F1 +
1
3
F5). This gives

vol
(
L(u)

)
=





13− u3

18
u ∈ [0, 3],

−u2+3+23
2

u ∈ [3, 5],
1
2
u3 − 8u2 + 3

2
u u ∈ [5, 6],

−1
9
u3 + 3u2 − 27u+ 81 u ∈ [6, 9].

Integrating, we get SA(F0) =
127
26
. Since AY,∆(F0) = 5, we get

AY,∆(F0)

SA(F0)
= 130

127
> 1.

Next we construct a partial common toric resolution for Y0, Y1, Y2, which is easy to see
from fan toric picture: we want to add the following rays:

v6 = (3, 2, 0) ∈ 〈v1, v2〉 ∩ 〈v0, v5〉,

v7 = (1, 0,−1) ∈ 〈v0, v3〉 ∩ 〈v0, v3〉,

v8 = (3, 1, 0) ∈ 〈v1, v2〉 ∩ 〈v0, v3〉.

Set Ỹ be the toric variety corresponding to v0, . . . , v8 with the following cone structure:

v0

v1

v2

v3

v4 v5v6

v7
v8

Then we have the following toric diagram:

Ỹ

Y ′
12 Y ′

01

Y12 Y01

Y2 Y1 Y0

σ2 σ1 ψ1 ψ0

ψ01σ12

σ′ ψ′

where toric maps can be described as follows:
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map center weights exceptional divisor relation

ψ0 x1 = x2 = 0 (3, 2) {x6 = 0} 3v1 + 2v2 = v6

ψ1 x0 = x5 = 0 (1, 3) {x6 = 0} v0 + 3v5 = v6

σ1 x1 = x5 = 0 (1, 1) {x7 = 0} v1 + v5 = v7

σ2 x0 = x3 = 0 (1, 2) {x7 = 0} v0 + 2v3 = v7

ψ′ x1 = x5 = 0 (1, 1) {x7 = 0} v1 + v5 = v7

σ′ x0 = x5 = 0 (1, 3) {x6 = 0} v0 + 3v5 = v6

ψ01 x1 = x6 = 0 1
2
(3, 1) {x8 = 0} 3v1 + v6 = 2v8

σ12 x0 = x7 = 0 1
2
(1, 3) {x8 = 0} v1 + 3v7 = 2v8

Here, 1
2
(a, b) indicates that the variety has an A1-singularity along the center of blow up.

Now, we set ϕ0 = ψ01 ◦ψ
′ ◦ψ0, ϕ1 = ψ01 ◦ψ

′ ◦ψ1, ϕ2 = σ12 ◦ σ
′ ◦σ2. Let F̃i be the toric

divisor {xi = 0} ⊂ Ỹ . Then

ϕ∗
0(F0) ∼Q F̃0,

ϕ∗
0(F1) ∼Q F̃1 + 3F̃6 + F̃7 + 3F̃8,

ϕ∗
0(F5) ∼Q F̃5 + F̃7,

ϕ∗
1(F0) ∼Q F̃0 + F̃6 +

1

2
F̃8,

ϕ∗
1(F1) ∼Q F̃1 + F̃7 +

3

2
F̃8,

ϕ∗
1(F5) ∼Q F̃5 + 3F̃6 + F̃7 +

3

2
F̃8,

ϕ∗
2(F0) ∼Q F̃0 + F̃6 + F̃7 + 2F̃8,

ϕ∗
2(F1) ∼Q F̃1,

ϕ∗
2(F5) ∼Q F̃5 + 3F̃6.

Using this, we describe the Zariski decomposition of the divisor ϕ∗
0(L(u)) as follows:

