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Smooth Fano 3-folds satisfying Condition (A)

Hamid Abban, Ivan Cheltsov, Takashi Kishimoto, Frédéric Mangolte

To Yuri Tschinkel on the occasion of his 60th birthday.

Abstract. A smooth variety is said to satisfy Condition (A) if every finite abelian subgroup of its auto-
morphism group has a fixed point. We classify smooth Fano 3-folds that satisfy Condition (A).

For simplicity of exposition, all varieties are assumed to be projective, normal, irreducible, and defined
over C, the field of complex numbers, or sometimes a subfield k ⊆ C, unless otherwise stated explicitly.

1. Introduction

Fano varieties play a central role in algebraic geometry, particularly in the classification of projective
varieties and the study of their birational properties. Among these, smooth Fano 3-folds over C have been
extensively studied, with their deformation families systematically classified by Iskovskhikh, Mori, and
Mukai. A natural question in the study of such varieties concerns the structure of their automorphism
groups and the existence of fixed points under group actions. In this context, we pay particular attention
to Condition (A), which stipulates that every finite abelian subgroup of the automorphism group of a
smooth variety fixes at least one point.

This paper investigates which smooth Fano 3-folds satisfy Condition (A), building on prior work in
[2, 3]. Our main result, presented in the Main Theorem below, provides a complete classification of the
105 deformation families of smooth Fano 3-folds with respect to Condition (A). Specifically, we identify
families where all members satisfy Condition (A), families where no members satisfy it, and families
containing members that do not satisfy it. This classification leverages the Mori-Mukai notation [6, 15]
and relies on detailed analyses of automorphism groups and their actions.

As a consequence of our Main Theorem and results from [3], we derive a corollary concerning the
unirationality of Fano 3-folds over subfields k ⊆ C. We further explore the existence of rational points,
establishing in PropositionB below that smooth Fano 3-folds in certain families always admit k-points,
while others contain members with no k-points for specific subfields, such as R or Q. These findings
connect the geometric properties of Fano 3-folds to arithmetic questions, shedding light on their behavior
over non-closed fields. The main result of this paper is the following theorem.

Main Theorem. Let X be a smooth Fano 3-fold. If X is contained in one of the deformation families

№1.10, №1.11, №1.15, №2.1, №2.9, №2.11, №2.13, №2.14, №2.15,
№2.17, №2.20, №2.22, №2.26, №2.28, №2.30, №2.31, №2.35,

№2.36, №3.8, №3.11, №3.14, №3.15, №3.16, №3.18, №3.21, №3.22,
№3.23, №3.24, №3.26, №3.29, №3.30, №4.5, №4.9, №4.11, №5.1,

then X satisfies Condition (A). If X is contained in one of the deformation families

№1.14, №1.16, №1.17, №2.25, №2.27, №2.29, №2.32, №2.33, №2.34, №3.17,
№3.19, №3.20, №3.25, №3.27, №3.28, №3.31, №4.1, №4.2, №4.3, №4.4, №4.6,

№4.7, №4.8, №4.10, №4.12, №5.2, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1,

then X does not satisfy Condition (A). Finally, every (remaining) deformation family

№1.1, №1.2, №1.3, №1.4, №1.5, №1.6, №1.7, №1.8, №1.9, №1.12,
№1.13, №2.2, №2.3, №2.4, №2.5, №2.6, №2.7, №2.8, №2.10, №2.12,

№2.16, №2.18, №2.19, №2.21, №2.23, №2.24, №3.1, №3.2, №3.3, №3.4,
№3.5, №3.6, №3.7, №3.9, №3.10, №3.12, №3.13, №4.13,

contains a smooth Fano 3-fold that does not satisfy Condition (A).
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CorollaryA (c.f. [11],[13, Theorem 1.1]). Every deformation family among

№1.1, №1.2, №1.3, №1.4, №1.5, №1.6, №1.7, №1.8, №1.9, №1.12,
№1.13, №1.14, №1.16, №1.17, №2.2, №2.3, №2.4, №2.5, №2.6, №2.7,

№2.8, №2.10, №2.12, №2.16, №2.18, №2.19, №2.21, №2.23, №2.24, №2.25,
№2.27, №2.29, №2.32, №2.33, №2.34, №3.1, №3.2, №3.3, №3.4, №3.5,

№3.6, №3.7, №3.9, №3.10, №3.12, №3.13, №3.17, №3.19, №3.20, №3.25,
№3.27, №3.28, №3.31, №4.1, №4.2, №4.3, №4.4, №4.6, №4.7, №4.8,
№4.10, №4.12, №4.13, №5.2, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1

contains a smooth Fano 3-fold defined over some subfield k ⊆ C that is not k-unirational.

We expect that every family listed in this corollary contains a smooth Fano 3-fold X defined over some
subfield k ⊆ C such that X(k) = ∅. For deformation families

№1.6, №1.8, №1.9, №1.13, №1.14, №1.16, №1.17, №2.12, №2.21, №2.32, №3.27, №4.1,

this expectation follows from the corollary and [17, 19, 20]. This is also true for the remaining deformation
families by the following more precise result.

PropositionB. Let X be a smooth Fano 3-fold defined over a subfield k ⊆ C. Suppose that X is contained
in one of the following deformation families:

№1.11, №1.15, №2.1, №2.9, №2.11, №2.14, №2.15, №2.17, №2.20, №2.22, №2.26,
№2.28, №2.30, №2.31, №2.35, №2.36, №3.8, №3.11, №3.14, №3.15, №3.16, №3.18,
№3.21, №3.22, №3.23, №3.24, №3.26, №3.29, №3.30, №4.5, №4.9, №4.11, №5.1.

Then X(k) ̸= ∅. Moreover, every deformation family among

№1.1, №1.2, №1.3, №1.4, №1.5, №1.10, №1.12, №1.14, №1.16, №1.17, №2.2, №2.3, №2.4,
№2.6, №2.7, №2.8, №2.10, №2.12, №2.13, №2.16, №2.18, №2.19, №2.21, №2.23, №2.25, №2.27,

№2.29, №2.32, №2.33, №2.34, №3.1, №3.2, №3.3, №3.4, №3.5, №3.6, №3.9, №3.10, №3.12,
№3.13, №3.17, №3.19, №3.20, №3.25, №3.27, №3.28, №3.31, №4.1, №4.2, №4.3, №4.4,
№4.6, №4.7, №4.8, №4.10, №4.12, №4.13, №5.2, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1

contains a real smooth pointless Fano 3-fold, each family №1.9, №1.13, №2.5, №2.24, №3.7 contains a
smooth Fano 3-fold defined over Q that does not have rational points, and families №1.6, №1.7, №1.8
contain smooth members defined over a subfield k ⊆ C which have no k-points.

The paper is organized as follows. Section 2 contains the proof of the Main Theorem, with a detailed
case-by-case analyses of deformation families. In Section 3, we prove PropositionB. Finally, Appendix A
addresses the unirationality of degree 14 smooth Fano 3-folds in family №1.7, providing a proof that such
a 3-fold is k-unirational if and only if it has a k-point. Since this paper is the threequel of [2, 3], we will
use many results obtained in these two papers.
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ENHI Grant Number 23K03047. We also thank CIRM, Luminy, for the hospitality provided during a
semester-long Morlet Chair and for creating a perfect work environment.

2. Proof of the Main Theorem

Let X be a smooth Fano 3-fold. If X is contained in one of the deformation families

№1.10, №1.15, №2.9, №2.11, №2.13, №2.14, №2.17, №2.20, №2.22, №2.26,
№2.28, №2.30, №2.31, №2.35, №2.36, №3.8, №3.11, №3.14, №3.16, №3.18,
№3.21, №3.22, №3.23, №3.24, №3.26, №3.29, №3.30, №4.5, №4.9, №4.11,

then it follows from [3] that X satisfies Condition (A).
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Lemma 2.1. Let A be a finite abelian subgroup of the group Aut(X). Suppose that X is contained in
one of the following families: №1.11, №2.1, №2.15, №3.15, №5.1. Then A fixes a point in X.

Proof. If X is contained in the family №1.11, then −KX ∼ 2H for an ample divisor H ∈ Pic(X) with
H3 = 1, and the base locus of the linear system |H| consists of a single point which must be fixed by
the entire automorphism group Aut(X). In particular, it is fixed by A. Similarly, if X is contained in
the deformation family №2.1, then it follows from [3, Lemma 2.13] that there exists an A-equivariant
birational morphism X → Y , where Y is a smooth Fano 3-fold in the family №1.11, so A fixes a point in
Y and, therefore, it follows from [26, Proposition A.4] that A fixes a point in X.

