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CONJUGACY CLASSES OF LINEAR ACTIONS
IN THE PLANE CREMONA GROUP

IVAN CHELTSOV, YURI TSCHINKEL, AND ZHIJIA ZHANG

ABSTRACT. We classify regular generically free actions of finite
groups on the projective plane, up to conjugation in the Cremona

group.

1. INTRODUCTION

One of the most intensely studied objects in algebraic geometry is
the plane Cremona group
Cry = Bir(P?),
the group of birational automorphisms of the plane. Recall that, over
an algebraically closed field of characteristic zero,
Cry := (PGL3, ),

where
L P2 --> P2,
(2.9.2) — (L3.1)

is the standard Cremona involution. Conjugacy classes of finite sub-
groups of PGL3 have been described in [BIil8]: there are three types,
recalled in Section [3

e intransitive,

e transitive but imprimitive,

e primitive.

(1.1)

There exist isomorphic non-conjugated finite subgroups of PGL3 which
are conjugated in Cra, see Sections [3and [ However, finite subgroups
of different types are not conjugated in Crs.

A century later, in the seminal paper by Dolgachev and Iskovskikh
DIO9|, came the classification of finite subgroups of Cry, i.e., finite
groups that can act regularly and generically freely on rational surfaces.
However, the classification of subgroups as well as of actions, up to
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conjugation in Crsy, remained an open problem. For finite subgroups of
PGL;, this was explicitly asked in [DI09 Section 9]:

Find the conjugacy classes in Cry of actions of finite
subgroups of PGLs. For example, there are two actions of
the subgroup of PGL3 isomorphic to 25 and four actions
of Ug which differ by outer automorphisms of the groups.
Are they conjugated in Cry?

Since then, it was shown in [Chel4] that the two 2s-actions are con-
jugated in Cry, while the four 2fg-actions are not. A similar problem
for the remaining primitive actions follows from [Sak19], see Section
for an explicit solution. Furthermore, conjugacy classes of actions of
intransitive abelian subgroups of PGL3 have been described in [RY02];
in particular, actions of finite cyclic subgroups are always conjugated
in Crs.

In this paper, we completely settle the Dolgachev—Iskovskikh prob-
lem for the remaining finite subgroups of PGL3;. Our main new tool
to distinguish the actions up to conjugation in Cr, is the formalism of
Burnside invariants, introduced in [KT22a] and recalled in Section [2|
These fail to distinguish primitive actions [TYZ24] Proposition 7.1
and Example 7.2|, and are inconclusive for some imprimitive actions
ITYZ24], but those are accessible via the equivariant Sarkisov program.
However, the new invariants are decisive in the case of intransitive ac-
tions. One of the main results of this paper, proved in Section [0} is:

Theorem 1.1. Nonabelian intransitive actions ¢1, @2 : G — PGL3 are
conjugated in Crq if and only if

P2 © ¢,(G)] = [P* © ¢(G)] € Burny*(G).

We also obtain an explicit geometric description of this condition,
see Theorem [6.1]
Our second main result, proved in Section [}, is:

Theorem 1.2. Distinct imprimitive actions ¢1, ¢ : G — PGL3 are
conjugated in Cry if and only if they are conjugated by the standard
Cremona involution.

Together with existing results concerning primitive actions, this set-
tles the Dolgachev—Iskovskikh problem, quoted above [DI09) Section 9.
The proof proceeds via classification of groups and actions, followed by
a detailed analysis of equivariant Sarkisov links. As a byproduct, we
compute the normalizer of GG in the Cremona group in many cases, and
answer a question posed by L. Katzarkov:
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Theorem 1.3. Let G C PGL3 be a finite subgroup. Then the normal-
wzer of G in Cry is finite if and only if G is transitive and not isomorphic
to any of the following groups:

Q[4, 032, 03 X 63, 07 X 03, Cg X 04.

Recall that Cry is generated by involutions, over any perfect field
ILS24]. Thus, it is reasonable to expect that the normalizer in Cry of
any finite subgroup G' C Crj, is also generated by involutions. However,
this is not always the case: if G C PGLj3 is isomorphic to the Hessian
group, then G is unique in Cra, up to conjugation [DI09], coincides with
its normalizer in Cry by [Sakl19|, but is not generated by reflections.
One can check that normalizers of other transitive subgroups in PGLj
are generated by reflection.

Keeping in mind results in [CLAC13|, [Lon16l [Zim18], one could ask:
When is the normalizer in Cry of a finite subgroup G C Cry simple?
Such G would have to be simple and coincide with their normalizer. By
[Cheld], there are exactly two such nonabelian finite subgroups in Cr
(up to conjugation), both contained in PGL3, namely, 25 and PSLy(F7).
Using the classification of elements of prime order in Crs, completed
in [BB0O, IdE04, BB04|, Bla07|, one can also show that a prime order
cyclic subgroup G C Cry coincides with its normalizer if and only if G
is generated by a Geiser or Bertini involution, and the fixed curve of the
involution does not admit nontrivial automorphisms. Such subgroups
are conjugated in Cr if and only if the fixed curves of their generating
involutions are isomorphic.
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2. BASIC NOTIONS IN EQUIVARIANT GEOMETRY

Automorphisms and birational automorphisms. Throughout, k
is an algebraically closed field of characteristic zero. Let X be a smooth
projective irreducible variety over k and

Aut(X) C Bir(X),
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the group of regular, respectively, birational, automorphisms of X. Let
G be a finite group admitting an embedding

¢ G — Aut(X),

we refer to this as a choice of a G-action on X, and call X a G-variety.

For G C Aut(X), let
Aut?(X) C Bir%(X),

be the normalizers of GG in the respective groups. This group-theoretic
definition has the following geometric interpretation: AutG(X ) is the
group of all G-biregular self-maps of X, i.e., all all ¢ € Aut(X) such
that there exists a ) € Aut(G) and a commutative diagram

X —2 =X
gl lw(g)
X —2 =X
for all g € G. Similarly, Bir®(X) is the group of all G-birational self-

maps, defined by the same diagram, with ¢ € Bir(X). There are
natural homomorphisms

(2.1) Aut?(X)¢ Bir%(X)

T A

Aut(G)

and we denote the kernels, i.e., centralizers of the respective groups, by
ZAut®(X) C ZBir%(X).
A birational map X --+ Y between G-varieties is called

e (G-equivariant, if it commutes with the action of G,
e (F-birational, if it commutes with the action of GG, up to a fixed
automorphism ¢ € Aut(G).

Conjugacy of groups. Given a G-variety X and embeddings
gbl, ¢2 G — AU_t(X)

one has the following general

Problem A: When are ¢;(G) and ¢(G) conjugated in Aut(X)?
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Problem B: When are ¢1(G) and ¢5(G) conjugated in Bir(X)?

In the first case, this means that there is a G-biregular self-map
¢ : X — X conjugating ¢1(G) and ¢o(G). In the second case, ¢ is
G-birational.

