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K-STABILITY AND SPACE SEXTIC CURVES OF GENUS THREE

IVAN CHELTSOV, OLIVER LI, SIONE MA’U, ANTOINE PINARDIN

Abstract. We study Fano threefolds that can be obtained by blowing up the three-dimensional
projective space along a smooth curve of degree six and genus three. We produce many new K-stable
examples of such threefolds, and we describe all finite groups that can act faithfully on them.
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1. Introduction

Let C be a smooth quartic curve in P2, let D be a divisor of degree 2 on the curve C such that

(♦) h0
(
OC(D)

)
= 0.

Then KC +D is very ample [27], and the linear system |KC +D| gives an embedding φ : C →֒ P3.
We set C6 = φ(C). Then C6 is a smooth curve of degree 6 and genus 3.

Let π : X → P3 be the blow up of the curve C6. Then X is a Fano threefold in the deformation
family №2.12 in the Mori–Mukai list, and every smooth member of this family can be obtained in
this way. Moreover, the Fano threefold X can be given in P3 × P3 by

(♣) (x0, x1, x2, x3)M1




y0
y1
y2
y3


 = (x0, x1, x2, x3)M2




y0
y1
y2
y3


 = (x0, x1, x2, x3)M3




y0
y1
y2
y3


 = 0

for appropriate 4×4 matrices M1, M2, M3 such that π is induced by the projection to the first factor,
where ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]) are coordinates on P3 × P3.

Let π′ : X → P3 be the morphism induced by the projection P3 × P3 → P3 to the second factor.
Then π′ is a blow up of P3 along a smooth curve C ′

6 of degree 6 and genus 3, and the π′-exceptional
surface is spanned by the strict transforms of the trisecants of the curve C6. Furthermore, we have

Throughout this paper, all varieties are assumed to be projective and defined over C.
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the following commutative diagram:

(⋆) X
π

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ π′

  ❆
❆❆

❆❆
❆❆

❆

P3 χ
//❴❴❴❴❴❴❴ P3

where χ is the birational map given by the linear system consisting of all cubic surfaces containing C6.
Note that the curves C6 and C ′

6 are isomorphic, but they are not necessarily projectively isomorphic.
We can find the equations of the curves C6 and C ′

6 as follows. Rewrite (♣) as




L10y0 + L11y1 + L12y2 + L13y3 = 0,

L20y0 + L21y1 + L22y2 + L23y3 = 0,

L30y0 + L31y1 + L32y2 + L33y3 = 0,

,

where the Lij ’s are linear functions in x0, x1, x2, x3. Set

M =



L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33


 .

Let f0, f1, f2, f3 be the determinants of the 3×3 matrices obtained from the matrix M by removing
its first, second, third, fourth columns, respectively. Then C6 = {f0 = 0, f1 = 0, f2 = 0, f3 = 0}, and
the birational map χ : P3 99K P3 in the diagram (⋆) is given by

[x0 : x1 : x2 : x3] 7→
[
f0 : f1 : f2 : f3

]

up to a composition with an automorphism of the projective space P3. Similarly, one can also describe
the defining equations of the sextic curve C ′

6.

Example 1 ([19, 2]). Let

X =
{
x0y1 + x1y0 −

√
2x2y2 = 0, x0y2 + x2y0 −

√
2x3y3 = 0, x0y3 + x3y0 −

√
2x1y1 = 0

}
⊂ P3 × P3.

Then X is a smooth Fano threefold in the family №2.12, the curve C6 is given by




2
√
2x1x2x3 − x3

0 = 0,

x2
0x1 +

√
2x0x

2
2 + 2x2x

2
3 = 0,

x2
0x2 +

√
2x0x

2
3 + 2x2

1x3 = 0,

x2
0x3 +

√
2x0x

2
1 + 2x1x

2
2 = 0,

and C ′
6 is given by the same equations replacing each xi by yi. One has Aut(X) ≃ PSL2(F7) × µ2,

and X is the only smooth Fano threefold in the deformation family №2.12 that admits a faithful
action of the Klein simple group PSL2(F7). The map χ in (⋆) can be chosen to be an involution.

The following result has been proven in [2].

Theorem 2 ([2, § 5.4]). Let X be the Fano threefold from Example 1. Then X is K-stable.

Hence, a general member of the family №2.12 is K-stable, since K-stability is an open condition.
We expect that every smooth Fano threefold in this family is K-stable. To show this, it is enough to
prove that

β(F) = AX(F)− SX(F) > 0
2



for every prime divisor F over X [22, 32], where AX(F) is the log discrepancy of the divisor F, and

SX

(
F
)
=

1

(−KX)3

∞∫

0

vol
(
−KX − uF

)
du.

Unfortunately, we are unable to prove this result at the moment. Instead, we prove a weaker result.
To state it, let E be the π-exceptional surface, and let E ′ be the π′-exceptional surface.

Theorem A. Let F be a prime divisor over X such that β(F) 6 0, and let Z be its center on X.

Then Z is a point in the intersection E ∩ E ′.

Let us present applications of this result. By [39, Corollary 4.14], Theorem A implies

Corollary 3. If Aut(X) does not fix points in E ∩ E ′, then X is K-stable.

Since the action of the group Aut(P3, C6) lifts to X , Corollary 3 implies

Corollary 4. If Aut(P3, C6) does not fix a point in C6, then X is K-stable.

Since the group Aut(P3, C6) acts faithfully on the curve C6, Corollary 4 implies the following
generalization of Theorem 2, which has more applications (see Section 2).

Corollary 5. If Aut(P3, C6) is not cyclic, then X is K-stable.

Proof. If the group Aut(P3, C6) fixes a point P ∈ C6, it acts faithfully on the one-dimensional tangent
space to the curve C6 at the point P by [20, Lemma 2.7], so that Aut(P3, C6) is cyclic. �

What do we know about Aut(X)? This group is finite [9], and we have the following exact sequence:

1 → Aut
(
P3, C6

)
→ Aut(X) → µ2,

where Aut(P3, C6) ≃ Aut(C, [D]), and the final homomorphism is surjective ⇐⇒ Aut(X) contains
an element that swaps E and E ′. For instance, if X is the smooth Fano threefold from Example 1,
then the group Aut(X) contains such an element — it is the involution given by

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
,

which implies that Aut(X) ≃ PSL2(F7)×µ2 in this case. In Section 4, we will discuss the possibilities
for the group Aut(X) in more details. In particular, we will present a criterion when Aut(X) contains
an element that swaps E and E ′, and we will prove the following result (cf. [38, Theorem 1.1]).

Theorem B. A finite group G has a faithful action on a smooth Fano threefold in the deformation

family №2.12 if and only if G is isomorphic to a subgroup of PSL2(F7)× µ2 or µ
2
4 ⋊S3.

As we mentioned in Example 1, the family №2.12 contains a unique smooth Fano threefold that
admits a faithful action of the group PSL2(F7). Similarly, we prove in Section 4 that the deformation
family №2.12 contains a unique smooth threefold that admits a faithful action of the group µ

2
4⋊µ3,

and the full automorphism group of this threefold is µ2
4 ⋊S3.

Remark 6. Let G be a subgroup in Aut(X). If G has an element that swaps the surfaces E and E ′,
then X is a G-Mori fiber space (over a point), and X is also known as a G-Fano threefold (see [37]).
In this case, it is natural to ask the following three nested questions:

(1) Is there a G-equivariant birational map X 99K P3? Cf. [12, 13, 29].
(2) Is X G-solid? Cf. [10, 36].
(3) Is X G-birationally rigid? Cf. [11].

Inspired by [29, Corollary 6.11], we conjecture that the answer to the first question is always negative.
If G ≃ PSL2(F7)×µ2, then X is G-birationally rigid [2, Theorem 5.23], so, in particular, it is G-solid.
We believe that X is also G-birationally rigid if G ≃ µ

2
4 ⋊S3.
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To consider more applications of Theorem A, let k be a subfield in C such that C6 is defined over k.
Then X and the Sarkisov link (⋆) are defined over k. In particular, the curve C ′

6 is defined over k.
Moreover, it follows from [4, 30] that C ′

6 and C6 are isomorphic over k, which can be shown directly.
By [39, Corollary 4.14], Theorem A implies the following corollaries.

Corollary 7. If E ∩ E ′ does not have k-points, then X is K-stable.

Corollary 8. If C6 does not have k-points, then X is K-stable.

Using [39, Corollary 4.14], we also obtain

Corollary 9. Every smooth Fano threefold in the deformation family №2.12 which is defined over

a subfield of the field C and does not have points in this subfield is K-stable.