Suppose that X is contained in the family №3.15. Then X is the blowup of a smooth quadric Q ⊂ P4

along a disjoint union of a line ℓ and a smooth conic, and it follows from [22] that this blowup is A-
equivariant and the line ℓ is A-invariant, hence Duncan’s lemma [3, Lemma 2.4] and [3, Corollary 2.5]
imply that the group A fixes a point in ℓ. Therefore, A fixes a point in X by [26, Proposition A.4].

Next, we assume that X is contained in the family №2.15. Then it follows from [3, Lemma 2.13] that
there exists an A-equivariant birational morphism X → P3 that blows up a smooth curve C = S2 ∩ S3,
where S2 is an irreducible quadric surface, and S3 is an irreducible cubic surface. In particular, we may
consider A as a subgroup of PGL4(C). Note that C is contained in the smooth locus of the surface S2,

and S2 is A-invariant, because S2 is the unique quadric surface in P3 that contains C. Let Ã be a finite

subgroup in GL4(C) that is mapped to A via the natural projection GL4(C) → PGL4(C). If Ã ≃ A,

then A fixes a point in P3, so it also fixes a point in X by [26, Proposition A.4]. However, a priori, Ã is
a central extension of the group A, which may not be abelian. In any case, we have the following exact

sequence of Ã-representations:

0 −→ H0
(
OP3(3)⊗ IC

)
−→ H0

(
OP3(3)

)
−→ H0

(
OS2(C)

)
−→ 0,

in which IC is the ideal sheaf of C. Hence, since H0
(
OS2(C)

)
has a one-dimensional subrepresentation

corresponding to C, we see that H0
(
OP3(3)

)
also has a corresponding one-dimensional subrepresentation.

Thus, we may choose S3 to be A-invariant. Then, it follows from Duncan’s lemma [3, Lemma 2.4] that

we can also choose Ã to be isomorphic to A, so, as explained earlier, the group A fixes a point in X.
Finally, we assume that X is contained in the family №5.1. This family contains one smooth member,

which can be described as follows. Let Q be the smooth quadric 3-fold

{x1x2 + x2x3 + x3x1 + yz = 0} ⊂ P4,

where x1, x2, x3, y, z are coordinates on P4. Let C be the smooth conic in Q that is cut out by y = z = 0,
and let P1 = [1 : 0 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0 : 0], P3 = [0 : 0 : 1 : 0 : 0], all contained in C. Let θ : Y → Q

be the blowup of the points P1, P2, P3, and C̃ be the strict transform on Y of the conic C. Then there

is a birational morphism η : X → Y that blows up C̃. Note that the group Aut(X) is explicitly described
in [4, § 5.23], and this description implies that

Aut(X) ≃ S3 ×
(
C∗ ⋊ Z/2Z

)
,

both birational morphism θ and η are Aut(X)-equivariant, and we have the following Aut(X)-equivariant
commutative diagram:

X
η

yy
η′

%%
Y

θ

zz ϕ $$

// Y ′

ϕ′zz
ν

%%
Q V P1

where V is the singular K-polystable Fano 3-fold constructed in [1, § 6], ϕ is the small contraction of

the curve C̃ to the singular point of V , ϕ′ is another small resolution of V , η′ is the contraction of the

η-exceptional divisor such that the dashed arrow is the Atiyah flop of the curve C̃, and ν is a fibration
whose general fiber is a sextic del Pezzo surface. In particular, the group A acts on the conic C such that
the subset {P1, P2, P3} is A-invariant. Then A fixes a point in C by Duncan’s lemma [3, Lemma 2.4], so
A fixes a point in X by [26, Proposition A.4]. □
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Recall that the deformation families

№2.34, №3.27, №3.28, №4.10, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1

consist of products P1 × S, where S is a smooth del Pezzo surface, so their automorphism groups always
contain a subgroup isomorphic to (Z/2Z)2 that acts trivially on the second factor, and does not fix points.
Moreover, it has been shown in [3] that any smooth member of the families №2.33, №3.31, №4.8, №4.12,
№5.2 does not satisfy Condition (A), and every deformation family among

№1.9, №2.5, №2.10, №2.12, №2.16, №2.21, №2.23, №2.24,
№3.2, №3.5, №3.6, №3.7, №3.10, №3.12, №3.13, №4.13,

contains a smooth Fano 3-fold that does not satisfy Condition (A). Hence, to complete the proof of
TheoremA, we may assume that X is contained in one of the families

№1.1, №1.2, №1.3, №1.4, №1.5, №1.6, №1.7, №1.8, №1.12, №1.13,
№1.14, №1.17, №2.2, №2.3, №2.4, №2.6, №2.7, №2.8, №2.18, №2.19,

№2.25, №2.27, №2.29, №2.32, №3.1, №3.3, №3.4, №3.9, №3.17,
№3.19, №3.20, №3.25, №4.1, №4.2, № 4.3, №4.4, №4.6, №4.7.

In the remaining part of the section, we will provide examples of X in each of these families together with
an abelian group A that does not fix points in X. If every smooth member of the family contains such
abelian group, we indicate it for clarity. Note that in some cases, X would be the only smooth member
of the family.

Example 2.2. Fix d ∈ {2, 3}. Let X be the hypersurface{
y2 + x2d1 + x2d2 + x2d3 + x2d4 = 0

}
⊂ P(1x1 , 1x2 , 1x3 , 1x4 , dy).

Then X is a smooth Fano 3-fold. If d = 3, then X belongs to the family №1.1. If d = 2, then X belongs
to the family №1.12. Let A be the subgroup in Aut(X) generated by the transformations that change
signs of the coordinates x1, . . . , x4. Then A ≃ (Z/2Z)4 and A does not fix points in X.

Example 2.3. Fix d ∈ {2, 3, 4}. Let X be the hypersurface{
xd1 + xd2 + xd3 + xd4 + xd5 = 0

}
⊂ P4

x1,x2,x3,x4,x5 .

Then X is a smooth Fano 3-fold. If d = 2, then X is the unique smooth Fano 3-fold in the family №1.16.
If d = 3, then X is contained in the family №1.13. If d = 4, then X is contained in the family №1.2. Let
A be the subgroup in Aut(X) generated by the transformations that multiply coordinates x1, . . . , x4 by
primitive d-th root of unity. Then A ≃ (Z/dZ)4 and A does not fix points in X.

Example 2.4. Let X be the complete intersection{ 6∑
i=0

xi =
6∑
i=0

x2i =
6∑
i=0

x3i = 0
}
⊂ P6.

Then X is a smooth Fano 3-fold in the deformation family №1.3, and Aut(X) ≃ S7. Let A be the
subgroup in Aut(X) generated by the following transformations:

[x0 : x1 : x2 : x3 : x4 : x5 : x6] 7→ [x1 : x2 : x0 : x3 : x4 : x5 : x6],

[x0 : x1 : x2 : x3 : x4 : x5 : x6] 7→ [x0 : x1 : x2 : x4 : x5 : x6 : x3].

Then A ≃ (Z/3Z)× (Z/4Z) and A does not fix points in X.

Example 2.5. Let X be the complete intersection{ 7∑
i=1

x2i =

7∑
i=1

ix2i =

7∑
i=1

2ix2i = 0
}
⊂ P6,

where x1, . . . , x7 are coordinates on P6. Then X is a smooth Fano 3-fold in the family №1.4. Let A be
the subgroup in Aut(X) generated by the transformations that change signs of the coordinates x1, . . . , x6.
Then A ≃ (Z/2Z)6 and A does not fix points in X.

4



Example 2.6 (Gushel-Mukai 3-folds). Let V5 be a smooth intersection of the Grassmannian Gr(2, 5) ⊂ P9

in its Plücker embedding with a linear subspace of codimension 3. Then V5 is the unique smooth Fano
3-fold in the deformation family №1.15. Moreover, it is well known that

Aut(V5) ∼= PGL2(C).
Let G be a subgroup in Aut(V5) such that G ≃ A5. Then it follows from [10, Theorem 8.2.1] that |−KV5 |
contains a pencil P such that every surface of P is G-invariant, G acts faithfully on every surface in P,
and general surface in P is a smooth K3 surface. Let S be a smooth surface in P, let π : X → V5 be
the double cover branched over S, and let τ ∈ Aut(X) be the Galois involution of this double cover. Then
X is a smooth Fano 3-fold in the family №1.5. Since the action of the group G lifts to X, we identify G
with a subgroup in Aut(X). Observe that

⟨τ,G⟩ ≃ (Z/2Z)× A5.