P̃ (u) ∼R





(9− u)F̃0 + 3F̃1 + F̃5 + 9F̃6 + 4F̃7 + 9F̃8 u ∈ [0, 3],

(9− u)F̃0 + 3F̃1 + F̃5 + (12− u)F̃6 + 4F̃7 +
21−u
2
F̃8 u ∈ [3, 5],

(9− u)F̃0 + 3F̃1 + F̃5 + (12− u)F̃6 + (9− u)F̃7 + 2(9− u)F̃8 u ∈ [5, 6],

(9− u)(F̃0 + F̃1 +
1
3
F̃5 + 2F̃6 + F̃7 + 2F̃8) u ∈ [6, 9],

and

Ñ(u) =





0 u ∈ [0, 3],

(u− 3)F̃6 +
u−3
2
F̃8 u ∈ [3, 5],

(u− 3)F̃6 + (u− 5)F̃7 + (2u− 9)F̃8 u ∈ [5, 6],

(u− 6)F̃1 +
u
3
F̃5 + (2u− 9)F̃6 + (u− 5)F̃7 + (2u− 9)F̃8 u ∈ [6, 9].
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where P̃ (u) is the positive part, and Ñ(u) is the negative part.

Now, we describe P̃ (u)|F̃0
and Ñ(u)|F̃0

for every u ∈ [0, 9]. We have Ỹ = (C9 \ Ĩ)/G6
m,

where the torus action is given by the matrix

M̃ =




x0 x1 x2 x3 x4 x5 x6 x7 x8
0 1 1 1 2 0 0 0 0
0 0 0 0 1 1 0 0 0
1 0 1 3 3 0 0 0 0
0 0 1 3 6 0 1 0 0
0 0 1 1 3 0 0 1 0
0 0 2 3 6 0 0 0 1




,

and the irrelevant ideal

Ĩ =〈x0, x3〉 ∩ 〈x0, x5〉 ∩ 〈x0, x7〉 ∩ 〈x1, x2〉 ∩ 〈x1, x5〉 ∩ 〈x1, x6〉 ∩ 〈x2, x7〉 ∩ 〈x2, x8〉

∩ 〈x3, x6〉 ∩ 〈x3, x8〉 ∩ 〈x4, x5〉 ∩ 〈x4, x6〉 ∩ 〈x4, x7〉 ∩ 〈x4, x8〉 ∩ 〈x5, x8〉.

To obtain a similar description of the surface F̃0, set x0 = 0, eliminate the first row in M̃ ,

and set x3 = x5 = x7 = 1, since Ĩ ⊂ 〈x0, x3〉 ∩ 〈x0, x5〉 ∩ 〈x0, x7〉. The resulting matrix is



x1 x2 x4 x6 x8
3 2 3 0 0
0 0 3 1 0
0 1 3 0 1


 .

Using this, we see that F̃0 = (C5 \ Z(IF̃0
))/G3

m, where the torus action is given by



z1 z2 z3 z4 z5
1 1 2 0 0
0 1 0 1 0
0 1 1 0 1


 ,

and IF̃0
= 〈z1, z3〉∩〈z1, z4〉∩〈z2, z4〉∩〈z2, z5〉∩〈z3, z5〉. We can see from the matrices that

x1
∣∣
F̃0

= z1, x32
∣∣
F̃0

= z3, x4
∣∣
F̃0

= z2, x36
∣∣
F̃0

= z4, x38
∣∣
F̃0

= z5.

The fan of the toric surface F̃0 is given by

w1 = (1, 0), w2 = (−1,−2), w3 = (0, 1), w4 = (1, 2), w5 = (1, 1)

with obvious cone structure. For i ∈ {1, 2, 3, 4, 5}, let Ci be the curve in F̃0 given zi = 0.

The cone of effective divisors of the surface F̃0 is generated by the curves C1, C4, C5, and
their intersection form is given in the following table:

• C1 C4 C5

C1 −1
2

0 1

C4 0 −1 1

C5 1 1 −2
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Further, we compute

P̃ (u)
∣∣
F̃0

∼R





u
3
C1 +

u
3
C4 +

u
3
C5 u ∈ [0, 3]

u
3
C1 + C4 + (1

2
+ u

6
)C5 u ∈ [3, 5]

u
3
C1 + C4 + (3− u

3
)C5 u ∈ [5, 6]

(6− 2u
3
)C1 + (3− u

3
)C4 + (3− u

3
)C5 u ∈ [6, 9],

and

Ñ(u)
∣∣
F̃0

=





0 u ∈ [3, 5],
u−3
6
(2C4 + C5) u ∈ [3, 5],

u−3
3
C4 +

2u−9
3
C5 u ∈ [5, 6],

(u− 6)C1 +
2u−9
3

(2C4 + C5) u ∈ [6, 9].