We will present applications of Corollaries 8 and Corollary 9 in Section 2.
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2. Examples

2.1. S4-invariant curves. Let us use notations introduced in Section 1. Suppose, in addition, that

M1 =




0 a 1 0
a 0 0 −1
1 0 0 a
0 −1 a 0


 ,M2 =




0 1 0 a
1 0 a 0
0 a 0 −1
a 0 −1 0


 ,M2 =




0 0 a −1
0 0 1 a
a 1 0 0
−1 a 0 0


 ,

where a ∈ C such that a(a6 − 1) 6= 0. Then X is a smooth Fano threefold in the family №2.12, and

M =



ax1 + x2 ax0 − x3 ax3 + x0 ax2 − x1

ax3 + x1 ax2 + x0 ax1 − x3 ax0 − x2

ax2 − x3 ax3 + x2 ax0 + x1 ax1 − x0


 ,

so that C6 = {f0 = 0, f1 = 0, f2 = 0, f3 = 0} for

f0 = (1− a3)x3
0 − (2a2 + 2a)x2

0x1 + (2a2 + 2a)x2
0x2+

+ (2a2 + 2a)x2
0x3 + (a3 − 1)x0x

2
1 − (2a2 − 2a)x0x1x2 − (2a2 − 2a)x0x1x3+

+ (a3 − 1)x0x
2
2 + (2a2 − 2a)x0x2x3 + (a3 − 1)x0x

2
3 − (2a3 + 2)x1x2x3,

f1 = (1− a3)x2
0x1 + (−2a2 − 2a)x0x

2
1 + (2a2 − 2a)x0x1x2−

− (2a2 − 2a)x0x1x3 + (2a3 + 2)x0x2x3 + (a3 − 1)x3
1 + (2a2 + 2a)x2

1x2−
− (2a2 + 2a)x2

1x3 + (−a3 + 1)x1x
2
2 + (2a2 − 2a)x1x2x3 + (1− a3)x1x

2
3,

f2 = (a3 − 1)x2
0x2 − (2a2 − 2a)x0x1x2 − (2a3 + 2)x0x1x3+

+ (−2a2 − 2a)x0x
2
2 − (2a2 − 2a)x0x2x3 + (a3 − 1)x2

1x2 + (2a2 + 2a)x1x
2
2+

+ (2a2 − 2a)x1x2x3 + (1− a3)x3
2 + (2a2 + 2a)x2

2x3 + (a3 − 1)x2x
2
3,

4



f3 = (1− a3)x2
0x3 + (2a3 + 2)x0x1x2 − (2a2 − 2a)x0x1x3−

− (2a2 − 2a)x0x2x3 + (2a2 + 2a)x0x
2
3 + (1− a3)x2

1x3 − (2a2 − 2a)x1x2x3+

+ (2a2 + 2a)x1x
2
3 + (1− a3)x2

2x3 + (2a2 + 2a)x2x
2
3 + (a3 − 1)x3

3.

It follows from [34] that the curve C6 is isomorphic to the plane quartic curve in P2
x,y,z that is given

by the equation det(xM1 + yM2 + zM3) = 0, which can be rewritten as

x4 + y4 + z4 + λ(x2y2 + x2z2 + y2z2) = 0

for λ = − 2a4+2
(a2+1)2

, cf. [18, § 14]. So, it follows from [17] that Aut(C6) ≃ S4 if λ 6= 0 and λ2+3λ+18 6= 0.

Moreover, if λ = 0, then Aut(C6) ≃ µ
2
4⋊S3. Furthermore, if λ2+3λ+18 = 0, then C6 is isomorphic

to the Klein quartic curve, and Aut(C6) ≃ PSL2(F7).

Lemma 10. The group Aut(P3, C6) contains a subgroup isomorphic to S4.

Proof. Let G be the subgroup in PGL4(C) that is generated by the following transformations:



0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


 ,




0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


 ,




1 −3 −1 1
−3 −1 1 1
−1 1 −3 1
1 1 1 3


 ,




−3 −1 1 1
−1 1 −3 1
1 −3 −1 1
1 1 1 3


 .

Then, using Magma, one can check that G ≃ S4. Moreover, the curve C6 is G-invariant. �

Corollary 11. If λ 6= 0 and λ2 + 3λ+ 18 6= 0, then Aut(P3, C6) ≃ S4.

Similarly, we prove

Lemma 12. The group Aut(X) contains a subgroup isomorphic to S4 × µ2.

Proof. Let G be the subgroup in PGL4(C) that is defined in the proof of Lemma 10. Then G ≃ S4,
the groupG acts diagonally on P3×P3, andX isG-invariant. This gives an embeddingS4 →֒ Aut(X).
Moreover, since the matrices M1, M2, M3 are symmetric, the involution

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)

leaves X invariant and commutes with the S4-action, which implies the required assertion. �

Corollary 13. If λ 6= 0 and λ2 + 3λ+ 18 6= 0, then Aut(X) ≃ S4 × µ2.

Applying Corollary 5, we conclude that the Fano threefold X is K-stable.

2.2. µ
2
4 ⋊ µ3-invariant curve. Let Ĝ be the subgroup in GL4(C) generated by the matrices

M =




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 , N =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , A =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 , B =




0 i 0 0
1 0 0 0
0 0 0 −i
0 0 1 0


 .

and let G be the image of the group Ĝ in PGL4(C) via the natural projection GL4(C) → PGL4(C).

Then Ĝ ≃ µ4.(µ
2
4 ⋊ µ3) and G ≃ µ

2
4 ⋊ µ3, and their GAP ID’s are [192,4] and [48,3], respectively.

Using GAP [23], one can check that H2(G,C∗) ≃ µ4, and Ĝ is a covering group of the group G.

Lemma 14. Let G′ be a subgroup in PGL4(C) such that G′ ≃ G and G′ does not fix points in P3.

Then G′ is conjugate to G in PGL4(C).

Proof. The claim follows from [10, Lemma 2.7] and the classification of finite subgroups in PGL4(C),
which can be found in [5]. Alternatively, one can prove the required assertion analyzing irreducible

representations of the group Ĝ, which can be found in [15]. �
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The main goal of this subsection is to show that the projective space P3 contains a G-invariant
irreducible smooth non-hyperelliptic curve of degree 6 and genus 3, and this curve is unique up to
the action of the normalizer of the group G in PGL4(C). First, let us describe the normalizer. Set

C±
4 =

{(
1∓

√
3i
)
x2
1 − (1±

√
3i)x2

2 + 2x2
3 = 0, 2x2

0 − (1±
√
3i)x2

1 −
(
1∓

√
3i
)
x2
2 = 0

}
⊂ P3.

Then C±
4 is a G-invariant elliptic curve, and Aut(P3, C±

4 ) is the subgroup in PGL4(C) generated by



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 ,




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 ,




0 i 0 0
1 0 0 0
0 0 0 i
0 0 1 0


 .

Note that Aut(P3, C±
4 ) ≃ µ

3
2.A4. Let G192,185 be the subgroup in PGL4(C) generated by




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 ,




0 0 0 1
i 0 0 0
0 1 0 0
0 0 1 0


 ,




0 i 0 0
−i 0 0 0
0 0 i 0
0 0 0 1


 .

Then its GAP ID is [192,185]. Note that Aut(P3, C±
4 ) ⊳ G192,185 ≃ µ

3
2.S4 and G ⊳ G192,185.

Lemma 15. The normalizer in PGL4(C) of the subgroup G is the subgroup G192,185.

Proof. This follows from the fact that the curve C+
4 + C−

4 is G192,185-invariant. �

Let us describe G-orbits in P3 of length less than 48. To do this, we let

Σ4 = OrbG

(
[1 : 0 : 0 : 0]

)
,

Σ12 = OrbG

(
[1 + i :

√
2 : 0 : 0]

)
,

Σ′
12 = OrbG

(
[1− i :

√
2 : 0 : 0]

)
,

Σ16 = OrbG

(
[−1 +

√
3i : −1−

√
3i : 2 : 0]

)
,

Σ′
16 = OrbG

(
[−1 −

√
3i : −1 +

√
3i : 2 : 0]

)
,

Σu
16 = OrbG

(
[1 : 1 : 1 : u]

)
for u ∈ C,

Σt
24 = OrbG

(
[2 : t : 0 : 0]

)
for t ∈ C such that t 6= 0 and t 6= ±

√
2±

√
2i.

Then Σ4, Σ12, Σ
′
12, Σ16, Σ

′
16, Σ

u
16, Σ

t
24 are G-orbits of length 4, 12, 12, 16, 16, 16, 24, respectively.

Lemma 16. Let Σ be a G-orbit in P3 such that |Σ| < 48. Then Σ is one of the G-orbits

Σ4, Σ12, Σ
′
12, Σ16, Σ

′
16, Σ

u
16, Σ

t
24,

where u ∈ C and t ∈ C such that 0 6= t 6= ±
√
2±

√
2i.

Proof. Let us describe subgroups of the group G. To do this, identify the matrices M , N , A, B with
their images in PGL4(C). Set

C = ANBMA2 =




0 0 0 1
0 0 1 0
0 i 0 0
−i 0 0 0


 .

Then, using [15], we see that all proper subgroups of the group G can be described as follows:

(i) 〈B,C〉 ≃ µ
2
4 is the unique (normal) subgroup of order 16,

(ii) 〈A,M,N〉 ≃ A4 is one of four conjugated subgroups of order 12,
(iii) 〈B,M,N〉 ≃ µ2 × µ4 is one of three conjugated subgroups of order 8,

6



(iv) 〈M,N〉 ≃ µ
2
2 is the unique (normal) subgroup isomorphic to µ

2
2,

(v) 〈B〉 ≃ µ4 and 〈CB〉 ≃ µ4 are non-conjugate subgroups, their conjugacy classes consist of
three subgroups, which are all subgroups of the group G isomorphic to µ4,

(vi) 〈A〉 ≃ µ3 is one of sixteen conjugated subgroups of order 3,
(vii) 〈M〉 ≃ µ2 is one of three conjugated subgroups of order 2.

