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Cylinders in rational surfaces

I. A. Cheltsov

Abstract. We answer a question of Ciliberto’s about cylinders in rational
surfaces obtained by blowing up the plane at points in general position.
Bibliography: 13 titles.
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§ 1. Introduction

Let S be a smooth rational surface. A cylinder in S is an open subset U C §
such that U =2 C! x Z for an affine curve Z. The surface S contains many cylinders,
and it seems a hopeless task to describe all of them. Instead, we consider a similar
problem for polarized surfaces (see [7]-[9], [2], [3] and [11]). To describe it, fix an
ample Q-divisor A on the surface S.

Definition 1.1. An A-polar cylinder in S is a Zariski open subset U in S such
that

(C) U = C! x Z for some affine curve Z, that is, U is a cylinder in S;

(P) there is an effective Q-divisor D on S such that D~gA and U = S\ Supp(D).

An ample divisor A can always be chosen such that S contains an A-polar cylin-
der. This follows from Proposition 3.13 in [7]. On the other hand, we have the
following.

Theorem 1.2 (see 9], [2] and [3]). Let Sy be a smooth del Pezzo surface' of degree
d= K%d. Then the following assertions hold:
(1) the surface Sq contains a (—Kg,)-polar cylinder if and only if d > 4;
(2) if d > 4, then Sq contains an H-polar cylinder for every ample Q-divisor H
on Sgq;
(3) if d = 3, then Sy contains an H-polar cylinder for every ample Q-divisor H
on Sq such that H ¢ Qso[—Kg,].

The paper [3] also contains one relevant result for del Pezzo surfaces of degree 1
and 2. To describe this result, let

A = inf{)\ € Qso | the Q-divisor Kg + MA is pseudo—effective} € Q.
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The number py is known as the Fujita invariant, pseudo-effective threshold or
spectral value of the divisor A (see [6] and [13]). Let A4 be the smallest extremal
face of the Mori cone NE(S) that contains Kg + g A. Denote the dimension of
the face A4 by ra. Observe that r4 = 0 if and only if S is a smooth del Pezzo
surface and paA ~g —Kg. The number 74 is known as the Fujita rank of the
divisor A (see [3]).

Theorem 1.3 (see [3]). Let Sg be a smooth del Pezzo surface of degree d = K%,
let H be an ample Q-divisor on Sy, and let vy be the Fujita rank of the divisor H .
Suppose that rg +d < 3. Then Sy does not contain H-polar cylinders.

At the conference “Complex affine geometry, hyperbolicity and complex analysis”
held in Grenoble in October 2016, Ciro Ciliberto asked the following.

Question 1.4. Let S be a rational surface that is obtained from P? by blowing
up points in general position, and let A be an ample Q-divisor on S such that
ra+ K% < 3. Is it true that S does not contain A-polar cylinders?

Ciliberto also suggested that Question 1.4 be considered modulo Conjecture 2.3
in [4]. In this paper, we show that the answer to Question 1.4 is ‘Yes’. To be
precise, we prove the following.

Theorem 1.5. Let S be a smooth rational surface that satisfies the following gen-
erality condition:

(x) the self-intersection of every smooth rational curve in S is at least —1.
Let A be an ample Q-divisor on S, and let 74 be the Fujita rank of the divisor A.
Suppose that r4 + K% < 3. Then S does not contain A-polar cylinders.

By Proposition 2.4 in [5], rational surfaces obtained by blowing up P? at points
in general position satisfy (x). Thus, the answer to Question 1.4 is ‘Yes’.

Remark 1.6. Smooth del Pezzo surfaces satisfy (*). Moreover, if KZ > 1, then the
divisor —Kg is ample if and only if S satisfies (). This shows that Theorem 1.5 is
a generalization of Theorem 1.3.

By Corollary 3.2 in [8], Theorem 1.5 implies the following.

Corollary 1.7. Let S be a smooth rational surface that satisfies (x), let A be an
ample Z-divisor on S, let r4 be the Fujita rank of the divisor A, and let

V = Spec (@ HO(S, ﬁs(nA))).

n>0

Suppose that ra+ K2 < 3. Then'V does not admit an effective action of the additive
group C..

The following example shows that the inequality r4 + K% < 3 in Theorem 1.5 is
sharp.

