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Throughout this article, all varieties are projective and defined over C and morphisms are proper unless otherwise stated.

1. Introduction
Let C be a smooth curve in P2 defined by a cubic homogeneous equation f(x, y, z) = 0. Suppose that we have nine

distinct points P1, · · · , P9 on C such that the divisor

9∑

i=1

P
i
− OP2

(
3
)∣
∣
∣
C

is a torsion divisor of order m ≥ 1 on the curve C . Then there is a curve Z ⊂ P2 of degree 3m such that mult
P
i
(Z ) = m

for each point P
i
. Let P be the pencil given by the equation

λf
m

(
x, y, z

)
+ μg

(
x, y, z

)
= 0 ⊂ Proj

(
C[x, y, z]

)
∼= P

2
,
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Halphen pencils on weighted Fano threefold hypersurfaces

where g(x, y, z) = 0 is a homogeneous equation of the curve Z and (λ : μ) ∈ P1. Then a general curve of the pencil

P is birational to an elliptic curve. The pencil P is called a plane Halphen pencil and the construction of P can be

generalized to the case when the curve C has ordinary double points and the points P1, · · · , P9 are not necessarily

distinct ([6]). In fact, every plane elliptic pencil is birational to a Halphen pencil. Namely, the following result is proved

by Bertini but its rigorous proof is due to [6].

Theorem 1.1.
Let M be a pencil on P2

whose general curve is birational to an elliptic curve. Then there is a birational automorphism

ρ of P2
such that ρ(M) is a plane Halphen pencil.

A problem similar to Theorem 1.1 can be considered for Fano varieties whose groups of birational automorphisms are well

understood. In particular, it is an interesting problem to classify pencils of K3 surfaces on three-dimensional weighted

Fano hypersurfaces.

Definition 1.1.
A Halphen pencil is a one-dimensional linear system whose general element is birational to a smooth variety of Kodaira
dimension zero.

Let X be a general quasismooth well-formed hypersurface of degree d =
∑4

i=1 ai
in P(1, a1, a2, a3, a4) that has terminal

singularities, where a1 ≤ a2 ≤ a3 ≤ a4. Then

−K
X
∼Q OP(1, a1 , a2 , a3 , a4)(1)

∣
∣
∣
X

,

which implies that X is a Fano threefold. The divisor class group Cl(X ) is generated by the anticanonical divisor −K
X

and there are exactly 95 possibilities for the quadruple (a1, a2, a3, a4), which were found by Iano-Fletcher. We use the

notation ג for the entry numbers of these famous 95 families. They are ordered in the same way as in [5], which is

nowadays standard.

Birational geometry on such threefolds is extensively studied in [1], [2], [5] and [10]. The article [5] describes the generators

of the group Bir(X ) of birational automorphisms of X . Also the article [2] shows the relations among these generators.

The former article proves the following result as well.

Theorem 1.2.
The threefold X cannot be rationally fibred by rational curves or surfaces.

As for birational maps into elliptic fibrations, the hypersurface X in each family except the families of ג = 3, 60, 75, 84,

87 and 93 is birational to an elliptic fibration ([2]). Furthermore, all birational transformations of the threefold X into

elliptic fibrations are classified in [1].

It is known that Halphen pencils on the threefold X always exist, to be precise, the threefold X can be always rationally

fibred by K3 surfaces ([2]). In this article, we will classify all Halphen pencils on hypersurfaces in the 95 families as is

done for elliptic fibrations in [1].

Let us explain five examples of pencils on the threefold X . They exhaust all the possible Halphen pencils on X . It

follows from [5] that the pencils constructed below are Bir(X )-invariant (Proposition 4.1). We will show, throughout this

article, that they are indeed Halphen pencils.

Example 1.1.
Suppose that a2 = 1. Then every one-dimensional linear system in |−K

X
| is a Halphen pencil. It follows from adjunction

that a general surface in | − K
X
| is birational to a smooth K3 surface.

Therefore in the cases in Example 1.1, or equivalently ג = 1, 2, 3, 4, 5, 6, 8, 10, 14, there are infinitely many Halphen

pencils on the hypersurface X .
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Example 1.2.
Suppose that a1 �= a2. Then the linear system | − a1KX

| is a pencil. If a1 = 1, then the linear system | − K
X
| is a

Halphen pencil and its general surface belongs to Reid’s 95 codimension 1 weighted K3 surfaces as in Example 1.1. In
fact, it is a Halphen pencil if only if a1 �= a2 ([2]). We will see that it is a unique Halphen pencil except the cases with
a2 = 1 and the cases in three Examples below.

Note that a1 = a2 �= 1 exactly when ג = 18, 22 and 28.

Example 1.3.
Suppose that ג = 18, 22, or 28. In such cases, a1 = a2 �= 1 and a3 = a1 + 1. The threefold X has singular points
O1, · · · , Or

of type 1
a1

(1, 1, a1 − 1), where r = 3a1+a4+1
a1

. There is a unique index j ≥ 3 such that a2 + a3 + a4 = ma
j
,

where m is a natural number. In particular, the threefold X is given by an equation

m∑

k=0

x
k

j
f
k

(
x0, x1, x2, x3, x4

)
= 0 ⊂ Proj

(
C[x0, x1, x2, x3, x4]

)
,

where wt(x0) = 1, wt(x
l
) = a

l
and f

k
is a quasihomogeneous polynomial of degree a1 + a2 + a3 + a4 − ka

j
that is

independent of the variable x
j
. Let P

i
be the pencil of surfaces in | − a1KX

| that pass through the point O
i

and P be
the pencil on the threefold X that is cut out by the pencil λx

a1
0 + μf

m
(x0, x1, x2, x3, x4) = 0, where (λ : μ) ∈ P1. It will be

proved that P and P
i

are Halphen pencils in | − a1KX
|.

The cases in Example 1.3 are the only cases that have more than two but finitely many Halphen pencils.

Example 1.4.
Suppose that ג = 45, 48, 55, 57, 58, 66, 69, 74, 76, 79, 80, 81, 84, 86, 91, 93 or 95. We then see 1 �= a1 �= a2. Moreover
there is a unique index j �= 2 such that a1 + a3 + a4 = ma

j
, where m is a natural number. Therefore the threefold X is

given by an equation
m∑

k=0

x
k

j
f
k

(
x0, x1, x2, x3, x4

)
= 0 ⊂ Proj

(
C[x0, x1, x2, x3, x4]

)
,

where wt(x0) = 1, wt(x
i
) = a

i
and f

k
is a quasihomogeneous polynomial of degree a1+a2+a3+a4−kaj

that is independent
of the variable x

j
. Let P be the pencil on the threefold X that is cut out by the pencil λx

a2
0 + μf

m
(x0, x1, x2, x3, x4) = 0,

where (λ : μ) ∈ P
1. It will be shown that P is a Halphen pencil in | − a2KX

|.

Example 1.5.
Suppose that ג = 60. Then X is a general hypersurface of degree 24 in P(1, 4, 5, 6, 9). Hence the threefold X is given
by an equation

w
2
f6

(
x, y, z, t

)
+ wf15

(
x, y, z, t

)
+ f24

(
x, y, z, t

)
= 0 ⊂ Proj

(
C[x, y, z, t, w ]

)
,

where wt(x) = 1, wt(y) = 4, wt(z) = 5, wt(t) = 6, wt(w) = 9 and f
k
(x, y, z, t) is a general quasihomogeneous polynomial

of degree k . Then the linear system on the threefold X cut out by the pencil λx6 +μf6

(
x, y, z, t

)
= 0, where (λ : μ) ∈ P1,

is a Halphen pencil in | − 6K
X
|.

The cases in Examples 1.4 and 1.5 have at least two Halphen pencils because they also satisfy the condition for

Example 1.2. Furthermore, we will see that these are the only Halphen pencils on the hypersurface X of each family in

Examples 1.4 and 1.5.

The main purpose of this article is to prove the following1:

1
Theorem 1.3 is proved in [9] and [10] for the cases ג = 34, 75, 88 and 90.
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Theorem 1.3.
Let X be a general hypersurface in the 95 families. Then the pencils constructed in Examples 1.1, 1.2, 1.3, 1.4 and 1.5

exhaust all possibilities for Halphen pencils on the threefold X.

The following are immediate consequence of Theorem 1.3.

Corollary 1.1.
Let X be a general hypersurface in the 95 families with entry number .ג

(1) There are finitely many Halphen pencils on the threefold X if and only if a2 �= 1.

(2) There are at most two Halphen pencils on X in the case when a1 �= a2 .

(3) Every Halphen pencil on the threefold X is contained in | − K
X
| if a1 = 1.

(4) The linear system | − K
X
| is the only Halphen pencil on X if a1 = 1 and a2 �= 1.

(5) The linear system | − a1KX
| is the only Halphen pencil on the threefold X if and only if ג �= 1, 2, 3, 4, 5, 6, 8, 10,

14, 18, 22, 28, 45, 48, 55, 57, 58, 60, 66, 69, 74, 76, 79, 80, 81, 84, 86, 91, 93, 95.

Furthermore, Theorem 1.3 with Proposition 4.1 forces us to conclude:

Corollary 1.2.
Let X be a general hypersurface in the 95 families. Then every Halphen pencil on the threefold X is invariant under

the action of Bir(X ).

The proof of Theorem 1.3 is based on Theorems 2.1, 2.2 and Lemmas 2.2, 2.3. In addition, we prove that general surfaces

of the pencils constructed in Examples 1.1, 1.2, 1.3, 1.4, 1.5 are birational to smooth K3 surfaces.

Theorem 1.4.
Let X be a general hypersurface in the 95 families. Then a general surface of every Halphen pencil on X is birational

to a smooth K3 surface.

When a1 = 1, a general surface of a pencil contained in the linear system | − K
X
| is birational to a K3 surface.

Furthermore, general surfaces in the pencils of Examples 1.1 and 1.2 are birational to K3 surfaces due to the following:

Proposition 1.1.
If a1 �= a2, then a general surface of the pencil | − a1KX

| is birational to a K3 surface.

Proof. See [2].

To prove Theorem 1.4, we must check that general surfaces of Halphen pencils of Examples 1.3, 1.4 and 1.5 are also

birational to smooth K3 surfaces. The proof of Theorem 1.4 is based on Corollaries 2.1 and 2.2. However, in order to

save the space, we will verify Theorem 1.4 only by showing how to apply Corollaries 2.1 and 2.2 to some cases (see

Propositions 6.7 and 6.11). Following this method, one can prove the other cases. For the proof of the other cases, the

reader is referred to [3].

Theorems 1.3 and 1.4 tell us how a general hypersurface in the 95 families can be rationally fibred by smooth surfaces

of Kodaira dimension zero.
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Corollary 1.3.
Let X be a general hypersurface in the 95 families and let π : Y → Z be a morphism whose general fiber is birational

to a smooth surface of Kodaira dimension zero. If there is a birational map α : X ��� Y , then there is an isomorphism

φ : P
1
→ Z such that the following diagram commutes:

X

ψ

���
�
�

α ��������
Y

π

��
P1

φ

��
Z,

where the rational map ψ : X ��� P1
is induced by one of the pencils in Examples 1.1, 1.2, 1.3, 1.4 and 1.5. In particular,

a general fiber of the morphism π is birational to a smooth K3 surface.

In what follows, we outline how to prove Theorem 1.3. Some of the 95 families then are fully studied for the theorem in

order to show precisely how to carry out our scheme of the proof for the theorem. For details, the reader is referred to

[3] where all the 95 families have been investigated. However, the families chosen to be studied in this article show all

the essential methods to prove Theorems 1.3 and 1.4 completely.

2. Preliminaries
Let X be a threefold with Q-factorial singularities and M be a linear system on the threefold X without fixed components.

We consider the log pair (X, μM) for some non-negative rational number μ.

Let α : Y → X be a proper birational morphism such that Y is smooth and the proper transform M
Y

of the linear system

M by the birational morphism α is base-point-free. Then the rational equivalence

K
Y

+ μM
Y
∼Q α

∗

(
K
X

+ μM

)
+

k∑

i=1

a
i
E
i

holds, where E
i

is an exceptional divisor of the birational morphism α and a
i

is a rational number.

Definition 2.1.
The singularities of the log pair (X, μM) are terminal (canonical, log-terminal, respectively) if each rational number a

i

is positive (non-negative, greater than −1, respectively). In this case we also say that the log pair (X, μM) is terminal
(canonical, log-terminal, respectively).

It is convenient to specify where the log pair (X, μM) is not terminal.

Definition 2.2.
A proper irreducible subvariety Z ⊂ X is called a center of canonical singularities of the log pair (X, μM) if there is
an exceptional divisor E

i
such that α(E

i
) = Z and a

i
≤ 0. The set of all proper irreducible subvarieties of X that are

centers of canonical singularities of the log pair (X, μM) is denoted by CS(X, μM).

A curve not contained in the singular locus of the threefold X is a center of canonical singularities of the log pair

(X, μM) if and only if the multiplicity of a general surface of M along the curve is not smaller than 1
μ
. Furthermore, we

obtain

Lemma 2.1.
Let C be a curve on the threefold X that is not contained in the singular locus. Suppose that the curve C is a center

of canonical singularities of the log pair (X, μM) and the linear system | − mK
X
| is base-point-free for some natural

number m > 0. If −K
X
∼Q μM, then −K

X
· C ≤ −K

3
X
.
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Proof. See Lemma 2.4 in [1].

The following result is a generalization of the so-called Noether–Fano inequality.

Theorem 2.1.
Suppose that the linear system M is a pencil whose general surface is birational to a smooth surface of Kodaira

dimension zero, the linear system |−mK
X
| is base-point-free for some natural m and −K

X
∼Q μM. If the linear system

| − mK
X
| induces either a birational morphism or an elliptic fibration, then the log pair (X, μM) is not terminal.

Proof. Let M be a general surface in M. Suppose that the log pair (X, μM) is terminal. Then for some positive

rational number ε > μ, the log pair (X, εM) is also terminal and the divisor K
X

+ εM is nef. We have a resolution of

indeterminacy of the rational map ρ : X ��� P1 induced by the pencil M as follows:

Y

α

����
��

��
��

β

���
��

��
��

X
ρ

��������� P1
,

where Y is smooth and β is a morphism. We consider the linear equivalence

K
Y

+ εM
Y
∼Q α

∗

(
K
X

+ εM

)
+

k∑

i=1

c
i
E
i
,

where M
Y

is the proper transform of the surface M and c
i

is a rational number. Then each c
i

is positive. Also we may

assume that the proper transform M
Y

of the pencil M by the birational morphism α is base-point-free. In particular,

the surface M
Y

is smooth.

Let l be a sufficiently big and divisible natural number. Then the negativity property of the exceptional locus of

a birational morphism (Section 1.1 in [11]) implies that the linear system |l(K
Y

+ εM
Y
)| gives a dominant rational map

ξ : Y ��� V with dim(V ) ≥ 2. One the other hand, since the proper transform M
Y

is a base-point-free pencil, the

adjunction formula implies that

l

(
K
Y

+ εM
Y

)∣
∣
∣
M
Y

∼ lK
M
Y
.

However, the surface M
Y

has Kodaira dimension zero, which implies that dim(V ) ≤ 1. This is a contradiction.

Suppose that X has a quotient singular point P of type 1
r
(1, a, r − a), where r ≥ 2, r > a and a is coprime to r. The

weighted blow up π : Y → X at the point P with weights (1, a, r − a) is called the Kawamata blow up at the point P

with weights (1, a, r − a) or simply the Kawamata blow up at the point P. One can easily check that the exceptional

divisor E of the birational morphism π is isomorphic to P(1, a, r − a). Furthermore, we see

K
Y

= π
∗(K

X
) +

1

r

E, K
3
Y

= K
3
X

+
1

ra(r − a)
, E

3 =
r

2

a(r − a)
.

Unless otherwise mentioned, from this point throughout this section, we always assume that the linear system M is

a pencil with −K
X
∼Q μM. In addition, we always assume that a general surface of the pencil M is irreducible.

Lemma 2.2.
Let P be a singular point of a threefold X that is a quotient singularity of type

1
r
(1, a, r − a), r ≥ 2, r > a and a is

coprime to r. Suppose that the log pair (X, μM) is canonical but the set CS(X, μM) contains either the point P or

a curve passing through the point P. Let π : Y → X be the Kawamata blow up at the point P and let M
Y
be the proper

transform of M by the birational morphism π. Then μM
Y
∼Q −K

Y
, where E is the exceptional divisor of π.
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Proof. See [7].

Lemma 2.2 can be generalized in the following way ([1]).

Lemma 2.3.
Under the assumptions and notations of Lemma 2.2, suppose that we have a proper subvariety Z ⊂ E

∼= P(1, a, r − a)
that belongs to CS(Y , μM

Y
). Then the following hold:

(1) The subvariety Z is not a smooth point of the surface E.

(2) If the subvariety Z is a curve, then it belongs to the linear system |OP(1, a, r−a)(1)| defined on the surface E and all

singular points of the surface E are contained in the set CS(Y , μM
Y
).

Proof. For the convenience of the reader we consider only the case when r = 5 and a = 2. Thus we have

E
∼= P(1, 2, 3). Let Q1 and Q2 be the singular points of the surfaces E, and L the unique curve in |OP(1, 2, 3)(1)| on the

surface E. Then L contains the singular points Q1 and Q2 but the equivalence μM
Y
|
E
≡ L holds by Lemma 2.2. Also it

follows from Lemma 2.2 that the set CS(Y , μM
Y
) contains both the points Q1 and Q2 if the curve L is contained in the

set CS(Y , μM
Y
).

Suppose that the subvariety Z is different from L, Q1 and Q2. Let us show that this assumption gives us a contradiction.

Suppose that Z is a point. Then Z is a smooth point of the threefold Y , which implies the inequality mult
Z
(M

Y
) > 1

μ
.

Let C be a general curve in |OP(1, 2, 3)(6)| on the surface E that passes through the point Z . Then C is not contained in

the base locus of M
Y
, which implies the following contradictory inequality:

1

μ

= C ·M
Y
≥ mult

Z

(
M

Y

)
>

1

μ

.

