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Abstract We study log canonical thresholds on quartic threefolds, quintic fourfolds, and
double spaces. As an important application, we show that they have Kähler–Einstein metrics
if they are general.
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1 Introduction

All varieties are defined over C.

1.1 Introduction

The multiplicity of a nonzero polynomial f ∈ C[z1, . . . , zn] at a point P ∈ C
n is the

nonnegative integer m such that f ∈ mm
P\mm+1

P , where mP is the maximal ideal of polynomials
vanishing at the point P in C[z1, . . . , zn]. It can be also defined by derivatives. The multiplicity
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52 I. Cheltsov et al.

of f at the point P is the number

multP ( f ) = min

{
m
∣∣∣ ∂m f

∂m1 z1∂m2 z2 . . . ∂mn zn
(P) �= 0

}
.

On the other hand, we have a similar invariant that is defined by integrations. This invariant,
which is called the log canonical threshold of f at the point P , is given by

cP ( f ) = sup
{

c
∣∣∣ | f |−c is locally L2 near the point P ∈ C

n
}

.

This number appears in many places. For instance, the log canonical threshold of the polyno-
mial f at the origin is the same as the absolute value of the largest root of the Bernstein-Sato
polynomial of f .

Even though log canonical threshold was implicitly known and extensively studied under
different names by J. H. M. Steenbrink, A. Varchenko and so forth, it was formally introduced
to birational geometry by Shokurov in [31] as follows. Let X be a Q-factorial variety with at
worst log canonical singularities, Z ⊂ X a closed subvariety, and D an effective Q-divisor
on X . The log canonical threshold of D along Z is the number

cZ (X, D) = sup
{

c
∣∣∣ the log pair (X, cD) is log canonical along Z

}
.

For the case Z = X we use the notation c(X, D) instead of cX (X, D). Because log canonicity
is a local property, we see that

cZ (X, D) = inf
P∈Z

{cP (X, D)} .

If X = C
n and D = ( f = 0), then we also use the notation c0( f ) for the log canonical

threshold of D at the origin.
Even though several methods have been invented in order to compute log canonical thresh-

olds, it is not easy to compute them in general. However, many problems in birational geom-
etry are related to log canonical thresholds. The log canonical thresholds play a significant
role in the study on birational geometry. They show many interesting properties (see [10–
12,17,19–21,23–26]).

We occasionally find it useful to consider the smallest value of log canonical thresholds of
effective divisors linearly equivalent to a given divisor, in particular, an anticanonical divisor
(for instance, see [23]).

Definition 1.1 Let X be a Q-factorial Fano variety with at worst log terminal singularities.
For a natural number m > 0, we define the m-th global log canonical threshold of X by the
number

lctm (X) = inf

{
c

(
X,

1

m
H

) ∣∣∣ H ∈ ∣∣− mK X
∣∣} .

Note that the number lctm(X) is defined to be ∞ if the linear system | − mK X | is empty.
Also, we define the global log canonical threshold of X by the number

lct(X) = inf
n∈N

{
lctm(X)

}
.

We can immediately see

lct(X) = sup

{
c

∣∣∣∣ the log pair (X, cD) is log canonical for
every effective Q-divisor D with D ≡ −K X

}
.
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Log canonical thresholds of certain Fano hypersurfaces 53

To see the simplest case, let S be a smooth del Pezzo surface. It follows from [5, Theorem
1.7] and [23, Section 3] that

lct (S) = lct1(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3 when S ∼= F1 or K 2
S ∈ {7, 9},

1/2 when S ∼= P
1 × P

1 or K 2
S ∈ {5, 6},

2/3 when K 2
S = 4,

2/3 when S is a cubic in P
3 with an Eckardt point,

3/4 when S is a cubic in P
3 without Eckardt points,

3/4 when K 2
S = 2 and | − KS | has a tacnodal curve,

5/6 when K 2
S = 2 and | − KS | has no tacnodal curves,

5/6 when K 2
S = 1 and | − KS | has a cuspidal curve,

1 when K 2
S = 1 and | − KS | has no cuspidal curves.

(1.1)

For a quasismooth hypersurface X in P(a0, . . . , a4) of degree
∑4

i=0 ai − 1, where a0 ≤
· · · ≤ a4, one can find lct(X) > 3

4 for 1,936 values of (a0, a1, a2, a3, a4) (see [16, Corollary

3.4]). Moreover, for a quasismooth hypersurface X in P(1, a1, . . . , a4) of degree
∑4

i=1 ai

having terminal singularities, there are exactly 95 possible quadruples (a1, a2, a3, a4) found
in [14] and [16]. It follows from [4, Theorem 1.3] that lct(X) = 1 if

(a1, a2, a3, a4) �∈
{

(1, 1, 1, 1) , (1, 1, 1, 2) , (1, 1, 2, 2) , (1, 1, 2, 3)
}

and the hypersurface X is sufficiently general.
It is proved that the global log canonical threshold of a rational homogeneous space of

Picard rank 1 and Fano index r is 1
r (see [13, Theorem 2]).

Example 1.2 Let X be a smooth hypersurface of degree n ≥ 3 in P
n . Then

lctm (X) ≥ n − 1

n

due to [3, Theorem 1.3] and [6, Theorem 3.3]. Furthermore, lctm(X) = n−1
n if and only if

X contains a cone of dimension n − 2 (see [3, Conjecture 1.5], [6, Corollary 4.10], and [11,
Theorem 0.2]). The inequality obviously implies that

lct (X) ≥ n − 1

n
.

However, it is shown that lct(X) = 1 if X is general and n ≥ 6 (see [30, Theorem 2]).

From the results of [30], it is natural to expect the following:

Conjecture 1.3 The global log canonical thresholds of a general quartic threefold and a
general quintic fourfold are 1.

This conjecture has been proposed for canonical thresholds in [30, Conjecture 2].
For an evidence of the conjecture, we can consider the first global log canonical threshold

of a general hypersurface. It is not hard to show that the first global log canonical threshold
of a general hypersurface of degree n ≥ 4 in P

n is one (see Proposition 2.1). In the case
of smooth quartic threefolds, we can find all the first global log canonical thresholds (see
Proposition 2.2).
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54 I. Cheltsov et al.

For the global log canonical thresholds, we prove the following:

Theorem 1.4 Let X be a general hypersurface of degree n = 4 or 5 in P
n. Then

lct (X) ≥
⎧⎨
⎩

7
9 for n = 4;
5
6 for n = 5.

The global log canonical threshold of a Fano variety is an algebraic counterpart of the
α-invariant introduced in [32]. One of the most interesting applications of the global log
canonical thresholds of Fano varieties is the following result proved in [9, p. 549] (see also
[22] and [32]).

Theorem 1.5 Let X be an d-dimensional Fano variety with at most quotient singularities.
The variety X has an orbifold Kähler–Einstein metric if the inequality

lct (X) >
d

d + 1

holds.

The inequality in Example 1.2 is not strong enough to apply Theorem 1.5 to a smooth
hypersurface of degree n in P

n . However, we see that (1.1) enables Theorem 1.5 to imply the
existence of a Kähler–Einstein metric on a general cubic surface and that [30, Theorem 2]
enables Theorem 1.5 to imply the existence of a Kähler–Einstein metric on a general hyper-
surface of degree n ≥ 6 in P

n . Even though Theorem 1.4 is much weaker than Conjecture 1.3,
they are strong enough to imply the existence of a Kähler–Einstein metric. Consequently, we
can obtain the following:

Corollary 1.6 A general hypersurface of degree n ≥ 2 in P
n has a Kähler–Einstein metric.

In fact, a smooth conic in P
2 has a Kähler–Einstein metric because it is isomorphic to P

1

and the Fubini–Study metric of a projective space is Kähler–Einstein. Furthermore, a smooth
cubic surface always admits a Kähler–Einstein metric (see [33, Section 2]). Meanwhile, it
is proved that a Kähler–Einstein metric exists on a smooth hypersurface in P

n defined by a
homogeneous polynomial equation of the form zn

0+zn
1+ fn(z2, . . . , zn) = 0, where n ≥ 4 and

fn is a homogeneous polynomial of degree n in variables z2, . . . , zn (see [1, Proposition 3.1]).
Also, in this paper, we will study log canonical thresholds on double spaces, i.e., double

covers of P
n , and obtain similar results as what we have on Fano hypersurfaces in P

n . For
instance, we will prove that the first global log canonical threshold of a smooth double space is
equal to its global log canonical threshold (see Proposition 3.2) and that every smooth double
cover of P

n ramified along a hypersurface of degree 2n admits a Kähler–Einstein metric.
Let us close this section by a conjecture inspired by [34, Question 1].

Conjecture 1.7 For a smooth Fano variety X, lct(X) = lctm(X) for some natural number
m ≥ 1.

2 Log canonical threshold of a Fano hypersurface

2.1 Hypersurface of degree n in P
n

As we mentioned, one can consider the first global log canonical threshold of a general
hypersurface of degree n ≥ 4 in P

n in behalf of Conjecture 1.3.
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Log canonical thresholds of certain Fano hypersurfaces 55

Proposition 2.1 Let X be a general hypersurface of degree n ≥ 4 in P
n. Then lct1(X) = 1.

