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INTRODUCTION

For a smooth Fano variety X, its Landau—Ginzburg model is a smooth quasiprojective variety Y
equipped with a regular function w: ¥ — C. The homological mirror symmetry conjecture predicts
the equivalences between the derived category of coherent sheaves on X (the derived category of
singularities of (Y, w), respectively) and the Fukaya—Seidel category of the pair (Y,w) (the Fukaya
category of X respectively).

In [9], Katzarkov, Kontsevich, and Pantev considered a tame compactification of the Landau—
Ginzburg model (see [9, Definition 2.4]), that is, a commutative diagram

Y —Z

“| I

C — P!

such that Z is a smooth compact variety that satisfies certain natural geometric conditions and f is
a morphism such that f~!(c0) = —Kz. The compactification Z (if it exists) is unique up to flops in
the fibers of the morphism f. The pair (Z,f) is usually called the compactified Landau-Ginzburg
model of the Fano variety X.

Denote by Dy the fiber over infinity f~!(co0). Assume that Dz is a normal crossing divisor.
Holomorphic forms with simple poles along components of Dz form the logarithmic de Rham
complex 2% (log Dz). For each a > 0 define a sheaf Q% (log Dz,f) of f-adapted logarithmic forms as
a subsheaf of Q%(log Dz) consisting of forms which remain logarithmic after multiplication by df.
More precisely,

Q%(log Dz, f) = {a € Q%(log Dy) | df Aav € Q% (log D7)},

where one considers f as a meromorphic function on Z and df is viewed as a meromorphic 1-form.
Katzarkov, Kontsevich, and Pantev in [9] defined the Hodge-type numbers fP4(Y, w) of the Landau—
Ginzburg model (Y, w).
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2 I. CHELTSOV, V. PRZYJALKOWSKI
Definition. The Landau—Ginzburg Hodge numbers fP4(Y,w) are defined as follows:
fP9(Y,w) = dim H? (Z, Q% (log Dz, f))
Note that according to [6] one has
fPUY,w) = dim Gr] HPT(Y, V),

where V' is a smooth fiber of w and HPT4(Y, V) is equipped with the natural mixed Hodge structure
on the relative cohomology with Hodge filtration F'®.

Conjecture (Katzarkov, Kontsevich, Pantev). Let (Y,w) be a Landau-Ginzburg model of
a smooth Fano variety X with dim X = dimY = d. Suppose that it admits a tame compactification.
Then

RPA(X) = POV ).

In [11], this conjecture was proved for del Pezzo surfaces and their Landau—Ginzburg models
constructed by Auroux, Katzarkov, and Orlov in [3]. In this paper, we verify the Katzarkov—
Kontsevich-Pantev conjecture for smooth Fano threefolds and their toric Landau—Ginzburg models
constructed in [14, 15, 1, 5], which satisfy all hypotheses of the Katzarkov—Kontsevich—Pantev
conjecture by [16, Theorem 1].

From now on and until the end of this paper, we assume that X is a smooth Fano threefold. Its
compactified Landau—Ginzburg model is given by the following commutative diagram:

(C*)3 Y s 7
o| lw lf (%)
C————C— P!

where p is a surjective morphism that is given by one of the Laurent polynomials explicitly described
in [1, 16, 5], the variety Y is a smooth threefold with Ky ~ 0, and Z is a smooth compact threefold
such that

—Ky~ f_l(oo).

Moreover, the threefold Z in each case is obtained from P? (or, rarely, from P! x P?) by blowing up
rational curves. This shows that one gets h!''2(Z) = 0. Moreover, in each case this gives the normal
crossing fiber over infinity Dy.

In [6], Harder showed how to compute the numbers fP9(Y,w) using the global geometry of the
compactification Z. He showed that under some natural conditions one has f3°(Y,w) = f03(Y,w) =1
and

FRYw) = 22 Y,w) = Y (e — 1), (&%)

peCt

where pp is the number of irreducible components of the fiber w=!(P). Moreover, he proved that
(Y, w) = f2(Y,w) = dimcoker (H*(Z,R) — H*(F,R)) — 2+ h'*(2), (W)

where F' is a general fiber of the morphism w. Finally, he proved that the remaining f¢ numbers
of the Landau-Ginzburg model (Y, w) vanish.

Thus, to prove the Katzarkov—Kontsevich—Pantev conjecture for smooth Fano threefolds, one
needs to compute the right-hand sides in (é) and (#) and compare them with the well-known
Hodge numbers of smooth Fano threefolds. For smooth Fano threefolds of Picard rank 1, this was
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KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 3

done in [15, 7]. The goal of this paper is to do the same for smooth Fano threefolds whose Picard
rank is greater than 1.
To be more precise, we prove the following result.

Main Theorem. Let X be a smooth Fano threefold, and let f: Z — P! be its compactified
Landau—Ginzburg model given by ("X), where p is a surjective morphism given by one of the Laurent
polynomials described in |1, 5|. Then

PAX) = Y (o =), (©)

peCt
where pp is the number of irreducible components of the fiber w—'(P). Moreover, one has
rk Pic(X) = dim coker (H*(Z,R) — H*(F,R)) — 2, ()

where F' is a general fiber of the morphism f.
Using (&) and (#), we obtain the following corollary.

Corollary. Let X be a smooth Fano threefold. Then the Katzarkov-Kontsevich—Pantev con-
jecture holds for its compactified Landau—Ginzburg model (XX), where p is a morphism given by one
of the Laurent polynomials described in [1, 16, 5].

The proof of the Main Theorem gives an explicit description of the fiber f~!(c0) in (), which
shows that the conditions of Harder’s result are satisfied. This has already been verified in [16,
Corollary 35| for smooth Fano threefolds with very ample anticanonical divisor. The proof of the
Main Theorem also gives an explicit description of (isolated and non-isolated) singularities of the
fibers of the morphism w in ("K) in the case when p is given by one of the Laurent polynomials
from [1, 16, 5]. It seems possible to use this description to check that the Jacobian rings of these
Landau—Ginzburg models are isomorphic to the quantum cohomology rings of the corresponding
smooth Fano threefolds, which reflects homological mirror symmetry on the Hochschild cohomology
level. Perhaps, one can also use the proof of the Main Theorem to compute the derived categories
of singularities of our compactified Landau—Ginzburg models.

This paper is organized as follows. In Section 1 we give a detailed scheme of the proof of our Main
Theorem. We illustrate each step of the scheme by an appropriate example (see Examples 1.7.1,
1.8.6, 1.10.11, 1.12.3, and 1.13.2). In Sections 2-10 we prove the Main Theorem for smooth Fano
threefolds of Picard rank 2,...,10, respectively. These sections are split into subsections, in each
of which we consider one family of smooth Fano threefolds from the list of families given in [8]. For
instance, if X is a blow-up of a smooth quadric threefold in a disjoint union of two lines, this is
family 3.20, and we prove the Main Theorem in this case in the subsection entitled “Family 3.20” in
Section 3. Similarly, in the subsection “Family 2.24” of Section 2, we prove the Main Theorem for
family 2.24, which consists of divisors of bidegree (1,2) in P? x P2. Finally, in the Appendix, we
review the basic intersection theory for smooth curves on surfaces with du Val singularities, which
is probably well known to experts.

Notation and conventions. We assume that all varieties are defined over the field of complex
numbers C unless otherwise stated. For a (not necessary reduced) variety V', we denote the number
of its irreducible components by [V]. To denote Laurent polynomials from the database [4], we use
the notation P.N, where P is the number of the Newton polytope of the polynomial and NN is the
number of the polynomial for the polytope. If the polynomial for a polytope is unique, we just say
that it is polynomial P.
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4 I. CHELTSOV, V. PRZYJALKOWSKI

1. SCHEME OF THE PROOF OF THE MAIN THEOREM

To prove the Main Theorem, we fix a smooth Fano threefold X. Then X is contained in one of
the 105 deformation families described in Iskovskikh and Prokhorov’s book [8]. We add the variety
found in [12] to the end of the list of Picard rank 4 threefolds. We always assume that X is a general
threefold in its deformation family.

For each family, we have the commutative diagram (X), where p is given by a Laurent polyno-
mial, which we identify with p. Then we proceed as follows.

1.1. Mirror partners. The polynomial p is not uniquely determined by X. However, Akhtar,
Coates, Galkin, and Kasprzyk proved in [1] that all of them are related by birational transformations,
called mutations. Mutations preserve the right-hand sides of () and (<)) in the Main Theorem.
Thus, to prove the Main Theorem, we may choose any Laurent polynomial p from [4] among mirror
partners for X.

1.2. Rank of the Picard group. If X is a smooth Fano threefold such that rk Pic(X) = 1,
then (©) in the Main Theorem is already established in [15, 17|, and ({) in the Main Theorem
follows from the proof of [7, Theorem 4.1]. Thus, we will always assume that rk Pic(X) > 2. This
leaves us with 87 deformation families described in [8] and one family described in [12] (which was
missed in [8]).

1.3. Minkowski polynomials. If —Kx is very ample, then X admits a Gorenstein toric
degeneration. In this case, the Newton polytope of the Laurent polynomial p is a reflexive lattice
polytope which is a fan polytope of the toric degeneration, and the coefficients of p correspond to
expansions of its facets into Minkowski sums of elementary polygons. Because of this, the Laurent
polynomial p is usually called a Minkowski polynomial (see [1]).

The divisor —Kx is very ample except for five special families. These are the deformation
families 2.1-2.3, 9.1, and 10.1 in [8]. To prove the Main Theorem, we deal with these cases separately.
Thus, in the remaining part of this section, we assume that —Kx is very ample and p is one of the
corresponding Minkowski polynomials.

1.4. Pencil of quartic surfaces. For every smooth Fano threefold X such that its anticanon-
ical divisor —Kx is very ample, we can always choose the corresponding Minkowski polynomial p
in [1] such that there is a pencil S of quartic surfaces on P? given by

fa(z,y,2,t) = Ayt (1.4.1)

that expands (*X) to the following commutative diagram:

(C*)3 « » Y s Z 4K V — T P3
pl JW Jf lg ¢ (1.4.2)
k//

where ¢ is a rational map given by the pencil S, the map 7 is a birational morphism to be explicitly
constructed later in this section, the threefold V' is smooth, and y is a composition of flops. Here
fa(z,y,z,t) is a quartic homogeneous polynomial and A € C U {oo}, where A = oo corresponds to
the fiber f~1(o0).

1.5. Fibers of the Landau—Ginzburg model. By [16, Corollary 35|, we have

_ 4—- K3
[f(00)] = ) X

To verify (©) in the Main Theorem, we must find [f~1(\)] for every A # oo. This can be done by
checking the basic properties of the pencil S. Let us show how to do this in simple cases.
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Let Sy be the quartic surface given by (1.4.1), let §>\ be its proper transform on the threefold V,
and let Eq,..., E, be the m-exceptional divisors. Then

n
Ky + 8\ + Y alE; ~ 1" (Kps + S)) ~ 0

i=1
for some nonnegative integers aﬁ, .. ,aﬁ. Hence, since —Ky ~ g~!(c0), we conclude that
. n
g'(N) =58+ alE; (1.5.1)
i=1

Since x in (1.4.2) is a composition of flops, it follows from (1.5.1) that
[FEN)] = [Sa] + #{i € {1,...,n}: a} > 0}. (1.5.2)

The number [S,] is easy to compute. How to determine the correction term in (1.5.2)? One way to
do this is to explicitly describe the birational morphism 7 in (1.4.2) and then compute the numbers
a{‘, ...,a. However, this method is usually very time consuming. Our main goal is to show how

to do the same with less effort. We start with the following.

Lemma 1.5.3. Let P be a point in the base locus of the pencil S. Suppose that the quartic
surface Sy has at most a du Val singularity at P. If P € n(E;), then a} = 0.

Proof. By [10, Theorem 7.9|, the log pair (P3,S)) has canonical singularities at P, so that
a} = 0 for every F; such that P € 7(E;). O

Corollary 1.5.4. Suppose that Sy has du Val singularities at every point of the base locus of
the pencil S. Then f=Y()\) is irreducible.

Proof. The surface Sy is irreducible, because Sy has du Val singularities at every point of the
base locus of the pencil §. This follows from the fact that irreducible components of the surface Sy
are hypersurfaces in P3. By Lemma 1.5.3, we have

AN I
aj =a; =...=a; =0,

so that the fiber f1()) is irreducible by (1.5.2). O

Let us show how to apply this result to prove (©) in the Main Theorem in one simple case.
Before doing this, let us fix handy notation that will be used throughout the whole paper.

1.6. Handy notation. We will use [z:y:2:t] as homogeneous coordinates on P3. For a
nonempty subset I in {z,v, z,t}, we will write H; for the plane in P2 on which the sum of coordinates
in I is equal to zero. For instance, we denote by Hy,} the plane in P3 given by x = 0. Similarly, we
denote by Hy, ;, the plane in P? given by

y+t=0.

For nonempty distinct subsets I, J, and K, we will also write L; ; = H; N H; and similarly
Prjx =HrNH;N Hg. For instance, by L,y 1, ..+ we denote the line in P? given by

x =0,
y+z+1t=0.

Similarly, we have P{:c},{y}7{z} = [0 :0:0: 1] and P{:c},{y}{z,t} = [O :0:1: —1].

If the quartic surface Sy has du Val singularities, we always denote by H) its general hyperplane
section or its class in Pic(Sy). We will often use this to compute the intersection form of some
curves on Sy in the proof of ({) in the Main Theorem.
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6 I. CHELTSOV, V. PRZYJALKOWSKI

1.7. Apéry—Fermi pencil. Let us use Corollary 1.5.4 in the case when X = P! x P! x PL.
In this case, the pencil S was studied by Peters and Stienstra in [13].

Example 1.7.1. Suppose that X = P! x P! x P!. This is family 3.27. One of its mirror
partners is given by the Laurent polynomial

1 1 1
T+y+z+—+=+-.
r Yy =z

This is the Minkowski polynomial 30. The corresponding pencil S is given by
22yz + ylez + 22ay + oy + Caz + tPyz = \ayst.

Its base locus consists of the lines L{I},{y}? L{x},{z}? L{z},{t}v L{y},{z}a L{y},{t}’ L{z},{t}v and
Ly t2y,2y- 1f A # oo, then the singular points of Sy contained in one of these lines are the
points P{y},{z},{t}? P{x},{z},{t}v and P{x}v{y}v{t}7 which are du Val Singular points of type Ag, and the
points P{w},{y},{z}a P{w},{t},{y,z}7 P{y},{t},{m,z}7 and P{z},{t},{z,y}7 which are isolated ordinary double
points. Then [f~1(\)] = 1 for every A # oo by Corollary 1.5.4. Since h?(X) = 0, this proves (©)
in the Main Theorem in this case.

This approach works for 55 deformation families of smooth Fano threefolds.

1.8. Base points and base curves. In many cases, we cannot apply Corollary 1.5.4 to
prove (©) in the Main Theorem simply because the pencil S contains surfaces that have non-du Val
singularities in its base locus. In fact, quite often, the pencil S contains reducible surfaces, so that
they have non-isolated singularities. To deal with these cases, we have to refine formula (1.5.2). Let
us make the first step in this direction.

Let C4,...,C, be irreducible curves contained in the base locus of the pencil S. With very few
exceptions (see families 3.8, 3.22, 3.24, 3.29, 7.1, and 8.1), these curves are either lines or conics.
For every base curve Cj, we let

C}=#{ic{l,....,n}: a} >0 and n(E;) = C;}. (1.8.1)

Let ¥ be the (finite) subset of the base locus of the pencil S such that for every P € ¥ there is an
index ¢ € {1,...,n} such that n(E;) = P. For every P € X, we let

Dy =#{ie{1,...,n}: a} >0 and 7(E;) = P}. (1.8.2)

We say that DIAD is the defect of the fized singular point P.
Using (1.5.2), we see that

T
[FIN)] =[S+ > Cr+ ) Dp. (1.8.3)
i=1 Pes

If P is a point in 3 such that the quartic surface Sy has a du Val singularity at P, then its defect
vanishes by Lemma 1.5.3. However, the defect may also vanish if S has a singularity worse than a
du Val singularity at the point P.

Remark 1.8.4. For a general A € C, the singular points of the surface Sy are all du Val.
Moreover, they are of two kinds: those whose coordinates depend on A, and those whose coordinates
do not depend on A. The latter will be called fized singular points, and the former, floating singular
points. The set ¥ consists of fixed singular points.

For every point P € 3, the number D?‘D can be computed locally near P. We will show how to
do this later (see formula (1.10.9) below). Now let us show how to compute the number C} defined
in (1.8.1). For every A € CU {00} and every i € {1,...,r}, we let

M7} = multc, (Sy).
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KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 7

For any two distinct quartic surfaces Sy, and S}, in the pencil S, we have

Sa S = mC;
=1

for some positive numbers my, ..., m,. Then m; > Mf‘ for every A € CU {o0}.
Lemma 1.8.5. Fiz A€ CU{oo} anda € {1,...,7}. Then
o]0 if M)=1,
Clme -1 i M) >2.

Proof. The required assertion can be checked at a general point of the curve C,. Because of
this, we may assume that C, is smooth. To resolve the base locus of the pencil § at a general point
of the curve Cy, we observe that general surfaces in this pencil are smooth at a general point of the
curve C,. This implies that there exists a composition of m, > 1 blow-ups of smooth curves

Ymg Ymg—1
Vi, —5 Vi -1 —=—4 2 25 p3

such that ~; is the blow-up of the curve C,, for ¢ > 1 the morphism ~; is a blow-up of a smooth
curve C’é‘l C V;_1 such that

i1 (CY) = G2 € Vi,

and the curve C’~! is contained in the proper transform of a general surface in S on the three-
fold V;_1. Here, we have Vy = P? and C? = C,.

For each index ¢ € {1,...,m,}, let F; be the exceptional surface of the morphism ~;. Then
C! C F;, and the curve C? is a section of the P-bundle G; — C“~! induced by ;. Note that C! is
not contained in the proper transform of the surface F;_i.

For each i € {0,1,...,m,}, denote by Sﬁ\ the proper transform of the surface Sy on the three-
fold V;. Then

mg—1

Z multC;(Si) =m,.
=0

Moreover, for each b € {1,...,n} such that S(Ey) = C,, there is j € {1,...,m, — 1} such that
Ey is the proper transform of the divisor Fj on the threefold V' in the diagram (1.4.2). Conversely,
for each 7 € {1,...,m, — 1}, there is b € {1,...,n} such that S(Ey) = C, and E} is the proper
transform of the divisor F; on the threefold V', which implies

j—1

a) = Z(multcg(Sg\) -1).

=0
On the other hand, we also have
M) = multc, (Sy) > multC%(Si) > multcg(Si) > ... > mult ;. (Sﬁ;_l) > 0.

Using this, we obtain a dichotomy:
e cither M) = 1 and a) = 0 for every b € {1,...,n} such that B(E}) = C,,

e or M} > 2 and a} > 0 for every b € {1,...,n} such that 3(E,) = C,, with a single exception
in the case when FEj is a proper transform of the divisor Fy,, on the threefold V.

This immediately implies the required assertion. [J
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8 I. CHELTSOV, V. PRZYJALKOWSKI

Let us show how to apply Lemma 1.8.5 to prove (V) in the Main Theorem in one case.
Example 1.8.6. Suppose that X is a smooth Fano threefold in family 3.2. Then one of its
mirror partners is given by the Laurent polynomial

22 3z 3z z 3x 3y 1 1 22 3z 3y 9P
—t+z+—+—4+x+y+—+——+ =+ -+-+—4+—+ =+ —.
Ty Y x xy Y x Yy ox Yz z z Tz

This is the Minkowski polynomial 2569. The pencil § is given by
2t + xy2? + 32%xt + 322yt + 2%yz + yPaz + 222 + 3%tz + 3yPtz
+ 222 + t2yz + 23t + 322yt + 3ylat + y3t = hryzt.

Suppose that A # oco. Let C; and Cy be conics given by & = v + 2yz + 2> +tz = 0 and y =
22 + 222 + 22 + tz = 0, respectively. Then

Seo - Sy = 2L{m},{t} + 2L{y},{t} + 2L{z},{t} + L{m},{y,z} + L{y},{w,z}
+ 3Ly fa) T Lty fay,sp T C1+ Ca
Thus, we have r = 9, and we may assume that C; = Cy, Cy = Cy, C3 = L{x},{t}, Cy = L{y},{t},

Cs = 2Ly 41y, Cs = Liay fy,21 C1 = Liyyfazp> O8 = Liz} (o), and Co = Ly (29,2} Then my =
m; =mg=m; =mg =1, mg =my =ms; =2, and mg = 3. We have

% = {Pay 13 Playinntsy Py iontech Penio o -
If A # —6, then S) is irreducible and has isolated singularities. In this case, the surface S has
du Val singularities at P{x}v{y}7{z}7 P{x},{t},{y,z}? P{y},{t},{x,z}v and P{z},{t}7{x,y}7 and it does not have

other singular points in the base locus of the pencil S. Then [f~1(\)] = 1 for every A # —6 by
Corollary 1.5.4. On the other hand, we have

S_6=H{zy +8S,
where S is a cubic surface given by
2% 4+ 2%t + zyt 4 2wzt + y*t + 2yzt 4+ 22t + xyz = 0.
We have Ml_6 =...= M;G = Mgﬁ =1 and Mgﬁ = 2. Thus, it follows from Lemma 1.8.5 that
Ci®=2 and C°=..=C;%=cC,°=0.

Note that S_g has du Val singularities of type A or non-isolated ordinary double singularities at
the points of the set 3. We will see in Lemma 1.12.1 that this gives D;,ﬁ = 0 for each P € . Then
[f~1(—6)] = 4 by (1.8.3), which gives (©) in the Main Theorem.

Unlike what we have just seen in Example 1.8.6, the numbers Df‘; in (1.8.3) do not always vanish
for every P € X. Thus, we have to provide an algorithm to compute them. To this end, we should
choose a suitable birational morphism 7 in (1.4.2).

1.9. Blowing up fixed singular points. We can (partially) resolve all fixed singular points
of the surfaces in the pencil S by consecutive blow-ups of P3 at finitely many points. This gives a
birational map a: U — P3 such that the proper transform of the pencil S on the threefold U does
not have fixed singular points. Let S be the proper transform of the pencil & on the threefold U.
Then we can (uniquely) choose « such that S~ —-Ky.

Remark 1.9.1. By construction, for every point P in the base locus of the pencil §, there
exists a surface in S that is smooth at P. Note that a general surface in S is not necessarily smooth.
However, in most cases it is smooth. In the remaining cases, it has du Val singular points of type A
by [10, Theorem 4.4].
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KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 9

Denote by 51, . ér proper transforms of the curves Cf, .. C’ on the threefold U, respectively.
Then these curves are contained in the base locus of the pencﬂ S. However, the pencil S always
has other base curves. Denote them by Cr+1, .. C’S, where s > r. A posteriori, all base curves of
the pencil S are smooth rational curves.

For any two distinct surfaces S A, and 3 \» in the pencil S, we have

Sy, - Sy, = Z m;C; (1.9.2)
for some positive numbers my, ..., m . Since general surfaces in § are smooth at general points of
the curves C’l, . C’s, we can resolve the base locus of the pencil S by

m; +mo+mgs+...+ mg

consecutive blow-ups of smooth rational curves (cf. Remarks 2.1.5 and 10.1.4). This gives a bira-
tional morphism 3: V/ — U such that there exists a commutative diagram

U«

where g’ is a morphism whose general fibers are smooth K3 surfaces.

By construction, the threefold V' is smooth, and the anticanonical divisor — Ky is rationally
equivalent to a scheme fiber of the fibration g’. This immediately implies that there exists a
composition of flops 7: V' --» V' that makes the following diagram commutative:

7777777777 N 4

- R Pl % 3
-7

P U

Hence, in what follows, we will always assume that V = V', 7 = ao 3, n =1Id, and g = g. This
gives us the commutative diagram

Ul v X,z
al /gi lf (1.9.3)
P3 meeop Pl ——— P!

Let k = rkPic(U) — 1. For simplicity, we assume that 3(E1),...,3(F)) are exceptional surfaces of
the morphism «, while the surfaces Fj.1,..., E, are contracted by .

1.10. Counting multiplicities. Let us show how to explicitly compute D?‘D in (1.8.3) for
every point P € 3.

To this end, we denote by El, . ,Ek the proper transforms of the surfaces Fi,..., Ex on the
threefold U, respectively. For every A € CU {co}, we let

k
Dy=8+) alE;. (1.10.1)
i=1
Then D » ~ — K7, and the numbers ai‘, e ,aﬁ are uniquely determined by this rational equivalence.

Furthermore, we have l/j)\ €S by construction.
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10 I. CHELTSOV, V. PRZYJALKOWSKI

Lemma 1.10.2. Let P be a point in the set 3. If multp(Sy) = 2, then

a} =0

for every i € {1,...,k} such that a(E;) = P.
Proof. Straightforward. [
For every fixed singular point P € X, we let
Ay =#{ie{l,....k}: a} >0 and a(E;) = P}. (1.10.3)

Then Lemma 1.10.2 can be reformulated as follows.
Corollary 1.10.4. If multp(Sy) =2 for P € ¥, then A} = 0.
For every A € CU {oo} and every a € {r +1,...,s}, we let

Co=#{ic{l,...,n}: a} >0 and B(E;) = C,}. (1.10.5)
For every A and every a € {1,...,s}, we let
M, = multg (Dy). (1.10.6)
Lemma 1.10.7. Fiz A€ CU{oo} and a € {1,...,s}. Then
o 0 if M)=1,
“ lme—1 if M)>2.

Proof. See the proof of Lemma 1.8.5. [
On the other hand, it follows from (1.5.2) that

)] =D +> Cr =[S+ > Ap+> C (1.10.8)
i=1 Peyx. i=1
Comparing formulas (1.8.3) and (1.10.8), we obtain the formula for the defect
D=Ap+ > C} (1.10.9)
i=r+1

for every point P € 3. Similarly, using (1.10.8) and Lemma 1.10.7, we get
Corollary 1.10.10. If M} =1 for each i € {1,...,s}, then [f~}(\)] = [Dy].
Let us show how to apply this handy result.

Example 1.10.11. Suppose that X = P! x S3, where S5 is a smooth cubic surface in P3. This
is family 8.1 in [8]. One of its mirror partners is given by the Minkowski polynomial 768, which is
the Laurent polynomial

1 3 3z 22 3 1 3y y?
—+ -+ —4r+—+-+32+-+—+3y+ —.
yz oy oy Yy oz x z z
Then the corresponding quartic pencil S is given by
32 + 3t2xz + 32%xt + 2?2y + x4 3t2xy + 322wy + 22y + 3y wt + 3yPxz + yPr = \yzt,
and it has six base curves: Cp = L{r}’{y}, Cy = L{r}’{z}, Cs = L{x},{t}a Cy = L{y},{t,z}7 Cs =
L.y 11,4y, and Cg that is the singular cubic curve ¢ = zyz + y3 4 3y?2 + 3yz? + 23 = 0. Suppose
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KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 11

that A # co. Then
Sy - Soo = 2C1 + 2C5 4+ 3C5 + 3Cy + 3C5 + Cg,

and the surface S is irreducible. Moreover, if A # —4, —8, then the singularities of the surface S)
are du Val, so that [f~1()\)] = 1 by Corollary 1.5.4. However, the singular locus of the surface S_4
consists of the point P, (1 (.1 and the line x — ¢ = y + 2+t = 0. Similarly, the singular locus
of the surface S_g consists of the point Ppy 1,1 12} and the line z +¢ =y + 2 +¢ = 0. Thus, we
cannot apply Corollary 1.5.4 when A = —4 or A = —8. Nevertheless, we have [f~1(—4)] = 1 and
[f~1(—8)] = 1. To show this, observe that

5 = { Py 1.0 Pt ). (w2} -

Moreover, if A # —4,—8, then P,y (.1 () is a singular point of Sy of type Ay, and the point
P2y {43,{y,2} 18 a singular point of Sy of type A;. The birational morphism a: U — P3 can be
decomposed as follows:

UQ<Q—3U3

a2 Q4
Uy / \U
e

Here oy is the blow-up of the point Pgy (.1 41, the morphism ay is the blow-up of the preimage
of the point Py, 41 fy,2}, the morphism aj is the blow-up of a point in the as-exceptional surface,
and oy is the blow-up of a point in the az-exceptional surface. We may assume that Ey is the
ay4-exceptional surface. Similarly, we may assume that Ey, Fy, and F3 are the proper transforms
on U of the exceptional surfaces of the morphisms oy, as, and ag, respectively. Then

ﬁoo:;/s\ —I—Elfvg)\N—KU.

One can show that Eg, Eg, and E4 do not contain base curves ( of the pencil S and the surface E1
contains two base curves of the pencil S. They are cut out on E1 by the proper transforms on U of
the planes Hy,, and H{Z} Let us denote them by C’7 and C’g, respectively. Then S)\ and Se + E;

generate the pencil S and
S+ (Seo + Er) = 20, + 205 + 3C3 + 3Cy + 3C5 + Co + 2C7 + 2Cs.

Note that M} = ... = Mg = 1 for every A € C. Therefore, using Corollary 1.10.10, we conclude
that [f~1(\)] = 1 for every A € C. Thus, we see that (©) in the Main Theorem holds in this case,
since h1?(X) = 0.

1.11. Extra notation. In Example 1.10.11, we explicitly decomposed the birational mor-
phism « in (1.9.3) as a sequence of blow-ups. To verify () in the Main Theorem, we have to do
the same many times. To save space, let us introduce common notation that will be used in all
these decompositions.

Recall that « is a composition of £ > 1 blow-ups of points. Suppose we have the following
commutative diagram:

U,
Ur

4
\
P U
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12 I. CHELTSOV, V. PRZYJALKOWSKI

where a < k, each «; is a blow-up of a point, and v is a (possibly biregular) birational morphism.
Then we denote the exceptional divisor of a; by E;. Moreover, for every j > i, we denote by Eg
the proper transform of the divisor E; on U;. Furthermore, we will always assume that the proper
transform of the surface E; on U is the divisor EZ

For every A € CU {00} and i < a, we denote by Sﬁ'\ the proper transform of the quartic surface S)
on the threefold U;. Similarly, we denote by S* the proper transform on U; of the pencil S, and we
denote by Dg\ the divisor in the pencil S’ that contains the surface Si. Then Dg\ is just the image
of the divisor ﬁA on the threefold U;.

We denote by Cf,...,C! the proper transforms on U; of the curves Ci,...,C,, respectively.
Similarly, if the surface E; contains a base curve of the pencil S?, then we denote this curve by C’;
for an appropriate j > r. We will always assume that its proper transform on the threefold U is
the base curve 5]-, which we introduced earlier.

1.12. Good double points. As we already saw in Example 1.8.6, in some cases all defects Df‘;
in (1.8.3) vanish, so that we do not need to blow up P? to compute [f~1()\)]. A handy observation
is that

for P € ¥ if the rank of the quadratic form of the (local) defining equation of the quartic surface S
at the point P is at least 2. We will call such points good double points. This unifies du Val singular
points of type A and non-isolated ordinary double points.

Lemma 1.12.1. Let P be a fized singular point in 3. Suppose that P is a good double point
of the surface Sy. Then D% = 0.

Proof. By Corollary 1.10.4, we have A} = 0. Therefore, it follows from (1.10.9) that we have
to show that C>‘ = 0 for every j > r such that a(C’ ) = P. Let E; be an a-exceptional surface

such that a( ;) = P, and let C be a base curve of S that is contained in E;. By Lemma 1.10.7, it
suffices to show that

M} = multg (D)) = 1.

C;

To this end, we may assume that a: U — P3 i is t the blow-up of the point P and E is the exceptlonal
divisor of this blow-up. Then the restriction DA\ 7, 1s a union of two distinct lines in E; = P2. In

particular, the surface DA =3 » 18 smooth at general points of any of these lines and the assertion
follows. [

Corollary 1.12.2. Suppose that every fized singular point of the pencil S is a good double
point of the surface Sx. Then

[ =[S+ > Cr
=1

Let us show how to apply this corollary in one simple example.

Example 1.12.3. Suppose that X is contained in family 3.11 in [8]. Then its mirror partner
is given by the Minkowski polynomial 1518, which is the Laurent polynomial

z oz vy z y 1 1 Y 1
T e e e e
r Yy T xTYy 2z x Yy Tz TY
Thus, the pencil S is given by the equation
zy2® + 22yz + xy’z + 222t + y2tt + ot + 2262 + wyPt 4 xat? + yat? + 22 + 263 = dayet,
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KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 13

and its base locus consists of the lines L{m}’{t}, L{y}’{z}, L{y},{t}7 L{z},{t}7 L{w},{z,t}v L{y},{m,t}v
L{y}7{z7t}, L{z},{z,t}v L{t}7{x,y7z}7 and the conic {z = y2 +yz + 2t = 0}. If A # —2,00, then the
surface S has at worst du Val singularities, so that [f~1()\)] = 1 by Corollary 1.5.4. On the other
hand, we have S_o = Hy, 4y + S, where S is an irreducible cubic surface given by the equation
xyz + yz2 + 22t + 2t> + y?2 + y?t + yzt = 0. Note also that S_, is smooth at a general point of
every base curve of the pencil S. Thus, it follows from (1.8.3) that
[f1(-2)] =2+ ) D%
pPex

Furthermore, the set ¥ consists of the points P{y}7{z}7{t}, P{m}’{z}’{t}, P{w},{y},{t}7 P{w},{t},{y,z}7 and
Py 21,42,1y, and the quadratic terms of the Taylor expansions of the surface S_o at these points
can be described as follows:

Prp 1400 quadratic term yz;

Py 3,01 quadratic term (2 + 1) (2 + t);

Py gy sy 2 quadratic term (z +¢)(y +1);
Py gy {y,2y 0 quadratic term (2 +t)(z +y + 2 — t) — (A + 2)at;
Py (3 4,y quadratic term z(z + (A + 2)y + ¢).

By Corollary 1.12.2, we have Dp? = 0 for every P € ¥, so that [f~1(—2)] = 2. Thus, we see that ()
in the Main Theorem holds in this case, since h1?(X) = 1.

1.13. Curves on singular quartic surfaces. We will prove ({) in the Main Theorem by
computing the intersection form of the curves C1,...,C; on a general surface in the pencil S. To
this end, let k = C()), let Sk be the quartic surface in P given by (1.4.1), and let v: Sy — Sk be
the minimal resolution of singularities of the surface Sy.

Lemma 1.13.1. Suppose that A is a general element of C. Then the surface Sy is singular, and
it has du Val singularities. Let M be the r x r matriz with entries M;; € Q given by M;; = C; - Cj,
where C; - C; is the intersection of the curves C; and C; on the surface Sy. Then the right-hand
side of () 1is equal to

20 — rk Pic(Sy) + rk Pic(S) — rk M.

Proof. The fact that the surface Sy is singular and has du Val singularities can be verified by
case-by-case analysis using the defining equation of the quartic surface Sy. To prove the formula
for the right-hand side of ({), we may assume that Z in ({) is the smooth threefold V' constructed
earlier in this section. Recall from Subsection 1.5 that S \ is the proper transform of the quartic sur-
face Sy on the threefold V and FE4,..., F, are the exceptional divisors of the constructed birational
morphism 7: V — P3. Since §>\ is smooth, the morphism 7 induces the minimal resolution of
singularities w: S v — S\. Then

Kg ~ @' (Ksg,) ~ 0,
because Sy has du Val singularities. Thus, we see that S \ is a smooth K3 surface, which implies
H?(S),R) = R?2. Therefore, the right-hand side of ({) is equal to
dim coker (H?(V,R) — H?(S),R)) — 2 = 20 — dimim(H?(V,R) — H*(S),R)).

But the cohomology group H?(V,R) is generated by the class of the divisor 7*(Ops(1)) and the
classes of the m-exceptional surfaces Fi,..., E,. So, to complete the proof, we have to show that
rk Pic(Sk/Sk) + rk M is the dimension of the vector subspace

<E1|§)\7' .. ,En|§k,7r*(0p3(1))|§k> - H2(§)\7R)‘
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14 I. CHELTSOV, V. PRZYJALKOWSKI

Note that the class of the restriction 7*(Ops(1))] g, is contained in the vector subspace in H 2(55,R)
spanned by the classes of the restrictions El‘@’ . ’E"‘@’ because

> miCi ~ 7 (Ops(4)) | g,
=1

This shows that
<E1‘§A,... ’En|§A’7T*(OP3(1))|§A> = <E1|§A,... ,En‘§A> C Hz(S)\,R).

Furthermore, for every m-exceptional divisor Ej;, the restriction E;] 3, (if not empty) is either an

effective divisor whose support consists of w-exceptional curves or the strict transform on Sy of one
of the curves (', ..., C, via the birational morphism ww. Moreover, we have

dim(E|g .., Ealg, ) = rk Pic(Sk/Sk) + rk M,

because Sy is a generic scheme fiber of the morphism f: V — P! and S \ is a sufficiently general
fiber of this morphism. This gives the required equality. [

Thus, to verify ({) in the Main Theorem, it suffices to show that
rk Pic(X) + rk M + rk Pic(Sy) — rk Pic(Sy) = 20, (%)

where M is the intersection matrix defined in Lemma 1.13.1. For basic properties of the intersection
of curves on surfaces with du Val singularities, see the Appendix.
Let us show how to check (%) in one case.

Example 1.13.2. Suppose that X = P! x P2, This is family 2.34 in [8]. One of its mirror
partners is given by the Minkowski polynomial 4, which is the Laurent polynomial

1 1
THy+z+—+—.
T Yz

Then the pencil S is given by
2 yz +ytez + 2Py + Pyz + e = \wyzt,

and its base locus consists of the curves L{w},{y}a L{m}’{z}, L{m},{t}, L{y},{t}a L{z},{t}a and L{t},{m,y,z}'
Suppose that A\ # oo. Then the singular points of Sy contained in one of these lines are the
points Py, eh 11y and Py 12y,(¢}, which are singular points of type A4, the points Py 1 11,
Proy 63 fz,2y and P2y (1) {2y}, Which are singular points of type Ag, and the point Py 14y 1y.215
which is an isolated ordinary double point of the surface Sy. In particular, we see that (V) in the
Main Theorem holds by Corollary 1.5.4. Resolving the singularities of the quartic surface Sk, we
also see that

rk Pic(Sy) = rk Pic(Sy) + 15.

Thus, to verify (%), we have to compute the rank of the intersection matrix of the lines L,y 1y,
L{x},{z}7 L{:c},{t}7 L{y},{t}7 L{z},{t}a and L{t},{x,y,z} on the surface S). This matrix has the same
rank as the intersection matrix of the curves L,y (1, Lya},(z), and Hy, since

Ly gy + Liad 42y + 2002y 41y ~ Liay fyy + 30403000 ~ Loy (2 + 3Ly 10
~ Ligy gy T Ly ey + Liay ey + Ligy .2y ~ Ha
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These rational equivalences follow from the equalities

Higy 53 = Liay ) + Lia) g2y + 2L4ay, (0

Hyyy - 3= Liay oy + 3Ly,

Hizy - O3 = Ligy 2y + 3Lz 40

Hiy - S5 = Ly iy + Ly oy + Lt + Ly fayzy-

On the other hand, using Propositions A.1.2 and A.1.3 in the Appendix, we see that the intersection
form of the curves L,y 1, Lz} (2}, and H)y on the surface Sy is given by

Ly Leygzy Ha
Liay.y [ —4/5 1 1
H,y 1 1 4

This matrix has rank 3, so that (¥) holds in this case.

1.14. Scheme of the proof. In the remaining part of the paper, we prove () and () in
the Main Theorem for every deformation family of smooth Fano threefolds, similar to what we did
in Examples 1.7.1, 1.8.6, 1.10.11, 1.12.3, and 1.13.2. We will do this case by case, reserving one
subsection per deformation family. The numbering of the families is taken from [8|, and we group
families with the same Picard rank in one section. For example, the subsection entitled “Family 4.1”
contains the proof of the Main Theorem for family 4.1 in [8], which consists of smooth divisors of
multidegree (1,1,1,1) on P! x P! x P! x P!,

In every case when — K x is very ample, we proceed as follows. First, we choose an appropriate
toric Landau—Ginzburg model for the threefold X such that (1.4.2) exists for some pencil S, which
is given by equation (1.4.1). Second, we describe the base locus of this pencil. Third, we describe
the singularities of every surface Sy in the pencil & that are contained in the base locus of this
pencil. This also gives an explicit construction of the birational map « in (1.9.3), which can
be used to describe the minimal resolution of singularities v: Sy — Sk. Using it, we compute
rk Pic(Si) — rk Pic(Sy), and verify (%) using the intersection theory on Sy for general A € C. To
do this more efficiently, we use basic results on intersection of curves on singular surfaces, which we
present in the Appendix.

If the singular points of S contained in the base locus of the pencil § are all du Val for every
A # 00, then we apply Corollary 1.5.4 to deduce (¥) in the Main Theorem. Similarly, if every fixed
singular point is a good double point of every non-du Val surface S) in the pencil §, then we can
apply Corollary 1.12.2 together with Lemma 1.8.5 to compute the right-hand side of (©) in the
Main Theorem.

If the pencil § contains a non-du Val quartic surface Sy that has a bad singularity at some
fixed singular point P € 3, then we can compute the number of irreducible components of the fiber
f=1(\) using (1.8.3). This gives us

[FL )] =[S\ + Z C}+ > Dp.
=1 Pe¥

Here, the term [S)] is easy to compute. Similarly, the second term in this formula can be computed
using Lemma 1.8.5. Therefore, for every fixed singular point P € 3 that is neither du Val nor a
good double point of the surface Sy, we must compute its defect Df;.
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16 I. CHELTSOV, V. PRZYJALKOWSKI

To compute the defect D7, we describe the birational morphism a: U — P3 in (1.9.3). This
can be done locally in a neighborhood of the point P. Then we describe the divisor

k
Di=5+ Y alh,
i=1
in (1.10.1). In many cases, we can use Lemma 1.10.2 to show that some (or all) of the numbers
a{‘, . ,ag vanish. But it is not hard to compute them in general.

Then we describe the base curves of the pencil §, and compute the intersection multiplicities
my, ..., myin (1.9.2) and the multiplicities M3, ..., M2 in (1.10.6). For the proper transforms of the
base curves of the pencil S, these computations should have already been done at the previous steps.
For the remaining base curves of the pencil §, we can compute these numbers locally near every
point in . For each such point P € ¥, we can compute its defect D)ﬁ’ arguing as in Subsection 1.10.
If the surface Sy has a du Val singularity or a non-isolated ordinary double singularity at P, we
can use Lemma 1.12.1 to deduce that its defect DIAD vanishes. This allows us to skip many local
computations.

Finally, we use (1.8.3) to compute [f~1(\)] for every A # oo. This gives (V) in the Main Theorem
and completes the proof of the Main Theorem in the case when —Kx is very ample.

Example 1.14.1. Suppose that the threefold X is contained in family 3.6 in [8]. Then X can
be obtained by blowing up P? in a disjoint union of a line and a smooth elliptic curve of degree 4,
so that h1?(X) = 1. A toric Landau-Ginzburg model of the threefold X is given by the Minkowski
polynomial 1899, which is
1 z 1 1 3 yz oy 3y o

— t+ =+ -+ -2+ -+ =+ =
Ty r 0y oz T T z x T

T+ z+ % +
Then the corresponding pencil § is given by
a:2yz + z2t? + a:yz2 + $2yt + 283 + yz2t + :Eyt2 + 2:1:y2z + 3yzt2
+ 4222 4+ zy?t + 3yP2t + y32 = Aayzt.