Now, let A′ be a subgroup in G such that A′ ≃ (Z/2Z)2, and let A = ⟨τ,A′⟩ ≃ (Z/2Z)3. Then A does not
fix points in X. Indeed, if p is an A-fixed point in X, then π(p) is an A′-fixed point in S, so the length
of the G-orbit of π(p) is 1, 5 or 15, which contradicts [10, Lemma 6.7.1].

Example 2.7 ([5]). Let X be the smooth Fano 3-fold constructed in [25, Example 2.11]. Then X
belongs to the deformation family №1.6 and Aut(X) ∼= SL2(F8), which is a simple group. Let A be a
Sylow 2-subgroup in Aut(X). Then A ≃ (Z/2Z)3, and it follows from [5] that A does not fix points in X.

Example 2.8. LetX be the smooth Fano 3-fold in the family №1.7 such that Aut(X) contains a subgroup
G ≃ (Z/3Z)⋊D8 with GAP ID [24,8] which has been constructed in [31, § 5]. Then, up to conjugation,
the group G contains two abelian subgroups isomorphic to (Z/2Z)2. One of them is normal, and another
one is not normal. Moreover, it follows from [31, § 5] that the non-normal subgroup does not fix points
in X, which gives another proof of [31, Proposition 5.1].

Example 2.9. Let V be the Lagrangian Grassmannian LGr(3, 6) embedded by Plucker into P13. Set

X =

 x11 x12 x13
x12 x22 x23
x13 x23 x33

 , Y =

 y11 y12 y13
y12 y22 y23
y13 y23 y33

 .

Then it follows from [14] that V is given by 21 quadratic equations, which can be described as follows:
adj(X) = uY,

adj(Y ) = vX,

XY = uvI3,

where adj(X) and adj(Y ) are adjoint matrices of X and Y , respectively, I3 is the 3 × 3 identity matrix,
and u, v, x11, x22, x33, x12, x13, x23, y11, y22, y33, y12, y13, y23 are coordinates on P13. Let A be the
subgroup in Aut(V ) generated by the following involutions:

[u : v : x11 : x22 : x33 : x12 : x13 : x23 : y11 : y22 : y33 : y12 : y13 : y23] 7→
[u : v : x11 : x22 : x33 : −x12 : x13 : −x23 : y11 : y22 : y33 : −y12 : y13 : −y23],

[u : v : x11 : x22 : x33 : x12 : x13 : x23 : y11 : y22 : y33 : y12 : y13 : y23] 7→
[u : v : x11 : x22 : x33 : −x12 : −x13 : x23 : y11 : y22 : y33 : −y12 : −y13 : y23],

[u : v : x11 : x22 : x33 : x12 : x13 : x23 : y11 : y22 : y33 : y12 : y13 : y23] 7→
[v : u : y11 : y22 : y33 : y12 : y13 : y23 : x11 : x22 : x33 : x12 : x13 : x23].

Then A ≃ (Z/2Z)3. Let X be the 3-fold in V that is cut out by
1967x11 + 1973x22 + 1983x33 = 0,

1967y11 + 1973y22 + 1983y33 = 0,

2024x11 + 2025x22 + 2024y11 + 2025y22 = v + u.

Then X is A-invariant smooth Fano 3-fold in the family №1.8, and A fix no points in X.
5



Example 2.10. Let X be a smooth Fano 3-fold in family №1.14. Then X is a complete intersection of
two quadrics in P5, and it follows from [27] that we can choose coordinates x1, x2, x3, x4, x5, x6 on P5 such
that X is given by

6∑
i=1

x2i =
6∑
i=1

aix
2
i = 0

for some numbers a1, a2, a3, a4, a5, a6. Let A be the subgroup in Aut(X) generated by the transformations
that change signs of the coordinates x1, . . . , x5. Then A ≃ (Z/2Z)5 and A does not fix points in X.

Example 2.11. Recall that P3 is the only smooth Fano 3-fold in the family №1.17. Let A be the subgroup
in Aut(P3

x1,x2,x3,x4) generated by the following transformations:

[x1 : x2 : x3 : x4] 7→ [−x1 : x2 : −x3 : x4],
[x1 : x2 : x3 : x4] 7→ [x2 : x1 : x4 : x3].

Then A ≃ (Z/2Z)2 and A does not fix points in P3. Let Z be an A-invariant smooth subvariety in P3,
and let X be the blow up of P3 along Z. Then the action of A lifts to X, and A does not fix points in X.
Now, choosing appropriate Z, we see that all smooth members of the families №2.25, №2.27, №3.25, №4.6
also do not satisfy Condition (A). Namely, if Z is the smooth quartic elliptic curve{

x21 + x22 + λ(x23 + x24) = 0, λ(x21 − x22) + x23 − x24 = 0
}
⊂ P3

for λ ̸∈ {0,±1,±i}, then X is a smooth Fano 3-fold in the family №2.25, and every smooth member of
this family can be obtained in this way. Likewise, if Z is the twisted cubic φ(P1) for φ : P1 → P3 given by

[u : v] 7→ [uv2 : u2v : u3 : v3],

thenX is the unique smooth member of the family №2.27. Similarly, if Z = {x1 = x2 = 0}∪{x3 = x4 = 0},
then X is the unique smooth member of the family №3.25. Finally, if Z is the union of the three disjoint
lines {x1 = x2 = 0}, {x3 = x4 = 0}, {x1 + x3 = x2 + x4 = 0}, then X is the member of the family №4.6.

Example 2.12. Fix d ∈ {2, 4}. Let

S =
{
u2

(
1967xd + 1973yd + 1983zd

)
+ v2

(
1983xd + 1973yd + 1967zd

)
= 0

}
⊂ P1

u,v × P2
x,y,z.

Then S is a smooth surface. Let π : X → P1
u,v × P2

x,y,z be a double cover branched over S. If d = 2, then
X is a smooth Fano 3-fold in the deformation family №2.18. If d = 4, then X is a smooth Fano 3-fold in
the deformation family №2.2. Let A′ be the subgroup in Aut(P1

u,v × P2
x,y,z) generated by(

[u : v], [x : y : z]
)
7→

(
[u : −v], [x : y : z]

)
,(

[u : v], [x : y : z]
)
7→

(
[u : v], [ωx : y : z]

)
,(

[u : v], [x : y : z]
)
7→

(
[u : v], [x : ωy : z]

)
,

where ω is a primitive d-th root of unity. Then A′ ≃ (Z/2Z) × (Z/dZ)2, the action of the group A′ lifts
to X, so we can identify A′ with a subgroup in Aut(X). Let τ be the Galois involution of the double
cover π, and let A = ⟨τ,A′⟩. Then A ≃ (Z/2Z)2 × (Z/dZ)2, and A does not fix points in X.

Example 2.13. Let us use the notation and assumptions of Example 2.2 with d = 2. Let C be the
smooth elliptic curve in X that is cut out by x3 = x4 = 0, and let Y be the blow up of X along C. Then
Y is a smooth Fano 3-fold in the family №2.3, and the curve C is A-invariant, so the action of the group
A lifts to Y . Note that A does not fix points in Y .

Example 2.14. Let C be the curve in P3 that is given by{
x31 + x32 + λ(x33 + x34) = 0,

λ(x31 − x32) + x33 − x34 = 0,
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where λ is a general complex number. Then C is a smooth curve. Let X → P3 be a blow up of this curve.
Then X is a smooth Fano 3-fold in the family №2.4. Let A be the subgroup in Aut(P3) generated by

[x1 : x2 : x3 : x4] 7→ [x2 : x1 : x4 : x3],

[x1 : x2 : x3 : x4] 7→ [x3 : −x4 : x1 : −x2].

Then A ≃ (Z/2Z)2, and A does not fix points in P3. Note that the curve C is A-invariant, so its action
lifts to X, and A does not fix points in X.