Therefore the subvariety Z must be a curve. Then mult
Z
(M

Y
) ≥ 1

μ
. Let C be a general curve in the linear system

|OP(1, 2, 3)(6)| on the surface E. Then the curve C is not contained in the base locus of the pencil M
Y
. Therefore we have

1

μ

= C ·M
Y
≥ mult

Z

(
M

Y

)
C · Z ≥

1

μ

C · Z,

which implies that C · Z = 1 on the surface E. The equality C · Z = 1 implies that the curve Z is contained in the linear

system |OP(1, 2, 3)(1)| on the surface E, which is impossible due to our assumption.

The following result is a generalization of Lemma A.20 in [1].

Theorem 2.2.
Let B1 and B2 be linear systems on a threefold X such that a general surface of each linear system B

i
is irreducible.

Then the linear system B1 coincides with the linear system B2 and they are pencils if one of the following holds:

(0) There is a Zariski closed proper subset Σ ⊂ X such that for any general divisors B1 ∈ B1 and B2 ∈ B2

Supp
(
B1

)
∩ Supp

(
B2

)
⊆ Σ,

Note that the general divisors B1 and B2 are chosen independently of the proper subset Σ.

For the remainder of the theorem, let B1 and B2 be general surfaces of the linear systems B1 and B2, respectively.

(1) There is a nef and big divisor D on the threefold X such that D · B1 · B2 = 0.

(2) The base locus of B2 consists of an irreducible curve C such that B1 · B2 ≡ λC and B2 · C < 0 for some positive

rational number λ.

(3) The equivalence B1 ≡ λB2 holds for some positive rational number λ and the base locus of B1 consists of an irreducible

curve C such that B1 · C < 0.

7
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(4) The surface B1 is normal, the equivalence B2 ≡ λB1 holds for some positive rational number λ and the base locus of

B1 consists of irreducible curves C1, · · · , Cr
whose intersection form on the surface B1 is negative-definite.

Proof. It is easy to check. See [1] for instance.

Theorem 2.3.
Suppose that a log pair (X, μM) is canonical with K

X
+ μM ∼Q 0. In addition, we suppose that one of the following

holds:

(1) The base locus of the pencil M consists of irreducible curves C1, · · · , Cr
and there is a nef and big divisor D on X

such that D · C
i
= 0 for each i;

(2) the base locus of M consists of an irreducible curve C such that M · C < 0;

(3) a general surface of the pencil M is normal, the base locus of M consists of irreducible curves C1, · · · , Cr
whose

intersection form is negative-definite on a general surface in M.

Then the linear system M is a Halphen pencil and there is an isomorphism ξ : X ��� X
′

in codimension 1 such that it

is an isomorphism in the outside of the curves C1, · · · , Cr
(or C) and the proper transform M

X
′ of the pencil M by ξ is

base-point-free.

Proof. The log pair (X, λM) is log-terminal for some rational number λ > μ. Hence it follows from [11] that there is

an isomorphism ξ : X ��� X
′ in codimension 1 such that it is an isomorphism in the outside of the curves C1, · · · , Cr

(or

C ), the log pair (X′

, λM
X
′ ) is log-terminal and the divisor K

X
′ + λM

X
′ is nef.

Let H be a general surface in the pencil M
X
′ . Since

H ≡

1

λ − μ

(
K
X
′ + λM

X
′ − (K′

X
+ μM

X
′ )

)
,

the divisor H is nef. Hence it follows from the log abundance theorem ([8]) that the linear system |mH| is base-point-free

for some m 8 0.

Let B be the proper transform of the linear system |mH| on X . Also let B and M be general surfaces of the linear system

B and the pencil M, respectively. Then B ≡ mM and one of the conditions in Theorem 2.2 is satisfied. Hence we have

M = B , which implies that m = 1 and M
X
′ = |H| is base-point-free and induces a morphism π

′ : X′

→ P1. Thus every

member of the pencil M
X
′ is contracted to a point by the morphism π

′.

The log pair (X′

, μM
X
′ ) is canonical because the map ξ is a log flop with respect to the log pair (X, μM). In particular,

the singularities of X′ are canonical. Hence the surface H has at most Du Val singularities because the pencil M
X
′ is

base-point-free. Moreover the equivalence K
X
′ +μH ∼Q 0 and the Adjunction formula imply that K

H
∼ 0. Consequently,

the linear system M is a Halphen pencil.

Corollary 2.1.
Under the assumptions and with the notation of Theorem 2.3, additionally suppose that a general surface of the pencil

M is linearly equivalent to −nK
X
for some natural number n. Then a general element of M is birational either to

a smooth K3 surface or to an Abelian surface.

Proof. It immediately follows from the proof of Theorem 2.3 and the classification of smooth surfaces of Kodaira

dimension zero.

Corollary 2.2.
Under the assumptions and with the notation of Corollary 2.1, suppose that a general surface of the pencil M has

a rational curve not contained in the base locus of the pencil M. Then a general element of M is birational to a smooth

K3 surface.
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Proof. In the proof of Theorem 2.3, suppose that the surface M has a rational curve L not contained in the base locus

of the pencil M. Then the surface H contains a rational curve because the birational map ξ makes no change along the

curve L. On the other hand, the surface H is birational either to a smooth K3 surface or to an Abelian surface. However,

an Abelian surface cannot contain a rational curve.

3. Scheme of the proof
Let us describe the notations we will use in the rest of the article. Unless otherwise mentioned, these notations are

fixed from now until the end of the article.

• In the weighted projective space P(1, a1, a2, a3, a4), we assume that a1 ≤ a2 ≤ a3 ≤ a4. For weighted homo-

geneous coordinates, we always use x, y, z, t and w with wt(x) = 1, wt(y) = a1, wt(z) = a2, wt(t) = a3 and

wt(w) = a4.

• The number ג always means the entry number of each family of weighted Fano hypersurfaces in the Big Table

of [5].

• In each family, we always let X be a general quasismooth hypersurface of degree d in the weighted projective

space P(1, a1, a2, a3, a4), where d =
∑4

i=1 ai
.

• On the threefold X , a given Halphen pencil is denoted by M.

• For a given Halphen pencil M, we always assume that M∼Q −nK
X

.

• When a morphism f : V → W is given, the proper transforms of a curve Z , a surface D and a linear system D on

W by the morphism f will be always denoted by Z
V

, D
V

and D
V

, respectively, i.e., we use the ambient space V

as their subscripts.

• S : the surface on X defined by the equation x = 0.

• S
y : the surface on X defined by the equation y = 0.

• S
z : the surface on X defined by the equation z = 0.

• S
t : the surface on X defined by the equation t = 0.

• S
w : the surface on X defined by the equation w = 0.

• C : the curve on X defined by the equations x = y = 0.

• C̄ : the curve on X defined by the equations x = z = 0.

• C̃ : the curve on X defined by the equations x = t = 0.

• Ĉ : the curve on X defined by the equations x = w = 0.

From now, we explain our scheme of the proof for Theorem 1.3.

In each case, for a given general hypersurface X and a given Halphen pencil M, we consider the log pair (X, 1
n
M).

Note that the natural number n is given by M∼Q −nK
X

. To prove Theorem 1.3, we must show that the Halphen pencil

M is one of the pencils given in Examples 1.1, 1.2, 1.3, 1.4 and 1.5. To do so, we will do the following:

Step 1. We may always assume that the log pair (X, 1
n
M) is canonical for the following reason:

Due to Theorem 4.1, there is a birational automorphism ρ ∈ Bir(X ) such that the log pair (X, 1
n̄
ρ(M)) is canonical for

the natural number n̄ with ρ(M) ∼Q −n̄K
X
. It will turn out that the pencil ρ(M) is one of the pencils constructed in

Examples 1.1, 1.2, 1.3, 1.4 and 1.5 that are Bir(X )-invariant (Proposition 4.1). This implies that M = ρ(M).

Step 2. We observe that the set CS
(
X,

1
n
M

)
is not empty by Theorem 2.1.

9
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Step 3. We observe that the set CS(X, 1
n
M) contains no smooth point of X . For the families with ג ≥ 3 this follows

from the proof of Theorem 5.3.1 in [5]. For the families with ג = 1 and 2 we will prove it directly.

Step 4. If a2 �= 1 then we may assume that the set CS(X, 1
n
M) contains only singular points of X by Corollaries 4.3

and 4.4. If a2 = 1 then we show that if the set CS(X, 1
n
M) contains a curve, then n = 1. Therefore we may assume that

the set CS(X, 1
n
M) contains only singular points of X .

Step 5. If a singular point P of X satisfies the conditions of Lemmas 4.2 and 4.3 and the set CS(X, 1
n
M) contains the

point P, Lemma 4.3 implies that M is the pencil described in either Example 1.2 or Example 1.4. If a singular point

Q of X satisfies the condition of Proposition 4.2 but the integer c in Proposition 4.2 is positive, then we can derive

a contradiction from Lemma 4.2. Therefore the set CS(X, 1
n
M) cannot contain the point Q.

Using the Big Table in [5], we may check whether a singular point satisfies the conditions or not. Therefore we may

assume that the set CS(X, 1
n
M) does not contain such singular points.

Step 6. We take a singular point P in the set CS(X, 1
n
M) and then consider the Kawamata blow up π1 : X1 → X at

the point P. Then Lemma 2.2 implies that M
X1

∼Q −nK
X1

. In particular, the image on X of every element of the set

CS(X1,
1
n
M

X1
) must belong to the set CS(X, 1

n
M).

Step 7. If −K
X1

is nef then one can observe that the linear system | − mK
X1
| is base-point-free for some natural m and

the linear system | − mK
X
| induces either a birational morphism or an elliptic fibration. In particular, if −K

X1
is nef,

then the set CS
(
X1,

1
n
M

X1

)
is not empty by Theorem 2.1.

Step 8. The set CS
(
X1,

1
n
M

X1

)
does not contain smooth points of the π1-exceptional divisor by Lemma 2.3. Moreover

we show that the set CS
(
X1,

1
n
M

X1

)
does not contain curves that are contained in the π1-exceptional divisor (either by

using Lemma 2.1 if −K 3
X1

is small, or by some individual methods otherwise). Therefore the set CS(X1,
1
n
M

X1
) contains

only singular points of X1.

Step 9. If −K
X1

is nef, we apply Steps 2-8 to the log pair (X1,
1
n
M

X1
). We repeat this procedure to get a sequence of

Kawamata blow ups

X
r

πr ��
X
r−1

π
r−1 ��

· · ·

π2 ��
X1

π1 ��
X

such that −K
Xr

is not nef and M
Xr
∼Q −nK

Xr
. In fact, it turns out that r is at most 4.

Step 10. The linear system | − mK
Xr
| is not empty for a sufficiently large and divisible positive integer m. However it

may contain only one divisor. In such a case, we derive a contradiction from the fact that M
Xr
∼Q −nK

Xr
.

Step 11. If the linear system | − mK
Xr
| for sufficiently large and divisible positive integer m is composed from a pencil,

then we show that M is one of the pencils constructed in Examples I-V by using Theorem 2.2. Therefore we may assume

that the linear system | − mK
Xr
| gives a rational map ξ : X

r
��� V such that dimV ≥ 2.

Step 12. We show the existence of a commutative diagram

U

ψ

���
��

��
��

X
r

ξ

���������

ζ

���
�

�
�

V

such that the variety U has terminal Q-factorial singularities, the rational map ζ is an isomorphism in codimension 1,

−K
U

is nef, the linear system | − mK
U
| for sufficiently large and divisible positive integer m is base-point-free and the

morphism ψ is given by | − mK
U
|. We see that either −K

U
is nef and big or the morphism ψ is an elliptic fibration.

Step 13. Since the map ζ is an isomorphism in codimension 1, the equivalence M
U
∼Q −nK

U
holds. Therefore the set

CS
(
U,

1
n
M

U

)
is not empty by Theorem 2.1.

Step 14. The set CS
(
X
r
,

1
n
M

Xr

)
is not empty because the map ζ is a log-flop with respect to the log pair (X

r
,

1
n
M

Xr
).

Step 15. Now we can apply Steps 2-14 to the log pair (X
r
,

1
n
M

Xr
) to get a sequence of Kawamata blow ups

X
q

πq �� X
q−1

π
q−1 ��

· · ·

π
r+1 ��

X
r+1

πr ��
X
r

10



I. Cheltsov, J. Park

such that −K
Xq

is not nef, the equivalence M
Xq

∼Q −nK
Xq

holds and the linear system | − mK
Xq
| either consists of

a single divisor or is composed from a pencil, where m is a sufficiently large and divisible positive integer. In fact, it

turns out that we need at most two Kawamata blow ups.

Step 16. If the linear system | − mK
Xq
| consists of a single divisor, we derive a contradiction from the fact that

M
Xq

∼Q −nK
Xq

. If it is composed from a pencil, we show that M is one of the pencils constructed in Examples 1.1-1.5

using Theorem 2.2.

4. General results
Let X ⊂ P(1, a1, a2, a3, a4) be a general hypersurface in one of the 95 families with entry number .ג In addition, let M

be a Halphen pencil on the threefold X . Then the log pair (X, 1
n
M) is not terminal by Theorem 2.1, where n is the

natural number such that M ∼Q −nK
X

. The following result is due to [5].

Theorem 4.1.
There is a birational automorphism τ ∈ Bir(X ) such that the log pair (X, 1

m
τ(M)) is canonical, where m is the natural

number such that τ(M) ∼Q −mK
X
.

To classify Halphen pencils on X up to the action of Bir(X ), we may assume that the log pair (X, 1
n
M) is canonical.

However, it is not terminal by Theorem 2.1.

Proposition 4.1.
The pencils constructed in Examples 1.1, 1.2, 1.3, 1.4 and 1.5 are invariant under the action of the group Bir(X ) of
birational automorphisms of X.

Proof. Suppose that the hypersurface X is defined by the equation

f
d
(x, y, z, t, w) = 0 ⊂ Proj

(
C[x, y, z, t, w ]

)
,

where wt(x) = 1, wt(y) = a1, wt(z) = a2, wt(t) = a3, wt(w) = a4 and f
d

is a general quasihomogeneous polynomial of

degree d =
∑

a
i
.

Since the hypersurface X is general, it is not hard to see that the group Aut(X ) of automorphisms of X is either trivial

or isomorphic to the group of order 2. The latter case happens when 2a4 = d. In such a case, the hypersurface X can

be defined by an equation of the form

w
2 = g

d
(x, y, z, t),

where g
d

is a general quasihomogeneous polynomial of degree d in variables x, y, z and t. The group Aut(X ) is

generated by the involution [x : y : z : t : w ] \→ [x : y : z : t : −w ]. Therefore in both cases, we can see that the pencils

constructed in Examples 1.1, 1.2, 1.3, 1.4 and 1.5 are invariant under the action of the group Aut(X ) of automorphisms

of X .

Suppose that the hypersurface X is not superrigid, i.e., it has a birational automorphism that is not biregular. Then it

is either a quadratic involution or an elliptic involution that are described in [5]. A quadratic involution has no effect on

things defined with the variables x, y, z and t (see Theorem 4.9 in [5]). On the other hand, an elliptic involution has no

effect on things defined with the variables x, y and z (see Theorem 4.13 in [5]). The pencils constructed in Examples 1.1,

1.2, 1.3 and 1.4 are defined by the variables x, y and z. Therefore such pencils are invariant under the action of the group

Bir(X ) of birational automorphisms of X . Meanwhile, the pencil constructed in Example 1.5 is contained in | − a3KX
|.

However, in the case ג = 60, the hypersurface X does not have an elliptic involution (see The Big Table in [5]) and

hence the pencil is also Bir(X )-invariant.

To be precise, the poorf of Theorem 1.3 shows that for a given Halpen pencil M, there is a birational automorphism τ of X

such that the pencil τ(M) is exactly one of the Halpen pencils described in Examples 1.1-1.5. However, Proposition 4.1

proves that the pencils in Examples 1.1-1.5 are Bir(X )-invariant. Therefore every Halphen pencil on X is Bir(X )-invariant.

11
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Lemma 4.1.
Suppose that ג ≥ 3. Then the set CS(X, 1

n
M) contains no smooth point of X.

Proof. This follows from the proof of Theorem 5.3.1 in [5].

Corollary 4.1.
Suppose that the set CS(X, 1

n
M) contains a curve C. Then −K

X
· C ≤ −K

3
X
.

Proof. This is an immediate consequence of Lemma 2.1.

Corollary 4.2.
The set CS(X, 1

n
M) contains a singular point of X whenever ג ≥ 7.

Proof. If ג ≥ 7, then −K
3
X
< 1. Therefore each curve C with −K

X
· C ≤ −K

3
X

passes through a singular point of X .

Then the result follows from Lemmas 2.2, 4.1 and Corollary 4.1.

In fact, we have a stronger result as follows:

Theorem 4.2.
Suppose that ג ≥ 3 and the set CS(X, 1

n
M) contains a curve C. Then

Supp
(
C

)
⊂ Supp

(
S1 · S2

)
,

where S1 and S2 are distinct surfaces of the linear system | − K
X
|.

Proof. See Section 3.1 in [10].

Corollary 4.3.
The set CS(X, 1

n
M) contains no curves whenever a1 �= 1.

Corollary 4.4.
If the set CS(X, 1

n
M) contains a curve and a2 �= 1, then a1 = 1 and M = | − K

X
|.

Proof. This follows from Theorem 4.2 and Theorem 2.2.

Suppose that ג ≥ 7. Then the set CS(X, 1
n
M) contains a singular point P of type 1

r
(1, r − a, a), where r ≥ 2, r > a and

a is coprime to r. Let π : Y → X be the Kawamata blow up at the singular point P and E be its exceptional divisor.