Now, let Γ be the stabilizer in G of a point in Σ. Then Γ is a proper subgroup of the group G,
since G fixes no points in P3. So, we may assume that Γ is one of the subgroups 〈B,C〉, 〈A,M,N〉,
〈B,M,N〉, 〈M,N〉, 〈B〉, 〈CB〉, 〈A〉, 〈M〉. On the other hand, one can check that

(i) 〈B,C〉 does not fix points in P3,
(ii) the only fixed point of 〈A,M,N〉 is the point [1 : 0 : 0 : 0] ∈ Σ4,
(iii) 〈B,M,N〉 does not fix points in P3,
(iv) 〈M,N〉 does not fix points in P3 \ Σ4,
(v) the only fixed point of 〈B〉 are the points

[1 + i :
√
2 : 0 : 0], [1 + i : −

√
2 : 0 : 0], [0 : 0 :

√
2 : 1 + i], [0 : 0 : −

√
2 : 1 + i],

which are contained in Σ12, and the only fixed point of 〈CB〉 are the points

[
√
2 : 0 : 1− i : 0], [−

√
2 : 0 : 1− i : 0], [0 :

√
2 : 0 : 1− i], [0 : −

√
2 : 0 : 1− i],

which are contained in the G-orbit Σ′
12,

(vi) the only fixed points of 〈A〉 are the points
– [−1 +

√
3i : −1 −

√
3i : 2 : 0] ∈ Σ16,

– [−1 −
√
3i : −1 +

√
3i : 2 : 0] ∈ Σ′

16,
– [1 : 1 : 1 : t] ∈ Σt

16 for any t ∈ C,
– [0 : 0 : 0 : 1] ∈ Σ4,

(vii) all fixed points of 〈M〉 are contained in the lines {x0 = x1 = 0} and {x2 = x3 = 0}.
This implies the required assertion. �

Now, we are ready to present a G-invariant irreducible smooth curve in P3 of degree 6 and genus 3.
For every u ∈ C such that u 6= 0, let Mu

3 be the linear subsystem in |OP3(3)| that consists of all cubic
surfaces passing through the G-orbit Σu

16. If u4 = −3, then the linear system Mu
3 is 7-dimensional,

and its base locus consists of one of the two elliptic curves C+
4 or C−

4 . One the other hand, if u4 6= −3,
then the linear subsystem Mu

3 is 3-dimensional, and its base locus is given by

(♥)





(u4 − 1)x3x
2
0 + (u4 + 3)x0x1x2u+ (u4 − 1)x3x

2
1 − 4x3

3u
2 + (u4 − 1)x2

2x3 = 0,

(u4 − 1)x1x
2
0 − u(u4 + 3)x0x2x3 + 4u2x3

1 − (u4 − 1)x1x
2
2 + (u4 − 1)x2

3x1 = 0,

4u2x3
0 − (u4 − 1)x0x

2
1 + (u4 − 1)x0x

2
2 + (u4 − 1)x2

3x0 − u(u4 + 3)x1x2x3 = 0,

(u4 − 1)x2x
2
0 + u(u4 + 3)x0x1x3 − (u4 − 1)x2x

2
1 − 4u2x3

2 − (u4 − 1)x2
3x2 = 0.

Using this, one can check that the base locus is zero-dimensional unless

u ∈
{
−1±

√
3

2
+

1∓
√
3

2
i,
−1±

√
3

2
+

−1±
√
3

2
i,
1±

√
3

2
+

1±
√
3

2
i,
1∓

√
3

2
+

−1 ±
√
3

2
i

}
.

On the other hand, if u = −1±
√
3

2
+ 1∓

√
3

2
i, u = −1±

√
3

2
+−1±

√
3

2
i, u = 1±

√
3

2
+ 1±

√
3

2
i or u = 1∓

√
3

2
+−1±

√
3

2
i,

then the equations (♥) define an irreducible G-invariant smooth curve in P3 of degree 6 and genus 3.
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We will denote these curves by C6, C
′
6, C

′′
6 , C

′′′
6 , respectively. To be precise, we have

C6 =





(x2
0 + x2

1 + x2
2)x3 − ix3

3 − (1− i)x1x0x2 = 0,

(x2
0 − x2

2 + x2
3)x1 + ix3

1 + (1− i)x3x0x2 = 0,

(x2
1 − x2

2 − x2
3)x0 − ix3

0 − (1− i)x1x3x2 = 0,

(x2
0 − x2

1 − x2
3)x2 − ix3

2 − (1− i)x1x3x0 = 0,

and C ′
6, C

′′
6 , C

′′′
6 can be obtained from C6 by applying elements of the normalizer G192,185.

Fix u = −1±
√
3

2
+ 1∓

√
3

2
i. Then (♥) defines C6. Choosing a different basis of the linear system Mu

3 ,
we obtain a birational map ι : P3 99K P3 given by [x0 : x1 : x2 : x3] 7→ [h0 : h1 : h2 : h3] for

h0 = (1 + i)x3x0x2 − x3
1 + ix1(x

2
0 − x2

2 + x2
3),

h1 = (1 + i)x3x1x2 − x3
0 − ix0(x

2
1 − x2

2 − x2
3),

h2 = (1 + i)x3x0x1 − x3
2 − ix2(x

2
0 − x2

1 − x2
3),

h3 = (i− 1)x1x0x2 − ix3
3 + x3(x

2
0 + x2

1 + x2
2).

One can check that ι is a birational involution, and we have the following G-commutative diagram:

X

π
��

τ
// X

π
��

P3
ι

//❴❴❴❴❴❴ P3

where π is the blow up of the curve C6, and τ is an involution. Then X is smooth Fano threefold in
the deformation family №2.12, which can be defined as complete intersection in P3 × P3 given by





y3x0 − y2x0 + iy2x1 + y3x1 − y0x2 + iy1x2 + y0x3 + y1x3 = 0,

iy0x0 − y1x1 + y3x2 + y2x3 = 0,

y2x0 + y3x0 + iy2x1 − y3x1 − y0x2 − iy1x2 − y0x3 + y1x3 = 0,

and π is induced by the projection to the first factor, where ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]) are
coordinates on P3 × P3. Thus, in the notations in Section 1, we have

M1 =




0 0 −1 1
0 0 i 1
−1 i 0 0
1 1 0 0


 ,M2 =




i 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0


 ,M3 =




0 0 1 1
0 0 i −1
−1 −i 0 0
−1 1 0 0


 .

Note that M1 and M2 are symmetric, M3 is skew-symmetric, and the involution τ is given by
(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
,

Corollary 17. One has Aut(P3, C6) = G and Aut(X) ≃ µ
2
4 ⋊S3.

Proof. First, using the classification of automorphism groups of smooth curves of genus three [17, 3],
we see that C6 is isomorphic to the Fermat quartic curve in P2. This can also be shown directly.
Namely, it follows from [34] that C6 is isomorphic to the plane quartic curve

{
det(xM1 + yM2 + zM3) = 0

}
⊂ P2

x,y,z,

which is projectively isomorphic to the Fermat plane quartic curve.
We conclude that Aut(C6) ≃ µ

2
4⋊S3. Therefore, if Aut(P

3, C6) 6= G, then Aut(P3, C6) ≃ µ
2
4⋊S3,

and the subgroup Aut(P3, C6) ⊂ PGL4(C) is contained in the normalizer of the group G in PGL4(C),
which is impossible since the normalizer is the group G192,185 by Lemma 15, and G192,185 does not
contain subgroups isomorphic to µ

2
4 ⋊S3.
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Therefore, we conclude that Aut(P3, C6) = G. Now, one can explicitly check that 〈G, τ〉 ≃ µ
2
4⋊S3,

where we consider G as a subgroup in Aut(X). This gives Aut(X) ≃ µ
2
4 ⋊S3. �

By Corollary 5, the smooth Fano threefold X is K-stable.
In Section 4, we will see that X is the unique smooth Fano threefold in the family №2.12 whose

automorphism group is isomorphic to the group µ
2
4 ⋊S3. To do this, we need the following result:

Theorem 18. The only G-invariant irreducible smooth curves in P3 of degree 6 are C6, C
′
6, C

′′
6 , C

′′′
6 .

Proof. Let C be a G-invariant irreducible smooth curve in P3 of degree 6, and let g be its genus.
Then g 6 4 by the Castelnuovo bound. Thus, it follows from [7, 35] that either g = 1, or g = 3.

Note that Σ4 6⊂ C, because stabilizers in G of points in C are cyclic by [20, Lemma 2.7].
Let Π = {x3 = 0}, and let Γ be the the stabilizer of this plane in G. Then Γ = 〈M,N,A〉 ≃ A4,

and all Γ-orbits in Π of length less than 12 can be described as follows:

(i) Σ4 ∩ Π is the unique Γ-orbit of length 3,
(ii) Σ12 ∩Π is a Γ-orbit of length 6,
(iii) Σ′

12 ∩Π is a Γ-orbit of length 6,
(iv) Σt

24 ∩Π is a Γ-orbit of length 6, where 0 6= t 6= ±
√
2±

√
2i,

(v) Σ16 ∩Π, Σ′
16 ∩ Π and Σ0

16 ∩ Π are Γ-orbits of length 4.

Thus, since Σ4 6⊂ C, C 6⊂ Π, and Π · C is a Γ-invariant effective one-cycle of degree 6, we conclude
that C contains at least one of the orbits Σ12 or Σ′

12, and C does not contain Σ16, Σ
′
16 and Σ0

16.
If g = 1, it follows from [7, 35] that C does not contain G-orbits of length 12, which gives g = 3.

Then it follows from [7, 35] that C contains two G-orbits of length 16, so Σt
16 ⊂ C for some t 6= 0.

Using the classification of automorphism groups of smooth curves of genus three [17, 3], we see that
the curve C is isomorphic to the Fermat quartic curve in P2. Hence, the curve C is not hyperelliptic.

Let M3 be the linear subsystem in |OP3(3)| that consists of all cubic surfaces passing through C.
ThenM3 is three-dimensional, and the curve C is its base locus by [27], because C is not hyperelliptic.
Therefore, using the notations introduced earlier, we see that M3 = Mt

3 for an appropriate t ∈ C.
Now, arguing as above, we see that

t ∈
{
−1 ±

√
3

2
+

−1 ±
√
3

2
i,
−1 ±

√
3

2
+

1∓
√
3

2
i,
1±

√
3

2
+

1±
√
3

2
i,
1∓

√
3

2
+

−1 ±
√
3

2
i

}
,

which implies that C is one of the curves C6, C
′
6, C

′′
6 , C

′′′
6 as claimed. �

2.3. Curves over Q without rational points. Let us use notations introduced in Section 1.
Suppose, in addition, that

C = {x4 + xyz2 + y4 + y3z − 31yz3 + 4z4 = 0} ⊂ P2
x,y,z.