Conjugacy of actions. Consider actions ¢, ¢s : G — Aut(X) on a
G-variety X as above. They are conjugated in Aut(X) if there exists
a ¢ € Aut(X) such that

Po=popiop .

In this case, we don’t distinguish these two actions! In the following,
when we refer to action, we always mean up to conjugation in Aut(X).

Clearly, if ¢; and ¢y give the same action on X, then the groups
»1(G) and ¢o(G) are conjugated in Aut(X). However, the converse
does not always hold.

Problem AA: Assuming that the groups ¢;(G) and ¢5(G) are conju-
gated in Aut(X), when are the actions ¢, ¢ the same?

We can consider a similar problem in Bir(X'): we say that the actions
¢1 and ¢9 are conjugated in Bir(X) if there exists a ¢ € Bir(X) such
that

P2 =poprop .

As before, if ¢1 and ¢ are conjugated in Bir(X), then the groups ¢, (G)
and ¢9(G) are conjugated in Bir(X).

Problem BA: Assuming that the groups ¢;(G) and ¢2(G) are conju-
gated in Bir(X), when are the actions ¢1, ¢o conjugated in Bir(X)?

To solve these problems, we can precompose one of the actions with
a suitable G-biregular self-map ¢ € Aut(X), respectively, with a G-
birational map ¢ € Bir(X), to obtain

$1(G) = 2(G),

as subgroups of Aut(X). Then ¢y = ¢ 09, for some ¢ € Aut(G), and
the actions are conjugated in Aut(X) if and only if 4 lies in the image
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of the homomorphism « from diagram (2.1)). We have a diagram
$1(G) = $2(G)— Aut?(X)— Bir%(X)

| A

Inn(G)—— Aut(G) — Out(G),

where Inn(G) and Out(G) are inner and outer automorphisms of G.
Clearly, if ¢ € Inn(G), the actions are conjugated in Aut(G). There-
fore, Problem AA reduces to

Problem IA: Determine the image of

a: Aut®(X) — Out(G).

Similarly, Problem BA reduces to

Problem IB: Determine the image of

3 : Bir®(X) — Out(G).

Using this terminology, we can compute the number of G-actions
with a fixed image in Aut(X) as

Out(G)|

limage(a)|
Similarly, the number of actions with fixed image in Aut(X), up to
conjugation in Bir(X), is given by

Out(G)]

limage ()|
Problem IA is purely group-theoretical, and its solution can be au-

tomated with computer algebra packages such as Magma. On the other
hand, Problem IB is of birational nature. If we knew the generators
of Bir%(X) then we could compute the image of 5. In practice, this
is rarely feasible. However, in some situations, the solution is easy, for
example, when

e Out(G) is trivial, e.g., G = &,,, with n # 6,

e Aut(X) = Bir(X), so that Problems IA and IB coincide, e.g.,

if X is a curve or if the canonical class Ky is ample,
o Aut®(X) = Bir%(X),
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e one can identify sufficiently many elements in BirG(X ) to prove
the surjectivity of f.

Example 2.1. There is a unique 2(5 C PGL3 ~ Aut(P?), up to conju-
gation. We have Out(2s5) ~ C5 and

Aut? (P?) ~ ;.

As there are no nontrivial homomorphisms 25 — C5, we conclude that
there are two s-actions on P2. However,

Bir®s (P?) ~ &;,

and the homomorphism 3 is surjective [Chel4]. It follows that both
2s-actions on P? are conjugated in Cry; a realization of this conjugation
is in [CS16, Lemma 6.3.3], see also Example [2.6]

Additional examples with surjective 5 will be given in Section .

Equivariant Sarkisov program for rational surfaces. Let X be
a smooth rational G-surface. The equivariant Minimal Model Program
implies that X is G-birational to a G-surface S such that

e S is a smooth del Pezzo surface with rkPic(S)¢ =1, or
e S admits a G-equivariant conic bundle

7:8 =Pt
with rkPic(9)¢ = 2.

Such G-birational models are called G-Mori fiber spaces (in dimen-
sion 2). Any G-birational map between such G-Mori fiber spaces can
be factorized into a sequence of elementary G-birational maps, called
G-Sarkisov links. We recall their classification, following the classifi-
cation of Sarkisov links between 2-dimensional Mori fiber spaces over
nonclosed ground fields in [Isk96]. There are three basic types:

e DP-DP (del Pezzo to del Pezzo):

S<7 5§ 7. g

where -
— 0 is a blowup of a G-orbit 3 such that |X| < K2 and S is
a del Pezzo surface,
— §"is a (smooth) del Pezzo G-surface with rkPic(S")¢ = 1,
— ¢’ is a blowup of a G-orbit ¥’ such that |¥'| < K32;
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e DP-CB (del Pezzo to conic bundle / and its inverse):

S<2 g T, pt

where 3
— o is a blowup of a G-orbit 3 such that [¥| < K% and S is
a del Pezzo surface,
— 7 is a G-equivariant conic bundle;
e CB-CB (conic bundle to conic bundle):

P! ———P!
where

— 7' is a G-equivariant conic bundle, with K3, = K3,

— o0 is a blowup of a G-orbit ¥ such that no points of ¥ are
contained in the singular fibers of m and every smooth fiber
of m contains at most one point of X,

— o’ is the blowdown of the strict transforms of the fibers of
7 that contain points of X.

Example 2.2. We list G-Sarkisov links that start from S = P?%:
e DP-DP with r := |X| € {2,3,5,6,7,8}

—r =258 =P!'xP! and ¢ blows down the strict transform
of the line passing through 3,

— r=3: 8 =P? and ¢’ blows down the strict transforms of
lines passing through pairs of points in 3,

—r =5: 5" is a del Pezzo surface of degree 5 and ¢’ blows
down the strict transform of the conic through 3,

—7r = 6: S = P? and ¢’ blows down strict transforms of
conics passing through 5 points of ¥,

—r ="7: 5 is a del Pezzo surface of degree 2 and ¢/ = oo T,
where 7 is the involution of the anticanonical double cover
S — P2,

— r=8: Sis a del Pezzo surface of degree 1 and o/ = o o7,
where 7 is the involution of the double cover S — P(1, 1,2)
given by the linear system | — 2Kg].

e DP-CB with r = |X| € {1,4}

— r=1: S is the Hirzebruch surface F; and 7 a P!-bundle,

— r =4: S is a del Pezzo surface of degree 5 and 7 a conic
bundle with 3 singular fibers.
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Remark 2.3. Let S be a smooth del Pezzo G-surface of degree > 2
such that tkPic(S)¢ = 1. Suppose that there exists a G-Sarkisov link

§<2 529
such that o is a blowup of a G-orbit ¥ with

where S’ is a (smooth) del Pezzo G-surface with rkPic(S)¢ = 1, and o
is a blowup of a G-orbit . Then S is a smooth del Pezzo surface of
degree 1 or 2, and Aut(S) contains an involution 7 that centralizes the
action of the group G. The involution 7 is known as Bertini involution
(when K2 = 1) or Geiser involution (when KZ = 2). This implies that
S and S” are G-birational, in particular, we have |¥'| = |X|. Hence, we
may assume that o’ o § =~ for

72007’0071.