Example 2.15 (Verra 3-folds). Let X be the divisor of degree (2, 2) in P2
u,v,w × P2

x,y,z that is given by

vwx2 + uwy2 + uvz2 + yzu2 + xzv2 + xyw2 + λ(u2x2 + v2y2 + w2z2) = 0,

where λ is a sufficiently general complex number. Then X is a smooth Fano 3-fold in the family №2.6.
Let A be the subgroup in Aut(X) that is generated by the following transformations:(

[u : v : w], [x : y : z]
)
7→

(
[v : w : u], [y : z : x]

)
,(

[u : v : w], [x : y : z]
)
7→

(
[u : ωv : ω2w], [ω2x : ωy : z]

)
,

where ω is a primitive cube root of unity. Then A ≃ (Z/3Z)2, and A does not fix points in X.

Example 2.16. Let Q be the smooth quadric 3-fold {x21 + x22 + x23 + x24 + x25 = 0} ⊂ P4
x1,x2,x3,x4,x5 , and

let A be the subgroup in Aut(Q) generated by the following involutions:

[x1 : x2 : x3 : x4 : x5] 7→ [−x1 : x2 : x3 : x4 : x5]
[x1 : x2 : x3 : x4 : x5] 7→ [x1 : −x2 : −x3 : x4 : x5]
[x1 : x2 : x3 : x4 : x5] 7→ [x1 : −x2 : x3 : −x4 : x5].

Then A ≃ (Z/2Z)3. Let Z be a smooth A-invariant subvariety of the quadric Q, and let X be the blow
up of Q along Z. Then the action of A lifts to X, and A does not fix points in X. Now, choosing
appropriate Z, we obtain smooth Fano 3-folds of the families №2.7, №2.29, №3.19, №3.20 that do not
satisfy Condition (A). Namely, if Z is the smooth curve of genus 5 that is cut out by

5∑
i=1

ix2i =

5∑
i=1

2ix2i = 0,

then X is a smooth Fano 3-fold in the family №2.7. Similarly, if Z is the conic Q ∩ {x3 = x4 = 0}, then
X is the unique smooth member of the family №2.29. If

Z = {x1 = x2 + ix3 = x4 + ix5 = 0} ∪ {x1 = x2 − ix3 = x4 − ix5 = 0},
then X is the unique smooth Fano 3-fold in the family №3.20. Finally, we let

Z = [0 : 0 : 0 : 1 : i] ∪ [0 : 0 : 0 : 1 : −i].
Then X is the unique member of the family №3.19. Let C be the A-invariant conic Q ∩ {x3 = x4 = 0},
and let Y be the blow up of X along the strict transform of C. Then Y is the unique smooth Fano 3-fold
in the family №4.4, the action of A lifts to Y , and A does not fix points in Y .

Example 2.17. Let Y be the hypersurface

{w2 + t2
(
x2 + y2 + z2

)
+ x4 + y4 + z4 = 0} ⊂ P(1x, 1y, 1z, 1t, 2w).

Then Sing(Y ) = [0 : 0 : 0 : 1 : 0], and Y has an ordinary double singularity at the point [0 : 0 : 0 : 1 : 0].
Let π : X → Y be the blow up of this point. Then X is a smooth Fano 3-fold in the family №2.8. Let A be
the subgroup in Aut(Y ) generated by the transformations that change signs of the coordinates x, y, z, t.
Then A ≃ (Z/2Z)4, the action of the group A lifts to X, and A does not fix points in X.

Example 2.18. Let S2 be the surface {x0x3 = x1x2} ⊂ P3. Fix the isomorphism P1 × P1 ≃ S2 by
([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1], and let C be the curve in S2 given by

(s20 + s21)(t
3
0 + t31) + ε(s20 − s21)(t

3
0 − t31) = 0
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in which ε is a general number so that C is smooth. Let A be the subgroup in Aut(S2) generated by(
[s0 : s1], [t0 : t1]

)
7→

(
[s0 : −s1], [t0 : t1]

)
,(

[s0 : s1], [t0 : t1]
)
7→

(
[s1 : s0], [t1 : t0]

)
.

Then A ≃ (Z/2Z)2, the curve C is A-invariant, and the A-action extends to P3 as follows:

[x0 : x1 : x2 : x3] 7→ [−x0 : −x1 : x2 : x3],
[x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0].

Hence, A fixes no points in P3. Let π : X → P3 be the blowup of the curve C. Then X is a smooth Fano
3-fold in the family №2.19, the A-action lifts to X, and A does not fix points in X.

Example 2.19. Let W = {x1y1+x2y2+x3y3 = 0} ⊂ P2
x1,x2,x3 ×P2

y1,y2,y3 . Then W is the unique smooth
Fano 3-fold in the family №2.32. Now, let A be the subgroup in Aut(W ) generated by

([x1 : x2 : x3], [y1 : y2 : y3]) 7→ ([x2 : x3 : x1], [y2 : y3 : y1]),

([x1 : x2 : x3], [y1 : y2 : y3]) 7→ ([ω2x1 : ωx2 : x3], [ωy1 : ω
2y2 : y3]),

where ω is a primitive cube root of unity. Then A ≃ (Z/3Z)2, and A fixes no points in W . Alternatively,
consider the subgroup A′ ⊂ Aut(W ) such that A′ ≃ (Z/2Z)2 and A′ is generated by

([x1 : x2 : x3], [y1 : y2 : y3]) 7→ ([−x1 : x2 : x3], [−y1 : y2 : y3]),
([x1 : x2 : x3], [y1 : y2 : y3]) 7→ ([x1 : −x2 : x3], [y1 : −y2 : y3]).

Then A′ also fixes no points in W . Let C1 = {x1 = y2 = y3 = 0} and C2 = {y1 = x2 = x3 = 0}. Then
the curve C1 + C2 is smooth and A′-invariant. Let X → W be the blow up of this curve. Then X is the
unique smooth Fano 3-fold in the family №4.7, the action of the group A′ lifts to X, and A′ does not fix
points in X.

Example 2.20. Let S be the surface of degree (2, 2, 2) in P1
x1,y1 × P1

x2,y2 × P1
x3,y3 that is given by

x21x2y2x
2
3 + y21x2y2y

2
3 + x21x

2
2x3y3 + x1y1x

2
2x

2
3 ++y21y

2
2x3y3 + x1y1y

2
2y

2
3 =

= 2025(y21y
2
2x3y3 + x1y1y

2
2y

2
3 + y21x2y2y

2
3 + x21x

2
2x3y3 + x21x2x

2
3y2 + x1x

2
2x

2
3y1).

Then S is smooth. Let π : X → P1
x1,y1 × P1

x2,y2 × P1
x3,y3 be the double cover that is ramified in S. Then

X is a smooth Fano 3-fold in the family №3.1. Let A′ be the subgroup in Aut(P1
x1,y1 × P1

x2,y2 × P1
x3,y3)

generated by

([x1 : y1], [x2 : y2], [x3 : y3]) 7→ ([y1 : x1], [y2 : x2], [y3 : x3]),

([x1 : y1], [x2 : y2], [x3 : y3]) 7→ ([x2 : y2], [x3 : y3], [x1 : y1]).

Then A′ ≃ (Z/2Z)× (Z/3Z), the surface S is A′-invariant, and A′ does not fix points in S. Observe that
the action of the group A′ lifts to X, so we can consider A′ as a subgroup in Aut(X). Let τ be the Galois
involution of π, and let A = ⟨τ,A⟩. Then A ≃ (Z/2Z)2 × (Z/3Z), and A does not fix points in X.

Example 2.21. Let X be the 3-fold in P3
x1,y1,z1,w1

× P3
x2,y2,z2,w2

given by
x1x

2
2 + y1y

2
2 + z1z

2
2 + w1w

2
2 = 0,

x21 + y21 + z21 + w2
1 = 0,

x2 + y2 + z2 + w2 = 0.

Then X is smooth Fano 3-fold №3.3. Let A be the subgroup in Aut(X) generated by

([x1 : y1 : z1 : w1], [x2 : y2 : z2 : w2]) 7→ ([y1 : x1 : w1 : z1], [y2 : x2 : w2 : z2]),

([x1 : y1 : z1 : w1], [x2 : y2 : z2 : w2]) 7→ ([w1 : z1 : y1 : x1], [w2 : z2 : y2 : x2]).