Then C is smooth. One can show that C(Q) = ∅ using the reduction modulo 3. Set

P1 = [1− i : 0 : 1], P2 = [1 + i : 0 : 1], P3 = [−1 + i : 0 : 1], P4 = [−1− i : 0 : 1].

and D = 3(P3+P4)−KC . Then D is defined over Q, and D satisfies (♦). Then C6 is defined over Q,
and it is isomorphic to C over Q. In particular, the curve C6 does not contains Q-rational points.
Hence, by Corollary 8, the smooth Fano threefold X is K-stable.

One can explicitly find defining equations of C6 as follows. Let M be the linear system of cubic
curves in P2 whose general member is tangent to C with multiplicity 3 at the points P1 and P2. Then

M
∣∣
C
= 3P1 + 3P2 + |3(P3 + P4)|.

Thus, to compute the embedding C →֒ P3, it is enough to find a basis of the linear system M, which
can be done using linear algebra. After this, it is easy to find defining equations of the curve C6.
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2.4. Real pointless threefolds. Now, we explain how to construct real smooth Fano threefolds in
the deformation family №2.12 that do not have real points. By Corollary 9, all of them are K-stable.
We start with

Example 19. Let U be a three-dimensional Severi–Brauer variety defined over R such that U 6≃ P3
R.

Recall from [24, 28] that U exists, it is unique, and, in particular, it is isomorphic to its dual variety.
Set W = U × U . Then

WC ≃ P3 × P3.

Since U ≃ U∨, the Picard group PicR(W ) contains a real line bundle L such that LC has degree (1, 1).
Let V be any smooth complete intersection of three divisors in |L|. Then V is a smooth Fano threefold
in the family №2.12, and V does not have real points, because W does not have real points.

Let us present another, more explicit, construction of pointless real smooth Fano threefolds in
the deformation family №2.12. For a point P = ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]) ∈ P3 × P3, let us
consider the symmetric matrix

A =




a00 a01 a02 a03
a01 a11 a12 a13
a02 a12 a22 a23
a03 a13 a23 a33




and the skew-symmetric matrix

B =




0 b01 b02 b03
−b01 0 b12 b13
−b02 −b12 0 b23
−b03 −b13 −b23 0




defined (up to a common scalar multiple) as follows:

anm =
xnym + xmyn

2
and

bnm =
xnym − xmyn

2i
for every n ∈ {0, 1, 2, 3} andm ∈ {0, 1, 2, 3} such that n 6= m, and ann = xnyn for each n ∈ {0, 1, 2, 3}.
Set M = A+ iB. Then

M =




x0y0 x0y1 x0y2 x0y3
x1y0 x1y1 x1y2 x1y3
x2y0 x2y1 x2y2 x2y3
x3y0 x3y1 x3y2 x3y3.




Therefore, we see that the constructed map P 7→ M gives us the Serge embedding P3 × P3 →֒ P15,
where we consider P15 as a projectivization of the vector space of all 4× 4 matrices.

Now, we consider matrices A and B on their own, and we also assume that all aij and bij are real.
Then M is a Hermitian 4 × 4 matrix. Projectivizing the vector space of Hermitian 4 × 4 matrices,
we obtain P15

R with coordinates [a00 : a01 : · · · : b13 : b23]. Let us consider M as a point in P15
R , and set

V =
{
M ∈ P15

R

∣∣ rank(M) 6 1
}
⊂ P15

R .

Then V is a real projective subvariety in P15
R . Moreover, over C, the subvariety VC is the image of

the map P 7→ M constructed above, which implies that VC ≃ P3 × P3, so V is a form of P3
R × P3

R.
But V 6≃ P3

R × P3
R over R, because V is the Weil restriction of P3 over the reals [25, Exercise 8.1.6],

which implies that V (R) 6= ∅, and PicR(V ) is generated by the class of a hyperplane section.
Now, let H1, H2, H3 be three real hyperplane sections of V ⊂ P15

R , and let X = H1 ∩ H2 ∩ H3.
Suppose that X is smooth and three-dimensional. Then X is a real form of a smooth Fano threefold
in the deformation family №2.12 such that PicR(X) = Z[−KX ]. Moreover, Corollary 9 gives
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Corollary 20. If X does not have real points, then X is K-stable

Such smooth Fano threefolds without real points do exists:

Example 21. Suppose that H1 is cut out by a00 + a11 + a22 + a33 = 0. Then H1 is smooth, because
its preimage in P3 × P3 via the map constructed above is given by

x0y0 + x1y1 + x2y2 + x3y3 = 0.

Moreover, the fivefold H1 does not have real points. Indeed, if M ∈ V , then the corresponding real
numbers a00, a11, a22, a33 are either all non-negative or all non-positive, and they cannot be all zero.
Similarly, set H2 = {a03 +2a12 = 0}∩V and H3 = {a02 + a13 + a23 = 0}∩ V . Then VC is isomorphic
to the complete intersection in P3 × P3 given by




x0y0 + x1y1 + x2y2 + x3y3 = 0,

x0y3 + x3y0 + 2x1y2 + 2x2y1 = 0,

x0y2 + x2y0 + x3y1 + x1y3 + x2y3 + x3y2 = 0.

This complete intersection is a smooth threefold, so X is smooth, and it has no real points, because
the divisor H1 does not have real points.

3. The proof of Theorem A

Let us use all notations and assumptions introduced in Section 1. To start with, let us present
few results from [1, 2] that will be used in the proof of Theorem A. Let F be a prime divisor over X ,
and let Z be its center on X . Suppose that

• either Z is a point,
• or Z is an irreducible curve.

Let P be any point in Z. Choose an irreducible smooth surface S ⊂ X such that P ∈ S. Set

τ = sup
{
u ∈ Q>0

∣∣ the divisor −KX − uS is pseudo-effective
}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor −KX − uS,
and let N(u) be its negative part. Then β(S) = 1− SX(S), where

SX(S) =
1

−K3
X

∞∫

0

vol
(
−KX − uS

)
du =

1

20

τ∫

0

P (u)3du.

Let us show how to compute P (u) and N(u). Set H = π∗(OP3(1)) and H ′ = (π′)∗(OP3(1)). Then

H ∼ 3H ′ −E ′, E ∼ 8H ′ − 3E ′, H ′ ∼ 3H −E,E ′ ∼ 8H − 3E,

where E and E ′ are exceptional surfaces of the blow ups π and π′, respectively.

Example 22. Suppose that S ∈ |H|. Then τ = 4
3
. Moreover, we have

P (u) ∼R





(4− u)H − E for 0 6 u 6 1,

(4− 3u)H ′ for 1 6 u 6
4

3
,

and

N(u) =





0 for 0 6 u 6 1,

(u− 1)E ′ for 1 6 u 6
4

3
,

which gives SX(S) =
1
20

4

3∫
0

(
P (u)

)3
du = 1

20

1∫
0

(2− u)(u2 − 10u+ 10)du+ 1
20

4

3∫
1

(4− 3u)3du = 53
120

.
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Example 23. Suppose that S = E. Then τ = 1
2
,

P (u) ∼R





4H − (1 + u)E for 0 6 u 6
1

3
,

(4− 8u)H ′ for
1

3
6 u 6

1

2
,

and

N(u) =





0 for 0 6 u 6
1

3
,

(3u− 1)E ′ for
1

3
6 u 6

1

2
,

which gives SX(S) =
1
20

1

2∫
0

4(1− u)(5− 7u2 − 10u)du+ 1
20

1

3∫
1

2

64(1− 2u)3du = 11
60
.

Now, we choose an irreducible curve C ⊂ S that contains the point P . For instance, if Z is a curve,
and S contains Z, then we can choose C = Z. Since S 6⊂ Supp(N(u)), we can write

N(u)
∣∣
S
= d(u)C +N ′(u),

where d(u) = ordC(N(u)|S), and N ′(u) is an effective R-divisor on S such that C 6⊂ Supp(N ′(u)).
Now, for every u ∈ [0, τ ], we set

t(u) = sup
{
v ∈ R>0

∣∣ the divisor P (u)
∣∣
S
− vC is pseudo-effective

}
.

For v ∈ [0, t(u)], we let P (u, v) be the positive part of the Zariski decomposition of P (u)|S −vC, and
we let N(u, v) be its negative part. Following [1, 2], we let

S
(
W S

•,•;C
)
=

3

(−KX)3

τ∫

0

d(u)
(
P (u)

∣∣
S

)2
du+

3

(−KX)3

τ∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu,

which we can rewrite as

S
(
W S

•,•;C
)
=

3

(−KX)3

τ∫

0

d(u)
(
P (u)

∣∣
S

)2
du+

3

(−KX)3

τ∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.

If Z is a curve, Z ⊂ S and C = Z, then it follows from [1, 2] that

(1)
AX(F)

SX(F)
> min

{
1

SX(S)
,

1

S
(
W S

•,•;C
)
}
.

Let f : S̃ → S be the blow up of the point P , let F be the f -exceptional curve, let Ñ ′(u) be the strict

transform on S̃ of the R-divisor N(u)|S, and let d̃(u) = multP (N(u)|S). Then
f ∗(N(u)

∣∣
S

)
= d̃(u)F + Ñ ′(u).

For every u ∈ [0, τ ], set

t̃(u) = sup
{
v ∈ R>0

∣∣ the divisor f ∗(P (u)
∣∣
S

)
− vF is pseudo-effective

}
.

For v ∈ [0, t̃(u)], we let P̃ (u, v) be the positive part of the Zariski decomposition of f ∗(P (u)|S)− vF ,

and we let Ñ(u, v) be its negative part. Let

S
(
W S

•,•;F
)
=

3

(−KX)3

τ∫

0

d̃(u)
(
f ∗(P (u)

∣∣
S

))2
du+

3

(−KX)3

τ∫

0

∞∫

0

vol
(
f ∗(P (u)

∣∣
S

)
− vF

)
dvdu.
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Then

S
(
W S

•,•;F
)
=

3

(−KX)3

τ∫

0

d̃(u)
(
P̃ (u, 0)

)2
du+

3

20

τ∫

0

t̃(u)∫

0

(
P̃ (u, v)

)2
dvdu.