Ezample 1.8. Let S be a rational surface that satisfies (). Suppose that K% < 3.
Then there exists a blow-down f: S — P? of 9 — K% different points. Put
k=4—-K%>1. Let Ey,...,E5, G1,...,Gy be the exceptional curves of f, let €
be the unique conic in P? that passes through f(E1),..., f(Es), let L be a general
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line in P? tangent to €, and let & be the pencil generated by ¢ and 2L. Denote
the conic in & that contains f(G;) by C;. Then

P2\ (¥ ULUC,U---UC)

is a cylinder. Denote the proper transforms of ¥ and L on S by % and E, respec-
tively. Similarly, denote the proper transform of the conic C; on the surface S
by C;. Then

S\(fULUE,U---UE;UC,U---UCLUGLU---UGy)
~P2\ (FULUC, U---UCy).
Let €1, €2 and z be rational numbers such that 1/2 > &1 > ¢e3/2 >0ul >z >

1-(1—2e1)/(2k). Let A= —Kg+2(G1+---+Gg). Then A is ample and ry = k,
since

5
g2\ > ~ €2 — 21
A~Q<l+€1—2>%+€2L+<51—2>;Ei+ ZC’
el z’“:G_
2k i

Thus, the surface S contains an A-polar cylinder, and r4 + K2 = 4.

The following example shows that the inequality 74 + K2 & = 4 does not always
imply the existence of A-polar cylinders in S.

Ezample 1.9. Let f: S — P2 be a blow-up of nine points such that |—Kg| is a base
point free pencil. Suppose that all curves in the pencil |- Kg| are irreducible. Then
S satisfies (). Suppose, in addition, that all singular curves in the pencil |-Kg| do
not have cusps. Let E1,...,E4 be any four f-exceptional curves. Fix z € Q such
that 0 <z < 1. Let

A=—-Kg+az(E1+ -+ Ey).

Then A is ample. Moreover, we have r4 = 4. Furthermore, if > 7/8, then it
follows from Example 1.8 that S contains an A-polar cylinder. On the other hand,
the surface S does not contain A-polar cylinders for < 1/4 by Lemmas 2.4, 2.6
and 2.7.

The following examples shows that we cannot omit (x) in Theorem 1.5.

Example 1.10. Let L, and Ly be two distinct lines in P2. Then
P2\ (L, U Ly) = C! x C*.

Let P; be a point in Ly \ Ls. Let P,,..., P; be general points in Ly \ L. Let
f: S — P2 be the blow-up of these seven points Py, ..., P7. Denote the f-exceptional
curves such that f(F;) = P; by Fi,...,F;. Let g: S — S be the blow-up of the
point in Fy contained in the proper transform of L;. Denote the g-exceptional curve
by G. Let F} be the proper transform on S of the curve Fy. Let h: S — S be the
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blow-up of the point F1 N G. Denote the h-exceptional curve by H. Let e: . — S
be the blow-up of a general point in H. Denote the e-exceptional curve by &.
Denote the proper transforms of the curves H, G, FY, ..., F7, Ly, Ly on the surface
S by .9, F,..., P, L1, L, respectively. Fix a positive rational number &
such that € < 1/3. Then

7
—Kyr~g(2-e) A +(1+e)L+(1—e)F + EZ%
1=2

+(2-2)94+(2—-3e)# + (1 —3¢)&.
We also have
I\N(AUVLUFU---UFHUGUAUE)=P?\ (LU Ly).

Let w: . — S be the contraction of the curves %, ¢4 and 5. Then S is a smooth
surface. We have K2 = 2, the divisor —Kg is nef, but

W(ﬁl) 'W(egzl) = 71'(92”2) 'W(gz) = 2.

In particular, the surface S does not satisfy (x). Let Lia be the line in P? that
contains P; and P», and let %5 be its proper transform on .. Fix a positive
rational number x such that € > x > 3¢ — 1. Then

Ky +22l1o~q2—)A+1+e) L+ (1—e)F1+ (e —x)F
+e(Fs+ -+ F)+ 2+ —2)9+ 2+x—3)# + (1+2—3e)8.

Let A = —Kg + zn(%2). Then the divisor A is ample and r4 = 1, so that
74+ K% = 3. On the other hand, the surface S contains an A-polar cylinder, since
7
Arng(1+e)m(L) + (1 —e)m(F1) + (e —a)m(Fa) +€ Y 7(Fi) + (1 + 2 — 3e)m(&)
i=3

and
S\ (n(L)Un(F)U---Un(Fr)Un(&)) = C x C*.

Now we describe the structure of this paper. In §2 we present results that are
used in the proof of Theorem 1.5. In § 3 we prove three lemmas that constitute the
main part of the proof of Theorem 1.5. In §4 we finish the proof of Theorem 1.5.