Then A ≃ (Z/2Z)2, and A does not fix points in X.
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Example 2.22. Let us use the notation and assumptions of Example 2.12 with d = 2. Let C be the
preimage via π of the curve {y = 0, z = 0} ⊂ P1

u,v × P2
x,y,z. Then C is smooth and A-invariant. Let Y be

the blow up of the 3-fold X along the curve C. Then Y is a smooth Fano 3-fold in the family №3.4, and
the action of the group A lifts to Y . Since A does not fix points in X, we see that A does not fix points
in Y .

Example 2.23. Let S, E, E′ be surfaces in P1
u,v × P2

x,y,z defined as follows:

S = {x4 + y4 + z4 + 2025(x2y2 + x2z2 + y2z2) = 0}, E = {u− iv = 0}, E′ = {u+ iv = 0}.

Then S, E, E′ are smooth. Let A′ be the subgroup in Aut(P1
u,v × P2

x,y,z) generated by(
[u : v], [x : y : z]

)
7→

(
[u : v], [−x : y : z]

)
,(

[u : v], [x : y : z]
)
7→

(
[u : v], [x : −y : z]

)
,(

[u : v], [x : y : z]
)
7→

(
[v : u], [x : y : z]

)
.

Then A′ ≃ (Z/2Z)3, and S+E+E′ is A′-invariant. Let η : X → P1
u,v ×P2

x,y,z be a double cover branched

over S +E +E′, and let S, E, E
′
be the preimages on X of the surfaces S, E, E′, respectively. Then the

action of the group A′ lifts to X, so we consider A′ as a subgroup in Aut(X). Let τ be the Galois
involution of the double cover η, and let A = ⟨A′, τ⟩. Then A ≃ (Z/2Z)4, and A does not fix points in X.

Note that X is singular along the curves E ∩S and E
′ ∩S. But we can A-equivariantly blow up X along

these curves to get a smooth 3-fold X̂. Then there exists an A-equivariant birational morphism X̂ → X
that contracts the strict transform of S to a smooth curve of genus 3, and X is a smooth Fano 3-fold in
the family №3.9. By construction, the group A does not fix points in X.

Example 2.24. Let X be the unique smooth Fano 3-fold in the deformation family №3.17. Then

X =
{
x0y0z2 + x1y1z0 = x0y1z1 + x1y0z1

}
⊂ P1

x0,x1 × P1
y0,y1 × P2

z0,z1,z2 ,

Let A be the subgroup in Aut(X) generated by the following transformation:(
[x0 : x1], [y0 : y1], [z0 : z1 : z2]

)
7→

(
[y0 : y1], [x0 : x1], [z0 : z1 : z2]

)
,(

[x0 : x1], [y0 : y1], [z0 : z1 : z2]
)
7→

(
[x1 : x0], [y1 : y0], [z2 : z1 : z0]

)
,(

[x0 : x1], [y0 : y1], [z0 : z1 : z2]
)
7→

(
[x0 : −x1], [y0 : −y1], [z0 : −z1 : z2]

)
.

Then A ≃ (Z/2Z)3 and A does not fix points in X.

Example 2.25. Let X be a smooth Fano 3-fold in the family №4.1. It follows from [8] that X can be
given in P1

x1,y1 × P1
x2,y2 × P1

x3,y3 × P1
x4,y4 by the equation

a
(
x1x2x3x4 + y1y2y3y4

)
+ b

(
x1x2y3y4 + y1y2x3x4

)
+

+ c
(
x1y2x3y4 + y1x2y3x4

)
+ d

(
x1y2y3x4 + y1x2x3y4

)
= 0

for some numbers a, b, c, d. Let A be the subgroup in Aut(X) generated by the following transformations:(
[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]

)
7→

(
[x2 : y2], [x1 : y1], [x4 : y4], [x3 : y3]

)
,(

[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]
)
7→

(
[x4 : y4], [x3 : y3], [x2 : y2], [x1 : y1]

)
,(

[x1 : y1[, [x2 : y2], [x3 : y3], [x4 : y4]
)
7→

(
[y1 : x1], [y2 : x2], [y3 : x3], [y4 : x4]

)
,(

[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]
)
7→

(
[x1 : −y1], [x2 : −y2], [x3 : −y3], [x4 : −y4]

)
.

Then A ≃ (Z/2Z)4 and A does not fix points in X.

Example 2.26. Let X be any smooth Fano 3-fold in the family №4.2. Then there exists a birational
morphism π : X → Q such that Q is the cone {x21 + x22 + x23 + x24 = 0} ⊂ P4

x1,x2,x3,x4,x5 , and π is a blow
up of the point [0 : 0 : 0 : 0 : 1] = Sing(Q) and the smooth elliptic curve

C = {x5 = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = x21 + x22 + x23 + x24 = 0} ⊂ Q \ [0 : 0 : 0 : 0 : 1],
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where a1, a2, a3, a4 are some numbers. Let A be the subgroup in Aut(Q) generated by the transformations
that change signs of the coordinates x1, . . . , x4. Then A ≃ (Z/2Z)4, [0 : 0 : 0 : 0 : 1] is the only A-fixed
point in Q, and C is A-invariant, so the A-action lifts to X. Moreover, A does not fix points in X.

Example 2.27. Let C be the curve of degree (1, 1, 2) in P1
x0,x1 × P1

y0,y1 × P1
z0,z1 given by{

x0y1 − x1y0 = 0,

x20z1 + x21z0 = 0.

Then C is smooth and irreducible. Let π : X → P1 × P1 × P1 be the blow up of the curve C. Then X is
the unique smooth Fano 3-fold № 4.3. Let A be the subgroup of Aut(X) generated by(

[x0 : x1], [y0 : y1], [z0 : z1]
)
7→

(
[x1 : x0], [y1 : y0], [z1 : z0]

)
,(

[x0 : x1], [y0 : y1], [z0 : z1]
)
7→

(
[y0 : y1], [x0 : x1], [z0 : z1]

)
,(

[x0 : x1], [y0 : y1], [z0 : z1]
)
7→

(
[x0 : −x1], [y0 : −y1], [z0 : z1]

)
.

Then A ≃ (Z/2Z)3, and A does not fix points in X.

3. Proof of PropositionB

Let X be a smooth Fano 3-fold defined over a subfield k ⊂ C. If X is contained in the family №1.15,
it follows from [19, Theorem 1.1] that X(k) ̸= ∅. Similarly, if X is contained in one of the families

№2.9, №2.11, №2.14, №2.17, №2.20, №2.22, №2.26, №2.28, №2.30,
№2.31, №2.35, №2.36, №3.8, №3.11, №3.14, №3.16, №3.18, №3.21,
№3.22, №3.23, №3.24, №3.26, №3.29, №3.30, №4.5, №4.9, №4.11,

then it follows from [2] that X(k) ̸= ∅. Likewise, we prove the following result.

Lemma 3.1. If X is contained in one of the families №1.11, №2.1, №2.15, №3.15, №5.1, then X(k) ̸= ∅.

Proof. If X is contained in the family №1.11, then −KXC ∼ 2H for an ample divisor H ∈ Pic(XC) such
that H3 = 1, and the base locus of the linear system |H| consists of a single point, which must be defined
over k. so, in particular, X(k) ̸= ∅. Similarly, if X is contained in the deformation family №2.1, then
it follows from [2, Lemma 2.5] that there exists birational morphism X → Y such that Y is a smooth
member of the deformation family №1.11, so it follows from Lang-Nishimura theorem that X(k) ̸= ∅,
because we just proved that Y (k) ̸= ∅.

If X is contained in the deformation family №3.15, then XC can be realized as a blow up of a smooth
quadric Q ⊂ P4 along a disjoint union of a line ℓ and a smooth conic C, and it follows from [22] and [2,
Corollary 2.3] that this blow up, the quadric Q, the line ℓ and the conic C are all defined over k, so, in
particular, Q(k) ̸= ∅, which implies X(k) ̸= ∅ by Lang-Nishimura theorem [24, Theorem 3.6.11].

Now, we assume that X is contained in the family №2.15. Then it follows from [2, Lemma 2.5] that
there exists a birational morphism π : X → U such that U is a k-form of P3, and π is a blow up of a
smooth curve C ⊂ U such that CC is a complete intersection in UC ≃ P3 of a quadric surface S2 and a
cubic surface S3. Since S2 is the unique quadric surface that contains CC, we see that S2 is defined over
k. Let M be the linear subsystem in |S2| that consists of all surfaces containing C. Then M gives a
birational map U 99K Y such that YC is a cubic 3-fold in P4 that has one isolated double point. Now,
applying [2, Corollary 2.3], we see that Y is a cubic 3-fold in P4, so projecting from its singular point, we
obtain a birational map Y 99K P3, which implies that X(k) ̸= ∅ by Lang-Nishimura theorem.