For every point O ∈ F , we let

S
(
W S̃,F

•,•,•;O
)
=

3

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)2
dvdu+ FO

(
W S̃,F

•,•,•
)

for

FO

(
W S̃,F

•,•,•
)
=

6

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)
· ordO

(
Ñ ′(u)

∣∣
F
+ Ñ(u, v)

∣∣
F

)
dvdu.

Then it follows from [1, 2] that

(2)
AX(F)

SX(F)
> min

{
1

SX(S)
,

2

S
(
W S

•,•;F
) , inf

O∈F

1

S
(
W S̃,F

•,•,•;O
)

}
.

Thus, if SX(S) < 1, S(W S
•,•;F ) < 2 and S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F , then β(F) > 0.
Now, we are ready to prove Theorem A. We must show that β(F) > 0 if Z is not a point in E∩E ′.

If Z is a surface, it follows from [21] that β(F) > 0. Hence, we may assume that Z is not a surface.

Lemma 24 (cf. [8]). Suppose that Z is a curve, Z ⊂ E, and π(Z) is not a point. Then β(F) > 0.

Proof. Let e be the invariant of the ruled surface E defined in Proposition 2.8 in [26, Chapter V].
Then e > −3 [33]. Moreover, there exists a section C0 of the projection E → C6 such that C2

0 = −e.
Let ℓ a fiber of this projection. Then H|E ≡ 6ℓ and E|E ≡ −C0 + λℓ for some integer λ. Since

−28 = −c1
(
NC6/P3

)
= E3 = (−C0 + λℓ)2 = −e− 2λ,

we get λ = 28−e
2

, so e is even and e > −2. Since H ′ is nef and H ′|E ≡ C0 + (18− λ)ℓ, we get

0 6 H ′ · C0 =
(
C0 + (18− λ)ℓ

)
· C0 =

8− e

2
,

which implies that e 6 8. Thus, we see that e ∈ {−2, 0, 2, 4, 6, 8}.
Set S = E and C = Z. Let us estimate S(W S

•,•;C). It follows from Example 23 that τ = 1
2
and

P (u)
∣∣
S
≡





(1 + u)C0 +
20 + e + ue− 28u

2
ℓ for 0 6 u 6

1

3
,

(4− 8u)C0 + 2(1− 2u)(8 + e)ℓ for
1

3
6 u 6

1

2
.

If 0 6 u 6 1
2
, then N(u) = 0. If 1

2
6 u 6 1

3
, then N(u)

∣∣
S
= (3u− 1)E ′|S, where E ′|S ≡ 3C0 +

12+3e
2

ℓ.
By Proposition 2.20 in [26, Chapter V], we have Z ≡ aC0 + bℓ for integers a and b such that a > 0
and b > ae. Since π(Z) is not a point, we have a > 1. Then ordC(E

′|S) 6 3. Hence, if 1
3
6 u 6 1

2
,

13



then d(u) 6 3(3u− 1). This gives

S(W S
•,•;C) =

3

20

1

2∫

1

3

128(2u− 1)2d(u)du+
3

20

1

2∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu 6

6
3

20

1

2∫

1

3

384(3u− 1)(2u− 1)2du+
3

20

1

2∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu =

=
2

45
+

3

20

1

2∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu =

2

45
+

3

20

1

2∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− v(aC0 + bℓ)

)
dvdu.

Thus, we conclude that S(W S
•,•;C) 6 2

45
+ 3

20

1

2∫
0

∞∫
0

vol
(
P (u)

∣∣
S
− v(aC0 + bℓ)

)
dvdu.

Suppose that b > 0. Then

3

20

1

2∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− v(aC0 + bℓ)

)
dvdu 6

3

20

1

2∫

0

∞∫

0

vol
(
P (u)|S − vC0

)
dvdu.

On the other hand, we have

P (u)
∣∣
S
− vC0 ≡





(1 + u− v)C0 +
20 + e+ ue− 28u

2
ℓ if 0 6 u 6

1

3
,

(4− 8u− v)C0 + 2(1− 2u)(8 + e)ℓ if
1

3
6 u 6

1

2
.

Hence, if 0 6 u 6 1
3
, then the divisor P (u)

∣∣
S
− vC0 is pseudoeffective ⇐⇒ it is nef ⇐⇒ v 6 1+u.

Likewise, if 1
3
6 u 6 1

2
, then P (u)

∣∣
S
− vC0 is pseudoeffective ⇐⇒ it is nef ⇐⇒ v 6 4− 8u. Then

S(W S
•,•;C) 6

2

45
+

3

20

1

2∫

0

∞∫

0

vol
(
P (u)|S − vC0

)
dvdu =

=
2

45
+

3

20

1

3∫

0

1+u∫

0

(
(1 + u− v)C0 +

20 + e+ ue− 28u

2
ℓ

)2

dvdu+

+
3

20

1

2∫

1

3

4−8u∫

0

(
(4− 8u− v)C0 + 2(1− 2u)(8 + e)ℓ

)2
dvdu =

23e

1440
+

221

360
< 1,

because e 6 8. Then β(F) > 0 by (1), since we know from Example 23 that SX(S) < 1.
Thus, to complete the proof, we may assume that b < 0. Then e < 0, so that e = −2, since b > ae.

Hence, it follows from Proposition 2.21 in [26, Chapter V] that a > 2 and b > −a. Then

3

20

1

2∫

0

∞∫

0

vol
(
P (u)|S − vC

)
dvdu 6

3

20

1

2∫

0

∞∫

0

vol
(
P (u)|S − v(2C0 − 2ℓ)

)
dvdu.
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Moreover, arguing as above, we compute

3

20

1

2∫

0

∞∫

0

vol
(
P (u)|S − v(2C0 − 2ℓ)

)
dvdu =

41

144
,

which gives S(W S
•,•;C) 6 2

45
+ 41

144
= 79

240
< 1, so that β(F) > 0 by (1). �

Similarly, we prove that

Lemma 25. Suppose that Z is a curve, Z ⊂ E ′, and π′(Z) is not a point. Then β(F) > 0.

Now, suppose that Z is not a point in E∩E ′. To prove Theorem A, we must show that β(F) > 0.
Let P be a general point in Z. By Lemmas 24 and 25, we may assume that either P 6∈ E or P 6∈ E ′.
Hence, without loss of generality, we may assume that P 6∈ E. Let us show that β(F) > 0.

Let S be a sufficiently general surface in |H| that contains P . Then it follows from the adjunction
formula that −KS ∼ H ′|S. Set Π = π(S). Then Π is a general plane in P3 that contains π(P ). Write

Π ∩ C6 =
{
P1, P2, P3, P4, P5, P6

}
,

where P1, P2, P3, P4, P5, P6 are distinct points. Then π induces a birational morphism ̟ : S → Π,
which is a blow up of the intersection points P1, P2, P3, P4, P5, P6.

Lemma 26. The divisor −KS is ample.

Proof. We must show that at most three points among P1, P2, P3, P4, P5, P6 are contained in a line,
and not all of these six points are contained in an irreducible conic.

If there exists a line ℓ ⊂ Π such that ℓ contains at least three points among P1, P2, P3, P4, P5, P6,
then ℓ is a trisecant of the curve C6, so that the line ℓ is contained in π(E ′), and its strict transform
on the threefold X is a fiber of the projection E ′ → C ′

6. But the planes in P3 containing π(P ) and
a trisecant of the curve C6 form a one-dimensional family. Hence, a general plane in P3 that contains
the point π(P ) does not contain trisecants of the curve C6. Therefore, we conclude that at most two
points among P1, P2, P3, P4, P5, P6 are contained in a line.

Similarly, if the points P1, P2, P3, P4, P5, P6 are contained in an irreducible conic in Π, then its
strict transform on the threefold X has trivial intersection with H ′ ∼ 3H − E, which implies that
this conic is the image of a fiber of the projection E ′ → C ′

6, which is impossible, since these fibers
are mapped to lines in P3. Therefore, the divisor −KS is ample. �

Thus, we can identify S with a smooth cubic surface in P3. Recall that P 6∈ E.

Lemma 27. Suppose that there exists a line ℓ ⊂ S such that P ∈ ℓ. Then π(ℓ) is a conic.

Proof. If π(ℓ) is not a conic, then π(ℓ) is a secant of the curve C6 that contains π(P ). Let us show
that we can choose Π such that it does not contain any secant of the curve C6.

Let φ : P3 99K P2 be the linear projection from π(P ). Since C6 is not hyperelliptic and π(P ) 6∈ C6,
one of the following two possibilities holds:

(1) φ(C6) is a singular curve of degree 6, and φ induces a birational morphism C6 → φ(C6),
(2) φ(C6) is a smooth cubic, and φ induces a double cover C6 → φ(C6).

In the second case, the curve C6 is contained in an irrational cubic cone in P3, which is impossible,
because the composition π′◦π−1 birationally maps every cubic surface containing C6 to a plane in P3.
Thus, we see that φ(C6) is a singular irreducible curve of degree 6.

All secants of the curve C6 containing π(P ) are mapped by φ to singular points of the curve φ(C6).
Since this curve has finitely many singular points, there are finitely many secants of the curve C6

that pass through π(P ). Hence, since Π is a general plane in P3 that contains π(P ), we may assume
that it does not contain secants of the curve C6 containing π(P ), so π(ℓ) is a conic. �
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Let T be the unique hyperplane section of the surface S ⊂ P3 that is singular at P . Then it follows
from Lemma 27 that either P is not contained in any line in S, and one of the following cases holds:

(a) T is an irreducible cubic curve that has a node at P ;
(b) T is an irreducible cubic curve that has a cusp at P ;

or P is contained in a unique line ℓ ⊂ S, π(ℓ) is a conic, and one of the following cases holds:

(c) T = ℓ+ C2 for a smooth conic C2 that intersect ℓ transversally at P ;
(d) T = ℓ+ C2 for a smooth conic C2 that is tangent to ℓ at P .