Then M
Y
∼Q −nK

Y
by Lemma 2.2. The cone of effective 1-cycles NE(Y ) of the threefold Y contains two extremal rays

R1 and R2 such that π is a contraction of the extremal ray R1. Moreover the following result holds:

Proposition 4.2.
Suppose that −K

3
Y
≤ 0 and ג �= 82. Then the threefold Y contains irreducible surfaces S ∼Q −K

Y
and T ∼Q −bK

Y
+cE

whose scheme-theoretic intersection is an irreducible reduced curve that generates R2, where b > 0 and c ≥ 0 are integer
numbers.

Proof. See Lemma 5.4.3 in [5].

We can find the values of b and c for a given singular point in the Big Table of [5].

12
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Lemma 4.2.
With the assumptions and the notation of Proposition 4.2, suppose that −K

3
Y
< 0. Then the number c is zero.

Proof. Let M1 and M2 be general surfaces of the pencil M
Y
. Then M1 · M2 ≡ n

2
K

2
Y
, which implies that M1 · M2 �∈

NE(Y ) in the case c > 0 by Proposition 4.2.

Lemma 4.3.
With the assumptions and the notation of Proposition 4.2, suppose that the inequality −K

3
Y
< 0 holds. Then the pencil

M
Y
is generated by the divisors bS and T .

Proof. Let M1 and M2 be general surfaces in M
Y
. Then M1 · M2 ∈ NE(Y ) and M1 · M2 ≡ n

2
K

2
Y
, which implies that

M1 · M2 ∈ R+
R2 because c = 0 by Lemma 4.2. Moreover we have

Supp
(
Γ

)
= Supp

(
M1 · M2

)

since T · R2 < 0 and S · R2 < 0. Therefore the pencil M
Y

coincides with the pencil generated by the divisors bS and

T by Theorem 2.2-(0). This completes the proof.

5. Easy cases
In this section, we apply our scheme to several easy cases in order to show how to prove Theorem 1.3.

Proposition 5.1.
If ג = 3, then every Halphen pencil is contained in | − K

X
|.

Proof. The threefold X is a general hypersurface of degree 6 in P(1, 1, 1, 1, 3) with −K
3
X

= 2. It is smooth. It cannot

be birationally transformed into an elliptic fibration ([2]).

It follows from Lemma 4.1 that the set CS(X, 1
n
M) does not contain any point of X . Hence it must contain a curve Z ; so

the inequality

mult
Z
(M) ≥ n

holds.

For general surfaces M1 and M2 in M and a general surface D in | − K
X
|, we have

2n2 = M1 · M2 · D ≥ mult2
Z
(M)(−K

X
· Z ) ≥ n

2(−K
X
· Z ).

This implies that 2 ≥ −K
X
· Z . Theorem 4.2 shows that there are different surfaces D1 and D2 in the linear system

| − K
X
| such that the intersection D1 ∩ D2 contains the curve Z .

Let P be the pencil in | − K
X
| consisting of surfaces passing through the curve Z .

Suppose that −K
X
· Z = 2. For a general surface D

′ in the pencil P, the inequality

2n = M1 · D
′

· D ≥ mult
Z
(M1)mult

Z
(D′)(−K

X
· Z ) ≥ 2n

implies that Supp(M1) ∩Supp(D′) ⊂ Supp(Z ). It follows from Theorem 2.2-(0) that the linear system M is the pencil in

| − K
X
| consisting of surfaces that pass through Z .

Now we suppose that −K
X
· Z = 1. The generality of X implies that the general surface D in | − K

X
| is smooth and

that D1 ∩D2 consists of the curve Z and an irreducible curve Z̄ such that Z �= Z̄ . Hence we have Z
2 = Z̄

2 = −2 on the

surface D and M|
D
≡ nZ + nZ̄ . Therefore the inequality mult

Z
(M) ≥ n shows that

M|
D

= n1Z + n2Z̄ + Δ,

13
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where n1 ≥ n ≥ n2 and Δ is an effective divisor whose support does not contain Z and Z̄ . Then we see

0 ≤ (n1 − n)Z · Z̄ + Δ · Z̄ = (n − n2)Z̄
2 = −2(n − n2),

which implies n2 ≥ n and hence n = n1 = n2 and Δ = 0. Consequently, we see that

M|
D

= nZ + nZ̄ .

Theorem 2.2-(0) then implies the identity M = P.

Proposition 5.2.
If ג = 11, the linear system | − K

X
| is a unique Halphen pencil on X.

Proof. The threefold X is a general hypersurface of degree 10 in P(1, 1, 2, 2, 5) with −K
3
X

= 1
2
. Its singularities

consist of five points P1, · · · , P5 that are quotient singularities of type 1
2
(1, 1, 1). For each singular point P

i
, we have an

elliptic fibration as follows:

U
i

π
i

����
��

��
�� η

i

��			
						

X
ξ
i

��������� P(1, 1, 2),

where π
i

is the Kawamata blow up at P
i

with weights (1, 1, 1) and η
i

is an elliptic fibration.

If the set CS(X, 1
n
M) contains a curve, then we obtain M = | − K

X
| from Corollary 4.4. Thus we may assume that

CS(X, 1
n
M) ⊂ {P1, P2, P3, P4, P5} by Lemma 4.1. Furthermore, it cannot consist of a single point by Lemmas 2.1 and 2.3.

Indeed if it consists of a single singular point, say P1, then Theorem 2.1 and Lemma 2.3 show that the set CS(U1,
1
n
M

U1
)

must contain a curve of degree 1 on the exceptional divisor of π1. However, Lemma 2.1 gives us a contradiction.

Therefore it contains at least two, say P
i

and P
j
, of the five singular points. Let π : U → U

i
be the Kawamata blow up

at the singular point whose image on X is the point P
j
. Then the pencil | − K

U
| is the proper transform of the pencil

| −K
X
| and its base locus consists of the irreducible curve C

U
. Since −K

U
· C

U
< 0 and M

U
∼Q −nK

U
, Theorem 2.2-(3)

completes the proof.

Proposition 5.3.
If ג = 14, then every Halphen pencil on X is contained in | − K

X
|.

Proof. Let X be a general hypersurface of degree 12 in P(1, 1, 1, 4, 6) with −K
3
X

= 1
2
. It has only one singular point

P that is a quotient singularity of type 1
2
(1, 1, 1).

We have an elliptic fibration as follows:

Y

π

����
��

��
��

η

���
��

��
��

X
ψ

��������� P2
,

where ψ is the natural projection, π is the Kawamata blow up at the point P with weights (1, 1, 1) and η is an elliptic

fibration.

The log pair (X, 1
n
M) is not terminal by Theorem 2.1. However, it is terminal at a smooth point by Lemma 4.1.

Suppose that the set CS(X, 1
n
M) consists of only the singular point P. Since −K

3
Y

= 0 and M
Y
∼Q −nK

Y
, every

surface in the pencil M
Y

is contracted to a curve by the morphism η. The log pair (Y , 1
n
M

Y
) is not terminal along

a curve Z
′ contained in the exceptional divisor of π by Theorem 2.1 and Lemma 2.3. The exceptional divisor of π is

14
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a section of η, which implies −K
Y
·Z

′ is positive because the elliptic fibration η is given by |−K
Y
|. However, Lemma 2.1

shows that −K
Y
· Z

′

≤ −K
3
Y

= 0, which is a contradiction.

Consequently, the set CS(X, 1
n
M) must contain a curve Z . Then the inequality mult

Z
(M) ≥ n holds. Lemma 2.1 shows

−K
X
· Z ≤

1
2
. But if the curve Z is not a fiber of the rational map ψ, then −K

X
· Z ≥ 1. Therefore it must be a fiber of

the rational map ψ.

For a general surface M in M, a general surface D in | − K
X
| and a general surface D

′ in | − K
X
| that contains the

curve Z we have
n

2
= M · D · D

′

≥

n

2
,

which implies that Supp(M) ∩ Supp(D′) ⊂ Supp(Z ). It follows from Theorem 2.2-(0) that the linear system M is the

pencil in | − K
X
| consisting of surfaces that pass through Z .

Proposition 5.4.
If ג = 75, then | − a1KX

| is a unique Halphen pencil on X.

Proof. The threefold X is a general hypersurface of degree 30 in P(1, 4, 5, 6, 15) with −K
3
X

= 1
60

. Its singularities

consist of one quotient singular point of type 1
4
(1, 1, 3), one quotient singular point of type 1

3
(1, 1, 2), two quotient singular

points of type 1
2
(1, 1, 1) and two quotient singular points of type 1

5
(1, 4, 1).

All these singular points except two of type 1
5
(1, 4, 1) satisfy the conditions of Proposition 4.2 with positive c. However

Lemma 4.2 shows that c must be zero. Therefore the set CS(X, 1
n
M) cannot contain these singular points. Furthermore,

it follows from Theorem 2.1 and Lemma 4.1 that the set CS(X, 1
n
M) must contains a singular point P of type 1

5
(1, 4, 1).

The singular point P satisfies all the conditions of Lemma 4.3 and hence we can conclude that M = | − 4K
X
|.

6. Hard cases
In order show how to prove Theorem 1.3, in this section, we select nine out of the 95 families to study in detail. The

selected families demonstrate how to apply our scheme of the proof. They have more complicated features for our scheme

than those in the previous section. In addition, they show some individual methods for each case. Throughout studying

the selected families, we will see all the techniques to prove Theorem 1.3.

:1=ג Hypersurface of degree 4 in P4.

Let X be a general quartic hypersurface in P4. It is smooth and the log pair (X, 1
n
M) is canonical (Theorem 3.6 in [4]).

Proposition 6.1.
Every Halphen pencil is contained in | − K

X
|.

Let us prove Proposition 6.1. Suppose that the set CS(X, 1
n
M) contains a point P of the quartic X . We are to show

this assumption leads to a contradiction.

Let M1 and M2 be two general surfaces in M. Then the inequality mult
P
(M1 · M2) ≥ 4n2 holds ([4]). On the other hand

the degree of the cycle M1 · M2 is 4n2, which implies that mult
P
(M1 · M2) = 4n2. In particular, the support of the cycle

M1 · M2 consists of the union of all lines passing through the point P. This implies that there are at most finitely many

lines on the quartic X passing through the point P. Moreover the equality mult
P
(M) = 2n holds (see [1]).

Let π : V → X be the blow up at the point P and E be the exceptional divisor of π. In addition, let B
i

be the proper

transform of the divisor M
i

by π. Then the equalities mult
P
(M1 · M2) = 4n2 and mult

P
(M) = 2n imply that

B1 · B2 =
k∑

i=1

mult
L̄
i

(
B1 · B2)L̄

i
,

where k is a number of lines on X that passes through the point P and L̄
i

is an irreducible curve such that π(L̄
i
) is

a line on X that passes through the point P.
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Lemma 6.1.
Let Z be an irreducible curve on X that is not a line passing through the point P. Then

deg(Z ) ≥ 2mult
P

(Z ),

where the equality holds only if the proper transform Z
V
does not intersect the curve L̄

i
for any i.

Proof. The proper transform Z
V

is not contained in B
i
because the base locus of the pencil M

V
consists of the curves

L̄1, · · · , L̄k . Hence we have

0 ≤ B
i
· Z

V
≤ n

(
deg(Z ) − 2mult

P
(Z )

)
,

which concludes the proof.

Note that so far we have not used the generality of the quartic X beyond its smoothness. In the following we assume that

there are at most 3 lines on X passing though a given point and every line on X has normal bundle OP1 (−1)⊕OP1 . The

former condition is satisfied on a general quartic threefold. The latter condition is also satisfied on a general quartic.

Moreover the latter condition is equivalent to the following: No two-dimensional linear subspace of P4 is tangent to the

quartic X along a line. In particular, we see that no hyperplane section of X can be singular at three points that are

contained in a single line.

Lemma 6.2.
For a line L in X passing through P, mult

L
(M) ≥ n

2
.

Proof. Let α : W → X be the blow up along the line L and F be the exceptional divisor of the blow up α. Then the

surface F is the rational ruled surface F1.

Let Δ be the irreducible curve on the surface F such that Δ2 = −1 and Z be the fiber of the restricted morphism

π|
F

: F → L over the point P. Then F|
F
≡ −(Δ + Z ), which implies that

M
W

∣
∣
∣
F

≡ nZ + mult
L
(M)(Δ + Z ).

Let β : U → W be the blow up along the curve Z and G be the exceptional divisor of β. Then the exceptional divisor E

of π is the proper transform of the divisor G on the threefold V . Hence we have

mult
Z
(M

W
) = 2n − mult

L
(M),

which implies that mult
Z
(M

W
|
F
) ≥ 2n − mult

L
(M). Therefore we have

n + mult
L
(M) ≥ 2n − mult

L
(M),

which gives mult
L
(M) ≥ n

2
.

Let T be a hyperplane section of X that is singular at the point P. Then T has only isolated singularities. Moreover

we have mult
P
(T ·M

i
) = 4n, which implies that the point P is an isolated double point of the surface T . Put L

i
= π(L̄

i
).

Lemma 6.3.
The point P is not an ordinary double point of the surface T .
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Proof. Suppose that P is an ordinary double point of T . Let us show that this assumption leads us to a contradiction.

Let H
i

be a general hyperplane section of the quartic X that passes through the line L
i
. Then

H
i
· T = L

i
+ Z

i
,

where Z
i

is a cubic curve. The cubic curve Z
i

intersects the line L
i

at the point P and at some smooth point of the

surface T , because L
i

does not contain three singular points of the surface T . Hence we have

L
2
i

= H
i
· L

i
− Z

i
· L

i
< −

1

2
.

The proper transform T
V

has isolated singularities and is normal. Moreover the inequality L2
i
< −

1
2

implies that L̄2
i
< −1.

Let M be a general surface in M. The support of the cycle T ·M consists of the union of all lines on X passing through

the point P because mult
P
(T · M) = 4n. Thus the equalities mult

P
(T ) = 2n and mult

P
(M) = 2n imply that the support

of the cycle T
V
· M

V
consists of the union of the curves L̄1, · · · , L̄k . Hence we have

M
V

∣
∣
∣
T
V

=
k∑

i=1

m
i
L̄
i
,

but M
V
· L̄

l
= −n and L̄

i
· L̄

j
= 0 for i �= j . Therefore we see

−n = M
V
· L̄

j
=

k∑

i=1

m
i
L̄
i
· L̄

j
= m

j
L̄

2
j
.

This implies that m
j
< n.

Let H be the proper transform of a general hyperplane section of X on the threefold V . Then

4n = M
V
· T

V
· H =

k∑

i=1

m
i
L̄
i
· H =

k∑

i=1

m
i
< kn,

which implies that k > 4. Thus the threefold X has at least five lines that pass through the point P, which is

a contradiction.

Thus the point P is not an ordinary double point on the surface T . Therefore there is a hyperplane section Z of the

quartic surface T with mult
P
(Z ) ≥ 3. Hence the curve Z is reducible by Lemma 6.1. Moreover the curve Z is reduced

and mult
P
(Z ) = 3 by our generality assumption on X .

Lemma 6.4.
The curve Z is not a union of four lines.

Proof. Suppose that the curve Z is a union of four lines. Then one component of Z is a line L that does not pass

through the point P. Also L intersects M
i

in at least three points that are contained in the union of the lines L1, · · · , Lk .

On the other hand, we have M
i
·L = n. This implies that L is contained in M

i
by Lemma 6.2, which is impossible because

the base locus of M is the union of the lines L1, · · · , Lk .

The curve Z is not a union of an irreducible cubic curve and a line because of Lemma 6.1. Hence the curve Z is a union

of two different lines passing through the point P and a conic that also passes through the point P, which is impossible

by Lemma 6.1.

Therefore the set CS(X, 1
n
M) contains a curve Z . So we have mult

Z
(M) = n. It follows from Lemma 2.1 that deg(Z ) ≤ 4.

17
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Lemma 6.5.
The curve Z is contained in a two-dimensional linear subspace of P4

.

Proof. Suppose that the curve Z is not contained in any plane in P4. Then the degree of the curve Z is either 3 or

4. If the degree is 3, then the curve is smooth. If the degree is 4, then the curve can be singular but the singularities

consist of only one double point.

Suppose that Z is smooth. Let α : U → X be the blow up along the curve Z and F be its exceptional divisor. Then the

base locus of the linear system |α
∗(−deg(Z )K

X
) − F| does not contain any curve but

(
α
∗(−deg(Z )K

X
) − F

)
· D1 · D2 < 0,

where D1 and D2 are general surfaces of the linear system M
U

, which is a contradiction.

Suppose that the curve Z is a quartic curve with a double point P. Let β : W → X be the composition of the blow up

at the point P with the blow up along the proper transform of the curve Z . Let G and E be the exceptional divisors of

β such that β(E) = Z and β(G) = P. Then the base locus of the linear system |β
∗(−4K

X
) − E − 2G| does not contain

any curve but (
β
∗(−4K

X
) − E − 2G

)
· D1 · D2 < 0

where D1 and D2 are general surfaces of the linear system M
W

, which is a contradiction.

Lemma 6.6.
If the curve Z is a line, then the pencil M is contained in | − K

X
|.

Proof. Let π : V → X be the blow up along the line Z . Then the linear system |−K
V
| is base-point-free and induces

an elliptic fibration η : V → P2. Therefore M
V

is contained in fibers of η. In particular, the base locus of the pencil

M
V

does not contain curves not contracted by the morphism η.

The set CS(V , 1
n
M

V
) is not empty by Theorem 2.1. However, it does not contain any point because we assume that the

set CS(X, 1
n
M) does not contain points. Hence there is an irreducible curve L ⊂ V such that mult

L
(M

V
) = n and η(L)

is a point.

The pencil M
V

is the pull-back via the morphism η of a pencil P on P2 with P ∼Q OP2 (n). Hence the equality

mult
L
(M

V
) = n implies that the multiplicity of the pencil P at the point η(L) is n, which implies that n = 1.

Thus we may assume that the set CS(X, 1
n
M) does not contain lines. Moreover the pencil M is contained in | − K

X
|

if Z is a plane quartic curve by Theorem 2.2. Therefore we may assume further that Z is either a plane cubic curve or

a conic.

Lemma 6.7.
If the curve Z is a cubic, then M is a pencil in | − K

X
|.