Note that v € Bir%(S), and its image 5(7) € Aut(G) is trivial, because
v centralizes G. In the following, we will say that v is a Bertini or
Geiser (birational) involution of the surface S, respectively.

A more detailed description of two-dimensional G-Sarkisov links is
in [DI0Y, Section 7|. For instance, if S — P! is a G-conic bundle with
rkPic(S)¢ = 2, then 7 # (—Kg)? < 8 and the following assertions hold:

e if (—Kg)? <1, then S is not G-birational to a del Pezzo surface,
see [DI09, Section 8|,

e if (—Kg)?=3,5,06, then S is a del Pezzo surface,

o if (—Kg)? =38, then S is G-birational to a del Pezzo surface.

If (—Kg)? = 4, there are examples such that S is a del Pezzo surface,
and there are examples such that S is not G-birational to a smooth del
Pezzo surface, see [DI09, Section §8|. It was an open question, posed in
[DI09, Section 9] whether or not S is G-birational to a smooth del Pezzo
surface when (—K5)? = 2. Even though this is not directly related to
the main topic of this paper, we include an example that answers this
question:

Example 2.4. Let S C P(1,,1,,3.,3,) be given by
2w = 2% +¢°,

let n: S — S be the minimal resolution of singularities, and let G be

the subgroup in Aut(S) generated by

Oow: (2,0) = (w,2), 04yt (z,9) — (2,Y),
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912 : (I’,y,Z,w) = <<12x7C1_21y7 —Z,/IU).
Then (—Kg)? = 2, tkPic(9)¢ = 2, G ~ (Cy)%. D4, and we have the
following G-equivariant commutative diagram:

S
/ \
a 3
S------ P,

where 7 is a conic bundle, and ¢ is given by (x,y,2,t) — (z,y). By
the classification of GG-Sarkisov links, S is not GG-birational to a smooth
del Pezzo surface unless there exists the G-equivariant commutative
diagram:

S————- el
p! P!

where S’ is a del Pezzo surface of degree 2 with rkPic(S")¢ = 2, and
7' is a G-conic bundle. Using the classification of actions on del Pezzo
surfaces of degree 2 in [DI09], we exclude the latter possibility, so that
S is not G-birational to a smooth del Pezzo surface.

Now, we suppose that S is a del Pezzo surface with rkPic(S)¢ = 1.
Such S is called:

e (G-birationally super-rigid if there are no GG-Sarkisov links start-
ing from S,
e G-birationally rigid if every G-Sarkisov link that starts from S
ends at a del Pezzo surface which is G-biregular to .S,
e (-solid if S is not G-birational to a G-conic bundle.
If S is G-birationally super-rigid then Aut®(S) = Bir%(S), and the
number of G-actions on S with fixed image in Aut(S) is the same,
whether we consider it up to conjugation in Aut(S) or in Bir(95).

Example 2.5. Let S = P? and G = s. Then S does not have G-
orbits ¥ of length |X| < K% = 9. By Example 2.2 S is G-birationally
super-rigid.

Example 2.6. Let S = P? and G = ;. Then S contains a unique
G-orbit X of length |3 < K2 = 9, this orbit has length 6 and the
points of ¥ are in general linear position and are not contained in a
conic. By Example S" = P2, and is G-biregular to S, thus S is
G-birationally rigid.
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Burnside formalism. This formalism, introduced in [KT22a] and ap-
plied in, e.g., [HKT21], [KT22b|, [TYZ24], allows to distinguish bira-
tional types of actions of finite groups in many new situations. It takes
into account information from the stabilizer stratification on a standard
birational model for the action. This is a model X such that

e there is a Zariski open U C X on which the G-action is free,

e the complement X \ U is a normal crossings divisor such that
for each irreducible component D, in X \ U = Uye 4D, and all
g € G, we have that

g(D,) =D, or g(D,)ND,=0.

On such a model, generic stabilizers of all subvarieties are abelian.

We describe the simplest version of the general theory in the case
of surfaces: given a standard model as above, a G-orbit of irreducible
components of X \ U, and a choice of a representative D, of this orbit,
we have a symbol

(Hoy Zo C k(Day), (ba)),
where

e H, is the (cyclic) generic stabilizer of D,,,

e 7, C7Z¢(H,)/H,, a subgroup of the centralizer modulo stabi-
lizer, acting generically freely on D, and

e b, € H) is the weight of H, in the normal bundle of D,.

Such symbols are considered up to G-conjugation.
A symbol is called incompressible if D, is a curve of genus > 1, or if
Z, is not cyclic. The class

(X ©G) = Y (Ha,Zo C k(Do) (ba))
acA/G
in the free abelian group
Burny*(G),
spanned by incompressible symbols (up to conjugation), is an equivari-
ant birational invariant of the G-action.

In our application to Theorem [6.1] we have D, = P!, and Z, is one
of the

®n7 m47 647 QLS'

The following example from [KT22bl Section 10| and [T'YZ24], Section
7] illustrates this.
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Example 2.7. For t > 2 and odd n > 5, consider G = C; x ®,,. Let x
be a primitive character of C; and v a primitive character of C,, C ©,,.
Let Vi, be the 2-dimensional faithful representation of ®,, induced from
Y, and V) 4 = x ® V. Then G acts generically freely on

P2=P(V)=P1®V,y).

The class
[P(V) © G] € Burny“(G)
equals
(C. D5 C E(P), (1) + (Cr, Dn C k(PY), (=X))-

In particular, if x # X’ or b # 4%/, the corresponding actions on
P(V) and P(V’) are not birational.

3. CLASSIFICATION OF FINITE SUBGROUPS IN PGLj

Finite subgroups G C PGLj3 have been classified by Blichfeldt [Bli18].
These arise via projectivizations P(V') of faithful 3-dimensional rep-
resentations V' of central extensions G of G. We recall the relevant
terminology: a G-action on P? = P(V) is called:

(I) intransitive: if G fixes a point in P?;

(T) transitive but imprimitive: if G does not fix a point in P? but
there exists a G-orbit of length 3;

(P) primitive: neither of the above.

The following groups give rise to primitive actions:
Ql5, 2[67 PSL2<F7), ASLQ(F:},), PSU3(F2), C§ X 04.