Suppose that A # oo. Let C be the conic x = yz + (y +t)?> = 0. Then

Higy  Sx = Liay 23 + Liayuy +6,

Hyyy - 83 = Ly 23 + 2L 0 + Ly geys (1.142)

Hizy - O3 = Ligy o) + Lty + Lizniny + Ly Loy

Hyy - S5x= Lygy oy + Ly + L ey + L) fayzy-

Let S be an irreducible cubic surface given by zt> + 2yzt + ayt + y2% + zyz + y?>2 = 0. Then
S_3=Hgyn +S. If A # =3, then S, is irreducible and its singularities contained in the base
locus of the pencil S can be described as follows:

Py 234y type Az with quadratic term y(z +1t);

Py qy 4 type Az with quadratic term y(z + y + );
Py 23 qy.ty ¢ type Az with quadratic term x(x+y+t—3z—Az);
Py 23 4oty type Ay with quadratic term 4zy — (z+t)(y+2)— y? + Myz;
Py (63 4e,z) 0 type Ap with quadratic term 2yt — - (x+2)y — y? + My;

Py ity 2wy type Ag with quadratic term ¢(x +y + ¢ — 32 — A\z) for A # —4, and
type Ag for A = —4.
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These are the fixed singular points of the pencil §. All of them are good double points of the
surface S_3. Now, using Corollaries 1.5.4 and 1.12.2, we obtain (©) in the Main Theorem. To
verify (%), we observe that rk Pic(Sy) = rkPic(Sy) + 11. Now we must compute the rank of the
intersection matrix M in Lemma 1.13.1. We may assume that A\ ¢ {—4, —3}. Using (1.14.2), we
see that M has the same rank as the intersection matrix of the curves Ly, 1, Liay fy.63 Liyy (2}
L{y},{x,t}’ L{z},{z,y,t}v L{t}7{x,y7z}7 and H)\, which is given by

Liayizy Leywty L=y Lidfeny Lisdiewty L{fewzy Ha

Loy [ —4/3  2/3 1 0 1/3 0 1
Lrwn | 2/3  =7/12 0 1/2 1/3 0 1
Liyy (2} 1 0 —5/6 1/2 1/2 0 1
Liyien | O 1/2 12 —1/2 1/2 0 1
Loy {wyt} 1/3 1/3 1/2 1/2 -1/6 1/3 1
Liyfawzy | 0 0 0 0 1/3 -5/6 1
H, 1 1 1 1 1 1 4

It has rank 6, so that (%) holds, which gives ({) in the Main Theorem by Lemma 1.13.1.

In the remaining part of this paper, we will always use the notation of this section except for
five families of smooth Fano threefolds whose anticanonical divisors are not very ample. These are
families 2.1-2.3, 9.1, and 10.1 in [8]. We will deal with them in the corresponding subsections of
Sections 2, 9, and 10. The proof of the Main Theorem in these cases is similar to that in the case
when — Ky is very ample. For instance, if X = P! x Sy, where Sy is a smooth del Pezzo surface of
degree 2, the commutative diagram (1.4.2) also exists. But now by [16, Proposition 29| the pencil S
is given by

23y = Oyz —y? — 22 (at — 22 — t2),

where A € CU {oo}. In this case, which is family 9.1, we can still apply all the steps described
above to prove the Main Theorem.

2. FANO THREEFOLDS OF PICARD RANK 2

Family 2.1. In this case, the threefold X can be obtained as a blow-up of a smooth sextic
hypersurface in P(1,1,1,2,3) along a smooth elliptic curve. This implies that h'?(X) = 22. Note
that —Kx is not very ample. Because of this, there exists no Laurent polynomial with reflexive
Newton polytope that gives the toric Landau—Ginzburg model of this deformation family. However,
there are Laurent polynomials with non-reflexive Newton polytopes that give the commutative
diagram (*H). One of them is

(r+s+15t+1) 1
2 T
rs
which we also denote by p.
Let v: C3 --» C* x C* x C* be a birational transformation given by the change of coordinates

1 1 1 ; 1 1
_—_—— — S = — = —— — 1.
b bic b2c’ Y

Arguing as in Subsection 1.9, we can expand (*X) to the commutative diagram

T =

P2 x P! «—— C3 ——--- T C*xC*xC* < Y Z

S

Pl+— ! c! Cl —— p!
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where q is a surjective morphism, 7 is a birational morphism, the threefold V' is smooth, the map g
is a surjective morphism such that —Ky ~ g=1(00), and ¢ is a rational map given by the pencil

z(z +y)* = y((x + y)A +y) (abe — b*c — a®), (2.1.2)

where ([z:9],[a:b:¢]) is a point in P! x P2 and A € C U {o0}.

The commutative diagram (2.1.1) is similar to the commutative diagram (1.4.2) presented in
Subsection 1.4. Asin (1.4.2), there exists a composition of flops x: V' --+ Z that makes the following
diagram commute:

VX Z
gl lf
P! —— P!

So, to prove the Main Theorem in this case, we will follow the scheme described in Section 1.
Moreover, we will use the same assumptions and notation as in the case when —Kx is very ample.
The only difference is that P is now replaced by P! x P?2. For instance, we denote by S the
pencil (2.1.2) and by S} the surface in S given by (2.1.2), where A € C U {oc}. Similarly, we extend
the handy notation in Subsection 1.6 to bilinear sections of P! x P2. Note that the curve H) is not
defined in this case.

Let S be the surface in P! x P? given by abc — b?>c — a® = 0. Then S is irreducible and

Seo = Hyyy + Higyy +S.

Let S be the surface in P! x P? given by the equation zc® + yc® — yabe + yb*c + ya® = 0. Then S
is irreducible and S_; = Hy,;, + S. These are all reducible surfaces in S.
To describe the base locus of the pencil S, we observe that

H{%y} -S_1 =04, H{y} -5 = 3L{y}7{c}, S-5.1=C+Cy+ 9L{a},{c}7 (2.1.3)

where C; is the curve in P! x P? given by x + y = abc — b’c — a® = 0 and C, is the curve in P! x P?
given by = abc — b’c — a® = 0. Thus, we have

S—l . Soo - 261 + C2 + 3L{y}7{c} + 9L{a},{c}7

so that the base locus of the pencil S consists of the curves Cy, Ca, Ly (3, and Lygy 13-

To match the notation used in Subsection 1.8, we let C1 = Cy, Cy = C2, C3 = Ly 4, and
C4 = L{a},{c}' Then mi = 2, mo = 2, ms3 — 3, and my = 9.

Observe that Sp is singular along the curve Ly (1. Moreover, if A ¢ {0,—1,00}, then the
surface Sy has isolated singularities. In this case the singular points of Sy contained in the base
locus of the pencil S are du Val and can be described as follows:

Py} {a} {c}: type Ag;
A+1:=A]x[0:1:0]: type As.

Applying Corollary 1.5.4, we obtain the following.

Corollary 2.1.4. The fiber f=1()\) is irreducible for every X ¢ {0,—1,00}.

Observe that the point Py} rq} {c} i the only fixed singular point of the pencil S.

Remark 2.1.5. The base curve C} is singular at the point P, 1 ro1 4y Similarly, the base
curve Cy is singular at the point Pp,y 141 31 Thus, in the notation of Subsection 1.9, both curves Cy

and 52 are singular. This implies that the threefold V in (2.1.1) is singular: it has isolated ordinary
double points. But this is not important for the proof of the Main Theorem in this case, because
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these singular points are contained in the fiber g~!(c0). Note that we can resolve them by composing
the birational morphism 7 in (2.1.1) with a small resolution of these double points. However, the
resulting smooth threefold would not be projective (cf. the proof of [16, Proposition 29]).

First, let us prove () in the Main Theorem. By Lemma 1.13.1, it follows from
Lemma 2.1.6. Fquality (%) holds.
Proof. Suppose that A ¢ {0,—1,00}. Let H) be the intersection of the surface Sy with a
general surface in P* x P2 of bidegree (0,1). Then it follows from (2.1.3) that
C1+ Cy +9C, ~ 3H),

and C; ~ (5 ~ 3C3 on the surface S). Thus, the intersection matrix of the curves C7, Cs, Cs,
and C4 on the surface Sy has the same rank as the intersection matrix

C? Hy,-Cy\ (0 1
Hy,-C, H} ) \1 2)
On the other hand, we have rk Pic(Sy) = rk Pic(Si) + 16. This shows that (%) holds. [

In the remaining part of this subsection, we will show that (©) in the Main Theorem also holds
in this case. To this end, we have to compute [f~}(—1)] and [f~1(0)]. We start with

Lemma 2.1.7. One has [f7}(—1)] = 2.

Proof. As we have already mentioned, the point P (a1 {} is the only fixed singular point of
the pencil S. The surface S_; has a du Val singularity of type Ag at it. Since

M'=Mt =Mt =M, =1,

we use Corollary 1.12.2 to deduce that [f~1(=1)] = [S_i]=2. O

To compute [f~1(0)], observe that M{ = 1, MJ = 1, M} = 2, and MY = 1. Thus, it follows
from (1.8.3) and Lemma 1.8.5 that

[FH (0] =3+Dp (2.1.8)

where D(I)3 is the defect of the singular point Py r4},{c} defined in Subsection 1.8. The
{y}.{a}.{c} NaJ,
defect D%{y}’{a}‘{c} can be computed locally near the point Py} 14} {c}- The recipe to compute it is

given in Subsection 1.10. Let us use it.
Suppose that A\ # oco. Consider a local chart x = b = 1. Then the surface Sy in this chart is
given by

—Ayc + c(c2 + \ya — My? — yz) + y(c?’ — Xa® + \yac + yac) — A+ D(»%a®) =0.

Let ap: U; — P! x P? be the blow-up of the point Pryy {a) {cy- A chart of the blow-up a; is given
by the coordinate change a; = a, y1 = y/a, ¢1 = ¢/a. In this chart, the surface D}\ is given by the
equation

—Ayic1 + Ayrai (e —ar) + areq (c% — )\y% — y%) + y%a%()\ +1)(c1 —ar)+ a%ci’yl =0,

where a; = 0 defines the exceptional surface E;. Then E; contains two base curves of the pencil S*.
One of them is given by a; = y1 = 0, and the other, by a1 = ¢; = 0. Denote the former curve by C3
and the latter by C{.

If A # 0, then the point (ai,y1,c1) = (0,0,0) is the only singular point of the surface D}\ that is
contained in E;. Let as: Us — U; be the blow-up of this point. A chart of the blow-up a9 is given
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by the coordinate change as = a1, y2 = y1/a1, ca = c1/a;. Let Yo = yo, @z = ag, and ¢ = ag + ca.
Then Di is given by
—\JaCa + Njpia(Co — ) + @3 (65 — @3 + 3502 — 365Gz — A5 2 — 5 0a)
+ (A + D)5 a5 (G — Ga) + Gy J2(c2 — a2)° =0,

and Ej is given by @y = 0. Then E, contains two base curves of the pencil S2. One of them is
given by dy = 7> = 0, and the other, by @2 = ¢ = 0. Denote the former curve by C? and the latter
by C2.

If A # 0, then (@2,%2,¢2) = (0,0,0) is the only singular point of the surface D3 that is contained
in Eo. Let ag: U3 — Us be the blow-up of this point. A chart of this blow-up is given by the
coordinate change a3 = as, y3 = Y2/a2, C3 = ¢2/as. Let ys = y3, a3 = as, and ¢3 = a3 + ¢3. Denote
by Es the exceptional surface of the blow-up az. Then D3 is given by

—\J3C3 + \G3Yscs — G5 — \J3as + 3a5(¢s — az) — 3as(¢3 — as)*

+@3 (¢ — @3 + 330 — 30323 — NJ3C3 — U3 C3) + U3 (\UaCs + UsTs — 3 — Vsl — Yalis)

+ 3ysa$ (cs — a3) — 3ysag(cs — as)” + Ysas(cs — az)® =0,
and Ej is given by @3 = 0. Then E3 contains two base curves of the pencil S. One of them is
given by @3 = 73 = 0, and the other, by @3 = &3 = 0. Denote the former curve by C§ and the latter
by C3.

There exists a commutative diagram

Uy <a—3 U3

where a4 is the blow-up of the point (as,ys,¢3) = (0,0,0). Note that E4 contains two base curves
of the pencil S. Denote them by C71 and Cio. Then Ci, ..., Cq2 are all base curves of the pencil S,
because

§A1 . S\)\Q = 261 + 62 + 363 —|—964 + 5’5 + 766 + 26’7 + 568 —|—369 +3610 + 5’11 + 612

for two general Ay and A9 in C. This also shows that mg =1, mg =7, m; = 2, mg = 5, mg = 3,
mig = 3, mi; = 1, and mio = 1.

Let us compute the term A(},{y} (i) in (1.10.9). We have lA?o = §0 + El + 2]@2 + 3E3 + E4.
This gives A(I]’{y},{a},{c} = 4. Note also that Mg =1, Mg =2, M? =2, Mg =3, Mg =3, M(l)0 =3,

MY, =1, and MY, = 1. Thus, it follows from (1.10.9) that

where C? is the number defined in (1.10.5). By Lemma 1.10.7, we have

{o it MY =1,

CY —
m; —1 if MY > 2

(2

Therefore, we have D% = 19. Now, using (2.1.8), we deduce that [f~1(0)] = 22. Keeping in mind
that h12(X) = 22 and [f~1(—1)] = 2, we see that (©) in the Main Theorem holds.
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Family 2.2. In this case, the threefold X is a double cover of P! x P? ramified in a surface
of bidegree (2,4). This implies that h12(X) = 20. As in the previous case, the divisor —Kx is not
very ample, and there are no toric Landau—Ginzburg models with reflexive Newton polytope in this
case. However, we can find a Laurent polynomial p with non-reflexive Newton polytope that gives
the commutative diagram (*X). For instance, we can choose p to be the Laurent polynomial

(a+b+c+1)? N (a+b+c+1)*
a be ’

Let v: C3 --» C* x C* x C* be a birational transformation given by the change of coordinates
a = xy, b=yz, c=z—xy—yz— 1.
By [16, Proposition 16], we can expand ("K) to the commutative diagram

P3 «— C3 ----- I O X C* X C* —— Y < s 7

ST e

P!« C! ct Cl——p!

where q is a surjective morphism, 7 is a birational morphism, the threefold V' is smooth, the map g
is a surjective morphism such that —Ky ~ g=!(c0), and ¢ is a rational map defined by a pencil of
quartic surfaces S given by

x23 = (2t —xy —yz — tz)(A:L'y — 2%, (2.2.2)

where A € CU {oo}. Note that a general fiber of the morphism g is a smooth K3 surface. Thus,
a general surface in the pencil (2.2.2) has at worst du Val singularities.

The diagram (2.2.1) is very similar to the diagram (1.4.2) presented in Subsection 1.4. The only
difference is that the pencil S is now given by equation (2.2.2). Because of this, we will follow the
scheme described in Section 1 and use the assumptions and the notation introduced in this section.

As in Section 1, we denote by Sy the surface in S given by (2.2.2). Then

Soo = Hyzy + Hyyy +Q,
where Q is the quadric in P3 given by 2zt — 2y — yz — t2 = 0. If X\ # 0o, then
H{x} - S\ = 2L{x}7{z} +Cq, H{y} = 2L{y}7{z} + Co, Q- S\ =0Cy+3Cs, (2.2.3)

where C;, Co, and Cs are conics in P that are given by the equations z = 2t — yz — t2 = 0,
y=1xz— 2t +1>=0, and z = xy — t> = 0, respectively. It follows from (2.2.3) that the base locus
of the pencil S consists of the curves L,y 12y, Ly ¢21, C1, C2, and Cs.

We already know that the surface S, is reducible. The surface Sy is also reducible. Indeed,
we have Sy = 2H ;) + Q, where Q is a quadric surface given by zz — yz + 2t — t2— 2y =0. On
the other hand, if A\ # 00,0, then the surface Sy has isolated singularities, which implies that it is
irreducible.

If A # 00,0, then the singular points of S contained in the base locus of the pencil S can be
described as follows:

Pray )42y type Ay with quadratic term Azy — 22;
Py 21000 type Ag (see the proof of Lemma 2.2.7 below) with quadratic term Az (z + 2);
P zrey: type Eg (see the proof of Lemma 2.2.8 below) with quadratic term Ay
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If A # 0,00, then the intersection matrix of the curves Ly 121, L 421, C1, C2, and C3 on the
surface Sy has the same rank as the intersection matrix of the curves L,y (.1, Liyy (2}, and Hy,
because

1 3
Hy ~ 2L{x}7{z} +C1 ~ 2L{y}7{z} +Cy ~Q 561 + §C3

on the surface Sy. This follows from (2.2.3). On the other hand, the following holds.

Lemma 2.2.4. Suppose that X # 0,00. Then the intersection matriz of the curves Ly (2},
Ly (zy, and Hy on the surface Sy is given by

Ly izy L=y Ha

Lizy (2} 1/10 1/2 1
Loy | /2 —1/6 1
H,y 1 1 4

Proof. The equalities Hg =4 and H) - Lizy 12y = Hx - Ly 2y = 1 are obvious. Note that
Hizy - Sx = Liaygoy + Ly g2 +Cs.

Thus, on the surface Sy, we have

1
Hy ~ Ligy o) + Liyy () + 03 ~0 Loy 23 + Dy 2 + 5 (203 = C)

1 ) 1
~Q Liay 2} + Ly ged + 53 (0 42001 () ~0 3hgay ) + Ly gy + 3 s

so that
2 3
Liayfep ~0 g Ha = £ Ly

Therefore, to complete the proof, it suffices to compute the numbers L%y}’{z} and Ly 2y - Ly {2}
Observe that Ppy 1.y, and Ppay 1y).(z) are the only singular points of Sy contained in the
line Ly 121- So, by Proposition A.1.3 (see the Appendix), we get L%y},{z} =—-2+4/3+1/2=-1/6.
Since L{y}’{z} N L{w},{z} = P{w},{y},{z}a PrOpOSitiOH A1.2 gives L{y}’{z} : L{m}’{z} = 1/2. O
The matrix in Lemma 2.2.4 has rank 2. Moreover, it follows from the proofs of Lemmas 2.2.7
and 2.2.8 below that rk Pic(Sy) = rkPic(Sy) 4+ 16. Thus, we see that (%) holds. Therefore, by
Lemma 1.13.1, we see that () in the Main Theorem also holds.

To prove (V) in the Main Theorem, we observe that [f~1(\)] = 1 for every A ¢ {0,00}. This
follows from Corollary 1.5.4. Therefore, to verify (¥) in the Main Theorem, we have to show that
[f~1(0)] = 21. We will do this in the remaining part of this subsection.

To match the notation introduced in Subsection 1.8, we let C7 = C1, Cy = Co, C3 = (g,
C4 = L{z},{z}v and C5 = L{y}7{z}. Then (2.2.3) gives

S0+ Seo = 2C1 + C5 + 3C5 4+ 2Cy + 2C5,

so that my = 2, my = 1, mg = 3, and my = mys = 2. Moreover, one has M(l) = Mg =1 and
M) =MY =M =2. Then CY = C{ =0, C} =2, and C) = C? = 1 by Lemma 1.8.5. Thus, using
[So] = 2 and (1.8.3), we see that

1 _ 0 0 0
[ (0)] =6+ DP{I},{y},{z} - DP{I},{z},{t} + DP{y},{z},{t}’ (2:2.5)

where DY DY and DY
Play (w3423 7 Plad {=3,48)° Pryy (23,43

Py 21,413, and Py 12y g4y, Tespectively. For a precise definition of defects, see (1.8.2).

Lemma 2.2.6. One has D?D =0
{z} {y}.{=}

are the defects of the singular points P,y 11 o1,
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Proof. The required assertion follows from (1.10.9), because Py, (1.4} is a double point of
the surface Sy and the quadratic term of the surface Sy at this point is Axy — 22. O

Lemma 2.2.7. One has DP{ R = 10.
Proof. In the chart y =1, the surface Sy is given by the equation

A(z +z) — (222 + 2° + Awet — Mat?) + 22 (v2 + 2t — t2) =0,
where P, (21,113 = (0,0,0). We can rewrite this equation as
AZZ+ (ATE2 = N2t + A\22t+ 2222 - 222 - 2%) + (2 - 2)? (@2 + 2t - 22 -3t —12) =0,

where 7 =2, Z2=2+ 2, and t = ¢.

Let oy : Uy — P3 be the blow-up of the pomt P{m} {z},{ty- A chart of the blow-up a is given by
the coordinate change Z; = m/t Z1 = z/t ti=t Let Ty = %1, z1 = 21 + t1, and {; = ;. Then S)\
is given by the equation

AT1Z1 + )\Elil(il —Zz1+ il) — Zlil(fl —Z1+ i1)2 — Zf(fl —Z1+ il)g — fli%(fl —Z1+ il)?’ =0

for every A # 0. If A = 0, this equation defines D} = S} + E;. By (1.10.3) and (1.10.9), this
contributes (1) to the defect DY Play (o q0)” Here and below we circle each contribution for the reader’s
convenience.

Note that E; is given by #; = 0. This shows that E; contains two base curves of the pencil S'.
One of them is given by Z; = t; = 0, and the other, by z; = £; = 0. We denote the former curve
by C} and the latter by C3. Then S} + E; is smooth at a general point of the curve Cg, so that
this base curve does not give an extra contribution to the defect by Lemma 1.10.7 and (1.10.9). On
the other hand, we have

multc% (Sol +E) = M(; =my; = multo% ((S(% +E;)- S;\) =2,

where A # 0. By Lemma 1.10.7 and (1.10.9), the curve C3 contributes () to the defect.
Let ag: Uy — Uy be the blow-up of the point C3 N C1. Then D2 = Sg + E% + 2E5. By (1.10.3)
and (1.10.9), this contributes @) to DP{ R

A chart of the blow-up as is given by the coordinate change To = T1/t1, Zo = z1/t1, t2 = 1.
Let Ty = To, Z3 = Zo + 19, and 9 = to. Then Es is given by t5 = 0, and Di is given by

NF2%o + o (NFaly — Zaly + AF3 — Nio%e) — 13 (lo + 2%)(Ta — %2 + 1)
— 13 (232 — 3585 + 205 — 2%537 + 2} — 20050ty + 2%515 + 5Xoty)
—13(Fo — %o + 1) (3 — 28255 — 250 + 13 + Bialy + ¥3)
— 3Folg (Fo — Zo + 12)? — Toly (To — % + 12)® = 0.

The pencil 82 has two base curves contained in the surface E5. One of them is given by the
equation Zo = to = 0, and the other, by the equation t5 + Zy = t5 = 0. Denote the former curve
by C2 and the latter by CZ. Then

where A # 0. Thus, this curve contributes () to the defect by Lemma 1.10.7 and (1.10.9). On the
other hand, we have MY = 3 and mg = 4, because Sg + E% + 2E, is given by

{2453/2(52 +f2 —Z+ 1)3 +tv22(f22 -1-5253/2 —%/252 -1-52) (52 +f2 —Z+ 1)2 =0,
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and S2 is given by %g(t? + To¥e — ta% + %) = 0. Thus, by Lemma 1.10.7 and (1.10.9), the curve C3

contributes @) to the defect D%, :
{z}.{z}.{t}

Let asg: U3 — Uy be the blow-up of the point Cg N Cg. Then DS’ = Sg’ + E‘Z’ + 2E§ + Es.

By (1.10.3) and (1.10.9), this contributes @) to D(},{z} PR

A chart of the blow-up as is given by the coordinate change ¥3 = ¥ /lo, 33 = %2 /to, t3 = t3. In
this chart, the surface Es is given by £3 = 0, and the surface S3 is given by

(N — 13) (T3 + %3) + MaZ2 — Na¥s¥s — 205 — (203 — 1253 + 313% — I — bls¥s
— Q2T ¥s 4 LI + 34y — Olyds — 2ST3 + AU TaTs + VydsZs — 31305 — 6575
— BT3EE —T3F3% 4 2 AT — 1353 4 6E3Ta%s — T9Xs — 6L5T5 — T445 + 34727
— 3T H3EE 4 1455 + 3UHa¥s — BISX2 — BIIT3 4+ 6137255 — 315 T3%2E + 610F2 %,
— 3I8F3 — 38T % + 3T G — 1975 — BEITEE + 197375 = 0
for A # 0. If A = 0, then this equation defines D3 = S3 + E3 + 2E3 + E3.
The pencil S? has two base curves contained in the surface E3. One of them is given by the
equation f3 = 73 = 0, and the other, by the equation #3 = ¥3 = 0. Denote the former curve by C%,

and the latter by C3;. Then MY, = 2. Similarly, we have mjo = 3, because (at a general point of
the curve C%)) the surface S§ + E$ + 2E3 + Ej is given by

i’/gzg’ (fg\l’/g — 2/3}:/3 + zg + 1) + zg (zg.\fg — 2353 + 53 + \2/3) =0,
and S3_ is given by {5¥s — i3%5 + i3 + %3 = 0. Thus, the curve C’f’o contributes @ to the defect
by Lemma 1.10.7 and (1.10.9). On the other hand, we have MY; = 1. Thus, by Lemma 1.10.7
and (1.10.9), the curve C%, does not contribute to the defect.

Let ay: Uy — Us be the blow-up of the intersection point C’f’o N C’f’l. Then the birational map
a: U — P3?in (1.9.3) can be decomposed via the following commutative diagram:

U2 <a—3U3 \
a2 a4
Ul/ U4
. 7
P «——F——U

where « is a birational morphism that is an isomorphism along the exceptional locus of the compo-
sition aq o aip 0 (g 0 (uy.

The surface E4 contains one base curve of the pencil §*. Denote this curve by C{,. Simple
computations show that neither E4 nor the curve Cf, contributes to the defect. Thus, summarizing,

0 _
we see that DP{z},{z},{t} =10. 0O

0 _
Lemma 2.2.8. One has DP{y},{z},{t} =5

Proof. Let us use the notation of the proof of Lemma 2.2.7. In a neighborhood of the preimage
of the point P,y 1.y (43 on the threefold Uy, we can identify the threefold Uy with the chart of P3
given by x = 1. In this chart, the surface S;f is given by

M2+ 23+ 23— y2? — hyzt + Pz + Mt — g2 — 227 =0,

and (0,0,0) is the preimage of the point Py (.1 13-
Let as: Us — Uy be the blow-up of the point (0,0,0). Then D§ = S5 + Es. By (1.10.3)
and (1.10.9), this contributes () to the defect D%{y} i

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



KATZARKOV-KONTSEVICH-PANTEV CONJECTURE 25

A chart of the blow-up «s is given by the coordinate change ys = y/t, z5 = z/t, t5 = t. In this
chart, the surface Dg’\ is given by the equation

Ays(ts + Ys) — Atsyszs + (Msyszs — 1325 — tsysas + t523) + 1328 — t3ys28 = 0.

We can rewrite this equation as

Asts + A5 25 (U5 — t5) — 25(Js — t5) (AGE + 22 — Zsts) + 22 (U5 — t5)> — Us2e (U5 — t5)> = O,
where U5 = ys5, 25 = 25, and s = ys + t5. Then Ej is given by 75 = ts.

The surface E5 contains one base curve of the pencil S°. Denote it by C75. Then C}; is given by
U5 = t5 = 0. One has MY; = 1. By Lemma 1.10.7 and (1.10.9), the curve C%; does not contribute
to the defect of the singular point Pp 1 1) -

Let a: Ug — Us be the blow-up of the point (¥s, 35,1?5) = (0,0,0). Then DS = Sg + Eg + 2Eg.

Thus, by (1.10.3) and (1.10.9), this contributes (D) to the defect D%{y} i

One (local) chart of the blow-up «g is given by ys = U5/25, 26 = 25, tg = ?5/25. Thus, if A # 0,
then Sg is given by the equation

Msts + Z6(Js — t6)(As — Z6) + 24 te(Js — to)
— 22(Js — o) (NUG — UsZ6 + Zote) — Yoz (Yo — t6)> = 0.
The surface Eg is given by Zg = 0. It contains two base curves of the pencil S®. One of them is

given by 7g = 26 = 0, and the other, by 5 = 25 = 0. Denote the former curve by C%, and the latter
by C%. If A # 0, then

mult g (S5 + ES + 2Bg) = MY, = myy = mults ((S§+ES + 2E) - $3) = 2.

Thus, the curve C9, contributes (D to the defect by Lemma 1.10.7 and (1.10.9). Similarly, we see
that the curve CY; contributes (@) to the defect of the singular point Pry 140
Let a7: U; — Ug be the blow-up of the point C%, N C%. Then D} = S§ + EI + 2E{ + E;.

By (1.10.3) and (1.10.9), this contributes @ to the defect D%{y} i

One (local) chart of the blow-up «7 is given by y7 = ys/2s, t7 = t6/26, 27 = 26. 1f A # 0, then
the surface SZ is given by the equation

Zrty — §r2r + Njrtr + Mgr2r (U — tr) + 27 67 (Ur — tr)
+ 27 (r — t1)* = N7 27 (Gr — tr) — Gn27 (g7 — 17)° = 0.
The surface E7 is given by 27 = 0. It contains two base curves of the pencil S7. One of them is
given by 77 = 27 = 0, and the other, by #; = 27 = 0. Denote the former curve by Cf,; and the latter
by CJ;. Then MY = MY = 1, so that C7s and C7, do not contribute anything to D%{y} P, by
Lemma 1.10.7 and (1.10.9).

Let ag: Us — Us be the blow-up of the intersection point C{s N CY,. Then the birational map
a: U — P3?in (1.9.3) can be decomposed via the following commutative diagram:

U3 o U4 < B U5 < 26 Uﬁ \
a3 art
U2 / U7
Uy —— P3 — U — Us

where § is a birational morphism that is an isomorphism along the exceptional locus of the compo-
sition aiz 0 aig 0 a7 0 ag.
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Arguing as above, we see that Eg does not contribute anything to the computation of the defect.
Moreover, the surface Eg does not contain base curves of the pencil S®. Thus, summarizing, we see

0 —
that DP{Z},{Z},{t} =5 0

Using (2.2.5) and Lemmas 2.2.6-2.2.8, we conclude that [f~1(0)] = 21, so that (¥) in the Main
Theorem holds in this case.

Family 2.3. In this case, the threefold X can be obtained from a smooth quartic hypersurface

in P(1,1,1,1,2) by blowing up a smooth elliptic curve. In particular, we have h%?(X) = 11. Let p
be the Laurent polynomial

(a+b+1D*c+1)

1.
abe +c+

Then p gives the commutative diagram (%K) by [16, Proposition 16].
Let v: C3 --» C* x C* x C* be a birational transformation given by the change of coordinates

a=—zxz, b=x+xzz—-1, c:—g—l.
z

As for family 2.2, we can use v to expand ("X) to the commutative diagram (2.2.1). The only
difference is that now the pencil S is given by the equation

2y + Nz +y)(y + 2)(xz + ot —t2) =0, (2.3.1)

where A € CU {o0}. As for family 2.2, we will follow the scheme described in Section 1 and use
the assumptions and notation introduced in that section. But now Sy denotes the quartic surface
in P3 given by (2.3.1).
Let Q be the quadric given by zz + 2t —t?> = 0. Then S, = Hiy + Hyy -y + Q. Similarly, let
S be the cubic surface in P3 given by the equation
3+ Yz + ryt — yt2 +x2% + xat — 2t = 0.

Then So = Hy,y +S. Thus, we see that both So and Sy are reducible. In fact, these are the only
reducible surfaces in S§. Indeed, if A # 00,0,1, then Sy has isolated singularities, which implies
that it is irreducible. Moreover, the surface Sp is also irreducible, but it is singular along the

line L{x},{y,z}'
If A # oo, then

Hyzy - Sx = Lyyy g2+ C,
Hiyzy - Sx = Ligy 23+ 3L4ay g2} (2.3.2)
Q- S\ =6Lgy ¢ +Co,

where C; and Co are the curves in P? given by the equations z = 2% + a2yt — yt> = 0 and y =
xz 4+ at — t? = 0, respectively. Thus, if A # oo, then

Soo - S\ = 6L{m}’{t} + 2L{y}’{z} + 3L{w}7{y7z} + C1 + Co.

Hence, the base curves of the pencil § are L,y 11, Ly} (2}, Liz}) {y,z}> C1, and Ca.
If A #£ 0,1, then the singular points of Sy contained in the base locus of the pencil § can be
described as follows:

Py 10 type Ay with quadratic term zz + ot — t2;

Py i =3¢ type As with quadratic term (y + Az)(y + 2);
Py g {y,2y 0 type As with quadratic term (A — 1)z (y + 2);
[0:A:—=1:0]: type As with quadratic term (A — 1)z(y + Az).
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If A ¢ {00,0,1}, then it follows from (2.3.2) that

1
Hy ~ Ligy g2y + C1~ Ly a3 + 3L4ey 3,21 ~@ 3L4a) 0y + 5C2

on the (singular) quartic surface Sy. Therefore, if A ¢ {00,0, 1}, then the intersection matrix of the
curves Ly 1y, Liyy (21 L{a) {y,23> C1, and Co on the surface Sy has the same rank as the intersection
matrix of the curves Lyy (21, Lysy (1}, and H). In this case, we also have

Hyyy - Sx = 2Lgy) 2} + Co,

so that 2L{y}’{z} + Cy ~ H)y, which gives 2L{y}7{z} + Hy ~ 6L{m},{t}.
If A & {00,0,1}, then the intersection matrix of the curves Lyyy 1.1, Lz (1}, and Hy on the
surface S is given by
Livyizy ey Ha
Ly [ —1/2 0 1
Lz} {t} 0 1/6 1
Hy 1 1 4

Its rank is 2. On the other hand, the description of singular points of the surface Sy easily implies
that rk Pic(Sk) = rk Pic(Sk) + 16, so that (%) holds. Thus, by Lemma 1.13.1, we see that ({) in
the Main Theorem holds.

Let us prove (©) in the Main Theorem. Observe that [f~1(\)] = 1 for every A ¢ {o0,0,1}.
This follows from Corollary 1.5.4. Thus, to verify (©) in the Main Theorem, we have to show that
[F=1(0)] + [f~1(1)] = 13. We start with

Lemma 2.3.3. One has [f~1(0)] = 2.

Proof. Note that [So] = 2, and Sy is smooth at general points of the curves Ly i1y, Liyy g2)
L{w},{y,z}v C1, and Co. Furthermore, the points P{w},{z},{t}7 P{m},{y},{z}v and P{w},{t},{y,z} are good
double points of the surface So. Then [f~1(0)] = 2 by Corollary 1.12.2. [

Let us show that [f_l(l)] =11. Let C1 = Cq1, Cy = Co, C3 = L{z},{t}a Cy = L{y}7{z}, and
Cs = L{z){y-}- Then m; = my = 1, m3 = 6, my = 2, and ms = 3. Moreover, one has
M! =M} =M} =M =1and M = 2. Then C{ = C} =C} =C}] =0and C: =2 by
Lemma 1.8.5. Thus, using (1.8.3), we see that

-1 _ 1 1 1
[f (1)] =3+ DP{z},{z},m T DP{I},{y},{z} T DP{z},{t},{y,z}' (2.3.4)
Lemma 2.3.5. One has D}D{z} i = 0.
Proof. Observe that P, 1.} (¢ is an isolated ordinary double point of the surface S;. Thus,

we have Dllt’{z},{z},{t} =0 by Lemma 1.12.1. [

Lemma 2.3.6. One has D}D{z} ) = 1

Proof. In the chart ¢ = 1, one has P,y 1,1 () = (0,0,0), and the surface S is given by
(Yy+A2)(y+2) —z(y+ X2)(y + 2) — m(xzy + Ay22 + 223+ %+ yzz) =0.

Let ai: Uy — P3 be the blow-up of the point Py 3.4z Then S) ~ —Ky, for every X € C.
A chart of the blow-up «; is given by the coordinate change =1 = =z, y1 = y/x, 21 = z/x. In this
chart, the surface E; is given by z; = 0 and the surface S; is given by

(y1 +Az1)(y1 +21) — 21 (ﬂﬂlyl + (y1 + Az1) (1 + Zl)) - xizl(yl + 21)(y1 + Az1) = 0.

This shows that E; contains one base curve of the pencil S*. It is given by 21 = y; + 21 = 0.
Denote this curve by Cé. Then M(l)- = mg = 2. But surfaces in the pencil S' do not have fixed
singular points in E;. Thus, keeping in mind the construction of the birational morphism «, we see
that D}D{I}Y{y}’{z} =1 by (1.10.9), (1.10.3), and Lemma 1.10.7. O
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Lemma 2.3.7. One has D}D{z} vy 7

Proof. Let us use the notation of the proof of Lemma 2.3.6. In a neighborhood of the preimage
of the point Pry 11y 1y,2}, We can identify Uy with the chart of P? given by z = 1. In this chart, the
surface S)l\ is given by the equation

o~

A=1Dzg+ (A= 1)@yt —gt°) + 292 —2%) +y@> + 25t -yt %) =0,

where Z =z, t = t, and § = y + 2. In these coordinates, the point (0,0,0) is the preimage of the
point Ppe (1} {y,s}-
Let ag: Uy — Uj be the blow-up of the point (0,0,0). Then D? = S? + Ep. Thus, by (1.10.3)

and (1.10.9), the surface Eo contributes (D) to D}D{I} i

One chart of the blow-up «s is given by the coordinate change To = ﬁ/tA, Yo = ’y\/tA, ty =1t In
this chart, the surface S?\ is given by

A = D5a(@2 — t2) + (M2Z2Gp — t2T202) + (127205 — 1205 — ta3) + 120205 + 152572 =0
for A # 1. Let Ty = Iy — to, Uo = 2o, and 19 = 5. We can rewrite the latter equation as

(A = 1)(Z2Y2 + Yolo (T2 + 12))
= Toto + 3T315 + 3Tals + 1y — ToTsta — Ysis(To + ta) — Yals(To + 1a)>.

For A = 1, this equation defines D3 = S? + Es.

The surface Ey is given by o = 0. It contains two base curves of the pencil S2. One of them
is given by To = t5 = 0, and the other, by zo = #5 = 0. Denote the former curve by C’% and the
latter by C2. Then ML = 2. Note that m; = 4, because Sy is given by % (2 + tT2 + Z2) = 0 and
S? + E, is given by

(I3 + 31372 + 31573 + L273) (f272 — 1) + 72 (83 + E2Ta + T2) (272 — 1) = 0.

Thus, the curve C2 contributes @) to the defect by Lemma 1.10.7 and (1.10.9). On the other hand,
one has Mé =1, so that 082 does not contribute to the defect.
Let ag: U3 — Uy be the blow-up of the point C? N 082. Then D3 = SS’ + E% + 2E;3. By (1.10.3)

and (1.10.9), the surface E3 contributes () to the defect D}D{I} ey

A chart of the blow-up ag is given by the coordinate change Ts = To/to, Y3 = Yo /ta, t3 = t2. In
this chart, the surface E3 is given by #3 = 0. Similarly, if A # 1, then S;’\ is given by

(A = D)ys(Ts + I3) — t5 + T3ls((A — 1)7s — 3%3) — 37313
—13(%3 — ysl3 — T35 — Ysls) + T3 Ysts (383 + Us) + 3T373l3 + T3 Ysts = 0.

Then E3 contains two base curves of the pencil S®. One of them is given by 3 = Z3 = 0, and the
other, by £3 = 73 = 0. Denote the former curve by C§ and the latter by C%). Then M§ = M}, = 2
and mg = myg = 2. Thus, by Lemma 1.10.7 and (1.10.9), the curves C3§ and C$, contribute ) to

the defect D}D .
{z}.{t}.{y,2}

Summarizing, we see that D1
& Pray (1} {y.=

one can easily see that D}D{ e 7. O
Ty, 1 Y2

Using (2.3.4) and Lemmas 2.3.5-2.3.7, we see that (V) in the Main Theorem holds.

) > 7. Looking at the defining equation of the surface Si,
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Family 2.4. In this case, the threefold X is a blow-up of P3 along the smooth complete
intersection of two cubic surfaces, which implies that h"?(X) = 10. A mirror partner of the
threefold X is given by the Minkowski polynomial 3963.1, which is

2 2?

3 rz 2 2z T x
taz Syl Ty 3t W T T
z Yy z Yy z oz Yy z
The quartic pencil § is given by
(x+z4+t)(z+y+z+1t)(ay+ 2z + yz+ yt) — Teyzt = Azyzt.

This equation is invariant with respect to the permutation x <> z.
Suppose that A £ co. Let C be the conic t = zy + zz + yz = 0. Then

Hizy - Soo = Liay fyy + 2L(a) 2 + Loy {2y
Hiyy - Soo = Lz} fyy + Ligyf2) + 2L (a2t}
Hizy - Soo = Liyy g2y + 2Ly fay + L) fa s
Hyy - Soo = Ly fa.2y + Lty fa2y +C-
This shows that
Soo "X = 2Liay fyy + 2L4y) 12y T 2L} 2y 2Ly (o) + Liny fa2)
2Ly (wety + Ly ey + Db fewsy T L fowsy +C

Hence, the base locus of the pencil S consists of the curves L,y cov, Liyy 2y Liay {243 Lizy (ot}

Lty gw2p Lighgwzap Liopty et Lisbfewtrs Ly o2y and C.

Observe that S_7 = Hy, .y + Hizy -1y + Q, where Q is an irreducible quadric surface given by
xy+xz+yz+yt=0. If A% —7, 00, then the surface Sy has isolated singularities, which implies
that it is irreducible.

The singular locus of the surface S_7 contained in the base locus of the pencil S consists of the
lines Liay 61> Lizpfop 804 Ly g,z

Lemma 2.4.1. Suppose that X # —7. Then the singular points of Sy contained in the base
locus of the pencil S can be described as follows:

Py qd gty type Ag with quadratic term (A + 7)zy;

Py ey : type Dy with quadratic term (v + 2z + t)?;
Py iy {z2y 0 type Ay with quadratic term (A + 6)yt — 2 — (x4 2)(x+y+ 2 +2t);
Piy 2wy type Ag with quadratic term (A + 7)yz.

Proof. First let us describe the singularity of the surface Sy at the point Py r4 124y In the
chart ¢t = 1, the surface Sy is given by

AN+7)zZ7—T22— (AN +8)TYz — 22T — 22 — 2 + B+ T°2
+ T2 + AT Y2 4 2722 + 2T PP E + AT Y + BT+ 5P + 52 = 0,

where T =z + 1, § = y, and Z = 2. Introducing new coordinates T = Z, y2 = §/Z, and z2 = Z/T,
we rewrite this equation (after dividing by Z3) as

Zo (A + 7)T2 — Ta) + T3 + TaZ2 — (A + 8)Ta¥oZa — 223%2 + T3 75 + 4T3 7o %o

+ 20575 — TolaZ3 — To T + 2T3 Y522 + AT3 Yo% + T3 2 + T3 25 + T2z = 0.
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This equation defines (a chart of) the blow-up of the surface Sy at the point Py (.} (24 The two
exceptional curves of the blow-up are given by the equations To = zZo = 0 and T2 = o = 0. They
intersect at the point (0,0,0), which is a singular point of the obtained surface. Introducing new
coordinates To = (A + 7)¥a — To, Y2 = Y2, and 23 = Zy, we can rewrite the latter equation as

T9Zs + (A + 7)275 + Higher order terms = 0

with respect to the weights wt(Z2) = 3, wt(22) = 2, and wt(z2) = 3. This shows that the blown-up
surface has a singularity of type A at the point (0,0,0), so that Py 1.}z is @ singular point
of Sy of type Ay4.

Since the equation of Sy is invariant with respect to the permutation z < z, we see that
Pryy (21,42, 1s a singular point of Sy of type Ay, and the quadratic term of its defining equation is

A+ T)zxy.

To show that Py} 11} (2,2} 1S an ordinary double point of the surface Sy, we simply observe that
the quadratic part of the Taylor expansion of the defining equation of Sy at the point Py ) (2,21
in the chart z =1 is

(N + 6){y — t* — 2t — &% — £y,

where # = 2 — 1, y = y, and £ = t. This quadratic form has rank 3, so that Proy (43 {e,2) 18 an
ordinary double point of the surface S}.

Finally, let us show that Py, (.1 1y is a singular point of Sy of type Dy. Let us consider the
chart y = 1 and introduce new coordinates T = =, Z = z, and t = t + = + z. Then S, is given by

P2+ A+ 2+ N+ - (VN +6) a2+t +12F2 =0,

where P,y (), = = (0,0,0). Let us blow up S at this point. Introducing new coordinates ¢ = T,
Z¢ = 2/, and tg = /T, we rewrite this equation (after dividing by 72) as

2+ (A +T)T6Z6 — (A + 6)t6T6%6 + (A + 7)Z¢T6 + i T6 + LdTazs = 0.

This equation defines (a chart of) the blow-up of the surface Sy at the point Py 1.y¢s. The
exceptional curve of this birational map is given by &g = g = 0. The obtained surface has an
ordinary double point at (0,0,0), since its quadratic form f62 + (A + 7)zgzg is of rank 3. Note,
however, that this surface is also singular at the point (%, 25, %) = (0, —1,0) and is smooth along
the curve 336 — tg = 0 away from these two points. Introducing new coordinates ¥¢ = ¥, % = 26 + 1,
and g = ts, we rewrite the latter equation as

— (AN +7)TeZ6 + (A + 6)t6x6 — (A + 6)t61’626 + t6 Tg — t6 xﬁ + (A + 7) T + t6 1’626 =0.