Proof. Let P be the pencil in | − K
X
| that contains all surfaces passing through the cubic curve Z , and let D be

a general surface in P. Then D is a smooth K3 surface but the base locus of the pencil P consists of the curve Z and

some line L ⊂ X . We have

M

∣
∣
∣
D

= nZ + mult
L
(M)L + B ≡ nZ + nL,

where B is a pencil on D without fixed components. On the other hand, we have L
2 = −2 on the surface D. This implies

that mult
L
(M) = n and B = ∅. Hence we have M = P by Theorem 2.2.

Therefore we may assume that the curve Z is a conic. Let Π be the plane in P4 that contains the conic Z .

Lemma 6.8.
If Π ∩ X = Z, then M is a pencil in | − K

X
|.
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Proof. Let α : U → X be the blow up along the curve Z and D be a general surface of the pencil | − K
U
|. Then D

is a smooth K3 surface but the base locus of the pencil | − K
U
| consists of the irreducible curve L such that α(L) = Z

and −K
U
|
D
≡ L. Therefore we have M

U

∣
∣
D

≡ nL, but L2 = −2 on the surface D. Hence we have M
U

= | − K
U
| by

Theorem 2.2.

In the case when the set-theoretic intersection Π ∩ X contains a curve different from a conic Z , the arguments of the

proof of Lemma 6.7 easily imply that M is a pencil in | − K
X
|.

Thus we have completed the proof of Proposition 6.1.

ג = 2: Hypersurface of degree 5 in P(1, 1, 1, 1, 2).

The threefold X is a general hypersurface of degree 5 in P(1, 1, 1, 1, 2) with −K
3
X

= 5
2
. It has only one singular point O

at (0 : 0 : 0 : 0 : 1) which is a quotient singularity of type 1
2
(1, 1, 1). The hypersurface X can be given by the equation

w
2
f1

(
x, y, z, t

)
+ wf3

(
x, y, z, t

)
+ f5

(
x, y, z, t

)
= 0,

where f
i

is a homogeneous polynomial of degree i.

There is a commutative diagram

Y

π

		













γ

���
��

��
��

� W
i

α
i



w
i

���
��

��
��

X

ψ

��������� Y
′

ω

����
��

��
��

U
i

β
i



η
i��













P3
χ
i

���������
P2

where

• ψ is the natural projection,

• π is the Kawamata blow up at the point O with weights (1, 1, 1),

• γ is the birational morphism that contracts 15 smooth rational curves L1, · · · , L15 to 15 isolated ordinary double

points P1, · · · , P15 of the variety Y
′, respectively,

• α
i

is the blow up along the curve L
i
,

• β
i

is the blow up at the point P
i
,

• w
i

is a birational morphism,

• ω is a double cover of P3 branched over a sextic surface R ⊂ P3,

• χ
i

is the projection from the point ω(P
i
),

• η
i

is an elliptic fibration.

The surface R is given by the equation

f3

(
x, y, z, t

)2
− 4f1

(
x, y, z, t

)
f5

(
x, y, z, t

)
= 0 ⊂ P

3 ∼= Proj
(
C[x, y, z, t]

)
.

It has 15 ordinary double points ω(P1), · · · , ω(P15) that are given by the equations

f3

(
x, y, z, t

)
= f1

(
x, y, z, t

)
= f5

(
x, y, z, t

)
= 0 ⊂ P

3
.

We may assume that the curves in P3 defined by f3 = f1 = 0 and f5 = f1 = 0 are irreducible.

For convenience, let M and M
′ be general surfaces in the pencil M.
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Lemma 6.9.
The set CS(X, 1

n
M) does not contain any smooth point of X.

Proof. Suppose that the set CS(X, 1
n
M) contains a smooth point P of X . Let D be a general surface of the linear

system | − K
X
| that passes through the point P. The surface D does not contain an irreducible component of the cycle

M ·M
′ if none of π(L

i
) passes through the point P. In particular, in such a case, we see

mult
P

(
M ·M

′

)
≤ M · M

′

· D = −n
2
K

3
X

=
5

2
n

2
.

This is impossible by Theorem 3.1 in [4]. Thus we may assume that the curve π(L1) passes through the point P.

Let us use the arguments of the article [5]. Put L = π(L1) and

M

∣
∣
∣
D

= L + mult
L

(
M

)
L,

where L is a pencil on the surface D without fixed curves. Then the point P is a center of log canonical singularities of

the log pair (D, 1
n
M|

D
) by the Shokurov connectedness principle ([4]). This implies that

mult
P

(
Λ1 · Λ2

)
≥ 4n

(
n − mult

L

(
M

))

by Theorem 3.1 in [4], where Λ1 and Λ2 are general curves in L. The equality

Λ1 · Λ2 =
5

2
n

2
− mult

L

(
M

)
n −

3

2
mult2

L

(
M

)

holds on the surface D because L
2 = −

3
2

on the surface D. Hence we have

5

2
n

2
− mult

L

(
M

)
n −

3

2
mult2

L

(
M

)
≥ 4n

(
n − mult

L

(
M

))
,

which gives mult
L
(M) = n. Thus the set CS(X, 1

n
M) contains the curve π(L1).

The set CS(X, 1
n
M) contains the point O by Lemma 2.2. So M

W1
∼Q −nK

W1
because mult

L
(M) = n, which implies that

each surface of M
W1

is contracted to a curve by the elliptic fibration η1 ◦w1. On the other hand, the set CS(W1,
1
n
M

W1
)

contains a subvariety of the threefold W1 that dominates the point P.

Let E1 be the exceptional divisor of α1. Then E1
∼= P

1
× P1 and the pencil M

W1
|
E1

does not have fixed components

because E1 is a section of the elliptic fibration η1 ◦ ω1 and the base locus of the pencil M
W1

can only contain curves

contracted by the elliptic fibration η1 ◦ w1. Thus the set CS(W1,
1
n
M

W1
) contains a point Q of the surface E1 such that

π ◦ α1(Q) = P.

The point Q is a center of log canonical singularities of the log pair (E1,
1
n
M

W1
|
E1

) by the Shokurov connectedness

principle ([4]). Let Δ1 and Δ2 be general curves in M
W1
|
E1

. Then the inequality

2n2 = mult
Q

(
Δ1 · Δ2

)
≥ 4n2

holds by Theorem 3.1 in [4], which is a contradiction.

Lemma 6.10.
If the set CS(X, 1

n
M) contains a curve Λ not passing through the singular point O, then the pencil M is contained in

| − K
X
|.
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Proof. We have multΛ(M) = n and −K
X
· Λ ≤ 2 by Corollary 4.1.

Suppose that −K
X
· Λ = 2 and ψ(Λ) is a line. Then the line ψ(Λ) passes through a unique singular point of R . Hence

we may assume that the curve Λ intersects π(L
i
) only for i = 1.

Let D be the pencil in the linear system | −K
X
| consisting of surfaces that pass through the curve Λ and D be a general

surface of the pencil D . Then the surface D is smooth in the outside of the singular point O, the point O is an ordinary

double point of the surface D and the base locus of the pencil D consists of the curve Λ and the curve π(L1). Put

L = π(L1). Then

M

∣
∣
∣
D

= multΛ

(
M

)
Λ + mult

L

(
M

)
L + L ≡ n

(
Λ + L

)
,

where L is a pencil with no fixed curves. It gives M = D by Theorem 2.2 since the inequality L
2
< 0 holds on the

surface D.

We may assume that either the equality −K
X
·Λ = 1 holds or ψ(Λ) is a conic, both of which imply that Λ is smooth. Let

σ : X̆ → X be the blow up along the curve Λ and G be its exceptional divisor.

Suppose that −K
X
· Λ = 2. Then Λ is cut out as a set by the surfaces of the linear system | − 2K

X
| that pass through

the curve Λ. Moreover the scheme-theoretic intersection of two general surfaces of the linear system | − 2K
X
| passing

through the curve Λ is reduced at a generic point of the curve Λ. This implies that the divisor σ∗(−2K
X

) −G is nef by

Lemma 5.2.5 in [5]. However, we obtain an absurd inequality

−3n2 =
(
σ
∗(−2K

X
) −G

)
· M

X̆
· M

′

X̆

≥ 0.

Therefore the equality −K
X
· Λ = 1 holds, which implies that | − K

X̆
| is a pencil.

Suppose that ψ(Λ) is not contained in the plane f1(x, y, z, t) = 0. Then ψ(Λ) contains a unique singular point of the

surface R ⊂ P3. Hence we may assume that the curve Λ intersects π(L
i
) only for i = 1. This implies that the base locus

of the linear system | − K
X̆
| consists of irreducible curves Λ̆ and L̆1 such that (ψ ◦ σ )(Λ̆) = ψ(Λ) and σ (L̆1) = π(L1). Let

D̆ be a general surface in | − K
X̆
|. Then we can consider the curves Λ̆ and L̆1 as divisors on D̆. We have

Λ̆2 = −2, L̆2
1 = −

3

2
, Λ̆ · L̆1 = 1,

which implies that the intersection form of Λ̆ and L̆1 is negative-definite. Since

M
X̆

∣
∣
∣
D̆

≡ −nK
X̆

∣
∣
∣
D̆

≡ n

(
Λ̆ + L̆1

)
,

it follows from Theorem 2.2 that M
X̆

= | − K
X̆
|.

Finally, we suppose that the line ψ(Λ) is contained in the plane f1(x, y, z, t) = 0. In particular, the line ψ(Λ) is not

contained in the surface R because the curve f3 = f1 = 0 is irreducible. Moreover the line ψ(Λ) contains exactly three

singular points of the ramification surface2; otherwise the point O would belong to the curve Λ. Thus the curve Λ

intersects exactly three curves among the curves L1, · · · , L15; otherwise Λ would contain the point O.

We may assume that Λ intersects the curves π(L1), π(L2) and π(L3). This means that the points ω(P1), ω(P2), ω(P3) are

contained in ψ(Λ). The base locus of | − K
X̆
| consists of the curves L̆1, L̆2, L̆3 such that σ (L̆

i
) = π(L

i
). The curves L̆1,

L̆2, L̆3 can be contracted on the surface D̆ to a singular point of type D4, which implies that their intersection form is

negative-definite. Hence we have M
X̆

= | − K
X̆
| by Theorem 2.2 .

The equivalence M
Y
∼Q −nK

Y
holds by Lemma 2.2. This implies that the set CS(Y , 1

n
M

Y
) contains no point of Y due to

Lemmas 2.3 and 6.9. Let M
Y
′ be the push-forward of the pencil M

Y
by the birational morphism γ. Then M

Y
′ ∼Q −nK

Y
′ ,

the log pair (Y ′

,
1
n
M

Y
′ ) has canonical singularities but it follows from Theorem 2.1 that the singularities of the log pair

(Y ′

,
1
n
M

Y
′ ) are not terminal.

2
In fact, we may assume that no three points of the set Sing(R) are collinear.
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Lemma 6.11.
If the set CS(Y ′

,
1
n
M

Y
′ ) contains an irreducible curve Γ with −K

Y
′ · Γ �= 1, then the pencil M is contained in | − K

X
|.

Proof. Let D be a general divisor in | − K
Y
′ |. In addition, let M

Y
′ = γ(M

Y
) and M

′

Y
′
= γ(M′

Y
). Then

2n2 = D · M
Y
′ · M

′

Y
′ ≥ multΓ

(
M

Y
′ · M

′

Y
′

)
D · Γ ≥ −n

2
K
Y
′ · Γ,

because multΓ(M
Y
′ ) = n. Therefore the inequality −K

Y
′ · Γ ≤ 2 holds.

Suppose that −K
Y
′ · Γ = 2 but the curve ω(Γ) is a line. Let T be the linear subsystem of the linear system | − K

Y
′ |

consisting of surfaces passing through the curve Γ and T be a general surface in the pencil T . Then the base locus of

the pencil T consists of the curve Γ and the rational map induced by the pencil T is the composition of the double cover

ω with the projection from the line ω(Γ). On the other hand, we have

2n = D · T · M
Y
′ ≥ multΓ

(
T · M

Y
′

)
D · Γ ≥ −nK

Y
′ · Γ.

This implies that the support of the cycle T · M
Y
′ is contained in Γ. Thus we have M

Y
′ = T by Theorem 2.2.

For now, we suppose that −K
Y
′ · Γ = 2 but the curve ω(Γ) is a conic. Then Γ is smooth and ω|Γ is an isomorphism.

Moreover the curve Γ contains at most 2 singular points of the threefold Y
′ if the curve ω(Γ) is not contained in the

plane f1(x, y, z, t) = 0 and the curve Γ contains at most 6 singular points of the threefold Y
′ otherwise. We may assume

that Γ passes through P1, · · · , Pk
, where 0 ≤ k ≤ 6. The equality k = 0 means that Γ lies in the smooth locus of the

threefold Y
′.

Let β : V → Y
′ be the blow up at the points P1, · · · , Pk

and E
i

be the exceptional divisor of the blow up β with

β(E
i
) = P

i
. The exceptional divisor E

i
is isomorphic to P1

× P1. The proper transform Γ
V

intersects the surface E
i

transversally at a single point, which we denote by Q
i
.

Let υ : W → V be the blow up along the curve Γ
V

and G be the exceptional divisor of the birational morphism υ. In

addition, let A
i

and B
i

be the fibers of the natural projections of the surface E
i

that pass through the point Q
i
, and Ā

i

and B̄
i

be the proper transforms of the curves A
i

and B
i

on the threefold W , respectively. Then we can flop the curves

Ā
i

and B̄
i
.

Let υ1 : U → W be the blow up along the curves Ā1, B̄1, · · · , Āk
, B̄

k
. Also let F

i
and H

i
be the exceptional divisors of υ1

such that υ1(F
i
) = Ā

i
and υ1(Hi

) = B̄
i
. Then all the exceptional divisors are isomorphic to P1

×P1. There is a birational

morphism υ
′

1 : U → W
′ such that υ′1(F

i
) and υ

′

1(H
i
) are rational curves but υ′1 ◦ υ

−1
1 is not biregular in a neighborhood of

Ā
i

and B̄
i
. Let E′

i
be the proper transform of E

i
on the threefold W

′. Then we can contract the surface E
′

i
to a singular

point of type 1
2
(1, 1, 1).

Let υ′ : W′

→ V
′ be the contraction of E′

1, · · · , E
′

k
and G

′ be the proper transform of the surface G on the threefold V
′.

Then there is a birational morphism β
′ : V ′

→ Y
′ that contracts the divisor G′ to the curve Γ. Hence we constructed the

commutative diagram

W

υ

����
��

��
��

U

υ1


υ
′

1



��
��

��
��

V

β ���
��

��
��

� W
′

υ
′

����
��

��
��

Y
′

V
′

.

β
′





The threefold V
′ is projective. Its singularities consist of 15 − k ordinary double points and k singular points of type

1
2
(1, 1, 1). However, it is not Q-factorial because the threefold Y

′ is not Q-factorial.

The construction of the birational morphism β
′ implies that

M
V
′ ∼Q −nβ

′∗(K
Y
′ ) − nG

′

∼Q −nK
V
′ .
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Let D′ be a general surface of the linear system |β
′∗(−4K

Y
′ )−G

′

|. Then the divisor D′ is nef by Lemma 5.2.5 in [5]. The

construction of the birational morphism β
′ implies that

0 >

(
− 4 +

k

2

)
n

2 =
(
β
′∗(−4K

Y
′ ) −G

′

)
·

(
β
′∗(−nK

Y
′ ) − nG

′

)2

= D
′

· M
V
′ · M

′

V
′ ≥ 0,

where M
V
′ and M

′

V
′ are the proper transforms of M

Y
′ and M

′

Y
′ by the birational morphism β

′. We have obtained

a contradiction.

Lemma 6.12.
If the set CS(Y ′

,
1
n
M

Y
′ ) contains a curve Γ with −K

Z
· Γ = 1, then the pencil M is contained in | − K

X
|.

Proof. The curve ω(Γ) is a line in P3. The restricted morphism ω|Γ : Γ → ω(Γ) is an isomorphism. The curve Γ

contains at most one singular point of Y ′ if ω(Γ) is not contained in the plane f1(x, y, z, t) = 0 and the curve ω(Γ)

contains at most three singular points of the threefold Y
′ otherwise. We may assume that Γ contains P1, · · · , Pk

, where

0 ≤ k ≤ 3. Here, the equality k = 0 means that Γ lies in the smooth locus of the threefold Y
′.

Suppose that the line ω(Γ) is not contained in R . Let D be a general surface in | − K
Y
′ | that passes through the curve

Γ. Then

M
Y
′

∣
∣
∣
D

= multΓ

(
M

Y
′

)
Γ + multΩ

(
M

Y
′

)
Ω + L,

where L is a pencil without fixed curves and Ω is a smooth rational curve different from Γ such that ω(Ω) = ω(Γ).

Moreover the surface D is smooth in the outside the points P1, · · · , Pk
but the points P1, · · · , Pk

are isolated ordinary

double points of the surface D. We have Ω2 = −2 + k

2
on the surface D and

(
n − multΩ(M

Y
′ )

)
Ω2 =

(
multΓ(M

Y
′ ) − n

)
Γ · Ω + L · Ω = L · Ω ≥ 0,

where L is a general curve in L. Therefore the equality multΩ(M
Y
′ ) = n holds. This easily implies that M

Y
′ is a pencil

in | − K
Y
′ | because of Theorem 2.2.

Finally, we suppose that ω(Γ) is contained in the ramification surface of ω. It implies that ω(Γ) is not contained in

the plane f1(x, y, z, y) = 0. The proof of Lemma 6.11 shows the existence of a birational morphism υ
′ : W′

→ V
′ that

contracts a single irreducible divisor G′ to the curve Γ, the surface G
′ contains k singular points of the threefold V

′ of

type 1
2
(1, 1, 1) and υ

′ is the blow up of Γ at a generic point of Γ.