Each of these is unique in PGL3, up to conjugation. Explicit generators
are given in [YY93|. The group ASLy(F3) is known as the Hessian
group — after a suitable coordinate change, it leaves invariant the Hesse
pencil:
P+ 2+ deyz =0, \ePl,
in ]P)i,y,z' The action on the curves of this pencil gives an exact sequence
of groups
1 — C3 x Cy — ASLy(F3) — A, — 1,

where C% x Cy C PGLj is the subgroup that leaves invariant a general
curve in the pencil, and C3 C C% x Cy acts on a general elliptic curve
in the pencil via translations by 3-torsions. This subgroup is transitive
but not primitive, and ASLy(FF3) can also be defined as its normalizer
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in PGL3. Up to conjugation, the three primitive subgroups C3 x Cy,
PSU3(F3), ASLy(F3) are nested as follows:

Cg x Cy C PSUg(Fg) - ASLQ(]Fg)

We describe groups giving rise to actions of type (T). In this case, G
has an orbit of length 3, consisting of points in linear general position.
Changing coordinates, we may assume that these points are

[1:0,0], [0:1:0], [0:0:1].
The G-action on these points gives rise to the exact sequence
15T — G &3,

which turns out to be split. The kernel of v consists of diagonal auto-
morphisms. The image is either C3 or Ss.

Proposition 3.1 (|JDI09, Theorem 4.7]). Let G C PGL3 ~ Aut(P?)
be a finite subgroup giving rise to an action of type (T). Then, up to
congugation in PGLs, one of the following holds:
o G~ (C? x (5 is generated by
dlag(Cn, 1, 1), 01923.
o G~ (C? x &3 is generated by
dlag(@w 17 1)7 0123, 012,
o G~ (C, x Cyyp) x Cs is generated by
dlag((:n 17 1)7 dlag((ﬁu Cnv 1)7 0123,
wherer > 1, r|n, and s* —s+1=0 (mod r),

o G~ (C), x Cyy3) x Gy is generated by
dlag( 27 17 1)7 dlag(gfu <n7 1)7 0123, 012,

with 3 | n,
where
0123 - (l’,y72) — (y,z,x), O12 - (l’,y,Z) — (y,ZE,Z)7
on IP’iy’z. FEach of these subgroups is unique up to conjugation in PGLs.

Proof. The classification is achieved in [DI09]. To show the uniqueness
of each subgroup in PGL3, it suffices to show that the two choices of s
give rise to the same subgroup in the third case G ~ (C,, x C,, /) x Cs.
Let G'1, G5 be groups corresponding to different choices of roots s1, ss,
for fixed n,r, in the third case. Since s; + s =1 (mod r), we have

012 ° dlag( 21’ Cna 1) 012 = diag(Cle? 17 Cn)
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Up to multiplying by powers of diag(¢”,1,1), we have

diag(¢;?, Cn,s 1) € 012G10712.
It follows that
o12- G- 012 = Go.
O

We turn to actions of type (I), following [DI0O9, Section 4.2]. The
existence of a fixed point implies that we have an embedding G < GLo,
inducing an action on P!, via the projection GLy — PGLy; we denote
by G the image of G, and by C,, its kernel, a cyclic subgroup of order
m. We write

Xr - ($17$27w3) = (x17CT$27CTm3)a

for a primitive root of unity (. of order » > 1. We have:

Proposition 3.2 ([NvdPT08]). Let G C PGLy ~ Aut(P?) be a finite
subgroup giving rise to an action of type (1). Then, up to conjugation
in PGLs, one of the following holds:

o G ~C,. G is generated by
Xra(xhgzxmcznx?))a r,m € ZZO'

e G~9,:
—n odd. G is generated by

Xrs (21, G, G M s), (w1, Comrs, Coms),  7,m € Lo,
—n even. G is generated by
Xrs (21, Cona, G 3), (21, Cas, Caa), T € L.
—n even. G is generated by
Xr» (21, Gomt1Cona, Cam+1 Gy T3), (21, Qus, Gua), 7 € Lsg,m € Ly
—n even, n # 2. G is generated by

Xrs (21, Cono, Cz}lﬂfz), (21, om+1 a3, Gomi1(ue), T E Lisg,m € L.

° G ~ 2(4.
— (G 1is generated by

Xr» (21, G2, Gats — 3), (21,3, —22), 7 € Lo,
— or GG is generated by

Xr» (21, Cam1 (30, Camr1 (G323 — T9)), (71, T3, —T2), T,m € Lg.
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o G ~ &, G is generated by
Xr (21, Com41Ga(—229 + 8123), Com+1C4(5222 + 223)),

(1, —S2x9 — 3, 519 + (51 + 1)x3),

where
51:C3+C8_17 82:<§’+<8+1, T,mGZEO.
o G ~Us. G is generated by

Xy (21, (G2 4 () wa — (G5 + Vs, Gaa + (G + G)as), (w1, Gas, —(Pas),
forr € Z>y.

Moreover, different subgroups in the list are not conjugated in PGLs.
From this description, we obtain:

Corollary 3.3. If a group G gives rise to actions of different classes
among (1), (T), and (P), then G ~ C2, the actions are of type (I)
and (T), and there are two subgroups in PGLs isomorphic to G, up to
congugation, generated by

<d1ag(17<37 1)7d1ag(1717<3>> Of Typ@ (1)7
<diag(1,§’3,<’§),(x3,x1,x2)> Of Typ@ (T)
Proof. We start by describing the center Z(G) if G is in class
(I): if G is nonabelian, the quotient G/Z(G) is a noncyclic subgroup
of PGLy, and Z(G) D Cy unless G = C,. x ©,,, with n,r odd.
(T): the center Z(G) = 1,C3, or C3.
(P): the center Z(G) = 1, unless G = C% x Cy, where Z(G) = Cy
and G/Z(G) = 03 X 63.
We conclude that no group giving rise to actions in type (P) also
gives rise to an action of type (I) or (T). Assume that G gives rise
to actions of both types (I) and (T). If G is nonabelian, we know
that G = (3 x ®,, with n odd. But no group giving rise to actions of
type (T) is isomorphic to this group. It follows that G is abelian and
G = Z(G). So |G| is a power of 3. It is not hard to see that the only
possibility is G = C% and it has two conjugacy classes in PGL3, as is
explained above. 0

Remark 3.4. Finite isomorphic subgroups of PGL, ~ Aut(P!) are
conjugated, see, e.g., [Beal(, Proposition 4.1|. Corollary shows
that this does not hold for PGLj.
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We proceed to give a description of conjugacy classes of finite sub-
groups in PGLj.

Corollary 3.5. Let G1 and G5 be isomorphic finite nonabelian sub-
groups of PGLs. Then Gy and Gy are conjugated in PGL3 unless

Gl = <d1ag(Cn7 17 ]‘)’ (xlv C§$27 C3ZE3 - 1'2), (xla xs, —[[‘2)>,
Gy = (diag(¢n, 1, 1), (21, 22, (33 — (32), (21, 23, —12)),
forn > 1. In this case, G1 and G are not conjugated in PGL3, and

C, X2y when n is even,

G ~Gy~
! 2 {CQHNQL; when n 1s odd.

Proof. By Corollary we know that nonabelian groups giving rise
to actions of different types among (I), (T), and (P) are not isomor-
phic. Each subgroup in type (T) and (P) is unique in PGLj, up to
conjugation. It follows that GGy and G, give rise to actions of type
(I). Using Proposition [3.2] we check that the only possibility is when
G = G/Z(G) ~ Ay, with the generators given above.