Let θ : F̃0 → F0 be the morphism induced by ϕ0. Then θ is a birational morphism that
contracts C4 and C5. Set C1 = θ(C1), C2 = θ(C2), C3 = θ(C3), identify F0 = P(1, 1, 2)
with coordinates z̄1, z̄2, z̄3 such that C1 = {z̄1 = 0}, C2 = {z̄2 = 0}, C3 = {z̄3 = 0},
where z̄1 and z̄2 are coordinates of weight 1, and z̄3 is a coordinate of weight 2. Then

θ
(
C4

)
= θ
(
C5

)
= C1 ∩ C3 = [0 : 1 : 0],

and θ is a composition of the ordinary blow up at the point [0 : 1 : 0] with the consecutive
blow up at the point on the proper transform of the curve C3. Note that C5 is the proper
transform of the exceptional curve for the first blow up and C4 is the exceptional curve
for the second blow up.

Let B0 be the proper transform on Y0 of the surface B. Set ∆0 =
1
2
B0 and BF0

= B0|F0
.

Then, changing the coordinates z̄1, z̄2, z̄3, we may also assume that

BF0
=
{
z21 + z22 = z3

}
⊂ F0.

This curve is smooth, it does not contain the singular point of F0, and [0 : 1 : 0] 6∈ BF0
.

The geometry of the surface F0 can be illustrated by the following picture:

C5

C1

C2

C3

C4

BF0

Note that the surface Y0 is singular along the curve C3. We set

∆F0
=

1

2
BF0

+
2

3
C3.

Then KF0
+∆F0

∼Q (KY0 +∆0)|F0
, and ∆F0

is the corresponding different [33].
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Now, we are ready to apply [2, 6, 17]. Let Q be a point in F0, let C be a smooth curve

in the surface F0 that contains Q, let C̃ be its proper transform on F̃0. For u ∈ [0, 9], let

t(u) = inf
{
v ∈ R>0

∣∣ the divisor P̃ (u)
∣∣
F̃0

− vC̃ is pseudo-effective
}
.

For real number v ∈ [0, t(u)], let P (u, v) and N(u, v) be the positive part and the negative

part of the Zariski decomposition of the divisor P̃ (u)|F̃0
− vC̃, respectively. Set

SL
(
W F0

•,•;C
)
=

3

A3

9∫

0

(
P̃ (u)

∣∣
F̃0

)2
ordC̃

(
Ñ(u)

∣∣
F̃0

)
du+

3

A3

9∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.

Write θ∗(C) = C̃ + Σ for an effective divisor Σ on the surface F̃0. For u ∈ [0, 9], write

Ñ(u)
∣∣
F̃0

= d(u)C̃ +N ′(u),

where d(u) = ordC̃(Ñ(u)|F̃0
), and N ′(u) is an effective divisor on F̃0. Set

S
(
W F0,C

•,•,• ;Q
)
=

3

A3

9∫

0

t(u)∫

0

(
P (u, v) · C̃

)2
dvdu+ FQ

(
W F0,C

•,•,•
)

for

FQ
(
W F0,C

•,•,•
)
=

6

A3

9∫

0

t(u)∫

0

(
P (u, v) · C̃

)
· ordQ

((
N ′(u) +N(u, v)− (v + d(u))Σ

)∣∣
C̃

)
dvdu,

where we consider Q as a point in C̃ using the isomorphism C̃ ∼= C induced by θ.
We will choose C such that the pair (F0, C+∆F0

−ordC(∆F0
)C) has purely log terminal

singularities. In this case, the curve C is equipped with an effective divisor ∆C such that

KC +∆C ∼Q

(
KF0

+ C +∆F0
− ordC(∆F0

)C
)∣∣
C
,

and the pair (C,∆C) has Kawamata log terminal singularities. The Q-divisor ∆C is known
as the different, and it can be computed locally near any point in C, see [33] for details.

Let F be a prime divisor over Y such that P = CY (F). Recall that

βY,∆(F) = AY,∆(F)− SA(F) = AY,∆(F)−
1

A3

∫ ∞

0

vol
(
A− uF

)
du.