Let D′ be a general surface in | − K
V
′ |. Then ω ◦ β

′(D′) is a plane that passes through ω(Γ). It implies that the base

locus of the pencil | − K
V
′ | consists of an irreducible curve Γ′ such that β′(Γ′) = Γ and

D
′

· Γ′ = −K
3
V
′ = −2 +

k

2
.

Then one can easily see that M
V
′ = | − K

V
′ | by Theorem 2.2. Hence the linear system M is a pencil in | − K

X
|.

Proposition 6.2.
Every Halphen pencil is contained in | − K

X
|.

Proof. Let M
U
i

be the push-forward of the pencil M
W
i

by the morphism w
i
. Due to the previous arguments, we may

assume that

P1 ∈ CS

(
Y
′

,

1

n

M
Y
′

)
⊆

{
P1, · · · , P15

}
,

which implies that M
U1

∼Q −nK
U1

by Theorem 3.10 in [4]. Therefore each member in the pencil M
U1

is contracted to

a curve by the elliptic fibration η1. Therefore the base locus of the pencil M
U1

does not contain curves that are not

contracted by η1. On the other hand, the singularities of the log pair (U1,
1
n
M

U1
) are not terminal by Theorem 2.1.
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The proof of Lemma 6.9 implies that the set CS(U1,
1
n
M

U1
) does not contain a smooth point of the exceptional divisor of

β1. Therefore the set CS(U1,
1
n
M

U1
) contains a singular point of the threefold U1, which implies that

{
P1, Pi

}
⊆ CS

(
Y
′

,

1

n

M
Y
′

)
⊆

{
P1, · · · , P15

}
,

for some i �= 1. Thus each member in the pencil M
U
i

is contracted to a curve by the elliptic fibration η
i
, which implies

that M is a pencil in | − K
X
|.

ג = 4: Hypersurface of degree 6 in P(1, 1, 1, 2, 2).

The weighted hypersurface X is defined by a general quasihomogeneous polynomial of degree 6 in P(1, 1, 1, 2, 2) with

−K
3
X

= 3
2
. The singularities of the hypersurface X consist of points P1, P2, P3 that are quotient singularities of types

1
2
(1, 1, 1). The hypersurface X can be given by the equation

w
2
t +

(
t

2 + tf2(x, y, z) + f4(x, y, z)
)
w + f6(x, y, z, t) = 0

such that P1 is given by the equations x = y = z = t = 0, where f
i

is a general quasihomogeneous polynomial of degree

i.

There is a commutative diagram

U

β

������������������
α ��

X

ψ

���
�

�
�

�
�

�
�

�

χ

���
�

�
�

�
�

�
�

�
�

Y

η

��

π



W

ω

����������������

P(1, 1, 1, 2)
ξ

��������������� P2
,

where

• ψ is the natural projection,

• π is the composition of the Kawamata blow ups at the points P1, P2 and P3,

• η is an elliptic fibration

• α is the Kawamata blow up of the point P1,

• ξ and χ are the natural projections,

• β is a birational morphism,

• ω is a double cover ramified along an octic surface R ⊂ P(1, 1, 1, 2).

The surface R is given by the equation

(
t

2 + tf2(x, y, z) + f4(x, y, z)
)2

− 4tf6(x, y, z, t) = 0 ⊂ P(1, 1, 1, 2) ∼= Proj
(
C[x, y, z, t]

)
,

which implies that the surface R has exactly 24 isolated ordinary double points given by the equations

t = t
2 + tf2(x, y, z) + f4(x, y, z) = f6(x, y, z, t) = 0.

The birational morphism β contracts 24 smooth rational curves C1, · · · , C24 to isolated ordinary double points of the

variety W that dominate the singular points of R .

It easily follows from Theorems 2.1, 4.2, Lemmas 2.1, 2.3 and 4.1 that either the set CS(X, 1
n
M) contains an irreducible

curve passing through a singular point of X or the set CS(X, 1
n
M) consists of a single singular point of X . In particular,

we may assume that the set CS(X, 1
n
M) contains the point P1.
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Proposition 6.3.
Every Halphen pencil on X is contained in | − K

X
|.

Proof. Suppose that the set CS(X, 1
n
M) contains an irreducible curve Z that passes through P1. Then it follows

from Theorem 4.2 that the linear system M is a pencil in | − K
X
| in the case when −K

X
· Z = 3

2
. Therefore we may

assume that the curve Z is contracted by the rational map ψ to a point. Also we may assume that either −K
X
· Z = 1

2

or −K
X
· Z = 1.

Let B be the pencil in | − K
X
| consisting of surfaces passing through Z . In addition, let B and B

′ be general surfaces in

B . Then the cycle B · B
′ is reduced and contains the curve Z . Put Z̃ = B · B

′ and let Z̃
W

be the image of the curve Z̃
U

by the birational morphism β. Then ω(Z̃
W

) is a ruling of the cone P(1, 1, 1, 2). In particular, the curve ω(Z̃
W

) contains at

most one singular point of the surface R .

There are exactly 24 rulings of the cone P(1, 1, 1, 2) that pass through the singular points of the surface R . Thus we

may assume that the curve Z̃
W

is irreducible in the case when the curve ω(Z̃
W

) passes through a singular point of the

surface R . Moreover the surface B
W

that is the image of the surface B
U

by β has an isolated ordinary double point at

the point β(C
i
) in the case when ω ◦ β(C

i
) ∈ ω(Z̃

W
). Therefore the cycle Z̃ consists of two irreducible components.

Let Z̄ be the irreducible component of Z̃ that is different from Z . Then the generality of the hypersurface X implies that

Z̄
2
< 0 on the surface B, but M|

B
≡ nZ + nZ̄ . On the other hand, we have

M

∣
∣
∣
B

= m1Z + m2Z̄ + F,

where and m1 and m2 are natural numbers and F is an effective divisor on B whose support contains neither the curve

Z nor the curve Z̄ . We also have

m1 ≥ mult
Z
(M) ≥ n

and

(n − m2)Z̄ ≡ F + (m1 − n)Z.

Together they imply that m2 = m1 = n and the support of the cycle M · B is contained in Z ∪ Z̄ . Therefore the identity

M = B follows from Theorem 2.2.

For now, we suppose that the set CS(X, 1
n
M) consists of the point P1. It follows from Lemma 2.2 that M

U
∼Q −nK

U
.

Therefore the set CS(U, 1
n
M

U
) is not empty by Theorem 2.1. Let E be the exceptional divisor of α. Then E

∼= P2 and

the set CS(U, 1
n
M

U
) contains a line L on the surface E by Lemma 2.3.

Let Z be the curve S
t

U
∩E. Then Z does not contain the curve L, the surface S

t

U
contains every curve C

i
and the curve Z

is a smooth plane quartic curve. The hypersurface X is general by assumption. In particular, the surface S
t

U
is smooth

along the curve C
i
, the morphism β|

S
t

U

contracts the curve C
i

to a smooth point of the surface S
t

W
which is the image of

S
t

U
by β. Moreover we may assume that the intersection L ∩ Z contains at least one point of the curve Z that is not

contained in ∪
24
i=1Ci

. Indeed, it is enough to assume that the set ∪24
i=1(Ci

∩ Z ) does not contain bi-tangent points of the

plane quartic curve Z .

Let M′ be a general surface in M and D be a general surface in | − 2K
U
|. Then

2n2 = D · M
U
· M

′

U
≥ 2mult

L
(M

U
· M

′

U
) ≥ 2mult

L
(M

U
)mult

L
(M′

U
) ≥ 2n2

,

which implies that the support of the cycle M
U
·M

′

U
is contained in the union of the curve L and ∪

24
i=1Ci

. Hence we have

M
U

∣
∣
∣
S
t

U

= D +

24∑

i=1

m
i
C
i
,

where m
i

is a natural number and D is a pencil without fixed components. Let P be a point of L∩Z that is not contained

in ∪
24
i=1Ci

. For general curves D1 and D2 in D ,

n
2
−

24∑

i=1

m
2
i

= D1 · D2 ≥ mult
P
(D1)mult

P
(D2) ≥ n

2
,
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which implies that m1 = m2 = · · · = m24 = 0. Therefore we have M
U
· M

′

U
= n

2
L, which is impossible because the

suppose of the cycle M ·M
′ must contain a curve on X .

ג = 16: Hypersurface of degree 12 in P(1, 1, 2, 4, 5).

The threefold X is a general hypersurface of degree 12 in P(1, 1, 2, 4, 5) with −K
3
X

= 3
10

. Its singularities consist of three

quotient singularities of type 1
2
(1, 1, 1) and one point O that is a quotient singularity of type 1

5
(1, 1, 4).

There is a commutative diagram

U

α

��

W

β


Y

γ



η

��
X

ψ

��������������� P(1, 1, 2)

where

• ψ is the natural projection,

• α is the Kawamata blow up at the point O with weights (1, 1, 4),

• β is the Kawamata blow up with weights (1, 1, 3) at the singular point of the variety U that is contained in the

exceptional divisor of α,

• γ is the Kawamata blow up with weights (1, 1, 2) at the singular point of W that is contained in the exceptional

divisor of β,

• η is an elliptic fibration.

The hypersurface X can be given by the equation

w
2
z + f7(x, y, z, t)w + f12(x, y, z, t) = 0,

where f
i

is a quasihomogeneous polynomial of degree i. Moreover there is commutative diagram

U

π

������������������
α ��

X

ψ

���
�

�
�

�
�

�
�

�

χ

���
�

�
�

�
�

�
�

�
�

V

ω

����������������

P(1, 1, 2, 4)
ξ

��������������� P(1, 1, 2),

where

• ξ and χ are the natural projections,

• π is a birational morphism,

• ω is a double cover of P(1, 1, 2, 4) ramified along a surface R of degree 12.

The surface R is given by the equation

f7(x, y, z, t)
2
− 4zf12(x, y, z, t) = 0 ⊂ P(1, 1, 2, 4) ∼= Proj

(
C[x, y, z, t]

)
,

which implies that R has 21 isolated ordinary double points, given by the equations z = f7 = f12 = 0. The morphism π

contracts 21 smooth rational curves C1, C2, · · · , C21 to isolated ordinary double points of V which dominate the singular

points of R .
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Proposition 6.4.
The linear system | − K

X
| is a unique Halphen pencil on X.

First of all, Corollary 4.4 and Lemma 4.1 imply that the set CS(X, 1
n
M) can contain only singular points of X . Furthermore,

if it contains a singular point of type 1
2
(1, 1, 1), then we see that the singular point satisfies all the conditions of Lemma 4.3

and hence M = | − K
X
|. Therefore to prove Proposition 6.4, we may assume that

CS

(
X,

1

n

M

)
=

{
O

}
.

Let E be the exceptional divisor of the birational morphism α. It contains one singular point P of U that is a quotient

singularity of type 1
4
(1, 1, 3). The surface E is isomorphic to P(1, 1, 4). The set CS(U, 1

n
M

U
) contains the point P by

Theorem 2.1 and Lemma 2.3. Furthermore, the following shows it consists of the point P.

Lemma 6.13.
The set CS(U, 1

n
M

U
) cannot contain a curve.

Proof. Suppose that the set CS(U, 1
n
M

U
) contains a curve Z . Then Z is contained in the surface E. Furthermore,

it follows from Lemma 2.3 that Z is a curve in the linear system |OP(1,1,4)(1)|. Therefore for a general surface M in M,

we have

Supp
(
M

U
· E

)
= Z

because M
U
|
E
∼Q |OP(1,1,4)(n)| and mult

Z
(M

U
) ≥ n.

Let M′

U
be a general surface in M

U
and D be a general surface in | − 4K

U
|. Then

n
2 = D · M

U
· M

′

U
≥ mult

Z
(M

U
· M

′

U
) ≥ mult

Z
(M

U
)mult

Z
(M′

U
) ≥ n

2
,

which implies that mult
L
(M

U
· M

′

U
) = n

2 and

Supp
(
M

U
· M

′

U

)
⊂ Z ∪

21⋃

i=1

C
i
.

We consider the surface S
z . The image S

z

V
of Sz

U
to V is isomorphic to P(1, 1, 4). The surface S

z

U
does not contain the

curve Z due to the generality in the choice of X , but it contains every curve C
i
. Moreover the surface S

z

U
is smooth

along the curves C
i

and the morphism π|
S
z

U

contracts the curve C
i

to a smooth point of Sz

V
. Hence we have

M
U

∣
∣
∣
S
z

U

= D +

21∑

i=1

m
i
C
i
,

where m
i

is a natural number and D is a pencil without fixed components. Therefore the inequality m
i
> 0 implies that

C
i
∩Z �= ∅ and there is a point P′ of the intersection Z ∩S

z

U
that is different from the singular point P. We may assume

that m1 > 0. Let D1 and D2 be general curves in D . Then

mult
P
′ (D1) = mult

P
′ (D2) ≥

{
n in the case when P

′

�∈ ∪
21
i=1Ci

n − m
i

in the case when P
′

∈ C
i

and the curves D1 and D2 pass through the point P because the point P is a base point of the pencil M
U

. Therefore

we have

n
2

4
−

21∑

i=1

m
2
i

= D1 · D2 > mult
P
(D1)mult

P
(D2) ≥ (n −m1)

2
≥

n
2

4
−m

2
1,

which is a contradiction.
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Let F be the exceptional divisor of the birational morphism β. It contains the singular point Q of W that is a quotient

singularity of type 1
3
(1, 1, 2). The set CS(W,

1
n
M

W
) consists of the singular point Q by Theorem 2.1, Lemmas 2.3 and

2.1.

Let G be the exceptional divisor of γ and Q1 be the unique singular point of G. The set CS(Y , 1
n
M

Y
) must consist of

the point Q1 by Theorem 2.1 and Lemma 2.3 because every member in M
Y

is contracted to a curve by the morphism η.

Let σ : V1 → Y be the Kawamata blow up at the point Q1. Then M
V1

∼Q −nK
V1

by Lemma 2.2, the linear system

| − K
V1
| is the proper transform of the pencil | − K

X
| and the base locus of the pencil | − K

V1
| consist of the curve C

V1
.

Therefore the inequality −K
V1
· C

V1
< 0 implies M = | − K

X
| by Theorem 2.2.

ג = 18: Hypersurface of degree 12 in P(1, 2, 2, 3, 5).

The threefold X is a general hypersurface of degree 12 in P(1, 2, 2, 3, 5) with −K
3
X

= 1
5
. The singularities of X consist of

six points O1, O2, O3, O4, O5 and O6 that are quotient singularities of type 1
2
(1, 1, 1) and one point P that is a quotient

singularity of type 1
5
(1, 2, 3).

There is a commutative diagram

U

α

��

W

β



η

��
X

ψ

�������� P(1, 2, 2),

where

• ψ is the natural projection,

• α is the Kawamata blow up at the point P with weights (1, 2, 3),

• β is the Kawamata blow up with weights (1, 2, 1) of the singular point of the variety U that is a quotient singularity

of type 1
3
(1, 2, 1),

• η is an elliptic fibration.

The hypersurface X can be given by the equation

w
2
z + wf7(x, y, z, t) + f12(x, y, z, t) = 0,

where f
i
(x, y, z, t) is a general quasihomogeneous polynomial of degree i. Let P be the pencil of surfaces that are cut

out on the hypersurface X by the equations λx2 + μz = 0, where (λ : μ) ∈ P1.

Proposition 6.5.
A general surface of the pencil P is birational to a K3 surface. In particular, the linear system P is a Halphen pencil.

Proof. A general surface of the pencil P is not ruled because X is birationally rigid ([5]). Hence a general surface of

the pencil P is birational to a K3 surface because it is a compactification of a double cover of C
2 branched over a sextic

curve.

The hypersurface X can also be given by the equation

xg11(x, y, z, t, w) + tg9(x, y, z, t, w) + wg7(x, y, z, t, w) + yg5(y, z) = 0

such that the point O1 is given by the equations x = y = t = w = 0, where g
i
is a general quasihomogeneous polynomial

of degree i. Let P1 be the pencil of surfaces that are cut out on the hypersurface X by the pencil λx2 + μy = 0, where

(λ : μ) ∈ P1. We will see that the linear system P1 is a Halphen pencil. The base locus of P1 does not contain the

points O2, O3, O4, O5 and O6. Similarly, we can construct a Halphen pencil P
i

such that P
i
⊂ | − 2K

X
| and the base

locus of the pencil P
i

contains the point O
i
.
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Proposition 6.6.
The linear systems P, P1, P2, P3, P4, P5 and P6 are the only Halphen pencils on X.

We may assume that the singularities of the log pair (X, 1
n
M) are canonical. Moreover it follows from Lemmas 4.1 and

Corollary 4.3 that

CS

(
X,

1

n

M

)
⊂

{
O1, O2, O3, O4, O5, O6, P

}
.

Lemma 6.14.
If O

i
∈ CS(X, 1

n
M), then M = P

i
.

Proof. Let π
i

: V
i
→ X be the Kawamata blow up at the point O

i
with weights (1, 1, 1). Then M

V
i
∼Q −nK

V
i

by

Lemma 2.2.

The linear system | − 2K
V
i
| is the proper transform of the pencil P

i
and the base locus of | − 2K

V
i
| consists of the

irreducible curve C
V
i

such that π(C
V
i
) is the base curve of the pencil P

i
.

Let D be a general surface in | − 2K
V
i
|. Then the surface D is normal and C

2
V
i

< 0 on the surface D. On the other hand,

we have C
V
i
≡ −K

V
i
|
D

, which implies that M
V
i

= | − 2K
V
i
| by Theorem 2.2.

Proposition 6.7.
A general surface of each pencil P

i
is birational to a K3 surface. In particular, P

i
is a Halphen pencil.

Proof. We use the same notations as in the proof of Lemma 6.14. The pencil | − 2K
V
i
| satisfies the condition of

Theorem 2.3. Therefore it is a Halphen pencil. The intersection of the surface D and the exceptional divisor E
i

∼= P
2

of the birational morphism π is a conic on E
i
. An irreducible component of the intersection D · E

i
is a rational curve

not contained in the base locus of the pencil | − 2K
V
i
|. Therefore the surface D is birational to a K3 surface by

Corollary 2.2.