Since A # —7, the quadratic form 72 — (A + 7)T6% + (A + 6)f6is has rank 3, so that the second
singular point is also an ordinary double point of the obtained surface.

Now let us consider another chart of the blow-up of the surface Sy at the point Ppy (23 13- To
this end, we introduce coordinates T = 7/Z, 7§ = 7 and t; = t/Z. After dividing by (T4)?, we
obtain the equation

(t6)* + (A + TgZ5 — (A + 6)E6T6Z5 + (A + 7)(Tg) %6 + (16)° %6 + (£6)*76(%)* = 0.

This surface is smooth along the curve Z} = t§ = 0 except for two points: the point (T4, Z¢,t}) =
(0,0,0) and the point (Z4,2¢,t5) = (—=1,0,0). Both these points are ordinary double points of the
obtained surface. Note also that the point (Z{, 2, t4) = (—1,0,0) is the point (Zg, %6, t6) = (0, —1,0)
in the first chart of the blow-up. This shows that P,y .} (4} is a singular point of Sy of type Dy. U
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The surface Sk is singular at the points P{m},{y},{z,t}7 P{w},{z},{t}7 P{y},{t},{z,z}7 and P{y},{z},{x,t}-
Their minimal resolutions are described in the proof of Lemma 2.4.1. This gives

Corollary 2.4.2. One has rk Pic(Sy) = rk Pic(Sy) + 13.

The base locus of the pencil S consists of the curves Lz (v, Liyy 2y Lia) gzt Lizyfai)s
L{t},{m,z}, L{y},{x,z,t}, L{w},{y,z,t}a L{z},{x,y,t}a L{t},{m,y,z}v and C. To describe the rank of their inter-
section matrix on the surface Sy for A\ # —7, 00, it suffices to compute the rank of the intersection
matrix of the curves L{w},{y}7 L{y}{z}, L{w},{y,z,t}a L{z},{m,y,t}7 L{t},{m,y,z}a L{t},{x,z}a and H), because

Hy ~ Loy yy T 202y g0y T Liab fyzy ~ Liah oy + Loy + 204y (a2t

~ Ligy g2y + 2L (o) + Ly gty ~ Liy gy + Lty fopy +C
Moreover, if A #£ —7, then

Higy 21y S = Liygy a2 T iz {y20) T Lisy oty T Loty fey,2)s

so that H)\ ~ L{y} {z,2,t} + L{:c} {y,2,t} + L{z} {zy,t} + L{t} {z,y,2} Thus if A 75 7 then the rank
of the intersection matrix of the curves L{m} {y}s L{y} {z}s L{m} {2t} L{z} {2t} L{t} {z,2}> L{y} {z,2,t}
Ly g2y Lizy foyitys Loy fa,y,2}, and C on the surface Sy is the same as the rank of the intersection
matrix of the curves L{:c},{y}v L{y}7{z}, L{z},{y,z,t}a L{z},{x,y,t}7 L{t},{x,z}7 and Hy. Moreover, we have
the following.

Lemma 2.4.3. Suppose that A\ # —7. Then the intersection matriz of the curves Ly 1,1,
L{y}7{z}, L{x},{y,z,t}7 L{z},{x,y,t}7 L{t},{x,z}7 and H)\ on the surface S)\ 18 given by

Ly iy Lty Loy ety Lisdfewty L{fezy Ha

Loy [ —4/5 1 3/5 0 0 1
Ly} iz} 1 —4/5 0 3/5 0 1
Lisy iweny | 3/5 0 —6/5 1 0 1
Loviowa | O 3/5 1 —6/5 0 1
L ey | O 0 0 0 -1/2 1
H, 1 1 1 1 1 4

Proof. By definition, we have Hf =4 and

Hy - Ligy gy = Hx - Ligy 2y = Hx - Ligy gy,2r = B - Ly fayy = Hx - Ly goy = 1

Let us compute L%z}{y}. The only singular point of Sy contained in Ly 1 18 Pay 41,42,
Moreover, the surface Sy has a du Val singularity of type A4 at this point by Lemma 2.4.1. Let us
use the notation of Remark A.2.4 (see the Appendix) with S = Sy, O = Py 14},12,), 7 = 4, and
C = Lz 1yy- Then C passes through the point G; N G4, so that C' NGy %+ J or cn Gs #93. In
both cases, we get L%z}’{y} = —4/5 by Proposition A.1.3.

Similarly, using Remark A.2.4 with § = Sy, O = Py )20, » = 4, and C = Ly 12115
we see that C' does not pass through the point G; N Gy, so that L{z} {yzt} = —6/5 by Proposi-
tlon A.1.3. Keeplng in mind the symmetry x < z, we see that L{y} 1 = {x} {y} = —4/5, and

{Z}7{z’y7t} {x}’{y’z’t} —6/5. Using Proposition A.1.3 again, we see that L{t}’{%z} =-1/2,
because Py 1 gy and Py e g4 2y are the only singular points of Sy that are contained in the
curve L{t},{x,z}~

Observe that Ly 1y N Liyy 23 = Pla} {y}.{z}> Which is a smooth point of the surface Sy. This
gives Ly 1 - Ly 12y = 1. We also have

Ly iy - Lz gty = Loy dny - Loty ey =0
because Ly 53 N Loy (ot = Liay gy O L o2} = 9
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To compute L{m}’{y} . L{r},{y,z,t}7 recall that L{m}’{y} + 2L{m},{z,t} + L{x},{y,z,t} ~ Hy. Then

6
Ligh oy - Loy ty ey T 20pn e Liaddweny — 3

_ 2 _ _
= Ly wy e wety T 2L 0 Ladfyety T Liayfpey = Ha - Loy fy,ey = 1
Using Remark A.2.4 with S = Sy, O = Py qrep n =4, C = Ly 12, and Z = L{w} (2.t}

we see that neither C' nor Z contains the point G; N G4, and either CN G # @ # ZN Gy or
CNGy # @ # ZN Gy In both cases, we have Lizy 260 - Lia) fy,2¢y = 4/5 by Proposition A.1.3,
which implies L{z},{y} : L{:c},{y,z,t} = 3/5

Using the symmetry =z <> 2z, we see that L{y}’{z} . L{z},{m,y,t} = L{m},{y} . L{x},{y,z,t} = 3/5.
Since Liyy 23 N Loy gty = @ a0d Liyy 12y O gy gy = @5 we have Ly oy - Lay gy,ey = 0 and
L{y}7{z} . L{t}V{Lz} = 0, respectively.

Note that L{m},{y,z,t} N L{z},{x,y,t} = P{m},{z},{y,t}7 and P{m},{z},{y,t} is a smooth point of the
surface Sy. This shows that L{x}v{yvzvt} : L{z},{:c,y,t} = 1. Since L{x},{y,z,t} N L{t},{x,z} = @, we have
L{z},{y,z,t} : L{t},{:c,z} = 0. Similarly, we have L{z},{x,y,t} : L{t},{:c,z} = 0.

The rank of the matrix in Lemma 2.4.3 is 5, so that (%) holds by Corollary 2.4.2. Thus, we see
that ({) in the Main Theorem holds in this case.

Using Lemma 2.4.1 and Corollary 1.5.4, we see that [f~1(\)] = 1 for every A ¢ {oo,—T7}.
Moreover, we have the following.

Lemma 2.4.4. One has [f~1(=7)] = 11.

Proof. Let C1 = Lygy gy}, Co = Lygy 21 O3 = Liay (20> Ca = Lz oy, Cs = Ly faz}
Cs = Ly fa,200> C7 = Ligy fy.2ty> Cs = Lz (eytys C9 = Ly {ay,2}, and Crg = C. Then

M =M, =M;"=M;"=... =M/ = and Mz =M; =M, =2

On the other hand, we have

-7 I -7 -7 -7
m '=...=m; =mg =2 and m;' =m;" =. —mlo—l

Using Lemma 1.8.5 and (1.8.3), we see that

f1(=7)] =6+ D3’ D’ D’ D’ .
[ (- )] + Pray (3.2 t}+ P{z},{z},er P{y},{t},{z,z}Jr Pryy (=3 {ety

It follows from the proof of Lemma 2.4.1 that the surface S_7 has an isolated ordinary double
singularity at the point P,y (1} (5,2). Thus, it follows from Lemma 1.12.1 that its defect is zero, so

that D P7 = 0. Hence, we conclude that
{y}.{t}{=,2}
f1(-7)] =6 +D5 D’ D’ :
[Nl =6+ P{z} whtens TP e TP e
The numbers D P7 , D P7 and Dl_j can be computed using the algorithm
(o} {v} {2t} {w} (=} A=t} {z}.{z}.{t}

described in Subsection 1.10. To use it, we have to know the structure of the birational morphism «
n (1.9.3). Implicitly, it was described in the proof of Lemma 2.4.1. To be more precise, we proved
that there exists a commutative diagram

Ug < U4 < U5

UQ U6
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Here a is the blow-up of the point Py,y 111 f2..}, the morphism s is the blow-up of the preimage
of the point Pgyy (1 1.4}, the morphism ag is the blow-up of a point in Eg, the morphism a4 is the
blow-up of the preimage of the point P,y 1,1 1. 43, the morphism s is the blow-up of a point in Ey,
the morphism ag is the blow-up of the preimage of the point P,y (.1 1}, and +y is the blow-up of three
distinct points in Eg that are described at the very end of the proof of Lemma 2.4.1. In the notation
used in the proof of Lemma 2.4.1, these are the points (T, %6, 16) = (0,0,0), (Tg, 26, t6) = (0, —1,0),
and (Z¢, z¢, t4) = (0,0,0).

Using Lemma 1.10.7 and (1.10.9), we can find DP{Z} ey DP{Yy}{ o) and DP{;}{ ) by

analyzing the base curves of the pencil S. Implicitly, this has already been done in the proof of
Lemma 2.4.1, so that we will use the notation introduced in this proof.

Observe that E; does not contain base curves of the pencil S. To describe the base curves in the
surface Es, note that 52|E2 consists of two lines in Eo 2 P2, These curves are given by Ty = 29 = 0
and Ty = Yo = 0. Denote them by C% and C%, respectively. Note that D%, = S%. + Es, the
surface 537 contains 0121, and it does not contain 0122.

Similarly, the restriction S?|g, contains one base curve, which is a line in E3 = P2, Denote
this curve by C?;. Then C}; is contained in S2,, and it is not contained in E3. Moreover, the
surface S3 7 is smooth at a general point of the curve C’f’?,

The restriction S*|g, consists of two lines in E4 = P2, which we denote by C}; and C{s. One of
them is contained in the surface S .. We may assume that this curve is C{,. Similarly, the restriction
S|g, contains one base curve, which is a line in E5 = P2, Let us denote this curve by CJ. It is
contained in S°-, and it is not contained in E}. By construction, we have D°. = S°. + E5 + EJ.

The restriction S%|g, consists of a single line in Eg = P? (taken with multiplicity 2). Denote
this line by Cf,. Note that the surface S%, is singular along the curve C¢,

Finally, we observe that E7, E‘g, and Eg do not contain base curves of the pencil S.

Now we are ready to compute D7 D’ and D First, we observe

P{Y}{y} A=t} P{y};z},{z,t} P{ INE }{t}
that D_» = S_ Ey + By, so that A AL =1and A3’ = 0. Second,
7 7t B2 B, Pyt Pwhiehiesn “Play (5141
we observe that the curves C’ll, .. 017 are all base curves of the pencil S that are contained in

Q- exceptlonal divisors. The curves 011, 012, and 013 are mapped to the pomt Py 3,42,y the

curves 014, 015, and 016 are mapped to the point P{y} {2},{z,t}, and the curve 017 is mapped to the
7
P{ INIRERN DP{y}{ 3wt} and DP{:L},{ IS0
the numbers C;', ..., Cy7 defined in (1.10.5). This can be done using Lemma 1.10.7.
Observe that My, = My = M’ = M = 1 and M = M/ = M,/ = 2. Let us find the

numbers myq,...,my7.

point Pg,y r2y,¢43- Thus, to find Dy we have to compute

Among the base curves of the pencil S, only C2, Cy, Cg, and Cy contain the point Py 12} 12,4 -
This shows that

7= multp{y}’{z},{zyt}(ZC’g +2Cy +2Cs + Cg) = multp{y}’{z}‘{m}(S)\1 -Sxy)

= multp{y}’{z},{zyt}(le) mUItP{y},{z},{I,t}(SAz) +mi; +mio =4+ my; + mys.

Moreover, we have my; > 2, because ﬁ_7 is singular along 511. This shows that m;; = 2 and
mio = 1. Similarly, we see that m3 = 1. Using the symmetry z <> z, we deduce that my4 = 2 and
m;5 = myg = 1. To find my7, we observe that C3, Cy4, C5, and Cig are the only base curves of the
pencil § that contain the point Py, (1 . This shows that

multp{z}’{z}y{t} (S)\l . S)\Q) = mUItP{z},{z},{t} (2C3 +2C4 + C5 + Chp) = 6,
which implies mj7 = 2.
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Recall from (1.10.9) that

D’ = A C/l+C I/ +CT=1+C/ +C/ +CF
P{z},{y},{z,t} P{z},{y},{z,t} + 11 + 12 + 13 + 11 + 12 + 13 »

where each of the terms Ci_7 is defined in (1.10.5) and can be found using Lemma 1.10.7. This
gives D57 01_17 = 2. Similarly, we see that D5’ 01_47 = 2. Similarly, we have

Py w0y Poy sy qwtd
DI_D7 = 01_77 = 1. Thus, we see that
(=}, {=}.{t}
f~1(=7)] =6+ D3’ D’ D’ =11
[ ( )] t Pray (v}.(=.1 + Pryy (=3 (vt + Pray (23,4} ’

which completes the proof of the lemma. [
Since h!2(X) = 10, we see that () in the Main Theorem also holds in this case.

Family 2.5. In this case, the threefold X is a blow-up of a smooth cubic threefold in P* along
a smooth plane cubic curve. Note that h''?(X) = 6. A toric Landau-Ginzburg model is given by
the Minkowski polynomial 3452, which is

1

c+y+z+aiy e 43z F 3y eyt 4 3y 4 32y + 3y 2

122 4 :Ey_lz_l +2:71 4 ac_lyz_l + 2y_1 + 2z 1 + a:_ly_lz.

+3z7 e+ ly”
The corresponding quartic pencil S is given by the equation
a?yz 4+ yPzx + Pyx + 23t + 30ty + 3yt + o3t + 30tz + 3yPtz 4 327t
+ 322ty + 23t + 222 + 2t2yx + t2y% + 2220 + 26%y2 + 1222 = Ayt

Observe that this equation is invariant with respect to any permutations of the coordinates x, vy,
and z. To describe the base locus of the pencil S, we note that

Higy - So = Liay iy + 2Lqey,(y.2) + Lia) fy.2)s
Hyyy - S0 = Ligy g1y + 2L4yy fa2) T Ligy ozt
Hizy - So = Lizy gy + 2Ly oy + Liz) ety
Hyy - S0 = Ligy iy + Ligyaoy + Ly + L fe.z)-
For every A\ ¢ {—6,—7,00}, the surface Sy has isolated singularities, so that it is irreducible.
On the other hand, we have S_¢ = Hy,, .} + S, where S is a cubic surface given by the equation
x4 2y + 22 + ta? + 2ay + 2wz + ty? + 2yz + t22 + zyz = 0.

Similarly, we have S_7 = Hy, , . 4 + S, where S is a cubic surface given by t(x +y + 2)? 4+ zyz = 0.
One can show that S is smooth. On the other hand, the surface S has a unique singular point
Py {y3{z}- The surface S has a du Val singularity of type D4 at this point. Observe also that
(w2} * S = Liay fy2y T Liyy ez} T Lz} {a,y)> 50 that S_g is singular along the lines L.y 1y -1,
Ly g2y, and Ly 00, Note also that the intersection Hy, , . NS is a smooth cubic curve,
which is not contained in the base locus of the pencil S.

Lemma 2.5.1. Suppose that A ¢ {—6,—7,00}. Then the singular points of S contained in
the base locus of the pencil S can be described as follows:

Py i dzy ¢ type Dy with quadratic term (z +y + 2)%;
Py gt 4w,y type Az with quadratic term x(x + z +y — (A + 6)1);
Py it 4z,2) - type Az with quadratic term y(x + 2z +y — (A + 6)t);
P{Z}{t},{m’y} : type Az with quadratic term z(x + z +y — (A + 6)t).
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Proof. First let us describe the singularity of the surface Sy at the point Pp,y g1 1. In the
chart ¢t = 1, the surface Sy is given by

2+ (A 46227+ (A +6)272 — (AN +6)272 +2°) + (%92 — 2°92 — §?27) = 0,

where ¥ = z, ¥ = y, and z = x + y + z. Introducing coordinates 4 = 7, ¥y = y/, and zy = z/,
we can rewrite this equation (after dividing by z?) as
(A +6)Zafis + 27 + (A + 6)Tuyi — (6 + \TuTuzs) + (2i%4 — T394%0) + (39420 — T30121) = 0.

This equation defines (a chart of) the blow-up of the surface Sy at the point Py 1 {z)- The
exceptional curve of the blow-up is given by the equations T, = zy = 0. Observe that the point
(Z4,Y4,24) = (0,0,0) is an ordinary double point of the obtained surface, because A # —6. The
obtained surface is also singular at the point (Z4, Y4, z4) = (0, —1,0). This point is also an ordinary
double point of this surface. These are all singular points of the obtained surface at this chart of the
blow-up. Keeping in mind the symmetry z <> y, we see that the exceptional curve of the blow-up
of the surface Sy at the point Py, (1 12} contains three ordinary double points of this surface. This
shows that Pp;) 1,1 (.1 is a singular point of type Dy of the surface Sy.

To complete the proof, it suffices to show that Py (1 (4 -} is a singular point of Sy of type As,
because S is invariant with respect to the permutations of the coordinates z, y, and z. In the chart
z =1, the surface S) is given by

Y(Z+7— (6+N)1)
S —(6+A)tw+t2z2+2t2—g+t2y2+m + 3ty 4 3tTY° + 17°,

where T =z + 1,7 =y, and t = t. Introducing new coordinates ¥ =Z + 73 — (6 — A\)t, ¥ = 7, and
i= t, we can rewrite this equation as

A+ TN +6)2* =Ty — (A +6) ({27 + 3\ + 20)8°F) — F2 + 5y — (3\ + 19)8 %57 — 172,

where we grouped together monomials of the same quasihomogeneous degree with respect to the
weights wt(F) = 2, wt(¢) = 2, and wt(f) = 1. This shows that the surface Sy has a singularity of
type Ag at the point Ppyy 1y 2.3 This completes the proof of the lemma. [

The proof of Lemma 2.5.1 implies that rk Pic(Sy) = rk Pic(Sk) + 13.

Lemma 2.5.2. Suppose that A ¢ {—6,—7,00}. Then the intersection matrixz of the lines
L{z},{tgv Ligyaey Lish iy Lioptuetr Ligptosty Lishtewty and Ligy (ay,2) on the surface Sy is
given by

Ly oy Ly Lingy Lehwet Lddezo Ldiews Liggewvz)

Ly (—5/4 1 1 3/4 0 0 1/4
Ly | 1 =5/4 1 0 3/4 0 1/4
Ly | L 1 ~5/4 0 0 3/4 1/4
Ly qyeny | 3/4 0 0 —5/4 1 1 1/4
Ly ety | 0 3/4 0 1 —5/4 1 1/4
Lizpewy | O 0 3/4 1 1 ~5/4 1/4
Ly qewy \ 1/4 1/4 1/4 1/4 1/4 1/4 1/4

Proof. Since the equation of the surface S is invariant with respect to the permutations of
the coordinates x, y, and z, it suffices to compute L%x}’{t}, L%z},{y,z,t}’ L%t}{x’w}, Ly ey - Liyy gy
Ligy 0y Loty sty Liap iy Loty Liap ey - Loy (o wsp a0d Ligygye) * Loy o2y

Using Lemma 2.5.1, Proposition A.1.3, and Remark A.2.4, we see that L2x} ©w= —5/4, because
Py {43,{y,=} is the only singular point of Sy that is contained in the line Ly, (). Similarly, we see

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



36 I. CHELTSOV, V. PRZYJALKOWSKI

that L.%x}{y’z’t} = —5/4. Similarly, we get L%t},{x,y,z} = 1/4, because the line L (. -} contains
the points P{z},{t},{y,z}v P{y}{t}’{%z}, and P{z},{t},{x,y}- We have L{z},{t} : L{y},{t} = 1, because
Ligy 6y N Ly 11y = Pay,{y){¢}> Which is a smooth point of the surface S) by Lemma 2.5.1.

Now applying Remark A.2.4 with S = Sy, O = Py 4y,4y23, # = 3, C = Ly (13, and Z =
Lizy {y,2,t), We see that Ly o1 Ligy qy,241 = 3/4 by Proposition A.1.2. Similarly, we have

1
Ligyyety - Litpfowsy = Liohiyety Lty oz} = 70

Finally, we have L{m},{t} : L{y},{%zﬂf} = 0, because L{m},{t} N L{y},{%zﬂf} =g. O

If X ¢ {6, 7,00}, then the intersection matrix of the lines L,y i1y, Liyy 16> Lz}, 160> Lia}{y,2)»

Ligy et Loy towd Ladtwaty Lighlesth Liehioyt)s a0d Ly (.2} on the surface Sy has the
same rank as the intersection matrix of the curves L{x},{t}? L{y},{t}’ L{z},{t}’ L{z},{y,z,t}v L{y},{x,z,t}’
Ly (wyy: and Ly g0 1. This follows from the relations

Hy ~ Ligy 1y + 2Ly fy,2) T Liad qyey ~ Loy + 20y fo2r + L) o2}
~ Ly + 200y fay) T Dy fowty ~ Loy gy + Ligh ey + Lisn o + Ly fa,2)
The rank of the intersection matrix in Lemma 2.5.2 is 5. Thus, we see that (%) holds. This proves

that ({) in the Main Theorem holds in this case.

To verify (©) in the Main Theorem, observe that [f~1()\)] =1 for every A ¢ {—6,—7,00}. This
follows from Lemma 2.5.1 and Corollary 1.5.4. Moreover, we have

Lemma 2.5.3. One has [f~}(=7)] =2 and [f~1(—6)] = 6.

Proof. Let C1 = Lz}, C2 = Ly, €3 = Lispup C4 = Ly yep C5 = Ligp ey
Co = Loy foyp O7 = Ly tyzap Os = Ligyestys O9 = Lz} fa gy @nd Clo = Ly} (z,y,2)- Then
m =...=mg=2and my; =...=myg = 1.

Recall that S, is singular along the curves C1, Cy, and C3, and the surface S_g is singular along
the curves Cy4, C5, and Cg. Thus, we have

M =M;*=M;%=2 M =M,=M;°=M."=... =M =1,

and M; " =... =M/ = 1.
The birational morphism « in (1.9.3) is described in the proof of Lemma 2.5.1. Namely, it is
given by the commutative diagram

Q4

Uy +2 Uy U,
QQ\L TV
U —— PP «5—U

Here a; is the blow-up of the point Py} 11} .-}, the morphism s is the blow-up of the preimage
of the point Py 14y (2,2}, the morphism ag is the blow-up of the preimage of the point Py a1 4015
the morphism a4 is the blow-up of the preimage of the point Pp,y (1 (2}, and v is the blow-up of
three distinct points in Ey4.

If A # o0, then ﬁA =9 v» This follows from the proof of Lemma 2.5.1. It should be pointed out
that the surface S \ 1s singular for every A € C.

The curves 61, .. .,610 are base curves of the pencil S. Let us describe the remaining base
curves of & using the data collected in the proof of Lemma 2.5.1.

For every A # oo, the restriction Si\}h is given by

5(z+y—(6+N)F) =0
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in appropriate homogeneous coordinates Z,7,t on Eo 22 P2, This gives us the pencil of conics in E
that has a unique base curve, which is given by ¥ = 0. Thus, the restriction ‘S'2|E2 has one base
curve. This gives us the base curve of S that is contained in Eg Let us denote it by 012 Similarly,
we see that one base curve of Sis contained in the surface El, and one base curve of S is contained
in the surface E3 Let us denote them by 011 and 013, respectively.

The restriction S*|g, consists of one line (taken with multiplicity 2). This gives us one base
curve of the pencil S* that is contained in the surface E4. Denote it by C7,. Observe that the
surface S% is singular at a general point of this curve. Moreover, it follows from the proof of
Lemma 2.4.4 that the curves 61, . ,614 are all base curves of the pencil S.

Let us compute myq,...,my4. Among the base curves of the pencil S, only the curves Cs, Cs,
Cg, and (g contain the point P{y},{t},{x,z}, This gives

6 = mUItP{y},{t},{z,z} (2Cy + 2C5 4+ Cg + Cyp) = multP{y},{t},{z,z} (S)\l . S)\z)

=multp gy o (Sx)multp, o (S3,) +my =4 4 my,

so that my; = 2. Similarly, we get m12 = m13 =mqy = 2.

Observe that Mj" = My, = My = M/ = 1 and D_;=5_7in (1.10.1). Thus, it follows
from Corollary 1.10.10 that [f~1(=7)] = 2.

Similarly, we see that Ml_l6 = M1_26 = Ml_g6 =1, M1_46 = 2, and ﬁ_ﬁ = §—6~ Therefore, it
follows from (1.10.8) and Lemma 1.10.7 that [f~}(—6)] =6. O

Since h'2(X) = 6, we see that () in the Main Theorem holds in this case.

Family 2.6. In this case, the threefold X is a divisor of bidegree (2,2) in P? x P2, so that
h'2(X) =9. A toric Landau-Ginzburg model is given by

yz 2 2y T 2
m+y+ + = +—+2 +=4+—+—=—+—4+-
Y T Y T Yz oz

which is the Minkowski polynomial 3873.2. The pencil S is given by
a:2zy + yzzx + :Ezty + y2t:1: + 2222 + 2z2y:r + y2z2 + 222tz + 2y2tz + z2t?
+ 262y + 2% + 220 + 2By + 322w + 322ty + 3t 2w + 322y + P + Py = \zyat.

This equation is invariant with respect to the permutations = <> y and z < t.
To describe the base locus of the pencil S, we observe that

Higy - 50 = Ligy fg) + 2L(a) foy + Lia) fy.2t)
Hpyy S0 = Liay () + 2Ly ey + Ly (a2
Hizy S0 = Lizy iy + Ly fewy + L vy + Lizy ety
Hiy S0 = Lizy iy + Ly fawy + Ly woey + Ly (-

We let C1 = Lz ryy Co = Lizy iy O3 = Ligy 20y Ca = Ly 26> O5 = Liay 20y Co =
L faz01 O = Lizy gyt C8 = Lizyqyay Co = Lz oy, Cro = Ligy (o) Ot = Lz qy,2}, and

Chig = Ly 2,21 Then ms =... =mjo =1 and my = ... = my = 2. Similarly, we have
M*=M;*=M;*=...=M'=1 and M;*=M;*=2
so that S_4 is singular along the lines L,y 1> 4y and Lyy 1 .
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For every A\ ¢ {—4,00}, the surface S\ has isolated singularities, which implies, in particular,
that S is irreducible. On the other hand, the surface S_y4 is reducible:

S_4 = H{Ly} + H{Zﬂg} + H{y,z,t} + H{%Zﬂt}'

If A ¢ {—4, 00}, then the singular points of Sy contained in the base locus of the pencil S are the
points P{x},{z},{t}7 P{y}7{z}7{t}, P{x},{y}7{z,t}7 and P{z},{t},{x,y}- These are the fixed singular points
of the surfaces in S. Let us describe their singularity types and explicitly construct the birational
morphism « in (1.9.3). We start with Pp,) 12y 1

In the chart y = 1, the surface S is given by

(z+t)(x+z+1t) + (£ + 2672 + 3t%2 + 2%t + 327 + 272 + 2227 + 2 — Ataz2)
+ (2t + 2°* + 3wz + 2ta”z + Btaz® + 2°2° + 2°z) = 0.
For convenience, we rewrite the defining equation of the surface Sy as
Tt+ (4822 + 127 — 4122 — 4422 + 4227 + Nt 22 — Nt22 — Mt22 + A222) + (1732 - 1°%) =0,
where =242+t 2=z and t = z + ¢.

Let ay: U; — P3 be the blow-up of the point Pray (z3,4¢y- A chart of this blow-up is given by
the coordinate change 7, = /%, 21 = 2, ¢; = ¢/2. In this chart, the surface D} is given by

71— A+ D02+ A+ DZT + N+ 4) (122 — a2 + 0@ia + (122128 — 187127) =0,

where z1 = 0 defines the surface E;. Then (71, El,tAl) = (0,0,0) is the only singular point of S)l\ that
is contained in E;. If A ¢ {—4, 00}, then this point is an ordinary double point of the surface S.
Hence, if A ¢ {—4, 00}, then P, (.} 1y is a du Val singular point of Sy of type As.

Notice also that the pencil S has exactly two base curves contained in the surface E;. Indeed,
the restriction S!|g, consists of the curves {Z; = Z; = 0} and {2} = #; = 0}. Let us denote these
curves by Ci; and Ci4, respectively.

Let as: Uy — Uy be the blow-up of the point (5:\1,31,1?1) = (0,0,0). Then Di = 5)2\ for every
A € C. Moreover, the restriction S?|g, is a pencil of conics in Ey 22 P? that is given by the equation

ai/L‘\l — ()\ + 4)%\121 + ()\ + 4)2151 =0,

where we consider 71,21, ¢ as projective coordinates on Eo. This pencil does not have base curves,
which implies that S? does not have base curves in Eq either.

Since the defining equation of the surface S is invariant with respect to the permutation z < vy,
the point Py 12} 44 is also a du Val singular point of Sy of type Az provided that A ¢ {—4,00}.
Let ag: Us — Us be the blow-up of the preimage of this point. Then Eg contains two base curves
of the pencil S3. Denote them by Cj; and Cj;. Let ay: Uy — Us be the blow-up of the point
C3 N Cs. Then DY = S for every A € C. Moreover, the surface E4 does not contain base curves
of the pencil S%.

Now let us describe the singularity of the surface Sy at the point Ppyy (1 (24 In the chart
t = 1, the surface Sy is given by

A +4)77— A+ 4)TYz + (T°2y + 7°2° + J2T + 22T + 2T + §°2° + §2°) = 0,

where T =2, =y, and Z = z+ 1. Let as: Us — Uy be the blow-up of the preimage of the point
Pray qy),4z,0y- In aneighborhood of P,y 11 1 ¢}, one chart of this blow-up is given by the coordinate
change Ts = T/z, Y5 = J/Z, z5 = z. Then D3 is given by

(A +4)T57s + (T525 + 2305 — (A + D)TsYsZs) + (T323 + 22305Ts + Y3 23)
+ (T20575 + Ts373) = O,
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and Ej is given by Z5 = 0. Note that E5 contains one singular point of this surface, namely, the
point (Ts,¥s,25) = (0,0,0). Note also that D5, = S°, + 2E5 and S°|g, is a union of the curves
{z5 = T5 = 0} and {Z5 = ¥5 = 0}. Denote them by C}, and C?g, respectively.

Let ag: Us — Us be the blow-up of the point C7. N CPg. Locally, one chart of this blow-up is
given by the coordinate change T¢ = T5/Z5, Js = Us/Z5, 26 = 25. Moreover, if A # —4, then S§ in
this chart is given by

(A+4)76Ts + Z6T6 + Zejs — (A + 4)Te¥ioZe + (T675 + 22376Ts + Ui Zo) + (TedeZs + Te¥iazg) = O-
Here, the surface Eg is given by Zg = 0. If A # —4, then S§ has an ordinary double singularity at
the point (e, ¥, 26) = (0,0,0). Therefore, if X # —4, then P,y 1,y 12,4 is a du Val singular point
of Sy of type As.

By construction, we have D?\ = Sg ~ — Ky, for every A such that A\ # —4,00. On the other
hand, we have D%, = S%, + 2ES. This follows from the fact that S®, contains the point C9; N CPq
and is smooth at it.

Remark 2.6.1. Our computations imply that the proper transform of the line L,y (1 on the
threefold Ug passes through the point (Zg, s, Z6) = (0,0,0).

The restriction S%|g, consists of the curves {Zg = Zg = 0} and {Z¢ = ¥s = 0}. Let us
denote these curves by C% and CY,, respectively. Let a7: U; — Us be the blow-up of the point
(T6, U6, Z6) = (0,0,0). Then D7, = S7, + 2E{ + Ef. Moreover, the restriction S”|g, is a pencil of
conics in E7 = P? that is given by

(A +4)76T6 + Z6T6 + Z6Ys = 0,

where we consider Zg, Jg, Z¢ as projective coordinates on E7. This pencil does not have base curves,
so that S7 does not have base curves contained in the surface E; either.

If X # —4, then Pp.y (1} {24} is an ordinary double point of the surface Sy. Indeed, in the chart
y = 1, the surface S is given by

TE+1)— (A+4)3t
=T — N+ T+ T Z 3T+ T2 4 38207 + 247%F + 3taz 4+ 7722 + 207,
where T = 2 — 1, Z = 2, and t = t. The quadratic form Z(Z +t) — (A + 4)Zt is not degenerate for
A # —4, so that P,y (4},{2,y) 15 an ordinary double point of the surface Sj.
Corollary 2.6.2. Suppose that A ¢ {—4,00}. Then the singular points of Sy contained in the

base locus of the pencil S can be described as follows:
Py 400 type Az with quadratic term (z+t)(z+z+1);
Py (2140 type Ag with quadratic term (z +1)(y + 2z + t);
Py (3 {z) type As with quadratic term (A + 4)xy;
Py ey fzwy s type Ay with quadratic term (A + 4)zt — (z +y)(2 +1).

Let us finish the description of the birational morphism «. It is given by the following commu-
tative diagram:

ay as ag

Uy < Us

Us

Uz

ar
m %

U, y P3 U

aq a

Here ag is the blow-up of the preimage of the point Pp.y 11} 2.}

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



40 I. CHELTSOV, V. PRZYJALKOWSKI

If A # —4, then l:)A = §/>¢ ~ —Kpy. On the other hand, WeAhave lA?_4 = §_4 + 2E5 + E(;.
Moreover, the curves C1,...,Cy are all base curves of the pencil S.

Lemma 2.6.3. One has mi3 = mj4s = mq5 = Mg = Mg = Moy = 1 and my7; = myg = 2.

Proof. To find my3 and my4, we use
6= multp{z}’{z}y{t} (202 +2C5 + Cy + 012) = multp{z}’{z}y{t} (So - Sl)
= multp{z}’{z}y{t} (So) mUItP{z},{z},{t} (S1) + my3 +myy =4+ my3 + myy,

so that my3 = my4 = 1. Similarly, we see that mi5 = myg = 1.
Recall that D_4 = S_4 4+ 2E5 + Eg, so that my7 > 2 and m;g > 2. But

8 = multp{z}’{y}y{z,t} (201 +2C5 +2C4 + Cs + 06) = multp{z}’{z}y{t} (So . Sl)
=multp, ., S0)multp, oo (S1) + mi7 + mig =4+ mi7 + myg,

which implies that mi7 = 2 and m g = 2.

To find my9 and my, recall that ag: Us — Us is the blow-up of the point C7- N CPg. Let
P = C},NCj5. Then

6 = multp(2C7; + 2CT5 + 2C7) = multp(Sy - S7) = 4 + myg + myg,

which gives us mig =1 and mpg =1. O

For every A ¢ {—4,00}, we have [f~1()\)] = 1 by Corollaries 1.5.4 and 2.6.2.

Lemma 2.6.4. One has [f~!(—4)] = 10.

Proof. Recall that [S_4] = 4 and [D_4] = 6. Thus, it follows from (1.10.8) that

18
[l (=4)] =6+>_Ci*
=1

On the other hand, we have

Mzt=M*=MF=M=2 and M*=M*=M"*=...=My=1
But mz = my = 2, and m;7 = mig = 2 by Lemma 2.6.3. This shows that
18
[F'N)] =6+) C/*=6+Ci*+C;*+ Ci' + Ci' = 10,
i=1

since CgA‘ = CZA‘ = 01_74 = (31_84 =1 by Lemma 1.10.7. O
Thus, we see that (©) in the Main Theorem holds in this case.
To prove () in the Main Theorem, we have to check (%). To this end, note that

rk Pic(Siv) = rk Pic(Sy) 4 12.

This follows from the proof of Corollary 2.6.2. Moreover, if A\ ¢ {—4,00}, then the intersection
matrix of the base curves of the pencil S on the surface S has the same rank as the intersection

matrix of the curves Ly 1oy, Loy (1) Doy gzty Lighfeh Lishwtd Liehioty Lienvp Lithgee)s
and H), because

Hy ~ Liay () + 204} {20y + Liad fy,z0) ~ Hiyy =50 = Loy qyy + 204y 20y + Ly o2}
~ Ly Ly fea T Lt T Loy ~ Lt + L fowy + Lig (w2 + L o2}

This implies (%), because the rank of the intersection matrix in the following lemma is 6.
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Lemma 2.6.5. Suppose that X\ ¢ {—4,00}. Then the intersection form of the curves Ly iy

L_{z},{tgv Ligyfer Db tear Lep vty Lisbteads Lion v Ligygo,zys and Hy on the surface Sy is
given by

Ly iy Ly Loy =0y Lodizy Dbwty Labienr Liguesy Liggesy  Ha

Lia oy [ —1/2 0 1/2 1/2 0 0 0 0 1
Ly (o} 0 0 1/2 1/2 1/4 1/4 1/4 1/4 1
Lven| 1/2 172 —1/6  1/6 0 1/2 0 12 1
Lighizy | 1/2 1/2 1/6 -1/6 1/2 0 1/2 0 1
Lz} .t} 0 1/4 0 1/2 —5/4 1 3/4 0 1
Lz} fa.ty 0 1/4 1/2 0 1 —5/4 0 3/4 1
Lingwey| O 1/4 0 1/2 3/4 0 —5/4 1 1
Lt} {z,2} 0 1/4 1/2 0 0 3/4 1 —-5/4 1
Hy 1 1 1 1 1 1 1 1 4

Proof. The entries in the last row of the intersection matrix are obvious. Let us compute its di-
agonal. Using Proposition A.1.3 and Remark 2.6.1, we obtain L%m} W= —1/2, because Pp,y 11 (2.6}
is the only singular point of Sy that is contained in Ly, ¢,y. Similarly, from Proposition A.1.3 and

Remark A.2.4 we have
3 3 1

Liym=—2+ 1t1t3=0
because the line L{z},{t} contains the points P{m},{z},{t}, P{y},{z},{t}7 and P{z},{t},{x,y}'

To compute L%z}’{m}, note that the line Ly, (. 1 contains the points Pr,y 12} ) and Przy () 2.0}
Applying Remark A_.2.4 vlith S =5\ 0=Puy =3, and C = Ly ¢y, we see that C
contains the point G N G. Similarly, applying Remark A.2.4 with S = S\, O = Py 1y3,(z,6)5
n =35, and C = Ly 1.4, we see that C' does not contain the point Gy N Gs. Thus, applying
Proposition A.1.3, we get L%z},{z,t} =—-24+1+5/6=-1/6.

To compute L%z}, (b notice that Ppy (2} ¢ is the only singular point of Sy that is contained
in Ly ¢y - Applying Proposition A.1.3, we see that L%z},{y,t} = —5/4.

Using the symmetry = < ¥y, we get L%z},{z,t} = —1/6 and L%z},{z,t} = —5/4. Similarly, using
the symmetry z <> t, we see that L%t}{w} = Lit} (o2} = —5/4.

Now let us fill in the remaining entries in the first row of the matrix. Clearly, Ly 1+ Lz} 113 =0,
Ligp it List vty = 0 Liap oy Lt oty = 00 Liad gy Ly gy = 05 and Ly gy - Ly g2y = 0,
because L{z},{y} does not intersect the lines L{z},{t}7 L{z}7{y7t}, L{z},{:c,t}a L{t},{y,z}7 and L{t}7{x,z}-
Using the symmetry x < y, we see that

Lz} ot - Doy tzty = Dioptod - Liwdey
To find L{m},{y} : L{m},{z,t}a we observe that L{w},{y} N L{m},{z,t} = P{w},{y},{z,t}- Applying Proposi-
tion A.1.2 and Remark 2.6.1, we see that L,y 1y - Liz) 24y = 1/2.

Let us compute the remaining entries in the second row of the intersection matrix. Since
Liagn N Ly oy = Pray (2,40, We have Ly iy - Ligy o4y = 1/2 by Proposition A.1.2 and
Remark A.2.4. Using the symmetry = <> y, we get Ly 1) - Ly g2 = 1/2.

Observe that L{z},{t} N L{z},{x,t} = P{m},{z},{t} Applying Remark A.2.4 with S = S, O =
Py iy gy, =3, C = Ly vy, and Z = Ly 1,4y, We see that C and Z intersect different curves
among G and G'3. This implies L gt - Ly goy = 1/4 by Proposition A.1.2. Using the symmetry
x>y, we get Ly oy - Ly (g = 1/4. Using the symmetry z <> t, we get

1
Lyt Lupdys = Lisnin Lioneey = -

This gives us all entries in the second row of the intersection matrix.
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Let us compute the third row. Observe that Ly o0 N Ly 2y = Platfy) {2 Applying
Remark A.2.4 with § = S)\, O = P{x}v{y}v{z7t}’ n = 5, C = L{:c},{z7t}7 and Z = L{y},{z,t}v we see
that C' and Z intersect different curves among G; and Gs. Then Lizy oy Liyy 20y = 1/6 by
Proposition A.1.2.

Since Ly (26 N Lizy (g3 = 9, we have Ly 1241 - Lizy qy,ry = 0. Using the symmetry 2 < ¢,
we get Loy, (2.0 0 Lty {y.2y = 0. Since Liay, o0y 0 Lizy oy = Pl (a1 We get

1
Ligy =ty st oty = 3
by Proposition A.1.2. Using the symmetry z < ¢, we get L,y 120 - Ly (2,2} = 1/2

Let us compute the remaining four entries in the fourth row of the intersection matrix. Using

the symmetries = <+ y and z < t, we get
1
Lih ey - Lisptyty = Lot geay Loy ey = Dbtz Liobtwsy = Dbtz - Lishiwy = 5

and

Lihteay Liontenr = Lion et Lo vty = Lign et Ly ooy = Ly ey Lishfory = 0-

Let us compute the remaining three entries in the fifth row of the intersection matrix. First, we
have L{z},{y,t} . L{t},{x,z} =0, as L{z},{y,t} mL{t},{m,z} = @. Second, we have L{z},{y,t} . L{z},{x,t} =1,
because L.y 1y M Lizy 24 18 @ smooth point of Sy. Third, we compute L.y 1y Lt} {y.2}-
Observe that L{z},{y,t} N L{t},{y,z} = P{y},{z},{t}' Applying Remark A.2.4 with § = S, O =
Py, n=3,C = Lea gy n, and Z = Ly ¢, 1, we see that C' and Z intersect the same curve
among (G and (3, and none of them contains the point G; N G3. Thus, by Proposition A.1.2 we

have Lz, ty.) - Lisy fy.2) = 3/4:
Let us compute the remaining three entries of the matrix. Using the symmetry x < y, we get
Lisptety  Litp vt = Lieptuty - Lty {a2p = 0. Similarly, we have

3
Liyeny Ly gy = List iy Dby = -
Finally, using the symmetry z <> t, we get L{t}7{y7z} . L{t},{:c,z} = L{z},{y,t} . L{z},{:c,t} =1 O

Family 2.7. In this case, the threefold X can be obtained by blowing up a smooth quadric
threefold Q in P* along a smooth curve of genus 5. This implies that h2(X) = 5. A toric Landau—
Ginzburg model of this family is given by the Minkowski polynomial 3238. It is

Ty 2z T 2 yz 2z+z+2y 2 2y g+y
x

The corresponding pencil of quartic surfaces S is given by
2 yz + 2tz + Pyx + 2te + y22® + 2%ty + 227 4 2%z + 2672w 4 222
+ 222ty + 1227 + 2%t + 2%yx + 2%tz + 2t%yz + 2% = Aayat.

This equation is invariant with respect to the permutations x <+ z and y < t.