Suppose βY,∆(F) 6 0. Then, using [17, Corollary 4.18], we obtain

1 >
AY,∆(F)

SA(F)
> δP (Y,∆) > min

{
AY,∆(F0)

SA(F0)
, inf
Q∈F0

min

{
AF0,∆F0

(C)

SA(W
F0•,•;C)

,
AC,∆C

(Q)

S(W F0,C
•,•,• ;Q)

}}
,

where the choice of C in the infimum depends on Q. Thus, since
AY,∆(F0)

SA(F0)
> 1, we have

inf
Q∈F0

min

{
AF0,∆F0

(C)

SA(W
F0•,•;C)

,
AC,∆C

(Q)

S(W F0,C
•,•,• ;Q)

}
6 1.

49



In fact, since
AY,∆(F0)

SA(F0)
= 130

127
> 1, it follows from [17, Corollary 4.18] and [2, Theorem 3.3]

that we have a strict inequality:

inf
Q∈F0

min

{
AF0,∆F0

(C)

SA(W
F0•,•;C)

,
AC,∆C

(Q)

S(W F0,C
•,•,• ;Q)

}
< 1.

Let us use this to obtain a contradiction, which would finish the proof of Proposition 5.8.
Namely, we will show that for every point Q ∈ F0, there exists a smooth irreducible

curve C ⊂ F0 such that Q ∈ C, the log pair (F0, C +∆F0
− ordC(∆F0

)C) has purely log
terminal singularities, and the following two inequalities hold:

(5.19) SA
(
W F0

•,•;C
)
6 AF0,∆F0

(C)

and

(5.20) S(W F0,C
•,•,• ;Q) 6 AC,∆C

(Q).

To be precise, we will choose the curve C as follows:

• if Q ∈ C1, we let C = C1,
• if Q 6∈ C1 and Q ∈ C3, we let C = C3,
• if Q 6∈ C1 ∪ C3, we let C to be the unique curve in |C1| such that Q ∈ C.

Lemma 5.21. Let Q be a point in C1. Set C = C1. Then (5.19) and (5.20) hold.

Proof. Note that AF0,∆F0
(C) = 1 and Σ = C4 + C5. We have

d(u) =

{
0 u ∈ [0, 6]

u− 6 u ∈ [6, 9],

and

t(u) =

{
u
3

u ∈ [0, 6],

6− 2u
3

u ∈ [6, 9].

Moreover we have

N(u, v) =





v(C4 + C5) u ∈ [0, 3], v ∈ [0, u
3
],

v
2
C5 u ∈ [3, 5], v ∈ [0, u

3
− 1],

3v+3−u
3

C4 +
6v+3−u

6
C5 u ∈ [3, 5], v ∈ [u

3
− 1, u

3
],

0 u ∈ [5, 6], v ∈ [0, u− 5],
v+5−u

2
C5 u ∈ [5, 6], v ∈ [u− 5, u

3
− 1],

3v+3−u
3

C4 +
3v+9−2u

3
C5 u ∈ [5, 6], v ∈ [u

3
− 1, u

3
],

0 u ∈ [6, 9], v ∈ [0, 3− u
3
],

3v+u−9
3

(C4 + C5) u ∈ [6, 9], v ∈ [3− u
3
, 6− 2u

3
],
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and

P (u, v) ∼R





u−3v
3

(C1 + C4 + C5) u ∈ [0, 3], v ∈ [0, u
3
],

u−3v
3
C1 + C4 +

3+u−3v
6

C5 u ∈ [3, 5], v ∈ [0, u
3
− 1],

u−3v
3

(C1 + C4 + C5) u ∈ [3, 5], v ∈ [u
3
− 1, u

3
],

u−3v
3
C1 + C4 +

9−u
3
C5 u ∈ [5, 6], v ∈ [0, u− 5],

u−3v
3
C1 + C4 +

3+u−3v
6

C5 u ∈ [5, 6], v ∈ [u− 5, u
3
− 1],

u−3v
3

(C1 + C4 + C5) u ∈ [5, 6], v ∈ [u
3
− 1, u

3
],

(18−2u−3v
3

C1 +
9−u
3
(C4 + C5) u ∈ [6, 9], v ∈ [0, 3− u

3
],

18−2u−3v
3

(C1 + C4 + C5) u ∈ [6, 9], v ∈ [3− u
3
, 6− 2u

3
],

which gives

(
P (u, v)