Proof Consider the space Sn = P
n × P

(
H0 (Pn, OPn (n))

)
with the natural projections

p : Sn → P
n and q : Sn → P

(
H0(Pn, OPn (n))

)
. Put In =

{
(O, F) ∈ Sn

∣∣∣ F(O) =
0 and F = 0 is smooth.

}
.

Let (O, F) be a pair in In . Suppose that O = [1 : 0 : · · · : 0]. Then F can be given
by a polynomial of the form zn−1

0 zn + zn−2
0 q2(z1, . . . , zn) + · · · + z0qn−1(z1, . . . , zn) +

qn(z1, . . . , zn) ∈ C[z0, . . . , zn], where qi is a homogeneous polynomial of degree i .
We say that the point O is bad on the hypersurface F = 0 if one of the following condition

holds:

(1) q2(z1, . . . , zn−1, 0) ≡ 0.
(2) q2(z1, . . . , zn−1, 0) = {l(z1, . . . , zn−1)}2 for some linear form l(z1, . . . , zn−1) and if

we assume l(z1, . . . , zn−1)= zn−1, either q3(z1, . . . , zn−2, 0, 0)≡0 or q3(z1, . . . , zn−2,

0, 0)={m(z1, . . . , zn−2)}3 for some linear form m(z1, . . . , zn−2).

Then consider a subset of In ,

Yn =
{
(O, F) ∈ In

∣∣∣ the point O is bad on the quartic F = 0
}

.

One can see that for a given point P on P
n , the dimension of p−1(P) ∩ Yn is strictly

smaller than h0(Pn, OPn (n)) − (n + 1), and hence the dimension of the space Yn is
smaller than the dimension of P

(
H0 (Pn, OPn (n))

)
. Therefore, the image of the regular

map q|Yn : Yn → P
(
H0 (Pn, OPn (n))

)
is a proper closed subset of P

(
H0 (Pn, OPn (n))

)
.

So, a general hypersurface of degree n in P
n has no bad point.

Let X be a general hypersurface of degree n in P
n and H be a divisor in | − K X |. We

claim that the pair (X, H) is log canonical at every point P on X . By a suitable coordinate
change we may assume that the point P = [1 : 0 : · · · : 0]. We may also assume that the
hypersurface X is defined by the equation

zn−1
0 zn + zn−2

0 q2(z1, . . . , zn) + · · · + z0qn−1(z1, . . . , zn) + qn(z1, . . . , zn) = 0,

where qi is a homogeneous polynomial of degree i . Unless the hyperplane section H is given
by the tangent hyperplane at the point P , the divisor H is smooth at the point P , and hence the
pair (X, H) is log canonical at the point P . Now we suppose that H is given by the tangent
hyperplane T at the point P . The hyperplane T in P

n is defined by zn = 0 in our case.
Since both X and T are smooth and H = T ∩ X , we obtain cP (X, H) = cP (T, H) from
[11, Theorem 3.1]. Furthermore, cP (T, H) = c0( f ), where f = q2(z1, . . . , zn−1, 0) +
· · · + qn−1(z1, . . . , zn−1, 0) + qn(z1, . . . , zn−1, 0). Since P is not a bad point on X , the
polynomial q2(z1, . . . , zn−1, 0) is not zero polynomial. If the rank of the quadratic polynomial
q2(z1, . . . , zn−1, 0) is at least 2, then c0( f ) = 1 by [17, Lemma 8.10 (8.10.3)]. If the rank of
the quadratic polynomial q2(z1, . . . , zn−1, 0) is 1, we may assume that q2(z1, . . . , zn−1, 0) =
z2

n−1. Consider the polynomial f with weights wt(z1) = · · · = wt(zn−2) = 2, wt(zn−1) = 3.
The leading term of f with respect to the weights is fw = z2

n−1 + q3(z1, . . . , zn−2, 0, 0).
Since the polynomial q̃3 = q3(z1, . . . , zn−2, 0, 0) is neither zero polynomial nor a cube of
a linear polynomial, we obtain c0(q̃3) ≥ 1

2 , and hence c0( fw) = max{ 1
2 + c0(q̃3), 1}=1.

By [19, Proposition 2.1], we have c0( f ) ≥ c0( fw) = 1. Therefore, the pair (X, H) is log
canonical at every point on X . Consequently, lct1(X) = 1. �


For smooth quartic threefolds, one can compute all the possible first global log canonical
thresholds by studying normal quartic surfaces. Here we only list them and the brief idea to
compute them as follows:
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Proposition 2.2 Let X be a smooth quartic threefold in P
4. The first global log canonical

threshold lct1 (X) is one of the following:

{3

4
,

29

36
,

22

27
,

5

6
,

16

19
,

17

20
,

6

7
,

13

15
,

37

42
,

7

8
,

8

9
,

9

10
,

23

26
,

11

12
,

12

13
,

13

14
,

14

15
,

15

16
,

31

34
,

17

18
,

21

22
,

23

24
,

29

30
,

41

42
, 1
}
.

Furthermore, for each number μ in the set above, there is a smooth quartic threefold X with
lct1(X) = μ.

Its proof goes as follows. A divisor S ∈ | − K X | is given by the intersection of X and a
hyperplane H in P

4. Because the log canonical threshold c(X, S) is equal to the log canonical
threshold c(H, S) (see [11, Theorem 3.1]), the result above can be obtained by investigating
log canonical thresholds of normal quartic surfaces H in P

3. Note that a hyperplane section
of a smooth hypersurface in P

n, n ≥ 4 is normal and that a normal hypersurface in P
n−1

can be attained by a hyperplane section of a smooth hypersurface in P
n (see [15]). Let S be

a normal surface in P
3 defined by a homogeneous quartic polynomial F . We suppose that

S has a singular point at [0:0:0:1]. We then consider the log pair (C3, D), where D is the
fourth affine piece of S that is defined by the polynomial f (x, y, z) = F(x, y, z, 1). Since
log canonical thresholds can be computed locally, it is enough to study the log pair (C3, D)

instead of (X, S). For the detail of the computation, see [35].
Before we prove Theorem 1.4, let us explain our generality condition. Let Xd be a hyper-

surface of degree d in P
n, d ≥ n ≥ 4. Let P be an arbitrary point on Xd . By suitable

coordinate changes, we assume that P = [1 : 0 : · · · : 0]. Then the hypersurface Xd is
defined by

zn−1
0 q1(z1, . . . , zn) + zn−2

0 q2(z1, . . . , zn) + · · · + z0qn−1(z1, . . . , zn) + qd(z1, . . . , zn) = 0,

where qi are homogeneous polynomials of degrees i in variables z1, . . . , zn .

Definition 2.3 The hypersurface Xd is said to be k-regular at the point P , where 0 ≤ k ≤ d ,
if the homogenous polynomials

q1, q2, . . . , qk

form a regular sequence in C[z1, . . . , zn]. The hypersurface Xd is said to be k-regular if it is
k-regular everywhere.

Proposition 2.4 A general hypersurface of degree n in P
n is (n − 1)-regular.

Proof See [28, Proposition 1]. �


To prove Theorem 1.4 we need a linear system on Xd that has a big multiplicity at a given
point but a small base locus. Put

fi (z0, . . . , zn) =
i∑

j=1

zi− j
0 q j (z1, . . . , zn)

for each 1 ≤ i ≤ d .
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Log canonical thresholds of certain Fano hypersurfaces 57

Definition 2.5 The m-th hypertangent linear system M at the point P is the linear subsystem
of |OXd (m)| consisting of the divisors cut by hypersurfaces

m∑
i=1

fi (z0, . . . , zn)pm−i (z1, . . . , zn) = 0,

where p j (z1, . . . , zn) is a homogeneous polynomial of degree j .

Note that mult P (M) ≥ m + 1 for each divisor M in the m-th hypertangent linear system on
Xd .

Lemma 2.6 Suppose that the hypersurface Xd is (n − 1)-regular at a point P. Then the
following hold.

1. There are finitely many lines (possibly none) on Xd passing through the point P.
2. The base locus of the (n − 1)-th hypertangent linear system M at the point P consists

of lines passing through the point P on Xd .

Proof There is a one-to-one correspondence between the set of lines passing through the point
P and the zero locus of the polynomials q1 = · · · = qd = 0 in P

n−1. Since the homogeneous
polynomials q1, . . . , qn−1 form a regular sequence in C[z1, . . . , zn], they defines a finite set
in P

n−1. This proves the first assertion.
The base locus of the linear system M is defined by the equations f1 = · · · = fn−1 = 0.

Therefore, it is cut out by the equations q1 = q2 = · · · = qn−1 = 0. This shows the second
assertion. �


We close this section by the following useful lemma.

Lemma 2.7 Let X be a smooth hypersurface of degree n in P
n and D be an effective

Q-divisor numerically equivalent to −K X . For a non-negative number λ ≤ 1, there is a
point P ∈ X such that (X, λD) is log canonical on X \P.

Proof The log pair (X, λD) is log canonical in the outside of finitely many points of the
smooth hypersurface X (see [27, Theorem 2] or [28, Section 3]). Suppose that there are two
points at which the log pair (X, λD) is not log canonical. Then for sufficiently small ε > 0
the log pair (X, (λ − ε)D) is not log canonical at the two points either. Since the divisor
−(K X + (λ − ε)D) is nef and big, it follows from from the connectedness principle of
Shokurov (see [18, Theorem 17.4]) that the locus of non-Kawamata log terminal singularities
of the log pair (X, (λ − ε)D) is connected. This is a contradiction. �

2.2 General quartic

Let X be a smooth quartic hypersurface in P
4 such that the following general conditions hold:

• the threefold X is 3-regular;
• every line on the hypersurface X has normal bundle OP1(−1) ⊕ OP1 ;
• the intersection of X with a two-dimensional linear subspace of P

4 cannot be a double
conic curve.