To show (G; and G4 are not conjugated in PGL3, we note that when
n = 1, the generic stabilizer of the line {zy = (2¢3 + 1)x3} C P?

T1,22,T3
is trivial under the action induced by G, but is C5 under that induced
by GQ. ]

4. PRIMITIVE ACTIONS

Equivariant birational geometry of primitive actions was essentially
settled, via equivariant MMP, in [Sak19|; the classification of conjugacy
of actions was not addressed. We proceed to fill this gap:

e super-rigid, in particular, the actions are not conjugated in Crs:
— Ag: four actions on P? [Chel4, Theorem B.9],
— PSLy(F7): two actions on P? [Chel4] Theorem B.§|,
— PSU,(FF3): two actions on P? [Sak19, Proposition 3.16],
— ASL,(F3): two actions on P? [Sak19, Proposition 3.16],
e rigid:
— 2s: two actions on P2, conjugated in Cry and Bir®(P?) ~
S5 [Cheld, Lemma B.13],
— a subgroup G = C3 x Cy of the Hessian group: two actions
on P2, conjugated in Crs.
We explain the last entry: there are eight faithful 3-dimensional
representations of the central extension C'3.G, but only two, up to mul-
tiplication with characters, thus there are two G-actions on P?. The
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outer automorphism group Out(G) is C. In the automorphism group
Aut(G), there are three conjugacy classes of subgroups of order 72,
isomorphic to

So, G3016,, PSU3(F,).
Recall that we have inclusions G C PSU3(FF,) C PGL3. In particular,

Aut®(P?) = PSU5(F,).

Then the conjugation action of PSU3(FF2) on G induces a map

PSU5(F,) & €y ¢ Out(G).

The conjugation in Cry can be seen as follows: according to [Sak19,
Proposition 3.16|, there are exactly two orbits of size 6 on P2, for each
of the actions. Blowing up any of these orbits, we obtain a cubic surface
S, which must be the Fermat cubic surface [DI09, Table 4|, yielding an
embedding

G — Aut(S) = C3 x &,.
There is a unique subgroup G; C Aut(S) of order 72. We know that
G1 ~ 6316, and G C G;. Choosing an element in G; \ G, we obtain
at element 7, € Bir®(P?) such that (r;,G) ~ G,. Similarly, blowing
up another orbit of length 6, we obtain at element 7, € Bir®(P?) such
that (72, G) ~ G1. Then
BiI‘GGP)Q) = <T1,T2, PSU3(F2)>7

and (7,79, ) is an amalgamated product of two copies of G with
common subgroup G. In particular, Bir®(P?) is infinite.
The conjugation action of G; on G induces a map

63 { 62 i) Cg C Ollt(G),

and the images of f and g generate Out(G), since S31S, and PSU3(F,)
are distinct index-2 subgroups of Aut(G). It follows that the two linear
actions of GG are conjugated in Cry.

5. TRANSITIVE NON-PRIMITIVE ACTIONS

In this section, we assume that G C PGLj3 is one of the subgroups
listed in Proposition [3.1] Observe that the points

(5.1) [1:0:0], [0:1:0], [0:0:1]
form a G-orbit of length 3, and that
L € Bir%(P?),

where ¢ is the standard Cremona involution (|1.1)).
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If G ~ 2y, then Aut®(P?) ~ &4 and
B(Aut®(P?)) = Out(G) ~ Cs.
Similarly, if G ~ &, then Aut®(P?) = G and Out(G) is trivial. Hence,
in these two cases, there is a unique G-action on P2
Lemma 5.1 (Pinardin). Suppose that G ~ &4. Then
Bir®(P?) = (G, 1) ~ &4 x Cs.
Proof. Observe that the points
(5.2) [l1:1:1], [-1:1:1], [1:—=1:1], [L1:1:-1],

form a G-orbit of length 4. Then and are the only G-orbits
in P? of length < 9 that are in general position. Thus, every G-Sarkisov
link that starts at P2 must blow up one of these two orbits.

Let o: S — P? be the blow up of the G-orbit . Then S is a del

Pezzo surface of degree 4, and we have the following G-Sarkisov link:

S
Pz/ \Pl

where 7 is a conic bundle. The kernel of the G-action on P! is iso-
morphic to C%, which implies that there are no G-Sarkisov links that
start at S except for the inverse of the constructed G-Sarkisov link,
which brings us back to P2. The required assertion follows from the
classification of equivariant Sarkisov links starting at P2 O

Lemma 5.2. Suppose that G ~ ;. For A € k\ {0,1} with \° # —
let 9y be the birational selfmap of P? given by

Uy 1 (21, 22, 23) = (f1, f2, f3),

where
4 AP+ 5, 8 2 6 4
fi=ajrs — e 127 + Najxs — 2207 ias — 2002503 + Mad,
A2 +1
fo = Naizy — 2X52%223 + Mo — /\—jxfxﬂg — 2\*w5a5 + x93,
AZ 41
fs= — X223 05 + oy — 2\%28 % — r12575 + A1y 2.

\2
Then 9y is an involution in Bir®(P?), so, in particular, Bir®(P?) is
infinite. Moreover, birational involutions 9y, the standard Cremona
involution v, and Aut®(P?) ~ &, generate the group Bir®(P?).
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Proof. Observe that P? contains one G-orbit of length 3, three G-orbits
of length 4, and infinitely many G-orbits of length 6 such that each of
them is a G-orbit of [0 : 1 : A], for A € k*. Let oy: Sy — P? be the
blow up of the G-orbit of the point [0 : 1 : A]. Then S, is a smooth
cubic surface if and only if A # 0,1 and A\° # —1. In this case, we have
the following G-commutative diagram:

S—2 oS,
P2- - — - - > P2
I

where 6, is a biregular involution in Aut(S)). Note also that

<G, Q9,\> ~ 64.
Now, arguing as in the proof of Lemma , we see that Bir®(P?) is
generated by Aut®(P?), the involution ¢, and involutions 1. O

Recall from [Sak19, Theorem 1.3| that P? is G-birationally rigid if
and only G # 204, &,4. Moreover, if

G ;ﬁ 9147 647 Cgu C3 X 637 C? X 037

then it follows from [Sak19, Lemma 3.14] that (5.1)) is the only G-orbit
in P? of length 3. From the proof of [Sak19, Theorem 1.3], we know
that Bir®(P?) is finite, and that

(5.3) Bir®(P?) = (Aut®(P?), ).

If G~ C3x G5 or G~ C2, then it follows from [Sak19, Lemma 3.14]
that P? has 4 orbits of length 3 (the group C3 x &3 is erroneously
omitted in [Sakl9, Lemma 3.14|). In these two cases, we have

Aut(P?) ~ ASL,(Fs),

and all G-orbits of length 3 form one orbit of Aut®(PP?). It follows from
[Sak19l Theorem 1.3] that (5.3) also holds.