Acknowledgement. The author is grateful to Ciro Ciliberto for asking Ques-
tion 1.4.

§ 2. Preliminaries

Let S be a smooth rational surface, and let C4,...,C, be irreducible curves
on S. Fix nonnegative rational numbers Ay,...,A,. Let D = A\ Cy + - + X\, C,,.
For consistency, we will use this notation throughout the paper. In this section,
we present a few well-known (local and global) results about S and D that will be
used in the proof of Theorem 1.5. We start with the following.
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Lemma 2.1 (see [10], Theorem 4.57,(2)). Let P be a point in S. Suppose the
singularities of the log pair (S, D) are not log canonical at P. Then multp(D) > 1.

The following lemma is a special case of a much more general result, known as
the inversion of adjunction (see [10], Theorem 5.50).

Lemma 2.2 (see [10], Corollary 5.57). Let P be a smooth point of the curve C1.
Suppose that A\ < 1 and the log pair (S, D) is not log canonical at P. Let

A=XCo+ -+ N\, Cp.

Then C1 - A > (Cl . A)p > 1.
We will also use the following (local) result.

Lemma 2.3 (see [1|, Theorem 13). Let P be a point in C1 N Cy. Suppose that
A1 < 1 and Ay < 1. Suppose further that at P the curves Cy and Cy are smooth
and intersect transversally, and that the log pair (S, D) is not log canonical at P.
Let

A =X3Cq+ -+ A\, Cp.

If multp(A) < 1, then (Cl : A)p >1— Xy or (CQ : A)p >1— ).
The following result was used in Example 1.9.

Lemma 2.4. Using the assumptions and notation from Example 1.9, suppose that
D ~g A and x < 1/4. Then the log pair (S, D) is log canonical.

Proof. Suppose that (S, D) is not log canonical at some point P € S. Let € be
the curve in the pencil |-Kg| that contains P. By assumption, the curve € is
irreducible. Moreover, its arithmetic genus is 1, so that it is either smooth or has
one simple node, because we assume that curves in the pencil |- Kg| do not have
cusps.

If % is not contained in Supp(D), then 1 > 4z = Cy - A > multp(D) > 1
by Lemma 2.1. This shows that % is contained in the support of the divisor D.
Without loss of generality we can assume that € = C; and Ay > 1. Let A =
A0y + -+ X, G

We claim that A\; < 1. Indeed, we have

Cl+.%‘(E1+"'+E4)NQ)\101+A,

and the intersection form of the curves FEi,...,FE, is negative definite. Thus,
if \y > 1, then Ay =1 and A = z2(E; + - -- + E4), which is impossible, because the
singularities of the log pair (S,Cy + z(E} + - - -+ E4)) are log canonical, since C; is
either smooth or has one simple node (by assumption).

If C; is smooth at P, then 1 > 42 = C1-A > (C1-A)p > 1 by Lemma 2.2, so that
the curve C has a simple node at the point P. This implies that P ¢ FyU---U Ey,
because ¢ - E; = —Kg - E; = 1 for every 1.

We can assume that one of the curves F1, ..., Ey is not contained in Supp(A),
since otherwise we can swap D with the divisor

(14 p)D — p(Cy + x(Ey + -+ + Eyq)r)
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for an appropriate positive rational number p. Without loss of generality, we can
assume that E4 ¢ Supp(A). Then

1—IZE4'(/\101+A):/\1+E4'A>)\1.

Let m = multp(A). Then 4o = Cy - A > 2m, so that m < 2.

Let f: S — S be the blow-up of the point P. Denote the f-exceptional curve
by F and the proper transforms on S of the divisors C; and A by C; and A,
respectively. Then (S, A\1Cy + A + (2A\1 + m — 1)F) is not log canonical at some
point @) € F, since

Ks+MCi+ A+ 2\ +m —1)F ~q f*(Ks + D).

Moreover, 2A1+m—1 < 1, since we have already proved that A\; < 1—z and m < 2.
If @ ¢ Cy, then (S,A + F) is not log canonical at @, so that 1/2 > 2z >
m=F-A> 1 by Lemma 2.2. This shows that Q € Ch.
The curve C; is smooth and intersects F' transversally at Q. We know that
m < 2z < 1. Thus, we can apply Lemma 2.3 to the log pair (S,A\1C; + A +
(2\1 + m — 1)F). Then

dz—2m=A-C; >2(1— (2A; +m — 1)),
orm = A-F > 2(1— ). This leads to a contradiction, since m < 2z and
A1 < 1 —z. The lemma is proved.
In the proof of Theorem 1.5 we will use the following (global) result.