Since the goal is to prove (V) and ({») in the Main Theorem, we may assume that A # oco. Let
C1 be the conic {x = yz + ty + tz = 0}, let C3 be the conic {y = xz + tx + tz = 0}, let C3 be the
conic {z = zy + tz + ty = 0}, and let C4 be the conic {t = 2y + 2z + yz = 0}. Then

H{x} . S)\ == 2617
Hyyy - Sy = Ligy 1y + Liy){azy +Cos (2.7.1)
H{z} . S)\ = 2637

Hyy - Sx = Ligy gy + Ligy fa2y +Ca
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Thus, the base locus of the pencil S consists of seven smooth rational curves. We let C; = Cq,
02 = CQ, 03 = Cg, 04 = C4, 05 = L{y},{t}a CG = L{y},{x,z}v and 07 = L{t},{x,z}'

If A # —5, then S has isolated singularities, so that it is irreducible. On the other hand, one has
S_5 = Q + Q, where Q is a quadric surface given by tx + ty + tz + 2y + yz = 0 and Q is a quadric
surface given by tz + ty + tz + zy + xz + yz = 0. Both these quadric surfaces are irreducible. The
surface Q is singular at Py 11} 42,21, and the surface Q is smooth. One has QN Q = C; U3, so
that S_5 is singular along the conics C; and Cs.

If A £ —5, then the singular points of Sy contained in the base locus of the pencil S are the
points Pryy (o3,46)> Plapa),(th Platiup ey Pladyhizr a4 Py, (a4} They are all fixed singular
points of the surfaces in S.

Lemma 2.7.2. Suppose that X # —5. Then the singular points of Sy contained in the base
locus of the pencil S can be described as follows:

Py 1.4 type Ag with quadratic term (y +t)(y + 2 +t);
Py iyt type Dy with quadratic term (x +t + 2)%,

(
(
Py ey type Az with quadratic term (y +t)(z +y + t);
Py iz type Dy with quadratic term (x +y + 2)%;

(

Py ity 4e,2) 0 type Ay with quadratic term (z + 2)(y+1t) — (AN+4)yt for A # —4, and
type Az for A\ = —

Let us prove this lemma and explicitly construct the birational morphism « in (1.9.3). To begin
with, let us resolve the singularity of the surface Sy at the point Pyy 1.y 13- In the chart x = 1, the
surface S is given by

G2+ (AN+ D2+ AN +6)t72 -~ AN+ 4tG2— (AN +6)t°7 -5 +72?)
+(tt -2y +3gttt -2t r+ gt +2tyiE -2yt — 25°2 + 9%2%) =0,

where y =y +1t,z2=1t+ z+y, and t=t. Let aq: Uy — P3 be the blow-up of the pomt P{y} (23,4t}
A chart of the blow-up «y is given by the coordinate change 7; = y/t Z1 = z/t t1 = t. In this
chart, the surface S}  is given by the equation

(?12 — (A +6)h7 + (A + Dtz + Uiz1) — (2%12@1 — (AN 6ty + (N + 4)%\@131)
+ (3@2%\12 — 262512 — by} +%\1271212) + (2t1 yiz — 27512@3) + (%\122714 — 27587 +?123712212) =0,

where t; = 0 defines the surface E;. The only singular point of the surface S>1\ in Eq is the point
(U1, 31,??1) = (0,0,0). If A # —5, then this point is an ordinary double point of S)l\, so that Py (21,41}
is a singular point of Sy of type Ag.

The surface E; contains two base curves of the pencil S'. One of them is t = 71 = 0, and
the other is ¢; = 21 = 0. Let us denote these curves by Cd and C}, respectively. Then the proper
transform of the line Ly, 111 on the threefold Uy does not pass through the point Cg N Cg.

Let as: Uy — Uy be the blow-up of the point (5:\1,31,1?1) = (0,0,0). Then D% ~ S3% for every
A € C. Moreover, the restriction S?|g, is a pencil of conics in Eo = P? that does not have base
curves. This shows that Ey contains no base curves of the pencil S2.

Recall that the defining equation of the surface Sy is invariant with respect to the permutation
x ¢ z. Thus, if A # =5, then P, 1 1) is a du Val singular point of Sy of type Az. Moreover, the
surface S_5 has a non-isolated ordinary double point at Pp,y 1 14y, so that Ppy g0 4 1S a good
double point of the surface S_s.
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Let a3: Us — Uz be the blow-up of the preimage of the point Pg,y 1,3 13- Then the pencil S3
has exactly two base curves contained in the surface E3. Let us denote these curves by C3, and C3,
Let ay: Uy — Uz be the blow-up of the point CIO N C’H. Then E4 does not contain base curves
of the pencil S*, and the proper transform of the line Ly 14y on the threefold Us does not pass
through the point Cj, N C},

Now let us describe the singularity of the surface Sy at the point Ppyy 14y z..3- In the chart
z =1, the surface S) is given by

Tt +7) + (A +4)tg — (72 — (A + 4)izy + 7°7)
— (22 + 28?3y + P8 + 213°y + 2827° + T°7°) = 0,

where T =z + 1, § = y, and ¢ = t. Thus, if A # —4, then Py () 4,2} 18 an isolated ordinary
double point of Sy. If A = —4, then the latter equation can be rewritten as

Byt 20y — P oty — 1 - 2%y - YA =0,

where ¥ =, = 5, and { = ¢ + 7. Here, the term ¥ — §* has the smallest degree with respect to
the weights wt(¥) = 2, wt(§) = 1, and wt(f) = 2. This shows that P (1) {2} 1 & singular point
of type Ag of the surface S_4.

Let as: Us — Uy be the blow-up of the preimage of the point Py 14} (2.} Then the restriction
S%|g; is a pencil of conics that is given by

Tt +7y) + (N +4)ty =0,

where we consider Z,7,7 as homogeneous coordinates on Es = P2, This pencil does not have base
curves, so that Es does not contain base curves of the pencil S° either.

Let us show that Py, (.1 () is a du Val singular point of Sy of type Dy. In the chart y = 1, the
surface S is given by

2+ (2027 + 2627 — 2027 — (A +8)ta7 — 2022 + (A + 5)T°Z + (A + 5)72?)
+ (T + 2207+ 1727 - 2730 — 512’7 — 53z - 22° + 71 + 327 + 42232 + 3730 + 24) = 0,

where 7 =z, 2=z, and t = 2 + ¢t + 2. Let ag: Ug — Us be the blow-up of the preimage of the
point P{x} {z}.{ty- A chart of this blow-up is given by the coordinate change 7g = 7/7, z5 = Z,
te = t/ Z. Then the equations Z5 = tg = 0 define the exceptional curve of the induced birational
morphism 56 — 55. Moreover, if A # —5, then the quadratic term of the surface S6 at the point
(fﬁ, 36, g) = (0, 0, 0) is

tg — 2t626 + (A + 5)Te %6 + Zg -

It is not degenerate. Thus, this point is an isolated ordinary double point of the surface Sg. In
this case, the chart of the surface S?\ also has an isolated ordinary double singularity at the point
(Ts, %6, 16) = (—1,0,0), and S$ is smooth along the curve zZg = t¢ = 0 away from these two points.

Now let us consider another chart of the blow-up ag. To this end, we introduce coordinates
T§ =17, 2, =7Z/7, and t} = t/7. In this chart, the surface S is given by

(t6)? = 2T5ts + (TH? + (N + 5)TEZE + Higher order terms = 0,

so that S has an isolated ordinary double singularity at the point (Z¢, 2, t5) = (0,0,0) provided
that A # —5. Therefore, we have proved that if A # —5, then P,y (1 1 is a singular point of Sy
of type Dy.

The surface Eg contains one base curve of the pencil S°. This is the curve {Z5 = te = 0} in the
first chart of our blow-up. Denote it by 0?2. Then M1_25 = 2, and 0162 contains three base points
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of the pencil S®, which are fixed singular points of this pencil. They are isolated ordinary double
points of the surface 5)6\ for A # —5.

Recall that the defining equation of the surface S is invariant with respect to the permutation
y <> t. Thus, if A # =5, then Py, 1 (.1 is a singular point of Sy of type Dy4. Using the symmetry,
we see that (z +y + 2)? is the quadratic form of the Taylor expansion of the defining equation of
the surface Sy at the point P,y 1 (21

Let a7: U7 — Ug be the blow-up of the preimage of the point P{z},{y},{z}' Then E7 contains one
base curve of the pencil S7. Denote it by 0173. This curve is the exceptional curve of the induced
birational morphism SZ — Sg. If A # —5, then SZ has three isolated ordinary double points at CT5.
But ST is singular along the curve Cf5.

For a general choice of A € C, the surface S| has six singular points. All of them are fixed
singular points of the pencil S7. They are isolated ordinary double points on every surface SK
provided that A # —5. This proves the assertion of Lemma 2.7.2 and shows the existence of the
following commutative diagram:

Qg

Us

mUl >P3 U/

aq a

Us

where 7 is the blow-up of the six fixed singular points of surfaces in the pencil S”.
Using Lemma 2.7.2 and Corollary 1.5.4, we see that [f~1(\)] = 1 for every \ # —5. To compute
[f~1(-5)], observe that D_5 = S_5, so thatA[D_g)] = [S_5] = 2. Observe also that the base locus of

the pencil S consists of the curves C1,...,C13. Moreover, we have
M°=M,°=Mpy=M7=2 and M;°=...=M;=1
Arguing as in the proof of Lemma 2.6.3, we see that mg = ... = my; = 1 and m;3 = mi3 = 2.

Now, using (1.10.8) and Lemma 1.10.7, we conclude that [f~1(—5)] = 6. Thus, we see that (V) in
the Main Theorem holds in this case, because h'?(X) = 5.

To prove ({») in the Main Theorem, we have to check (¥ ). To this end, recall that the base locus
of the pencil S consists of the curves C1, C2, C3, Ca, Liyy 13y Liyy{o,z), and Ly 223 IEA # =5,
then it follows from (2.7.1) that the intersection matrix of these curves on the surface Sy has the
same rank as the intersection matrix of the curves Ly v, Ly f2.21 Lity .2}, and Hy, which is
given by

Liyy Ly desy L{op{ezy Ha

Ly} (1) 0 1/2 1/2 1
Liyy ey 1/2 -1/2 1/2 1
Liy ey | 1/2 1/2 -1/2 1

Hy 1 1 1 4

The rank of this intersection matrix is 3. Moreover, we have rk Pic(Sy) = rk Pic(Sy) 4 15. Thus,
we see that () holds, so that ({) in the Main Theorem holds in this case.

Family 2.8. One has h1?(X) = 9. In this case, the threefold X is a double cover of the toric
Fano threefold obtained by blowing up P? at one point. The ramification surface of this double cover
is contained in the anticanonical linear system of this toric Fano threefold. A toric Landau—Ginzburg

model of the threefold X is given by the Minkowski polynomial 1968. It is
z rz 2z 2z T 2 2 z 2 2 1
—y—|—2:1:+——I——+——|——+2y—|—22—|———|——+y—+——I——+—.
z Y z y o yz z Yy x  yz x xyz
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The pencil of quartic surfaces S is given by
a:2y2 + 2:1:2zy + 2222 + 2:1:2ty + 222tz + 2%t% + 2y2z:r + 222yac
+ 2t%yx + 2%z + Y222 + 2t3x + 2622y + t* = Azyot.

This equation is invariant with respect to the permutation y < z.
We may assume that A # co. Then

H{z} - S\ = 261, H{y} - S\ = 262, H{z} - S\ = 2C3, H{t} - S\ = 2C4, (2.8.1)

where C; is a smooth conic given by x = yz + t> = 0, the curve Cy is a smooth conic given by
y = xz +tx + t> = 0, the curve C3 is a smooth conic given by z = zy + tx 4+ t> = 0, and the
curve C4 is a smooth conic given by t = xy + xz + yz = 0. Thus, we see that

Sy Soo = 2C1 + 2Co + 2C3 + 2Cy4,

so that the base locus of the pencil S consists of four smooth rational curves. To match the notation
introduced in Section 1, we let C; = Cq, Cy = Co, C3 = C3, and Cy = C4.

If A # —2, then Sy has isolated singularities, so that it is irreducible. On the other hand, the
surface S_o is not reduced. Indeed, one has S_o = 2Q, where Q is an irreducible quadric surface
in P? given by t2 + tx + xy + 2z + yz = 0. One can check that Q is smooth.

If A £ —2, then the singular points of Sy contained in the base locus of the pencil S are the
points P{m},{y},{t}7 P{m}’{z}’{t}, P{y},{z},{t}7 and P{y},{z},{x,t}' In this case, the surface Sy has du Val

singularities at these points. In fact, we can say more.

Lemma 2.8.2. If X\ # —2, then the singular points of Sy contained in the base locus of the
pencil S can be described as follows:

Py ey type Dg with quadratic term (x + )%
Py i1 .40 0 type D with quadratic term (x + 2)%;
Py 12140y type Dy with quadratic term (y + z + t)?;
Piy 23 oty type Ay with quadratic term (x +t —y — 2)2 + (A4 2)yz.

Proof. We skip the computations of the quadratic terms, because they are straightforward. If
A # =2, then Pgyy 1.y (2, 18 an isolated ordinary double point of the surface Sy. Note that the
expressions for quadratic terms are also valid for A = —2.

Let us describe the singularity type of the point Pp (.1 13- In the chart x = 1, the surface Sy
is given by

T2 42t — 412 — 41224202+ (A - NEgZ+ 225 4+ 2+ MN)75%2
+ 24+ N2+t —4gt3 — 4213 + 6122 + 141 252 + 6t 222 — 4t g
—16t7%2 — 16t 2% —4t23 + g1 +67°2 + 115222 + 6723 + 21 = 0
forg=y,2=z andt =y+ z+t. Let a;: U; — P3 be the blow-up of the point Py 121,413 One

chart of the blow-up aq is given by the coordinate change y1 = ¥, 21 = z/y, t1 = t/y. In this chart,
the surface S)l\ is given by

t2 4207 + U7 + 2+ Nz + (69871 — 44751 — 452t + (4 — Vs + (2+ N)EE0)
+ (2018 + 6129F — 4122 — 16015721 + 2022 + 11G72¢)
+ (1412972, — 48292 — 160,9227 + 677227)
+ (6192 — A58 + 6125022 — 40z + 5Et) =0,
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and E; is given by 71 = 0. Let C} = S)l\ NE;. Then C} is the line in E; = P? that is given by
71 = t1 = 0. Note that M5_2 = 2. If A\ # —2, then the only singular points of S} contained in Ci
are the points (71, 21,41) = (0,0,0) and (71,21,%1) = (0,0, —1). Both of them are isolated ordinary
double points of the surface Sy in this case.

If A\ # —2, then S} has three isolated ordinary double points in C3. We have already described
two of them. The third one can be seen in another chart of the blow-up «y. Thus, if A #% —2, then
Pryy (21,41} 1s a singular point of type Dy of the surface S).

Now let us describe the singularity of the surface Sy at the point Py, 1 ¢y In the chart y =1,
the surface S is given by

22+ (28%Z + (2 + \)T°t — \TZ — 27°% + 272°)
+ (' + 287 — 7% + 2072z — 22°1 + 212°2 + 7' — 22°2 + 772°) =0,
where T =2, Z=x+ 2, and t = t. Let ag: Uy — Uj be the blow-up of the preimage of the point

P(3},121,4ty- A chart of this blow-up is given by the coordinate change Zo = Z/t, Zo = z/1, T = 1.
In this chart, the surface 5/2\ is given by
(zg + 22)2 + (2%%@2 + 2+ )\)T%ig — Aigfg?g) + (2%5222 — i%f% — 2%25352 + 2@@23)

+ (283732, — 21373 + (1375 — 213737, + 137373) = 0,
and the surface Es is given by t5 = 0. Let Cg = S?\ N Es. Then C’g is the line in Eo = P2 that
is given by ts = Zo = 0. Observe that M6_2 = 2. On the other hand, if A # —2, then the point
(T2,Z9,t2) = (0,0,0) is the only singular point of S% that is contained in the curve CZ in this
chart. Note that CZ contains another singular point of Sf\ that can be seen in another chart of the
blow-up ao. This point is an isolated ordinary double singularity of the surface Si.

To determine the type of the singular point (Z2,Zs,%s) = (0,0,0) on the surface S for every

X # —2, we let Ty = To, 20 = Z9, and ty = ty + Z3. Then we can rewrite the defining equation of
the surface S as

5+ (20572 — (2+ N)T3%2 + (2+ NTota + (2 + N)TaZy — (A + 4)aT27)
+ (20 2Fa% — 1275 — 2aT0Zd + T277)
(2t2 T3%9 — 205 Ts + AoTszy — AtaTa2s — 20524 + 27525 )
+ (1575 — 2LT3% + 177525 — 20052 + AaTs 2y — 2oTa2s + Ty2g — 20525 + T525) = 0.

Let ag: U3 — Us be the blow-up of the point ({L‘g, 2o, tg) (0,0,0). A chart of this blow-up is given
by the coordinate change T3 = T, 23 = 22/ta, t3 = t3/T5. In this chart, the surface S3 is given by

(2+ N)Z3T3 — (24 NisTs — 17 = 26203 + (2 4+ N @328 — (N + 4)l3T3%3 + 7524 — 1775

+ 2U2T2% — LTS + MsTi%y — 2sToZE — 2TIZE + 12T + LT 2 — 2UsTs2s

— A3TE] + Tazs + 2057 + AlsTazs — 2ST4T — 22y + by Tazs — 2sT4Zs + T42s,
and the surface E3 is given by 23 = 0. Let C7 = 53 N E3. Then 03 is the line in Es =2 P? that is
given by 73 = t5 = 0 in our chart of the blow—up a3. Observe that M7 = 2.

If A\ #£ —2, then the point (x3,23,t3) (0,0,0) is an isolated ordinary double point of the

surface 5)2\. This point is contained in the curve C’;’. Moreover, this curve contains two more
singular points of the surface S3. One of them is the point (Z3,Z3,t3) = (0,—1,0), and the other

lies in another chart of the blow-up asz. If A #% —2, both these points are isolated ordinary double
points of the surface S;’\. This means that the surface 5)2\ has a du Val singularity of type D4 at the
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point (T2, Z2,t2) = (0,0,0), so that S has a du Val singularity of type Dg at the point P,y .1 (1
for every \ # —2.

Keeping in mind that the defining equation of the surface S is symmetric with respect to the
permutation y <> z, we see that the surface Sy has a du Val singularity of type Dg at the point
Pray qyy ey for every A # —2. This completes the proof of the lemma. [

The proof of this lemma also gives rk Pic(Sy) = rk Pic(Sy) + 17, which implies (% ). Indeed, if
A # =2, then 2C; ~ 2Cy ~ 2C3 ~ 2C4 ~ H) on the surface Sy by (2.8.1), so that the intersection
matrix of the conics Cq, Ca, C3, and C4 on the surface Sy has rank 1. Thus, we see that (%) holds,
so that (¢») in the Main Theorem holds in this case.

Lemma 2.8.3. If A # —2, then [f~1(\)] = 1. One also has [f~1(—2)] = 10.

Proof. Using Lemma 2.8.2 and Corollary 1.5.4, we see that [f~}(\)] = 1 for A # —2. To
show that [f~1(—2)] = 10, let us describe the birational morphism « in (1.9.3). Implicitly, this was
already done in the proof of Lemma 2.8.2. Because of this, we will use the notation introduced in
that proof.

Let ay: Uy — Us be the blow-up of the preimage of the point P,y (1 (. If A # —2; then
the surface Sj\l has a unique singular point (of type D) that is contained in E4. Let a5: Us — Uy
be the blow-up of this singular point. Then Sg’\ has 12 singular points for general A € C. One of
them is Ppy 1.y (2,4}, another three are contained in the surface Es, another one is contained in
the surface EJ, and the remaining seven were explicitly described in the proof of Lemma 2.8.2. All
these 12 points are isolated ordinary double points of the surface 5)5\ provided that A # —2. Thus,
there exists a commutative diagram

U3 < o U4 e U5 N
as
Us / U
m U P3 %
1

aq

where v: U — Uj is the blow-up of these 12 points. This gives IA))\ = :9\)\ for every A € C.

Let us describe the base curves of the pencil S. Four of them are 61, 62, 53, and 64 The next
three are the curves C’5, 06, and C’7, which are described in the proof of Lemma 2.8. 2. The pencﬂ S
contains two more base curves, Whose construction is similar to that of the curves Cﬁ and C7 One
of them is contained in the surface E4, and the other is contained in the surface E5. Denote the
former curve by 68 and the latter by 69. Then 61, .. ,69 are all base curves of the pencil S

Note that m; = ... = mg = 2 and M;? = ... = My? = 2. Thus, using (1.10.8) and
Lemma 1.10.7, we conclude that [f~1(-2)] =10. O

Using Lemma 2.8.3, we see that (U) in the Main Theorem holds in this case.

Family 2.9. In this case, the threefold X is a blow-up of P? along a smooth curve of degree 7
and genus 5. Thus, we have h'2(X) = 5. A toric Landau-Ginzburg model of the threefold X is
given by the Minkowski polynomial 3013, which is

22 T 2 Y 2 2 z

:1:—|—y+z+ —I— + —I— —|—2 —|—2 +——|———|——+—+——|——+—.
r xy Yz 2z xTZ Yy T Y

The corresponding pencﬂ S is given by
t22% + 2t2:1:y + 2t%2z + t2y2 + 2t2yz + 1222 + ta:2y +ta?z + if:ny2
+ 2txz? + tyzz + 2tyz2 + 23+ :rzyz + :ryzz + a:yz2 = Azyzt.

Observe that this equation is invariant with respect to the permutation x < y.
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We may assume that A # co. To describe the base curves of the pencil S, let C be a smooth
conic given by z = zy + tx + ty = 0. Then

Hygy - Sx = Liay 1y + 2L} {y,23 + Doy g2y
Hyyy - Sx = Liyy gy + 2L4y3 fo.2) + Liyy gz

(2.9.1)
Hey - Sh= Ly + Lz fayy 6

Hyy - Sx = Ligy 1y + Liygy 1oy + Lizy (0 + Ly fay.2)-

So, we let Cv = Liay gy, C2=Liyy, () O3 = Lapqny Ca= Liay gyep O = Lighfazyy C6 = Lia} o
Cr = Ly 2y Os = Ly fayys Co = Ly {wy,2), and Cip = C. These are all base curves of the
pencil S.

If A # —3, then S), has isolated singularities, so that it is irreducible. On the other hand, we have
S_3=Hppn+ Hipy oy + Q, where Q is a smooth quadric surface given by zy + t(x +y + 2) = 0.
Note that S_3 is singular along Ly, ¢, -y and Ly (o1, and it is smooth at general points of the
remaining base curves of the pencil S.

If A # —3, then the singular points of S) contained in the base locus of the pencil § are
Pay i (zp Plarieniny Pountanir Playotve Puris oy a0d Py ) o,y In this case, all of
them are du Val singular points of the surface Sy by the following.

Lemma 2.9.2. If A # —3, then the singular points of Sy contained in the base locus of the
pencil S can be described as follows:

P{z}’{y}{z}: type Dy with quadratic term (z + vy + z)z;
Py i 400 type Ao with quadratic term (x +t)(2 +t);
Piy iy ey type Az with quadratic term (y+t)(z+1t);
Py it {y,2) ¢ type Ao with quadratic term x(x +y + 2z — (A + 3)t);
Py qt) 42,20 type Ao with quadratic term y(z +y + 2 — (A + 3)t);
Py ity zyy: type Ay with quadratic term (x+y)(t+2)+ 22— A+ 2)tz.
Proof. The proof is similar to that of Lemma 2.8.2. Because of this, we will only prove that

Sy has a du Val singularity of type Dy at the point Py, 1 12y for every A # —3. To this end, we
rewrite the defining equation of the surface S in the chart ¢t =1 as

224+ B+ NG+ B+ NTP — (AN +2)Tyz — T2° — §2° + 2° — §T°Z — §°T7 + yTz° = 0,

whereZ =z, y=y,and Z=x 4+ y + z.

Let ap: Uy — P3 be the blow-up of the point Pray y){z)- A chart of this is given by the
coordinate change Ty = T, §1 = §/T, Z1 = z/Z. In this chart, the surface S} is given by

3+ Ty + 21
=T127 + B+ NT17? + (A + 2) 717121 — T1Z5 + 17121 + 1T1Z7 — DWTa s + T1g5 21,

and the surface E; is given by Z; = 0.

Let 0111 be the line in Eq; = P? given by #; = z; = 0. Then S}\ -Eq = 20111 and M1_13 =2 If
A # —3, then the curve Cf; contains three singular points of the surface Si. One of them is the
point (Z1,71,21) = (0,0,0). Another one is the point (Z1,%1,21) = (0,—1,0). The third singular
point can be described in another chart of the blow-up a;. All these points are isolated ordinary

double points of the surface S)l\ in the case when A # —3. Thus, if A # —3, then P,y 11 1) is a
singular point of type D4 of the surface Sy. [
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The proof of Lemma 2.9.2 implies that rk Pic(Sy) = rk Pic(Sy) + 13.
If A # —3, then the intersection form of the curves L.y 1y, Ly qnys Lizy {6y L) {24}, and
Ly g2,y on the surface Sy is given by

Ly oy Ly Lingg Dzt L

Lisy iy [ —2/3 1 1/3 1/3 0

Ly}, (0} 1 —2/3 1/3 0 1/3

Ly | 1/3 1/3 —1/6 2/3 2/3
Lisy ey | 1/3 0 2/3 —4/3 1
Ly} (=t} 0 1/3 2/3 1 —4/3

The determinant of this matrix is 34/81. This easily gives (% ). Indeed, the base locus of the

pencil S consists of the lines Lyay (11, Liyyqer> Lizy ity Liatvzh Liyhiesd Liahizap Lighiat
Ly gzyys Lty fa,y,2), and the conic C. On the other hand, it follows from (2.9.1) that

Hy ~ Ligy ity + 202y fy,23 T Loy (20 ~ Lggy gy T 2Lqyhqa2y T Liyh a0
~ Ly T Ly ey TC~ Liay o + Ligy g + Lieh o + L (o2}

on the surface Sy provided that A\ £ —3. In this case, we also have

Hy ~ Lz} (y,2} + Ligy fesy T Lz oy + Ly fa,ehs

because Hi, -y Sy = Liz) (y.2) T Liy) g2y + Liz)fey T Loy {oy,2}- Similarly, we have

Hy ~ Ligy q1,23 + Lygy g2 + 20423000

because Hy, 1y - Sx = Ly 11,2y + Liyy e,z T 2Ly, (13- Thus, one can express the classes of the
curves Lyzy 201 Lighgzys Lizd{owd Lity {oy,2}> and C in Pic(Sy) ® Q as linear combinations of
the classes of the lines Ly ey, Liyy ey, Lizy i6ys Liay g2, and Ly 1o 4y For instance, we have

Lintewey ~ Liay ity + Ligh ety T Liap iy — Loy iy — Linhiny
and
Ligyfawy ~ Ly oy + Liay (e + Ly ey — Liay oty — Ly ey
This shows that the intersection matrix M in Lemma 1.13.1 has rank 5, so that (9 ) holds in this

case. Thus, we see that ({>) in the Main Theorem holds in this case.

Therefore, to complete the proof of the Main Theorem in this case, we have to prove (©). Since
h'2(X) = 5, the proof is given by the following.

Lemma 2.9.3. One has [f"1(\)] = 1 for every A # —3. One also has [f~1(—3)] = 6.

Proof. If A # —3, then we have [f"}(\)] = 1 by Lemma 2.9.2 and Corollary 1.5.4. To show
that [f~1(—3)] = 6, observe that

M =M;?=2 and Mp’=M;"=M;’ =M;®=M;" =M’ =My* =1.

We also have m; =...=ms=2and mg=... =mg = 1.
Observe that [S_3] = 3 and the set X consists of the points P{w},{y},{z}v P{m},{z},{t}a P{y},{z},{t},
P{x},{t},{y,z}’ P{y},{t},{x,z}v and P{z},{t},{x,y}' Thus, it follows from (183) and Lemma 1.8.5 that

[f1(=3)] =5+ ) D%
Pex
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Moreover, it follows from the proof of Lemma 2.9.2 that Py s Py 0460 Plad it v,z
Proy 63 4,2y and Py o (4, are good double points of the surface S_3. Thus, their defects vanish
by Lemma 1.12.1. Therefore, we conclude that

1 _ —3
[fH(=3)] =5+ DP{z},{y},{z}'

Let us show that D1_33
{z},{y}.{=}

Lemma 2.9.2. Then there exists a commutative diagram

= 1. To this end, we use the notation introduced in the proof of

for some birational morphism ~. On the other hand, the curve 511 is the only base of the pen-
cil § that is mapped to Py, g1 423 by the birational morphism «. This follows from the proof

of Lemma 2.9.2. Using Corollary 1.10.4 and (1.10.9), we see that D;{?’z} e 01_13- By
Lemma 1.10.7, we have C;® = 1, so that D> =land [f1(=3)]=6. O

Pla} g} 42}

Family 2.10. In this case, the threefold X is a blow-up of a complete intersection of two
quadrics in P? along a smooth elliptic curve of degree 4. This implies that h1?(X) = 3. A toric
Landau—Ginzburg model of the threefold X is given by the Minkowski polynomial 3018, which is

2 z 3z 2 3 1 1

T Yz T Yy T 2
r+y+—-—+22+—~+-+-"+—+-+—+-+—=—+-+ -+ —+ —.
z x Yy oox  yz oz T Y x Yy o Yz T2

The quartic pencil § is given by
m2zy + szm + thy + 222my + y222 + 22tz + y2tz + 22t? + 2t2my
+ 23y + 22w + 322ty + 2022z + 322y + 32 + By = Iyt

We may assume that \ # oco. Let C; be a smooth conic given by z = yz + 22 + 22t + 2 = 0,
and let Co be a smooth conic given by z = xy + xt + yt = 0. Then

Hygy - Sx = Liay (g1 + Lia} 200 + C1,s

H{y} . S)\ = L{m}’{y} + L{y},{t} + L{y}7{27t} + L{y},{Lz,t}? (2 10 1)

Hey - S = Ly + Ly gy +C2,

Hyy - Sx = Ligy gy + Lighn + L o2y T Ly o2}

Let C1 = C1, Ca =C2, O3 = Lyzy 1y Ca = Lygy (3, C5 = Lizy 11y, Co = Liay (263, C7 = Ly (2.3
Cs = Ly a4y Co = Ly (2,2} Cr0 = Ly fa,2,03, and C11 = Ly g4, -y~ These are all base curves
of the pencil §.

If A\ # —4,—5, then Sy has isolated singularities, so that it is irreducible. On the other hand,
both surfaces S_4 and S_j5 are reducible. Indeed, one has S_4 = Hy, ., + S, where S is a cubic
surface given by

2 + t2y +tey +tez + 2tyz + xyz + y2z + yz2 =0.

Similarly, we have S_5 = Q + Q, where Q and Q are quadric surfaces given by the equations
t2 +tx+ 2tz + 22+ yz+ 22 =0 and tx + ty + 2y + yz = 0, respectively.

Both quadric surfaces Q and Q are smooth. On the other hand, the surface S has two singular
points: Py ryy,1200 and Ppy 1 q)- One can show that S has an ordinary double singularity
at Pz} (41,421}, and it has a singularity of type Ag at Ppy 12y 14}
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If A #£ —4,—5, then the singular points of S contained in the base locus of the pencil S are the
points P{x},{z},{t}v P{y},{z},{t}? P{x},{y}7{z,t}? and P{y},{t},{x,z}' In this case, all of them are du Val
singular points of the surface Sy by the following lemma.

Lemma 2.10.2. If \ # —4,—5, then the singular points of Sy contained in the base locus of
the pencil S can be described as follows:

Py 240t type Ay with quadratic term z(x 4+ z + t);

Puy ey type Az with quadratic term (y + t)(z +1);
Py i g1y type Ag with quadratic term (A + 4)zy;
P{y},{t}{x,z} : type Ay with quadratic term t(x + z +t — (A +4)y).

Proof. We will only describe the singularity of the surface Sy at the point Py, g0 121 To
this end, we rewrite the defining equation of the surface Sy in the chart t =1 as

A+ 4)z7+ (772 - 777 — (A +4)Tyz + 2°T — §°2) + (7227 + 7727 + 22°T7 + §°2° + 2°) = 0,
where T =z, y =y, and Z = z 4 t.

Let oy : U; — P3 be the blow-up of the point Pray {1,426y~ One chart of this blow-up is given by
the coordinate change T = Z/Z, J1 = §/Z, Z1 = Z. In this chart, the surface E; is given by z; = 0.
If A # —4, then the surface S}\ is given by

T1(Z1 + A+ 4)7)
— A+ 4Tz — B2+ T2 — 210 — 2T E — Uig + TR — B - Bl
If A = —4, then this equation defines Dl_4 = 534 + E;.

Let C’%Q and 0113 be the lines in E; = P? that are given by 21 = Z; = 0 and zZ; = 71 = 0,

respectively. Then S!, does not contain them.

Let ag: Uy — Uy be the blow-up of the point C, N Cfy. If X # —4,—5, then the surface S%
is smooth along Eo. Hence, in this case, the surface Sy has a singular point of type A4 at the
point P{x}v{y}v{z7t}' O

The base locus of the pencil § consists of the curves Ly oy, Ly ey Liaygeys Lied gz
Lip oy Ly ety Ly oy Ly danztys Lt {ay,2}s C1, and Co. If A € {—4, =5}, then

Hy ~ Ligy ) + Ligy 200 +C1 ~ Loy gy + Lo + Liyy g0y + Ligh o2
~ Ly Ly ety T Co~ Ligy oy + Ly gy + Ly g2y + Lty a2}
on the surface Sy. This follows from (2.10.1). Moreover, in this case, we also have
Hy ~ Lz} 2y + Ly gty + Lty g2y T Ly o2t}

because Hy, . 1y - S = Liay 2.0 T Lizy oty + Lty {a,2) T Liy}{2,2,6)- This shows that the intersec-
tion matrix M in Lemma 1.13.1 has the same rank as the intersection matrix of the curves Ly 1,
L{y},{t}a L{z},{t}a L{w},{z,t}a L{y},{z,t}? L{z},{m,t}v and L{t},{m,z} on the surface S)\. If A ?é —4, —5,
then the latter matrix is given by

Ly L Liny Ly Lidzo Ligeo L)

Liay.y [ —4/5 1 0 3/5 2/5 0 0

Ly |1 -2/3 13 0 1/3 0 2/3

Ly (1} 0 1/3 —8/15 1/5 2/3 3/5 1/5
Lz} {20} 3/5 0 1/5 —2/5 1/5 2/5 4/5
Lneny | 2/5 1/32/3 1/5  —8/15 0 0
Lz} (ot} 0 0 3/5 2/5 0 —4/5 2/5
Lt} {z,2} 0 2/3 1/5 4/5 0 2/5 —8/15
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The rank of this matrix is 6. We see that (%) holds, because rk Pic(Sy) = rk Pic(Si) + 12. Thus,
we conclude that ({) in the Main Theorem also holds in this case.

Lemma 2.10.3. One has [f"*(\)] =1 for X\ ¢ {—4,-5}, [f71(—4)] = 3, and [f~1(-5)] = 2.

Proof. If A\ ¢ {—4,—5}, then [f~1(\)] = 1 by Lemma 2.10.2 and Corollary 1.5.4. Moreover, it
follows from Corollary 1.12.2 that [f~}(—5)] = 2, because Py v 46 Pd 23040y Pray {yy =,y and
Py (1) ,4x,2y are good double points of the surface S_s.

To complete the proof, we have to show that [f~!(—4)] = 3. Using (1.8.3), we see that

“1_1] — —4
[~ (=) 2+DP{I},{y},{z,t}'
Here, we also used Lemmas 1.8.5 and 1.12.1.

To compute the defect DI_D{4 o) let us use the proof of Lemma 2.10.2 and the notation
T Y,
—4

édopted in this proof. First, we have D%, = 5%, + E2?, so that A;?z},{y},{z,t} =1, where AP{E},{y},{z,t}
is the number defined in (1.10.3).

The curves C%, and C%; are the base curves of the pencil S%. Along with these curves, this
pencil has one more base curve contained in Eo UE2. However, the divisor D?, is smooth at the
general points of these three curves. Now, using Lemma 1.10.7 and (1.10.9), we conclude that

4 A4 _ “1_ 4y —
DP{I},{y},{z,t} = AP{E},{y},{z,t} =1, so that [f7'(—4)]=3. O

Note that Lemma 2.10.3 implies (¥) in the Main Theorem, because h?(X) = 3.

Family 2.11. In this case, the threefold X is a blow-up of a smooth cubic threefold along
a line, so that A%2(X) = 5. A toric Landau Ginzburg model of the threefold X is given by the
Minkowski polynomial 1700, which is

T oy yz 2y 222 T 2 Y 22 2z z
y+—-—+-"+z+—+—+—+—+ -+ =4+ —+ —+ —.
z oz x T T yz oz xZ Y T xy

The pencil of quartic surfaces S is given by the equation

yzx + 2ty + yite + 2oy + y22% 4 2%tz + 223y
+ 22?2 4 2820y + 292 4 2232 + 222ty + 2t = Ayt

In the remaining part of this subsection, we will assume that A # oco.

Let C; be the smooth conic given by x = ty + yz + 22 = 0, let Cy be the smooth conic given
by y = tz + 22 = 0, let C3 be the smooth conic given by z = tx + ty + zy = 0, and let C4 be the
smooth conic given by ¢t = tx 4+ ty + xy = 0. Then

Hgy-Sx=2C1,  Hpy-Sy= Ly + Ly feyy + 63 211.1)
Hyyy - Sx=2C2, Hyy - Sx= Ly + Ly g,y +Ca

so that L.y iy Lizy fewds Lo fy,21s C15 C2, C3, and Cy are all base curves of the pencil S. To match
the notation used in Subsection 1.8, we let C1 = C1, C2 = Ca, C3 = C3, Cy = Cy4, C5 = Ly 14y,
C6 = Liz} {ayy and O7 = Ly y.2)-

If A # —2, then the surface S) has isolated singularities, so that S} is irreducible. On the other
hand, we have S_5 = Q 4+ Q, where Q and Q are irreducible quadric surfaces given by the equations
xy +yz + 22 +xt +yt = 0 and xt + ty + yz + 22 = 0, respectively. Both these quadric surfaces
are smooth. Note that Q N Q = C; U Cs.
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If A #£ —2, then the singular points of Sy contained in the base locus of the pencil S are the
points P{x},{z},{t}? P{x}v{y}7{z}7 P{y},{z},{t}v and P{x},{t},{y,z}? which are du Val singular points of the
surface Sy. In fact, we can say more.

Lemma 2.11.2. If X # —2, then the singular points of Sy contained in the base locus of the
pencil S can be described as follows:

Pir i {zy s type Dg with quadratic term (x + )%
Pir eyt type Az with quadratic term (2 +t)(x + 2z + 1);
Piy vty type As with quadratic term t(y + t);
Py gt qy,2y - type Ay with quadratic term (A +2)xt + (y + 2z —t)(y + 2 —x — t).

Proof. We will only describe the singularity of the surface Sy at the point Pr,y 1 121 To this
end, we rewrite the defining equation of the surface Sy in the chart t =1 as

72+ (%7 — \Tgz + (A + 2)7%°2 — 7% + 2322 + (723 + 2°7y — 7°2 + 22°7 + 2*) =0,

where T =2 +y, 7 =y, and Z = 2. Let ay: U; — P3 be the blow-up of the point Pray g1 42,0 One
chart of this blow-up is given by the coordinate change T = Z/Z, 1 = §/Z, Z1 = Z. In this chart,
the surface E; is given by z; = 0. Then S)l\ is given by

@1 +71)* + (20171 — ATz + (A + 2)7771)
+ (#7210 - gizim + 230 + (TyiE - piE) = 0.
Denote by C3 the line in E; = P2 that is given by z; = #; = 0. Then S!, is singular
along this line. If A # —2 then S)l\ has two singular points in E;. One of them is the point
(Z1,91,21) = (0,0,0). The second singular point lies in another chart of the blow-up ay. If A # —2,
then this point is an isolated ordinary double point of the surface S)l\.

Let 71 = T1 + Z1, Y1 = U1, and 21 = Z1. Then we can rewrite the (local) defining equation of
the surface S)l\ as
2 ~ =2 oo ~2
i+ (A + 20120 — ATz + (A +2)5121)
+ (5%@\131 — YPAT — T + @\12312) + (53\1.”‘712212 — Uiz — @12313) = 0.

Let ag: Uy — Uj be the blow-up of the point (Z1,91,21) = (0,0,0). One chart of this blow-up
is given by the coordinate change To = Z1/21, ¥2 = y1/21, 22 = z1. In this chart, the surface S?\ is
given by

25+ A+ 2)h2 + (A +2)752% — A\Dolp2) + (U525 — Z52202)

(#8938 - 2035 - %) + (2o~ 93E) =0,
and the surface Eo is given by z = 0. Thus, if A # —2, then 5)2\ has an isolated ordinary double
singularity at the point (T2, 72, 22) = (0,0,0).

Denote by 092 the line in Eo = P? that is given by 2z, = @3 = 0. Then S?, is singular along
this line. If X # —2, then Eo contains three singular points of the surface S3. One of them is the
point (Z2, Y2, z2) = (0,0,0). The second one is (T3, Y2, 22) = (0, —1,0). The third point is contained
in another chart of the blow-up as. All of them are isolated ordinary double singularities of the
surface Si. Hence, if A # —2, then Sy has a singular point of type Dg at the point Pp,y 1 1. U

The proof of Lemma 2.11.2 implies

rk Pic(Sy) = rk Pic(Sy) + 15. (2.11.3)
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By Lemma 1.13.1, to verify ({>) in the Main Theorem, we have to compute the rank of the
intersection matrix of the curves C1, Ca, C3, Ca, Ly g1y, Lizy, (13> and Ly gy} on a general surface
in the pencil §. On the other hand, if A # —2, then it follows from (2.11.1) that

Hy~ 200~ 20~ Ly iy + Lizy ey + 0 ~ Lz + Ly ey +Ca
on the surface Sy. We have C; + Cy + C3 + C4 ~ 2H), because Q - S\ = C1 + C3 + C3 + C4. Similarly,
we have Q- Sy = 2L{z},{t} + L{z},{m,y} + L{t},{y,z} + C1 + (o, so that
2Ly gy + Ly faay + Ly gyzy + €1+ G2 ~ 20H),

which implies 2Ly oy + Lizy ey + Lty {y,2) ~@ Hx. Thus, if A # —2, then the rank of the
intersection matrix of the curves C1, Co, Cs, Ca, L2y (1}, L2y 41y, and Lyyy .2y on the surface Sy is
the same as the rank of the intersection matrix of the curves Ly;y 14y, Lz} {2,yy and Hy, which is
very easy to compute.

Lemma 2.11.4. Suppose that A\ # —2. Then the intersection form of the curves L.y 1y,
Ly {2y}, and Hy on the surface Sy is given by

Lisyy Lizyqawy  Ha

Lizy ity —5/12 1 1
L{z} (o0} 1 —1 1
H,y 1 1 4

Proof. Since L{z},{t} N L{z},{x,y} = P{z},{t}7{x,y} and S)\ is smooth at this point, we conclude
that Ly ¢y - Lizy {2y = 1+ So, to complete the proof, we have to find L%Z}’{t} and L%Z}7{x7y}.

Observe that P, 1 4 and Ppyy 12y, 11y are the only singular points of Sy that are contained in
the line Ly ¢y, Applying Remark A.2.4 with S = Sy, O = Py 14y, n =3, and C = Ly 14y,
we see that C does not contain the point G; N G3. Similarly, applying Remark A.2.4 with S = S),
O = Py 1400, =5, and C = Ly 4y, we see that C does not contain the point G; N G5. Thus,
it follows from Proposition A.1.3 that

Liym=—2+ % + g = —1—52.
Note that Py 11 (-1 is the only singular point of Sy that is contained in the line L%Z}{z’y}.
To find L%Z}{x’y}, let us use the notation of Lemma A.3.2 with § = Sy, O = Py 11,423, 7 = 6,
and C' = L.} (). Let us also use the notation of the proof of Lemma 2.11.2. It follows from this
proof that the proper transform of the line Ly, ¢, 1 on the surface S)l\ does not contain the point
(Z1,71,%1) = (0,0,0). Thus, in the notation of Lemma A.3.2, we have C - Gg = 1, which implies

that L%Z} () = —1 by Lemma A.3.2. [

The determinant of the intersection matrix in Lemma 2.11.4 is 13/12. Using (2.11.3), we get (%),
so that ({») in the Main Theorem holds in this case. Moreover, since h1:?(X) = 5, the assertion (0)
in the Main Theorem is given by

Lemma 2.11.5. If A\ # —2, then [f"}(\)] = 1. One also has [f~1(—2)] = 6.