Lemma 5.3. Suppose G ~ C? or C3 x &3. Then Bir®(P?) is infinite.

Proof. Set G = Bir%(P?). If G is finite, its birational action on P? is
regularized on a smooth projective rational surface S such that

e S is a smooth del Pezzo surface with rkPic(S)¢ = 1, or
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e S admits a @—equivariant conic bundle
7:8 — P

with rk Pic(S)¢ = 2.
The latter case is impossible, since P? is G-solid [Sak19|, so that S
is a smooth del Pezzo surface. Using the classification of finite sub-
groups of automorphism groups of smooth del Pezzo surfaces [DI09],
we conclude that S ~ P2, Since Aut®(P?) ~ ASLy(F3), it follows from
Corollary that G is a primitive subgroup in Aut(S) ~ PGL3, which
is a contradiction since ASLy(F3) is a maximal subgroup in PGL;. [

If G ~ C; x Cs3, then Aut®(P?) = G, and (5.1) is the only G-orbit
in P? of length 3. In this case, it follows from the proof of [Sakl19,
Theorem 1.3| that

BirG(PQ) = <G7 Ly T1, T2, 7—3>a

where 71, 79, 73 are Geiser involutions, implicitly described in the proof
of [Sak19, Lemma 3.14]. One can show that the group (¢, 7, 79, 73) is
infinite, which gives:

Corollary 5.4. If G ~ C; x Cs, then Bir®(P?) is infinite.

If G~ 2y or G~ &y, then B(¢) is the identity, so that conjugation
by ¢ does not change the G-action, which is not very surprising, since

2, and &, admit one faithful action on P2. In all other cases, it follows
from Remark 2.3 that

B(Bir”(P?)) = (B(Aut®(P*)), (1)),

where ¢ is the standard Cremona involution. We proceed to show how
to compute [(Bir®(IP?)) in several representative examples.

Example 5.5. Suppose that G ~ C%. Then Out(G) ~ GLy(F3), the
group Aut®(P?) is the Hessian subgroup ASL,(F3) € PGL3 and

B(AutY(P?)) ~ SLy(Fs),

and we have two non-isomorphic G-actions on P2, These actions are
conjugated in Cry, because 3(1) € B(Aut®(P?)). Thus,

B(Bir®(P?)) = Out(G),

and there is a unique imprimitive G-action up to conjugation in Cr,.
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Example 5.6. Suppose that G ~ C3x&;. Then Aut®(P?) ~ ASL,(Fs),
Out(G) ~ &4, and )
B(Aut? (P?)) ~ 2Ay.

Therefore, there are two non-isomorphic G-actions on P?2. They are
conjugated in Cry, because 3(1) € B(Aut®(P?)). Then

B(Bir¢(P?)) = Out(G).
Example 5.7. Suppose that G ~ C; x C5. Then Out(G) ~ C5 and

Aut®(P?) = G.

Hence, there are two non-isomorphic G-actions on P?, conjugated in
Cry by ¢, and -

B(Bir%(P?)) = Out(G),

since B(¢) is not an inner automorphism of G.

Example 5.8. In the notation of Proposition [3.1] suppose further that
v(G) = 63 and G ~ C? x G3 with n > 3. Then
Aut?(P?) = G,
and Out(G) ~ (Z/nZ)*, and we have |(Z/nZ)*| non-isomorphic G-
actions on P2, Then )
B(Bir%(P?)) ~ Cy,

since (¢) is not an inner automorphism.

In all these examples, the conjugation by ¢ changes the action of
the group G on P?. This is not a coincidence:

Lemma 5.9. Suppose that G % Ay, S4. Then (1) & f(Aut®(P?)).

Proof. Recall that G is one of the subgroups in Proposition [3.1] Let us
use notation introduced in this proposition. Keeping in mind examples
above, we may assume further that G %2 C%, C3 x &3. Then the G-orbit
is the only G-orbit of length 3 in P?, so that is also an orbit
of the group Aut®(P?).

Denote by T' C GG the subgroup consisting of transformations given
by diagonal matrices. Then G is generated by T, o123 and in some
cases by 012, where all possibilities for T are given by Proposition [3.1]
Conjugation by ¢ gives an automorphism ¢ € Aut(G) that acts trivially
on o193 and 012 (lf 019 € G), but

1

o) = 5.
for every t € T'. Hence, ¢ is not trivial, since G % 4, G4.
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Let G' = Aut®(P?), and let 7" C G’ be the subgroup containing all
transformations given by diagonal matrices. Note that o193 € G’, since
G C G'. Similarly, if 015 € G, then 15 € G’, so that

G = (T',0123,012).
If 0150 & G, then it follows from the proof of Proposition that
G = (T",0123),
unless v(G) = C5 and G ~ (C), x C,,/3) x C3 is generated by

dla’g( 7?;7 17 1)7 dlag(CEN Cna 1)7 0123,

where 3 | n. In this case, 012 € G, and G' = (T”, 0123, 012).

Now, we suppose that ¢ is given by a conjugation by some g € G'.
Then g = t'o for some o € (0123, 012). Note that ¢ is not an identity,
since conjugation by an element in T” acts trivially on T. If g = t/o793,
then

1 _ _
i B(t) = t'o193t(t'o193) " = 0193t (0123) 7,

for every ¢t € T, which is a contradiction, since oya3t(0193) "1 = ¢ if and
only if ¢ is an identity, and 7" is nontrivial. Similarly, if g = t'015, then

1
T o) =t'ot(t'orn) ! = ot(on) ™!,

for every t € T. This implies that every element in 7' is given by the
diagonal matrix

diag(a,a™", 1),

for some a € k*, which is only possible when G ~ C%. But this case
is treated in Example |5.5| and excluded, by assumption. Similarly, we
obtain a contradiction for other possibilities for o € (o123, 012). OJ

Summarizing, we obtain:

Theorem 5.10. Let ¢1,¢o : G — PGL3 be different imprimitive ac-
tions such that ¢1(G) = ¢2(G) is one of the subgroups in Proposi-
tion |3.1. Then ¢1 and ¢o are conjugated in Cry if and only if they
are conjugated by the standard Cremona involution v. Moreover, if
G # Ay, Sy, then conjugation by v changes the isomorphism class of
the G-action on P2.
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6. INTRANSITIVE

In this section, we prove Theorem [I.I] We assume that G C PGL; is
one of the subgroups listed in Proposition [3.2] Recall that the G-action
on P? = P(V) arises from a faithful linear representation of G, which
decomposes as V = 1 & V5. Let C; be the generic stabilizer of the
G-action on the line [ = P(V5) € P(V), and y the character of C; in
the normal bundle of I.