Let us construct another curve in S that is also singular at P . Namely, for each i ∈ {1, 2, 3, 4, 5, 6},
let ℓi be the proper transform on S of the unique line in Π that passes through the points π(P ) and Pi.
Set L = ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5 + ℓ6. Then it follows from Example 22 that

P (u)
∣∣
S
∼R





2 + u

3
T +

1− u

3
L if 0 6 u 6 1,

(4− 3u)T if 1 6 u 6
4

3
.

Recall from Example 22 that τ = 4
3
and SX(S) =

53
120

.

Let T̃ and L̃ be the proper transforms on S̃ of the curves T and L, respectively. If 0 6 u 6 1, then

f ∗(P (u)|S
)
− vF ∼R

2 + u

3
T̃ +

1− u

3
L̃+

10− 4u− 3v

3
F,

which implies that t̃(u) = 10−4u
3

. Similarly, if 1 6 u 6 4
3
, then

f ∗(P (u)|S
)
− vF ∼R (4− 3u)T̃ + (8− 6u− v)F,

which implies that t̃(u) = 8− 6u.

Finally, set R = E ′|S. Then R is a smooth curve. Let R̃ be its strict transform on S̃. Then

Ñ ′(u) =





0 if 0 6 u 6 1,

(u− 1)R̃ if 1 6 u 6
4

3
.

So, if 0 6 u 6 1 or P 6∈ E ′, then d̃(u) = 0. Similarly, if 1 6 u 6 4
3
and P ∈ E ′, then d̃(u) = u− 1.

Lemma 28. Suppose that P is not contained in any line in S. Then β(F) > 0.

Proof. The curve T is irreducible. If 0 6 u 6 1, then

P (u, v) ∼R





2 + u

3
T̃ +

1− u

3
L̃+

10− 4u− 3v

3
F if 0 6 v 6

6− 3u

2
,

20− 8u− 6v

3
T̃ +

1− u

3
L̃+

10− 4u− 3v

3
F if

6− 3u

2
6 v 6 3− u,

10− 4u− 3v

3

(
2T̃ + L̃+ F

)
if 3− u 6 v 6

10− 4u

3
,

and

N(u, v) =





0 if 0 6 v 6
6− 3u

2
,

(2v − 6 + 3u)T̃ if
6− 3u

2
6 v 6 3− u,

(2v − 6 + 3u)T̃ + (v + u− 3)L̃ if 3− u 6 v 6
10− 4u

3
.
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This gives

(
P (u, v)

)2
=





u2 − v2 − 8u+ 10 if 0 6 v 6
6− 3u

2
,

10u2 + 12uv + 3v2 − 44u− 24v + 46 if
6− 3u

2
6 v 6 3− u,

(10− 4u− 3v)2 if 3− u 6 v 6
10− 4u

3

and

P (u, v) · F =





v if 0 6 v 6
6− 3u

2
,

12− 6u− 3v if
6− 3u

2
6 v 6 3− u,

30− 12u− 9v if 3− u 6 v 6
10− 4u

3
.

Similarly, if 1 6 u 6 4
3
, then

P (u, v) ∼R





(4− 3u)T̃ + (8− 6u− v)F if 0 6 v 6
12− 9u

2
,

(8− 6u− v)
(
2T̃ + F

)
if
12− 9u

2
6 v 6 8− 6u,

and

N(u, v) =





0 if 0 6 v 6
12− 9u

2
,

(2v + 9u− 12)T̃ if
12− 9u

2
6 v 6 8− 6u.

This gives

(
P (u, v)

)2
=





27u2 − v2 − 72u+ 48 if 0 6 v 6
12− 9u

2
,

3(8− 6u− v)2 if
12− 9u

2
6 v 6 8− 6u,

and

P (u, v) · F =





v if 0 6 v 6
12− 9u

2
,

24− 18u− 3v if
12− 9u

2
6 v 6 8− 6u.

Thus, if P ∈ E ′, then

S
(
W S

•,•;F
)
=

3

20

4

3∫

1

(27u2 − 72u+ 48)(u− 1)du+
3

20

1∫

0

6−3u

2∫

0

u2 − v2 − 8u+ 10dvdu+

+
3

20

1∫

0

3−u∫

6−3u

2

10u2 + 12uv + 3v2 − 44u− 24v + 46dvdu+
3

20

1∫

0

10−4u

3∫

3−u

(4u+ 3v − 10)2dvdu+

+
3

20

4

3∫

1

12−9u

2∫

0

27u2 − v2 − 72u+ 48dvdu+
3

20

4

3∫

1

8−6u∫

12−9u

2

3(6u+ v − 8)2dvdu =
41

24
< 2.

Similarly, if P 6∈ E ′, then S(W S
•,•;F ) = 409

240
< 41

24
< 2.
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Now, let O be a point in F . Let us compute S(W S̃,F
•,•,•;O). We have

S(W S̃,F
•,•,•;O) =

3

20

1∫

0

6−3u

2∫

0

v2dvdu+
3

20

1∫

0

3−u∫

6−3u

2

(12− 6u− 3v)2dvdu+

+
3

20

1∫

0

10−4u

3∫

3−u

(30−12u−9v)2dvdu+
3

20

4

3∫

1

12−9u

2∫

0

8v2dvdu+
3

20

4

3∫

1

8−6u∫

12−9u

2

(24−18u−3v)2dvdu+FO

(
W S̃,F

•,•,•
)
,

so that S(W S̃,F
•,•,•;O) = 63

80
+FO(W

S̃,F
•,•,•). In particular, if P 6∈ E ′ and O 6∈ T̃ ∪ C̃, then FO(W

S̃,F
•,•,•) = 0,

which implies that S(W S̃,F
•,•,•;O) = 63

80
. Let us compute FO(W

S̃,F
•,•,•) in the remaining cases.

First, we deal with the case P 6∈ E ′. If P 6∈ E ′, then we have O 6∈ Supp(Ñ ′(u)) for every u ∈ [0, 4
3
].

Moreover, if P 6∈ E ′ and O ∈ L̃, then O 6∈ T̃ , and L̃ intersects F transversally at O, which gives

S
(
W S̃,F

•,•,•;O
)
=

63

80
+

6

20

1∫

0

10−4u

3∫

3−u

(
P (u, v) · F

)
(v + u− 3)

(
L̃ · F

)
O
dvdu =

19

24
.

Similarly, if P 6∈ E ′ and O ∈ T̃ , then O 6∈ L̃ and

S
(
W S̃,F

•,•,•;O
)
=

63

80
+

6

20

1∫

0

10−4u

3∫

6−3u

2

(
P (u, v) · F

)
(2v − 6 + 3u)

(
T̃ · F

)
O
dvdu+

+
6

20

4

3∫

1

8−6u∫

12−9u

2

(
P (u, v)·F

)
(2v+9u−12)

(
T̃ ·F

)
O
=

63

80
+

6

20

1∫

0

3−u∫

6−3u

2

(12−6u−3v)(2v−6+3u)
(
T̃ ·F

)
O
dvdu+

+
6

20

1∫

0

10−4u

3∫

3−u

(30−12u−9v)(2v−6+3u)
(
T̃ ·F

)
O
dvdu+

6

20

4

3∫

1

8−6u∫

12−9u

2

(24−18u−3)(2v+9u−12)
(
T̃ ·F

)
O
,

so S(W S̃,F
•,•,•;O) = 63

80
+ 5

96

(
T̃ · F

)
O
6 63

80
+ 5

96
T̃ · F = 107

120
. Hence, if P 6∈ E ′, then β(F) > 0 by (2).

Therefore, to complete the proof of the lemma, we may assume that P ∈ E ′. Since R is smooth,

the curve R̃ intersects F transversally at one point, so that

ordO

(
Ñ ′(u)

∣∣
F

)
=





0 if 0 6 u 6 1,

0 if 1 6 u 6
4

3
and O 6= R̃ ∩ F,

u− 1 if 1 6 u 6
4

3
and O = R̃ ∩ F .
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Hence, if O 6= R̃ ∩ F , then S(W S̃,F
•,•,•;O) can be computed as in the case P 6∈ E ′. Thus, we may also

assume that O = R̃ ∩ F . Moreover, if O ∈ L̃, then our previous calculations give

S
(
W S̃,F

•,•,•;O
)
=

6

20

4

3∫

1

t̃(u)∫

0

(
P̃ (u, v) · F

)
(u− 1)dvdu+

19

24
=

=
6

20

4

3∫

1

12−9u

2∫

0

v(u− 1)dvdu+
6

20

4

3∫

1

8−6u∫

12−9u

2

(24− 18u− 3v)(u− 1)dvdu+
19

24
=

191

240
.

Similarly, if O ∈ T̃ , then, using our previous computations, we get

S
(
W S̃,F

•,•,•;O
)
=

1

241
+

63

80
+

5

96

(
T̃ · F

)
O
6

1

241
+

63

80
+

5

96
T̃ · F =

43

48
.

Thus, we see that S(W S̃,F
•,•,•;O) < 1 for every point O ∈ F , so that β(F) > 0 by (2). �

To complete the proof of Theorem A, we may assume that T = ℓ+C2 and P ∈ ℓ ∩C2, where ℓ is
a line such that π(ℓ) is a conic in P2, and C2 is a smooth conic such that π(C2) is a line. Then C2 is
one of the curves ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, so we may assume that C2 = ℓ6. Set L

′ = ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5.

Let us denote by ℓ̃, C̃2, L̃
′ the strict transforms on the surface S̃ of the curves ℓ, C2, L

′, respectively.