Remark 2.8 A line on the quartic X has normal bundle OP1(−1) ⊕ OP1 if and only if no
two-dimensional linear subspace of P

4 is tangent to the quartic X along the line (see [7,
Theorem 1.9]).
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Remark 2.9 It follows from Proposition 2.2 and [6] that lct1(X) ≥ 7
9 . To avoid the long proof

of Proposition 2.2, we can use instead Proposition 2.1 by adding extra generality conditions.

Remark 2.10 Let B and B ′ be effective Q-Cartier Q-divisors on a variety V . Then(
V, αB + (1 − α) B ′)

is log canonical if both (V, B) and (V, B ′) are log canonical, where 0 ≤ α ≤ 1.

Let us prove Theorem 1.4 for the case n = 4. Put λ = 7
9 . Let D be an effective Q-divisor

on X such that D ≡ −K X . To prove Theorem 1.4, we have to show that (X, λD) is log
canonical.

Suppose that (X, λD) is not log canonical. Due to Remarks 2.9 and 2.10, we may assume
that D = 1

n R where R is an irreducible divisor with R ∼ −nK X for some natural number
n > 1. By Lemma 2.7, the log pair (X, λD) is not log canonical only at a single point P .

The threefold X can be given by

v3x+v2q2 (x, y, z, u)+vq3 (x, y, z, u)+q4 (x, y, z, u)=0 ⊂ P
4 ∼= Proj

(
C
[
x, y, z, u, v

])
,

where qi (x, y, z, u) is a homogeneous polynomial of degree i . Furthermore, we may assume
that the point P is located at [0 : 0 : 0 : 0 : 1]. Let T be the surface on X cut out by x = 0.

Lemma 2.11 The multiplicity of D at the point P is at most 2.

Proof The statement immediately follows from the inequalities

4 = H · T · D ≥ multP (T ∩ D) ≥ multP (T ) multP (D) ≥ 2multP (D) ,

where H is a general hyperplane section of X passing through the point P . �

Let π : U → X be the blow up at the point P with the exceptional divisor E . Then

D̄ ≡ π∗ (D) − multP (D) E,

where D̄ is the proper transform of the divisor D via the morphism π .
It follows from [8, Corollary 3.5] or [30, Proposition 3] that there is a line L ⊂ E such

that

multP (D) + multL
(
D̄
)

>
2

λ
.

Recall that E is isomorphic to P
2.

Let L be the linear system of hyperplane sections of X such that

S ∈ L ⇐⇒ either L ⊂ S̄ or S = T,

where S̄ is the proper transform of S via the birational morphismπ . There is a two-dimensional
linear subspace � ⊂ P

4 such that the base locus of L consists of the intersection � ∩ X .
Let S be a general surface in L. Then S is a smooth K3 surface. Put

TS = T
∣∣
S =

r∑
i=1

Zi ,

where each Zi is an irreducible curve. The generality conditions imply that the curve TS is
reduced (see Remark 2.8). Then

∑r
i=1 deg(Zi ) = 4. It follows that

multP (S ∩ D) ≥ multP (S) multP (D) + multL
(
S̄ ∩ D̄

) ≥ multP (D) + multL
(
D̄
)

>
2

λ
.
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Log canonical thresholds of certain Fano hypersurfaces 59

Put

DS = D
∣∣
S =

r∑
i=1

mi Zi + �,

where mi is a non-negative rational number and � is an effective one-cycle on S whose
support does not contain the curves Z1, . . . , Zr . Then

r∑
i=1

mi multP (Zi ) + multP (�) = multP (DS) >
2

λ
,

and the support of the cycle � does not contain any component of the cycle TS . We have

4 = TS · DS =
r∑

i=1

mi deg (Zi ) + TS · �

≥
r∑

i=1

mi deg (Zi ) + multP (TS)

(
2

λ
−

r∑
i=1

mi multP (Zi )

)
.

Remark 2.12 The equality mi = multZi (D) holds for every i because X |� is reduced.

It follows from the 3-regularity of X that multP (TS) ≤ 3.

Lemma 2.13 Suppose that multP (TS) = 3. Then

16 >
12

λ
+ deg (Zk) mk,

for Zk that is not a line passing through the point P.

Proof Let T̄ be the proper transform of the surface T via the birational morphism π . Then

3 = multP (TS) = multP (T ∩ S) = multP (T ) multP (S) + multL
(
T̄ ∩ S̄

)
.

Hence, we see that L ⊂ T̄ . Since multP (D) > 1
λ

and multP (T ) = 2, it follows that

multP (T ∩ D) ≥ multP (T ) multP (D) + multL
(
T̄ ∩ D̄

) ≥ 2multP (D)+multL
(
D̄
)

>
3

λ
.

Let L1, . . . , Lm be all the lines on X that pass through the point P . Put

T ∩ D =
m∑

i=1

εi Li + m̄k Zk + ϒ,

where εi and m̄k are non-negative rational numbers, and ϒ is an effective one-cycle on X
whose support does not contain the lines L1, . . . , Lm . Then m̄k ≥ mk by Remark 2.12.

Taking the intersection with a general hyperplane section of X , we see that

4 ≥
r∑

i=1

εi + m̄kdeg (Zk) ,

but m̄kmultP (Zk) + multP (ϒ) > 3
λ

−∑r
i=1 εi .
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Take a general member M in the third hypertangent linear system M at the point P . Note
that the base locus of M consists of the lines L1, . . . , Lm by Lemma 2.6. Hence, we have

12 = M · T · D ≥ 3
r∑

i=1

εi + M · (m̄k Zk + ϒ)

> 3
r∑

i=1

εi + 4

(
3

λ
−

r∑
i=1

εi

)
= 12

λ
−

r∑
i=1

εi .

This implies 16 > 12/λ + deg(Zk)mk since 4 ≥∑r
i=1 εi + m̄kdeg(Zk) and m̄k ≥ mk . �


From now on, in order to describe the reduced curve TS , we will use the following notations:

• C : an irreducible cubic not passing through the point P .
• C̃ : an irreducible cubic that is smooth at the point P .
• Ĉ : an irreducible cubic that is singular at the point P .

For i = 1, 2

• Qi : an irreducible quadric not passing through the point P .
• Q̃i : an irreducible quadric passing through the point P .

For i = 1, 2, 3, 4

• Li : a line not passing through the point P .
• L̃i : a line passing through the point P .

Then, the following are all the possible configuration of TS . In each case, we derive a
contradictory inequality from our assumptions so that the log pair (X, λD) should be log
canonical. To obtain a contradictory inequality for each case, we start from the inequality

4 = TS · DS =
∑

mi Zi · TS + TS · � ≥
∑

mi deg(Zi ) + multP (TS)multP (�)

>
∑

mi deg(Zi ) + multP (TS)

(
2

λ
−
∑

mi multP (Zi )

)
,

and then we show that the number

A :=
∑

mi deg(Zi ) + multP (TS)

(
2

λ
−
∑

mi multP (Zi )

)

is greater than 4.

CASE A The curve TS is an irreducible quartic curve.

1. multP (TS) = 2.
DS = mTS + �.
A contradictory inequality:

A = 4m + 2

(
2

λ
− 2m

)
= 4

λ
> 4.

2. multP (TS) = 3.
DS = mTS + �.
An auxiliary inequality:

16 >
12

λ
+ 4m by Lemma 2.13.
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A contradictory inequality:

A = 4m + 3

(
2

λ
− 3m

)
= 6

λ
− 5m >

6

λ
− 5

(
4 − 3

λ

)
= 21

λ
− 20 > 4.

CASE B The curve TS is reducible and contains no line passing through the point P .

1. TS = Ĉ + L1.
DS = mĈ + m1L1 + �.
An auxiliary inequality :

1 = L1 · DS ≥ 3m − 2m1.

A contradictory inequality:

A = 3m + m1 + 2

(
2

λ
− 2m

)
= 4

λ
+ m1 − m ≥ 4

λ
+ m1 − 1 + 2m1

3
> 4.

2. TS = Q̃1 + Q̃2.
DS = m1 Q̃1 + m2 Q̃2 + �.
A contradictory inequality:

A = 2m1 + 2m2 + 2

(
2

λ
− m1 − m2

)
= 4

λ
> 4.

CASE C The curve TS contains a unique line passing through the point P .

1. TS = Q̃1 + L̃1 + L2.
DS = m Q̃1 + m1 L̃1 + m2 L2 + �.
Auxiliary inequalities:

2 = Q1 · DS ≥ −2m + 2m1 + 2m2

1 = L2 · DS ≥ 2m + m1 − 2m2

}
⇒ 1 ≥ m1

A contradictory inequality:

A = 2m + m1 + m2 + 2

(
2

λ
− m − m1

)
= 4

λ
+ m2 − m1 ≥ 4

λ
+ m2 − 1 > 4.

2. TS = C̃ + L̃1.
DS = mC̃ + m1 L̃1 + �.
An auxiliary inequality:

3 = C̃ · DS ≥ 3m1.