Finally, we suppose that X belongs to family №5.1. Then, using [22, § III.3] and [2, Corollary 2.3],
we see that there is a birational morphism f : X → Q such that Q is a smooth quadric in P4, and f is
a composition of a blow up of a reduced zero-dimensional subscheme Σ ⊂ Q of length 3 followed by the
blow up of a strict transform of a conic in Q that contains Σ. Then Q(k) ̸= ∅ by Springer theorem [29],
so Lang-Nishimura theorem gives X(k) ̸= ∅. □

Over C, the deformation families

№2.34, №3.27, №3.28, №4.10, №5.3, №6.1, №7.1, №8.1, №9.1, №10.1
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consist of products P1×S, where S is a smooth del Pezzo surface. Thus, each of these families contains a
real pointless 3-fold C2 × S such that C2 is a pointless real conic in P2

R, and S is a real smooth del Pezzo
surface of an appropriate anticanonical degree. Moreover, it has been shown in [2] that families

№1.10, №2.10, №2.12, №2.13, №2.16, №2.19, №2.21, №2.23, №2.33,
№3.2, №3.5, №3.6, №3.10, №3.12, №3.13, №3.31, №4.8, №4.12, №4.13, №5.2

contain real smooth pointless Fano 3-folds, and families №1.9, №2.5, №2.24, №3.7 contain smooth Fano
3-fold defined over Q that do not have rational points. Furthermore, Examples 2.2, 2.3, 2.4, 2.5, 2.13,
2.16, 2.17, 2.21, 2.23 contains explicit examples of real smooth pointless Fano 3-folds in the families

№1.1, №1.2, №1.3, №1.4, №1.12, №1.16, №2.3, №2.7, №2.8, №2.29, №3.3, №3.9, №3.19, №3.20, №4.4.

Similarly, Example 2.10 gives examples of real smooth pointless Fano 3-folds in the family №1.14 if we
choose a1, a2, a3, a4, a5, a6 in this example to be real, and Example 2.26 gives many examples of real
smooth pointless Fano 3-folds in the family №4.2 if we choose a1, a2, a3, a4 there to be real. Hence, to
prove PropositionB, it is enough to present an example of a smooth Fano 3-fold X in each of the families

№1.5, №1.6, №1.7, №1.8, №1.13, №1.17, №2.2, №2.4, №2.6, №2.18, №2.25,
№2.27, №2.32, №3.1, №3.4, №3.9, №3.17, №3.25, №4.1, №4.3, №4.6, №4.7

such that X is defined over an appropriate subfield k ⊂ C and X(k) = ∅. We will do this in the remaining
part of the section indicating whether k = R or k = Q or k is some other field.

Example 3.2. Let V be the real Grassmannian Gr(2, 5) embedded into P9 by the Plücker embedding,
let H1 and H2 be general hyperplanes in P9, let Q be a general pointless quadric in P9, and let X be the
intersection of V , H1, H2, Q. Then X is a real pointless smooth Fano 3-fold in the family №1.5.

Example 3.3. By CorollaryA, each family among №1.6, №1.7, №1.8 contains a smooth 3-fold X defined
over some subfield k ⊂ C such that X is not k-unirational, so X(k) = ∅ by [19, Theorem 1.1].

Example 3.4. To construct smooth pointless member of the family №1.13, let

X =
{
x31 + 2x32 + 4x33 + x1x2x3 + 7(x34 + 2x35) = 0

}
⊂ P4

x1,x2,x3,x4,x5 .

Then X is a smooth cubic 3-fold defined over Q, and it follows from [12] that X(Q) = ∅.

Example 3.5. Let U be the unique real form of P3 that has no real points. Then U is a smooth Fano
3-fold in the family №1.17, and U contains a smooth surface S such that −KU ∼ 2S and Pic(U) = Z[S].
Moreover, it follows from [2, Example 6.8] that S ≃ P1 × C, where C is the real pointless conic. This
shows that S contains three twisted lines L, L′, L′′, that is, LC, L

′
C, L

′′
C are disjoint lines in UC ≃ P3. If we

blow up U along L and L′, we obtain smooth real pointless Fano 3-fold in the family №3.25. Similarly, if
we blow up U along L, L′, L′′, we obtain smooth real pointless Fano 3-fold in the family №4.6. Moreover,
if S′ is a general surface in |S| different from S, then S ∩ S′ is a smooth elliptic curve, so blowing up
U along this curve, we obtain smooth real pointless Fano 3-fold in the family №2.25. Finally, let Z be
a general curve in S that is contained in the linear system | − KS − L|. Then ZC is a smooth twisted
rational cubic in UC ≃ P3, so blowing up U along Z, we get pointless real Fano 3-fold in the family №2.27.

Example 3.6. Let us use assumptions and notations of Example 2.12. Then S is real and S(R) = ∅.
Thus, we can choose X to be real and pointless. Recall that X is contained in the family №2.18 if d = 2,
and X is contained in the family №2.2 if d = 4.

Example 3.7. Let C be the pointless real conic, let U be the pointless real form of P3, and let V = C×U .
Then, in the notations of [18, § 4], the twisted line bundle OV (1, 1) is a line bundle on V by [18, § 4].
Thus, since OU (2) is a line bundle on U , we see that OV (1, 3) is a line bundle on V . Let X be a general
3-fold in |OV (1, 3)|. Then X is smooth, and XC ∼ pr∗1(OP1(1)) + pr∗2(OP3(3)) on VC ≃ P1 × P3, where
pr1 : P1 × P3 → P1 and pr2 : P1 × P3 → P3 are projections to the first and the second factor, respectively.
Hence, since V (R) = ∅, X is a pointless real Fano 3-fold in the family №2.4.

Example 3.8. Let X be the divisor of degree (2, 2) in P2
u,v,w × P2

x,y,z that is given by

(u2 + v2 + 1967w2)x2 + (u2 + 1973v2 + w2)y2 + (1983u2 + v2 + w2)z2 = 0.

Then X is a real smooth pointless Fano 3-fold in the family №2.6.
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Example 3.9. Let us use the notation and assumptions of Example 2.16 with

Z = {x1 = x2 + ix3 = x4 + ix5 = 0} ∪ {x1 = x2 − ix3 = x4 − ix5 = 0}.

Let S = Q ∩ {x1 = 0}, and let S̃ be the strict transform of S on the 3-fold X. Then there is a birational
morphism X → W such that W is a smooth Fano 3-fold in the family №2.32. By [24, Theorem 3.6.11],
we have W (R) = ∅, since X(R) = ∅. Now, we let

C = {x3 = x2 + ix1 = x4 + ix5 = 0} ∪ {x3 = x2 − ix1 = x4 − ix5 = 0}.

Then C ⊂ Q, and the curve C is defined over R. Let C̃ be the strict transform on X of the curve C.

Then C̃ ̸⊂ S̃, and the image of C̃ in W is a smooth curve. Moreover, if we blowup W along this curve,
we obtain a real pointless smooth Fano 3-fold in the family №4.7.

Example 3.10. Let Q be a pointless real quadric in P3, let V = Q × P1, let S be a general surface in
the linear system | −KV |, and let π : X → V be a double cover branched over S. Then X is a smooth
real pointless Fano 3-fold in the family №3.1.

Example 3.11. Let us use the notation and assumptions of Example 3.6 with d = 2. Let C be the
preimage via π of the curve {y = 0, z = 0} ⊂ P1

u,v × P2
x,y,z. Then C is smooth and defined over R. Let

Y be the blow up of the 3-fold X along the curve C. Then Y is a smooth real Fano 3-fold in the family
№3.4, which is pointless by [24, Theorem 3.6.11].

Example 3.12. Let us use the notation and assumptions of Example 2.23. Then S and E + E′ are
defined over R, and the divisor S + E + E′ does not contain real points. Thus, we can choose X to be
real and pointless. Then, by construction, X is a smooth real pointless Fano 3-fold in the family №3.9.

Example 3.13. Let V = Q × P2, where Q is a pointless real quadric in P3, let X be a general divisor
in |pr∗1(H) + pr∗2(OP2(1))|, where H is a hyperplane section of Q, pr1 : V → Q and pr2 : V → P2 are
projections to the first and the second factors, respectively. Then X is a smooth real pointless Fano 3-fold
in the family №3.17.