Let E be the exceptional divisor of the birational morphism α. It has two singular points Q and O that are quotient

singularities of types 1
3
(1, 2, 1) and 1

2
(1, 1, 1), respectively.

Let C be the base curve of the pencil P and L be the unique curve in of the linear system |OP(1, 2, 3)(1)| on E.

Lemma 6.15.
If the set CS(U, 1

n
M

U
) contains the point O, then M = P.

Proof. Let π : V → U be the Kawamata blow up at the point O with weights (1, 1, 1) and F be the exceptional

divisor of the birational morphism π. Let L be the proper transform of the linear system | − 3K
U
| by the birational

morphism π. We have M
V
∼Q −nK

V
by Lemma 2.2, P

V
∼Q −2K

V
and

L ∼Q π
∗(−3K

U
) −

1

2
F.

The base locus of the linear system L consists of the irreducible curve C̃
V

. Moreover for a general surface T of the

linear system L, the inequality T · C̃
V
> 0 holds, which implies that the divisor π∗(−6K

U
) − F is nef and big.

Let M and D be general surfaces of the pencils M
V

and P
V

, respectively. Then

(
π
∗(−6K

U
) − F

)
· M · D =

(
π
∗(−6K

U
) − F

)
·

(
π
∗(−nK

U
) −

n

2
F

)
·

(
π
∗(−2K

U
) − F

)
= 0,

which implies that M
V

= P
V

by Theorem 2.2-(1).
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For now, to prove Proposition 6.6, we may assume that CS(X, 1
n
M) = {P}. Since M

U
∼Q −nK

U
by Lemma 2.2, the

set CS(U, 1
n
M)

U
is not empty by Theorem 2.1. Therefore Lemma 6.15 enables us to assume that the set CS(U, 1

n
M

U
)

consists of the point Q. The equivalence M
W
∼Q −nK

W
by Lemma 2.2 implies that every surface in the pencil M

W
is

contracted to a curve by the elliptic fibration η. Moreover the set CS(W,
1
n
M

W
) is not empty by Theorem 2.1.

Let G be the exceptional divisor of the birational morphism β and Q1 be the singular point of the surface G. Then the

point Q1 is the quotient singularity of type 1
2
(1, 1, 1) on the variety W . Moreover it follows from Lemma 2.3 that the set

CS(W,
1
n
M

W
) contains the point Q1.

Let γ : Y → W be the Kawamata blow up at the point Q1 with weights (1, 1, 1). The base locus of the pencil P
Y

consists

of the irreducible curves C
Y

and L
Y
. Let D be a general surface of the pencil P

Y
. Then explicit local calculations show

that D ∼Q −2K
Y
. On the other hand, the surface D is normal and the intersection form of the curves C

Y
and L

Y
on the

surface D is negative-definite. Hence we obtain the identity M
Y

= P
Y

from Theorem 2.2 because M
Y
|
D
≡ n(C

Y
+ L

Y
).

Therefore we see that M = P, which completes our proof of Proposition 6.6.

ג = 25: Hypersurface of degree 15 in P(1, 1, 3, 4, 7).

The threefold X is a general hypersurface of degree 15 in P(1, 1, 3, 4, 7) with −K
3
X

= 5
28

. It has two singular points. One

is a quotient singularity P of type 1
4
(1, 1, 3) and the other is a quotient singularity Q of type 1

7
(1, 3, 4).

There is a commutative diagram

Y

γ
O

����
��

��
��

γ
P



��
��

��
��

η

������������������������������������

U
PQ

β
Q

����
��

��
�� β

P



�
��

��
��

�
U
QO

β
O����

��
��

��
P(1, 1, 3),

U
P

α
P



�
��

��
��

� U
Q

α
Q

����
��

��
��

X

ψ

������������������������

where

• ψ is the natural projection,

• α
P

is the Kawamata blow up at the point P with weights (1, 1, 3),

• α
Q

is the Kawamata blow up at the point Q with weights (1, 3, 4),

• β
Q

is the Kawamata blow up with weights (1, 3, 4) at the point whose image to X is the point Q,

• β
P

is the Kawamata blow up with weights (1, 1, 3) at the point whose image to X is the point P,

• β
O

is the Kawamata blow up with weights (1, 3, 1) at the singular point O of type 1
4
(1, 3, 1) contained in the

exceptional divisor of the birational morphism α
Q

,

• γ
P

is the Kawamata blow up with weights (1, 1, 3) at the point whose image to X is the point P,

• γ
O

is the Kawamata blow up with weights (1, 3, 1) at the singular point of type 1
4
(1, 3, 1) contained in the exceptional

divisor of the birational morphism β
Q

,

• η is an elliptic fibration.

Proposition 6.8.
The linear system | − K

X
| is a unique Halphen pencil on X.

30



I. Cheltsov, J. Park

In what follows, we prove Proposition 6.8. For the convenience, let D be a general surface in | − K
X
|.

It follows from [5] that | − K
X
| is invariant under the action of the group Bir(X ). Therefore we may assume that the log

pair (X, 1
n
M) is canonical. In fact, we can assume that

∅ �= CS

(
X,

1

n

M

)
⊆

{
P,Q

}

by Lemma 4.1 and Corollary 4.4.

Lemma 6.16.
If the point Q is not contained in CS(X, 1

n
M), then M = | − K

X
|.

Proof. The set CS(U
P
,

1
n
M

U
P
) is not empty by Theorem 2.1 because M

U
P
∼Q −nK

U
P

by Lemma 2.2. Let P1 be

the singular point of the variety U
P

contained in the exceptional divisor of the birational morphism α
P

. It is a quotient

singularity of type 1
3
(1, 1, 2). Lemma 2.3 implies that the set CS(U

P
,

1
n
M

U
P
) contains the point P1.

Let π
P

: W
P
→ U

P
be the Kawamata blow up at the point P1 with weights (1, 1, 2). We can easily check that | − K

W
P
|

is the proper transform of the pencil | − K
X
| and the base locus of the pencil | − K

W
| consists of the irreducible curve

C
W
P
. We can also see D

W
P
· C

W
P

= −K
3
W
P

= −
1
14

< 0. Hence Theorem 2.2 implies the identity M = | − K
X
| because

M
W
P
∼Q nD

W
P

by Lemma 2.2.

The exceptional divisor E
∼= P(1, 3, 4) of the birational morphism α

Q
contains two singular points O and Q1 that are

quotient singularities of types 1
4
(1, 3, 1) and 1

3
(1, 2, 1). Let L be the unique curve of the linear system |OP(1, 3, 4)(1)| on the

surface E.

Due to Lemma 6.16, we may assume that the set CS(X, 1
n
M) contains the singular point Q. The proof of Lemma 6.16

also shows that the set CS(U
Q
,

1
n
M

U
Q
) cannot consist of the single point P̄ whose image to X is the point P. It implies

CS

(
U
Q
,

1

n

M
U
Q

)
∩

{
O,Q1

}
�= ∅

by Theorem 2.1 and Lemma 2.3.

Lemma 6.17.
If the set CS(U

Q
,

1
n
M

U
Q
) contains both the point O and the point Q1, then M = | − K

X
|.

Proof. Let γ
Q

: W
Q
→ U

QO
be the Kawamata blow up with weights (1, 2, 1) at the point whose image to U

Q
is the

point Q1.

The proper transform D
W
Q

is irreducible and normal. The base locus of the pencil | − K
W
Q
| consists of the irreducible

curves C
W
Q

and L
W
Q
. On the other hand, we have

M
W
Q

∣
∣
∣
D
W
Q

≡ −nK
W
Q

∣
∣
∣
D
W
Q

≡ nC
W
Q

+ nL
W
Q
,

but the intersection form of the curves L
W
Q

and C
W
Q

on the normal surface D
W
Q

is negative-definite. Then Theorem 2.2

completes the proof.

It follows from Lemma 2.3 that we may assume the following possibilities:

• CS(U
Q
,

1
n
M

U
Q
) = {P̄,O};

• CS(U
Q
,

1
n
M

U
Q
) = {O};

• CS(U
Q
,

1
n
M

U
Q
) = {P̄,Q1};
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• CS(U
Q
,

1
n
M

U
Q
) = {Q1}.

The exceptional divisor F ∼= P(1, 3, 1) of β
O

contains one singular point Q2 that is a quotient singularity of type 1
3
(1, 2, 1).

Lemma 6.18.
If CS(U

Q
,

1
n
M

U
Q
) = {O}, then M = | − K

X
|.

Proof. The set CS(U
QO
,

1
n
M

U
QO

) contains the singular point Q2 by Theorem 2.1 and Lemma 2.3.

Let γ : W → U
QO

be the Kawamata blow up at the point Q2 with weights (1, 2, 1). Then M
W
∼Q −nK

W
by Lemma 2.2

and the base locus of the pencil | − K
W
| consists of the curves C

W
and L

W
. The proper transform D

W
is irreducible and

normal, the equivalence M
W

∣
∣
∣
D
W

≡ nC
W

+ nL
W

holds, but the equalities

C
2
W

= −

7

12
, L

2
W

= −

5

6
, C

W
· L

W
=

2

3

hold on the surface D
W

. So, the intersection form of the curves C
W

and L
W

on the normal surface D
W

is negative-definite,

which implies M = | − K
X
| by Theorem 2.2.

Lemma 6.19.
If CS(U

Q
,

1
n
M

U
Q
) = {P̄,O}, then M = | − K

X
|.

Proof. We have M
Y
∼Q −nK

Y
, which implies that every surface of the pencil M

Y
is contracted to a curve by the

morphism η. In particular, the set CS(Y , 1
n
M

Y
) does not contain curves because the exceptional divisors of β

O
◦ γ

P
are

sections of η.

Due to Theorem 2.1 and Lemmas 2.3, 6.18, we may assume that the set CS(Y , 1
n
M

Y
) contains the singular point P2 of

Y contained in the exceptional divisor γ
P
. Let σ

P
: Y

P
→ Y be the Kawamata blow up at the point P2 with weights

(1, 2, 1). Then M
Y
P
∼Q −nK

Y
P

but the base locus of the pencil | − K
Y
P
| consists of the irreducible curves C

Y
P

and L
Y
P
.

The proper transform D
Y
P

is normal and M
Y
P
|
D
Y
P

≡ nC
Y
P

+ nL
Y
P
. The intersection form of the curves C

Y
P

and L
Y
P

on

the normal surface D
Y
P

is negative-definite because the curves are contained in a fiber of η ◦ σ
P
|
D
Y
P

that consists of

three irreducible components. Therefore we obtain the identity M = | − K
X
| from Theorem 2.2.

Thus to conclude the proof of Proposition 6.8, we may assume the following possibilities:

• CS(U
Q
,

1
n
M

U
Q
) = {P̄,Q1};

• CS(U
Q
,

1
n
M

U
Q
) = {Q1}.

The hypersurface X can be given by the equation

w
2
y + wt

2 + wtf4(x, y, z) + wf8(x, y, z) + tf11(x, y, z) + f15(x, y, z) = 0,

where f
i

is a general quasihomogeneous polynomial of degree i.

Lemma 6.20.
The case CS(U

Q
,

1
n
M

U
Q
) = {Q1} never happens.

Proof. Suppose that CS(U
Q
,

1
n
M

U
Q
) = {Q1}. Let π : V → U

Q
be the Kawamata blow up at the point Q1 with

weights (1, 2, 1).

Let G be the exceptional divisor of the birational morphism π. The proof of Lemma 6.18 implies that the set CS(V , 1
n
M

V
)

does not contain the singular point of V contained in the exceptional divisor G. So, the log pair (V , 1
n
M

V
) is terminal

by Lemma 2.3 and Corollary 4.1.
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We have ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α
Q
◦ π)∗

(
−K

X

)
∼Q S

V
+

3

7
G +

1

7
E
V
,

(α
Q
◦ π)∗

(
−K

X

)
∼Q S

y

V
+

10

7
G +

8

7
E
V
,

(α
Q
◦ π)∗

(
− 3K

X

)
∼Q S

z

V
+

2

7
G +

3

7
E
V
,

(α
Q
◦ π)∗

(
− 4K

X

)
∼Q S

t

V
+

5

7
G +

4

7
E
V
,

(α
Q
◦ π)∗

(
− 7K

X

)
∼Q S

w

V
.

The equivalences imply
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α
Q
◦ π)∗

(
y

x

)
∈ |S

V
|,

(α
Q
◦ π)∗

(
yz

x
4

)
∈ |4S

V
|,

(α
Q
◦ π)∗

(
yt

x
5

)
∈ |5S

V
|,

(α
Q
◦ π)∗

(
y

3
w

x
10

)
∈ |10S

V
|,

and hence the complete linear system | − 20K
V
| induces a birational map χ1 : V ��� X

′ such that X′ is a hypersurface

in P(1, 1, 4, 5, 10), which implies that the divisor −K
V

is big.

The base locus of the pencil | − K
V
| consists of the irreducible curves C

V
and L

V
. It follows from [11] that there is an

isomorphism ζ : V ��� V
′ of codimension 1 such that ζ is regular in the outside of C

V
∪L

V
and the anticanonical divisor

−K
V
′ is nef and big. The singularities of the log pair (V ′

,
1
n
M

V
′ ) are terminal because the rational map ζ is a log flop

with respect to the log pair (V , 1
n
M

V
), which contradicts Theorem 2.1.

Now we suppose CS(U
Q
,

1
n
M

U
Q
) = {P̄,Q1}. Let σ : U → U

PQ
be the Kawamata blow up with weights (1, 2, 1) at the

point Q̄1 whose image to U
Q

is the point Q1. Let Ē and Ẽ be the exceptional divisors of α
P

and σ , respectively. Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
U
∼Q (α

P
◦ β

Q
◦ σ )∗

(
−K

X

)
−

3

7
Ẽ −

1

7
E
U
−

1

4
Ē
U
∼Q −K

W
,

S
y

U
∼Q (α

P
◦ β

Q
◦ σ )∗

(
−K

X

)
−

10

7
Ẽ −

8

7
E
U
−

1

4
Ē
U
,

S
z

U
∼Q (α

P
◦ β

Q
◦ σ )∗

(
− 3K

X

)
−

2

7
Ẽ −

3

7
E
U
−

3

4
Ē
U
,

S
t

U
∼Q (α

P
◦ β

Q
◦ σ )∗

(
− 4K

X

)
−

5

7
Ẽ −

4

7
E
U
,

S
w

U
∼Q (α

P
◦ β

Q
◦ σ )∗

(
− 7K

X

)
−

11

4
Ē
U
.

The equivalences imply that the pull-backs of rational functions

y

x

,

yz

x

,

y
3
w

x
10

,

y
4
tw

x
15

are contained in the linear system |aS
U
|, where a = 1, 4, 10 and 15, respectively. Therefore the linear system | − 60K

U
|

induces a birational map χ2 : U ��� X
′′ such that the variety X

′′ is a hypersurface of degree 30 in P(1, 1, 4, 10, 15),

which implies that the anticanonical divisor −K
U

is big. However, the proof of Lemma 6.18 shows that the singularities

of (U, 1
n
M

U
) are terminal. Then we can obtain a contradiction in the same way as in the proof of Lemma 6.20.

ג = 32: Hypersurface of degree 16 in P(1, 2, 3, 4, 7).

The hypersurface X is given by a general quasihomogeneous polynomial of degree 16 in P(1, 2, 3, 4, 7) with −K
3
X

= 2
21

.

The singularities of the threefold X consist of four quotient singular points of type 1
2
(1, 1, 1), one quotient singular point
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of type 1
3
(1, 2, 1) and one quotient singular point P of type 1

7
(1, 3, 4). There is a commutative diagram

U

α

��

Y

β



η

��
X

ψ

�������� P(1, 2, 3),

where

• ψ is the natural projection,

• α is the Kawamata blow up at the point P with weights (1, 3, 4),

• β is the Kawamata blow up with weights (1, 1, 3) at the singular point Q of the variety U that is a quotient

singularity of type 1
4
(1, 1, 3) contained in the exceptional divisor of α,

• η is an elliptic fibration.

The hypersurface X can be given by the quasihomogeneous equation

w
2
y + wf9

(
x, y, z, t

)
+ f16

(
x, y, z, t

)
= 0

where f9 and f16 are quasihomogeneous polynomials of degrees 9 and 16, respectively. Let D be a general surface in

| − 2K
X
|. It is cut out on the threefold X by the equation

λx
2 + μy = 0,

where (λ : μ) ∈ P
1. The surface D is irreducible and normal. The base locus of the pencil | − 2K

X
| consists of the curve

C , which implies that C = D · S.

The set CS(X, 1
n
M) cannot contain any singular point of type 1

2
(1, 1, 1) because of Lemma 4.2 (see the Big Table in

[5]). If it contains the singular point of type 1
3
(1, 2, 1), we obtain M = | − 2K

X
| from Lemma 4.3. It then follows from

Corollary 4.3 and Lemma 4.1 that we may assume

CS

(
X,

1

n

M

)
=

{
P

}
.

Furthermore, the set CS(U, 1
n
M

U
) is not empty by Theorem 2.1 because −K

U
is nef and big.

The exceptional divisor E
∼= P(1, 3, 4) of the birational morphism α contains two singular points O and Q that are

quotient singularities of types 1
3
(1, 1, 2) and 1

4
(1, 1, 3), respectively. Let L be the unique curve contained in the linear

system |OP(1, 3, 4)(1)| on the surface E. Let F be the exceptional divisor of β. It contains a singular point Q1 that is

quotient singularity of type 1
3
(1, 1, 2).

Then it follows from Lemma 2.3 that either Q ∈ CS(U, 1
n
M

U
) or CS(U, 1

n
M

U
) = {O}.

Lemma 6.21.
If the set CS(U, 1

n
M

U
) consists of the point Q, then M = | − 2K

X
|.

Proof. It follows from Lemma 2.2 that M
Y
∼Q −nK

Y
, which implies that every surface in the pencil M

Y
is contracted

to a curve by the morphism η and the set CS(Y , 1
n
M

Y
) contains the point Q1.