A contradictory inequality:

A = 3m + m1 + 2

(
2

λ
− m − m1

)
= 4

λ
+ m − m1 ≥ 4

λ
+ m − 1 > 4.

3. TS = Ĉ + L̃1.
DS = mĈ + m1 L̃1 + �.
Auxiliary inequalities:

3 = Ĉ · DS ≥ 3m1

16 > 12
λ

+ 3m by Lemma 2.13
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A contradictory inequality:

A = 6

λ
− 3m − 2m1 ≥ 6

λ
− 2 − 3m >

6

λ
− 2 −

(
16 − 12

λ

)
= 18

λ
− 18 > 4.

CASE D The curve TS contains two lines passing through the point P .

1. TS = Q̃1 + L̃1 + L̃2.
DS = m Q̃1 + m1 L̃1 + m2 L̃2 + �,
Auxiliary inequalities:

2 = Q̃1 · DS ≥ −2m + 2m1 + 2m2

16 > 12
λ

+ 2m by Lemma 2.13.

A contradictory inequality:

A= 6

λ
−m−2m1−2m2 ≥ 6

λ
− m − 2 (1 + m) >

6

λ
− 2 − 3

(
8 − 6

λ

)
= 24

λ
− 26 > 4.

2. TS = L̃1 + L̃2 + L3 + L4.
DS = m1 L̃1 + m2 L̃2 + m3L3 + m4 L4 + �, where we may assume that m3 ≥ m4.
An auxiliary inequality:

1 = L4 · DS ≥ m1 + m2 + m3 − 2m4

A contradictory inequality:

A = 4

λ
+ m3 + m4 − (m1 + m2) ≥ 4

λ
+ m3 + m4 − m2 − (1 − m2 − m3 + 2m4)

≥ 4

λ
+ 2m3 − m4 − 1 > 4.

3. TS = Q1 + L̃1 + L̃2.
DS = m Q1 + m1 L̃1 + m2 L̃2 + �.
An auxiliary inequality:

2 = Q1 · DS ≥ −2m + 2m1 + 2m2 ⇒ 1 + m ≥ m1 + m2.

A contradictory inequality:

A = 4

λ
+ 2m − m1 − m2 ≥ 4

λ
+ m − 1 > 4.

CASE E The curve TS contains three lines passing through the point P .

1. TS = L̃1 + L̃2 + L̃3 + L4.
DS = m1 L̃1 + m2 L̃2 + m3 L̃3 + mL4 + �.
Auxiliary inequalities:

1 = L4 · DS ≥ −2m + m1 + m2 + m3

16 > 12
λ

+ m by Lemma 2.13.

A contradictory inequality:

A = 6

λ
+ m − 2 (m1 + m2 + m3) ≥ 6

λ
+ m − 2 (1 + 2m) >

6

λ
− 2 − 3

(
16 − 12

λ

)

= 42

λ
− 50 = 4.

Therefore, Theorem 1.4 for n = 4 has been proved.
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2.3 General quintic

In this section, we prove Theorem 1.4 for n = 5.
Let X be a quintic hypersurface in P

5 such that the following generality conditions hold:

G 1. The hypersurface X is 4-regular;
G 2. For every 3-dimensional linear space � in P

5, the intersection X ∩� is irreducible and
reduced;

G 3. For each point P ∈ X and each 3-dimensional linear space � contained in the tangent
hyperplane at P and containing the point P , if the surface Z := X ∩� has multiplicity
two at the point P , then it satisfies the following:

G 3.0. The surface Z
G 3.0.1. cannot be singular along a line passing through the point P ;
G 3.0.2. cannot contain four lines passing through the point P .

G 3.1. If Z contains only one line L passing through the point P ,
G 3.1.1. then the line L meets its residual curve by a general hyperplane section in �

either at at least one smooth point or at at least two ordinary double points.
G 3.2. If Z contains only two lines, L1 and L2, passing through the point P , then

G 3.2.1. it has at most four singular points on L1 ∪ L2;
G 3.2.2. if it has four singular points on Li , then all of them are ordinary double points;
G 3.2.3. if it has three singular points on Li , then two of them are ordinary double points;
G 3.2.4. if it has exactly three singular points on the line Li , then the line Li meets its

residual curve by a general hyperplane section in � at one smooth point;
G 3.2.5. if it has exactly two singular points on the line Li , then either P is a non-ordinary

double point and the line Li meets its residual curve by a general hyperplane
section in � at two smooth points, or the point P is an ordinary double point
and the line Li meets its residual curve by a general hyperplane section in � at
at least one smooth point.

G 3.2.6. if it has no singular point other than P on the line Li , then the line Li meets
its residual curve by a general hyperplane section in � at at least two smooth
points.

G 3.3. If Z contains three lines, L1, L2 and L3, passing through the point P ,
G 3.3.1. if the three lines are coplanar, then it is smooth on (L1 ∪ L2 ∪ L3) \ {P} and

each line Li meets its residual curve by a general hyperplane section in � at
four points;

G 3.3.2. if the three lines are not coplanar, then either P is a non-ordinary double point,
the surface Z is smooth at every point of (L1 ∪ L2 ∪ L3) \ {P} and each line
Li meets its residual curve by a general hyperplane section in � at four points,
or P is an ordinary double point and each line Li meets its residual curve by a
general hyperplane section in � at two smooth points.

Lemma 2.14 A general quintic hypersurface X in P
5 satisfies the condition G2.

Proof This follows directly from [2, Theorem 5.1]. �

Lemma 2.15 A general quintic hypersurface X in P

5 satisfies the condition G3.

Proof See Appendix. �

Put λ = 5

6 . Let D be an effective Q-divisor on X such that D ≡ −K X . We claim that the
log pair (X, λD) is log canonical.
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Suppose that the log pair (X, λD) is not log canonical. As in the case of quartic threefolds,
we may assume that D = 1

n R where R is an irreducible divisor with R ∼ −nK X for some
natural number n. Furthermore, the following lemma enables us to assume n > 1. We may
use Proposition 2.1 with extra generality conditions in order to assume n > 1 without the
aid of the lemma.

Lemma 2.16 If a quintic hypersurface Y in P
5 is 4-regular, then lct1(Y ) = 1.

Proof The main idea of the proof is the same as that of Proposition 2.2. It is enough to prove
c0( f ) = 1 for a quintic polynomial f (x, y, z, u) ∈ C[x, y, z, u] obtained from the quintic
polynomial defining the quintic Y . Using the 4-regular condition we can derive enough
monomials from the polynomial f to have c0( f ) = 1. We omit the detailed computation.
For the detail, see [35]. �


It follows from Lemma 2.7 that there is a point P ∈ X such that the log pair (X, λD) is
log canonical on X\P . Therefore, the log pair (X, λD) is not log canonical only at the point
P .

By suitable coordinate changes, we may assume that P = [0 : 0 : 0 : 0 : 0 : 1] and that
the fourfold X is given by an equation

w4x +
5∑

i=2

w5−i qi (x, y, z, u, v) = 0 ⊂ P
5 ∼= Proj

(
C
[
x, y, z, u, v, w

])
,

where qi (x, y, z, u, v) is a homogeneous polynomial of degree i . Let T be the threefold on
X cut by x = 0.

Let π : U → X be the blow up at the point P with the exceptional divisor E . Then

D̄ ≡ π∗ (D) − multP (D) E,

where D̄ is the proper transform of the divisor D via the morphism π . Note that multP (D) >
1
λ

. It follows from [30, Proposition 3] that either multP (D) > 2
λ

or there is a plane 
 ⊂ E ∼=
P

3 such that

multP (D) + mult

(
D̄
)

>
2

λ
.

In the case when multP (D) > 2
λ

, let L be a sufficiently general pencil of hyperplane
sections of X that pass through the point P . In the case when multP (D) ≤ 2

λ
, let L be the

pencil of hyperplane sections of X such that

S ∈ L ⇐⇒ either 
 ⊂ S̄ or S = T,

where S̄ is the proper transform of S via the birational morphism π . In both the cases, there
is a three-dimensional linear subspace � ⊂ P

5 such that the base locus of L consists of the
intersection � ∩ X .

Let S be a general threefold in L. Then S �= T and multP (S ∩ D) > 2
λ

.
Put Z = X |�. The surface Z is reduced and irreducible because X contains neither

quadric surfaces nor planes by our initial assumption. The 4-regularity of X implies that
multP (Z) ≤ 3.
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Lemma 2.17 The multiplicity of Z at the point P is 3.

Proof Suppose that multP (Z) ≤ 2. Let M be the 4th hypertangent linear system at the point
P and let M be a general member in M. The base locus of M consists of finitely many lines
on X that pass through the point P .

Put D ∩ S = m Z + ϒ , where m is a non-negative rational number and ϒ is a 2-cycle
whose support does not contain the surface Z . Then multP (ϒ) > 2

λ
− 2m but T does not

contain components of ϒ . We therefore have

multP (T ∩ ϒ) >
4

λ
− 4m.

We then consider the one cycle T ∩ ϒ . We may write

T ∩ ϒ =
k∑

i=1

αi Li + �,

where Li is a line contained in Z and passing through the point P and the support of �

contain none of the lines Li ’s. We have

M · � = M ·
(

T · D · S − mT · Z −
k∑

i=1

αi Li

)
= 20 − 20m − 4

k∑
1=1

αi

and

M · � ≥ multP (M) multP (�) >
20

λ
− 20m − 5

k∑
i=1

αi ,

and hence

4 = 20

λ
− 20 <

k∑
i=1

αi .