)2
=





(u−3v)2

18
u ∈ [0, 3], v ∈ [0, u

3
],

u
3
− v − 1

2
u ∈ [3, 5], v ∈ [0, u

3
− 1],

(u−3v)2

18
u ∈ [3, 5], v ∈ [u

3
− 1, u

3
],

−u2

2
+ uv − v2

2
− 13 + 16

3
u− 6v u ∈ [5, 6], v ∈ [0, u− 5],

u
3
− v − 1

2
u ∈ [5, 6], v ∈ [u− 5, u

3
− 1],

(u−3v)2

18
u ∈ [5, 6], v ∈ [u

3
− 1, u

3
],

−2u+ 9 + u2

9
− v2

2
u ∈ [6, 9], v ∈ [0, 3− u

3
],

(18−2u−3v)2

18
u ∈ [6, 9], v ∈ [3− u

3
, 6− 2u

3
],

and

P (u, v) · C =





u−3v
6

u ∈ [0, 3], v ∈ [0, u
3
],

1
2

u ∈ [3, 5], v ∈ [0, u
3
− 1],

u−3v
6

u ∈ [3, 5], v ∈ [u
3
− 1, u

3
],

6−u+v
2

u ∈ [5, 6], v ∈ [0, u− 5],
1
2

u ∈ [5, 6], v ∈ [u− 5, u
3
− 1],

u−3v
6

u ∈ [5, 6], v ∈ [u
3
− 1, u

3
],

v
2

u ∈ [6, 9], v ∈ [0, 3− u
3
],

18−2u−3v
6

u ∈ [6, 9], v ∈ [3− u
3
, 6− 2u

3
].

Integrating, we get S(W F0
•,•;C) =

10
13
< 1 = AF0,∆F0

(C), so (5.19) holds.

Similarly, we compute S(W F0,C
•,•,• ;Q) =

9
52

+ FQ(W
F0,C
•,•,• ), where

FQ
(
W F0,C

•,•,•
)
=

{
1
12

Q = C1 ∩ C3,

0 otherwise.

Observe that

AC,∆C
(Q) =





1
2

Q = C1 ∩BF0
,

1
2

Q = C1 ∩ C2,
1
3

Q = C1 ∩ C3,

1 otherwise.
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Thus, we have

AC,∆C
(Q)

S(W F0,C
•,•,• ;Q)

=





13
10

Q = C1 ∩ C3,
26
9

Q = C1 ∩ C2,
26
9

Q = C1 ∩BF0
,

52
9

otherwise.

which implies (5.20). �

Lemma 5.22. Let Q be a point in C3 \ C1. Set C = C3. Then (5.19) and (5.20) hold.

Proof. For u ∈ [0, 9], we have d(u) = 0 and N ′(u) = Ñ(u)|F̃0
. Since C̃ ∼ C3 + 2C4 + C5,

we have

t(u) =

{
u
6

u ∈ [0, 6],
9−u
3

u ∈ [6, 9].

We compute

N(u, v) =





2vC4 + vC5 u ∈ [0, 3], v ∈ [0, u
6
],

0 u ∈ [3, 5], v ∈ [0, u−3
6
],

u−3
6
(2C4 + C5) u ∈ [3, 5], v ∈ [u−3

6
, u
6
],

0 u ∈ [5, 6], v ∈ [0, 6−u
3
],

3v+u−6
3

(C4) u ∈ [5, 6], v ∈ [6−u
3
, 2u−9

3
]