Example 3.14. Let X be the 3-fold in P3
x1,x2,x3,x4 × P3

y1,y2,y3,y4 given by
x21 + x22 + x23 + x24 = 0,

y21 + y22 + y23 + y24 = 0,

x1y1 + 1967x2y2 + 1973x3y3 + 1983x4y4 = 0.

Then X is a smooth real pointless Fano 3-fold in the deformation family №4.1.

Example 3.15. Let V = {x21 + x22 + x23 = y21 + y22 + y23 = 0} ⊂ P2
x1,x2,x3 × P2

y1,y2,y3 × P1
z1,z2 , and let

C = V ∩
{
x1y2 = x2y1, x1y3 = x3y1, x2y3 = x3y2, x1z2 = x2z1

}
.

Then V and C are smooth. Let X be the blowup of V along the curve C. Then X is a pointless smooth
real Fano 3-fold in the family №4.3.

Appendix A. Unirationality of smooth Fano 3-folds of degree 14

Let X be a smooth Fano 3-fold contained in the family №1.7 which is defined over a subfield k ⊂ C.
Then Pic(XC) = Z[−KXC ], −K3

X = 14, the linear system | −KX | gives an embedding X ↪→ P9 such that
the image of X is a scheme-theoretic intersection of quadrics. In the following, we will identify X with its
anticanonical image in P9. The goal of this appendix is to present a short proof of the following result,
which essentially follows from the ideas and results in [17, 19, 30].

Theorem A.1. The following three conditions are equivalent:

(1) X(k) ̸= ∅,
(2) X(k) ̸= ∅ and X is birational to a smooth cubic 3-fold in P4,
(3) X is unirational over k.

To prove this theorem, we need two results, which are known to experts.
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Lemma A.2. Suppose that X contains a line ℓ defined over k. Then X is unirational over k.

Proof. Let π : X̃ → X be the blowup of the line ℓ. Then | − K
X̃
| is base point free and, in particular,

the divisor −K
X̃

is big and nef. Moreover, it follows from [15, Theorem 4.3.1] that | − K
X̃
| gives a

small birational morphism ϕ : X̃ → Y such that Y is a singular Fano 3-fold with terminal Gorenstein
singularities, and (−KY )

3 = 10. So, by [15, Theorem 4.3.3], we have the following Sarkisov link:

X̃

π

�� ϕ
&&

χ // X̃ ′

ϕ′
xx

η

��
X Y S

where χ is a pseudoisomorphism that flops curves contracted by ϕ, X̃ ′ is a smooth weak Fano 3-fold,

ϕ′ is a small birational morphism, S is a form of P2, and η is a conic bundle. Since X̃ ′(k) ̸= ∅ by
Lang–Nishimura theorem [24, Theorem 3.6.11], we have S(k) ̸= ∅, so S ≃ P2.

Let E be the π-exceptional divisor. Then E is rational over k, and it follows from [15, Theorem 4.3.3]

that η induces a dominant morphism χ∗(E) → S, so X̃ ′ is unirational over k by [19, Lemma 4.14].
Therefore, the smooth Fano 3-fold X is also unirational over k. □

Lemma A.3. Suppose that X(k) contains a point P such that the 3-fold XC does not contain lines passing
through P . Then X is birational to a smooth cubic 3-fold in P4.

Proof. Let π : X̃ → X be the blowup of the point P . Then −K3
X̃

= 6, and it follows from [19, Lemma 5.7]

that | − K
X̃
| is a base point free linear system of dimension 5. Thus, it follows from [9] and the proof

of [19, Lemma 5.11] that the linear system | − K
X̃
| gives a morphism φ : X̃ → X such that either φ is

birational, or φ is generically two-to-one, and X is either a Segre cubic scroll or a cone over a smooth
two-dimensional cubic scroll. Moreover, arguing as in the proof of [19, Lemma 5.12], we see that φ is
birational, and X is a normal complete intersection of a quadric and a cubic in P5.

Let E be the π-exceptional surface. Then the dimension of |−2K
X̃
−E| is at least 5 by [19, Lemma 5.4].

On the other hand, if φ contracts an irreducible surface S, then it follows from [19, Lemma 5.7] that

S ∼ t(−2K
X̃
− 3E)

for some t ∈ Z>0, and S is a fixed component of the linear system | − 2K
X̃
−E|, which is a contradiction.

Thus, we see that φ is small, which also follows from [16, Theorem 4.9]. Therefore, X has terminal
Gorenstein singularities. Then the blowup π gives rise to a Sarkisov link studied in [30]. To be more
precise, it follows from [30] or [15, Theorem 4.5.8] that the linear system | − 2K

X̃
−E| gives a birational

map ρ : X̃ 99K V such that V is a smooth cubic 3-fold in P4, and ρ fits the following commutative diagram:

X̃

π

�� ρ
&&

χ // X̃ ′

η

��
X V

where χ is a pseudoisomorphism that flops curves contracted by φ, X̃ ′ is a smooth weak Fano 3-fold, and
η is a blowup of a form of a twisted rational quartic curve in V . □

Now, we are ready to prove Theorem A.1. If X is unirational over k, then X(k) is Zariski dense in X,
which implies that X(k) contains a point P such that XC does not contain lines that pass through P , so
X is birational to a smooth cubic 3-fold in P4 by Lemma A.3. This proves (3) ⇒ (2).

If X(k) ̸= ∅ and X is birational to a smooth cubic 3-fold Y ⊂ P4, then Y (k) ̸= ∅ by Lang–Nishimura
theorem [24, Theorem 3.6.11], which implies that Y is unirational over k by [17], so X is unirational
over k as well. This proves (2) ⇒ (3).

The implication (2) ⇒ (1) is obvious, hence to complete the proof, we show that (1) ⇒ (3). To do this,
we suppose that X contains a k-point P . We must prove that X is unirational over k. Using Lemmas A.2
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and A.3, we may assume that P is contained in a line in XC, but none of the lines in XC that passes
through P is defined over k. In particular, the 3-fold XC contains at least two lines that pass through P .

As in [19, § 2.4], we let F1(X) be the Hilbert scheme of lines in X, and we let F1(X,P ) be the subscheme
in F1(X) parameterizing lines passing through P . Then

F1(XC, P ) ≃ F1(X,P )C.

Moreover, by our assumption, we have F1(X,P )(k) = ∅ and F1(X,P )(C) ̸= ∅. Furthermore, it follows
from [19, Corollary A.6] that the length of the subscheme F1(X,P ) is at most 3, so this subscheme must
be reduced, since otherwise we would have F1(X,P )(k) ̸= ∅. Set

C = TP (X) ∩X

where TP (X) stands for the embedded tangent space in P9 to the 3-fold X at the point P . Then it
follows from [19, Lemma 5.6] that C is the cone over F1(X,P ). Therefore, we see that C is a reduced,
irreducible, geometrically reducible curve, and one of the following two possibilities holds:

(1) either C is a conic, and CC is a union two lines that intersect at P ,
(2) or C is a cubic, and CC is a union of three non-coplanar lines that intersect at P .

In both cases, let π : X̃ → X be the blowup of the point P , let C̃ be the strict transform on X̃ of the

curve C, let σ : X̂ → X̃ be the blowup of the curve C̃, let E be the π-exceptional surface, let F be the

σ-exceptional surface, and let Ê be the strict transform on X̂ of the surface E. Then −K3
X̂

= 6 and

−K
X̂

∼ (π ◦ σ)∗
(
−KX

)
− 2Ê − F.

Moreover, arguing as in the proofs of [19, Lemma 5.11] and [19, Lemma 5.12], we see that the linear

system |−K
X̂
| is base points free, and it gives a birational morphism φ : X̂ → X such that X is a normal

complete intersection of a quadric hypersurface Q ⊂ P5 and a cubic hypersurface in P5. Hence, we see
that X is a Fano 3-fold that has canonical Gorenstein singularities.

Lemma A.4. The birational morphism φ is small.

Proof. The required assertion follows from the proof of [19, Lemma 5.14]. □

In particular, the 3-fold X has (isolated) terminal Gorenstein singularities. Then, arguing as in the
proof of [19, Lemma 5.14], we see that X is not a cone and X is not covered by lines.

Lemma A.5. The quadric Q has at most one singular point.