On the other hand, using our generality condition G 3, we obtain the opposite inequality∑k
i=1 αi ≤ 4 case by case as follows, so that we could conclude that multP (Z)=3.
By our generality condition, we have k ≤ 3. Note that we may regard T ∩ ϒ as a divisor

in |OZ (1 − m)| on the quintic surface Z ⊂ � ∼= P
3 since T ∩ S = Z . For each line L j we

consider the hyperplane section A j of Z by a general hyperplane in � passing through the
line L j . The divisor A j on the surface Z consists of the line L j and the residual curve C j .
On the surface Z , we have

k∑
i=1

αi C j · Li ≤ C j ·
(

k∑
i=1

αi Li + �

)
= 4(1 − m) ≤ 4. (2.1)

On the surface Z , the local intersection number of Ci and L j at an ordinary double point of
Z is well-defined and it is at least 1

2 if these two curves intersect there. The local intersection
number of Ci and L j at a smooth point of Z is at least 1 if these two curves intersect there.

CASE k = 1.
G 3.1.1 implies 1 ≤ C1 · L1. Then the inequality (2.1) implies α1 ≤ 4.
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CASE k = 2.
First we suppose that neither L1 nor L2 contains exactly two singular points of Z . Then it
follows from the conditions G 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.6 that 2 ≤ C j · L j . This implies
that α j ≤ 2, and hence α1 + α2 ≤ 4.

Now we suppose that L1 contains exactly two singular points of Z . One of them are the
point P .

Suppose that P is a non-ordinary double point. Then

2α1 ≤ C1 · (α1L1 + α2 L2) ≤ 4

by G 3.2.5. Thus, we have α1 ≤ 2. On the other hand, it follows from G 3.2.3, G 3.2.4, G 3.2.5
and G 3.2.6 that

2α2 ≤ C2 · (α1L1 + α2 L2) ≤ 4,

which implies that α2 ≤ 2. Then α1 + α2 ≤ 4.
Suppose now that the point P is an ordinary double point. We obtain from G 3.2.5 that

3

2
α1 + 1

2
α2 ≤ C1 · (α1L1 + α2 L2) ≤ 4.

On the other hand, regardless of the number of the singular points on L2, we see

1

2
α1 + 3

2
α2 ≤ C2 · (α1L1 + α2 L2) ≤ 4

by G 3.2.3, G 3.2.4, G 3.2.5 and G 3.2.6, since the point P is an ordinary double point. These
imply that α1 + α2 ≤ 4.

CASE k = 3.
Suppose that the three lines are coplanar. Then G 3.3.1 shows that for each j = 1, 2, 3 we
have 3 ≤ C j · L j , and hence α j ≤ 4

3 . Therefore, we obtain α1 + α2 + α3 ≤ 4.
Suppose that the three lines are not coplanar. We have to consider two cases: when the

point P is an ordinary double point, and when the point P is not an ordinary double point.
Suppose that P is not an ordinary double point. Then G 3.3.2 shows that for each j =

1, 2, 3 we have 3 ≤ C j · L j , and hence α j ≤ 4
3 . Therefore, we obtain α1 + α2 + α3 ≤ 4.

Suppose that P is an ordinary double point. Then G 3.3.2 shows that for each i and j ,

C j · Li ≥ 1

2
+ 2δi j ,

where δi j is the Kronecker-delta function, i.e., δi j = 1 if i = j ; δi j = 0 if i �= j . Then the
inequality (2.1) implies that for each 1 ≤ j ≤ 3, we have

1

2
(α1 + α2 + α3) + 2α j ≤

3∑
i=1

αi C j · Li ≤ 4,

and hence

3(α1 + α2 + α3) ≤ 7

2
(α1 + α2 + α3) ≤

3∑
j=1

3∑
i=1

αi C j · Li ≤ 12,

which implies that α1 + α2 ≤ 4. This completes the proof. �
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Let T̄ be the proper transform of T via the birational morphism π . Then

3 = multP (Z) = multP (T ∩ S) = multP (T ) multP (S) + mult

(
T̄ ∩ S̄

)
,

which implies that 
 ⊂ T̄ . Since multP (D) > 1
λ

and multP (T ) = 2, it follows that

multP (T ∩ D) ≥ multP (T ) multP (D)+mult

(
T̄ ∩ D̄

) ≥ 2multP (D)+mult

(
D̄
)

>
3

λ
.

Now we restrict everything to a general hyperplane section of the fourfold X . Let H be a
general hyperplane in P

5 passing through the point P . Put

X̃ = H ∩ X, T̃ = H ∩ T, S̃ = H ∩ S, D̃ = H ∩ D, Z̃ = H ∩ Z , ϒ̃ = H ∩ ϒ.

Let P̃ = [0 : 0 : 0 : 0 : 1]. The threefold X̃ is 4-regular at the point P̃ . The divisor D̃ is
equivalent to OP4(1)|X̃ .

We have

multP̃

(
T̃
)

= 2, multP̃ (Z̃) = 3, multP̃

(
T̃ ∩ D̃

)
>

3

λ
, multP̃

(
S̃ ∩ D̃

)
>

2

λ
.

The intersection T̃ ∩ S̃ consists of the irreducible reduced curve Z̃ . Put

T̃ ∩ D̃ = m̄ Z̃ + �,

where m̄ is a non-negative rational number and � is an effective one-cycle on X̃ whose
support does not contain the curve Z̃ . Then, multP̃ (�) > 3

λ
− 3m̄.

Let N be the third hypertangent linear system at the point P̃ . Lemma 2.6 shows that the
base locus of N does not contain any curves because the threefold X̃ contains no lines passing
through the point P̃ . Hence, for a general member N in N we have

15 = N · T̃ · D̃ ≥ 15m̄ + N · � > 15m̄ + 4

(
3

λ
− 3m̄

)
,

which implies 15 > 12
λ

+ 3m̄. Since D̃ ∩ S̃ = m Z̃ + ϒ̃ and multP̃ (ϒ̃) > 2
λ

− 3m, on the
surface S̃ we have

5 − 5m = Z̃ ∩ ϒ̃ > multP̃

(
Z̃
)

multP̃

(
ϒ̃
)

> 3

(
2

λ
− 3m

)
.

Thus, we see that 4m > 6
λ

− 5.
The curve Z̃ is reduced and S̃ is a sufficiently general hyperplane section of X̃ that contains

the curve Z̃ . Thus, we have

m = multZ̃ (D̃) ≤ multZ̃ (T̃ ∩ D̃) = m̄,

which implies

15 ≥ 12

λ
+ 3m >

12

λ
+ 3

4

(
6

λ
− 5

)
.

It contradicts λ = 5
6 .

The obtained contradiction completes the proof of Theorem 1.4.
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3 Log canonical threshold on a double space

3.1 Generalized global log canonical threshold

The Picard group of a smooth Fano hypersurface of degree n ≥ 4 of P
n is generated by an

anticanonical divisor. Therefore, it is natural that we consider only plurianticanonical divisors
when we define its global log canonical threshold. However, in other varieties, it may not be
enough. Therefore, we generalizes the global log canonical threshold as follows:

Definition 3.1 Let X be a Q-factorial variety with at worst log canonical singularities. For
an integral divisor D on the variety X and a natural number m > 0, we define the m-th global
log canonical threshold of the divisor D by the number

lctm (X, D) = inf

{
c

(
X,

1

m
H

) ∣∣∣ H ∈ ∣∣m D
∣∣} ,

where the number lctm(X, D) is defined to be ∞ if the linear system |m D| is empty. Also,
we define the global log canonical threshold of D by the number

lct(X, D) = inf
n∈N

{
lctn(X, D)

}
.

3.2 Double spaces

Let π : V → P
n be a smooth double cover ramified along a hypersurface S of degree 2m in

P
n, n ≥ 3. In addition, let H be the pull-back of a hyperplane in P

n by the covering map π .
We can consider the double cover V as a smooth hypersurface of degree 2m in P(1n+1, m).

Proposition 3.2 The global log canonical threshold lct(V, H) is equal to the first global log
canonical threshold lct1(V, H).

Proof Let us use the arguments in the proof of [30, Proposition 5].
Suppose that there is a divisor D in the linear system |μH | for some integer μ ≥ 2 such

that

c

(
V,

1

μ
D

)
< lct1(V, H) ≤ 1.

It follows from Remark 2.10 that we may assume that the support of the divisor D does not
contain divisors of the linear system |H |.

Choose a number λ such that c
(

V, 1
μ

D
)

< λ < lct1(V, H). Then the log pair
(

V, λ
μ

D
)

is not log canonical. By [29, Proposition 4.3] we have the center of a non-log-canonical

singularity of the log pair
(

V, λ
μ

D
)

at a point P on V .

Suppose that π(P) ∈ S. Let T be the unique divisor in the linear system |H | that is
singular at the point P . Since we have multP (D) > μ, we obtain an absurd inequality

2μ = D · T n−1 ≥ multP (D ∩ T ) > 2μ.