Let π : V → Y be the Kawamata blow up at the point Q1 with weights (1, 1, 2). Then the transform D
V

is normal but

the base locus of the pencil | − 2K
V
| consists of the irreducible curves C

V
and L

V
.

The intersection form of the curves C
V

and L
V

on the surface D
V

is negative-definite because the curves C
V

and L
V

are

components of a fiber of the elliptic fibration η ◦ π|
D
V

that contains three irreducible components. On the other hand,

we have

M
V

∣
∣
∣
D
V

≡ −nK
V

∣
∣
∣
D
V

≡ nC
V

+ nL
V
.

Therefore it follows from Theorem 2.2 that M = | − 2K
X
|.
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From now on, we may assume that the set CS(U, 1
n
M

U
) contains the point O due to Lemma 2.3. Let γ : W → U be the

Kawamata blow up at the point O with weights (1, 1, 2) and G be the exceptional divisor of the birational morphism γ.

Then the surface G
∼= P(1, 1, 2) and

M
W
∼Q −nK

W
∼Q γ

∗(−nK
U

) −
n

3
G ∼Q (α ◦ γ)∗(−nK

X
) −

n

7
γ
∗(E) −

n

3
G.

In a neighborhood of the point P, the monomials x, z and t can be considered as weighted local coordinates on X such

that wt(x) = 1, wt(z) = 3 and wt(z) = 4. Then in a neighborhood of the singular point P, the surface D can be given by

equation

λx
2 + μ

(
ε1x

9 + ε2zx
6 + ε3z

2
x

3 + ε4z
3 + ε5t

2
x + ε6tx

5 + ε7tzx
2 + h16(x, z, t) + higher terms

)
= 0,

where ε
i
∈ C and h16 is a quasihomogeneous polynomial of degree 16. In a neighborhood of the singular point O, the

birational morphism α can be given by the equations

x = x̃z̃

1
7 , z = z̃

3
7 , t = t̃z̃

4
7 ,

where x̃, ỹ and z̃ are weighted local coordinates on the variety U in a neighborhood of the singular point O such that

wt(x̃) = 1, wt(z̃) = 2 and wt(̃t) = 1.

In a neighborhood of the point O, the surface E is given by z̃ = 0, the surface D
U

is given by

λx̃
2 + μ

(
ε1x̃

9
z̃ + ε2z̃x̃

6 + ε3z̃x̃
3 + ε4z̃ + ε5 t̃

2
x̃z̃ + ε6 t̃x̃

5
z̃ + ε7 t̃z̃x̃

2 + higher terms
)

= 0,

and the surface S
U

is given by the equation x̃ = 0.

In a neighborhood of the singular point of G, the birational morphism γ can be given by

x̃ = x̄z̄

1
3 , z̃ = z̄

2
3 , t̃ = t̄z̄

1
3 ,

where x̄, z̄ and t̄ are weighted local coordinates on the variety W in a neighborhood of the singular point of G such

that wt(x̄) = wt(z̄) = wt(̄t) = 1. The surface G is given by the equation z̄ = 0, the proper transform D
W

is given by

λx̄
2 + μ

(
ε1x̄

9
z̄

3 + ε2z̄
2
x̄

6 + ε3z̄x̄
3 + ε4 + ε5 t̄

2
x̄z̄ + ε6 t̄x̄

5
z̄

2 + ε7 t̄z̄x̄
2 + higher terms

)
= 0,

the proper transform S
W

is given by the equation x̄ = 0 and the proper transform E
W

is given by the equation z̄ = 0.

Let P be the proper transforms on the variety W of the pencil | − 2K
X
|. The curves C

W
and L

W
are contained in the

base locus of the pencil P. Moreover easy calculations show that the base locus of the pencil P does not contain any

other curve than C
W

and L
W

. We also have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E
W
∼Q γ

∗

(
E

)
−

2

3
F,

D
W
∼Q

(
α ◦ γ

)
∗
(
− 2K

X

)
−

2

7
γ
∗

(
E

)
−

2

3
G,

S
W
∼Q

(
α ◦ γ

)
∗
(
−K

X

)
−

1

7
γ
∗

(
E

)
−

1

3
G,

Also we have C
W

+ L
W

= S
W
· D

W
and 2L

W
= D

W
· E

W
.

The curves C
W

and L
W

can be considered as irreducible effective divisors on the normal surface D
W

. Then it follows

from the equivalences above that

L
2
W

= −

5

8
, C

2
W

= −

7

24
, C

W
· L

W
=

3

8
,

which implies that the intersection form of C
W

and L
W

on D
W

is negative-definite. Let M be a general surface of the

linear system M
W

. Then

M

∣
∣
∣
D
W

≡ −nK
W

∣
∣
∣
D
W

≡ nS
W

∣
∣
∣
D
W

≡ nC
W

+ nL
W
,

which implies that M = | − 2K
X
| by Theorem 2.2.

Consequently, we have proved:
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Proposition 6.9.
The linear system | − 2K

X
| is the only Halphen pencil on X.

ג = 56: Hypersurface of degree 24 in P(1, 2, 3, 8, 11).

The threefold X is a general hypersurface of degree 24 in P(1, 2, 3, 8, 11) with −K
3
X

= 1
22

. Its singularities consist of

three points that are quotient singularities of type 1
2
(1, 1, 1) and the point O = (0 : 0 : 0 : 0 : 1) that is a quotient

singularity of type 1
11

(1, 3, 8).

Before we proceed, let us first describe some birational transformations of the hypersurface X with elliptic fibrations,

which are useful to explain the geometrical nature of our proof. There is a commutative diagram

Z

ν

�����������������
ζ ������

Z
′

σ ��
Z̄
′

� � �� P(1, 2, 5, 14, 21)

φ

���
�

�
�

�
�

�
�

�

U

α

��

W

β


Y

η

��

γ


V

ξ

 χ ������

ω

������������
V

′

υ

��
X

ψ

������������ P(1, 2, 3)
ρ

��������� P(1, 2, 5)

where

• ψ and φ are natural projections,

• α is the Kawamata blow up at the point O with weights (1, 3, 8),

• β is the Kawamata blow up with weights (1, 3, 5) at the singular point Q contained in the exceptional divisor E

of α that is a quotient singularity of type 1
8
(1, 3, 5),

• γ is the Kawamata blow up with weights (1, 3, 2) at the singular point Q1 of contained in the exceptional divisor

F of β that is a quotient singularity of type 1
5
(1, 3, 2),

• ν is the Kawamata blow up with weights (1, 1, 2) at the singular point Q2 of contained in the exceptional divisor

of β that is a quotient singularity of type 1
3
(1, 1, 2),

• ξ is the Kawamata blow up with weights (1, 1, 2) at the point Q̄2 whose image to W is the point Q2,

• ω is the Kawamata blow up with weights (1, 3, 2) at the point Q̄1 whose image to W is the point Q1,

• η and υ are elliptic fibrations,

• the maps ζ and χ are isomorphisms in codimension 1,

• the birational morphism σ is given by the plurianticanonical linear system of Z′,

• the rational map ρ is a toric map,

The exceptional divisor E of the birational morphism α contains two singular points P and Q of U that are quotient

singularities of types 1
3
(1, 1, 2) and 1

8
(1, 3, 5), respectively. Meanwhile, the exceptional divisor F of the birational

morphism β also contains two singular points Q1 and Q2 of W that are quotient singularities of types 1
5
(1, 3, 2) and

1
3
(1, 1, 2), respectively.

Remark 6.1.
The divisors −K

Z
′ , −K

U
and −K

W
are nef and big. Thus the anticanonical models of the threefolds Z

′, U and W

are Fano threefolds with canonical singularities. The anticanonical model of Z′ is a hypersurface Z̄
′ of degree 42 in

P(1, 2, 5, 14, 21). The anticanonical model of U is a hypersurface of degree 26 in P(1, 2, 3, 8, 13) and the anticanonical
model of W is a hypersurface of degree 30 in P(1, 2, 3, 10, 15).
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For the convenience, we denote the pencil | − 2K
X
| by B . In addition, a general surface in B is denoted by B and

a general surface in M by M

It follows from Corollary 4.3 and Lemmas 4.1, 4.2 that we may assume that CS(X, 1
n
M) = {O}.

Lemma 6.22.
If the set CS(U, 1

n
M

U
) contains the point P, then M = B.

Proof. Let β
P

: U
P
→ U be the Kawamata blow up at the point P and E

P
be its exceptional divisor. For a general

surface D in | − 8K
X
|, we have

D
U
P
∼Q (α ◦ β

P
)∗(−8K

X
) −

8

11
β
∗

P
(E) −

2

3
E
P
.

Since the base locus of the proper transform of the linear system | − 8K
X
| on U

P
does not contain any curve, the divisor

D
U
P

is nef and big.

Since M
U
P
∼Q nS

U
P

by Lemma 2.2 and B
U
P
∼Q 2S

U
P
, we obtain

D
U
P
· B

U
P
· S

U
P

= 2n
(
β
∗

P
(−8K

U
) −

2

3
E
P

)
·

(
β
∗

P
(−K

U
) −

1

3
E
P

)2

= 0.

It implies M = B by Theorem 2.2.

Due to Theorem 2.1 and Lemma 2.3, we may assume that the set CS(U, 1
n
M

U
) consists of the singular point Q. Thus it

follows from Theorem 2.1, Lemmas 2.1, 2.3 that

∅ �= CS

(
W,

1

n

M
W

)
⊆

{
Q1, Q2

}
.

Now we consider some local computation. We may assume that X is given by the equation

w
2
y + wf13(x, y, z, t) + f24(x, y, z, t) = 0,

where f
i
(x, y, z, t) is a general quasihomogeneous polynomial of degree i. The surface B is given by the equation

λx
2 + μy = 0, where (λ : μ) ∈ P1. The base locus of B consists of the irreducible curve C that is given by x = y = 0.

We have B · S = C .

In a neighborhood of O, the monomials x, z and t can be considered as weighted local coordinates on X such that

wt(x) = 1, wt(z) = 3 and wt(z) = 8. Then in a neighborhood of the singular point O, the surface B can be given by

equation

λx
2 + μ

(
ε1x

13 + ε2zx
10 + ε3z

2
x

7 + ε4z
3
x

4 + ε5z
4
x + ε6tx

5 + ε7tzx
2 + ε8t

3 + ε9z
8 + other terms

)
= 0,

where ε
i
∈ C. In a neighborhood of the singular point Q, the birational morphism α can be given by the equations

x = x̄t̄

1
11 , z = z̄t̄

3
11 , t = t̄

8
11 ,

where x̄, z̄ and t̄ are weighted local coordinates on U in a neighborhood of the singular point Q such that wt(x̄) = 1,

wt(z̄) = 3 and wt(̄t) = 8. Thus in a neighborhood of the singular point Q, the divisor E is given by the equation t̄ = 0,

the divisor S
U

is given by x̄ = 0 and the divisor B
U

is given by the equation

λx̄
2 + μ

(
ε1x̄

13
t̄ + · · · + ε5z̄

4
x̄t̄ + ε6 t̄x̄

5 + ε7 t̄z̄x̄
2 + ε8 t̄

2 + ε9z̄
8
t̄

2 + other terms
)

= 0,

which implies that B
U
∼Q 2S

U
and the base locus of B

U
is the union of C

U
and the curve L ⊂ E that is given by

x̄ = t̄ = 0. We have E
∼= P(1, 3, 8) and the curve L is the unique curve in |OP(1,3,8)(1)| on the surface E. The surface

B
U

is not normal. Indeed, B
U

is singular at a generic point of L. We have S
U
· B

U
= C

U
+ 2L and E · B

U
= 2L, which

implies that S
U
· C

U
= 0 and S

U
· L = 1

24
.

37



Halphen pencils on weighted Fano threefold hypersurfaces

Lemma 6.23.
If the set CS(W,

1
n
M

W
) consists of the point Q2, then M = B.

Proof. In a neighborhood of Q2, the birational morphism β can be given by the equations

x̄ = x̃z̃

1
8 , z̄ = z̃

3
8 , t̄ = t̃z̃

5
8 ,

where x̃, z̃ and t̃ are weighted local coordinates on W in a neighborhood of Q2 such that wt(x̃) = 1, wt(z̃) = 1 and

wt(̃t) = 2. Thus in a neighborhood of the singular point Q2, the divisor F is given by the equation z̃ = 0, the divisor S
W

is given by x̃ = 0, the divisor E
W

is given by t̃ = 0 and the divisor B
W

is given by the equation

λx̃
2 + μ

(
ε7 t̃z̃x̃

2 + ε8 t̃
2
z̃ + ε9z̃

4
t̃

2 + other terms
)

= 0,

which implies that B
W

∼Q 2S
W

, the base locus of B
W

is the union of C
W

, L
W

and the curve L
′

⊂ F that is given by

x̃ = z̃ = 0.

The surface F is isomorphic to P(1, 3, 5) and the curve L
′ is the unique curve of the linear system |O

P(1,3,5)(1)| on the

surface F . The surface B
W

is smooth at a generic point of L′. We have

S
W
· B

W
= C

W
+ 2L

W
+ L

′

, E
W
· B

W
= 2L

W
, F · B

W
= 2L′,

which implies that

S
W
· C

W
= 0, S

W
· L

W
= 0, S

W
· L

′ =
1

15

because ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S
W
∼Q (α ◦ β)∗(−K

X
) −

1

11
β
∗(E) −

1

8
F,

B
W
∼Q (α ◦ β)∗(−2K

X
) −

2

11
β
∗(E) −

2

8
F,

E
W
∼Q β

∗(E) −
5

8
F.

Let R be the exceptional divisor of ν. Let O1 be the singular point of Z that is contained in R . Then R
∼= P(1, 1, 2) and

O1 is a quotient singularity of type 1
2
(1, 1, 1) on the threefold Z . In a neighborhood of O1, the birational morphism ν can

be given by the equations

x̃ = x̂ t̂

1
3 , z̃ = ẑt̂

1
3 , t̃ = t̂

2
3 ,

where x̂, ẑ and t̂ are weighted local coordinates on Z in a neighborhood of O1 with weight 1. Thus in a neighborhood

of the singular point O1, the divisor R is given by the equation t̂ = 0, the divisor S
Z

is given by x̂ = 0, the divisor E
Z

does not pass through the point O1, the divisor F
Z

is given by z̄ = 0 and the divisor B
Z

is given by the equation

λx̂
2 + μ

(
ε8 t̂ẑ + ε9ẑ

4
t̂

2 + other terms
)

= 0,

which implies that B
Z
∼Q 2S

Z
, the base locus of B

Z
consists of C

Z
, L

Z
, L′

Z
and the curve L

′′ that is given by the equations

x̂ = t̂ = 0. The curve L
′′ is the unique curve in |OP(1,1,2)(1)| on the surface R . The surface B

Z
is smooth at a generic

point of L′′. Therefore we obtain

S
Z
· B

Z
= C

Z
+ 2L

Z
+ L

′

Z
+ L

′′

, E
Z
· B

Z
= 2L

Z
, F

Z
· B

Z
= 2L′

Z
, R · B

Z
= 2L′′,

which gives

S
Z
· C

Z
= 0, S

Z
· L

Z
= −

1

3
, S

Z
· L

′

Z
= −

1

10
, S

Z
· L

′′ =
1

2
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because ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
Z
∼Q (α ◦ β ◦ ν)∗(−K

X
) −

1

11
(β ◦ ν)∗(E) −

1

8
ν
∗(F ) −

1

3
R,

B
Z
∼Q (α ◦ β ◦ ν)∗(−2K

X
) −

2

11
(β ◦ ν)∗(E) −

2

8
ν
∗(F ) −

2

3
R,

E
Z
∼Q (β ◦ ν)∗(E) −

5

8
ν
∗(F ) −

2

3
R,

F
Z
∼Q ν

∗(F ) −
1

3
R.

In particular, the curves L
Z

and L
′

Z
are the only curves on the variety Z that have negative intersection with the divisor

−K
Z
.

Due to Lemma 2.3, either the set CS(Z, 1
n
M

Z
) contains the point O1 or the log pair (Z, 1

n
M

Z
) is terminal.

We first suppose that the log pair (Z, 1
n
M

Z
) is not terminal. Then the set CS(Z, 1

n
M

Z
) must contain the point O1.

Let π2 : Z2 → Z be the Kawamata blow up at the point O1 and H be the exceptional divisor of π2. Then our local

calculations imply that B
Z2
∼Q 2S

Z2
and the base locus of B

Z2
consists of the curves C

Z2
, L

Z2
, L′

Z2
and L

′′

Z2
. Furthermore,

we have

S
Z2
· B

T
= C

Z2
+ 2L

Z2
+ L

′

Z2
+ L

′′

Z2
, E

Z2
· B

Z2
= 2L

Z2
,

F
Z2
· B

Z2
= 2L′

Z2
, R

Z2
· B

Z2
= 2L′′

Z2
,

which implies that

S
Z2
· C

Z2
= 0, S

Z2
· L

Z2
= −

1

3
, S

Z2
· L

′

Z2
= −

3

5
, S

Z2
· L

′′

Z2
= 0,

because ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
Z2
∼Q (α ◦ β ◦ ν ◦ π2)

∗(−K
X
) −

1

11
(β ◦ ν ◦ π2)

∗(E) −
1

8
(ν ◦ π2)

∗(F ) −
1

3
π
∗

2R −

1

2
H,

E
Z2
∼Q (β ◦ ν ◦ π2)

∗(E) −
5

8
(ν ◦ π2)

∗(F ) −
2

3
π
∗

2R,

F
Z2
∼Q (ν ◦ π2)

∗(F ) −
1

3
π
∗

2R −

1

2
H,

R
Z2
∼Q π

∗

2R −

1

2
H,

The curves L
Z2

and L
′

Z2
are the only curves on the variety Z2 that have negative intersection with the divisor −K

Z2
.