If t = 1, for two such G-actions P(V') and P(V"’) arising from

V=1aV, V =14V],
we have G-equivariant birationalities
P(V) ~P(1&1) xP(V2) ~ P(Vy) x P(V2) ~ P(1@1) x P(V) ~ P(V’),

by the no-name lemma. In fact, if G is nonabelian, we know that
G =29,, with odd n, when t = 1.
If t > 2, then the class of the action

(6.1) [P(V) © G] € Burny“(G)
equals
(6.2) (Ci, G S k(1), (X)) + (Ci, G 2 k(1) (=X)),

where G = G/C, acts generically freely on [ = P(V3). These symbols
are incompressible, provided G is nonabelian. The main result in this
section is

Theorem 6.1 (cf. Theorem . Intransitive G-actions with t > 2
and G nonabelian are birational <= the corresponding G-actions on
the invariant line | are isomorphic and the corresponding characters x
are equal, up to +1.

Proof of (<=). Assume that the G-action and y do not satisfy the as-
sumption. Then the incompressible symbols in the classes
of the two G-actions are different in Burny“(G). The Burnside formal-
ism implies that the two actions are not birational, see also [TYZ24]

Section 7. O

The rest of this section is devoted to a proof of the (=) direction of
Theorem [6.1] The proof of Theorem [6.1] implies Theorem namely,
that the Burnside formalism is decisive for nonabelian intransitive ac-
tions. It suffices to identify actions with the same C}, &), and the same
G-action on P'. We do this via a case-by-case analysis of G, using the
list of all possibilities for G in Proposition |3.2
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Remark 6.2. When G = 2, or &,, there is a unique G-action on P
Theorem [6.1| then implies that G-actions are not birational if and only
if the corresponding characters x do not differ by +1.

Remark 6.3. For intransitive G C PGLs, the group Bir®(P?) is always
infinite — it contains a 1-dimensional torus generated by

{diag(1,a,a) : a € k*}.

6.1. When G = C,. In this case, G is abelian. Linear G-actions are
birational if and only if the corresponding invariants in [RY02] coincide.
In fact, birational classification of linear actions of abelian groups has
been settled, in all dimensions, in [RY02, Theorem 7.1].

6.2. When G = ©,, with odd n. Recall that all G-actions are con-
jugated in Crq if the generic stabilizer C; of the G-action on P(V43) is
trivial. Hence, we assume that ¢ > 2. In each case, the standard Cre-
mona involution ¢ is contained in Bir®(P?). It would be interesting to
describe generators of Bir®(IP?).

Proof of Theorem in this case. By Proposition [3.2] the action of G
depends on the choice of primitive weights 1, t5,t3 in

diag(1, 1, ¢1),  diag(1, G Gon )y (21, Gohaes, Ghuea).
The action of the generic stabilizer of | = {z = 0} C P? is generated
by
dla‘g(la :1aC:1)a diag(LC;?nfl)C;?nfl)'
The weights can be changed birationally as follows:
e The standard Cremona involution ¢ composed with transposi-
tion of g, x3 preserves ty and inverts

t1 — —tl, t3 — —tg,

e the transposition of xs, x5 preserves tq,t3 and inverts ty — —to,
e the coordinate change x3 — —x3 preserves ¢, t; and maps t3
tg + 2m 1L,

For two choices of weights (t1, ta, t3), if the corresponding characters x
differ by 1 and the induced ®,,-actions on [ are isomorphic, then the
weights can be interchanged by a composition of the three maps above,
and thus the actions are birational. 0
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6.3. When G = ©,, with even n. The generic stabilizer C; of [ is
never trivial, and all possibilities for G are listed in Proposition [3.2]
The standard Cremona involution ¢ is contained in Bir®(IP?), and it fits
in the G-commutative diagram:

S
N
I, Iy
P2- - - - - - P2

where 7 is the blowup of the G-fixed point, 7 is the blowup of the
orbit of length 2 in the strict transform L of the line [ C P2, and ¢
is the contraction of the strict transforms of the fibers of the natural
projection F; — P! that pass through this orbit.

Observe that Bir®(IP?) also contains the birational selfmap of P?
given by
(6.3) v (21, g, x3) (xlx;/ng/z, zo(xy — ah), T3(xy — xY)).
To describe the geometry of ~, let E be the n-exceptional curve. Then
~ fits in the following G-commutative diagram:

S Sy Sy
N N 7 X
IE‘1 anl anQ e F?} IE‘1
| k
P2 > P2
Y

where 7 = Z + 1, m; is the blowup of the orbit of length n in L, ¢,
is the contraction of the strict transforms of the fibers of the natural
projection F; — P! that pass through this orbit, and each ; for i > 2
is the blowup of the orbit of length 2 on the strict transform of F, and
each ¢; for ¢ > 2 is the contraction of the strict transforms of the fibers
of the natural projection IF,,,3_o; — P! that pass through this orbit.

Proof of Theorem in this case. In each of the families, the G-action
depends on primitive weights 1, t9, t3,%4 as in

(1) diag(L ﬁlagl)a diag(la ;27!17 2_7;52)7 (ﬂflaC4l'3,C49€2)-
(2) diag(laqﬁlacﬁl)a dlag<1a<;3m+1 57217§;§n+1 2_nt2)7 ('T17C4$37C4x2)'
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(3) diag(1, ¢, ¢t),  diag(1, ¢, ,5), (I17C52+1C4373,C§3n+1€4$2)-
The generic stabilizer of [ = {z; = 0} C P? is generated by

(1) diag( Ctl) diag<1v -1, _1);

(2) diag(1, G, Gt), - diag(L, G, Goin);

(3) diag(1.¢1.C1)  diag(L G Chi).

The weights can be altered by the following maps, in all cases

e the birational map with image (— L —L) maps

fos —t, o ty, 3 —t:, t42»—> —t4,
e the coordinate change diag(1, 1, —1) maps
ty = ty, tor>ty, t3r>t3, tyr—>ty+ 27
e the birational map ~ maps
ty—=ty, tor>ty, t3r>t3+ 2™ty ty,
or equivalently,
tos b, torstatn, tyrsts,  ty ety

Similarly, for two actions, if the characters y of the generic stabilizer of
[ differ by +1 and the induced ®,,-actions on [ are isomorphic, we know
that the corresponding weights can be interchanged by a composition
of the three maps above; thus, the actions are birational. [l

To obtain an alternative proof of Theorem [6.1]in this case, one can
explicitly describe generators of Bir®(P?): Recall that ¢,y € Bir®(P?).
For every A € k*, with A" # 1, let 7, € Bir®(PP?) be the birational map
given by

(6.4) ™ (21, @0, w3) = (21(23" — 23"), 20 fr, w3 fr),
where )
fro= T (@1 = AGa) - (22 — A1) -
r=0
Then 7, fits in the following G-commutative diagram:
S///
/ \ / \ / X
]FQn 1
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where 7’ is the blowup of the orbit of length 2n on L that is mapped
by x to the G-orbit of [0 : X : 1], 7”7 and 7" are blowups of the orbits of
length n on the strict transform of £, and ¢, ¢" and ¢" are contractions
of the strict transforms of the fibers of the corresponding P!-bundles
passing through the blown up orbits.