Now, we suppose that π(P) �∈ S. Let ξ : W → V be the blow up at the point P and
E ∼= P

n−1 be the exceptional divisor of the birational morphism ξ . Then, it follows from
[30, Proposition 3] that there is a hyperplane 
 ⊂ E such that

multP (D) + mult

(
D̄
)

> 2μ,

where D̄ is the proper transform of D on the variety W .
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Let G be a general divisor in |H | such that 
 ⊂ Supp(Ḡ), where Ḡ is the proper transform
of G on the variety W . Then, we also obtain a contradictory inequality

2μ = D · Gn−1 ≥ multP (D ∩ G) > 2μ.

�


Now we are ready to prove the following result.

Proposition 3.3 The following inequality holds:

lct (V, H) ≥ min

(
1,

m + n − 1

2m

)
.

Proof By Proposition 3.2, it is enough to consider the first global log canonical threshold
lct1(V, H) instead of lct(V, H). Let D be a divisor in |H |.

The double space V can be defined by a quasi-homogenous equation w2 = f (x0, . . . , xn)

in the weighted projective space P
(
1n+1, m

) ∼= Proj (C[x0, . . . , xn, w]), where wt(xi ) =
1, wt(w) = m, and f is a homogeneous polynomial of degree 2m. Note that the homogenous
polynomial f defines the smooth hypersurface S in P

n since V is smooth. We may assume
that the divisor D is cut out on V by the equation x0 = 0. The divisor D is a hypersurface in
P (1n, m) ∼= Proj (C[x1, . . . , xn, w]) defined by the equation w2 = f (0, x1, . . . , xn). It has
isolated singularities since the hypersurface

DS := { f (0, x1, . . . , xn) = 0} ⊂ P
n−1 ∼= Proj (C[x1, . . . , xn]) ,

has isolated singularities (see [15]).
It follows from [11, Theorem 3.1] that the log pair (V, λD) is log terminal if and only if

(P(1n, m), λD) is log terminal because V is smooth and the divisor D is contained in the
smooth locus of P(1n, m). It then follows from [17, Proposition 8.21] that

c(V, D) = c
(
P
(
1n, m

)
, D
) = 1

2
+ c

(
P

n−1, DS
)
.

We then see that [11, Theorem 3.1] and [6, Theorem 3.3] imply

c
(
P

n−1, DS
) = c (S, DS) ≥ n − 1

2m
.

This completes the proof. �


Let π : V → P
n be a double cover ramified along a smooth hypersurface of degree 2n ≥ 4.

It is a Fano variety of Fano index 1 and the pull-back of a hyperplane in P
n is an anticanonical

divisor of V . It follows from Proposition 3.3 (for n ≥ 3) and [5, Theorem 1.7] (for n = 2)
that

lct (V ) ≥ 2n − 1

2n
,

while [30, Theorem 2] shows that lct(V ) = 1 if V is general and n ≥ 3. Therefore, we
immediately obtain the following result that has been proved by [1] in a different way.

Corollary 3.4 A smooth double cover of P
n ramified along a hypersurface of degree 2n ≥ 4

admits a Kähler–Einstein metric.

123



70 I. Cheltsov et al.

Remark 3.5 Combining the results of [3] and the proof of Proposition 3.3, we can easily
obtain the following. Let V be the smooth hypersurface in P(1n+1, m) of degree 2m ≥ 2n ≥ 6
given by an equation

w2 = f (x0, . . . , xn) ⊂ P
(
1n+1, m

) ∼= Proj (C[x0, . . . , xn, w]) ,

where wt(xi ) = 1, wt(w) = m, and f is a homogeneous polynomial of degree 2m. Suppose
that

c (V, D) = m + n − 1

2mμ
,

where D ∈ |μH | and μ ∈ N. Then D = μT , where T is a divisor that is cut out on the
hypersurface V by an equation

∑n
i=0 λi xi = 0 such that the hypersurface

f (x0, . . . , xn) =
n∑

i=0

λi xi = 0 ⊂ P
n−1 ∼= Proj

(
C[x0, . . . , xn]

/( n∑
i=0

λi xi

))

is a cone over a smooth hypersurface in P
n−2 of degree 2m.

We can also give an easy proof of the following result that is a corollary of [30, Theorem
2].

Proposition 3.6 Let V be the double cover of P
n, n ≥ 3, ramified along a general hyper-

surface S of degree 2n in P
n. Then lct(V, H) = 1.

Proof We assume that for every hyperplane M ⊂ P
n , the intersection S ∩ M has at most iso-

lated double points. This generality condition is obviously satisfied for a general hypersurface
S because n ≥ 3.

Let D be a divisor in the linear system |H |. It follows from [17, Lemma 8.12] that the
singularities of the log pair (V, D) are log canonical if and only if the singularities of the log
pair (

P
n, π(D) + 1

2
S

)

are log canonical. Put M = π(D). It follows from [17, Theorem 7.5] that the singularities of
the log pair (V, D) are log canonical if and only if the log pair (M, 1

2 S|M ) is log canonical.
But the log pair (M, 1

2 S|M ) is log canonical because S|M has at most isolated double points.
�


The generality assumption in Proposition 3.6 is weaker than that of [30, Theorem 2].
Let V be the double cover of P

3 ramified along a smooth sextic S ⊂ P
3. Note that the

pull-back of a hyperplane in P
3 is an anticanonical divisor. As we did for quartic threefolds,

we are also able to find all the possible first global log canonical thresholds of V .

Proposition 3.7 Let V be the smooth double cover of P
3 ramified along a sextic. Then, the

first global log canonical threshold of the Fano variety V is one of the following:{
5

6
,

43

50
,

13

15
,

33

38
,

7

8
,

33

38
,

8

9
,

9

10
,

11

12
,

13

14
,

15

16
,

17

18
,

19

20
,

21

22
,

29

30
, 1

}
.

Furthermore, for each number μ in the set above, there is a smooth double cover V of P
3

ramified along a sextic with lct1(V ) = μ.
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Proof For the proof, see [35]. Its brief idea is as follows. For a hyperplane H in P
3, we see

that

c
(
V, π∗(H)

) = min

{
1,

1

2
+ c (H, H ∩ S)

}
.

The intersection H ∩ S is a reduced sextic plane curve on H ∼= P
2. Therefore, for the first

statement of Proposition 3.7, it is enough to consider all the possible values of c(P2, C) for
reduced sextic plane curves. Furthermore, we can consider only the values for c0( f ), where
f is a reduced sextic polynomial vanishing at the origin. �


Because the first global log canonical thresholds coincide with the global log canonical
thresholds on double spaces, Proposition 3.7 implies a stronger result as follows.

Corollary 3.8 Let V be a smooth double cover of P
3 ramified along a sextic. Then, the

global log canonical threshold of the Fano variety V is one of the numbers in Proposition 3.7.
Furthermore, for each number μ in Proposition 3.7, there is a smooth double cover V of P

3

ramified along a sextic with lct(V ) = μ.

Let us finish the paper by an example of a smooth double cover of P
3 ramified along a

sextic surface with the global log canonical threshold 1.

Example 3.9 Let V be the smooth double cover of P
3 ramified along the sextic surface

S ⊂ P
3 defined by the equation

x6
0 + x6

1 + x6
2 + x6

3 + x2
0 x2

1 x2x3 = 0.

Let C ⊂ P
3 be the curve defined by the intersection of the surface S and the Hessian surface

Hess(S) of S. For the tangent hyperplane TP at a point P ∈ S, if the multiplicity of the curve
TP ∩ S at the point P is at least 3, then the curve C is singular at the point P . Using the
computer program, Singular, one can check that the curve C is smooth in the outside of the
curves xi = x j = 0 with i �= j . Furthermore, for a point P in S that belongs to the curves
xi = x j = 0 with i �= j , one can easily check that the log pair (S, 1

2 HP ) is log canonical,
where HP is the hyperplane section of S by the tangent hyperplane to S at the point P .
Consequently, lct(V ) = lct1(V ) = 1. The variety V is an explicit example of smooth Fano
variety with the following properties (We do not know any other explicit example of such a
smooth Fano variety). For each i = 1, 2, . . . , r , let Vi = V . Then, the paper [30] implies
that the product V1 × · · · × Vr is not rational and

Bir(V1 × · · · × Vr ) = Aut(V1 × · · · × Vr ).

Moreover, for each dominant rational map ρ : V1 × · · · × Vr ���Y whose general fiber is
rationally connected, there is a subset {i1, . . . , ik} ⊂ {1, v, r} such that the diagram

V1 × · · · × Vr

π

��

ρ

����������

Vi1 × · · · × Vik
ρ̄

�������� Y

commutes, where π is the natural projection and ρ̄ is a birational map.
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4 Appendix

Let X F be a smooth quintic hypersurface in P
5 that is given by zeroes of a section

F ∈ H0(P5, O
P5(5)). It follows from Proposition 2.4 that there exists a non-empty Zariski

open subset UG1 ∈ H0(P5, O
P5(5)) such that X F is 4-regular whenever F ∈ UG1. Sim-

ilarly, it follows from Lemma 2.14 that there exists a non-empty Zariski open subset
UG2 ∈ H0(P5, O

P5(5)) such that for every 3-dimensional linear space � in P
5, the intersec-

tion X F ∩ � is irreducible and reduced if F ∈ UG2.
The purpose of this Appendix is to prove Lemma 2.15, i.e., to prove the existence of a

non-empty Zariski open subset UG3 ∈ H0(P5, O
P5(5)) such that for each F ∈ UG3 the

hypersurface X F satisfies the condition G 3 (see Sect. 2.3). Indeed, we prove the statement
as follows:

For each a(= 0, 1, 2, 3) and b(= 1, 2, . . . , 6), there exists a non-empty Zariski open
subset U in H0(P5, O

P5(5)) such that if F ∈ U , then for each point P ∈ X and each
3-dimensional linear space �3 contained in the tangent hyperplane at P and containing
the point P , the surface Z := X ∩ �3 satisfies the condition G 3.a.b.