Then ℓ̃ ∩ L̃′ = ∅ and C̃2 ∩ L̃′ = ∅. Moreover, if 0 6 u 6 1, then

P (u, v) ∼R





2 + u

3
ℓ̃ + C̃2 +

1− u

3
L̃′ +

10− 4u− 3v

3
F if 0 6 v 6 3− 2u,

13− 4u− 3v

6
ℓ̃+ C̃2 +

1− u

3
L̃′ +

10− 4u− 3v

3
F if 3− 2u 6 v 6

9− 4u

3
,

10− 4u− 3v

3

(
2ℓ̃+ 3C̃2 + F

)
+

1− u

3
L̃′ if

9− 4u

3
6 v 6 3− u,

10− 4u− 3v

3

(
2ℓ̃+ L̃′ + 3C̃2 + F

)
if 3− u 6 v 6

10− 4u

3
,

and

N(u, v) =





0 if 0 6 v 6 3− 2u,

v + 2u− 3

2
ℓ̃ if 3− 2u 6 v 6

9− 4u

3
,

(2v + 3u− 6)ℓ̃+ (3v + 4u− 9)C̃2 if
9− 4u

3
6 v 6 3− u,

(2v + 3u− 6)ℓ̃+ (3v + 4u− 9)C̃2 + (v + u− 3)L̃′ if 3− u 6 v 6
10− 4u

3
.

This gives

(
P (u, v)

)2
=





u2 − v2 − 8u+ 10 if 0 6 v 6 3− 2u,

29

2
− 14u− 3v + 3u2 − v2

2
+ 2vu if 3− 2u 6 v 6

9− 4u

3
,

11u2 + 14uv + 4v2 − 50u− 30v + 55 if
9− 4u

3
6 v 6 3− u,

(10− 4u− 3v)2 if 3− u 6 v 6
10− 4u

3
,
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and

P (u, v) · F =





v if 0 6 v 6 3− 2u,

3

2
− u+

v

2
if 3− 2u 6 v 6

9− 4u

3
,

15− 7u− 4v if
9− 4u

3
6 v 6 3− u,

30− 12u− 9v if 3− u 6 v 6
10− 4u

3
.

Furthermore, if 1 6 u 6 4
3
, then

P (u, v) ∼R





(4− 3u)(ℓ̃+ C̃2) + (8− 6u− v)F if 0 6 v 6 4− 3u,

12− 9u− v

2
ℓ̃+ (4− 3u)C̃2 + (8− 6u− v)F if 4− 3u 6 v 6

20− 15u

3
,

(8− 6u− v)
(
2ℓ̃+ 3C̃2 + F

)
if
20− 15u

3
6 v 6 8− 6u,

and

N(u, v) =





0 if 0 6 v 6 4− 3u,

v + 3u− 4

2
ℓ̃ if 4− 3u 6 v 6

20− 15u

3
,

(9u+ 2v − 12)ℓ̃+ (15u+ 3v − 20)C̃2 if
20− 15u

3
6 v 6 8− 6u.

This gives

(
P (u, v)

)2
=





27u2 − v2 − 72u+ 48 if 0 6 v 6 4− 3u,

56− 84u− 4v +
63

2
u2 − v2

2
+ 3vu if 4− 3u 6 v 6

20− 15u

3
,

4(8− 6u− v)2 if
20− 15u

3
6 v 6 8− 6u,

and

P (u, v) · F =





v if 0 6 v 6 4− 3u,

2− 3u

2
+

v

2
if 4− 3u 6 v 6

20− 15u

3
,

32− 24u− 4v if
20− 15u

3
6 v 6 8− 6u.

Now, as in the proof of Lemma 28, we compute

S
(
W S

•,•;F
)
=





77

45
if P ∈ E ′,

1229

720
if P 6∈ E ′.

Similarly, if O is a point in F , we can compute S(W S̃,F
•,•,•;O) as we did this in the proof of Lemma 28.

The results of these computations are presented in the following two tables:

condition O ∈ ℓ̃ ∩ C̃2 ∩ R̃ ℓ̃ ∩ C̃2 ∋ O 6∈ R̃ ℓ̃ ∩ R̃ ∋ O 6∈ C̃2 ℓ̃ ∋ O 6∈ R̃ ∪ C̃2 C̃2 ∩ R̃ ∋ O 6∈ ℓ̃

S
(
W S̃,F

•,•,•;O
)

163
180

649
720

1859
2160

185
216

1801
2160

condition C̃2 ∋ O 6∈ R̃ ∪ ℓ̃ O ∈ L̃′ ∩ R̃ L̃′ ∋ O 6∈ R̃ R̃ ∋ O 6∈ ℓ̃ ∪ C̃ ′ ∩ L̃′ O 6∈ ℓ̃ ∪ C̃ ′ ∩ L̃′ ∪ R̃

S
(
W S̃,F

•,•,•;O
)

112
135

571
720

71
90

71
90

113
144
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Thus, we proved that S(W S
•,•;F ) < 2, and we proved that S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F .
Therefore, using (2), we get β(F) > 0. This completes the proof of Theorem A.

4. The proof of Theorem B

Let us use all assumptions and notations introduced in Section 1. Recall that

Aut
(
P3, C6

)
≃ Aut

(
C, [D]

)
⊂ Aut(C),

and all possibilities for the group Aut(C) are listed in [3, 17], where the two lists disagree a little bit.
Moreover, since π is Aut(P3, C6)-equivariant, we can identify Aut(P3, C6) with a subgroup in Aut(X).
Then the action of the group Aut(X) on the set {E,E ′} gives a monomorphism

Aut(X)/Aut
(
P3, C6

)
→֒ µ2,

which is surjective if and only if Aut(X) has an element that swaps the surfaces E and E ′.

Remark 29 ([17, Example 7.2.6]). We can chooseM1, M2, M3 in (♣) to be symmetric ⇐⇒ 2D ∼ KC .
Moreover, if M1, M2, M3 are symmetric, then X admits the involution

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
.

In this case, we have Aut(X) ≃ Aut(P3, C6)× µ2. For more details, see [34].

Remark 30 (Kuznetsov). Set V = H0(OC(KC +D)), W = H0(OC(2KC −D)) and G = Aut(C, [D]).

Let Ĝ be a central extension of the groupG such thatD (considered as a line bundle) is Ĝ-linearizable.

Then the sheaf OC(D) admits a Ĝ-equivariant resolvent

0 → W ∗ ⊗OP2(−2) → V ⊗OP2(−1) → OC(D) → 0,

which is known as the Beilinson resolvent. Since W ∗ ⊗ OP2(−2) → V ⊗ OP2(−1) is Ĝ-equivariant,
the corresponding map ρ : V ∗⊗W ∗ → H0

(
OP2(1)

)
is equivariant, where H0

(
OP2(1)

)
≃ H0(OC(KC)

)

as Ĝ-representations. On the other hand, the embedding X →֒ P3×P3 given by (♣) can be realized as

X =
(
P(V ∗)× P(W ∗)

)
∩ P
(
ker(ρ)

)
,

and the Ĝ-action on X factors through G, which is the natural G-action.

This remark gives

Lemma 31. There exists a group homomorphism η : Aut(X) → Aut(C) such that its restriction to

the subgroup Aut(P3, C6) ≃ Aut(C, [D]) gives a natural embedding Aut(P3, C6) →֒ Aut(C).

Proof. LetM be the two-dimensional linear system of divisors of degree (1, 1) on P3×P3 that contains
the threefold X . Then M can be identified with the projectivization of the three-dimensional vector
space spanned by the matricesM1, M2,M3, which we will identify with P2

x,y,z. Then Aut(X) naturally
acts on this P2

x,y,z, because the action of the group Aut(X) on X lifts to its action on P3 × P3.

Moreover, the Aut(X)-action on P2
x,y,z preserves the quartic curve in P2

x,y,z given by

det
(
xM1 + yM2 + zM2

)
= 0,

which parametrizes singular divisors in M. This curve is isomorphic to the curve C, which gives us
the required homomorphism of groups η : Aut(X) → Aut(C). It follows from Remark 30 that this
group homomorphism is functorial, so it gives a natural embedding Aut(P3, C6) →֒ Aut(C). �

Corollary 32. Either Aut(X) ≃ Aut(P3, C6)× µ2 or Aut(X) is isomorphic to a subgroup Aut(C).

Now, we are ready to state a criterion when Aut(X) 6= Aut(P3, C6).

Lemma 33. Aut(X) 6= Aut(P3, C6) ⇐⇒ there is g ∈ Aut(C) such that g∗(D) ∼ KC −D.
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Proof. By Remark 30, the left copy of P3 in (⋆) can be be identified with P(H0(OC(KC + D))∨),
while the right copy of P3 can be be identified with P(H0(OC(2KC−D))∨). Thus, if Aut(C) contains
an automorphism g such that g∗(D) ∼ KC −D, we can use it to identify both copies of P3 in (⋆),
which will give us an automorphism of X that swaps exceptional surfaces of the blow ups π and π′.

Vice versa, if the group Aut(X) is larger than Aut(P3, C6), it follows from the proof of Lemma 31
that there exists g ∈ Aut(C) such that g∗(D) ∼ KC −D. �

Recall that Aut(P3, C6) ≃ Aut(C, [D]), where D is a divisor on C of degree 2 that satisfies (♦).
Using Remark 29, Lemma 33 and its proof, we obtain

Corollary 34. One of the following three cases holds:

• 2D ∼ KC and Aut(X) ≃ Aut(C, [D])× µ2,

• 2D 6∼ KC, there is g ∈ Aut(C) such that g∗(D) ∼ KC −D, and

Aut(X) ≃
〈
Aut(C, [D]), g

〉
.

• Aut(X) ≃ Aut(C, [D]), and g∗(D) 6∼ KC −D for every g ∈ Aut(C).

Corollary 35. If Aut(X) is not isomorphic to any subgroup of Aut(C), then 2D ∼ KC.