Theorem 2.5 (see [2], Theorem 1.12). Suppose that S is a smooth del Pezzo surface
such that Kg < 3, and let
D ~g —Ks.

Let P be a point in S. Suppose that (S, D) is not log canonical at the point P.
Then the linear system |—Kg| contains a unique curve T such that (S,T) is not log
canonical at P. Moreover, the support of the divisor D contains all the irreducible
components of the curve T .

Let U= S\ (CiU---UC,). Suppose that U = C! x Z for an affine curve Z.
Lemma 2.6. The inequality n > 10 — K% holds.

This follows from the proof of Lemma 4.11 in [7].
The embeddings Z < P! and C! < P! induce the commutative diagram

PlxPl<—C! xPl~—ClxZx2U——S§

P! P! P!
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where pz, p2 and p, are the projections onto the second factors, 1 is the map
induced by pz, the map 7 is a birational morphism resolving the indeterminacy
of ¢ and ¢ is a morphism. Let &7,...,&,, be the m-exceptional curves (if 7 is an
isomorphism, we let m = 0). Let C' be the section of the projection P, that is the
complement of C! x P! in P! x P'. Denote the proper transforms on .7 of the curves
Ci,...,Cy, by €1,...,%,, respectively. Similarly, denote the proper transform of
the curve C on the surface . by €.

Lemma 2.7. Suppose that Ks + D is pseudo-effective, and \; < 2 for every i.
Then 7(€) is a point, and (S, D) is not log canonical at 7(F).

Proof. By construction, a general fibre of the morphism ¢ is a smooth rational
curve, and the curve % is its section. Then ¥ is either one of the curves 47, . .., %, or
one of the curves &7, ..., &,. All the other curves among ¢3,...,%, and é1,...,6n
are mapped by ¢ to points in P!. Thus, without loss of generality we can assume
that € = %61 or € = &,.

There are rational numbers p1, ..., ., such that

Ky +Y N6+ ) b =n"(Ks+ D).

i=1 i=1

Let .% be a general fibre of the morphism ¢. If € = %7, then

2+ X\ = (KerZ)\féJrZui(g;—) - F
i=1 i=1
=" (Ks+ D) F = (Ks + D) - (%) >0,

because Kg + D is pseudo-effective. Thus, in this case A; > 2, which is impossible
by assumption. Hence we conclude that ¢ = E,,, so that 7(%) is a point. Then

=24 i = (Ky’-f-z)\i(gri‘zui@@i) - F
i=1 i=1
— (K5 +D)-.7 = (Ks + D) - 7(F) > 0,

because the divisor Kg+ D is pseudo-effective. This shows that the singularities of
the log pair (S, D) are not log canonical at the point 7(%). The lemma is proved.

§ 3. Three main lemmas

In this section, we prove three results which will be used later, in the proof of
Theorem 1.5 in §4, namely Lemmas 3.4-3.6 below.
Let S be a smooth rational surface that satisfies (x), let C1, ..., C,, be irreducible
curves on S, let
U=8\(ChU---UCy)

andlet D = >"" | X\;C; for some non-negative rational numbers A1, ..., A,. Suppose
also that S contains disjoint smooth rational curves Ej, ..., E, such that E? = —1
for every i, and
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DNQ —Kg —i—iaiE

i=1
for some nonnegative rational numbers aq, ..., a,.

Remark 3.1. If D is ample, then r is the Fujita rank of the divisor D. However,
in this section, we deliberately do not assume that D is ample. We hope that
this will not cause much confusion. We have to consider nonample divisors here,
because Lemmas 3.4-3.6 can also be applied to nonample divisors, and this is also
used in proving them.

_ Let g: § — S be a blow-down of the curves Ei,..., E;, let C, = g(Cy), ...,
C,=g(C,), and let D =X C1+---+ A\, C,. Then K% =r+ K% and D ~g —K3.

Remark 3.2. Since S satisfies (x) by assumption, the surface S also satisfies (x).
In particular, if r + K2 > 1, then S is a smooth del Pezzo surface by Remark 1.6.

First we prove an auxiliary result.

Lemma 3.3. Suppose that C; # E; for alli and j. Then the log pair (S, D) is log
canonical along 1 U---U E,..