Lemma 6.4. Supposen > 10. Then Bir®(P?) is generated by Aut®(P?),
the standard Cremona transformation ¢, the map v given by (6.3), and

Ty given by (6.4) for A € k* with A™ # 1.

Proof. Take any ¢ € Bir®(P?) such that ¢ ¢ Aut“(P?). Then ¢ can
be decomposed into a sequence of G-Sarkisov links. Since n > 10, P?
contains exactly two G-orbits of length < 9: the G-fixed point, and the
unique G-orbit of length 2, which is contained in the G-invariant line.
Hence, the only G-Sarkisov links that start at P? are the link

Iy

N

P2 P!

where F; — P! is the natural projection, and the link

N

P! x P!

where the left map is the blow up of the unique G-orbit of length 2
and the right map is the contraction of the strict transform of the G-
invariant line [ C P2. Moreover, the G-fixed point in P! x P! is the
only G-orbit of length < 8 in P! x P!, so the only G-Sarkisov link that
starts at P! x P! is the inverse of the link described above.

Moreover, since C; # 1, any G-orbit of a point in F; away from FUL
intersects some fiber of the natural projection F; — P! at more than
1 point. Now, using the classification of two-dimensional G-Sarkisov
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links [Isk96], we see that we have the following G-commutative diagram

Fy---"- - ~TF,
n Pl Pl n
P2 - - - - _____ > P2
%)

where v is an isomorphism, and p is a G-birational map such that
its indeterminacy points are G-orbits in £ U L, and every fiber of the
projection F; — P! contains at most one of these indeterminacy points.
Composing ¢ with a composition of appropriate maps 7y or to7y o, we
may assume that the indeterminacy points of the map p are G-orbits of
length 2 or n. Composing ¢ with v or ¢ oy o, we may further assume
that the indeterminacy points of p are G-orbits of length 2. Hence,
cither p € Aut®(P?) or p ot € Aut®(P?), which implies the required
assertion. U

It seems possible to weaken (or remove) the condition n > 10 in
Lemma [6.4} this would entail taking into account Geiser and Bertini
involutions that may appear in Bir®(P?).

6.4. When G = 2,. Recall that there is a unique 4-action on P*. We
find birational maps between two G-actions when the corresponding
characters y differ by +1.

Proof of Theorem [6.1] in this case. The action depends on choices of
primitive (with the exception that ¢ can be 0) weights 1, ¢, t3 in

(1) dlag(la ilagil)’ (xlv %QQ??J;%’ §2(C3:€3_17;2))7

(2) dl&g(l, 51’ Cﬁl)u (xla C3?n+1 32C32«T27 <3::n+1<32(<3x3 - 752))
with m > 1. The respective action of the generic stabilizer of [ is
generated by

(1) dlag(L 7%174.7%1)7 dlag<17_]~7_1)7

(2) dl&g(l, 7t“17C7t"1>7 dlag<17§§§”7 ;g")? dlag(17_17_1>
Let

8 4
hy = x5 — §33+ rars — 2w575 +
fo = x5ws + (=2¢s — D)ajas — wox3,

fo = 25 — (4¢3 + 2)x5w3 — 5x§x§ — 5x§x§ + (4¢3 + Q)xgxg + xg.

8(3 + 4
3

3 4
Toxy + I3,
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We note that fy, hy, gs are semi-invariant forms under the G-action.
They correspond to orbits of length 4 and 6 of the 204-action on P
Then

e The birational map o : (z1, 2, 2) — (x1hy, T2 f1, x5 f4) maps
tlf—>t1, tgf—>t2+1, t3f—>t3,
or equivalently
t1 —= 11, tTor>io, tgf—>t3+3m_1.
e The birational map v : (z1, 72, 23) — (feha, T120f3, T173f7)
maps
t1 — —tl, to —> —tg, ty — —13.
For two G-actions, as long as the characters of the stabilizer of [ differ

by +1, we can interchange the corresponding weights %1, t9, ¢35 of the
two actions using maps above, and thus they are birational. 0

6.5. When G = &,. Similarly, there is a unique G4-action on P'.
We find birational maps between two actions when their corresponding
characters y differ by +1.

Proof of Theorem [6.1] in this case. The action depends on choices of
primitive weights 1, t9, t3 in

diag(L, G, ¢1), (@1, G G (=222 + $123), Goa G5 (5222 + 223))

with m > 0. The corresponding action of the generic stabilizer of [ is
generated by

o diag(1,¢",C1), diag(1,—1,~1), whenm =1,
i dlag(L 11317 Cﬁl)v dlag(L - 572”7 - 53“)7 when m 7é L.
Let fs, fs, fi2, h12 be semi-invariant binary forms of degree 6, 8, 12 and
12, under the &4-action on P, . generated by
(—2&32 -+ S$1T3, S22 + 2.’133), (—SQLUQ — I3,S81%2 + (51 + 1)$3)
such that fio and hiy are linearly independent. Such forms are unique
up to scalars. Then
e The birational map o : (x1, 2, 2) — (x1h12, T2 f12, T3 f12) maps
t1 — 11, t2|—>t2+2m, ts — L3,
or equivalently
t1 — t1, tgi—>t2, t3*—>t3—|—2.
e The birational map 7 : (21, x9, x3) — (fs, T122f6, T123f6) maps

t — —tl, ty — —tg, t3 — —t3.
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When the characters of the stabilizer of [ in two actions differ by +1,
we can interchange the corresponding weights 1, t5, t3 using the maps
above, and thus the actions are birational. O

6.6. When G = ;5. Recall that the group G is generated by
diag(1, ¢, )

and
(6.5)
(z1, (G5 + C5)wa — (G5 + 1)as, Gwa + (G5 + G5)wa), (21, GFas, —(oa).

In particular, there is a unique minimal lift of s C PGL, to GL,
given by (6.5)). This minimal lift is isomorphic to SLy(F5). It has two
faithful 2-dimensional representations, giving rise to 2 non-isomorphic
2As-actions on P!,

Proof of Theorem in this case. Fixing the As-action on P!, we see
that the isomorphism class of the G-action only depends on the weight
of the generic stabilizer of [. The action of the stabilizer is generated
by

o diag(1, (!, (), if ris even,

e diag(1, (!, (), diag(l,—1,—1), if ris odd,
where t; indicates the weight. Let fi2, foo and f3o be the SLy(F5)-
invariant binary forms of degrees 12, 20 and 30 in variables x5 and w3,
which correspond to the unique orbits of lengths 12, 20 and 30 of the
2s-action on P'. Then the birational map

o (21,22, 23) = (fi2f20, T122 f30, T123 f30)

changes the weight t; — —t;. We conclude that two actions are bira-
tional if and only if the characters of the stabilizer of [ differ by 1. [

This completes the proof of Theorem [6.1], and Theorem follows
as a corollary.
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