Since we use the same method in order to prove the statement for each a and b, we first
explain how the proof goes and then show the required computations in each case G 3.a.b.

The proof goes as follows.
First we consider the space

S = F × H0
(
P

5, O
P5 (5)

)

with the natural projections p : S → H0(P5, O
P5(5)) and q : S → F . Here, F is a suitable

flag variety in P
5. Depending on the case, the flag F will be Flag(0, 1, 2, 3, 4), Flag(0, 2, 3,

4), Flag(0, 1, 3, 4) or Flag(0, 3, 4), where Flag(n1, . . . , nk) is the flag variety that parame-
trizes k-tuples (�n1 , . . . , �nk ) of ni -dimensional linear spaces with �n1 ⊂ · · · ⊂ �nk ⊂ P

5.
A 0-dimensional linear space will be denoted by P and a four dimensional linear space will
be denoted by T .

We then put

I =
⎧⎨
⎩
(
(P,�n2 , . . . , �nk−1 , T ), F

) ∈ S
∣∣∣∣∣∣

F(P) = 0;
T is the tangent hyperplane to X F at P;
X F satisfies the properties PG3.a.b.

⎫⎬
⎭ ,

where the properties PG3.a.b will be specified in the individual proofs. Then in each case, we
will see that it is easy to check that the morphism q|I : I → F is surjective.

With this set up, we compute the codimension c of q|−1
I (P,�n2 , . . . ,�nk−1 , T ) in

H0(P5, O
P5(5)) for a point (P,�n2 , . . . , �nk−1 , T ) ∈ F . We may always assume that T
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is defined by x = 0, �3 is defined by x = y = 0, �2 by x = y = z = 0, �1 by
x = y = z = u = 0 and P = [0 : 0 : 0 : 0 : 0 : 1]. We write the quintic polynomial F as

w5q0 + w4q1 (x, y, z, u, v) + w3q2 (x, y, z, u, v) + w2q3 (x, y, z, u, v)

+wq4 (x, y, z, u, v) + q5 (x, y, z, u, v) ,

where qi is a homogeneous polynomial of degree i .
The condition F(P) = 0 is equivalent to q0 = 0. The condition that T is the tangent

hyperplane to X F at P is equivalent to q1 = λx for some λ ∈ C
∗. These two conditions

contribute to the codimension c by 5. For each a and b, we will show that that the properties
PG3.a.b makes another contribution to the codimension c by more than dim F − 5.

These altogether show that the codimension of q|−1
I (P,�n2 , . . . ,�nk−1 , T ) in H0(P5,

O
P5(5)) is more than dim F . These implies that the morphism p|I cannot be surjective.

Taking the properties PG3.a.b into consideration, we can immediately notice that this non-
surjectivity implies the statement.

Therefore, to prove the statement for each case, it is enough to

• specify the flag F with its dimension;
• specify the property PG3.a.b;
• show that the properties PG3.a.b makes another contribution to the codimension c by

more than dim F − 5.

Now we do these jobs for each case.

Lemma 1 The statement holds for G3.0.1.

Proof The flag F is Flag(0, 1, 3, 4). It is of dimension 14. Put

PG3.0.1 = {X F ∩ �3 is singular along �2.} .

The condition that X F ∩ �3 contains the line �1 is equivalent to the condition that for each
i = 2, 3, 4, 5, the polynomial qi contains no vi . For X F ∩�3 in order to be singular along L ,
for each i = 2, 3, 4, 5, the polynomial qi must not contain the monomials zurvi−r−1, r =
0, 1, . . . , i − 1. These altogether show that the properties PG3.0.1 is of codimension > 9. �

Lemma 2 The statement holds for G3.0.2.

Proof The flag F is Flag(0, 3, 4). It is of dimension 12. Put

PG3.0.2 = {X F ∩ �3 contains four lines.} .

Since we may assume that q1, q2, q3, q4 forms a regular sequence, X F ∩ �3 containing four
lines is equivalent to q5(x, y, z, u, v) vanishing at four given points in q1(x, y, z, u, v) =
q2(x, y, z, u, v) = q3(x, y, z, u, v) = q4(x, y, z, u, v) = 0 in P

4 and q4(0, 0, z, u, v) van-
ishing at four given points in q2(0, 0, z, u, v) = q3(0, 0, z, u, v) = 0 in P

2. These altogether
show that the properties PG3.0.2 is of codimension 8. �

Lemma 3 The statement holds for G3.1.1.

Proof The flag F is Flag(0, 1, 3, 4). It is of dimension 14.
Put

PG3.1.1 =

⎧⎪⎪⎨
⎪⎪⎩

X F ∩ �3 contains �1;
�1 meets its residual curve by a general hyperplane
section of X F ∩ �3 in �3 only at singular points;
X F ∩ �3 has at most one ordinary double point on �1.

⎫⎪⎪⎬
⎪⎪⎭

.
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We write

qi (0, 0, z, u, v) =
∑

r+s+t=i

Arst z
r usvt ,

where Arst ’s are constants.
The condition that X F ∩�3 contains the line �1 is equivalent to A00t = 0 for t = 2, 3, 4

and 5 since the line �1 is defined by x = y = z = u = 0.
The surface X F ∩ �3 has singular points on the line �1 exactly where the polynomials

A101vw3 + A102v
2w2 + A103v

3w+ A104v
4 and A011vw3 + A012v

2w2 + A013v
3w+ A014v

4

have common zeros in P
1. The zero given by v = 0 corresponds to the singular point P . To

see this, put F̄(z, u, v, w) = F(0, 0, z, u, v, w). Since A00t = 0 for t = 2, 3, 4 and 5, we
always have ∂ F̄

∂v
(0, 0, v, w) = ∂ F̄

∂w
(0, 0, v, w) = 0. The common zeros of

∂ F̄

∂z
(0, 0, v, w) = v(A101w

3 + A102vw2 + A103v
2w + A104v

3),

∂ F̄

∂u
(0, 0, v, w) = v(A011w

3 + A012vw2 + A013v
2w + A014v

3)

are the singular points of X F ∩ �3 on the line �1. Note that �1 and its residual curve by a
general hyperplane meet at every singular point of X F ∩ �3 on the line �1. Therefore, the
second condition is equivalent to the condition that the polynomials A101vw3 + A102v

2w2 +
A103v

3w+ A104v
4 and A011vw3 + A012v

2w2 + A013v
3w+ A014v

4 have four common zeros
in P

1 with counting multiplicity, i.e., these two polynomials are proportional. This imposes
three additional independent conditions on the coefficients of F .

The condition that the polynomial A101vw3 + A102v
2w2 + A103v

3w + A104v
4 has k

zeros without counting multiplicity imposes 4 − k additional independent conditions on the
coefficients of F . Note that 1 ≤ k ≤ 4.

We claim that the last condition imposes k − 1 independent conditions on the coefficients
of F . Here we verify the claim only for the case with k = 4. The other cases with k = 3 and
2 can be verified in the same way.

We write the homogenized Hessian matrix of the polynomial q2(0, 0, z, u, v) +
q3(0, 0, z, u, v) + q4(0, 0, z, u, v) + q5(0, 0, z, u, v) along the line �1 as follows:
⎛
⎝ 2(A200w

3+A201vw2+A202v
2w+A203v

3) A110w
3+A111vw2+A112v

2w+A113v
3

A110w
3+A111vw2+A112v

2w+A113v
3 2(A020w

3+A021vw2+A022v
2w+A023v

3)

A101w
3+2A102vw2+3A103v

2w+4A104v
3 A011w

3+2A012vw2+3A013v
2w+4A014v

3

A101w
3+2A102vw2+3A103v

2w+4A104v
3

A011w
3+2A012vw2+3A013v

2w+4A014v
3

0

⎞
⎠ .

Let H(v,w) be the determinant of the homogenized Hessian matrix. The condition that
three of the four singular points on �1 is not ordinary double points is equivalent to the
condition that H(v,w) vanishes at three points out of the four points defined by A101w

3v +
A102v

2w2 + A103v
3w + A104v

4 = 0 and A011vw3 + A012v
2w2 + A013v

3w + A014v
4 = 0

in P
1. We claim that it imposes three additional independent conditions on the coefficients

of F . To verify the claim, we put

A110 = 0, A111 = 0, A112 = 0, A113 = 0, A102 = 0, A103 = 0

A012 = 0, A013 = 0 A201 = 0, A202 = 0, A021 = 0, A022 = 0.
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Since A101w
3v + A104v

4 = 0 and A011vw3 + A014v
4 = 0 defines four points in P

1, we
have [λ : μ] ∈ P

1 with λ(A101, A104) = μ(A011, A014). We then see that in our restricted
situation, the condition is equivalent to the condition that A101w

3v + A104v
4 = 0 has three

common points with
(

A101w
3 + 4A104v

3)2 {λ2 (A200w
3 + A203v

3)+ μ2 (A020w
3 + A023v

3)} = 0

in P
1. Since this is a condition of codimension 3 in the restricted situation, it verifies the

claim.
These altogether show that the properties PG3.1.1 is of codimension > 9. �


Lemma 4 The statement holds for G3.2.1.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.1 =
⎧⎨
⎩

X F contains �1; X F ∩ �2 contains a line other than �1 passing through P;
X F ∩ �3 contains four singular points other than P on the two lines on X ∩ �2
passing through the point P.