Proof. If A # —2, then [f~!(\)] = 1 by Lemma 2.11.2 and Corollary 1.5.4. Hence, to complete
the proof, we need to show that [f~1(—2)] = 6. Observe that m3 = my = mg = m7; = 1 and
m; = my = ms = 2. Note that Mgz =...= M;2 =1 and M1_2 = M;2 = 2. Thus, applying
Lemmas 1.8.5 and 1.12.1 and using (1.8.3), we see that

—1 _ —2
(=2 =4+ DP{z},{y},{z}’

where D352

Ploy i (o) is the defect of the singular point P{x},{y},{z}-
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To calculate D;z
{z}.{y}.{=}

They give Mgz = M§2 = 2 and Dz2 = 532. Now, using Lemma 1.10.7 and (1.10.9), we conclude

that D;,Q > 2. In fact, the proof of Lemma 2.11.2 implies that D;,Q = 2, so that
{z}.{v}.{z} {z}.{v}.{z}

[f1(-2)]=6. O

, we will use the local computations made in the proof of Lemma 2.11.2.

Family 2.12. In this case, the threefold X is a blow-up of P3 along a smooth curve of genus 3
and degree 6, so that h'2(X) = 3. Here, we choose its toric Landau-Ginzburg model to be given
by the Minkowski polynomial 1193, which is

Y 2¢ 2y T 2 2 z 2 Y
r+—+z+y+t—+—+—+-+-+—+ -+ —.
z z z yz Yy oz xy T Tz

The quartic pencil § is given by
222y + 22y? + 2Pay + 22w + 220ty + 2% tx + 222
+ 2%z + 222y + 1227 + 2622y + 2y = Aayzt.

This equation is symmetric with respect to the permutation = < y.
Let C be a conic given by z = zy + xt + yt = 0. If A # oo, then
Higy 53 = 2L{ay, 1y + 2L{ay (.2
Hyyy  Sx = 2Ly} {1y + 2Ly} 40,2}
Hi,y - Sy=2C,

(2.12.1)

Hyy - Sx = Ligy 1y + Ligy ey + Ly gy + Liay qy.2)

SO, we may assuine that Cl = L{w},{t}a 02 = L{y},{t}, Cg = L{w},{y,z}, 04 = L{y},{x,z}a 05 = L{t},{x,z},
Cs = Ly} {y,z}, and C7 = C. These are all base curves of the pencil S.

If X\ # 0o, —2, then the surface Sy has isolated singularities, so that Sy is irreducible. On the
other hand, the surface S_j is singular along L, ¢, -1 and Ly ¢4 23

Lemma 2.12.2. The surface S_o is irreducible.

Proof. Let II be a plane in P? that is given by z = t. Then the intersection S_, N1I is a plane
quartic curve that is singular at the points II'N L,y 1, -y and ITN Lyyy ¢ 1. Moreover, this curve
is smooth away from these points. Furthermore, both of these points are isolated ordinary double
points of the curve S_o NII. This implies that this curve is irreducible, so that the surface S_o is
also irreducible. [

The fixed singular points of the surfaces in the pencil S are Prav iy 2y Play w16y Pra) (23460
Pry iy Pray ey 4v.zp and Py (6} {e,23- I A # 00, =2, then the singularities of the surface S at
these points can be described as follows:

Py fh 421 ¢ type Dy with quadratic term (x+y+ 2)2;

P{x},{y}7{t}: type Ay with quadratic term xy + t2;

P{m},{z},{t} : type A; with quadratic term 22+ 22+ 20t + t2;

P{y},{z},{t} : type Ay with quadratic term y2 +yz + 2yt + t2;

Py (13,4y,2y 0 type Az with quadratic term x(y+2z— (A4 2)t);
Py (3 4z} type Ag with quadratic term y(x +z — (A + 2)t).
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The surfaces in S also have floating singular points. They are contained in the conic C. To
describe them nicely, we introduce a new parameter p € C U {oo} such that

ot —2u—1

A p(l — p)

Then S), is singular at the points [1 — p:p:0:pu(p—1)] and [p:1 — p:0: u(p — 1)]. Denote these
two points by P, and P;_,, respectively. Then P, # Pi_, < p ¢ {oo0,1/2}. If p = 1/2, then
P,=P_,= [—2:—2:0:1]. If u = oo, then P,=P_,= P{m},{y},{z}-

Lemma 2.12.3. Suppose that A # oo, —2. If u # 1/2, then S\ has isolated ordinary double
singularities at the points P, and Py_,. If i =1/2, then X = —6 and S_g has a du Val singularity
of type Az at the point Py ;.

Proof. Due to the symmetry z < y, it suffices to describe the singularity of the surface Sy at
the point P,. Moreover, we may assume that u # 0,1, since Py = Py 12).11) and P = Py 23,43
Then P, = [1/p:1/(pp —1):0:1]. In the chart ¢ = 1, the surface Sy is given by

(=D 4+ p(p = D(p? — p— 12 + p(p — 1)(2p° — 12T + 2% (u — 1)’y
+ u(p —1)(2p* — 4p + )7z + p*T* + Higher order terms = 0,

whereZ =z —1/pu, y=y—1/(p—1), and Z = z. If u # 1/2, this quadratic form is nondegenerate,
so that S has an isolated ordinary double singularity at P,.

To complete the proof, we may assume that y = 1/2. Then P,/ = [~2:—2:0:1]. Note that
A = —6 in this case. In the chart t = 1, the surface S_g is given by

2%+ 227 + 527 + (2277 — 2279 — 2272 + 2292 — 2227 — 25°%)
+ (39 + 297 - 258 - 2578 + 273+ 51— §°2°) = 0,

where T = x+y+4, y =y + 2, and z = 2. Introducing new coordinates 1 = z/¥y, y1 = ¥, and
2] = 2/, we can rewrite this equation (after dividing by 7) as

TT + 28151 + 22131 + UE — 20121 + 5EF + (2Z11 21 — 22151 — 230 07)
+ (FI — 2200 T; — 20T — 220hT — UPEL) + 2UCET 4 Tl Er
This equation defines a chart of a blow-up of the surface S_¢ at the point P;/,. Its quadratic part

is not degenerate, which shows that P/, is a du Val singular point of type A3 of the surface S_g.
This completes the proof of the lemma. [

If A # 00, —2, then the singular points of Sy contained in the base locus of the pencil S can be
described as follows:

* Py qyh iz Platihiys Plat b P ehith Pladnfy.zr and Py ) {2,215
e P, and Py_,, where u € CU {oo} is such that A = (2u? — 2 — 1) /(u(1 — p));

® P (,2).{y,2}» Which is an isolated ordinary double point of the surface S_4.

If A # —4, then S) is smooth at the point Py 1421 4,2}

Note that fixed singular points of the quartic surfaces in the pencil & can be considered as
singular points of the surface Sg. In our case, all exceptional curves of the minimal resolution of
the surface Sy at these singular points are geometrically irreducible. Similarly, we can consider
the union P, U Pi_, as a (geometrically reducible) singular point of the surface Sik. This gives
rk Pic(Sy) = rkPic(Sy) + 14. Thus, to prove (%), we have to show that the intersection matrix
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of the curves L{w},{t}a L{y},{t}a L{m}’{y’z}, L{y},{x,z}7 L{t},{x,z}a L{t},{y,z}a and C on a general surface
in S is of rank 4. If A # 0o, —2, then it follows from (2.12.1) that
Hx ~ 2Ly gy + 2L4a) () ~ 2Lquh (0 + 204 {o2)

~2C ~ Ligy gy + Ligy gy + Ly fazy + Ly qy.2)

on the surface S). Therefore, in this case, the intersection matrix of the curves Ly 11y, Liyy 115
Lizy iz Ligyga,2ys Liiy fa,2)s Lty fy,2)> and C on the surface Sy has the same rank as the inter-
section matrix of the four lines Ly, 1y, Ly qey Ly fa,2)> and Ly gy 2y I A € {00, =2, -4, 6},
then the latter matrix is given by

Ly Ly Lingezy Liggw=)

Loy [ —1/4  1/2 1/2 1/4

L | 172 —1/4  1/4 1/2
Ly | 1/2 1/4  —=3/4 1
Liywey \ 1/4 1)2 1 —3/4

Its determinant is —5/8, so that ({>) in the Main Theorem holds by Lemma 1.13.1.

Lemma 2.12.4. If X\ # =2, then [f"}(\)] = 1. One also has [f~1(=2)] = 4.

Proof. If A # —2, then S) has du Val singularities in the base locus of the pencil S, so that
[f~1(\)] = 1 by Corollary 1.5.4. Hence, to complete the proof, we have to show that [f~1(—2)] = 4.
To this end, we observe that m; = ms = 3, mg = my = my; = 2, and ms = mg = 1. Similarly,
we have M;? = M;? = M;% = Mz? = M;? =1 and M;? = M;? = 2. Thus, using (1.8.3) and
Lemma 1.8.5, we see that

[f1(-2)] =3+ ) D%
pPey
where the set X consists of the points P{w},{y},{z}a P{m},{y},{t}7 P{m}’{z}’{t}, P{y}7{z}7{t}, P{m},{t},{y,z}7
and Pryy 11y f2,2}- Using Lemma 1.12.1, we see that

D2 =D3? = D32 = D32 = D32 =0
Pley (w308 Pey, (23,4t} Pryy {=3.{0} Pley (1) {v.2} Pryy (0} {e.2}

Thus, we conclude that [f~}(—2)] = 3 + D}’ . Let us show that D5? =1
(=} (v} {2} (=} Ay} =}

Let ay: Uy — P3 be a blow-up of the point Py 1z Then D} = S} for every A # oo.
Moreover, the surface E; contains a unique base curve of the pencil S'. Denote it by Cd. Then
mg = 2 and M§2 = 2. Thus, using (1.10.9), we see that D3>

p >1

{z}{v}.{=}

To show that D;,{Q ) 1, observe that there exists a commutative diagram
Ti\Yrn?

for some birational morphism ~. Then 68 is the unique base curve of S that is mapped t0 Pz} (41,421

by the morphism «. Thus, using Lemma 1.10.7 and (1.10.9), we conclude that DIS{Q ) 1. O
T Ys?

Recall that h'2(X) = 3. Then (¥) in the Main Theorem follows from Lemma 2.12.4.

Family 2.13. In this case, the threefold X is a blow-up of a smooth quadric threefold in P4
along a smooth curve of genus 2 and degree 6, which gives h'?(X) = 2. Its toric Landau-Ginzburg
model is given by the Minkowski polynomial 1392. Replacing = by x/y, we rewrite it as
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The quartic pencil § is given by
ot® + 2% + 2:ryt2 + 22t + y2t2 + 2%tz + x2%t + 2y2tz + :rzyz + :ryzz + a:yz2 + y2z2 = Axyzt.

To prove the Main Theorem in this case, we may assume that A # co. Let C be a smooth conic
given by z = 22 4 2xy 4+ y> + 2t = 0. Then

Higy - Sx = 2Ly gy + 2L} (203
Hyyy - Sx = Ligy qyy + Ligy gy + Lyt e + Liyhfez)

(2.13.1)
Hyzy - S =2Lgy 43 6

Hyy - Sx = Ligy gy + Loy + Ly fo2) + Lty foy-

So, we may assume that C = L{:c},{y}7 Cy = L{y},{t}7 Cs = L{z},{t}a Cy= L{x}7{z7t}, Cs = L{y}7{z7t},
Cs = Lin fayy C7 = Ly (2,2}, O3 = Ly fa,20), and Cg = C. These are all base curves of the
pencil S.

For every A\ € C, the surface S has isolated singularities, so that S is irreducible.

If A # —3, then the singularities of S that are contained in the base locus of the pencil § are
all du Val and can be described as follows:

Pray )00y type Ay with quadratic term zy + y? + at;
Py s type Ay with quadratic term zz + 22 4+ 2tz + t%
Pry iz type Ay with quadratic term yz + 2t + t2;
Py {34z ¢ type As with quadratic term (A + 3)zy;
Py {63 4e,2) ¢ type Ay with quadratic term (z + 2z +¢)(y +t) — (A + 1)yt for A # —1, and
type Ag for A = —1;
Pey iz type Ag with quadratic term z(z +y — (A + 3)t);
0:X+3:—1:1]: type Ay;
Piy g2y {2,z smooth point for A # —2, and type Ay for A = —2.
Therefore, the points Piyy, (2} 1) Pla,(yh.ie> Plopfahith Pladturdzap Plorior o a0d Py ) (o)
are the fixed singular points of the surfaces in the pencil S.
Lemma 2.13.2. If X\ # —3, then [f~1(\)] = 1. One also has [f~1(-3)] = 3.
Proof. If XA # —3, then S) has du Val singularities in the base locus of the pencil S, so that
[f~1(A)] =1 by Corollary 1.5.4. Hence, we need to show that [f~(—3)] = 3.
Recall that S_3 has isolated singularities. ~Moreover, the points Py 23163, Play{y).{t}>
P{y},{z},{t}7 P{y},{t},{x,z}, and P{z},{t},{m,y} are gOOd double pOintS of this surface (see Subsec-
tion 1.12). Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

—1/_a\] _ -3
[ (3] =1+Dp

where DB?’
Pla} (v} =1}

Let ap: U; — P2 be a blow-up of the point Pray (yy{z,ty- Then D!, = S, + E;. In the chart
t = 1, the surface S is given by

is the defect of the singular point Py (1 12 11

A+3)zy+ (772 -2 — 7P — (A +2)TYZ + 77°) + (TYZ + TYZ2 + TYZ + §°2°) = 0,

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



60 I. CHELTSOV, V. PRZYJALKOWSKI

where T = z, § = y, and Z = z+ 1. Then a chart of the blow-up «; is given by the coordinate
change T = T/z, §1 = §/Z, z1 = T. Then Dj is given by

Tl (21 + ()\ + 3)3_/1) + (3%21 — ()\ + 2)31@121)
+ (51?15% — B1E — TR + 27%5%) + (5@15% + 3127%5%) =0,

and the surface E; is given by z; = 0.

The surface E; contains two base curves of the pencil S'. They are given by z; = Z; = 0 and
z1 = J1 = 0. Denote them by Cd and C7, respectively. Then M9_3 =2, M1_03 =1, and mg = 2.
Thus, using (1.10.9) and Lemma 1.10.7, we see that D3>

P =2

{z} Ay} A=t}

To show that D;f’}{ e 2, we have to blow-up U, at the point (Z1,Z2,z1) = (0,0,0).
Tyy1YsH1?s

Namely, let ag: Uy — Uy be this blow-up. Then D%3 = 533 + E%, and E, contains a unique base
curve of the pencil S2. Denote it by C?. Then M = 1. Now, using (1.10.9) and Lemma 1.10.7

again, we obtain D;f e 2 This gives [f'(=3)] =3. O
Ty iz,

Note that Lemma 2.13.2 implies (¥) in the Main Theorem, since h'?(X) = 2.

To verify (V) in the Main Theorem, recall that the base curves of the pencil S are Ly, (1,
Ligrip Lizy ey Liap b iy eny Linfowds Loy Lighfo,zay, and €. On a general quartic
surface in this pencil, the intersection matrix of these curves has the same rank as the intersec-
tion matrix of the curves L{m}’{y}, L{y},{t}7 L{z},{t}7 L{y},{z,t}7 L{t},{x,y}7 and Hy. This follows
from (2.13.1). On the other hand, if A ¢ {—1,—2, -3}, then the intersection form of the curves
L{w},{y}7 L{y},{t}7 L{z},{t}a L{y},{z,t}a L{t},{x,y}7 and H)\ on the surface S)\ is given by

Ly y Lngey Lisnggy Dodety Ldewy  Ha

Lioyy [ —1/6 1/2 0 1/3 12 1
Loy | 172 =172 1/2 1/2 12 1
Liyqn| O /2 —1/3  1/2 1/3 1
Lyy| 13 12 12 -2/3 0 1
Liyews | 1/2 172 173 0 —5/6 1
mo\ 1 1 1 1 1 4

Since the determinant of this matrix is —5/12, we see that its rank is 6. On the other hand, we
have rk Pic(Sk) = rk Pic(Sk) + 12. Hence, we see that (%) holds, so that (<)) in the Main Theorem
also holds by Lemma 1.13.1.

Family 2.14. Let V5 be a smooth threefold such that — Ky, ~ 2H and H? =5, where H is
an ample Cartier divisor. Then V5 is determined by these properties uniquely up to isomorphism.
A general surface in |H| is a smooth del Pezzo surface of degree 5. This linear system is base point
free and gives an embedding V5 < PS.

In our case, the threefold X is a blow-up of the threefold V5 along an elliptic curve that is a
complete intersection of two general surfaces in the linear system |H|. Its toric Landau—Ginzburg
model is given by the Minkowski polynomial 1658, which is

The quartic pencil § is given by

222y + 22 + Pyx + 2te + 2t + Pty + 2%yx + 3t2 22
+ 3t%z2y + t2y% + 3t32 + 2t3y + t* = \ayzt.
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Suppose that A # co. Let C; be a conic given by z = t2 4 ty + 2tz + 22 = 0, let Cy be a conic
given by z = zy + ty + t> = 0, and let C3 be a conic given by t = xy + zz + 22 = 0. Then

Hgy - Sx = Lz} 1y + Loy fy.20y + C1,

Hyyy - Sx = Liyy, 1y + 3Ly} (20}

(2.14.1)
Hy.y - Sy =20,

Hygy - Sx = Ligy 1y + Ligy i +Cs.

Let Cl = Cl, 02 = CQ, 03 = Cg, C4 = L{z},{t}v Cg, = L{y},{t}a Cﬁ = L{z},{y,z,t}a and C7 = L{y},{z,t}-
These are all base curves of the pencil S.

For every A € C, the surface Sy has isolated singularities, so that Sy is irreducible.

If A # —4, then the singularities of Sy that are contained in the base locus of the pencil S are
all du Val and can be described as follows:

Py 21,400 type Az with quadratic term y(z + y);
Py 10 type D5 with quadratic term (o + )%
Py oy qyey s type Ap with quadratic term
(A+3)z—t)z+ (x —y — 22)(x —y — 2z — 2t) + 1 for A # —3, and
type Az for A = —3;
Pyt g2ty type Ag with quadratic term y((A +3)z +y + 2 +¢t) for A # —3, and
type Az for A = —3;
A+3:0:—1:1]: type Ay for \ # —3;
[(A+4)(A+3):—1:0: XA +4]: type Ay for X # —3.
Therefore, if A # —4, then S has du Val singularities in the base locus of the pencil S, so that the
fiber f~1()) is irreducible by Corollary 1.5.4. On the other hand, we have
Lemma 2.14.2. One has [f71(—4)] = 2.
Proof. The points Py 141> Pla){z) 4yt and Ppay (y) {21} are good double points of the
surface S_4. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

-1 _ —4
(-4 =1+ DP{I}}{Z}‘M.

Here, the number D;i} i is the defect of the point Pg,y (.} (13- To compute it, we have to

(partially) resolve the singularity of the surface S_4 at the point Py (.1 13-
Let ay: U — P3 be a blow-up of the point Py 23,41y- In the chart y = 1, the surface Sy is
given by

72+ (287 + (A + 4)F%2 — (A + 2)t72 + %2 + 72°) + (2 + 32 + 37%2% + £2°) = 0,

where T = o +t, Z = 2, and t = t. Then a chart of the blow-up a; is given by the coordinate
change 71 = T/Z, 21 = T, t1 = t/Z. Let 71 = T1, 21 = T1 + Z1, and ¢; = t;. In these coordinates,
the surface S/l\ is given by

2121+ (B2 - 23 + 212 — OV + DT + N+ D22+ B+ VR — (A +H)0T %)
+ 1237 — 4t 2T 2 + SRR 4 33D — 6T 2t + 305 + 4187 — 2473 + 4122 = 0.

If A #£ —4, the surface S)l\ has an isolated singularity at (5:\1,31,%\1) = (0,0,0). In this case, the
surface E; contains another singular point of S)l\, which lies in another chart of the blow-up ay. If

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



62 I. CHELTSOV, V. PRZYJALKOWSKI

A # —4, then this point is an isolated ordinary double point of the surface S)l\. On the other hand,
the surface S, is singular along the curve z; = Z; = 0. This explains why the singularity of the
surface S_4 at the point Py, 1 ¢ is not du Val.

Let ag: Uy — U; be a blow-up of the point (Z1,21,¢) = (0,0,0). A chart of this blow-up is
given by the coordinate change Ty = 7 /tAl, Yo =11 /tAl, t = #1. In these coordinates, the surface 5)2\
is given by

BoZs — (A + 4)Taly + (A + 4)Zobo + (2227 + (3 + N)T3ls — (A + 4)laTaDn) + 1273 — 417507
+ 3225 — 1os + taT3% + 3T5t5 — 6TaZaty + 35248 + toTa — 25 TaZs + 1525 = 0,

and the surface Es is given by t = 0. Note that D% = 5)2\ ~ — Ky, for every A € C.

If X\ # —4, then the quadric form ZoZ; — (A + 4)@als + (A + 4)%215 is not degenerate, so that
5% has an isolated ordinary double singularity at (22,22,?2) = (0,0,0). Thus, in this case, the
surface S)l\ has a du Val singularity of type Ag at the point (5:\1,31,%\1) = (0,0,0). Therefore, if
A # —4, then Sy has a du Val singularity of type D5 at the point Ppy 12y 11}
—4
Play, 23,01}
Observe that E; contains one base curve of the pencil S'. It is given by zZ; = #; = 0. Denote

this curve by Cd. Then mg = 2 and Mg 4 — 2. Similarly, the surface Eo contains two base curves
of the pencil §2. They are given by t» = T = 0 and 5 = 2, = 0. Denote them by Cg and 0120,
respectively. Then M§4 = M1_04 = 1. Now, using (1.10.9) and Lemma 1.10.7, we deduce that

Dp{z}’{z}y{t} =1, so that [f71(—4)]=2. O

Note that Lemma 2.14.2 implies (¥) in the Main Theorem, since h!?(X) = 2.

Lemma 2.14.3. Suppose that X\ # —4,—3. Then the intersection form of the curves Ly 14},
Ly gty Lz {y,2t), and Hy on the surface Sy is given by

Now we are ready to compute D using the algorithm described in Subsection 1.10.

Ly oy Ly Liedfueny Ha

Ly oy [ —3/4 1 1 1
Liy}.{t} 1 5/4 0 1
L{z},{y,z,t} 1 0 _5/6 1
Hy, 1 1 1 4

Proof. To compute L%x} @ let us use the notation of Lemma A.3.2 with S = Sy, n = 5,
O = Py .41y, and C = Ly 1y, Then C contains the point a(G1) = a(Gz) = a(G3), and
either C' -Gy = 1 or C - G3 = 1. This follows from the proof of Lemma 2.14.2. Thus, we have

L%z} = —3/4 by Lemma A.3.2.
To find L%y} (1 We observe that Py 12} (4} is the only singular point of S that is contained
in Ly r4y. Thus, it follows from Proposition A.1.2 that L%y} “w = —5/4.

To find L%w}{y%t}, we note that Ppy 123,14, and Py (41 (-, are the only singular points
of Sy that are contained in the line Ly, ¢, .. Thus, it follows from Proposition A.1.2 that

Ly = —5/6
Since Lo, () N Liyp gty = Pla},whity a0 Liay 1y N Liay y26) = Playft,4y.2> We obtain
Loy ity yrqy = Loy tey - Lapdyey = 1

because Sy is smooth at the points Py (1 (1 and Py 14y, 1y,21-
Finally, we have L{y},{t} . L{x}v{yvz7t} = 0, since L{y},{t} N L{x}v{yvzvt} =g. O

Recall that the base curves of the pencil § are the curves Ly 11, Liyy (13 Lot gy,20 Ligdgz)
Ci1, Co, and Cs. If follows from (2.14.1) that the intersection matrix of these curves on Sy has
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the same rank as the intersection matrix of the curves Ly v, Ly 1y Lia) gy,2,03, and Hy. On
the other hand, the determinant of the intersection matrix in Lemma 2.14.3 is 25/16. Thus, if
A # —4,-3, then the intersection matrix of the curves Ly 11, Ly 1y Lia) fyz3 Liyy iz C1s

Co, and C3 on the surface Sy has rank 4. We also have rk Pic(Sk) = rk Pic(Sk) + 14. Hence, we see
that (%) holds, so that (<)) in the Main Theorem also holds by Lemma 1.13.1.

Family 2.15. In this case, the Fano threefold X is a blow-up of P2 along a smooth curve of
degree 6 and genus 4. Thus, we have h1?(X) = 4. A toric Landau-Ginzburg model of this family
is given by the Minkowski polynomial 910, which is
T 2 Y 2 2 z

+-+=—+-+-4+—.
yz oz xz Yy T xY

T Y
r+y+z+-—+=+
z oz
The pencil S is given by
a:2zy + y2Z$ + z2yac + :r2ty + y2t:1: + 22t + 2t2ya: + t2y2 + 2t%2x + 2t2zy +t22% = Axyzt.

Observe that this equation is symmetric with respect to the permutation = < y.
We may assume that A # oco. Let C be the conic {z = zy + 2t + yt = 0}. Then

Hygy - Sx = 2Ly g1y + 2L4a} {y,2}
Hyyy - Sx = 2Lgyy 11y + 2L} (a2}

(2.15.1)
Hiy - Sy = Ly + Lizy ey +6

Hyy - Sx = Ligy iy + Ligy ey + Lz + L a2y

SO, Wwe may assuine that Cl = L{w},{t}a Cg = L{y},{t}7 Cg = L{z},{t}7 C4 = L{m},{y,z}7 05 = L{y},{r,z}7
Cs = Lizy {eyys C7 = Lt} {a,y,2}, and Cg = C. These are all base curves of the pencil S.

If A # —1, then the surface Sy has isolated singularities, so that Sy is irreducible. On the other
hand, we have S_; = Hy, , .1 + S, where S is an irreducible cubic surface given by the equation
xyz +xyt + xt? + yt? + 2t?> = 0. The surface S is singular at Pry anqers Pray 20,40 and Pray o) 143
These are isolated ordinary double points of this surface. Note also that

Hizyey N8 = Liay qyep + Liyhgwey T 6

where £ is the line {y + =z —t =z +t = 0}.
If A # —1, then the singularities of S that are contained in the base locus of the pencil § are
all du Val and can be described as follows:

Py fr 421+ type Dy with quadratic term (r+y+ z)2;
P{m},{y}{t}: type A with quadratic term xy + t2;
P{x}7{z}7{t}: type Ay with quadratic term xz + zt + t2;
Pry iz type Ay with quadratic term yz + yt + t2;

Py g {y,2y - type Ag with quadratic term r(x4+y+z— A+ 1)t);

Py (63 4e,2) ¢ type Az with quadratic term y(z +y + 2 — (A + 1)t);

Py ey {zwy s type Ay with quadratic term (x +y)(z +t) + 2% — Azt

If A # —1, then [f~1(A\)] = 1 by Corollary 1.5.4, so that (U) in the Main Theorem follows from

Lemma 2.15.2. One has [f71(-=1)] = 5.
Proof. It follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

—1 _ —1
=] =4+ DP{z},{y},{z}'
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Observe that S is smooth at P, 1 4.1, and Hy, 1 is tangent to S at this point. Thus, the
proper transforms of these surfaces on the blow-up of P? at the point Py, {y}.{z} Poth pass through
the base curve of the proper transform of the pencil S that is contained in the exceptional divisor.

Using (1.10.9), we conclude that DI_D{1 P > 1. Arguing as in the proof of Lemma 2.5.3, we see
T Ys?

that D! =1, so that [f~1(-1)]=5. O
{=z}{y}.{=}
If A # —1, then the intersection form of the curves L,y 1y, Liyy (e3> Lizy {6} Loz} {a,y}> and Hy

on the surface Sy is given by

Ly Ly Ly Liddfewy o

Lo [ —1/4 1/2 1)2 0 1
Loyl 12 =1/4 1/2 0 1
Lol 12 12 —1/2 12 1
Liyem| 0 0 12 —-1/2 1
m\ 1 1 1 1 4

The rank of this matrix is 4. Thus, if A # —1, then it follows from (2.15.1) that the intersection
matrix of the base curves of the pencil S on the surface Sy also has rank 4. On the other hand, we
have rk Pic(Sy) = rk Pic(Sy) + 14. Hence, we see that (%) holds, so that (¢) in the Main Theorem
also holds by Lemma 1.13.1.

Family 2.16. In this case, the Fano threefold X is a blow-up of a smooth complete intersection
of two quadrics in a conic. We have h'2(X) = 2. A toric Landau-Ginzburg model of this family is
given by the Minkowski polynomial 1939, which is

z z x 1 =z 1 T 2 z
i S i e e il SR
z r y z Yy x Yz y xY

m+z+g+y
z

The quartic pencil § is given by

22yz + xytt + xy2? + yPat + 22yt + y2®t 4 2%zt
+ ayt? + x2%t + yat? + 222 + 202t + 2% = hayet.
As usual, we suppose that A # oco. If A # —2, then the surface Sy has isolated singularities, so
that it is irreducible. One also has S_o = Hy, .y + Hyy ) + Q, where Q is an irreducible quadric
surface given by xz + xt + yt + zt = 0.
Let C be the conic in P3 that is given by y = 2z + 2t + 2t = 0. Then
Hizy 53 = Ligy {23 + Lot (1) + Liap wod T Liad (wd

Hyyy - Sx = Ligy gy + Liyh a2y TC, (2.16.1)
Hizy - Sx = Ligy 123 + Ly + Lizygegd + Lia) fyads
Hyy - Sx = Ligy 1y + Ligy ey + Lzy 1 + Ly a2

so that the base locus of the pencil S consists of the curves Ly 2y, Liay 11y Liyy ey Ly ey

Loy vy Loy futys Ly ey Lizdgewys Dy fways Ly ey, and €.
If A # —2, then the singular points of S contained in the base locus of the pencil S are all
du Val and can be described as follows:

Py 34z ¢ type Ag with quadratic term (z + 2)(z +y + 2) for A # =3, and
type As for A = —3;
Py gyt type Ag with quadratic term (z + t)(y + t);
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type Az with quadratic term t(x + z);

type Ay with quadratic term (y + ¢)(z + t);

type A; with quadratic term (z + 2)(y +t) — (A + 2)x2;
type A; with quadratic term (z + 2)(y +t) — (A + 2)yt.

Moreover, the singularities of the surface S_, at these points are non-isolated ordinary double
points. Thus, if A # —2, then the fiber f~1()\) is irreducible by Corollary 1.5.4. Similarly, it follows
from (1.8.3) and Lemma 1.12.1 that [f~(—2)] = 3. This confirms (V) in the Main Theorem, since

h2(X) = 2.

If A\ # —2, then the intersection matrix of the base curves of the pencil & on the surface S
has the same rank as the intersection matrix of the curves Ly cr, Liyy ey Lia) fu,2)> Loy {v.t}
Ly fa,2y, and Hy, because

Liay 2y + Liay oy + iy g2y + Liay fwty ~ Ligh gy + Ly ey 7€

~ Ligy oy + Liay oy + Lizy oy T Ly vy ~ Loy ey + Ligy gy + Ly gy + Ly fo2y ~ Ha

on the surface Sy by (2.16.1), and

2Ly + Ly fwy + e qwaty ~ 20y 2 + Liyyfaz) T L {2y ~ Has

since

and

Hpyy - Sx = 2Ly 0 + Ly qyty + Liad (vt

Hg oy - Sx = 2Ly 023 + Liyyfo) + Lity (o2}

If X # —2,-3, then the intersection matrix of the curves L,y ry, Liyy ey Liay vz} Lo} {v.t}s
Ly (2,2}, and H) on the surface S is given by

Ly oy Lny eydwsy Keddwty L{wdfezy i

Lirim [ O 0 1/4 1/4 /2 1
Loyan| O —1/6 0 2/3 12 1
Liniwa| 1/4 0 —5/4 1 /2 1
Lavwn| 1/2 2/3 1 —5/6 0 1
Lopea| 172 1/2 1/2 0 ~1/2 1
m\ 1 1 1 1 1 4

This matrix has rank 6. Hence, we see that (%) holds, because rkPic(Sy) = rkPic(Sy) + 12.
Then (<) in the Main Theorem holds by Lemma 1.13.1.

Family 2.17. The threefold X is a blow-up of a smooth quadric threefold along a smooth
elliptic curve of degree 5, so that h1?(X) = 1. A toric Landau-Ginzburg model of this family is
given by the Minkowski polynomial 1926, which is

r y =z =z 1 2 1 z 1 1
r+y+z+-+-"+-+-+-+-+-—-4+—+—+ —.
Yy T Yy x z Yy x TY TZ TY

The quartic pencil § is given by

:1:2yz + a:yzz + :Eyz2 + 22zt + szt + z2%t + yzzt + :ryt2 + 22t + yzt2 + 222 + yt3 + 2t3 = Axyzt.
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As usual, we suppose that \ # oo. Let C be the conic {x = yz + tz +t> = 0}. Then
Higy - 53 = Ligy i + Liay v,y 6,

H{y} -5y = L{y}{z} + L{y},{t} + L{y},{rvt} + L{y}f{m’Z’t}’ (2 17 1)

Hpzy - Sx = Ligy 2y + 2Ly (1) + Lz fay
Hyy - Sx = Ligy gy + Ligy ey + Lz + Ly o2y

So, we may assume that C; = L{x},{t}a Cy = L{y},{z}, C3 = L{y},{t}, Cy= L{z},{t}, Cs = L{w}{%z},
06 = L{y}7{x7t}, C7 = L{z},{:c,t}a Cg = L{y},{x,z,t}a Cg = L{t},{x,y,z}a and ClO = C. These are all base
curves of the pencil S. Note that m; =my =m3 =2, my =3, and ms; =... = myg = 1.

If A #£ —2, then the surface S) € S has isolated singularities, so that it is irreducible. On the
other hand, one also has S_2 = Hy, ;1 + S, where S is an irreducible cubic surface given by the
equation xyz + wzt + y2z + y2? + yat + yt? + 2%t + 242 = 0.

If A # —2, then the singular points of Sy contained in the base locus of the pencil S can be
described as follows:

Py 4y type Ag with quadratic term (x+t)(y +t);
Py 1400 type Ag with quadratic term z(x +t);
Py 2340y type Az with quadratic term z(y +t);
Py (43,4p,2) ¢ type Ap with quadratic term (z +y + 2)(z +t) — (A + 2)t;
Py ity 4=y type Ay with quadratic term (y +t)(z +y + 2z +1t) — (A + 3)yt for A # —3, and
type Ag for A = —3;
Py 23 ety type Ag with quadratic term y(z +t+ (N +2)2);
Piy ity 42wy type A with quadratic term zZle4+y+z—(AN+2)t)+ t2;
[0:—=2:2: =1+ +/5]: smooth point for A # (=1 F v/5)/2, and type A; for A = (=1 F v/5)/2.

Thus, if A # —2, then [f~1(\)] = 1 by Corollary 1.5.4. To find [f~!(—2)], observe that the set ¥

consists of the points Py} 21 1}, Play (234t Platiuh ity Plat i dvzy Py teh oty Plyd i) {2}
and P(.} 141} {z,y}- Lhus, it follows from (1.8.3) and Lemma 1.8.5 that

[fi(-2)] =2+ ) D%
Pex¥

Moreover, the quadratic terms of the surface Sy at the singular points Ppy 1 1, Play, (2},

Pray tupity Pley b ivzd Piodied ey Py de,): a0d Pley 1), (a,y) 8iven above are also valid for
A = —2. This shows that all these points are good double points of the surface S_o, so that their

defects vanish by Lemma 1.12.1. Hence, we have [f~!(—2)] = 2. This confirms (V) in the Main
Theorem, since h%2(X) = 1.

If A # —2, then the intersection matrix of the base curves of the pencil S on the surface Sy has
the same rank as the intersection matrix of the curves L,y v, Ly tenys Lizyfatys Liy) fa,z,0)
Ly (), and H)y, because

Ligp oy + Dangyey 7€~ Ligh oy + Dbty + Ligp ey + Liyh ey
~ Ly ey T 2L + Db teny ~ Liah iy + Lo T Lentn + L geyzy ~ Ha

on the surface Sy by (2.17.1), and
2Ly 1y + Liy) {aty T Ly oty ~ Has
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since H{x,t} -5y = 2L{m},{t} + L{y}’{r7t} + L{z},{r,t}' Moreover, if A ¢ {—2,-3,(—-1+ \/5)/2}, then
the intersection matrix of the curves L,y oy ovs Liy) (e, Lizy oty Liyd a2t} Liytofzy, and Hy on
the surface Sy is given by

Ly, wzy Ldieey Liadey Loddeze Ly Ha

Liyiney [ —3/2 0 0 0 11
Loy | O —-2/3  1/3 2/3 2/3 1
Liyen | O /3  —1/3 1/3 1/3 1
Loy | O 2/3 1/3 -5/6  2/3 1
Liyis |1 2/3 1/3 2/3  —2/3 1
mo\ 1 1 1 1 1 4

The determinant of this matrix is —7/18. But rk Pic(Sy) = rk Pic(Si) + 12. Thus, we see that (%)
holds, so that ({) in the Main Theorem also holds by Lemma 1.13.1.

Family 2.18. In this case, the threefold X is a double cover of P! x P? ramified in a divisor
of bidegree (2,2). We have h!:?(X) = 2. A toric Landau-Ginzburg model of this family is given by
the Minkowski polynomial 1922, which is

The quartic pencil § is given by
22yz + xyz + xy? + ot 4+ y22t + 222 4 ayt? + x2t? + yat? + 22t + ytd + 23 + 1 = Ayt
Suppose that A # co. Let C be the conic given by x = yz + t> = 0. Then
Hizy - Sx = Ligp(np + Lo fyy 76

Hyyy - Sx = 2Lgyy 11y + Liy) oty T Liy) {2010 (2.18.1)
Hezy - Sx =20y 1y + Ly ety + Lzt {opt)
Hyy - Sx = Ligy 1y + Ly ey + Lzt + L a2y

So, we may assume that C, = L{w},{t}v Cy = L{y},{t}7 C3 = L{z},{t}7 Cy = L{y},{w,t}7 Cs = L{z},{m,t}7
06 = L{x},{y,z,t}’ 07 = L{y},{x,z,t}a 08 = L{z},{z,y,t}’ 09 = L{t}7{x,y7z}’ and 010 = C. These are all
base curves of the pencil S.

Note that S_o = Hyy 1y + Hipy .4y + Q, where Q is an irreducible quadric cone in P3 that is
given by yz + t2 = 0. On the other hand, if A # —2, then Sy has isolated singularities. Furthermore,
if A #£ —2, then the singular points of S contained in the base locus of the pencil S can be described
as follows:

P{y},{z},{t}: type A with quadratic term yz + t2;
Py 2340y type Az with quadratic term z(x 4+ t);
Py eyt type Ag with quadratic term y(z +1t);
Py gt w2y type Ay with quadratic term (z +t)(z +y + 2 + 1) — (A + 2)at;
Py 23 4oty type Ay with quadratic term (z +t) (2 +y + 2 + ) + (A + 2)yz;
Py iy {z,2y . type Ag with quadratic term y(z +y + 2z —t — At);
Py ey type Az with quadratic term z(z +y + 2 —t — At).
Thus, the set ¥ consists of the points Py 121 163, Play {2346 Play {4 Plad {423 Plyy ) {at)s
Py} ity fozp a0d Ply ) (o)
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If A # —2, then the fiber f 71()) is irreducible by Corollary 1.5.4. Similarly, it follows from (1.8.3)
and Lemmas 1.8.5 and 1.12.1 that [f~}(—2)] = [S_a] = 3, because M;? = ... = M/ = 1, and
every point of the set ¥ is a good double point of the surface S_. This confirms (©) in the Main
Theorem, since h2(X) = 2.

To verify ({) in the Main Theorem, observe that
Higgy =S\ = 2Ly ) + Ligy ey + Ly fay
for A # —2. Thus, if A\ # =2, then 2Ly ey + Ly oy + Ly goy ~ Hx on the surface Sy.
Similarly, if A # —2, then
2Ly fy.zy  Ligy ooty T Ly fewsy + Ly fowzy ~ Ha
since Hiayz1y - 53 = 2Ly (o) + Lighaaty T Lipfowty T Lity o2y 1A # =2, then
Hy ~ Ligy gy + Liay fyety +C ~ 2Ly 0 + Ligygey + Ly fezt

~2Ley iy T Ly ety + Lt owty ~ Diey oy T Loyt + Lizy g0 + Ly a2

on the surface Sy. This follows from (2.18.1). So, if A\ # —2, then the rank of the intersec-

tion matrix of the curves Ligy gy, Liyyp Lt Liwpdotr Liahioty Liaddystt Lighiozths
Ly taytys Lity fzy,2), and C on the surface Sy is 5, since the intersection matrix of the curves
L{z},{t}a L{x},{y,z,t}7 L{y},{x,z,t}7 L{y},{x,t}7 and H)\ on the surface S)\ is given by

Lizy 6y Lot quzty  Louddeztr  Liyd{esy  Ha

Lz} {t} 0 1/2 0 1/2 1
Ligy qw=ny | 1/2 —3/2 1 0 1
Ly} (o2t} 0 1 —5/6 1/2 1

Lipyeny | 1/2 0 1/2 -1/2 1
Hy 1 1 1 1 4

On the other hand, we have rk Pic(Sy) = rk Pic(Sk) + 13, so that (%) holds in this case. Then (<))
in the Main Theorem holds by Lemma 1.13.1.

Family 2.19. In this case, the threefold X can be obtained by blowing up a smooth complete
intersection of two quadrics in P° along a line, so that h'?(X) = 2. A toric Landau-Ginzburg
model of this family is given by

r oz Yz oz T y 1
rt+yt+tz+—-—+-+—+ -+ —+-+ -+

y oy x z  yz oz oy
which is the Minkowski polynomial 1108. Then the pencil S is given by

y
)
T

2yz + wy2? + 2ot + ayts + o2t 22 4 2yt + 2% 4wyt + eat? +yPat = dayet.

For simplicity, we assume that A # oco. If A # —1, then the surface Sy has isolated singularities,
so that it is irreducible. On the other hand, we have S_; = Hy, .y + Hy, ) + Q, where Q is a
smooth quadric in P3 that is given by xy + zt + v = 0.

Let C be the conic in P3 that is given by z = 2y + xt + y?> = 0. Then

Higy - S3= 2Ly oy + Lia) 2y + Loy (o)

Hiyy Sy = Ligy fuy + Ly + Lighgezy + Ligy Loy
Hizy - Sx = Ligy o) + Lz +6,

Hyy - Sx = Ly + Lisy i + Ly fewy + Ly feay-
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This shows that the base locus of the pencil S consists of the curves Ly oy, Liay 23 Liyy (e
Liyir Lien ey Ligpdest Db tears Ly gowds Lo g2y, and €. This also gives

2Ly (yy + Liay 2y  Liay 20y ~ Loy gy + Ly gy + Ly o2 + Ly 120
~ Liay oy + Ly gy +C ~ Ligy gy + Liay g0 + Ly foy + Lty fo2) ~ H

on the surface Sy with A # —1.
If A # —1, then the singularities of S contained in the base locus of the pencil & can be
described as follows:

Py (2140 type Az with quadratic term (y+t)(z+1t);
Py i34 0 type Ag with quadratic term (x + 2)(z +t);
Pray oy, 1ey 0 type Ap with quadratic term xy + xt + et
P{x},{y}{z}: type A4 with quadratic term x(z + z);

Py {34z type Az with quadratic term z(y + Ay — 2 — t);

Py #3422y type Ay with quadratic term (v + 2)(y +1) — (A + 1)yt;

Py i ey type Ay with quadratic term (2 +)(x +y —t) — (A + 1)zt

These quadratic terms also remain valid for A = —1. Thus, using (1.8.3) and applying Lemmas 1.8.5

and 1.12.1, we see that [f~1(—1)] = [S_1] = 3, because S_; is smooth at general points of the curves
Liay uys L{x} &y Lt Lt Lt By, b L{y} {2t} Lty fewys it} fo,2), and C. This
confirms (V) in the Main Theorem, since h'?(X) =

To verify () in the Main Theorem, observe that rk Pic(Sy) = rkPic(Sy) + 13. Moreover, if
A # —1, then the rank of the intersection matrix of the curves Ly rys Liz) (2} Liyy {6y Lz
L{w},{z,t}, L{y},{x,z}a L{y},{z,t}, L{t},{m,y}v L{t},{x,z}a and C on the surface Sy is the same as the rank
of the intersection matrix of the curves L{x},{z,t}’ L{y},{t}v L{y},{x,z}v L{y},{z,t}’ L{z},{t}v L{t},{x,y}’
and Hy. Thus, using Lemma 1.13.1, we see that ({») in the Main Theorem holds in this case,
because the matrix in the following lemma has rank 5.