6v+3−u
3

(C4) +
v+9−2u

3
(C4) u ∈ [5, 6], v ∈ [2u−9

3
, u
6
],

2u−9
3

(C4 + C5) u ∈ [6, 9], v ∈ [0, 9−u
3
],

and

P (u, v) ∼





u−6v
3

(C1 + C4 + C5) u ∈ [0, 3], v ∈ [0, u
6
],

u−6v
3
C1 +

3+u−6v
6

C5 + C4 u ∈ [3, 5], v ∈ [0, u−3
6
],

u−6v
3

(C1 + C4 + C5) u ∈ [3, 5], v ∈ [u−3
6
, u
6
],

u−6v
3
C1 +

9−u−3v
3

C5 + C4 u ∈ [5, 6], v ∈ [0, 6−u
3
],

u−6v
3
C1 +

9−u−3v
3

(C5 + C4) u ∈ [5, 6], v ∈ [6−u
3
, 2u−9

3
],

u−6v
3

(C1 + C4 + C5) u ∈ [5, 6], v ∈ [2u−9
3
, u
6
],

9−u−3v
3

(2C1 + C4 + C5) u ∈ [6, 9], v ∈ [0, 9−u
3
],

which gives

(
P (u, v)

)2
=





u2

18
+ 2v2 − 2

3
uv u ∈ [0, 3], v ∈ [0, u

6
],

u
3
− 2v − 1

2
u ∈ [3, 5], v ∈ [0, u−3

6
],

u2

18
+ 2v2 − 2

3
uv u ∈ [3, 5], v ∈ [u−3

6
, u
6
],

16
3
u− 2v − 13

2
u2 u ∈ [5, 6], v ∈ [0, 6−u

3
],

4u− 6v − 9− 7
18
u2 + v2 + 2

3
uv u ∈ [5, 6], v ∈ [6−u

3
, 2u−9

3
]

9− 6v − 2u+ v2 + u2

9
+ 2

3
uv u ∈ [5, 6], v ∈ [2u−9

3
, u
6
],

2u−9
3

(C4 + C5) u ∈ [6, 9], v ∈ [0, 9−u
3
],
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and

P (u) · C =





u
3
− 2v u ∈ [0, 3], v ∈ [0, u

6
],

1 u ∈ [3, 5], v ∈ [0, u−3
6
],

u
3
− 2v u ∈ [3, 5], v ∈ [u−3

6
, u
6
],

1 u ∈ [5, 6], v ∈ [0, 6−u
3
],

3− v − u
3

u ∈ [5, 6], v ∈ [6−u
3
, 2u−9

3
]

u
3
− 2v u ∈ [5, 6], v ∈ [2u−9

3
, u
6
],

3− u
3
− v u ∈ [6, 9], v ∈ [0, 9−u

3
].

Thus, integrating we get S(W F0
•,•;C) =

10
39
< 1

3
= AF0,∆F0

(C), so (5.19) holds.

Since Q 6= C1 ∩ C3, we have FQ(W
F0,C
•,•,• ) = 0, which gives S(W F0,C3

•,•,• ;Q) = 9
26
. But

AC,∆C
(Q) =

{
1
2

Q ∈ BF0
,

1 Q 6∈ BF0
.

Thus, we have

AC,∆C
(Q)

S(W F0•,•;C)
=

{
13
10

Q ∈ BF0
,

26
9

Q 6∈ BF0
,

which implies (5.19). �

Lemma 5.23. Let Q be a point in F0 such that Q 6∈ C1 ∪ C3, and let C be the unique
curve in the pencil |C1| that contains Q. Then (5.19) and (5.20) hold.

Proof. Note that AF0,∆F0
(C) = 1, and C̃ ∼ C1 + C4 + C5. We have

t(u) =





u
3

u ∈ [0, 3],

1 u ∈ [3, 6],
9−u
3

u ∈ [6, 9].

For every u ∈ [0, 9], we have d(u) = 0 and N ′(u) = Ñ(u)|F̃0
. We compute

N(u, v) =





0 u ∈ [0, 3], v ∈ [0, u
3
],

0 u ∈ [3, 5], v ∈ [0, 1],

0 u ∈ [5, 6], v ∈ [0, 6− u],

(v + u− 6)C1 u ∈ [5, 6], v ∈ [6− u, 1],

vC1 u ∈ [6, 9], v ∈ [0, 3− u
3
],

and

P (u, v) ∼





u−3v
3

(C1 + C4 + C5) u ∈ [0, 3], v ∈ [0, u
3
],

u−3v
3
C1 + (1− v)C4 +

3+u−6v
6

C5 u ∈ [3, 5], v ∈ [0, 1],
u−3v
3
C1 + (1− v)C4 +

9−u−3v
3

C5 u ∈ [5, 6], v ∈ [0, 6− u],
18−2u−6v

3
C1 + (1− v)C4 + (9−u−3v

3
C5 u ∈ [5, 6], v ∈ [6− u, 1],

9−u−3v
3

(2C1 + C4 + C5) u ∈ [6, 9], v ∈ [0, 3− u
3
].
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which gives