⎫⎬
⎭ .

The condition that X F contains the line �1 is equivalent to the condition that for
each i = 2, 3, 4, 5, the polynomial qi contains no vi . The condition that X F ∩ �2

contains a line other than �1 passing through P is equivalent to the condition that
q3(0, 0, 0, u, v), q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v) vanish at the point other than the point
given by u = 0 in P

1 where q2(0, 0, 0, u, v) vanishes. For X F ∩ �3 in order to have four
singular points other than P on the two lines on X F ∩�2 passing through the point P is a con-
dition of codimension 4. These altogether show that the properties PG3.2.1 is of codimension
11. �

Lemma 5 The statement holds for G3.2.2.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.2 =
⎧⎨
⎩

X F contains �1; X F ∩ �2 contains two lines passing through P;
X F ∩ �3 has three singular points other than P on �1;
X F ∩ �3 has at least one singular point on �1 that is not an ordinary double point.

⎫⎬
⎭ .

The condition that �1 ⊂ X F is equivalent to the fact that each qi (x, y, z, u, v)

does not have vi monomial, which is condition of codimension 4. The condition that
X F ∩ �2 contains another line passing through the point P is equivalent to the condi-
tion that either q3(0, 0, 0, u, v), q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v) vanish at the points
in P

1 where q2(0, 0, 0, u, v)/u vanishes, or q2(0, 0, 0, u, v) is a zero polynomial and
q3(0, 0, 0, u, v), q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v) have common root in P

1. Thus, the
condition that X F ∩ �2 contains another line passing through the point P is a condition
of codimension 3. For the surface X F ∩ �3 to have three singular points on �1 other than
P is a condition of codimension 3. Arguing as in the proof of Lemma 3, we can see that
the condition that one of the singular points of X F ∩ �3 on �1 is not an ordinary double
point is a condition of codimension 1. These altogether show that the properties PG3.2.2 is of
codimension > 10. �

Lemma 6 The statement holds for G3.2.3.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.3 =
⎧⎨
⎩

X F contains �1;
X F ∩ �2 contains a line other than �1 passing through P;
X F ∩ �3 contains two non-ordinary singular points on �1.

⎫⎬
⎭ .
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The condition that X F contains the line �1 is equivalent to the condition that for
each i = 2, 3, 4, 5, the polynomial qi contains no vi . The condition that X F ∩ �2

contains a line other than �1 passing through P is equivalent to the condition that
q3(0, 0, 0, u, v), q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v) vanish at the point other than the point
given by u = 0 in P

1 where q2(0, 0, 0, u, v) vanishes. As in the proof of Lemma 3, we
can see that for X F ∩ �3 to have two non-ordinary singular points on �1 is a condition of
codimension 4. These altogether show that the properties PG3.2.3 is of codimension > 10. �

Lemma 7 The statement holds for G3.2.4.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.4 =

⎧⎪⎪⎨
⎪⎪⎩

X F contains �1; X F ∩ �2 contains a line other than �1 passing through P;
X F ∩ �3 contains two singular points other than P on the line �1;
�1 meets its residual curve by a general hyperplane section of X F ∩ �3 in �3
only at three points.

⎫⎪⎪⎬
⎪⎪⎭

.

We write

qi (0, 0, z, u, v) =
∑

r+s+t=i

Arst z
r usvt ,

where Arst ’s are constants.
The condition that X F ∩�3 contains the line �1 is equivalent to A00t = 0 for t = 2, 3, 4

and 5. The condition that X F ∩ �2 contains a line other than �1 passing through P is
equivalent to the condition that q3(0, 0, 0, u, v), q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v) vanish
at the point other than the point given by u = 0 in P

1 where q2(0, 0, 0, u, v) vanishes. For
X F ∩�3 in order to have two singular points other than P on the line �1 and for �1 to meet
its residual curve by a general hyperplane section of X F ∩ �3 in �3 only at three point are
equivalent to the condition that the polynomials A101vw3 + A102v

2w2 + A103v
3w + A104v

4

and A011vw3 + A012v
2w2 + A013v

3w+ A014v
4 have four common zeros in P

1 with counting
multiplicity and the polynomial A101vw3 + A102v

2w2 + A103v
3w + A104v

4 has three zeros
without counting multiplicity. This condition is of codimention 4. These altogether show that
the properties PG3.2.4 is of codimension 11. �

Lemma 8 The statement holds for G3.2.5.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.5 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X F contains �1; X F ∩ �2 contains a line other than �1 passing through P;
X F ∩ �3 contains one singular points other than P on the line �1;
either �1 meets its residual curve by a general hyperplane section in �3
only at singular points or
�1 meets its residual curve by a general hyperplane section in �3
only at three points and X F ∩ �3 has a non-ordinary singular point P.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The first two conditions imposes seven independent conditions on the coefficients of F as
before. For the surface X F ∩ �3 to have a singular point on �1 other than P and plus for
�1 to meet its residual curve by a general hyperplane section in �3 only at singular points
impose at least four independent conditions on the coefficients of F . Meanwhile, for the
surface X F ∩ �3 to have a singular point on �1 other than P and plus for �1 to meet its
residual curve by a general hyperplane section in �3 only at three points impose at least four
independent conditions on the coefficients of F . However, the condition that X F ∩ �3 has

123



Log canonical thresholds of certain Fano hypersurfaces 77

a non-ordinary singular point P is of codimension 1. Therefore, the properties PG3.2.5 is of
codimension 11.

These altogether show that the properties PG3.2.5 is of codimension 11. �

Lemma 9 The statement holds for G3.2.6.

Proof The flag F is Flag(0, 1, 2, 3, 4). It is of dimension 15. Put

PG3.2.6 =
⎧⎨
⎩

X F contains �1; X F ∩ �2 contains a line other than �1 passing through P;
�1 meets its residual curve by a general hyperplane section of X F ∩ �3 in �3
at at most two points.

⎫⎬
⎭ .

The first two conditions imposes seven independent conditions on the coefficients of F as
before.

For the last condition, we write

qi (0, 0, z, u, v) =
∑

r+s+t=i

Arst z
r usvt ,

where Arst ’s are constants.
The last condition is equivalent to the condition that either the polynomials A101vw3 +

A102v
2w2 + A103v

3w + A104v
4 and A011vw3 + A012v

2w2 + A013v
3w + A014v

4 have a
common zero at v = 0 with multiplicity at least 3 or they are proportional and have only
two zeros (without counting multiplicities). The former and the latter are both a condition of
codimension at least 4.

Therefore, the properties PG3.2.6 is of codimension at least 11. �

Lemma 10 The statement holds for G3.3.1.

Proof The flag F is Flag(0, 2, 3, 4). It is of dimension 14. Put

PG3.3.1=
⎧⎨
⎩

X F ∩ �2 contains three lines passing through P;
either X F ∩ �3 has a singular point on �2 other than P or one of the lines Li meets
its residual curve by a general hyperplane section in �3 at at most three points.

⎫⎬
⎭ .

The condition that X F ∩�2 contains three lines passing through the point P is equivalent
to the condition that q2(0, 0, 0, u, v) is identically zero; q4(0, 0, 0, u, v) and q5(0, 0, 0, u, v)

vanish at the three points in P
1 where q3(0, 0, 0, u, v) vanishes. For the surface X F ∩ �3 to

have a singular point on �2 other than P is a condition of codimension 1. For one of the lines
Li to meet its residual curve by a general hyperplane section in �3 at at most three points
is also a condition of codimension 1. These altogether show that the properties PG3.3.1 is of
codimension > 9. �

Lemma 11 The statement holds for G3.3.2.

Proof The flag F is Flag(0, 3, 4). It is of dimension 12. Put

PG3.3.2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X F ∩ �3 contains three lines passing through P;
either one of the lines Li meets its residual curve by a general hyperplane section
in �3 at at most one smooth point or
one of the lines Li meets its residual curve by a general hyperplane section in �3

at at most two smooth points and X F ∩ �3 has a non-ordinary singular point at P.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The condition that X F ∩�3 contains three lines passing through the point P is equivalent
to the condition that q4(0, 0, z, u, v) and q5(0, 0, z, u, v) vanish at three points in P

2 where
both q2(0, 0, z, u, v) and q3(0, 0, z, u, v) vanish.
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For one of the lines Li to meet its residual curve by a general hyperplane section in �3 at
at most one smooth is also a condition of codimension at least 2. For one of the lines Li to
meet its residual curve by a general hyperplane section in �3 at at most two smooth is also a
condition of codimension at least 1. The condition that X F ∩�3 has a non-ordinary singular
point at P is equivalent to the condition that the quadratic polynomial q2(0, 0, z, u, v) is
singular in variables z, u, v. This is a condition of codimension 1. These altogether show
that the properties PG3.3.2 is of codimension > 7. �
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