Using Corollary 34, we can find all possibilities for Aut(X), but this requires a lot of work, because
we have to analyze PicG(C) for every subgroup G ⊂ Aut(C). This can be done using

Proposition 36 ([16]). Let G be a subgroup in Aut(C). Then there exists exact sequence

1 → Hom
(
G,C∗)→ Pic

(
G,C

)
→ PicG

(
C
)
→ H2

(
G,C∗)→ 1,

where Pic(G,C) is the group of G-linearized line bundles on C modulo G-equivariant isomorphisms.

and

Remark 37. Let G be a subgroup in Aut(C), let Σ1, . . . ,Σn be all G-orbits in C of length less that |G|.
We may assume that |Σi| > |Σj| for i > j. For every i ∈ {1, . . . , n}, set

ei =
|G|
|Σi|

= the order of the stabilizer in G of a point in Σi.

The signature of the G-action on C is the tuple
[
g; e1, . . . , en

]
, where g is the genus of the curve C/G.

If C/G ≃ P1, then it follows from [16] that

Pic
(
G,C

)
≃ Z⊕ µa1 ⊕ µa2 ⊕ · · · ⊕ µan−1

for a1 = d1, a2 =
d2
d1
, . . . , an−1 =

dn−1

dn−2
, where

d1 = gcd(e1, . . . , en),

d2 = gcd(e1e2, e1e3, . . . , eiej , . . . , en−1en),

...

dn−1 = gcd(e1e2 · · · en−1, . . . , e2 · · · en−1en).

Moreover, if γ is a generator of the free part of PicG(C) in this case, then we have

4 = deg(KC) = lcm(e1, . . . , en)

(
n− 2−

n∑

i=1

1

ei

)
deg(γ).

Let us show how to compute PicG(C) in some cases.
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Example 38. Suppose that Aut(C) contains a subgroup G ≃ S4. Then C is given in P2
x,y,z by

x4 + y4 + z4 + λ(x2y2 + x2z2 + y2z2) = 0

for some λ ∈ C such that λ 6∈ {−1, 2,−2}. One can show that

Aut(C) ≃





S4 if λ 6= 0 and λ 6= −3± 3
√
7i

2
,

µ
2
4 ⋊S3 if λ = 0,

PSL2(F7) if λ =
−3± 3

√
7i

2
.

We have C/G ≃ P1, and it follows from [31] that the signature is [0; 2, 2, 2, 3]. Thus, using Remark 37,
we see that Pic(G,C) ≃ Z × µ

2
2, and the free part of the group Pic(G,C) is generated by KC .

Moreover, using GAP, we compute Hom(G,C∗) ≃ H2(G,C∗) ≃ µ2. Therefore, using Proposition 36,
we get the following exact sequence of group homomorphisms:

0 → Z× µ2 → PicG(C) → µ2 → 0.

We also know from [14] that Pic(C) contains two G-invariant even theta-characteristics θ1 and θ2.
This immediately implies that PicG(C) = 〈θ1, θ2〉 ≃ Z× µ2.

Example 39 ([16]). Suppose that Aut(C) ≃ PSL2(F7). Then C is given in P2
x,y,z by

xy3 + yz3 + zx3 = 0.

Set G = Aut(C). Using Example 1, we conclude that PicG(C) contains an even theta-characteristic θ.
Now, arguing as in Example 38, we get PicG(C) = 〈θ〉 ≃ Z.

Example 40. Suppose that Aut(C) ≃ µ
2
4 ⋊S3. Then C is given in P2

x,y,z by

x4 + z4 + z4 = 0,

the group Aut(C) contains a unique subgroup isomorphic to µ2
4⋊µ3, and C is the unique plane quartic

curve admiting a faithful µ2
4 ⋊ µ3-action. Let G be this subgroup. Then the signature is [0; 3, 3, 4].

Therefore, using Remark 37, we get Pic(G,C) ≃ Z × µ3, where the free part is generated by KC .
Since Hom(G,C∗) ≃ µ3 and H2(G,C∗) ≃ µ4, it follows from Proposition 36 that

PicG(C)/〈KC〉 ≃ µ4.

Moreover, we know from Section 2.2 that PicG(C) contains a divisor D of degree 2. Thus, we conclude
that PicG(C) = 〈KC, D〉 ≃ Z× µ2, and KC − 2D is a two-torsion divisor.

Example 41. Let C be the Fermat quartic curve from Example 40, and let G = Aut(C) ≃ µ
2
4⋊S3.

Then the signature is [0; 2, 3, 8], so it follows from Remark 37 that

Pic(G,C) ≃ Z× µ2,

where the free part is generated by KC . On can check that Hom(G,C∗) ≃ µ2 and H2(G,C∗) ≃ µ2.
We claim that PicG(C) contains no divisors of degree 2. Indeed, if PicG(C) has a divisorD of degree 2,
then |KC+D| gives a G-equivariant embedding φ : C →֒ P3, which contradicts to Lemmas 14 and 15,
because µ

3
2.S4 does not contain subgroups isomorphic to G. Therefore, arguing as in Example 40,

we see that PicG(C) = 〈KC , δ〉 ≃ Z× µ2, where δ is a two-torsion divisor.

Using results described in Examples 38, 39, 40, 41, we get the following corollaries:

Corollary 42. If Aut(P3, C6) has a subgroup isomorphic to S4, then one of the following holds:

• Aut(P3, C6) ≃ S4 and Aut(X) ≃ S4 × µ2,

• Aut(P3, C6) ≃ PSL2(F7) and Aut(X) ≃ PSL2(F7)× µ2.
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Corollary 43. The smooth Fano threefold described in Example 1 is the unique smooth Fano threefold

in the deformation family №2.12 that admits a faithful action of the group PSL2(F7).

Corollary 44. The smooth Fano threefold described in Section 2.2 is the only smooth Fano threefold

in the family №2.12 that admits a faithful action of the group µ
2
4 ⋊ µ3.

Proof. Suppose that Aut(X) has a subgroup isomorphic to µ
2
4⋊µ3. Then arguing as in Example 41,

we see that Aut(P3, C6) ≃ µ
2
4 ⋊ µ3, and Aut(P3, C6) is conjugate to the subgroup G that has been

described in Section 2.2. Thus, the required assertion follows from Theorem 18. �

Now, we are ready to prove Theorem B.

Proof of Theorem B. It is enough to show that the automorphism group Aut(X) is isomorphic to
a subgroup of PSL2(F7)× µ2 or µ2

4 ⋊S3. Suppose this is not true. Let us seek for a contradiction.
Let G = Aut(C, [D]). Then G is also not isomorphic to a subgroup of PSL2(F7)×µ2 or µ2

4 ⋊S3.
Therefore, using [14] and the classification of automorphism groups of smooth plane quartic curves,
we see thatD is not an even theta-characteristic. So, by Corollary 35, the group Aut(X) is isomorphic
to a subgroup of the group Aut(C).

Hence, using the classification of automorphism groups of smooth plane quartic curves again,
we conclude that the group Aut(X) is isomorphic to one of the following groups:

µ9, µ12, SL2(F3) (GAP ID is [24,3]), µ4.A4 (GAP ID is [48,33]),

and it follows from Corollary 34 that either G = Aut(X) or G is a subgroup in Aut(X) of index 2.
Thus, we have the following possibilities:

Aut(X) µ9 µ12 µ12 SL2(F3) µ4.A4 µ4.A4

G µ9 µ6 µ12 SL2(F3) SL2(F3) µ4.A4

Recall that D is a divisor on the quartic curve C such that deg(D) = 2, the divisor D satisfies ♦,
and its class [D] ∈ Pic(C) is G-invariant. Let us show that in each of our cases, such D does not exist.

First, using [17, 3], Proposition 36 and Remark 37, we can describe the equation of the curve C,
the signature of the action of the group G on the curve C, the structure of the group PicG(S), and
the degree of a generator γ of the free part of the group PicG(C). This gives the following possibilities:

G Equation of C Signature Structure of PicG(S) deg(γ)

µ6 y4 − x3z + z4 = 0 [0; 2, 3, 3, 6] Z⊕ Z3 1

µ9 y3z − x(x3 − z3) = 0 [0; 3, 9, 9] Z⊕ Z3 1

µ12 y4 − x3z + z4 = 0 [0; 3, 4, 12] Z 1

SL2(3) y4 − x3z + z4 = 0 [0; 2, 3, 6] Z⊕ Z6 4

µ4.A4 y4 − x3z + z4 = 0 [0; 2, 3, 12] Z 4

In particular, if G ∼= SL2(3) or G ≃ µ4.A4, then C does not have G-invariant divisors of degree 2.
Hence, we see that G is isomorphic to one of the following groups: µ6, µ9, µ12.

Suppose that G ≃ µ12. Then the action of G on C is generated by

[x : y : z] 7→
[
ω3x : iy : z

]
,

where ω3 is a primitive cube root of the unity. Then G fixes the point P = [1 : 0 : 0], which implies
that PicG(S) = Z[P ], so that D ∼ 2P , which contradicts to our assumption that D satisfies ♦.

Assume now that G ≃ µ9. Then the G-action on the curve is given by

[x : y : z] 7→
[
ω9x : ω−3

9 y : z
]
,
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where ω9 is a primitive ninth root of the unity. Set P1 = [1 : 0 : 0] and P2 = [0 : 1 : 0]. Then

PicG(S) = 〈P1, P2〉,
because P1 and P2 are fixed by the action of the group G, and the divisor P1 − P2 is a 3-torsion.
Then D is linearly equivalent to 2P1, 2P2 or P1 + P2, which contradicts ♦.

Finally, consider the case where G is isomorphic to µ6. Then the G-action is given by

[x : y : z] 7→
[
x : −y : ω3z

]
,

Set P = [0 : 0 : 1], Σ2 = [1 : i : 0] + [1 : −i : 0], and Σ′
2 = [1 : 1 : 0] + [1 : −1 : 0]. Then

KC ∼ 4P ∼ Σ2 + Σ′
2,

and the divisors P , Σ2, Σ
′ are G-invariant. This gives PicG(S) = 〈P,Σ2〉, and 2P −Σ2 is a 3-torsion.

Then D is linearly equivalent to 2P , Σ2, Σ
′
2, which contradicts ♦. �
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