Proof. Suppose that the log pair (S, D) is not log canonical at some point P €
EiU---UE, Then multp(D) > 1 by Lemma 2.1. Thus, if P € Ej, then
1>1—a; =D-FE; > 1, which is absurd. Similarly, we see that P ¢ FyU---U E,.
The lemma is proved.

Recall that U = S\ (C1 U---UC,,), and r is the number of g-exceptional curves.

Lemma 3.4. Suppose that r + K% =1, and \; > 0 for every i. Then U is not
a cylinder.

Proof. We have U = S\Supp(D), and S is a smooth del Pezzo surface by Remark 3.2.
If Kg =1, then r = 0, so that S = S and D~g —K3. In this case, if U is a cylinder,
then U is a (—Kg)-polar cylinder, which is impossible by Theorem 1.2. Therefore,
we can assume that K% < 0. We prove the required assertion by induction on K2.
Suppose first that C; = F;. Then there exists a commutative diagram

S
7N
. h _
S S
where f: S — S is a contraction of the curve 1 = Ej, and h is a birational
morphism. Denote the proper transforms on S of the curves Es, ..., E. by Es,
e ET7 respectively and the proper transforms on S of the curves 02, ..., Cy by

Co, ... Cn, respectively. Then K2 =K%+ 1 and

1=2 =2
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By induction, the subset §\ (6’2 U---u 6n) >~ U is not a cylinder. Thus, we can

assume that C; # E;. Similarly, we can assume that C; # E; for all possible i

and j, which means that none of the curves Fy, ..., E, is contained in Supp(D).
Suppose that U is a cylinder. Then n > 10 — K2 > 10 by Lemma 2.6, and

1:—K§~E:*Kg'()\1€1+"'+>\n€n> 22/\1

because the divisor —Kz is ample. Thus, we see that \; < 1 for every 1.

By Lemma 2.7, the surface S contains a point P such that the log pair (S, D) is
not log canonical at P. In the notation of §2, P is the point 7(%¢). Let P = g(P).
Then (S, D) is not log canonical at P because P ¢ E; U---U E,. by Lemma 3.3.

By Theorem 2.5 there is a unique curve T € |—Kz| such that (S,T) is not log
canonical at the point P. Note that T is irreducible. Thus, Theorem 2.5 also
implies that T is one of the curves C1,...,C,. Without loss of generality we can
assume that T = C;.

The curve T = C; is singular at P. In fact, we can say more: this curve has
a cuspidal singularity at P, and it is smooth away from this point. For every

1e{l,...,r}, welet
0 ifg(E)¢T,
m; = —
1 ifg(E;) eT.
Then

OlNg meLE N_KS+Zl_mz
We replace D by a divisor (1 + u)D — pC4 for an appropriate rational number

> 0 such that the new divisor is effective and its support does not contain the
curve C;. Let

1 A\ LIS
D = D— o, =S 2_¢;.
1— )\ VR glfh

Then D’ is an effective divisor whose support does not contain the curve C;. On the
other hand, we have

a; + (m; — 1)\
D' ~g —Kg +Z e T A p

Thus, if (a; + (m; —1)A1)/(1 — A1) = 0 for every ¢, then (S, D’) is not log canonical
at P by Lemma 2.7. In this case the singularities of the log pair

= A —
(S’Z;l—/\lci>

are not log canonical at the point P, because P ¢ E; U ---U E,.. The latter is
impossible by Theorem 2.5. Therefore, at least one rational number among

a1+ (my— DA ag+ (ma — 1)\ ar + (my — 1)\
1-—X) ’ 1-X) T 1—-X
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must be negative. Without loss of generality we can assume that there exists k < r

such that
a; —+ (mz — 1))\1

<0
1—X\
for every ¢ < k, and (a; + (m; —1)A1)/(1 — A1) > 0 for every ¢ > k (if K < r). Then
mi = =my; = 0. We can also assume that a1 < --- < a. Let
1 al /\1 — al
D" = — Ci =
1—a; l—a ' 1-a 1—
Then D" is an effective Q-divisor such that
D" ~o —K +§T:ai_a1(1_mi)E_
¢ * i—2 1-a, '
a; — ap a; — mZ)
=—-Kg+ E + - —F,.
Y

Note that (a; — a1 (1 —m;))/(1 —ay) = 0 for every possible i > k, because a; < Aj.