(
P (u, v)

)2
=





(u−3v)2

18
u ∈ [0, 3], v ∈ [0, u

3
]

−1
2
+ u

3
− 1

3
uv + 1

2
v2 u ∈ [3, 5], v ∈ [0, 1]

−u2

2
− uv

3
+ v2

2
− 13 + 16

3
u u ∈ [5, 6], v ∈ [0, 6− u]

5 + 2uv
3

+ v2 − 2u
3
− 6v u ∈ [5, 6], v ∈ [6− u, 1]

(3−u
3
−v)2
2

u ∈ [6, 9], v ∈ [0, 3− u
3
],

and

P (u) · C̃ =





u−3v
6

u ∈ [0, 3], v ∈ [0, u
3
]

u−3v
6

u ∈ [3, 5], v ∈ [0, 1]
u−3v
6

u ∈ [5, 6], v ∈ [0, 6− u]
9−u−3v

3
u ∈ [5, 6], v ∈ [6− u, 1]

9−u−3v
3

u ∈ [6, 9], v ∈ [0, 3− u
3
].

Thus, integrating we get S(W F0
•,•;C) =

9
26
< 1 = AF0,∆F0

(C), so (5.19) holds.

Since Q 6∈ C1 ∪ C3, we have FQ(W
F0,C
•,•,• ) = 0 and

AC,∆C
(Q) =

{
1
2

Q ∈ BF0
,

1 Q 6∈ BF0
.

Integrating, we get S(W F0,C
•,•,• ;Q) =

10
39
, so that

AC,∆C
(Q)

S(W F0•,•;C)
=

{
39
20

Q ∈ BF0
,

39
10

Q 6∈ BF0
,

which implies (5.19). �

Lemmas 5.21, 5.21, 5.23 completes the proof of Proposition 5.8.

6. On the K-moduli spaces

In this section, we prove Corollary 1.14. The proof of Corollary 1.15 is almost identical,
so we omit it. To start with, let us present the following well known assertion.

Lemma 6.1. Let X be a smooth Fano threefold. Then

h0 (X, TX)− h1 (X, TX) = χ(X, TX) =
−K3

X

2
− 18 + b2(X)−

b3(X)

2
,

where b2(X) and b3(X) are the second and the third Betti numbers of X, respectively.

Proof. The required assertion immediately follows from the Akizuki–Nakano vanishing
theorem and the Hirzebruch–Riemann–Roch theorem, since −KX · c2(X) = 24. �

Now, let us use notations and assumptions introduced in Corollary 1.14.

Lemma 6.2. Let f ∈ T andXf be the Casagrande–Druel 3-fold constructed from {f = 0}.
Suppose that f is GIT semistable with respect to the Γ-action. Then Xf is K-semistable.
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Proof. There exists a one-parameter subgroup λ : Gm → Γ such that

[f0] = lim
t→0

λ(t) · [f ]

is a GIT polystable point in T . Let X0 be the corresponding Casagrande–Druel threefold
constructed from {f0 = 0}. Then it follows from Theorem 1.12 that X0 is K-polystable.
On the other hand, the subgroup λ gives isotrivial flat degeneration of Xf to X0, which
implies that Xf is K-semistable, because K-semistability is an open condition. �

Now, we are ready to prove Corollary 1.14.

Proof of Corollary 1.14. Since the construction of Casagrande–Druel 3-folds is functorial,
there exists a Γ-equivariant flat morphism πT : XT → T such that

π−1
T ([f ]) ∼= Xf .

We set XT ss = π−1
T (T ss). Then the restriction morphism XT ss → T ss is a Γ-equivariant

flat family of K-semistable Fano 3-folds by Lemma 6.2.
Let {T ss/Γ} be the fibered category over (Sch /C)fppf in the sense of [29, Example 4.6.7].

Then the family XT ss → T ss gives a morphism {T ss/Γ} → MKss
3,28 of fibered categories.