Moreover we see (
B
Z2

+ (β ◦ ν ◦ π2)
∗(−16K

U
) + (ν ◦ π2)

∗(−18K
W

)
)
· L

Z2
= 0,

(
B
Z2

+ (β ◦ ν ◦ π2)
∗(−16K

U
) + (ν ◦ π2)

∗(−18K
W

)
)
· L

′

Z2
= 0,

and hence the divisor D
Z2

:= B
Z2

+ (β ◦ ν ◦ π2)
∗(−16K

U
) + (ν ◦ π2)

∗(−18K
W

) is nef and big because −K
U

and −K
W

are

nef and big. Therefore we obtain

D
Z2
· B

Z2
· M

Z2
= 0,

and hence M = B by Theorem 2.2.

For now, we suppose that the log pair (Z, 1
n
M

Z
) is terminal. We will derive a contradiction from this assumption, so

that the set CS(Z, 1
n
M

Z
) must contain the point O1.

The log pair (Z, εB
Z
) is terminal for some rational number ε > 1

2
but the divisor K

Z
+ εB

Z
has non-negative intersection

with all curves on the variety Z except the curves L
Z

and L
′

Z
. It follows from [11] that there is an isomorphism ζ : Z ��� Z

′

of codimension 1 and the divisor −K
Z
′ is nef. Then the singularities of the log pair (Z′

,
1
n
M

Z
′ ) are terminal because

the singularities of the log pair (Z, 1
n
M

Z
) are terminal and the rational map ζ is a log flop with respect to the log pair

(Z, 1
n
M

Z
).
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We obtain ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
Z
∼Q (α ◦ β ◦ ν)∗(−K

X
) −

1

11
(β ◦ ν)∗(E) −

1

8
ν
∗(F ) −

1

3
R

∼Q (α ◦ β ◦ ν)∗(−K
X

) −
1

11
E
Z
−

2

11
F
Z
−

5

11
R,

S
y

Z
∼Q (α ◦ β ◦ ν)∗(−2K

X
) −

13

11
(β ◦ ν)∗(E) −

5

8
ν
∗(F ) −

2

3
R

∼Q (α ◦ β ◦ ν)∗(−2K
X

) −
13

11
E
Z
−

15

11
F
Z
−

21

11
R,

S
z

Z
∼Q (α ◦ β ◦ ν)∗(−3K

X
) −

3

11
(β ◦ ν)∗(E) −

3

8
ν
∗(F ) −

1

3
R

∼Q (α ◦ β ◦ ν)∗(−3K
X

) −
3

11
E
Z
−

6

11
F
Z
−

4

11
R,

S
t

Z
∼Q (α ◦ β ◦ ν)∗(−8K

X
) −

8

11
(β ◦ ν)∗(E)

∼Q (α ◦ β ◦ ν)∗(−8K
X

) −
8

11
E
Z
−

5

11
F
Z
−

7

11
R.

from

F
Z
∼Q ν

∗(F ) −
1

3
R, E

Z
∼Q (β ◦ ν)∗(E) −

5

8
ν
∗(F ) −

2

3
R.

Thus the pull-backs of the rational functions y

x
2 , zy

x
5 and ty

3

x
14 are contained in the linear systems |2S

Z
|, |5S

Z
| and |14S

Z
|,

respectively. In particular, the complete linear system | − 70K
Z
| induces a dominant rational map Z ��� P(1, 2, 5, 14).

Thus the anticanonical divisor −K
Z
′ is nef and big. It contradicts Theorem 2.1 because the log pair (Z′

,
1
n
M

Z
′ ) is

terminal.

Due to the lemma above, we may assume that the set CS(W,
1
n
M

W
) contains the point Q1. In particular, the set

CS(Y , 1
n
M

Y
) is not empty and each member of the linear system M

Y
is contracted to a curve by the morphism η.

Let G be the exceptional divisor of γ. Then G contains two singular points Q′

1 and Q
′

2 of Y that are quotient singularities

of types 1
2
(1, 1, 1) and 1

3
(1, 1, 2), respectively. Then

CS

(
Y ,

1

n

M
Y

)
⊆

{
Q

′

1, Q
′

2, Q̄2

}
,

where Q̄2 is the point on Y whose image to W by γ is the point Q2.

In a neighborhood of Q1, the birational morphism β can be given by the equations

x̄ = x̃z̃

1
8 , z̄ = z̃t̃

3
8 , t̄ = t̃

5
8 ,

where x̃, z̃ and t̃ are weighted local coordinates on W in a neighborhood of Q1 such that wt(x̃) = 1, wt(z̃) = 3 and

wt(̃t) = 2. Thus in a neighborhood of the singular point Q1, the divisor F is given by the equation t̃ = 0, the divisor S
W

is given by x̃ = 0, the divisor E
W

does not pass though the point Q1 and the divisor B
W

is given by the equation

λx̃
2 + μ

(
ε8t̃ + ε9z̃

8
t̃

4 + other terms
)

= 0.

Therefore B
W
∼Q 2S

W
and the base locus of B

W
is the union of C

W
, L

W
and the curve L

′ that is given by the equations

x̃ = t̃ = 0. We have

S
W
· B

W
= C

W
+ 2L

W
+ L

′

, E
W
· B

W
= 2L

W
, F · B

W
= 2L′,

which gives us

S
W
· C

W
= S

W
· L

U
= 0, S

W
· L

′ =
1

15
.
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In a neighborhood of Q2, the birational morphism γ can be given by the equations

x̃ = x̂ t̂

1
5 , z̃ = ẑ

3
5 , t̃ = t̂ẑ

2
5 ,

where x̂, ẑ and t̂ are weighted local coordinates on Y in the neighborhood of Q′

2 such that wt(x̂) = 1, wt(ẑ) = 1 and

wt(̂t) = 2. Thus in a neighborhood of the singular point Q′

2, the divisor G is given by the equation ẑ = 0, the divisor S
Y

is given by x̂ = 0, the divisor F
Y

is given by the equation t̄ = 0 and the divisor B
Y

is given by the equation

λx̂
2 + μ

(
ε8t̂ + ε9ẑ

6
t̂

2 + other terms
)

= 0.

Thus B
Y
∼Q 2S

Y
and that the base locus of B

Y
is the union of the irreducible curves C

Y
, L

Y
and L

′

Y
. We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S
Y
∼Q (α ◦ β ◦ γ)∗(−K

X
) −

1

11
(β ◦ γ)∗(E) −

1

8
γ
∗(F ) −

1

5
G,

E
Y
∼Q (β ◦ γ)∗(E) −

5

8
γ
∗(F ),

F
Y
∼Q γ

∗(F ) −
2

5
G,

and

S
Y
· C

Y
= S

Y
· L

Y
= S

Y
· L

′

Y
= 0,

which simply means that C
Y
, L

Y
and L

′

Y
are components of a fiber of η.

Lemma 6.24.
If the set CS(Y , 1

n
M

Y
) contains Q′

2, then M = B.

Proof. Let σ2 : Y2 → Y be the Kawamata blow up at the point Q′

2 and let H2 be the exceptional divisor of σ2. Then

our local calculations imply that B
Y2
∼Q 2S

Y2
and the base locus of B

Y2
is the union of curves C

Y2
, L

Y2
and L

′

Y2
. Thus we

have

S
Y2
· B

Y2
= C

Y2
+ 2L

Y2
+ L

′

Y2
, E

Y2
· B

Y2
= 2L

Y2
, F

Y2
· B

Y2
= 2L′

Y2
,

which implies that

S
Y2
· C

Y2
= 0, S

Y2
· L

Y2
= 0, S

Y2
· L

′

Y2
= −

1

3

because

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
Y2
∼Q (α ◦ β ◦ γ ◦ σ2)

∗(−K
X

) −
1

11
(β ◦ γ ◦ σ2)

∗(E) −
1

8
(γ ◦ σ2)

∗(F ) −
1

5
σ
∗

2 (G) −
1

3
H2,

E
Y2
∼Q (β ◦ γ ◦ σ2)

∗(E) −
5

8
(γ ◦ σ2)

∗(F ),

F
Y2
∼Q (γ ◦ σ2)

∗(F ) −
2

5
σ
∗

2 (G) −
2

3
H2,

G
Y2
∼Q σ

∗

2 (G) −
1

3
H2,

The curve L′
Y2

is the only curve on Y2 that has negative intersection with −K
Y2

. Moreover we have (S
Y2

+(γ◦σ2)
∗(−5K

W
))·

L
′

Y2
= 0, which implies that the divisor S

Y2
+ (γ ◦ σ2)

∗(−5K
W

) is nef and big because −K
W

is nef and big. Therefore

(S
Y2

+ (γ ◦ σ2)
∗(−5K

W
)) · B

Y2
· M

Y2
= 0

by Lemma 2.2 and hence M = B by Theorem 2.2.
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Lemma 6.25.
The set CS(Y , 1

n
M

Y
) cannot contain the point Q

′

1.

Proof. Suppose that the set CS(Y , 1
n
M

Y
) contains the point Q′

1. Let σ1 : Y1 → Y be the Kawamata blow up at the

point Q′

1.

Let D be a general pencil in the linear system | − 3K
X
|. Then the base curve of D is the curve C̄ given by x = z = 0.

Moreover the base locus of D
Y1

consists of the curve C̄
Y1

. Thus we see that C̄
Y1

= S
Y1
· D

Y1
for a general surface D

Y1

in D
Y1

. On the other hand, we have D
Y1
· C

Y1
< 0, which implies that n = 3 and M

Y1
= D

Y1
by Theorem 2.2. However,

D
Y1
�∼Q −3K

Y1
.

Consequently, we may assume that the set CS(Y , 1
n
M

Y
) consists of the point Q̄2 whose image to W is the point Q2. It

implies that CS(W,
1
n
M

W
) = {Q1, Q2}. We have M

V
∼Q −nK

V
by Lemma 2.2.

Let H be the exceptional divisor of ξ . Then it follows from the local computations made during the proof of Lemma 6.23

that B
V
∼Q 2S

V
. The base locus of B

V
is the union of the irreducible curves C

V
, L

V
, L′

V
and the curve L

′′ such that

L
′′ = S

V
· H. We have

S
V
· C

V
= 0, S

V
· L

V
= −

1

3
, S

V
· L

′

V
= −

1

6
, S

V
· L

′′ =
1

2
.

Let Ō be the singular point of V that is contained in H. Then ω(Ō) is the singular point of Z contained in the exceptional

divisor of ν. It follows from Lemma 2.3 that either the set CS(V , 1
n
M

V
) contains the point Ō or the log pair (V , 1

n
M

V
)

is terminal.

Suppose that the set CS(V , 1
n
M

V
) contains the point Ō. Then the set CS(Z, 1

n
M

Z
) contains the point ω(Ō). The proof

of Lemma 6.23 shows that M = B if the set CS(Z, 1
n
M

Z
) contains the point ω(Ō) = O1.

From now, we suppose that the singularities of the log pair (V , 1
n
M

V
) are terminal. The singularities of the log pair

(V , εB
V

) are log-terminal for some rational number ε > 1
2

but the divisor K
V

+ εB
V

has non-negative intersection with

all curves on the variety V except the curves L
V

and L
′

V
. Then there is an isomorphism χ : V ��� V

′ of codimension

1 and the divisor −K
V
′ is nef. Hence the linear system | − rK

V
′ | is base-point-free for r 8 0 by the log abundance

theorem ([8]).

It follows from the proof of Lemma 6.23 that the pull-backs of the rational functions y

x
2 and zy

x
5 are contained in the linear

systems |2S
V
| and |5S

V
|, respectively. In particular, the complete linear system | − 10K

V
| induces a dominant rational

map V ��� P(1, 2, 5), which implies that the linear system | − rK
V
′ | induces a dominant morphism to a surface. In fact,

the linear system | − rK
V
′ | induces the morphism υ. The singularities of the log pair (V ′

,
1
n
M

V
′ ) are terminal because

the singularities of the log pair (V , 1
n
M

V
) are terminal and the rational map χ is a log flop with respect to the log pair

(V , 1
n
M

V
). However, the singularities of the log pair (V ′

,
1
n
M

V
′ ) cannot be terminal by Theorem 2.1. We have obtained

a contradiction.

Summing up, we have proved:

Proposition 6.10.
The linear system | − 2K

X
| is a unique Halphen pencil on X.

ג = 79: Hypersurface of degree 33 in P(1, 3, 5, 11, 14).

The threefold X is a general hypersurface of degree 33 in P(1, 3, 5, 11, 14) with −K 3
X

= 1
70

. It has two singular points. One

is a quotient singularity of type 1
5
(1, 1, 4) and the other is a quotient singularity O of type 1

14
(1, 3, 11). The hypersurface

X can be given by the equation

w
2
z + wf19

(
x, y, z, t

)
+ f33

(
x, y, z, t

)
= 0,

where f
i

is a quasihomogeneous polynomial of degree i. Let P be the pencil cut out on X by

λx
5 + μz = 0,

where (λ : μ) ∈ P
1.
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There is a commutative diagram

U

α

��

W

β


Y

γ



η

��
X

ψ

��������������� P(1, 3, 5),

where

• ψ is the natural projection,

• α is the Kawamata blow up at the point O with weights (1, 3, 11),

• β is the Kawamata blow up with weights (1, 3, 8) at the singular point of type 1
11

(1, 3, 8) contained in the exceptional

divisor of the birational morphism α,

• γ is the Kawamata blow up with weights (1, 3, 5) at the singular point of type 1
8
(1, 3, 5) contained in the exceptional

divisor of the birational morphism β,

• η is an elliptic fibration.

If the set CS(X, 1
n
M

X
) contains the singular point of type 1

5
(1, 1, 4), then M = | − 3K

X
| by Lemma 4.3. Therefore we

may assume that CS
(
X,

1
n
M

)
= {O} due to Lemma 4.1 and Corollary 4.3.

The exceptional divisor E of α contains two quotient singular points P and Q of types 1
3
(1, 1, 2) and 1

11
(1, 3, 8), respec-

tively.

Lemma 6.26.
The set CS(U, 1

n
M

U
) consists of the point Q.

Proof. Suppose that CS(U, 1
n
M

U
) �= {Q}. Then the set CS(U, 1

n
M

U
) contains the point P. Let π

P
: U

P
→ U be the

Kawamata blow up at P with weights (1, 1, 2). Then M
U
P
∼Q −nK

U
P

by Lemma 2.2.

Let D be the proper transforms of | − 11K
X
| on the threefold U

P
and D be a general surface of the linear system D .

Then the base locus of the linear system D does not contain curves, which implies that the divisor D is nef. Thus we

obtain an absurd inequality

0 ≤ D · M1 · M2 = −

n
2

5
,

where M1 and M2 are general surfaces of the pencil M
U
P
.

The exceptional divisor F of the birational morphism β contains two singular points Q1 and Q2 that are quotient

singularities of types 1
3
(1, 1, 2) and 1

8
(1, 3, 5) respectively.

Lemma 6.27.
If the set CS(W,

1
n
M

W
) contains the point Q1, then M = P.

Proof. Suppose that the set CS(W,
1
n
M

W
) contains the point Q1. Let π : W1 → W be the Kawamata blow up of Q1

with weights (1, 1, 2) and G be its exceptional divisor. Then M
W1

∼Q −nK
W1

by Lemma 2.2.

Let L be the linear system on the hypersurface X cut out by

λ0x
30 + λ1y

10 + λ2z
6 + λ3t

2
x

8 + λ4t
2
y

2
x

2 + λ5ty
6
x + λ6wtz = 0
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where (λ0 : · · · : λ6) ∈ P6. Then the base locus of L does not contain curves. Then it follows from simple calculations

that the base locus of the linear system L
W1

does not contain any curve and for a general surface B in L, we obtain

B
W1

∼Q

(
α ◦ β ◦ π

)
∗

(
− 30K

X

)
−

30

14

(
β ◦ π

)
∗
(
E

)
−

8

11
π
∗

(
F

)
−

2

3
G.

In particular, the divisor B
W1

is nef and big.

Let M be a general surface of the pencil M
W1

and D be a general surface of the linear system | − 5K
W1
|. Then

B
W1

· M ·D = 0, which implies that M = P by Theorem 2.2 because the linear system | − 5K
W1
| is the proper transform

of the pencil P.

Proposition 6.11.
A general surface in the pencil P is birational to a smooth K3 surface.

Proof. We use the same notations in the proof of Lemma 6.27. The surface G is isomorphic to the projective space

P(1, 1, 2). Let T be a general surface in the pencil P and let Δ = G · T
W1

. Then by simple calculation, we see that the

curve Δ on G is defined by the equation

ε1x̄
5 + ε2x̄

2
ȳt̄ + ε3x̄ȳ

2
t̄ + ε4ȳt̄

2 = 0 ⊂ Proj(C[x̄, ȳ, t̄]) = P(1, 1, 2),

where each ε
i

is a general complex number. It has two nodes at the points (1 : 0 : 0) and (0 : 1 : 0). But it is smooth at

the point (0 : 0 : 1) which is a A1 singular point of the surface G. Let G̃ be the blow up of the surface G at these three

points. The genus of the normalization Δ̃ of the curve Δ is

p
g
(Δ̃) =

(K
G̃

+ Δ̃) · Δ̃

2
+ 1 =

(K
G

+ Δ) · Δ −
1
2

2
+ 1 − 2 = 0,

and hence the curve Δ is a rational curve not contained in the base locus of the pencil P
W1

. Therefore Corollary 2.2

completes the proof.

We may assume that CS(W,
1
n
M

W
) = {Q2} due to Theorem 2.1 and Lemma 2.3. Let O1 and O2 be the quotient singular

points of the threefold Y contained in the exceptional divisor of γ that are of types 1
3
(1, 1, 2) and 1

5
(1, 3, 2), respectively.

Then

∅ �= CS

(
Y ,

1

n

M
Y

)
⊂

{
O1, O2

}

by Theorem 2.1, Lemmas 2.2 and 2.3. The proof of Lemma 6.25 implies that the CS(Y , 1
n
M

Y
) does not contain the point

O1. Now the proofs of Lemma 6.21 shows M = | − 3K
X
|.

Therefore we have proved:

Proposition 6.12.
The linear systems | − 3K

X
| and P are the only Halphen pencils on X.
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