Proof. Suppose that Sing(Q) is a line ℓ. Then the hyperplane class of Q \ ℓ can be represented as the
sum of two movable classes, so the same is true for X \ Sing(X), hence the same is true for −K

X̂
and

therefore for the hyperplane class of X, which is absurd, since Pic(X) is generated by −KX . Similarly,
we see that Sing(Q) cannot be a plane. □

Set E = φ(Ê). Then E is a k-rational surface in X ⊂ P5 such that

deg(E) = (−K
X̂
)2 · Ê =

{
2 if C is a reduced conic,

1 if C is a reduced cubic.

Hence, if C is a reduced cubic, then E is a plane. Similarly, if C is a reduced conic, then E is a quadric
surface. Now, the unirationality of X follows from the following two lemmas.

Lemma A.6. Suppose that C is a conic. Then X is unirational over k.

Proof. By construction, E is a smooth quadric surface in P5. In fact, we have E ≃ P1 × P1. Let Π be
the three-dimensional linear subspace in P5 that contains the quadric E. Then Π ̸⊂ Q, because Q has at
most one singular point. This gives E = Q ∩Π = X ∩Π.
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Let ψ : V 99K P1 be the rational map given by the projection from Π. Then ψ is given by the linear
system | −KX − E|, and we have the following commutative diagram:

Y
ρ

yy
η

%%
X

ψ
// P1

where ρ is a birational morphism induced by the blowup of P5 along Π, and η is a morphism. Moreover,
the birational morphism ρ is a small, because X has terminal Gorenstein singularities. Thus, we see that
−KY ∼ ρ∗(−KX), and Y also has terminal Gorenstein singularities.

Let EY be the strict transform of the surface E on the threefold Y , let S be a general fiber of η, and
let S = ρ(S). Then S ∼ −KY − EY , and

deg(S) = (−KY )
2 · S = (−KY )

2 · (−KY − EY ) = (−K
X̂
)2 · (−K

X̂
− Ê) = 4,

which implies that S is an irreducible surface of degree 4, becauseX is not covered by lines. Now, it follows
from the adjunction formula that S is a smooth del Pezzo surface of degree (−KS)

2 = (−KY )
2 · S = 4.

Furthermore, we have

−KY · EY · (−KY − EY ) = (−K
X̂
) · Ê · (−K

X̂
− Ê) = 4 ̸= 0,

which implies that the restriction morphism η|EY
: EY → P1 is surjective. Then Y is unirational over k

by [19, Lemma 4.14], because EY is rational over k. Hence, X is also unirational. □

Lemma A.7. Suppose that C is a cubic curve. Then X is unirational over k.

Proof. In this scenario, E is a plane. Let ψ : X 99K P2 be the map given by the projection from E. Then
ψ is given by the linear system | −KX − E|, and we have the following commutative diagram:

Y
ρ

yy
η

%%
X

ψ
// P2

where ρ is a birational morphism induced by the blowup of P5 along the plane E, and η is a morphism.
Moreover, the birational morphism ρ is small, because X has terminal Gorenstein singularities. Thus, we
see that −KY ∼ ρ∗(−KX), and Y also has terminal Gorenstein singularities.

Let EY be the strict transform of the surface E on the threefold Y . Then the morphism η is given by
the linear system | −KY − EY |, and

−KY · (−KY − EY )
2 = −K

X̂
· (−K

X̂
− Ê)2 = 2.

This implies that η is surjective, and its general fiber is irreducible and isomorphic to P1, because otherwise
the image in X of a general fiber of η would be a union of two lines, but X is not covered by lines. Hence,
we see that η is a conic bundle. Similarly, we see that E3

Y = −3, because

0 = (−KY − EY )
3 = (−KY )

3 − 3(−KY )
2 · EY + 3(−KY ) · EY − E3

Y = −3− E3
Y .

This gives
EY · (−KY − EY )

2 = EY · (−KY )
2 − 2(−KY ) · E2

Y + E3 = 5 + E3 = 2,

so the restriction morphism η|EY
: EY → P2 is generically two-to-one. On the other hand, EY is rational

over k by construction. Then Y is unirational by [19, Lemma 4.14], so X is also unirational. □
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N. Viswanathan, The Calabi problem for Fano threefolds, Cambridge University Press, 485 (2023).

[5] A. Beauville, Finite simple groups of small essential dimension, Springer INdAM Series 8 (2014), 221–228.
[6] P. Belmans, Fanography, https://fanography.info, 2025.
[7] I. Cheltsov, T. Duarte Guerreiro, K. Fujita, I. Krylov, J. Martinez-Garcia, K-stability of Casagrande-Druel varieties, to

appear in Journal fur die Reine und Angewandte Mathematik.
[8] I. Cheltsov, M. Fedorchuk, K. Fujita, A.-S. Kaloghiros, K-moduli of pure states of four qubits, preprint, arXiv:2412.19972,

2024.
[9] I. Cheltsov, V. Przyjalkowski, C. Shramov, Hyperelliptic and trigonal Fano threefolds, Izv. Math. 69 (2005), 365–421.

[10] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, CRC Press, Boca Raton, FL, 2016.
[11] I. Cheltsov, Yu. Tschinkel, Zh. Zhang, Equivariant unirationality of Fano threefolds, preprint, arXiv:2502.19598, 2025.

[12] H. Dai, B. Xue, Rational points on cubic hypersurfaces that split off two forms, BullL̇ond. Math. Soc. 46 (2014), 169–184.
[13] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Algebraic

Geom. 24 (2015), 499–530.
[14] A. Iliev, K. Ranestad, Geometry of the Lagrangian Grassmannian LG(3, 6) with applications to Brill-Noether loci, Mich.

Math. J. 53 (2005), 383–417.
[15] V. Iskovskikh, Yu. Prokhorov, Fano varieties, Encyclopaedia of Mathematical Sciences 47 (1999) Springer, Berlin.
[16] P. Jahnke, T. Peternell, I. Radloff, Threefolds with big and nef anticanonical bundles. I, Math. Ann. 333 (2005), 569–631.
[17] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), 467–476.
[18] J. Kollár, Severi-Brauer varieties; a geometric treatment, preprint, arXiv:1606.04368, 2016.
[19] A. Kuznetsov, Yu. Prokhorov, Rationality of Fano threefolds over non-closed fields, Am. J. Math. 145 (2023), 335–411.
[20] A. Kuznetsov, Yu. Prokhorov, Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank, J.

Inst. Math. Jussieu 23 (2024), 207–247.
[21] The LMFDB Collaboration, The L-functions and modular forms database, https://www.lmfdb.org, 2025.
[22] K. Matsuki, Weyl groups and birational transformations among minimal models, Mem. Am. Math. Soc. 557 (1995), 133

pages.
[23] S. Mori, S. Mukai, Classification of Fano threefolds with B2 ⩾ 2, Manuscr. Math. 36 (1981), 147–162; Erratum, Manuscr.

Math. 110 (2003), 407.
[24] B. Poonen, Rational points on varieties, Graduate Studies in Mathematics 186, American Mathematical Society, 2017.
[25] Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebr. Geom. 21 (2012), 563–600.
[26] Z. Reichstein, B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, with an

appendix by J. Kollár and E. Szabo, Canad. J. Math. 52 (2000), no. 5, 1018–1056.
[27] M. Reid, The complete intersection of two or more quadrics, Ph.D. Thesis, Trinity College, Cambridge, 1972.
[28] M. Reid, Chapters on algebraic surfaces, IAS/Park City Math. Ser. 3 (1997), 3–159.
[29] T. Springer, Sur les formes quadratiques d’indice zero, C. R. Acad. Sci. Paris 234 (1952), 1517–1519.
[30] K. Takeuchi, Some birational maps of Fano 3-folds, Compos. Math. 71 (1989), 265–283.
[31] Yu. Tschinkel, Z. Zhang, Stable equivariant birationalities of cubic and degree 14 Fano threefolds, preprint,

arXiv:2409.08392, 2024.

Hamid Abban
University of Nottingham, Nottingham, England
hamid.abban@nottingham.ac.uk

Ivan Cheltsov
University of Edinburgh, Edinburgh, Scotland
i.cheltsov@ed.ac.uk

Takashi Kishimoto
Saitama University, Saitama, Japan
kisimoto.takasi@gmail.com

Frédéric Mangolte
Aix Marseille University, CNRS, I2M, Marseille, France
frederic.mangolte@univ-amu.fr

16