This induces the morphism [
T ss/Γ

]
→ MKss

3,28

between Artin stacks, since [T ss/Γ] is the stackification of {T ss/Γ} (see [29, Remark 4.6.8]).
SinceM is the good moduli space of [T ss/Γ], it follows from [4, Theorem 6.6] that there

exists a natural morphism

Φ: M →MKps
3,28

that maps [f ] to [Xf ]. This morphism is injective. Indeed, if f1 and f2 are points in T ,
then the corresponding Casagrande–Druel 3-folds Xf1 and Xf2 are isomorphic if and only
if the points f1 and f2 are contained in one Γ-orbit.

Observe that M is normal. Take [f ] ∈M . Since the deformations of the 3-fold Xf are

unobstructed by Proposition 2.9, the variety MKps
3,28 is also normal at [Xf ] by Luna’s étale

slice theorem [5, Theorem 1.2]. Moreover, if Xf is smooth, then

dim[Xf ]

(
MKps

3,28

)
6 h1

(
Xf , TXf

)
= dim(M)

by Lemma 6.1, since h0(X, TX) = dim(Aut(X)) = 1. Therefore, using the injectivity of Φ,

we see that the image Φ(M) ⊂MKps
3,28 is a connected component, and Φ is an isomorphism

onto this connected component by Zariski’s main theorem. �

The variety MKps
(3.9) is well-studied [20]. Let us describe MKps

(4.2)
∼= T ss // Γ. Recall that

T = P
(
H0 (V,OV (2, 2))

∨)

and Γ = (SL2(C)× SL2(C))⋊ µ2, where V = P1 × P1. Set Γ0 = SL2(C)× SL2(C).

Proposition 6.3 (Noam Elkies). One has T ss // Γ0
∼= T ss // Γ ∼= P(1, 2, 3).

Proof. Let W = H0 (V,OV (2, 2)), let S be the symmetric algebra of W∨, let SΓ0 be its
subalgebra of invariants for the natural Γ0-action, and let H(t) be its Hilbert series:

H(t) =
∑

k>0

dim
((

Symk(W∨)
)Γ0

)
tk.
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Then its follows from [32, §11.9] or [13, §4.6] that

H(t) =

∫ 1

0

∫ 1

0

2− z21 − z−2
1

2
·
2− z22 − z−2

2

2
·

∏

j1,j2∈{−1,0,1}

1

1− t · z2j11 z2j22

dφ1dφ2

with |t| < 1, where z1 = e2π
√
−1φ1 and z2 = e2π

√
−1φ2 . This gives

H(t) =
1

(1− t2)(1− t3)(1− t4)
.

Let us find generators of SΓ0 . Consider the standard basis

x20y
2
0, x

2
0y0y1, x

2
0y

2
1, x0x1y

2
0, x0x1y0y1, x0x1y

2
1, x

2
1y

2
0, x

2
1y0y1, x

2
1y

2
1

of the space W , let a00, a01, a02, a10, a11, a12, a20, a21, a22 be the dual basis of the space W
∨,

and let J2, J3, J4 be the coefficients of the characteristic polynomial of the matrix



1
2
a11 −a10 −a01 2a00
a12 −1

2
a11 −2a02 a01

a21 −2a20 −1
2
a11 a10

2a22 −a21 −a12
1
2
a11




such that Jk ∈ Symk(W∨) for k ∈ {2, 3, 4}. Then J2, J3, J4 are Γ0-invariant, and these
polynomials are algebraically independent, which gives SΓ0 = C[J2, J3, J4], so that

T ss // Γ0
∼= P(2, 3, 4) ∼= P(1, 2, 3).

Since the polynomials J2, J3, J4 are also Γ-invariant, we also get T ss // Γ0
∼= T ss // Γ. �

Remark 6.4. In fact, Proposition 6.3 is a classical result — Peano [31] and Turnbull [38]
showed that SΓ0 is generated by J2, J3, J4, see [38, §12] and [30, Pages 242–246].

The surfaceMKps
(4.2) is a component of the K-moduli space of smoothable Fano threefolds.

Another two-dimensional component of this K-moduli space has been described in [9], and
all its one-dimensional components have been described in [1].
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