Lemma 2.19.1. Suppose that A # —1. Then the intersection matriz of the curves Lz (. 1,
L{y},{t}7 L{y},{x,z}7 L{y}{z’t}, L{z},{t}7 L{t},{x,y}7 and H)\ on the surface S)\ 18 given by

Liayzy Loy Liddesy Linpd=o Ly Ldfewy Ha

Liyiony [ —2/3 0 0 1/3 2/3 0 1
Lyl 0 ~-1/3  1/2 1/3 1/3 /2 1
Ligieny| 0 12 —7/10 1 0 0 1
Lo | 1/3 1/3 1 —2/3  2/3 0 1
Loym|  2/3 1/3 0 2/3 -1/6 1/2 1
Liyemy| O 1/2 0 0 1/2 -1 1
m\ 1 1 1 1 1 1 4

Proof. The last column and the last row in this matrix are obvious. To find its diagonal
entries, we use Proposition A.1.3. For instance, the line Ly, ¢. ;1 contains two singular points of
the surface Sy. These are the points P,y 12y 43 and Py 1y},{z,1}- Both of them are singular points
of type Ay. Thus, by Proposition A.1.3, we have

2 2 2

2 _ —

Similarly, we obtain the remaining diagonal entries.
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To find the remaining entries of the intersection matrix, observe that the line L,y ¢ ;1 does not
intersect the lines Lyy o1, Liyy (2,23, and Ly 1543, S0 that

Liay ety - Ligy gy = Loy a0y - Liyhioz) = Liad ey Lty oy = 0-

Now observe that L,y 120 N Liyy (243 = Pla) {y) {z,¢}, Which is a singular point of Sy of type As.
Moreover, the strict transforms of the lines L,y 1. 1y and Lyy ¢ 1 on the minimal resolution of sin-
gularities of the surface Sy at the point Pp,y 11 1. 4y intersect different exceptional curves. This im-
plies that L, 120 - Ly qz40 = 1/3 by Proposition A.1.3. Similarly, we get Ly (.4 Lz}, 10 = 2/3,
Ligyiny Ligdter = 1/2 Ly Ligr ey = 13 Ly gy Liaytn = 135 Ly Ly ey = 1/2,
and Ly gy - Lizy 1 = 2/3.

Observe that the line Ly,y 1, -y does not intersect the lines Ly, 4y and Ly 1543, and the line
Ly 42,y does not intersect the line Ly 1, 41, so that

Ligy et Lispin = Lttty Liptowy = Ligp a0y - Lt foay =0
Moreover, the intersection Ly ¢4 -3 N Lyyy (24 consists of a smooth point of the surface Sy. Thus,
we have Ly 602y - Ly 2.0 = 1.
Finally, observe that L.y 11y 0 Ly) (2t = Prz i) {a,y}» Which is a singular point of Sy of type A;.
Thus, we have L.y 11y - Lty {2y} = 1/2 by Proposition A.1.3. O

Family 2.20. In this case, the threefold X is a blow-up of the threefold V5 along a twisted
cubic (see family 2.14). Thus, we have h'"?(X) = 0. A toric Landau-Ginzburg model of this family
is given by the Minkowski polynomial 1109, which is

Y 1 Y Y 1 Tz 1 1
- f+z+y+-+—=+-"+—+—+z+ -+ —.
z z Tz T  xZ Y Yy T

The pencil § is given by the equation
yztaz + m2zy + yzzm + t2a:y + t2y2 + yzzt + t3y + z222 + z2my +t22x + tzzy = Azxyzt.

Suppose that A # co. Then the surface Sy has isolated singularities. In particular, we see that S
is irreducible.
Let C be a conic in P2 that is given by y = 2z + t> = 0. Then
Hzy - S3= Ligp oy + Liop iy + Liaptvy + Liah et

Hyyy - Sx = Ligy gy + Ly (23 +C (2.20.1)
Hizy - Sx = Ligy oy + Lisy o + Ly ey T Lz quay

Hyy - Sx = Ligy (o + Ly + Ly et + Loy w2}

This shows that Ly ), Liap s Lighted Lishiey Liahtwy Liahteap Lieptesy Lishivty
Lty 12y} L1ty fy,2}> and C are all base curves of the pencil S.

If A # —2, -3, then the singular points of S contained in the base locus of the pencil § can be
described as follows:

Py 234y type Ay with quadratic term z(y + 2);
Py 2340 type Az with quadratic term (z +t)(2 + t);
Py or 40 type Ay with quadratic term x(z + y).

The surface S_3 has the same singularities at P,y 121 1115 Pla) 21,40, and Py 13,443 [n addition
to them, it is also singular at the points [0:1:1:—1] and [1:1:0:—1], which are isolated ordinary
double points of the surface S_s. Similarly, the singular points of the surface S_o are Pyy 2y (1},
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Py 21,180 Prat gy {ey> and [1: —1:1:0]. They are singular points of the surface S_o of types Ag,
Ao, Ag, and A, respectively.

We see that every surface Sy has du Val singularities at every base point of the pencil S. Thus,
by Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (©) in the Main Theorem, since
h'2(X) = 0. To verify () in the Main Theorem, we need the following.

Lemma 2.20.2. Suppose that A # —2,—3. Then the intersection matriz of the curves Ly 1,3,
L{w},{y,t}, L{x},{z,t}7 L{y}{z}, L{z},{x,t}, L{z},{y,t}, L{t},{y,z}, and H)\ on the surface S)\ 18 gwen by

Ly L Lehn Ly Lo Lenws Lowe=y Ha

Ly [ —4/5  2/5 1 1 0 0 0 1
Lo | 2/5  —6/5 1 0 0 1 0 1
Linen | 1 1 —4/3 0 1/3 0 0 1
Lopa| 1 0 0 —4/5 1 2/5 3/5 1
Liyn| O 0 1/3 1 —4/3 1 0 1
Liywn| O 1 0 2/5 1 —6/5 1/5 1
Liywar| O 0 0 3/5 0 1/5  —6/5 1

o\ 1 1 1 1 1 1 1 4

Proof. All diagonal entries here can be found using Proposition A.1.3. For instance, the only
singular point of the surface Sy that is contained in Ly, ¢,y is the point Pgy 1y 143, which is a
singular point of type Ay of Sy. Applying Remark A.2.4 with § = S\, n =4, O = Py (1 401
and C = Ly, g1, we see that C contains the point G N G4, because the quadratic term of the

surface Sy at the point Py 1,y 14y is (2 + y). This shows that C intersects either G5 or Gs. Then
L%w}{y} = —4/5 by Proposition A.1.3.

Applying Proposition A.1.2, we can find the remaining entries of the intersection matrix. For
instance, observe that

Ligy 1oy N Ly 1y = Ly oy O Liad qyty = Plad fyh it}

Thus, it follows from Proposition A.1.2 that Ly, 141 - Liay, 113 and Lizy 14y - Liay 1y} are among 2/5
and 3/5 But L{I},{y} + L{z},{t} + L{:c},{y,t} + L{:c},{z,t} ~ H) by (2201), so that

U= (Liap ) + Liap iy + Liodtuty + Diay (e)) - D o)
1
= Liopiyy - Loy iy + Lad ot - Liotwy — 5
Hence, we deduce that L,y 1y - Lizy ey = 2/5 and Ly 1y - Liz) {yey = 2/5. Similarly, we can
find all remaining entries of the intersection matrix. [
The matrix in Lemma 2.20.2 has rank 8. But rk Pic(Sk) = rk Pic(Sk) + 10, so that (%) holds.
By Lemma 1.13.1, this shows that ({) in the Main Theorem also holds.

Family 2.21. In this case, the threefold X can be obtained from a smooth quadric threefold
in P4 by blowing up a smooth rational curve of degree 4. Then h%?(X) = 0. A toric Landau-
Ginzburg model of this family is given by

T y x 1 y oz 1
SHrt S oyt t o+ + o,
z z Yy oz x Yy x
which is the Minkowski polynomial 730. Then the pencil S is given by
22ty + 222y + vix 4+ 222t + tPyx + ez + Pyx + yP 2t + 2Pte + 22y = \ayat.
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As usual, we assume that A # co. Then
Higy 53 = Liay ) + Loy gy + Loy ey + L)yt
Hyyy - Sy = Liay fuy + Ly iz + Ly + Lighfez)s
Hysy - S3= Ly oy + Lty + Liznny + Ly (e
Hiy - Sx = Ligy iy + Ly i + Lo + Ly fayzy-

This shows that Lo} 1y} ey, (=1 Liay, 61 Diwd tep Liwdieh Lien ey Liah oty Lighteed Db fowtd
and Ly 1,4 2} are all base curves of the pencil S.

For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Py iz ¢ type Ag with quadratic term y(x + 2);
Py qr 4y type Az with quadratic term x(y +¢) for A # —1, and type A; for A = —1;
Py (23400 type Ag;
P gepin: type A
Py gyt type Ap for A 2 =2, and type Ag for A = —2;
Prp i qz,2y s type Ap for A # —2, and type Ay for A = —2;
Pea g qeyy: type Ay for A # —4, and type Ay for A = —4.
Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.
The rank of the intersection matrix of the curves Ly rvs Lizy 21 Liay 6y Liyy iz Ly gers
Ly iy Liayfuty Ligydazy Ly oty and Ly (24,2} on the surface Sy is the same as the rank

of the intersection matrix of the curves L{z},{y}v L{z},{t}a L{y}7{z}, L{z},{t}a L{z},{z,y,t}a L{t},{:c
and Hy. If A ¢ {—1,—2,—4}, then the latter matrix is given by

Y521

Ly wy Loy Linddey Linwy Liaddewty  Lidfewsr Ha

Laywy (—1/2 0 3/4 3/4 0 0 0 1
Lgyw | 3/4 —3/4 0 1/2 0 1 1
Ly | 3/4 0 -3/4  1/)2 1 0 1
Ly | 0 2 12 —1 1/2 1/2 1
Lizy ey | 0 0 1 1/2 -1 1/2 1
Liy ey | 0O 1 0 1/2 1/2 ~1 1
Hy 1 1 1 1 1 1 4

Thus, its determinant is —45/16 # 0. Moreover, we have rk Pic(Sy) = rk Pic(Sy) + 11. Hence, we
see that (%) holds, so that ({) in the Main Theorem also holds by Lemma 1.13.1.

Family 2.22. The threefold X is a blow-up of the threefold V5 along a conic (see family 2.14),
so that A%2(X) = 0. A toric Landau Ginzburg model of this family is given by the Minkowski
polynomial 413, which is

Y

1 1 1 1 Tz
-+ -—+y+z+—+-+-+x+ —.
r x Tz oz

Y Y
The quartic pencil § is given by
yzzt + tzzy + y2zm + zan: + t3y + tzyaz + t2zx + mzzy + 2222 = Azyzt.

Suppose that A # co. Let C; be the conic in P? that is given by z = yz + 2zt +t? = 0, and let
Cy be the conic in P3 that is given by y = zz +t> = 0.
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Then
Hyzy - Sx = Liay (g3 + Liay 10 +C1s

H 'S)\:Lm, + L Az +627
{y} {=z}.{v} {yh iz} (2.22.1)

Hizy - Sx = Ligy 2y + 200y 0 + Lizy g

Hiy - Sx = Loy + Lisnn + Liptony + Lithtwy
ThUS, the base locus of the pencil S consists of the curves L{x},{y}v L{x},{t}? L{y},{z}a L{z},{t}’

Lizy oty Ly fowr Loy fy,2p C1, and Co.
For every A € C, the surface S, is irreducible and has isolated singularities. Moreover, the
singular points of Sy contained in the base locus of the pencil S can be described as follows:

Py qh 400 type Ay with quadratic term x(z +y) for A # —2, and type Az for A = —2;
Py i1 ,40 0 type Ag with quadratic term z(z +t) for A # —2, and type A5 for A = —2;
Py 2140y type Ay with quadratic term z(y + z) for A # —1, and type A; for A = —1;
Ply it fowy s type A
[1:=1:1:0]: smooth point for A # —1, and type A; for A = —1.

Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.
If X # —1,—2, then the intersection matrix of the curves Ly 1y, Loy ey Lizy ety Lty {z)
L4y {y,2), and H) on the surface Sy is given by

Liayy Ly Lisdhiey Ligewy  Ligguzy  Ha

Ly [ —4/5 0 0 3/5 0 1
Layan| O 1/20  1/2 1/2 1/5 1
Liyven| O 1/2 -1 0 0 1
Loyvew | 3/5 1/2 0 ~7/10 1 1
Liyiwny| 0 1/5 0 1 —-6/5 1
mo\ 1 1 1 1 1 4

This matrix has rank 6. Hence, using (2.22.1), we see that the rank of the intersection matrix of
the curves Liay gy}, Liay(p Ligyizp Lizpiey Loty Lntaw Lt gyapy €1 and Co s also 6.
But rk Pic(Sy) = rk Pic(Sy) + 12, so we conclude that (%) holds. Then (<)) in the Main Theorem
holds by Lemma 1.13.1.

Family 2.23. The threefold X is a blow-up of a smooth quadric threefold in P* along a smooth
elliptic curve of degree 4. Then h?(X) = 1. A toric Landau-Ginzburg model of this family is given
by the Minkowski polynomial 410, which is

z z x y 1 1
THy+i+ o+ S+
rx Yy z z T Yy
In this case, the pencil S is given by the equation
xy2? + 2?yz + xyPe + 222t + y22t + 2Pyt + 2yt + 2t + y2t® = \ayzt.
As usual, we assume that A # co. Then
Hiay - Sx = Ligy (o} + Loy gy + Liahqy + Liay 2
Hyy - Sx = Liay qyy + Ligy 423 + Ly gy + Ly gz (2.23.1)
Hizy - S = Ligy iy + Ly 23 + Lisy ey T Liehfowy
Hygy - Sx = Liay gy + Ligy oy + Lz + Ly o2y
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This shows that the base locus of the pencil S is a union of the curves L,y 1y, Loy 215 Liay, {3

Lo Lightr Lieh i Liontatb Ligpter Lishfoap 804 Ligy oy.2)-

Observe that Sy = Hy, ;3 + S, where S is an irreducible cubic surface in P3 that is given by
xzt + yzt + 22y 4+ xy? + 2yz = 0. On the other hand, if A # —1, then Sy has isolated singularities,
so that it is irreducible. Moreover, in this case, the singular points of Sy contained in the base locus
of the pencil S can be described as follows:

Py 2y 4y type Az with quadratic term y(z +t);

Py i34 type Ag with quadratic term z(z + t);

P{x}7{y}7{t} : type Ay with quadratic term zy + xt + yt;

Py qh 4210 type Az with quadratic term z(x + y) for A # 0, and type A5 for A = 0;
Py ity zwy s type Ay with quadratic term (z +y + 2)(z + 1) — (A + 1)2t;
Py fd g4y type Ay with quadratic term (z +y)(z +1) — (A + 1)xy.

Thus, it follows from Corollary 1.5.4 that the fiber () is irreducible for every A\ # —1. More-
over, the surface S_l has good double pOiIltS at P{y},{z},{t}, P{w},{z},{t}a P{m},{y},{t}, P{w},{y},{z},
Py ity {eyys and Py 141 (.- Furthermore, it is smooth at general points of the curves Loy iy
Liaytzp Liat iy Liwd ey Loyt Lian oy Loy ety Liohiaty Liod oy a0d Lty (ay,2)- This
gives [f~1(—1)] = [S_1] = 2 by (1.8.3) and Lemmas 1.8.5 and 1.12.1 and confirms (V) in the Main
Theorem, since h%2(X) = 1.

To verify ({) in the Main Theorem, we may assume that A # 0, —1. Then the intersection matrix
of the curves L{w}{z}, L{m},{t}a L{m},{z,t}a L{y},{t}7 L{y},{z,t}7 L{z},{m,y}v and H)\ on the surface S)\ is
given by

Liayizy Ly Loyt Lo Lodies Liddfewy i

Liys [ —1/2  3/4 1/2 0 0 12 1
Lyn| 3/4 =3/4  1)2 1/2 0 0 1
Liyeew| 172 172 —1)2 0 1/2 0 1
Liyn| O 1/2 0 —3/4  1)2 0 1
Linieny| 0 0 1/2 12 —1/2 0 1
Ligem| 1/2 0 0 0 0 ~-1/2 1
m\ 1 1 1 1 1 1 4

The rank of this matrix is 6. Thus, using (2.23.1), we see that the intersection matrix of the curves

Liayys Liay oy Loyt Ly deys Lyt Lieyiny Loy ey Ly ey Ly fowys and L oy 2)
is also of rank 6. But rk Pic(Sk) = rkPic(Sk) + 12. This shows that (%) holds, so that (<)) in the
Main Theorem also holds by Lemma 1.13.1.

Family 2.24. The threefold X is a smooth divisor in P2 x P2 of bidegree (1,2), which implies
that h'2(X) = 0. A toric Landau-Ginzburg model of this family is given by the Minkowski
polynomial 411, which is

Ty r Yy oz 1 1
—t+rz+yt+tz+-—+-+-+-+—-.
z z T Yy Yy

Then the pencil S is given by the equation
a:2y2 + :1:2yz + yzxz + z23:y + :1:2yt + y2tz + 22zt + t2xz + tzyz = Axyzt.
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Moreover, the base locus of this pencil consists of the lines Ly 1y, Loy 21, Liayieys Liyy 2}
Ly Lar vty Lightz0p Lizyguays Ly ieys and Ly (a,z), because
Higy - S3= Liay ) + Loy oy + Loy ey + Liad gyt
Hyyy 53 = Ly wy + Ly £y + L + Ligd 2 (2.24.1)
Hizy - S3= 2Ly 1 + Ly + Liey

Hyy - Sx = Ligy 1y + Ligy ey + Ly ey + Lty fo2)-

Here, as usual, we assume that \ # oo.
For every A € C, the surface Sy has isolated singularities, so that Sy is irreducible. Its singular
points contained in the base locus of the pencil § can be described as follows:

Py 21,40y type Ag;

Py ey type As with quadratic term z(y + t) for A # —2, and type A4 for A = —2;

T +y);

y+z+t) for A # —2, and type Ay for A = —2;

A+2)z —y—t) for A # —2, and

P{z},{y},{z}i type Ao with quadratic term z
P{y},{z},{t}: type As with quadratic term y

—~ o~ o~ =

Proy 1 4y,0y 0 type Ag with quadratic term z
type Ag for A = —2;
[1:1:—1:0]: smooth point for A # —1, and type A; for A = —1.
Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.

To verify ({) in the Main Theorem, we may assume that X\ ¢ {—1,—2}. Then the intersec-
tion matrix of the curves L{m}’{z}, L{w},{t}a L{z},{y,t}7 L{y},{t}7 L{y},{z,t}7 L{t},{z,z}7 and H) on the
surface S is given by

Ly izy Ly Liarwsy Linde Loz Lifezy Ha

Lisyqy [ —1/6 1/2 1/3 0 0 1/2 1
Len | 172 =3/4 12 1/4 0 /2 1
Ly | 1/3 1/2 -1/3 1/2 0 0 1
Liy}.{t} 0 1/4 1/2 —1/2 1/2 1 1
Ly 0 0 0 1/2 ~1 0 1
Ly ey | 1/2 1/2 0 1 0 -3/2 1
Hy 1 1 1 1 1 1 4

The rank of this intersection matrix is 7. Thus, using (2.24.1), we see that the rank of the intersection
matrix of the curves Lizy ), Liay 2y Loty Loty Lhinys Liaddwtys Ligdeays Lz fways
L gy,2}, and Ly ¢, .1 on the surface Sy is also 7. On the other hand, we have rkPic(Sk) =
rk Pic(Sk) + 11. Hence, we see that (%) holds. By Lemma 1.13.1, we see that ({») in the Main
Theorem also holds.

Family 2.25. In this case, the threefold X is a blow-up of P along a smooth elliptic curve
that is an intersection of two quadrics. This shows that h%?(X) = 1. A toric Landau-Ginzburg
model of this family is given by the Minkowski polynomial 198, which is

yz x 1 1 1
r+y+z+—+-—-—+-—-—+-—+—.
T z Yy T Yz

Thus, the pencil of quartic surfaces S is given by the equation
22yz + yiez + ayz? + 22t + 22yt + 2at® 4 yat® + ot = \ayst.

As usual, we assume that \ # oco.
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Let C; be the conic in P? that is given by o = yz + ¢ = 0, and let C3 be the conic in P? that is
given by z = zy 4+ t> = 0. Then

Hygy - Sx = Liay (g + Liay (23 +C1,
Hyyy - Sx = Ligy qyy + 2Ly 000 + Ly 201

(2.25.1)
Hzy - Sh = Ligy, 23 + Lizy oy + Co

Hin - Sy = Ligy (o + Lispin + Loy + Lty o2y
This shows that the base locus of the pencil S consists of the curves Ly oy, Liay (23 Liyy )

Ly op Lty Liny e wys Lt fezys C1, and Co
To describe the singularities of the surfaces in the pencil S, observe that

S—1:Q+Q7

where Q is an irreducible quadric surface given by yz + xt + zz = 0 and Q is an irreducible quadric
surface given by yz + xy + t> = 0. Thus, the singularities of the surface S_; are not isolated. On
the other hand, if A # —1, then the surface Sy has isolated singularities, so that it is irreducible.
Moreover, in this case, the singular points of S contained in the base locus of the pencil S can be
described as follows:

Py (2140 type Az with quadratic term y(z +t);
Py 2140y : type As with quadratic term z(x + 2);
Py ey type Ay with quadratic term y(z + y);
Py ity {z2y . type Ay with quadratic term zy + yz — (A + 1)yt + t2.

By Corollary 1.5.4, we have [f~1(\)] = 1 for every A # —1. Moreover, the points Py 214
Py 23,463 Play,tyy, 46y and Py ga.2y are good double points of the surface S—1. Furthermore, the
surface S_l is smooth at general points of the curves L{x},{y}? L{:c},{z}? L{y},{t}’ L{z},{t}’ L{y},{z,t}’
Lin geats Lty fa,2)> C1, and Co. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that
[f~1(—=1)] = [S_1] = 2. This confirms (V) in the Main Theorem, since h'?(X) = 1.

To verify ({) in the Main Theorem, we may assume that A # —1. Then, using (2.25.1), we see
that the intersection matrix of the curves L{z},{y}v L{x},{z}7 L{y}7{t}, L{z},{t}a L{y}7{z7t}, L{t},{x,y}7
L4y (2,2}, C1, and Co on the surface Sy has the same rank as the intersection matrix of the curves
Lz} o Loy zp Lihizay Ly oy Lo a2y, and H, which is given by

Ly Ledntzy Lz Lingewy Linfezy Ha

Ly [ —4/5 1 1 3/5 0 1
L | 1 —2/3 0 0 /3 1
Lopen | 1 0 -1 0 0 1
Lipqeny | 3/5 0 0 —6/5 1 1
Liyony| O 1/3 0 1 —-2/3 1
m\ 1 1 1 1 1 4

The rank of this matrix is 5. On the other hand, using the description of the singular points of
the surface Sy, we conclude that rk Pic(Sk) = rkPic(Sk) + 13. Hence, we see that (%) holds. By
Lemma 1.13.1, we see that ({) in the Main Theorem also holds.

Family 2.26. In this case, the threefold X is a blow-up of the threefold V5 along a line (see

family 2.14). Then h'2(X) = 0. A toric Landau-Ginzburg model of this family is given by
y 1 11 x
-+ -—+ty+z+-—+-+xr+—,
T T z Yy yz
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which is the Minkowski polynomial 201. The quartic pencil S is given by
y2zt + t2yz + yzmz + z2xy + tzxy + 22z + xzyz + 22t? = Azyzt.
Suppose that A # co. Then

Hizy - Sx=Ligy g + Lo oy + Lyt + Lioptutys
Hyyy - Sx = Ligpqyy + 2Ly 0 + Liyhfoap (2.26.1)
Hizy - Sx = Ligy 23 + 2Ly + Liay fop
Hyy - Sy = Ligy 0 + Ly + Lyt + Loy
Thus, the base locus of the pencil S consists of the lines Ly 1y, Liay 2y Liad gy Liay vt}
Ligy i Liyptosb Liap i Lizpgowp 20d Lig goy o)
For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:
Py 14217 type Ag with quadratic term (z +y)(z +2) for A# —1, and type Az for A= —1;
Pray o), 11y 0 type Ag with quadratic term zy;
Py 23400 type Ag with quadratic term z(z +);
Py} (epqnyt type Ay
Py ity 4wy type Ag with quadratic term y(z+y+z— At) for A#0, and type Az for A =0;
Piy it {ey): type Ag with quadratic term z(z +y + 2 —t — At).

Then [f~1(A\)] =1 for every A € C by Corollary 1.5.4. This confirms (¥) in the Main Theorem.

By Lemma 1.13.1, to verify ({) in the Main Theorem, we have to prove (%). Observe that
the intersection matrix of the lines L{:c},{y}v L{z},{z}v L{:c},{t}7 L{x},{y,t}7 L{y},{t}7 L{y}V{LZ}, L{z},{t}7
Ly qayys and Ligy 14421 on the surface Sy has the same rank as the intersection matrix of the
curves Liay (> Lizy ey Lapdwap Luhdash Diapdewd Dty dayeys and Ha, since

Ligy gy + Loy 2y + Loy ey + Liab qwaty ~ Loy oy + 2040 + Lighfa2)
~ Loy 2y T 200y 00 + Lisy oy ~ Liop ey + Dby + Lisn e + Ly {ay,2y ~ s

which follows from (2.26.1). On the other hand, if A # 0,—1, then the intersection matrix of the
curves L{z},{t}a L{z},{t}7 L{x}v{yvt}7 L{y}7{$72}7 L{z},{x,y}7 L{t}V{Ly’z}, and H)\ on the surface S)\ is
given by

Ly iy Lo Lehwe Lodiesr Lidfewy Ligfzw=zy Ha

Ly (—7/121/3 3/4 0 0 1 1
Ly | 1/3 —1/6 0 0 2/3 1/3 1
Liay gy | 3/4 0 —5/4 0 0 0 1
Liptay |0 0 0 -2/3 1/3 1/3 1
Lispgewy | O 2/3 0 1/3 ~2/3 1/3 1
Ly ey |1 1/3 0 1/3 1/3 -2/3 1
Hj 1 1 1 1 1 1 4

The rank of this matrix is 6. But rk Pic(Sy) = rk Pic(Sy) 4+ 12. We conclude that (%) holds, so
that ({) in the Main Theorem holds by Lemma 1.13.1.
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Family 2.27. In this case, the threefold X is a blow-up of P? in a twisted cubic, so that
h'2(X) = 0. A toric Landau Ginzburg model of this family is given by the Minkowski polyno-
mial 70, which is

z 1 1 1
Tyt o4+ —+ —.
z x Yz xYy
The quartic pencil § is given by the equation
2Pzy + yPzx + 2oy + 2%ty + Py + e+ 132 = dayet.
Suppose that A # co. Let C be the conic in P? that is given by z = xzy + t2 = 0. Then
Hizy - Sx = Ligp oy + 2Lay, (0 + Liay s
H . S)\ - 3L + L xT,2 0
{y} {y}{t} {vhiz,z} (2.27.1)
Hizy - Sx = Liaygoy + Liap ey +€

Hyy - Sy = Liay 0 + Ly + Lyt + Loy
Thus, the base locus of the pencil § consists of the curves Lysy e, Liay oy, Ligdqeys Lizy gy

Liay w1y Lig)daep Lty {2, and C.
For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y}7{t}: type Ao with quadratic term xy;
Py 2340y type As with quadratic term zz for A # —1, and type Ag for A = —1;
Py (21 .4ey 0 type Ao with quadratic term y(z + t);
Pray 1y 4.2y type Ay
P{y},{t},{x,z}: type Az with quadratic term y(z +y + 2z —t — At) for A # —1, and
type Ay for A = —1.

By Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (©) in the Main Theorem.

Lemma 2.27.2. Suppose that A # —1. Then the intersection matriz of the curves Ly (1},
Lizy ity Liyyde.z)> Lizy ey, and Hy on the surface Sy is given by

Liayy Dadwty Doz LDeepqe Ha

Liyin [0 2/3 0 1/6 1
Lo | 2/3  —4/3 0 0 1
L] 0 0 —5/4 0 1

Liyan| 1/6 0 0 ~1/2 1

m\ 1 1 1 1 4

Proof. The entries of the last row and the last column in the intersection matrix are obvious.
To find its diagonal entries, we use Proposition A.1.3. For instance, to compute L%w}, e observe that
the only singular points of S\ contained in the line L,y 14y are the points Py 2y 11y Plat.fy) )
and P{:c},{t}7{y7z}' Using Remark A.2.4 with § = S\, n =15, O = P{x},{z},{t}v and C = L{:c},{t},
we see that C' does not contain the point G; N G. Thus, it follows from Proposition A.1.3 that
L%x}{t} = 0. Similarly, we see that L%z}’{y’t} = —4/3, L%y}{x’z} = —5/4, and L%Z}{t} =—-1/2.
Note that Loy gy 0 gy oy = Kahtuty O Liepity = Hupdozy 0 ey = @, 80 that

Ly wy - Litdazy = Liobwty - Dby = Db ey - Ly gy = 0-
Similarly, we see that L,y 4y - Liyy (2,2} = 0
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To find the remaining entries of the intersection matrix, we use Proposition A.1.2. To begin with,
let us compute L{x},{t} : L{z},{t}' Observe that L{z},{t} N L{z},{t} = P{x},{z},{t}' Using Remark A.2.4
with S =Sx, n =5, 0 = Py 140y, C = Lyay g1y and Z = Ly,y 14y, we see that none of the curves
C and Z contains the point G; N G5. Moreover, since the quadratic term of the surface Sy at the
singular point Py, ¢y 14} s 22, we see that either C-Gi=72-Gs=1o0rC-Gs=2-G; = 1.
Thus, using Proposition A.1.2, we conclude that L, 1y - L.y 1y = 1/6.

Finally, let us compute L{:c},{t} . L{z},{y,t}' Observe that L{x},{t} N L{:c},{y,t} = P{:c},{y}7{t} and
P2y {yy{ey 1s a singular point of Sy of type As. Let us use the notation of Subsection A.2 in the
Appendix with S = Sy, n =2, O = P{m},{y},{t}, C = L{w},{t}a and Z = L{w},{y,t}' Then 7 is the
blow-up of the point O, and either both curves C and Z intersect (1, or they intersect the curve Gs.
Thus, we have L,y 1) - Ly}, {yy = 2/3 by Proposition A.1.2. [

Using (2.27.1), we see that the intersection matrix of the curves Ly 12y, Liay gy Ligyqers
Ly Liay ey Liyy{ezyr Lity{o,y,z), and C on the surface Sy has the same rank as the in-
tersection matrix of the curves Ly o1, Liay (vt Liy){e,2)> Liz).4ey> and Hy. But the matrix in

Lemma 2.27.2 has rank 5. Thus, since rk Pic(Sk) = rk Pic(Sk) 4+ 12, we conclude that (%) holds.
Hence, it follows from Lemma 1.13.1 that () in the Main Theorem holds.

Family 2.28. In this case, the threefold X is a blow-up of P? in a smooth plane cubic curve,
which implies that h'?(X) = 1. A toric Landau Ginzburg model of this family is given by the
Minkowski polynomial 68, which is

T T Y 1 vy
T+ S -+
z  yz oz y T
The quartic pencil S is given by
a:2yz + mzyt + 22?4+ myzt + a:y22 + z2t? + y22t = \xyzt.
Suppose that A # co. Let C be the conic given by z = zy + xt + 32 = 0. Then
Hizy - S3 = 2Ly ) + Liad (o) + Loy o)
Hyyy - 53 = Lia} y) + 2L4), 53 + Ligh a2}y (2.28.1)
Hizy - Sx = Ligy (o3 + Loy +6
Hyy - 53 = Liay ey + Ligy (o + Liapy + Loy oy
Thus, the base locus of the pencil S consists of the curves Ly, rv, Liay (2} Liev.qers Liyy ey
Ly p Lightesr Lty {2y, and C.
If A # —1, then S) is irreducible, it has isolated singularities, and its singular points contained
in the base locus of the pencil § can be described as follows:

Py i {zy ¢ type Ay with quadratic term z(z + 2);

Py ey type Agq with quadratic term zy;

Py 2140yt type Az with quadratic term ¢(z + 2);

Pry iz type Ay with quadratic term yz + yt + t2;
Py (61 4e,2) 0 type Ag with quadratic term y(z + 2 — ¢ — At).

Thus, if A # —1, then the fiber f~}(\) is irreducible by Corollary 1.5.4. On the other hand, we have
S_1 = H, .y + 8, where S is an irreducible cubic surface in P3 given by zyz + zyt + xt? + y*t = 0.

Nevertheless, the points Pry, (2} 1), Playfz346) Plaptuhiey Pladuhizp 204 Plyy ) o2y are good
double points of the surface S_;. Moreover, the surface S_; is smooth at general points of the
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curves Ligy gy} Liapgop Loy ep Lihtey: Lishiey Ligp e Ligfazy, and €. Thus, using (1.8.3)
and Lemmas 1.8.5 and 1.12.1, we conclude that [f~1(—1)] = [S_1] = 2. This confirms (¥) in the
Main Theorem.

Now let us verify (<)) in the Main Theorem. By Lemma 1.13.1, it suffices to show that equal-
ity (%) holds. If A # —1, then it follows from (2.28.1) that the intersection matrix of the curves
Lighigp Liariep Loty Lighaey Liapiny Lightaisdr Ly fo,zp, and C on the surface Sy has the
same rank as the intersection matrix of the curves L,y cov, Ly 1y Liyy {6y, Lizy{ey, and Hy. If
A # —1, then the latter matrix is given by

Ly vy Ly Loy Ly Ha

Liay (v} 0 3/5 2/5 0 1
Lay| 3/5  —9/20 1/5 3/4 1
Lian | 2/5 1/5 -1/30 1/2 1
Lizy, 0 3/4 /2  -3/4 1
H), 1 1 1 1 4

Its rank is 4. On the other hand, it follows from the description of the singular points of the
surface S that rk Pic(Sk) = rk Pic(Sk) + 14. Thus, we can conclude that (%) holds, so that (<)) in
the Main Theorem also holds.

Family 2.29. In this case, the threefold X is a blow-up of a smooth quadric threefold in P4
along a conic. This implies that h2(X) = 0. A toric Landau-Ginzburg model of this family is

given by the Minkowski polynomial 71, which is
zx y 1 1
Tyt 4+ S+ -+ =
z oz oy =z
The quartic pencil § is given by

2?2y + yza + 2yx + 2Pty + Yo + Pra + tzy = Avyet.

Its base locus consists of the lines L{w},{y}7 L{m}’{z}, L{w},{t}a L{y}{z}, L{y},{t}7 L{z},{t}7 L{z},{x
and Ly 15,2}, because

Y}

Higy - Sx = Lia} {y} + Lia} {2} + 2L1a) 1)
Hyyy - Sx = Ligy qyy + Liyy 2y + 201000
Hiy - Sy = Ligy oy + L o3 + Ly gy + Lz foyy

Hyy 83 = Ligp o + Lyt + Lisrioy T Lior ooy
Here, as usual, we assume that A # oo.

For every A € C, the surface Sy has isolated singularities, so that it is irreducible. Its singular
points contained in the base locus of the pencil S can be described as follows:

Py yizy: type Ay with quadratic term z(z +y) for A # 0, and type As for A = 0;
Pray oy, 1ey 0 type Ag with quadratic term zy;
Ppay (210 type Ag with quadratic term @ (z + t);
P{y},{z},{t}3 type Ag with quadratic term y(z + t);
Play {2y type Ars
Py ey type A
Pea g qeyy: type Ay for A # —1, and type A for A = —1.

By Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (©) in the Main Theorem.
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If X #£ 0, —1, then the intersection matrix of the lines L{w},{y}7 L{w}{z}, L{m}’{t}, L{y}{z}, L{y},{t}7
Ly iy Lizy ey, and Ly g2..2y on the surface Sy has the same rank as the following intersection
matrix:

Lyt Haydzy Lindsy By M
Lizyqoy [ —1/4 1/4 1/4 0 1

Ly | 174 =7/12 3/4  1/3 1
Lyea| 174 3/4  —7/12 1/3 1
Lyl 0 /3 1/3  -1/6 1

m\ 1 1 1 1 4

This matrix has rank 5. On the other hand, we have rkPic(Sy) = rkPic(Sk) + 13. Thus, we
conclude that (%) holds, so that (<) in the Main Theorem also holds.

Family 2.30. In this case, the threefold X is a blow-up of P? along a conic, so that A%2(X) = 0.
A toric Landau—Ginzburg model of this family is given by the Minkowski polynomial 22, which is

T 1 1 =z y
— ettt
yz y z x
The pencil S is given by the equation
222 4 22yz + 22z + t2yx + 2Pyt + P2t = \ayst.
Suppose for simplicity that A # co. Then
Hizy - S = Ly g + Lot oy T Liapt + Liadqyeh
Hyyy - Sx = Ligp oy + 2Ly 0 + Ligh (a2} (2:30.1)
Hizy - S3 = Ligy () + 2Ly 0 + Liep fod
Hygy - Sx = 2Lgay oy + Ligp i + Lizp -
Thus, the base locus of the pencil S is a union of the lines L,y rv, Loy 21 Liay 16y Loy i
Loy ior Laptyep Ly gesps and Licy fa -
For every A € C, the surface Sy has isolated singularities, so that it is irreducible. Its singular
points contained in the base locus of the pencil S can be described as follows:
Py ey g type Ay
Pray 21,000 type A4 with quadratic term zt;
Py iy ey type Aq with quadratic term yt;
Py fh 4210 type Az with quadratic term x(z +y + z) for A # —1, and type Aj for A = —1;
Ploy {thiy.2} 1 type At
Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.

Let us verify () in the Main Theorem. If A # —1, then the intersection matrix of the curves
L{z},{y}v L{:c},{z}7 L{y},{x,z}7 L{z},{x,y}7 and H)\ on the surface S)\ is given by

Ly ty Ledizy Liddesy Lizdfewy Ha

Lizy (v} -9/20 3/4 1/4 1/4 1
Layp| 3/4 0 —9/20 1/4 1/4 1
Ligeny| /4 1/4 —5/4 3/4 1
Liyeny | 1/4 1/4 3/4 —-5/4 1
Hy 1 1 1 1 4
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Observe that this matrix has rank 5. Thus, if A # 1, then the intersection matrix of the lines

Liayqwp> Diaytzp Dieygys Ligraeys Lty Daddved Liyhfezy and Lizy z) on the surface Sy
also has rank 5, because
Ligy gy + Loy 2y + Liar ey + Liad (w,ed ~ Loy iy + 2040 + Ly fa.2)
~ Ligy 2y T 200y 0 + Lz fagy ~ 2Lqay ey + Lggy gy + Lizy gy ~ Ha

on the surface Sy by (2.30.1). On the other hand, we have rk Pic(Sy) = rk Pic(Sy) + 13. Hence, we
see that (%) holds, so that (¢») in the Main Theorem also holds by Lemma 1.13.1.

Family 2.31. In this case, the threefold X is a blow-up of the smooth quadric threefold in P4
along a line. This shows that 2'2(X) = 0. A toric Landau-Ginzburg model of this family is given
by the Minkowski polynomial 20, which is

z 1 1
T+Hy+trt-+—4—.
y x Yz
The pencil S is given by the equation

22yz + ylez + 22yx + 2%tz + Pyz + e = Avyzt.
We suppose that A # co. Let C be the conic {y = 2z +t?> = 0}. Then

Higy 53 = Liay gy + Liad g2y + 2L (a1

Hpyy - 93 = Ligy gy + Ly +C, (231.1)
Hizy - S = Liay {2y +3L42) 1y

Hiy - S3 = Ligy gy + Ly + Lz + Ly ey

Therefore, the base locus of the pencil S consists of the lines Ly 1y, Liz) 21, Lie) ey Lyt iy
L{z},{t}v L{t}7{x,y7z}’ and the conic C.
For every A\ € C, the surface Sy has isolated singularities, so that it is irreducible. Moreover,
the singular points of S contained in the base locus of the pencil S can be described as follows:
Py gy 11y type As with quadratic term xy for A # 0, and type Ag for A = 0;
Py 10 type Ayq with quadratic term az;
P{y},{z},{t}: type Ao with quadratic term z(y + t);
P{z},{t},{x,y} . type Ag with quadratic term z(x +y + 2z — t — At);
Pay gy w2y type Ar.
In particular, every fiber f=1()\) is irreducible by Corollary 1.5.4. This confirms (V) in the Main
Theorem, since h%2(X) = 0.
Now let us verify ({) in the Main Theorem. If A # 0, then the intersection matrix of the curves

L{w},{y}a L{y},{t}, L{z},{t}a and H)\ on the surface S)\ is given by

Ly wy Liwyey Loy Ha
Ly [ —2/3 2/3 0 1

Lol 2/3 =12 13 1
Lyan| 0 /3 2/15 1
m\ 1 1 1 4
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This matrix has rank 4. On the other hand, if A # 0, then the intersection matrix of the curves
L{x},{y}v L{x},{z}? L{x},{t}? L{y},{t}’ L{z},{t}v L{t},{x,y,z}v and C on the surface S)\ has the same rank
as the intersection matrix of the curves L,y 1oy, L s Lz qey, and Hy, because

Liwy, iy} + Liay 2y + 20y 1y ~ Liayuy + Ly gy +C
~ Ligy 2y + 3Ly 1y ~ Ligy ey + Ly ey + Ly gy + Ly a2y ~ H

on the surface Sy by (2.31.1). Moreover, it follows from the description of singularities of the
surface Sy that rk Pic(Sk) = rkPic(Sk) + 14. Therefore, we conclude that (%) holds, so that ({)
in the Main Theorem also holds by Lemma 1.13.1.

Family 2.32. In this case, the threefold X is a divisor of bidegree (1,1) on P? x P2, so
that h?(X) = 0. A toric Landau Ginzburg model of this family is given by the Minkowski
polynomial 21, which is

1 1 1
r+yt+z+-—-+-—+—.
Yy x Yz
The quartic pencil S is given by the equation
22yz + yiez + 22yx + oz + Cyz + tH = hayst.

As usual, we suppose that \ # oo.
Let C; be the conic in P? that is given by x = yz + ¢ = 0, and let C3 be the conic in P? that is
given by y = xz 4+ t> = 0. Then

Hyy - Sy = 2Ly + Cq,
Hyp - Sy =2L gy T Ca,
{y} {y}h{t} (2.32.1)
Hyizy - Sy =A4Ley 0
Hyy Sy = Lgp o + Ly + Lisnir + L goyey-
This shows that the base locus of the pencil S consists of the curves L,y 1y, Liyy ey Lizy{e)
L{t},{m,y,z}v Cl, and CQ.
For every A € C, the surface S has isolated singularities, so that it is irreducible. Its singularities
contained in the base locus of the pencil S can be described as follows:

P{:L'},{y}{t}: type A4 with quadratic term xy for A # 0, and type Ag for A = 0;
Py 2,00 type A3 with quadratic term xz;
Pry iz type As with quadratic term yz;

Ploy it ipz}® type Ay

Pryy iy dezy: type A

Py ey type Ag with quadratic term z(z +y + 2 — At).

In particular, every fiber f=1()\) is irreducible by Corollary 1.5.4. This confirms (V) in the Main
Theorem, since h2(X) = 0.
To verify (¢) in the Main Theorem, we need the following result.