Let e: S — S be the blow-up of the point g(E), and let E; be its exceptional
curve. Denote the proper transforms on S of the curves Ci,...,Cy by 51, ey é'n,
respectively. Likewise, let D" denote the proper transform of the divisor D” on the
surface S. Then

B 1—a1 Cl"’Z

Since g(E1) ¢ T, the point g(E1) is not the base point of the pencil | — Kgl.
Thus, |- Kg| contains a unique irreducible curve that passes through g(£;). Denote
this curve by R, and let R and R be the proper transforms of this curve on the
surfaces S and S, respectively. If R is singular at g(F;), then R is a smooth rational
curve such that

R?< R*=
which is impossible, because S satisfies (). Thus, we see that the curve R is smooth

at the point g(E;). Then R ~ —Kg and R2 = 0. In particular, R is a nef divisor.

On the other hand, we have 01 = 1, because C; = T does not contain g(E)
since my = 0. Then

~, o~ A\ M—a15 =5 M—a1
0=K2=D"' R=2"-" R> Ci-R="—""—
s 1—a1 +Z 1—ag Ci 1—a; * 1—a;’

so that a; > A\{. This is a contradiction, since we have already proved that a; < A;.
The lemma is proved.

Lemma 3.5. Suppose that r + K% = 2 and \; > 0 for every i. Then U is not
a cylinder.
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Proof. We have K% = 2, so that S is a smooth del Pezzo surface by Remark 3.2.
If K2=2,thenr =0 and S & S. In this case the required assertion follows from
Theorem 1.2. Thus, we can assume that K% < 1. Moreover, arguing as in the
proof of Lemma 3.4 we can assume that C; # E; for all ¢ and j. Then, applying
Lemma 3.1 from [2] to the log pair (S, D), we conclude that \; < 1 for each i.

Suppose that U = S\ Supp(D) is a cylinder. Then n > 9 by Lemma 2.6.
Moreover, by Lemma 2.7 the surface S contains a point P such that the log pair
(S, D) is not log canonical at P. In the notation of § 2, the point P is the point 7(%).
Let P = g(P). Then (S, D) is not log canonical at P because P ¢ E;U---U E, by
Lemma 3.3.

By Theorem 2.5 the linear system |-Kg| contains a curve T such that (S, T) is
not log canonical at the point P, and irreducible components of the curve T are
among the curves C1,...,C,. In particular, T is singular at P. Note that this
property determines the curve T uniquely. Moreover, since S is a smooth del Pezzo
surface of degree K2 2, T has at most two irreducible components. Thus, without

loss of generality, we can assume that either T = C, or T = C; + Cs and A\; < Xsg.
If T = C}, then T has a cuspidal singularity at P. Likewise, if T = C; + Co,

then T has a tacknodal singularity at P. In both cases P is the unique singular

point of the curve T. As in the proof of Lemma 3.4, for every i € {1,...,7}, let

)1 ifg(E) eT.

Let T be the proper transform of the curve T on the surface S. Then
- T T
T~g"(T)=Y miBi~-Ks+>» (1-m)E
If T = C1, then A\; < 1, because

2=-Kg- D= MN(-Kg-Ci) =2\ + Y _M(-Kg-Ci) =2\ + »_ A > 2\,
=1 ) =2
Similarly, if T = C; + Cs, then \; < 1, because
2=-Kg-D=M+X+ 3 X(—Kg-Ci) > A+ X > 2\,
=3

Let D' = oD~ 2T and D' = (-D — 2T, If T = C}, then

Similarly, if T = C; + Cs, then

Ao — A LY
’r_
D = . cz+§1_Alc
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In both cases the divisor D’ is effective, and its support does not contain C;. On the
other hand we have

a; + mi — 1))\1

Q s + Z -
Thus, if (a; + (m; — 1)A1)/(1 — A1) > 0 for every 4, then the log pair (S, D’) is
not log canonical at the point P by Lemma 2.7. Then D ~g —Kz and (S, D)
is not log canonical at P, which contradicts Theorem 2.5. Hence at least one of
the numbers (a1 + (m1 — 1)A1)/(1 — A1), ..., (ar + (my — 1)A1)/(1 — A1) must be

negative. Without loss of generality we can assume that
; ; — 1A
ait(mi-Dh o0 oy
1—XN

for some k <7, and a1 < --- < ag. Then m; =0 and a; < A\ fgevgyigk.
Let D" = D — {#.-T. Then D" is effective. Indeed, if T'= C'1, then

—ax

o 1—a Cl+zl—a v

Similarly, if T = C; + C, then

Al — A
D" = ! alclJr 2 CQ+Z

1—a1 1—a1 i.