Lemma 2.32.2. Suppose that A\ # 0. Then the intersection matriz of the curves Ly 1y,
L g1y, and Hy on the surface Sy is given by
Ly Ly M
Liay.qey [ 1/20 1/5 1
Ly | 1/5 0 1/200 1
Hy 1 1 4
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Proof. To find L%x} e observe that the singular points of Sy contained in the line Ly,
are the points Py 12y, 111y Play fy1.{t}> a0d Plo) (1) {y,z}- These points are singular points of Sy of

types Ag, Ay, and A1, respectively. Applying Proposition A.1.3, we see that
3 4 1 1
2 _ _

Similarly, we find L%y} w = 1/20. Finally, observe that

Lz} O Ligr ey = Ploytuney-

Using Remark A.2.4 with S = S\, n =4, O = Py 1y, 13: € = Liay g1y, and Z = Ly 1, we see
that none of the curves C' and Z contains the point G N G4. Moreover, since the quadratic term
of the surface Sy at the singular point Py, 1 11y 18 2y, we see that either C-Gi=Z-Gy=1or
C-Gy=Z-Gy=1. Thus, using Proposition A.1.2, we conclude that L,y 11y Lyyy ey = 1/5. O

If A # 0, then the intersection matrix of the curves Ly ey, Ly 1y Lizyqeyr Lioy fay,2ys C1s
and Cz on the surface Sy has the same rank as the intersection matrix of the curves Ly 11y, Liyy (4}
and H), because

2Liay gy + G~ 2Ly + G2~ ALy ~ Liay o + Lyt + Lepin + L goey ~ Ha

on the surface Sy by (2.32.1). On the other hand, the matrix in Lemma 2.32.2 has rank 3. Moreover,
we have rk Pic(Sk) = rkPic(Sk) + 15. Hence, we see that (%) holds, so that () in the Main
Theorem also holds by Lemma 1.13.1.

Family 2.33. The threefold X is a blow-up of P? in a line, so that hM?(X) = 0. A toric
Landau—Ginzburg model of this family is given by the Minkowski polynomial 6, which is

x 1
rz+y+z+—+—.
z xy

The quartic pencil § is given by the equation
22yz 4 yPxz + Pyr + 2ty + P2 = Iyt
Suppose that A # co. Then
Higy S = Liay g2y + 3Lqay, (1)
Hyyy - S5 = Liyy 23 +3L4y1. 405
Hizy - 93 = 2Ly (o) + Lyt + Lizy o
Hyy - S3Liay.in + Ly + Lieyo + L ey

ThUS, the base locus of the pencil S consists of the lines L{z},{z}v L{x},{t}? L{y},{z}a L{y},{t}’ L{z},{t}’

and Ly (2,2}

Observe that the surface Sy has isolated singularities for every A € C, so that it is irreducible.
Moreover, the singular points of Sy contained in the base locus of the pencil S can be described as
follows:

Pray gy 16y 0 type Ag with quadratic term zy;
Py 10 type Ag with quadratic term xz;
Py 21,40 type Az with quadratic term y(z +t);
Py (43,4y,2) ¢ type Az with quadratic term z(x +y + 2z — At);
Py (61 4e,2) 0 type Az with quadratic term y(z +y + 2 —t — At).
Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.
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Lemma 2.33.1. The intersection matriz of the curves L,y 21, Ly (2}, and Hy on the sur-
face Sy is given by
Lizy =y Liwngzy Ha
L{z}’{z} —2/7 1 1
Lipany | 1 =5/4 1
H) 1 1 4

Proof. The only singular point of S\ contained in L,y 1.y is the point Pp, o4 gy Let us
use the notation of Subsection A.2 in the Appendix with S = Sy, n = 6, O = P 2y ), and
C = Lz} 13- Then it follows from explicit computations that C intersects one of the curves Gs
or G4. Then L%z}’{z} = —2/7 by Proposition A.1.3.

The only singular point of Sy contained in Ly ¢.1 is the point Ppy ey 1y Using Remark A.2.4
with S = S\, n =3, O = Py (21,413, and C = Ly 15y, we see that the curve C does not contain
the point G; N G3. Then L%y}’{z} = —5/4 by Proposition A.1.3.

Finally, observe that L{w}{z} N L{y}’{z} = P{m},{y},{z} and S) is smooth at P{w},{y},{z} Thus,
we conclude that L{x},{z} . L{y},{z} =1.

The intersection matrix of the lines L{:c},{z}7 L{z},{t}a L{y}7{z}, L{y}7{t}, L{z},{t}7 and L{t},{:c
on the surface S has the same rank as the intersection matrix in Lemma 2.32.2, because

Y2}

Hy ~ Liay 3 + 3Ly, 3 ~ Ly gy T304y 40
~ 2Ly o+ Ly oy + Ly ~ Liay gy T Lyt T Lisnin + L (o2

On the other hand, the matrix in Lemma 2.33.1 has rank 3. Moreover, it follows from the description
of singularities of the surface Sy that rk Pic(Sk) = rk Pic(Sk) + 15. Hence, we see that (%) holds,
so that (<) in the Main Theorem also holds by Lemma 1.13.1.

Family 2.34. One has X = P! x P2. We discussed this case in Example 1.13.2, where we
described the pencil § and its base locus. In this example, we also verified ({) in the Main Theorem,
so that now we will only check (©) in the Main Theorem.

If A 2 oo, then S), is irreducible, it has isolated singularities, and its singular points contained
in the base locus of the pencil S can be described as follows:

Py gy 11y type Aq with quadratic term zy;
Pray 21,000 type Ayq with quadratic term xz;
Pry it type Ag with quadratic term yz;
Py (63 4e,2) 0 type Az with quadratic term y(z +y + 2 — At);
P{Z}{t},{z,y}: type Ag with quadratic term z(x + y + z — At);
Play ity gy type Ar.
Then [f~1(\)] =1 for every A € C by Corollary 1.5.4. This confirms (U) in the Main Theorem.

Family 2.35. We have X = P(Op2 @ Opz2(1)). A toric Landau—Ginzburg model of this family
is given by the Minkowski polynomial 5, which is

T 1
r+y+z+—+ —.
yz
The quartic pencil § is given by
22yz + yPzx + Pyx + 222 + tPyz = Ayt

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



86 I. CHELTSOV, V. PRZYJALKOWSKI
Suppose that A # co. Then
Hizy - S\ = Liay ) + Loy f2) + 2Ly 43
Hyyy - Sx = 2Ly gy + 2Ly 109
Hpzy - Sx = 2Ly {2 + 2Ly (0
Hiy - Sx = Ligy iy + Ly i + Ly + Ly fayay-

ThUS, the base locus of the pencil S consists of the lines L{I},{y}7 L{:c},{z}v L{x},{t}? L{y},{t}’ L{z},{t}’

and L{t},{m,y,z}'

For every A € C, the surface S\ € § has isolated singularities. In particular, it is irreducible.
Moreover, its singular points contained in the base locus of the pencil S can be described as follows:
Payy)f=}: type Ag
Pray oy, 1ey 0 type As with quadratic term zy;
Py 2346y type As with quadratic term xz;
Py zpie type Ag;
Play ity dy.zy: type Ay
Py} ihdezy: tyPe Ag;
Playth oyt tyPE Ar
In particular, every fiber f=1(\) is irreducible by Corollary 1.5.4. This confirms (©) in the Main
Theorem, since h%2(X) = 0.
To verify (¢») in the Main Theorem, observe that the intersection matrix of the curves Ly, 1,

L{z},{z}v L{x},{t}? L{y},{t}v L{z},{t}’ and H)\ on the surface S)\ is given by

Ly wy Liadizy Leny Lo Ly Ha
Loy [ —1/6 1/2  1/3  2/3 0 1

Ly | 172 —1/6 1/3 0 2/3 1
Lo | 1/3 1/3  1/6 1/6  1/6 1
Ly | 2/3 0 1/6  -1/6  1/2 1
Lyl 0 2/3  1/6  1/2 —1/6 1

m\ 1 1 1 1 1 4

This matrix has rank 3. On the other hand, the intersection matrix of the lines Ly, ¢y, Lizy (21,
Lizy iy Ly qys Liarqny> and Ly 14 2y on the surface Sy has the same rank as the intersection
matrix of the curves L{m},{y}, L{w},{z}a L{w},{t}a L{y},{t}a L{z},{t}, and H), because
Hy ~ Ligy g + Ly 41 + 204040 ~ 2L} qu) + 2L 1)
~ 2Liay oy * 2L 40y ~ Loty + Lyt F Leptn F Loy

Moreover, we have rk Pic(Sy) = rk Pic(Si) + 15. Therefore, we conclude that (%) holds, so that ({)
in the Main Theorem also holds by Lemma 1.13.1.

Family 2.36. In this case, we have X = P(Op2 @ Op2(2)), so that h12(X) = 0. A toric
Landau—Ginzburg model of this family is given by the Minkowski polynomial 7, which is
2
1

T
THy+z+—+=.
Yz T
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The pencil S is given by the equation
22yz 4+ y?zx + 2Pyr + 23t + t2yz = dyzt.
Suppose that A # co. Then

Higy - Sx = Lia} {y} + Lia} {2} + 2L1a) 1)

Hypyy - Sy = 3Ly oy + Ly gy (2.36.1)

Hyzy - Sx = 3Lgay (23 + Lizy gy
Hgy - Sx = Ligy 1y + Liygy oy + Lizy (o + Ly fay.2)-

Thus, the base locus of the pencil § consists of the lines L,y co1, Loy (21 L) g0 Ligy 1oy Lizy ey

and Ly fzy,2}-
For every A € C, the surface Sy has isolated singularities, so that it is irreducible. Moreover, its
singular points contained in the base locus of the pencil § can be described as follows:

Py ey type Ag with quadratic term xy;
P{x},{z},{t}i type Ag with quadratic term xz;

Pray it v,z type Ay
Py 1421 type Ag with quadratic term yz.

In particular, every fiber f~1()) is irreducible by Corollary 1.5.4. This confirms (¥) in the Main
Theorem, since h%2(X) = 0.

On the surface Sy, the intersection matrix of the lines Lixy ey, Loy 2y Liovqeys Liyyieys
Ly 1y and Ly g4 -1 has the same rank as the intersection matrix of the curves L,y 11, Liay (2}
and H), because

Hy ~ Ligy ) + Liay (23 + 2Ly (0 ~ 3L4ayqyy + Liyy o
~ 3Lyay 2y T Lz iy ~ Loy + Ly (o + Liey gy + L o2}

These rational equivalences follow from (2.36.1).
Lemma 2.36.2. The intersection matriz of the curves L,y 1y, Lz (21, and Hy on the sur-
face Sy is given by
Loy vy IHargzy  Ha
Ly [ 2/21 1/3 1
Lisyy | 1/3 2/21 1
Hy 1 1 4

Proof. By definition, we have Hf =4 and H) - Lz} 1yy = Hx - L{z) ) = 1. Note that

Liwy, iy O Liay (23 = Pla} (o2}

Recall that P,y 1431z} is a singular point of Sy of type Aa. Then one gets Ly 1y - Ligy q2) = 1/3
by Proposition A.1.2.

We claim that L%y}’{t} = —8/7. Indeed, the point P,y 1,y 11 is the only singular point of Sy
that is contained in Ly, 1,y Using Remark A.2.4 with S = Sy, n = 6, O = P,y 14},11, and
C = Lyyy {1y, we see that C does not contain the point G; N Gg, because the quadratic term of the
surface Sy at the point Py 1 4y is zy. Thus, we have L%y}{t} = —8/7 by Proposition A.1.3.
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Since L%y}’{t} = —8/7, we get Lz 141 - Ly gy = 5/7, because

8
L= Hy- Ly 1y = BLiay vy + D) - Liwp(n = 3L oy Lty — =

Since L{w},{y} : L{y},{t} = 5/7, we get L%z},{y} = 2/21, because

5
L= Hy- Ligy gy = Ly oy + Liyptey) * Lap ity = 33y + 5

. . 2 _
Similarly, we see that L{z},{t} =2/21. O

The matrix in Lemma 2.36.2 has rank 3. Moreover, we have rkPic(Sy) = rk Pic(Sy) + 15.
Hence, we see that (%) holds, so that ({>) in the Main Theorem also holds by Lemma 1.13.1.

3. FANO THREEFOLDS OF PICARD RANK 3

Family 3.1. In this case, the threefold X is a double cover of P! x P! x P! branched over a
smooth divisor of tridegree (2,2,2), which implies that h%?(X) = 8. The toric Landau-Ginzburg
model is given by the Minkowski polynomial 3873.4, which is the Laurent polynomial

x z  2x 2 T
syt By 2 2 T
z oz Y x Y x Yz

Y 2 22 32 32 3 3 1 1

+-+—-+--+t——+—+——+-"+-—+—+ —

z  xz Y Y Yy ox Yz xz

The quartic pencil § is given by
22yz + vz + 22ty + yia + 2222 + 32%yx + 22 4 222tz + 2%tz + 222 + 3tyx
+ 122 + 2Ba 4 2By 4+ 32%w + 322y + 3t22x + 3tPyz + P+ 3y = dayet.

This equation is symmetric with respect to the permutations of variables x <> y and z < t.
To prove the Main Theorem in this case, we may assume that A # oco. Then

Higy - Sx = Lia} {y + 204} {20y + La} fy.2.0)

H S)\:Lx + 2L 2 + L T,2,t}
{y} {=}.{y} {y}{zt} {yt{z,2,t} (3.1.1)

Hizy - Sy = Ly + Ly oty +C1,
Hyy - Sx = Lizy gy + Ligy a2y + Co,

where C; is a smooth conic given by z = zy + a2t + yt = 0 and Cy is a smooth conic given by
t =xy + xz + yz = 0. Hence, since \ # oo, we have

SxSo0 = 2Liay gy + 2Liay g + 2Lay oy + 2L e
4 L{m},{y,z,t} + L{y},{m,z,t} + L{Z},{m7y,t} + L{t},{z,y,z} +C1 +Co.

Let C1 =C1, C2 =0y, O3 = Lygy gy, Ca=Lizp gy C5 = Ligy oy Co = Ly 20y 7= Liay qyep
Cs = Liyy {a,2,03> Co = Lizy (o), and Cro = Ly 14 -1 These are all base curves of the pencil S.

For every A # —6, the surface S has isolated singularities, so that Sy is irreducible. On the
other hand, we have S_¢ = Hy,pn + Hy, . + Q, where Q is an irreducible quadric given by
ry + xz +yz + ot + yt = 0. This quadric is singular at the point P,y (. ¢y, which is also contained
in the planes Hy, sy and Hy, - 4.
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If A # —6, then the singularities of Sy that are contained in the base locus of the pencil S are
all du Val and can be described as follows:
z+t)(y+z+1);
z4+t)(x+ 2z +1);
A+ 6)xy;
A+6)zt — (z+t)(x+y+2z+1t).

P{y},{z},{t}: type As with quadratic term
P{x},{z},{t}: type As with quadratic term
Proy )4z type As with quadratic term

~ o~ o~ o~

Py (o} : type Ay with quadratic term

In the notation of Subsection 1.8, the points P{y},{z},{t}7 P{w},{z},{t}a P{w},{y},{z,t}, and P{z},{t},{x,y}
are the fixed singular points of the quartic surfaces in the pencil S.

By Corollary 1.5.4, the fiber f~1(\) is irreducible for every A # —6. Therefore, the assertion ()
in the Main Theorem follows from

Lemma 3.1.2. One has [f"}(—6)] = 9.
Proof. Recall that [S_g] = 3. Moreover, we have

M;®*=M;®=2 and M;®=..=M°=M;°=...=M; =1

But m; = mo = my = ... = Mg = 1 and ms = ... = Ing = 2, and the points P{y},{z},{t},
Py 23,46y and Ppy (41 (2} are non-isolated ordinary double points of the surface S_g. Thus, it
follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

—1
[fH(=6)] =5+ DP{z} (whizty

Let a1 : Uy — P2 be a blow-up of the point Pray 3,426y Then D! = S!y+ 2E;. The surface E;
contains two base curves of the pencil S!. Denote them by C; and C{,. Then mj; = mjs = 2 and
—6 -6
M =My, =2
Let as: Us — U; be the blow-up of the point Clll N 0112. Then D%G = 536 + 2E% + Es.
The surface Eo contains two base curves of the pencil §2. Denote them by CZ; and CZ,. Then
-6 —6
M3 =M/’ =2.
Note that there exists a commutative diagram

for some birational morphism . Moreover, the only base curves of the pencil S that are mapped

to the singular point P, (1 (..} are the curves 011, . 014 Furthermore, our computations also

= 2. Thus, it follows from (1.10.9) and Lemma 1.10.7 that D3°

=4, so
Py vy {0 =

give AP{ IROINER)!
that [f~1(—6)] =9. O

If A # —6, then the intersection matrix of the curves L,y cr, L gy Loy iz Ligy gz
Ligy g2y Ligy a2ty Ly {owty Lty {o,y,2)> C1, and Ca on the surface Sy has the same rank as
the intersection matrix of the curves L{I},{y}? L{z},{t}’ L{x}v{zvt}’ L{y},{z,t}’ L{z},{z,y,t}v L{t},{x,y,z}’
and H)y. This follows from (3.1.1). On the other hand, if A # —6, then

Ligy {26y + Ligy {oty T 20021 41y ~ Ha
on the surface Sy, because Hy, 11 - Sx = Lz 2. + Ly f2.) + 2Lz} (13- Similarly, if A # —6, then
Ly ety T Ly oty T Ly fowty T Lipfow,sy ~ H
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Using this, we can easily compute the intersection form of the curves L,y cv, Loy iy Liay {243
Loy 26y Ly fey,tys Lity {2y} @and H)y on the surface Sy. If A # —6, it is given by the following
matrix:

Ly oy Liarin Lioddzo Loz Ldfewr L{fewszr Hr

Ligy .y [ —1/2 0 1/2 1/2 0 0 1
Lizy ity 0 0 1/2 1/2 1/2 1/2 1
Lizy =y | 1/2 1/2 —-1/6 1/6 0 0 1
Liyy =y | 1/2 1/2 1/6 —-1/6 0 0 1
Lispgewny [0 1/2 0 0 -3/2 1/2 1
Lipgawy |0 1/2 0 0 1/2 -3/2 1
Hy 1 1 1 1 1 1 4

The rank of this intersection matrix is 5. Moreover, we have rk Pic(Sy) = rk Pic(Sy) + 12. Hence,
we see that () holds, so that ({>) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.2. We already discussed this case in Example 1.8.6. Because of this, let us use the
notation of this example. Note that h''?(X) = 3 and the defining equation of the surface S is
symmetric with respect to the permutations = <> y and z < t.

To prove the Main Theorem in this case, we may assume that A # oco. Then

Higy - Sx = Ligy 1y + Liay gy, T C1s
Hyyy - Sx = Liygy gy + Lyt a2y + Co o)
H{z} . S)\ = L{z},{t} —+ 3L{z},{:c,y}7

Hyy - Sx = Ligy 1y + Ly ey + Lizy o + L a2y

For every A # —6, the surface S) is irreducible, it has isolated singularities, and its singularities
contained in the base locus of the pencil S can be described as follows:

Py 14z ¢ type As with quadratic term 2(x +y + 2);
Py (43,4y,2) ¢ type Az with quadratic term x(x+y+z+ (AN+6)t);
Py {6 .4z,2) ¢ type Ag with quadratic term y(z +y + 2 + (A 4 6)t);
Py it ey type Az with quadratic term z(z +y + 2 + (A + 6)t).

By Corollary 1.5.4, one has [f~1(\)] = 1 for every A\ # —6.

Recall that S_¢ = Hy, , .} + S, where S is a cubic surface whose singular locus consists of the
points Pry 6301 (243 and Py 1501 1443 Observe also that Hy, , .3 NS consists of the line L) 1
and an irreducible conic & +y + z = 2y + t>. Then S_g has good double points at Pray iy iz
Py tr4w2p Py ity fa,2)> and Py 4y 12,3 Hence, using (1.8.3) and Lemmas 1.8.5 and 1.12.1, we
get [f71(—6)] = 4. This confirms (V) in the Main Theorem.

Let us verify () in the Main Theorem. We may assume that A # —6. Then
Ligh iyt + Loy + Lisbfea ~ Liah iy + Ligntn + Lz
on the surface Sy. This follows from (3.2.1) and the fact that

Higyzy 95 = Liayqy.2 T Ligyfo2r T Lizy gt + Loty fo,2)-
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Using this, we can compute the intersection form of the curves Ly 1, Ly .21 Ligd g6y Lyt g,z
L.y 11y, and H) on the surface Sy. Namely, it is given by the following matrix:

Ly iy Diayiwsy Ly Liwddesy Lizygy Ha

Liasyqoy [ —4/3 2/3 1 0 1 1
Lz} {y.2} 2/3 -1/2 0 5/6 0 1
Lopan| 1 0 —4/3 23 11
Ly} fz2} 0 5/6 2/3 -1/2 0 1
Lipqn| 1 0 1 0 —5/4 1
H,y 1 1 1 1 1 4

The rank of this matrix is 5. Thus, if A # —6, then it follows from (3.2.1) that the intersection
matrix of the curves Liay 11y, Lyy g1y Lty Lohuzp Lutdesp Liaygaw Ko doays 1o and Co
on the surface Sy also has rank 5. But rkPic(Sy) = rk Pic(Si) 4 12. Hence, we sce that (%) holds,
so that (<) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.3. The threefold X is a divisor of tridegree (1,1,2) on P! x P! x P!, which implies
that h'2(X) = 3. Its toric Landau-Ginzburg model is given by the Minkowski polynomial 1804.
Using the coordinate change © — y/x, z — z/x, we can rewrite it as
2r 22 1 2 =z

z 2 1
ty+—+z+-—+2xr+-+—+—+ —+ -+ —.
x x z oz z xy Yy oy

z
vz Y
X X

The quartic pencil § is given by the equation
32 4+ tPay + 2202 + 2%y + 2ta’y + tadz + tyPz + ty2?
+ 2%y + 22%yz + a2 + xy2® + 222 = hayet.
This equation is symmetric with respect to the involution [z:y:z:t] <> [t:z:y:x].

Suppose that X\ # co. Let C; be a smooth conic given by x = yz + yt +t2> = 0, and let Cy be a
smooth conic given by ¢t = 22 + zz +yz = 0. Then

Higy - S\ = Ligy 2y + Lia) fyy + €1

Hyyy S = Ly + Ly 2y + 2L (e (33.1)
Hizy 3= Liay {2y + Ly (o) + 2Ly (e

Hyy - Sx= Lygy gy + L o2y +Co

Hence, we conclude that Loy oy, Liyh (=1 Liyp ity Laddutyr Lightaty Liapony Ly tozp Co
and Cy are all base curves of the pencil S.

The surface S_4 is irreducible. However, its singularities are not isolated: it is singular along
the lines L.y 1,1y and Ly 1543, and smooth away from them.

If A # —4, then S) has isolated singularities, so that S is irreducible. In this case, the
singularities of Sy that are contained in the base locus of the pencil S are all du Val and can
be described as follows:

Py iy ey type Aq with quadratic term yly + z + t);
Py i1 ,40 0 type Ay with quadratic term z(x + 2z + 1);
Py 23 {oty - type Az with quadratic term (A + 4)yz.

Thus, it follows from Corollary 1.5.4 that [f~1()\)] = 1 for every \ # —4.
Lemma 3.3.2. One has [f~}(—4)] = 4.
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Proof. Let Cl = Cl, CQ = CQ, Cg = L{m},{z}7 C4 = L{y}{z}, 05 = L{y}’{t}, Cﬁ = L{w}7{y7t},
07 = L{y},{x,t}v 08 = L{z},{x,t}’ and 09 = L{t}7{x,z}' Then m; = My = Mg — Mg = 1 and
ms = my = ms = my = mg = 2. Similarly, we have

M, *=Mg*=2 and M;*=..=M;*=M;*=1

Thus, it follows from (1.8.3) and Lemma 1.8.5 that

—4 —4

f1(-4)] =3+D* D D .
[ ( )] + P{z},{z},{t}Jr P{z},{y},{t}+ Pryy (2} {1

The surface S_4 has (non-isolated) ordinary double singularities at the points P, (. vy and

. —4 _ 14 _
P{w}{y},{t}. Thus, it follows from Lemma 1.12.1 that DP{z},{z},{t} = DP{I},{y},m =0

Let a1: U; — P3 be a blow-up of the point Py 21 4,0y Then D1_4 = 534 + E1. The surface E;
contains two base curves of the pencil S'. Denote them by C}, and C},. Then My = M;! = 1,
—4

Poy ooy — 1, and the only base curves of the pencil S that are mapped to the singular point
YrzmT,

P{y},{z},{x7t} are the curves 5’10 and 5’11. Then

—4 .
Dr e =1
by (1.10.9) and Lemma 1.10.7. We conclude that [f~1(—=4)] =4. O
Recall that h12(X) = 3. Since the fiber f~1()) is irreducible for every A # —4, we see that ()
in the Main Theorem follows from Lemma 3.3.2.

Now let us prove ({») in the Main Theorem. We may assume that A # —4. Then the intersection
form of the curves L{x},{z}v L{y},{z}, L{y},{t}v L{:c},{t,z}v L{t}7{x,z}’ and H)\ on the surface S)\ is
given by

Ly 2y iy ey Loniy Diedinzy Difezy Ha

Ly [ —6/5 1 0 1 1/5 1
R | -1 1 0 0 1
Loy | O 1 —6/5 1/5 1 1
Lapps | 1 0 15 65 0 1
Ligesy | 1/5 0 1 0 —6/5 1
o\ 1 1 1 1 1 4

The determinant of this matrix is —112/25. Thus, it follows from (3.3.1) that the intersection
matrix of the curves Lyzy (2}, Ly} (zp Lighty, Liahivtr Liyddety Lieh oty Lot azp> €1, and Co
on the surface Sy also has rank 6. But rk Pic(Sy) = rk Pic(Sy) + 11. Summarizing, we see that (%)
holds, so that ({) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.4. The threefold X is a blow-up of a double cover of P! x P? in a divisor of bide-
gree (2,2) along a smooth fiber of the projection to P2. One has h'?(X) = 2. The toric Landau—
Ginzburg model is given by the Minkowski polynomial 1724, which is

yz 2y Y z 2 xz 2 2z 1 T
y+ =+ e+ =2+ S S S S T —
T T Tz r oz Y T Y Tz Yz
The pencil S is given by
Y2az 4 y22? + 2Pt + 2Pyz + 2y + 22y + 2Pyt + 2%y
+ 2222 + 28%y2 4 222tz + Py + 2% = \ayzt.

As usual, we will assume that \ # oco.
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Let C; be a conic given by z = 22 + 2xy + 3% + yt = 0, and let C2 be a conic given by
t=xy+xz+yz=0. Then
Hzy - Sx = Ligy g + 2Ly o + Liad yays
Hyyy - Sx = 2Ly gy + 2Lgy) 201

(3.4.1)
Hiy - Sx=2Lp 4 +C,

Hiy - 53 = Lispo + Loy +C2-
This shows that L{m},{y}, L{z},{t}, L{w},{y,t}, L{m},{z,t}v L{y},{z,t}, L{t},{m,y}, C1, and Cy are all base

curves of the pencil S.

For every A € C, the surface S has isolated singularities, so that Sy is irreducible. Moreover,
if A #£ —4, then the singularities of Sy that are contained in the base locus of the pencil § are all
du Val and can be described as follows:

Pray )00y type Ay with quadratic term 2+ 2zy + % + yt;
Py 1400 type Ay with quadratic term xz + 22 4+ 2zt + %
Pry iz type Ay with quadratic term 22 4 yz + 22t 4 17
Py (i {zt 0 type As with quadratic term (A + 4)zy;
Pey 3wy type Ag with quadratic term z(z +y — (A + 4)t);
A+4:0:—1:1]: type Ay;
0:AN+4:—1:1]: type Ay for A # —5, and type A3 for A = —5.
Therefore, it follows from Corollary 1.5.4 that [f~1(\)] = 1 for every A # —4. Thus, the assertion ()
in the Main Theorem follows from

Lemma 3.4.2. One has [f~1(—4)] = 3.

Proof. The surface S_4 has isolated ordinary double singularities at the points Pp,y o1 14y,
Py 23,46y and Ppyy 2y 11y, and it has a du Val singularity of type A at the point Ppy ) (241
Thus, using (1.8.3), we see that

-1 —4
4] =1+ Dt tuntoy

by Lemmas 1.8.5 and 1.12.1. To compute D13{4 ey VE have to (partially) describe the birational
TiYrnz,
morphism « in (1.9.3).

In the chart ¢ = 1, the surface S_4 is given by
yz: -1y — 7Y + (TYZ + T2 + TY°E + 2TY2° + §°2%) =0,

where T = x, ¥ = y, and Z = z + 1. In particular, the singularity of the surface S_4 at the point
Pray {yy =1y 18 not du Val. Since Ppy 13,120 18 a singular point of S_4 of multiplicity 3, we can

use (1.8.3) to conclude that D;,{A‘z} ety 0.

Let a: U; — P3 be the blow-up of the point Pray ) {zty- A local chart of this blow-up is given
by the coordinate change T1 = Z/Z, 1 = ¥/Z, Z1 = Z. In this chart, the surface E; is given by
z1 =0, and D}\ is given by

A+ 47171 + 7171 — (A + )T %
+ (=FIz1 + T7 — TP A + 2T E + A + (FIET 4+ pimEi) = 0.
Thus, we see that D', = S, + E;.
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The surface E; contains two base curves of the pencil S'. One of them is given by zZ; = 7; = 0,
and the other, by Z; = 7; = 0. Denote the former curve by C4 and the latter by C,;. Then M§4 =1
and Mt = 2. Hence, using (1.10.9) and Lemma 1.10.7, we conclude that D;{t} ooty 2 2

Let ag: Uy — Uj be the blow-up of the point C4 N C},. Then D2, = S34’ —i—E% Moreover,
the surface Ey contains two base curves of the pencil S2. Denote them by C? and C%. Then
Ml_l4 = M1_24 = 1. Moreover, one can show that the only base curves of the pencil S that are
mapped to Py ,1.¢.,¢) are the curves 69, 610, 611, and 5’12. Finally, local computations imply
that Apt = 1. Thus, using (1.10.9) and Lemma 1.10.7 we get Dp* = 2, so that

{z}{y}.{z:t} {z} Ay} A=t}
f1(-4)]=3 O

To prove () in the Main Theorem, we need the following result.

Lemma 3.4.3. Suppose that A # —4,—5. Then the inlersection form of the curves Ly 1,3,
L{w},{y,t}, L{z},{t}a L{t},{m,y}v and H)\ on the surface S)\ 18 given by

Ly y Lahivey Ly Lodewy i

Lz gy [ —1/6 1/2 0 1/2 1
Ly | 1/2 —3/2 0 1/2 1
Lizy it} 0 0 —5/6 1/3 1
Lin e | 1/2 1/2 1/3 —5/6 1
Hy, 1 1 1 1 4

Proof. First, let us compute non-diagonal entries. Since Ly 1y N Lizy yd = Plat g (0}
and P,y 141,41 18 an ordinary double point of the surface Sy, we get Ly 11 * Lia} fy,ey = 1/2 by
PI‘OpOSitiOH A1.2. Similarly, we have L{:c},{y} : L{t}7{x,y} = L{:c},{y,t} : L{t}7{x,y} = 1/2.

Since L{w},{y} N L{z},{t} = L{w},{y,t} N L{z},{t} = &, we have

Ly gy - Lisyay = Loy vty - Ly = 0

To compute L{z},{t} . L{t}7{x,y}7 observe that L{z},{t} N L{t}7{x,y} = P{z},{t}{x,y}- Moreover, the
surface Sy has a du Val singularity of type As at the point P} () ¢4 ,y. Furthermore, the quadratic
term of its defining equation at this point is z(x +y — (A 4+ 4)t). Thus, using Remark A.2.4 with
S=235,, 0= P{Z},{t}{x’y}, n=3,C= L{Z}{t}, and Z = L{t},{m,y}, we see that C and Z intersect
different curves among G1 and Ga. Then L.y 11y - Ligy g2,y = 1/3 by Proposition A.1.2.

Now let us compute the diagonal entries. Since Py (1 11y and Ppy (1) (4.} are the only singular
points of Sy that are contained in the line Ly 1,1, we see that

1 2 )

L2, =24+ +-=—2
(=341} T51T3775

by Proposition A.1.3. Similarly, we have L%t}’{%y} = —5/6. We also have L%x},{y,t} = —3/2, because
Py (yy.{¢y 1s the only singular point of Sy that is contained in L,y 1y 4y

To compute L%m}’{y}, let us use the notation of the proof of Lemma 3.4.2. Note that the proper
transform of the line Ly 1 on the surface S>1\ passes through the point C§ N C{,. On the other
hand, its proper transform on the surface S% does not pass through the intersection of C? and C%,.
Applying Remark A.2.4 with S = Sx, O = P (34263, * = 5, and C = Ly 1y, we see that
C intersects either the curve Go or the curve Gy. Thus, it follows from Proposition A.1.3 that
L%x},{y} = —1/6, because Py} (y1.{z4} and Pz (41 (¢} are the only singular points of S\ contained
in the line L{z},{y} I

The determinant of the matrix in Lemma 3.4.3 is —16/9. Thus, if A # —4, -5, then it fol-
lows from (3.4.1) that the intersection matrix of the curves Ly rovs Loy oy Lia) {yt}ys Lia} 200
Lipy 26y Ligy {eyy> C1, and Co also has rank 5. On the other hand, one can easily see that
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rk Pic(Sy) = rk Pic(Si) + 12. Hence, we conclude that (%) holds, so that () in the Main Theorem
also holds by Lemma 1.13.1.

Family 3.5. The threefold X can be obtained by blowing up P! x P? along a smooth rational
curve of bidegree (5,2). Then h'2(X) = 0. A toric Landau-Ginzburg model of this family is given
by the Minkowski polynomial 1819, which is

2 2

1 1 1 2 2z x z x
Y Y el Y +3y+3x+?.

-+ -F+-+ =+ —+=-F-—+—=+2z+
T Yy z x Y z z oz
The quartic pencil § is given by

X

tza:y + 22z + t2yz + t$2y + 2tz?z + ta:y2 + 2ty2z + 23z
+ 32%yz + 32y’ 2 + 2y + P2 + 222 = ayet.
Suppose that A # co. Then S has isolated singularities, so that it is irreducible.
Let C; be the conic in P3 that is given by 2 = (y 4+ t)? + yz = 0, and let Co be the conic given
by t = (z 4+ y)? + yz = 0. Then
Hyzy - Sx = Lz} gy + Liap 23 + G
Hyyy - Sx = Liay g + Ligh iz} + 2Ly gt
Hizy - Sx = Liay (s + Lighiay + Lapiny + Lispfoways
Hyy - Sx = Lizy i + L gagy +C2-

Therefore, the base locus of the pencil S consists of the curves Ly ro1, Liay 21, Liyy (21> Lizyy

Liyy (ot Ly fewy> Listgays C1, and Co.
For every A € C, the singular points of S) contained in the base locus of the pencil S can be
described as follows:

Pla} (g} ey type Ay
Py iy ey type Ay for A # —4, and type A; for A = —4;
Py 234wty type Agg
Pry 2y a0y type Ag for A # —4, and type Ay for A = —4;
Pl (i oy} tyPe Ag for A # —4, and type Ag for A = —4;
[1:0:X+4:—1]: type Ay for A # —4.

In particular, it follows from Corollary 1.5.4 that f~1()\) is irreducible for every A # oo. Thus, since
h'2(X) = 0, we see that () in the Main Theorem holds in this case.

Lemma 3.5.1. Suppose that A\ # —4. Then the intersection matriz of the curves Ly 11,
L{w}{z}, L{y}’{z}, L{z},{t}7 L{y},{m,t}v L{t},{m,y}v and H)\ on the surface S)\ 8 given by

Ly oy Ldnizy Lindsy L Liddery L{dewy Ha

Liapqyy (—3/10 1/2 1/2 0 2/5 3/5 1
Ligyoy | 1/2 ~1 1/2 1 0 0 1
Ly | 1/2 /2 -5/6 1 2/3 0 1
Ly 0 1 1 —4/3 0 2/3 1
Ly} (=t} 2/5 0 2/3 0 —1/30 1/5 1
Liy ey | 3/5 0 0 2/3 1/5 -8/15 1
Hy 1 1 1 1 1 1 4
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Proof. Observe that L{w},{y} N L{z},{t} = O, so that L{m},{y} : L{z},{t} = 0. Similarly, we
see that Ly o} Lisygawty = 00 Dapgay - Loy = 00 and Lyyy gy - Ly (agy = 0. Since
L{w},{z} N L{z},{t} = P{m},{z},{t} and S)\ is smooth at P{m},{z},{t}7 we have L{m}’{z} : L{z},{t} = 1.
Similarly, we have Lyy 12y - Ly = 1.

The points Pgy 1,421 and Ppay 1 ¢, 11 are the only singular points of Sy that are contained in
Lz (2. Thus, we have L%x}{z} = —1 by Proposition A.1.3. Similarly, we see that L%y}{z} = —5/6,
because Pp,y 1y3,{z} and P 1 121y are the only singular points of the surface Sy that are contained
in Ly (1. Similarly, we have L%Z}{t} = —4/3, because P[.} (1} (x4 18 the only singular point of Sy
contained in Ly 1.

Since L{z},{y} N L{z},{z} = P{x}v{y}v{z}7 we have L{:c},{y} . L{z},{z} = 1/2 by Proposition A.1.2.
Similarly, we have L 1 - Liyy, 123 = 1/2.

Let us show that L{y},{z} : L{y},{r,t} = 2/3. To this end, let us use the notation of the Appendix
with § = S)\, 0 = {y} {z},{z,t}> n = 2 C = L{y} {z,t}> and Z = L{y} {z}- We may assume that
CnNE # . If ZNE # 3, then Ly oy - Ly (oy = 2/3 by Proposition A.1.2. Otherwise, we
have Ly ey Ly (o) = 1/3 In the chart ¢t = 1, the surface S) is given by

7(Z + 7 — (A +4)z) + Higher order terms = 0,

where T =z + 1, § =y, and Z = z. Here O = (0,0,0). In these coordinates, the line Ly 1,4y is
given by § = Z = 0, and the line Ly 1.y is given by § = z = 0. This shows that Z N E; # @, so
that Liyy (2} * Liy) faty = 2/3-

Let us compute L%y} (wt} %x} wh and Ly 61 - Liyy g2,y Using Remark A.2.4 with S = S,
0= P{x} {y},{t}> n = 4 C= L{y} {z,t}> and Z = L{:c} {y}> we see that C does not pass through the
point G1 N Gy, and Z passes through the point G; N G4. Now, using Proposition A.1.3, we obtain

1 2 4 1
Loy =2+ 5+5+5 =35
because Py} 1414t} Py} {z}.{zt}> and [1:0: X+ 4:—1] are the only singular points of Sy that are
contained in the line L,y ;4. Similarly, we get

1 6 3
2 _ _
Loy = 2+t t5=—7p
because Py ry1,(z) and Ppy 1 ¢ are the only singular points of Sy that are contained in the
line Ly} (y}3- Moreover, using Proposition A.1.2, we see that either L,y 1y - Liyy (o) = 2/5 or

Lizy 1y} - Liy) fa,ty = 3/5. In fact, we have Ly 1y - Ly {2ty = 2/5, because

L= Hy- Ly oy = (Liah ) + Lopt2r + 2000 (00) - Dl (o)
3
— 2 —
= Liay oy - Liyrtoy T Ly ta) - Liod ey T 20510y = Doty - Liodtany T 50

since Hy ~ L{w},{y} + L{y}’{z} + 2L{y},{m,t} on the surface S).

To Complete the proof of the lemma, we must find L{t}7{x,y} : L{x},{y}v L{t},{x,y} : L{z},{t}’
L{t},{m,y} : L{y},{w,t}7 and L%t},{x,y}' Observe that P{m},{y},{t} and P{z},{t},{m,y} are the only singular
points of Sy that are contained in the line Ly 1, 4y. Thus, since Ly 1201 N Loy i = Py g e
we get Ly 201 - Lizy, 11y = 2/3 by Proposition A.1.2.

To find the remaining entries of the intersection matrix, let us use Remark A.2.4 with S = S,
O=Puypn=4C= Ly e, and Z = Ly 1,1 As we have already checked above, the

Y}

curve C does not pass through the point G1 N G4 Similarly, the curve Z does not pass through this
point, so we may assume that CNGy # & and Z NGy # &. Hence, by Proposition A.1.2 we have
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Lin gayy - Liyy {zy = 1/5. Similarly, it follows from Proposition A.1.3 that L%t}’{%y} = —8/15.
This gives Liz) 1 - Lt} {2y} = 3/5, because

1= Hy Ly {2y = (Lot oy + Ligh s + 200 tey) - Ly o)

2
2
= L iny  Liep oy T L ey L dowy T 2000 00y = Loty Littomy + 55
since Lz} {y} + Ly} + 2Lqyhfany ~ Hao O

The matrix in Lemma 3.5.1 has rank 6. Moreover, we have rk Pic(Sy) = rk Pic(Sy) + 11. Hence,
we see that () holds, so that ({>) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.6. In this case, the Main Theorem is proved in Example 1.14.1.

Family 3.7. In this case, the threefold X can be obtained by blowing up a hypersurface of
bidegree (1,1) in P? x P2 along a smooth elliptic curve, so that h'?(X) = 1. A toric Landau-
Ginzburg model of the threefold X is given by

y oy oz oz 1 Y 1 2 z 1 1
Tyt Ao o S o o S —
z x Yy T 2z xX Yy T xTY TZ TY
which is the Minkowski polynomial 2354.2. The pencil S is given by
22yz + Pz + xy2® + 2yt + P2t 4 22 + g2t 4 ayt® + 3P
+ otz 4+ 2yt + 22 + ytd + 23 = \ayet.
As usual, we suppose that A # oo.
For every A # —3, the surface S has isolated singularities, so that S is irreducible. On the
other hand, one has S_3 = Hy, 3 + S, where S is an irreducible cubic surface given by
Yz + yt? + 2t + 2t + 22+ 2yt + Y2z +y22 = 0.
To describe the base locus of the pencil S, we observe that
Higy - Sy = Ligp i + Liap v + Liad yy + Liad (e
Hyyy - Sx = Ligy o3 + Ligh iy + Ly ey + Ly geans (3.7.1)
Hizy 83 =Ly oy T Lish ey + Liep ey + Liantuds
Hyy - Sx = Ligy 0 + Lighin + Lisviny + Lin ey

Thus, the lines Liay () Ligy (=) Lighiey Liaygey Liedhiued Liahwty Loz Lopfenys
L{y},{z,t}7 L{Z}{z,t}, L{Z}{y’t}, and L{t},{%y,z} are all base curves of the pencil S.

If A # —2, -3, then the singular points of S contained in the base locus of the pencil § are all
du Val and can be described as follows:

P{y}7{z},{t}: type As with quadratic term yz;

Py 2340yt type Ag with quadratic term (x +t)(2 + t);

Py ey s type Ao with quadratic term (z 4 t)(y + t);
Py 63 4y,zy . type Aq with quadratic term (x+y+2)(x+t)— (A4 3)zt;
Py 21 4zey s type Ay with quadratic term (z +¢)(y + 2) + (A + 3)yz.

Thus, it follows from Corollary 1.5.4 that [f~1(A\)] =1 for every A # —3, —2.
The surface S_o has the same singularities at the points P{y},{z},{t}, P{m},{z},{t}, P{m},{y},{t},
Py (634,23 and Py 12} {2,y - In addition to them, it also has isolated ordinary double singularities
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at the points [0: —1:1:1], [0:1:—1:1], and [0:1:1:—1]. Thus, using Corollary 1.5.4, we conclude
that [f~1(-2)] = 1.

The surface S_3 has good double points at P{y},{z},{t}a P{w},{z},{t}7 P{m},{y},{t}7 P{m},{t},{y,z}7
and Ppy 12y (2,4}, and it is smooth at general points of the lines L,y 11y, Ly 215 Liyy gy Lz
Loy gyep Laydytyy Do getp Lyptoty Lihety Liehiatyy Diapgyy, a0d Ligy (ay,zy. Thus, it
follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that [f~1(—=3)] = [S_3] = 2. Hence, we see
that (V) in the Main Theorem holds in this case, because h!?(X) = 1.