1—ay
Note that Supp(D”) = Supp(D). On the other hand we have
— a1(1 — mi)

D”NQ _KS_’_iCLi

=2

E;.
1 — a1

Applying Lemma 3.4 to D" we see that U is not a cylinder. This is a contradiction.
The lemma is proved.

Lemma 3.6. Suppose that r + K2 = 3, and \; > 0 for every i. Then U is not
a cylinder.

Proof. Since K% = 3, we see that S is a smooth cubic surface in P? by Remark 3.2.
Thus, if KZ = 3, then 7 = 0 and S 2 S and D ~g —Kg, so that U = S\ Supp(D) is
not a cylinder by Theorem 1.2. Therefore, we can assume that ng < 2. Moreover,
arguing as in the proof of Lemma 3.4 we can assume that C; # E; for all possible
i and j. Then, applying Lemma 4.1 from [2] to the log pair (S, D), we conclude
that \; < 1 for each 1.

Suppose that U is a cylinder. Let us seek for a contradiction. By Lemma 2.6,
we have n > 8. By Lemma 2.7, the surface S contains a point P such that (S, D)
is not log canonical at P. In the notations of §2, the point P is the point 7(%).
Let P = g(P). Then (S, D) is not log canonical at P because P ¢ E;U---UE, by
Lemma 3.3.
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Let T be the hyperplane section of S that is singular at P. By Theorem 2.5,
the pair (S,T) is not log canonical at P, and all irreducible components of the

curve T are among the irreducible curves C1,...,C,. Thus, we can assume that
either
o I'=(C,or

e T=C1+Cyand A\; < \y, Or

o T = Cl+02+03and/\1</\2 A3.
If T = C1, then T has a cuspidal singularity at P. Likewise, if T = C; + Cs, then
T has a tacknodal singularity at P. Finally, if T = C; + Cy + C3, then the curves
C1, Cy and C3 are lines passing through the point P. Therefore, in all possible
cases P is the unique singular point of the curve T. As in the proofs of Lemmas 3.4
and 3.5 for every ¢ € {1,...,r} we let

m:{o if g(E) ¢ T,
’ 1 ifg(E)eT.

Let T be the proper transform of T on the surface S. Then

i=1

We claim that A\; < 1. Indeed, if T = C, then

3=-Kg5-D= Z)\ ~K5-C)) —3)\1+ZA —K5-Ci) 23\ + > _ A >3\,
=2 =2

so that A\; < 1. Similarly, if T = C; + Cs, then A\; < 1 because

n

3 = X1 deg(Ch) + A deg(C2) + Z)\i(*Kg -Ci) > A1 (deg(Ch) + deg(Ca)) = 3A1.

=3

Finally, if T = C + C3 4 C3, then we also have \; < 1 because

3:—Kg'ﬁ:/\l+)\2—|—/\3+Z)\,‘(—K§'6)>>\1+/\2+)\3 3)\1.

=4

1 by Y 1 7 A\ T _ A
Let D' = ﬁD— ﬁT and D = 1—/\1D_ 1_1>\1T. If T =C4, then

n

)\,
D/_Zl—Alc

i=2

Similarly, if T = C; + C, then

Ao — A LY
. cz+§1_hcl.

D' =
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Finally, if T = C; + C3 + C3, then

Ay — Ay Az — A LDV
D = o
ISV CY:“’+Z_§1—,\10z

Therefore, in all cases, the divisor D’ is effective, and its support does not contain
the curve C;. On the other hand, we have

a; + m171>\1
D'~y —Kg Jrz Y —FE;.

Thus, if (a; + (m; — 1)A1)/(1 — A1) = 0 for every i, then (S,D’) is not log
canonical at P by Lemma 2.7, so that the log pair (S, EI) is not log canonical
at P, which contradicts Theorem 2.5, because D ~q —K3 and the support of
the divisor D does not contain the curve C:. Hence at least one number among

(a1 4+ (m1 = DA1) /(1= A1), ..., (ar + (my — 1)A1)/(1 — A1) is negative.
Without loss of generality we can assume that

i i — 1A ,
w<o — ng

1-X\
for some k < r,and a; < -+ < ag. Thenm; =0and a; < A foreveryi=1,... k.
Put D" = r-T. Then D" is an effective divisor. Indeed, if T = C1,
then

N 1—a Cl+zl—a v
Similarly, if T = C; + Cy, then

)\1—a1 )\Q—al = )\z
D" = C C —C;.
1—&1 1+ 1—0,1 2+§1 1

Finally, if T = C; + Cy + C3, then

AL —ap A2 —ay Az —ay - a;
D' = C C. C —C;.
1—@1 1+1—a1 2+ 1—a1 3+;1—a1 !

In all cases Supp(D”) = Supp(D). On the other hand, we have

L 1 — m.
D gy g+ 3 (L=

=2

E;.
1 — ax

Applying Lemma 3.5 to D" we see that U is not a cylinder. This is a contradiction.
The lemma is proved.
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§ 4. The proof

In this section we prove Theorem 1.5 using Lemmas 3.4-3.6.
Let S be a smooth rational surface, let A be an ample Q-divisor on S, and let
1A be its Fujita invariant. Then

Ks+ uaAe E)NE(S).

Thus, the divisor Kg + paA is pseudo-effective, and it is not big. Let A4 be the
smallest extremal face of the cone NE(S) that contains Kg + paA, and let r4
be the dimension of this face, that is, r4 is the Fujita rank of the divisor A. To
prove Theorem 1.5 we have to show that S does not contain A-polar cylinders if .S
satisfies (), and r4 + K2 < 3.

First, we describe the Zariski decomposition of the divisor Kg + a4 A, which
follows from Theorem 1 in [13] or [12]. To be precise, we have the following.

Lemma 4.1. There is a birational morphism g: S — S such that S is smooth, and

Ko+ paA g g (Kg+ pad) + Y ail;,
i=1

where Ey, ..., E, are all g-exceptional curves, ay,...,a, are positive rational num-
bers, A = g.(A), the divisor K5+ paA is nef, and

(K§+ ,UzAZ)z =0.

Moreover, one of the following two cases holds:
(1) S is a smooth del Pezzo surface, K5+ paA~g0, and r =ra;
(2) there exists a conic bundle h: S — P! such that K§+uAZ~QqF for a positive
rational number q, where F is a fibre of h, and r 4 = rk Pic(S) — 1.

Proof. The surface S contains an irreducible curve C' such that psA ~g aC for
some positive rational number a, and the singularities of the log pair (S,aC') are
log terminal. Thus, we can apply the Log Minimal Model Program to this log pair
(see [10]).

If Ks + aC ~gq 0, the required assertion is obvious. Likewise, if Kg + aC 7%g 0
and the divisor Kg + aC is nef, then (Kg + aC)? = 0, because Kg + aC is not big
by assumption. In this case the required assertion follows from [10], Theorem 3.3,
because C' is ample. Thus, we can assume that Kg + aC' is not nef.

If tk Pic(S) = 1, then S = P2, If tk Pic(S) = 2, then S is one of Hirzebruch
surfaces. In both cases the required assertion is obvious. Thus, we can assume that
rk Pic(S) > 3.

Then, since Kg + aC' is not nef, there exists a birational map g;: S — S; that
contracts an irreducible curve Fj such that (Kg + aC) - E; < 0. Since C is ample,
we see that £ # C and Kg - F; < 0, which implies that F; is a smooth rational
curve, and E? = —1. In particular, the surface S; is smooth.

Let Cy = g(C). Then

Kg+ aC ~Q gT(KSl + aC’1) + b E;
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for some rational number b; > 0. Then (S1,aC}) is log terminal, the divisor aCy
is ample, and the divisor Kg, + aC; is contained in the boundary of the Mori
cone NE(S7). Hence we can apply the same arguments to Kg, + aC; and iterate
the whole process. Eventually, after finitely many steps this gives us the required

assertions. The lemma is proved.

Now we suppose that r4 + K% < 3. Since rk Pic(S) = 10 — K%, the face Ay
has large codimension in NE(S). Thus, by Lemma 4.1 the nef part of the Zariski
decomposition of the divisor Kg+ paA is trivial, and there exists a birational mor-
phism g: S — S such that S is a smooth del Pezzo surface, g contracts 4 smooth
rational curves, and

A
paA~q —Ks + Z a; E;
i=1
where Ey,..., E,, are g-exceptional curves, and ay,...,a,, are positive rational
numbers. Observe also that K2 = r4 + K%, so that r4 + K% > 1.

Finally, we suppose that S satisfies (*). Then the curves Ei,..., E,, must be
disjoint, so that Ef = B3 =-.- = E? = —1.

To prove Theorem 1.5, we have to show that S does not contain A-polar cylinders.
Suppose that this is not the case. Then there is an effective Q-divisor D on the
surface S such that S\ Supp(D) is a cylinder, and D ~g A. This contradicts
Lemmas 3.4-3.6, because r4 + K% € {1,2,3}.
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