To prove ({) in the Main Theorem, we may assume that A # —2,—3. Then

Higz 1y - Sx = 2Ly 0y + Ligy oty + Liey ot

so that 2L,y r1y + Liyy fat) + Lz} {oey ~ Ha on the surface Sy. It follows from (3.7.1) that the
intersection matrix of the lines L{m}’{t}, L{y}’{z}, L{y},{t}7 L{z},{t}a L{w}{%z}, L{w},{y,t}7 L{m},{z,t}7
L{y},{m,t}, L{y},{z,t}a L{z},{x,t}, L{z},{y,t}v and L{t},{x,y,z} on the surface S)\ has the same rank as
the intersection matrix of the curves L{I}y{y72}7 L{I}y{yyt% L{:c},{z,t}a L{y},{x,t}7 L{y}7{z7t}, L{z},{y,t}v
Lty {a,y,2}> and Hy. The latter matrix is given by

Lizyy,zy Db vty Liabizty Lohiety  Lohize Lidqwer Ligpdewzr Ha

Liovios [ —3/2 1 1 0 0 0 1/2 1
Lz} {6} 1 —4/3 1 1/3 10 1 0 1
L |1 1 —4/3 0 1 0 0 1
Ly} (a0} 0 1/3 0 —5/6 1 0 0 1
Lyt =01 0 0 1 1 —5/4 1/4 0 1
Lizy qu.t} 0 1 0 0 1/4 —5/4 0 1
Loy ey | 1/2 0 0 0 0 0 -3/2 1
Hy 1 1 1 1 1 1 1 4

This matrix has rank 8, and rk Pic(Sy) = rk Pic(Sk) + 9. Hence, we see that (s) holds, so that (<))
in the Main Theorem also holds by Lemma 1.13.1.

Family 3.8. For a description of the threefold X, see [8]. In this case, we have h'2(X) = 0,
and a toric Landau—Ginzburg model of the threefold X is given by
z 1 2 2 1 1
+-+-+-+-+—+—,
y z Yy x xz Xy

Y

xrz T
r+y+z+—4+=42
y oy ow

which is the Minkowski polynomial 1504. The pencil S is given by
a:2yz + a:yzz + 2222 + :Eyz2 + 222t + y2zt +z2’t + :ryt2 + 2z2t? + 2yzt2 + yt3 + 283 = Axyzt.

Suppose that A\ # co. Then Sy has isolated singularities, so that it is irreducible.
Let C; be a plane cubic curve given by = = y?z + 2yzt + yt> + 2t> = 0. Then C; is singular at
Pray {yy{ty- Let C2 be a conic given by y = zz + xt + t2 = 0. Then

Higy - Sy = Liay iy + C1y

Hpyy - 53 = Ly g2 + Ligy ey + G2 (38.1)
Hizy - O3 = Ligy sy + 2Ly + Ly ey

Hiy 53 = Ligy gy + Lizy(oy + Ly ey + Loy woey-

Thus, the base locus of the pencil § consists of the curves Ly 1y, Liyy 235 Lizy (63 Liy) fa,t}s
Lizy ety Ly ew Ly w2 €1, and Co.
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For every A € C, the singular points of S contained in the base locus of the pencil S are du Val
and can be described as follows:

Py w34ty : type Az with quadratic term z(z + y +t);
Py 21,40y type Ag with quadratic term z(z +t) for A # —3, and type Ay for A = —3;
Py (21,40 type Ag with quadratic term z(y + z +1);

Py 2,4zt type Az with quadratic term y(z + 32 + Az +t) for A # —3,—4, and

type Ag for A € {—3,—4};
Pey ity ey type Ag
Py {a),4y,21+ smooth point for A # —3, and type Ay for A = 3.
Thus, it follows from Corollary 1.5.4 that the fiber f=1()\) is irreducible for every A # oco. Hence,
we see that (©) in the Main Theorem holds in this case.

To prove (¢) in the Main Theorem, we may assume that A # —3, —4. Then it follows from (3.8.1)
that the intersection matrix of the curves L{m},{t}, L{y}{z}, L{y},{m,t}v L{y}{z}, L{z},{t}, L{z},{m,t},
L{z},{t}v L{z},{t}v L{t}7{x,y}7 L{t},{y,z}? Cl, and CQ on the surface S)\ has the same rank as the inter-

section matrix of the curves L{w},{t}v L{y}’{z}, L{y},{m,t}v L{t},{x,y}7 L{t},{y,z}7 and Hy. The latter
matrix is given by

Ly oy Linpd=y Loy Liggewy  Ligwzy  Ha

Ly [ —1/2 0 1/4 1/4 0 1
Lyin| O —=2/3  2/3 0 /3 1
Liyen| 1/4 2/3  =7/12  3/4 0 1
Lopony | 1/4 0 3/4  -3/4 1 1
Liyiwey| O 1/3 0 1 —-4/3 1
o\ 1 1 1 1 1 4

This matrix has rank 6, and rk Pic(Sy) = rk Pic(Sk) 4 11. Hence, we see that (%) holds, so that (<)
in the Main Theorem also holds by Lemma 1.13.1.

Family 3.9. In this case, the threefold X is a blow-up of a cone over a Veronese surface in P°
in a disjoint union of the vertex and a smooth curve of genus 3. Thus, we have h!?(X) = 3. A toric
Landau—Ginzburg model of this family is given by

22y oz 2 1 1
rT+Yy+z2+—+-"+-+—+-+—
yz T x Yz T Yz
which is the Minkowski polynomial 373. The pencil S is given by
Pz 4 xy?z + xy2® + 23t + g ot + 2%t 4 2077 4 yat® + at® = hayzt.

As usual, we assume that A # oo.

If A #£ —2, then the surface S has isolated singularities, so that it is irreducible. But S_o =
H, o + S, where S is an irreducible cubic surface given by ot + 2%t +yzt +y?z +y2? + xyz = 0.
The surface S has isolated singularities, and Hy, 1y S = Ly oy + Lizy (o) + Liayty fu,2)-

To describe the base locus of the pencil S, we observe that

Hizy - S\ = Liay ) + Liay oy + Loty + Loy ez
Hyyy Sy = Ligy fuy + Ly + 2Ly o)
Hizy - S3 = Ligy (o) + Lisy i + 2Ly (et
Hyy - S3 = Ligy oy + Ligy o + Liap i + Ly fawzy-
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Therefore, the lines Lyay 12y, Liay gy} Liyhieys Lizpiey Lispdaty Diyhdetys Lieygey Liyyqey> and
L4y {2,y,-} are all base curves of the pencil S.

If A # —2, then the singular points of Sy contained in the base locus of the pencil S can be
described as follows:

Py i21,40 0 type Az with quadratic term z(x + t);

Py ey type As with quadratic term 2(y +);
Py g qy,2y - type Ay with quadratic term 22 + zy + xz + yt + 2t + 2 4+ \at;
Py 21 4zty s type Ay with quadratic term (A + 2)yz — (z + t)2.

Thus, it follows from Corollary 1.5.4 that the fiber f=1()) is irreducible for every \ # —2.
Note that the surface S_o consists of two irreducible components, and it is singular along the
lines Ly 200 and Lyzy 154y Thus, it follows from (1.8.3) and Lemma 1.8.5 that

—2 —2 —2

f1(—2)] =4+ D32 D D D .
[ ( )] + P{w},{z},{t}Jr P{z},{y},{t}+ P{w},{t},{y,z}Jr Pryy (23 {e.t)

Moreover, the surface S_o has good double points at Py (23,163, Plat,iyy ity Pla}{t}{y,z)> and
Py () {e,ty- By Lemma 1.12.1, this implies

—2 —2 —2 —2

=D =D =D =0
Prey (21,00 Prey (v1.{0) Prey (1) {v.2} Pryy (=) {et) ’

so that [f~1(—2)] = 4. Hence, we see that (U) in the Main Theorem holds in this case.

If A £ —2, then the intersection matrix of the lines L{w}{z}, L{m}’{y}, L{y},{t}7 L{z},{t}a L{z},{m,t}7
Lipy ey Liay ey Liyy ey and Ly (o 21 on the surface Sy has the same rank as the intersection
matrix of the curves L{w}{z}, L{w},{y,z,t}a L{y},{m,t}v L{z},{w,t}7 L{t},{x,y,z}7 and H). The latter matrix
is given by

Ly 2y Loy vty Lipdety Liad{ery L{fewzy Ha

Liay.(sy [ —7/6 1 0 2/3 0 1
Ly qweny |1 —3/2 0 0 1/2 1
Ligy ey | 0 0 —1/6 1/2 0 1
Lizpiaey | 2/3 0 1/2 ~1/6 0 1
Lingewsy |0 1/2 0 0 —-3/2 1
H, 1 1 1 1 1 4

Its determinant vanishes. The geometric reason for this is the following: if A # —2, then

Hyg 1y - Sx = 2Ly 1y + Ligy oty + Ly} feth

which implies that 2L,y 11y + Ly {o,ey T Liyy, {26y ~ Ha on the surface Sy. In fact, one can check

that the rank of this matrix is 5. Moreover, we have rk Pic(Si) = rk Pic(Sy) + 12. Hence, we see
that (%) holds, so that (<)) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.10. In this case, the threefold X is a blow-up of a smooth quadric hypersurface
in P4 along a disjoint union of two irreducible conics. Thus, we have h1?(X) = 0. A toric Landau—
Ginzburg model is given by the Laurent polynomial

z 1 z zr z zy 1 1
-tr+-+z+—*+-"F+-"+—+-+y+ -,
Yy Y Ty z z z x
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which is the Minkowski polynomial 1112. The pencil § is given by
22te + :rzyz + 22z + z2y$ + 1222 + $2yt + z2yt + a:2y2 + tzya: + yzza: + t2yz = A\xyzt.

If A # oo, then S has isolated singularities, so that, in particular, it is irreducible.
To describe the base locus of the pencil S, we observe that

Higy - Sx = Liay (2} + Liay g1y +C1,

Hyyy - Sy = Ly goy + Ligqoy + Ca
{v} tyh{z} {yh{t} (3.10.1)
Hizy - Sh = Ligy g2y + Liyygzy + G,

Hyy - Sx = Ligy 1y + Ligy ey + Ly gy + Ly gy.2)

where C; is the conic {x = ty + tz + yz = 0}, the curve Cy is the conic {y = tx + tz + vz = 0},
and Cs is the conic {z = t2 + to + xy = 0}. Thus, the curves L{:c},{z}7 L{:c},{t}7 L{y}7{z}, L{y}7{t},
Lty {2,215 Lty fy,23> C1, C2, and C3 are all base curves of the pencil S.

Lemma 3.10.2. Suppose that A # oo. Then the singular points of Sy contained in the base
locus of the pencil S can be described as follows:

Pry g type Az for A # —4, and type Ay for A = —4;
Py g type Ay for X # =2, and type Ag for A = —2;
Py ey s type Ao for X # —4, and type Az for A = —4;
Py gy dzy: type Ao for X # =3, and type Ay for A = —3;
Py fe, 23 4y,21 0 smooth point for X # =3, and type Ay for A = —3.

Proof. Taking partial derivatives shows that Pry 21 111y Play 21,400 Pla) fud 403> and Pz (01,42
are the singular points of the surface Sy. Moreover, if A # —3, then these points are the only singular
points of S that are contained in the base locus of the pencil S. If A = —3, then Py 42}, {y,2} 18
also a singular point of Sy. In this case, the surface Sy does not have other singular points which
are contained in the base locus of the pencil S.

In the chart = = 1, the surface S), is given by the equation

yly+z+1) + 922 +y22 — Myz + t2y + 122 + 2% + Pyz + 1222 + ty2® = 0.

Introducing coordinates § =y, Z = z, and t = t + y + 2, we can rewrite this equation as

W+ g+ 22 =217 — A+ D2ty — 28+ 7° + A+ )27 + (A + 3)2%7

+ gz + 1222 — 2ty’z — 3iyzt — 22 + PPz 4+ 2Pt + 2y + 2t = 0.

Here, we have Py (-1 1y = (0,0,0). Let us blow up this point.

o~

Let 2=z, J=1vy/z and t = t/2. We can rewrite the latter equation (after dividing by 2?) as

=12+ (A +3)J2+ 22+ (122 — (AN +4)2tg — 2228+ (A + 4292 + 2277)

+ 7324+ 29222) + (12927 — 2t g2 + 5°2%) = 0.

D

+ (t%yz+1222 —2y?z - 3tyz

This equation defines (a chart of) the blow-up of the surface Sy at Py, 1.1 (3. The two exceptional
curves of the blow-up are given by the equations 2 =t = 0 and 2 = § = 0. They intersect at the
point (0,0,0), which is a singular point of the obtained surface.
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If A # —4, then 1§ — t2 4+ (A + 3)JZ + 22 is nondegenerate, so that Py (21,41} is a singular
point of Sy of type Ag. If A = —4, then this form splits as (y — 2)(%\— Z). In this case, introducing
new coordinates y =t — 2, z =y — z, and ¢t = t, we rewrite the latter equation (with A\ = —4) as

JZ +t 3 + Higher order terms = 0,

where we order the monomials with respect to the weights wt(y) = 3, wt(Z) = 3, and wt(£) = 2.
We see that this point is a singular point of type As. Therefore, if A = —4, then Py 12 1) is a
singular point of Sy of type Ay.

We leave the proofs of the remaining assertions of the lemma to the reader. [

Thus, it follows from Corollary 1.5.4 that the fiber f~1()) is irreducible for every A # oo. This
implies (©) in the Main Theorem. To prove ({)) in the Main Theorem, we need the following.

Lemma 3.10.3. Suppose that \ ¢ {—2,—3,—4,00}. Then the intersection matriz of the curves
L{w}{z}, L{w},{t}, L{y}{z}, L{y},{t}, L{t},{x,z}a and H)\ on the surface S)\ 18 given by

Liayizy Leny Lddsy Lohiy Diddezy o

Loy [—2/15 2/5  1/3 0 35 1
Loy | 2/5  —8/5 0 /3 1/5 1
Ly} i} 1/3 0 —7/2 3/4 0 1
Lopan| 0 /3 3/4 -7/12 1 1
Liyacy | 3/ 1/5 0 1 —6/5 1
H) 1 1 1 1 1 4

Proof. Let us show how to compute the diagonal entries of the intersection matrix. To begin
with, let us compute L%z},{z}' Observe that Py .1 11 and Py g1 (-1 are the only singular points
of S) that are contained in Ly, (3. Thus, by Proposition A.1.3, one has Li’c},{z} =—-2+4+2/3+k/5,
where either ¥k = 4 or £ = 6. In fact, we have k = 6 here. Indeed, let us use the notation of
Remark A.2.4 with § = Sy, O = Py 2140, 7 = 4, and C = Ly ¢y, In the chart y = 1, the
surface S is given by

z(z + z) + Higher order terms = 0,

and Ly, ¢y is given by x = z = 0. This shows that C contains the point G; N G4. Thus, either
C NGy # O or C NGy # @. In both cases, we have k = 6 by Proposition A.1.3. Thus, we have
LYy = —2/15.

Similarly, it follows from Proposition A.1.3 that L%z},{t} = —8/15, as Py} (21,41} and Py ).46)
are the only singular points of S contained in Ly, ¢ Similarly, we see that L%t}’{%z} = —6/5,
because P,y 12),(¢y is the only singular point of Sy that is contained in Ly ¢, .. Using Proposi-
tion A.1.3 again, we get L%y},{t} = L%y}{z} = -T7/12.

Now let us compute the remaining entries of the first row in the intersection matrix. Since
L{w},{z} N L{y},{t} = &, we have L{w}{z} . L{y},{t} = 0. To compute L{w}{z} . L{y}{z}, observe that
L{z},{z} N L{y},{z} = P{x}v{y}v{t}. In the chart t = 1, the surface S)\ is given by

(x + z)(z + y) + Higher order terms = 0.

Thus, using Proposition A.1.2 and Remark A.2.4 with S = S, O = Py 1 13 0 = 2, C = Ligy (2}
and Z = L{y},{z}, we see that L{x},{z} . L{y},{z} = 1/3
To find L{w},{z} : L{m},{t} and L{m},{z} : L{t},{y,z}a we notice that
Liay ey OV Loy gy = Liad g2y O Lyt = Plad o) 40
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Let us use the notation of Remark A.2.4 with O = Py 12y (1, =4, C =Ly, and Z = Ly gy -
Keeping in mind the equation of the surface Sy in the chart y = 1, we see that neither C
nor Z contains the point G; N G4. By Proposition A.1.2, this implies, in particular, that
Lizy 1y - Ly gy,zy = 1/5. On the other hand, we have already checked above that the proper

transform of the line Ly, ;) on the surface S does contain the point G; N Gy4. This implies that
L{x},{z} : L{w},{t} and L{x},{z} : L{t},{y,z} are among 2/5 and 3/5. MOl“eOVEI“, one has

1=Hyy Ligy 2y = Lyt + Lo + Linofesy + Ly wsy) - Ly ()
= Loy gy - Loy 2y T Loy y - Dy f2) T Loy gy - Doy oty + Dienyoed - Lad 423

= Ly 6y Loy ey + Liny vy Do) fey
because L{y},{t} : L{z},{z} =0 and L{t},{:c,z} : L{:c},{z} =0. Similarly, we have

Higy - Ligy g1y = (Liay oy + Lyt + C1) - Liay )
2
= Lo 2 Liay gy + Loy + 1 Liay

8
= Liopizy Lyt — 5 01 Loy oy

Moreover, we have C1 N Lz (1 = Pray (21,40} Y Pla) {o1,11y- Thus, applying Proposition A.1.2 and
Remark A.2.4, we see that

1

17
Cr-Layp =3+

15’
so that L{m}’{z} - L{m},{t} = 2/5. Thus, we have L{m}’{z} - L{t},{y,z} =3/5.

To compute the remaining entries of the second row in the intersection matrix, we have to find
Liapiey - Ly gzy a0d Loy - Dygpey BUt Diay gy 0 Ly, () = @, 50 that Lyay 1) - Liyy 23 = 0-
MOI“eOVEl“, we have L{:c},{t} N L{y},{t} = P{x},{y},{t}? so that L{x},{t} . L{y},{t} = 1/3 by Pl“OpOSi—
tion A.1.2.

To complete the proof of the lemma, we have to find Lyyy 2y - Ly 6y Ly 2y - Lty fa,2}> and

Ol >

L{y},{t} : L{t},{r,z}- Since L{y}’{z} N L{t},{x,z} = J, we have L{y}{z} : L{t},{x,z} = 0. Similarly, we
have L{y},{t} : L{t},{x,z} = 1, since L{y},{t} N L{t},{x,z} = P{y},{z},{x,t} and the surface S)\ is smooth
at the point [1:0:—1:0]. Finally, observe that L,y 1.1 - L) ¢y = 3/4 by Proposition A.1.2, since
Ligy 2y D Ljyh(ny = Py ey O

If A ¢ {—2,—-3,—4,00}, then it follows from (3.10.1) that the intersection matrix of the curves
L{w},{z}v L{m},{t}7 L{y}’{z}, L{y},{t}7 L{t},{z,z}7 L{t},{y,z}7 Cl, CQ, and Cg on the surface S)\ has the same
rank as the intersection matrix of the curves L{:c},{z}? L{:c},{t}? L{y},{Z}? L{y},{t}v L{t},{x,z}’ and H)\.
On the other hand, the determinant of the matrix in Lemma 3.10.3 is —2/9, and rkPic(Sk) =
rk Pic(Sk) + 11. Hence, we see that (%) holds, so that ({) in the Main Theorem also holds by
Lemma 1.13.1.

Family 3.11. The threefold X can be obtained from P? by blowing up a disjoint union of a
point and a smooth elliptic curve. We discussed this case in Example 1.12.3, where we described
the pencil § and its base locus. Let us use the notation introduced in this example. As usual, we
assume that A # oco. Observe that

Hizy - S\ = Ligy 1y + Liay foy +C

Hiyy S = Ligy oy + Lyt + Ly gety + Ligy ey (3.11.1)
Hizy - Sx= 2Ly 12 + Ly iy + Ly (et

Hyy - Sx = Ligy iy + Ly + Lian i + Ly fowa)-
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If A # —2, then S), is irreducible, it has isolated singularities, and its singular points contained
in the base locus of the pencil § can be described as follows:

Pry 2140 type Ay with quadratic term yz;
Py 3000 type Ag with quadratic term (x + 1) (2 + t);
Py wyey: type Ag with quadratic term (z +t)(y + t);
Py i 4y,2y: type Ay with quadratic term (z +t) (2 +y + 2 —t) — (A + 2)xt;
Pry ety type Ag with quadratic term z(z +t + (A + 2)y);
0:1+ V5: —2:2]: smooth point for A # —1, and type A; for A = —1.
Then [f~1()\)] = 1 for every A # —2 by Corollary 1.5.4.

Recall that S_o = Hy, ¢y + S, where S is an irreducible cubic surface that has good double points

at Pryy Gy, 00 Pladap a0 Plaptvnter Plap it w,s)> 80 Py ey oy Moreover, the surface S_y is
smooth at general points of the base curves L{m}’{t}, L{y}{z}, L{y},{t}7 L{z},{t}7 L{w},{z,t}a L{y},{m,t}v
Lip 26y Lizygety Lity {wy,2}> and C. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1
that [f~1(—2)] = [S_3] = 2. Therefore, we conclude that (©) in the Main Theorem holds in this
case.

To verify () in the Main Theorem, we may assume that A # —2 and X # (—1 £ +/5)/2. Then,
using (3.11.1), we see that the intersection matrix of the curves Ly, vy, Ly 21> Ligdqer Liayqer
L{x}v{zvt}’ L{y},{x,t}’ L{y},{z,t}v L{z},{x,t}’ L{t}7{x,y7z}’ and C on the surface S)\ has the same rank as
the intersection matrix of the curves L{m}’{t}, L{w},{z,t}v L{y},{w,t}7 L{y}{z’t}, L{z},{w,t}7 L{t},{m
and H)y. The latter matrix is given by

7y7z}7

Ly Ly Loy Lzt Lizdieo Ligfzw=y Ha

Ly (—1/6 0 1/3 2/3 0 2/3 1/2 1
Lz} {2t} 1/3 —4/3 0 1 1/3 0 1
Liyy fz.0} 2/3 0 —2/3 1 1/3 0 1
Ly}, =} 0 1 1 —6/5 0 0 1
Lz} {a,t} 2/3 1/3 1/3 0 —2/3 0 1

Lty oy | 1/2 0 0 0 0 -3/2 1
H, 1 1 1 1 1 1 4

Its rank is 6. Note also that rk Pic(Sy) = rk Pic(Sy) + 11. Hence, we see that (%) holds, so that ({)
in the Main Theorem also holds by Lemma 1.13.1.

Family 3.12. In this case, the threefold X can be obtained from P3 by blowing up a disjoint

union of a line and a twisted cubic curve. Its toric Landau—Ginzburg model is given by

Yy
z

z 1 z 1 zy 1
—+-—-Fy+z+=+-+-+—+ -4z,
A y oz z Y
which is the Minkowski polynomial 737. The pencil § is given by
z2yt + tzyz + yzza: + z2y:1: + y2t:1: + 22tx + t2y:1: + a:2y2 + 22z + a:2yz = Azyzt.

As usual, we suppose that \ # oo.
Let C be the conic z = zy + yt + t2 = 0. Then

Hpzy - Sx = Liay (yy + Liay 023 + Liay 1 + Loy 200
Hyyy - Sx = Ligy gy + Ly (23 + Lyt or + Ly gz

(3.12.1)
Hizy - Sx = Ligy 2y + Ly 2 6,

Hyy - Sx = Ligy 1y + Ligy ey + Ly gy + gy qyoz)
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Thus, the base locus of the pencil S consists of the curves Ly qv, Liay 2 Liovers Liyy 2}

Ligy1p Liadtz0p Ligh ey Ly fe2p Loy y,2)> and C.
For every A € C, the surface S has isolated singularities, so that it is irreducible. Moreover, the

singular points of S\ contained in the base locus of the pencil S are du Val and can be described
as follows:

Play oy 0 type Ag;

Play gy type A

Py 2300 : type Az with quadratic term z(z + 2 +t) for A # —3, and

type Ay for A = —3;
Pry ey type Ay with quadratic term y(y + 2) for A # —2, and type A5 for A = —2;
Py iz type Ay for A # —2, and type Ay for A = —2;
Py {2,21.4y,23 ¢ smooth point for A # —3, and type A; for A = —3.

Thus, it follows from Corollary 1.5.4 that the fiber f~1(\) is irreducible for every A € C. Since
hY2(X) = 0, we see that (U) in the Main Theorem holds in this case.

Now let us verify ({) in the Main Theorem. We may assume that A # —2,—3. Then the
intersection matrix of the curves L{w},{y}a L{w},{z}, L{m},{t}, L{y},{t}, L{y},{z,t}a L{t},{m,z}, and H)
on the surface Sy is given by

Ly wy Liadnizy Leney Lipie Lodiee Lifezy i

Ly [ —1/2 0 1/2 1/2 1/2 1/2 0 1

Ly | /2 —=3/4 3/4 0 0 1/4 1

Loy | 1/2 3/4  =3/4 1)2 0 1/4 1

Lirqy | 1/2 0 /2 -7/10  3/5 1 1

Ligyey | 1/2 0 0 3/5  —7/10 0 1
Lin ey | O /4 1/4 1 0 —5/4 1
H, 1 1 1 1 1 1 4

The rank of this matrix is 7. On the other hand, it follows from (3.12.1) that

Loy, tyy + Liay 2y + Loy gy + Ly fey ~ Langoy T Liwh 2y T Lighoy + Ly a0
~ Ligy oy + Ligy 12y £ C ~ Ligy gy + Ligy gy + Ly a2y + Ly g2 ~ Hx

This implies that the rank of the intersection matrix of the curves Ly 1y, Ly {2} Lia}.{t}
L{y}’{z}, L{y},{t}a L{w},{z,t}, L{y},{z,t}? L{t},{m,z}, L{t},{y,z}, and C is also 7. As we have seen above,
rk Pic(Sy) = rk Pic(Sy) + 10. Hence, we see that (%) holds, so that (¢) in the Main Theorem holds
by Lemma 1.13.1.

Family 3.13. The threefold X is a blow-up of a smooth hypersurface in P? x P? of bide-
gree (1,1) in a smooth rational curve of bidegree (2,2). Thus, we have h»2(X) = 0. A toric
Landau—Ginzburg model of this family is given by the Minkowski polynomial 420, which is

x 1 z 1 1y

- tr+-—+2z+-—+-+y+-+-.

Y Yy M r oz
The quartic pencil § is given by

22zt + :1:2yz + 22z + z2y:1: + z2yt + t2y$ + y2z$ + tzyz + yzta: = Axyzt.
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As usual, we assume that A # co. Then
Higy - S3 = Liay ) + Liad iy + Loy iy + Liad (2
Hiyy Sy = Liay wy + Lyt + Lo + Ly fet
Hizy - O3 = Ligy o) + Ly + Lizniny + Ly s
Hyy - Sx= Ly iy + Ly i + Lo + Ly fayay-

Thus, the lines Lz}, 1y}, Lz} (o} Liahieh Lighep Dbty Lien e Lian ety Ligh oty L ivtys
and Ly 124 2) are all base curves of the pencil S.

Each surface S is irreducible, it has isolated singularities, and its singular points contained in
the base locus of the pencil S can be described as follows:

Play oy type Ag;

Py iy 4ty type Ag with quadratic term y(z +t) for A # —2, and type A4 for A = —2;

Py 21,40y type Ag with quadratic term z(z +t) for A # —2, and type Ay for A = —2;

Py zr 4ty type Ag with quadratic term z(y + t) for A # —2, and type Ay for A = —2.
Then [f~1(A\)] =1 for every A € C by Corollary 1.5.4. This confirms (¥) in the Main Theorem.

Now we suppose that A # —2. Then the rank of the intersection matrix of the lines Ly, 1,

Liay iz Layaeys Ligrtep Liyaeys Liansr Diad ey Ly fetys Lizh gy, and Ligy (2,2} on the
surface S is the same as the rank of the following matrix:

Ly 2y Ly ey =ty Linpdety Lizhiwey  Ligfew=y  Ha

Loy [ —3/4  3/4 1 0 1 0 1
Ly | 3/4 =12 1 1 0 1 1
Liyieny |1 1 -1 0 0 0 1
Lipieny | O 1 0 -1 0 0 1
Ligwn | 1 0 0 0 -1 0 1
Liggewey | O 1 0 0 0 —2 1
mo\ 1 1 1 1 1 1 4

Its rank is 7. On the other hand, we have rk Pic(Syx) = rk Pic(S) + 10. Hence, we see that (%)
holds. By Lemma 1.13.1, we see that ({>) in the Main Theorem also holds.

Family 3.14. The threefold X is P3 blown up in a union of a smooth plane cubic and a point
that does not lie on the plane containing the cubic, so that h'2(X) = 1. A toric Landau-Ginzburg
model of this family is given by

x+y+z+m—2+g+i+£+l,

Yz T T Yz

which is the Minkowski polynomial 202. The quartic pencil § is given by

22yz + xy’z + 2y + 23t + yPat + y2tt + 222 + yat? = \ayzt.
Suppose that A # co. Then

Higy - Sx = Ligy gy + Liay gy + Liap gy + L) fyeths
Hyyy - Sy = 2Ly ) + Ly + Lighgeys (3.14.1)
Hizy - Sx= 2Ly o) + Ly + Lizy (e
Hyy - S3 = Ligy oy + Ligy o + Liap i + Ly fawzy-
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Thus, the base locus of the pencil § consists of the lines Ly, cov, Loy 21 Loy o> Loy iers Lizy gy

Lia} gyt Ligh ety Liapgons a0d Ligy fay2)-
Let S be the cubic surface in P? that is given by

Yz + 2t + y2z + y22 +yzt = 0.

Then S is irreducible and S_3 = Hy, 43 +S. On the other hand, if A # —2, then the surface Sy has
isolated singularities, so that it is irreducible. In this case, its singular points contained in the base
locus of the pencil S can be described as follows:

Pray gy 42y type Ap with quadratic term 2 4 yz;

Py oy ey type Ay with quadratic term y(z + t);

Py 23400 type Ay with quadratic term z(z +);
Pray (4200 type Ay with quadratic term 22—y —yz—yt + (A + Day;
Py 21 4y,0y 0 type A with quadratic term 22— 22 —yz— ozt + A+ Daz;
P{z},{t},{y,z} : type Ay with quadratic term (z +t)(x +y + 2z +t) — (A + 2)xt.

By Corollary 1.5.4, we have [f~1(\)] = 1 for every A\ # —2. Moreover, the points Py 23,0635
Py whiny Pl v leh Pladwh et Pladieh vty ad Play (1) {y,s} are good double points of the
surface S_s. Furthermore, one can check that the surface S_o is smooth at general points of the

lines Loy tyys Loy gop Lo Liwreys Lishiy Lahtwety Lighoty Loy a0d Ly o2
Therefore, using (1.8.3) and applying Lemmas 1.8.5 and 1.12.1, we conclude that [f~1(-2)] =
[S_2] = 2. This confirms (¥) in the Main Theorem.

To verify () in the Main Theorem, we suppose that A # —2. Then (3.14.1) gives

Hy ~ Liay qyy + Liay g3 + Loy gy + Liayfyzty ~ 20y 000 + Ly iy + Ly ety
~ 2Ly H L Ly as ~ Ly + L + L + L fowsy-

Therefore, the intersection matrix of the lines L{m}’{y}, L{x},{z}7 L{x},{t}a L{y},{t}7 L{z},{t}7 L{x},{y,z,t}7
Lipy ety Lizy oty and Ly (o -1 on the surface Sy has the same rank as the intersection matrix
of the curves L{y},{w,t}7 L{r},{y,z,t}7 L{z},{m,t}a L{t},{w,y,z}7 L{x},{y}7 and H). The latter matrix is
given by

Liyy ey Lhwat Lddey Lidfewszr L)@y

Loy [ —4/5 0 1 0 3/5 1
Liapayeny [0 —1/2 0 1/2 /2 1
Lizy {at} 1 0 —4/5 0 0 1
Lit} {wv.2} 0 1/2 0 —3/2 0 1
Ly | 3/5 1/2 0 0 -1/5 1
H, 1 1 1 1 1 4

The rank of this matrix is 5. We can see that the determinant of this matrix is 0 without computing
it. Indeed, we have Hx ~ 2Ly 11y + Ly {a,ey T Liz},{2,¢y On the surface Sy, because Hy, ;) - Sy =
2Ly + Ly ey T Liap oty

Observe that rkPic(Sx) = rkPic(Sk) + 12. Therefore, we conclude that (%) holds. Using
Lemma 1.13.1, we see that ({>) in the Main Theorem also holds.
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Family 3.15. In this case, the threefold X is a blow-up of a quadric in a disjoint union of a
line and a conic, so that h»2(X) = 0. A toric Landau-Ginzburg model of this family is given by
the Minkowski polynomial 419, which is

x z 1 1 1 z
THytrt -+t —.
z Yy z Yy x xy

The quartic pencil § is given by
:1:2zy + y2z:1: + z2ya: + :1:2ty + 22tx + t2ya: + 222 + tzzy + 1222 = Axyzt.
Suppose that A # co. Let C be a conic given by y = zz 4+ xt + 2t = 0. Then

Hygy - Sy = Liay (23 + 2Ly 413 + Lia} y,2)

Hyyy - Sx = Lyyy g2y + Ligy, 1 + 6, (3.15.1)
Hiy - Sx = Ligy 2y + L2 + Lz + Lizh fat)

Hyy - Sx = Ligyqy + Ly ey + Lizy o + L a2y

Thus, the base locus of the pencil S consists of the curves Ly v, Lz iy Ly g2y Ly (e
Liaytwep Liey ey Loy oty Ligy oy, and C.

For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Py qh 4210 type Ag with quadratic term (z +2)(y+2) for A# —2, and type Az for A= —2;
Play gy gey s type A
Pray 21,00y type Ag with quadratic term xz;
Py (21,40 type Az with quadratic term y(z +t) for A # —3, and type Ay for A = —3;
Py (43,42} ¢ type Ag with quadratic term z(x +y + 2 —t — At).
So, by Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (¥) in the Main Theorem.

If A # —2, -3, then the intersection matrix of the curves L,y 21, Liay (v} Ligrge1s Lizyfai)s
Ly (2,2}, and Hy on the surface Sy is given by

Ly izy Ledwzy L=y Lz Ligfzw=y Ha

Loy 2} —1/3 1/3 1/3 1/2 0 1
Ly | 1/3 -2/3  2/3 0 1/3 1
Ly | 1/3 2/3 —7/12 0 0 1
Lizpeny | 1/2 0 0 —5/4 0 1
L{t},{cc,y,z} 0 1/3 O O _4/3 1
Hy 1 1 1 1 1 4

This matrix has rank 6. On the other hand, using (3.15.1), we see that
Hy ~ Ligy (3 + 2L} 0 + Liahfyz) ~ Lign ey + Lightn +C

~ Ligy r2y + Ligy 23 + ey gy + Loy fay ~ Loy qor + Ly oy + Lz (o + Ly fay.2)

on the surface Sy. Thus, the rank of the intersection matrix of the curves L.y 2y, Ly 103s Liyy (2}
L{y},{t}7 L{m}’{y’z}, L{z},{t}a L{z},{w,t}7 L{t},{x,y,z}7 and C is also 6. On the other hand, we have
rk Pic(Sy) = rk Pic(Si) + 11. Thus, we see that (%) holds, so that (¢)) in the Main Theorem holds
by Lemma 1.13.1.
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Family 3.16. In this case, the threefold X can be obtained from P? blown up at a point
by blowing up a proper transform of a twisted cubic curve passing through the point. Thus, we
see that h12(X) = 0. A toric Landau-Ginzburg model of this family is given by the Minkowski
polynomial 212, which is

Yy T Y 1 1
r+y+z+=+-—+—+ -+ —.
z Yy zz Yy =z

The pencil S is given by the equation
mzzy + y2zm + zan: + yztac + 2%tz + t2y2 +t22x + tzzy = Azxyzt.
Suppose that A # co. Then
Hzy - S = Ligy g + 2L4) 3 + Liaptwob

Hep - Sx = Ly gy + Ly 2 + Ly i + Ly ety (3.16.1)

Hyzy - Sy = 2Lgyy oy + Loy + Lizyfot)s
Hgy - Sx = Ligy 1y + Liygy 1oy + Lizy (0 + Ly g2}
Thus, the base locus of the pencil S consists of the lines L,y co1, Lizy 113, Ly 23> Loy ey Lz ey

Lia} et Liypdoty Lizy oy a0d L) (a2}
For every A € C, the surface S € S has isolated singularities, so that it is irreducible.
The singular points of .S contained in the base locus of the pencil S can be described as follows:

Playfrzy: type A
Pray 21,41y type Ag;
Pray oy, 11y 0 type Ag with quadratic term zy;
Py g w2y - type Ag with quadratic term z(z +y + 2 —t — At) for A # —1, and
type Ag for A = —1;
Py 21,4 type Ag with quadratic term z(y + t);
Py (23 4oty type Ag with quadratic term z(z +t — 2y — Ay) for A # —2, and
type Ag for A = —2.
Therefore, every fiber f~1()\) is irreducible by Corollary 1.5.4. This confirms (¥) in the Main
Theorem, because h12(X) = 0.

Now let us verify (¢») in the Main Theorem. We may assume that A # —1, —2. Using (3.16.1), we
see that the intersection matrix of the lines L{:c},{y}v L{z},{t}v L{y}7{z}, L{y},{t}7 L{z},{t}a L{I}y{y72}7
Ly qatys Lizy o6y, and Lggy g4 2y on the surface Sy has the same rank as the intersection matrix
of the curves L{:c},{t}? L{x}v{yvz}’ L{y},{z}, L{z},{t}’ L{t},{x,y,z}v and H)\. But the latter matrix is
given by

Loy iy Matdwzr L=y Lapr Lpgewsy Ha

Lizy (¢} —-1/12 2/3 0 1/2 1/3 1
Lisyivey | 2/3 —5/6 1/2 0 1/3 1
Liyy (2} 0 1/2 -1/6 2/3 0 1
Ly} 1/2 0 2/3 —5/6 1 1
Ly fewsy | 1/3 1/3 0 1 —4/3 1
Hjy 1 1 1 1 1 4

Its rank is 6. On the other hand, the description of the singular points of the surface Sy easily gives
rk Pic(Sk) = rk Pic(Sk) 4+ 11. Thus, we can conclude that (%) holds in this case, so that () in the
Main Theorem also holds by Lemma 1.13.1.
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Family 3.17. The threefold X is a divisor of tridegree (1,1,1) in P! x P! x P2 so that
h'2(X) = 0. A toric Landau Ginzburg model of this family is given by the Minkowski polyno-
mial 208, which is

z 1 1 1 Y

- +tr+-—+z2z+y+ -+ =+ —.

Y Y r  xz oz
The pencil of quartic surfaces S is given by the equation

t22

2te + 2?2y + 2z + 2Pyr + yizx + ay + By + = \zyzt.

To describe the base locus of the pencil S, we observe that
Higy 53 = Liay gy + 20140y + L) gyt
Hiyy Sy = Ligy wy + Ligytey + Lyt + Ly L2y
Hizy - S3 = Ligy gy + 2Ly 40 + Ly s
Hiy - Sx = Ligy iy + Ly o + Lo + Ly faway-

Thus, the base locus of the pencil S consists of the lines L{w},{y}a L{w},{t}a L{y}{z}, L{y},{t}, L{z},{t},

Liaygyep Ligytar Diahgyays and L) gy,
If A\ #£ oo, then S has isolated singularities, so that it is irreducible. In this case, the singular
points of S contained in the base locus of the pencil S can be described as follows:

Proyioqny s type A with quadratic term 2 (y + ¢);

Pray 3.0 type Ag;

Pry iz type Ay with quadratic term yz;
Py iy dzy: type Ay for A # —2, and type Ay for A = —2;
Py (63,4,2) 0 type Ag with quadratic term z(x +y + 2 —t — At);
Pray gty fayy: type Ar

Thus, by Corollary 1.5.4, the fiber f~1()) is irreducible for every A\ # oo. This confirms (V) in the
Main Theorem, since h!?(X) = 0.

Let us check (¢») in the Main Theorem. To this end, we may assume that A # co, —2. Then the
intersection matrix of the curves Ly 1oy, Lizyqors Ly qeys Ly 20y Lty fay,2}» and Hy on the
surface S is given by

Liayy Dy Lo Lotz Liydew=y  Ha

Lz} sy [ —5/6 2/3 1/3 1/2 0 1
Ly | 2/3 —1/6 1/3 0 1/3 1
Ly | 1/3 /3 -8/15  4/5 1 1
Ligya | 1/2 0 4/5 —7/10 0 1
Lt} {ay.2) 0 1/3 1 0 -5/6 1
Hy 1 1 1 1 1 4

This matrix has rank 6. Thus, the intersection matrix of the lines L,y (o1, Lizy i3> Liyy iz} Lyt i
Ly iy Liay y,zt iy izt Lizyfyey and Ly g2 2y on the surface Sy also has rank 6, because

Hy ~ Ligy yy T 2Ly 00 + Doy fwety ~ Diad toy + Ligr e + Lyt + Ly (e
~ Ly oy + 2Ly + Ly wny ~ Lien i + Lyt + Ly g + L a2}

On the other hand, one has rkPic(S;) = rkPic(Sy) 4+ 11. We conclude that (%) holds. By
Lemma 1.13.1, this implies that (<)) in the Main Theorem also holds.
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Family 3.18. The threefold X can be obtained by blowing up P2 in a disjoint union of a line
and a conic. This shows that h%?(X) = 0. A toric Landau-Ginzburg model of this family is given
by the Minkowski polynomial 211, which is

Y

T 1 x 1
—+m+—+z+—+y+;+;.

z
Thus, the pencil S is given by thi equatio:zl
22tz + 2lzy + t2zx + 22yx + 2Pty + Pz + P2y + P te = Azyzt.
As usual, we suppose that A\ # oo. Then
Hizy - Sx = Ligp oy + Liad oy + 2L(ay 00

Hep - Sx= Ly gy + Ly 2 + Ly i + L) ety (3.18.1)

Hey - Sh = Liwy, (23 + Liyy 123 T Ly 1y + Lizy gy
Hgy - Sx = Ligy 1y + Liygy 1oy + Lizy (0 + Ly fay.2)-
Thus, the base locus of the pencil S consists of the lines Ly ¢v, Ly, (23 Liay {63 Ly (23 Lyt iy

Ly y Ly ety Lizdawy a0d Lt fay,2)-
For every A € C, the surface Sy is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Pryy {3,060 type A

Py i34 0 type Ag with quadratic term z(z + t);

Pray oy, 11y 0 type Ag with quadratic term zy;

Py i 4=y ¢ type Ag with quadratic term x(z +y) for A # —1, and type As for A = —1;
Py {ihiy2) 1 type Ay
Pea g qayy: type Ay for A # —2, and type Ay for A = —2.

Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.

To verify ({) in the Main Theorem, we may assume that A # —1,—2. In this case, the in-
tersection matrix of the curves L{y}7{t}, L{y},{x,t}7 L{z},{t}a L{z}7{x7y}, L{t}7{x,y7z}7 and H) on the
surface S is given by

Liyiy Ly ety Lipder Lisdewdy Liyfawey  Ha

Ligan [ —3/4  3/4 1/2 0 1 1
Ligen | 3/4  —5/4 0 0 0 1
Loy | 1/2 0 ~-1/3  1/2 1/2 1
Lo | 0 0 12 —3/4 12 1
Liyoway | 1 0 1/2 1/2 ~1 1
oo\ 1 1 1 1 1 4

This matrix has rank 6. On the other hand, it follows from (3.18.1) that
Hy ~ Ligyqyy T Liay 2y + 20y 1y ~ Liay o + Ly + Ly + Ly fety

~ Liayizy + Lyt + Lianiny + Ly oy ~ Loty + Lighny T Lyt + L dowzy-
Thus, the intersection matrix of the lines L{w},{y}a L{w}{z}, L{m},{t}, L{y}’{z}, L{y},{t}a L{z},{t},
Ly ety Lizygayys and Ly 154,23 on the surface Sy has the same rank as the intersection ma-
trix of the curves L{y},{t}7 L{y},{m,t}v L{z},{t}a L{z},{m,y}v L{t},{x,y,z}7 and Hy. Moreover, we have
rk Pic(Sy) = rk Pic(Si) + 11. Thus, we see that (%) holds, so that (<)) in the Main Theorem holds
by Lemma 1.13.1.
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Family 3.19. The threefold X can be obtained by blowing up a smooth quadric hypersurface
in P3 at two points, so that h1?(X) = 0. A toric Landau-Ginzburg model of this family is given
by the Minkowski polynomial 74, which is

z 1 1 T
- +—-—+yt+z+tr+—+ —.
r x yz Yz

The quartic pencil S is given by the following equations:
2ty + tPyz 4+ yiez + Pay + 2Pyz + Bt + 22 = \ryzt.
Suppose that A # co. Then

Hzy - Sx = Ligp(y + Liad oy + Liad oy + Lo e
Hyyy - Sx = Ly oy + 2Lgy) 003 + Lighfoys (3.10.1)
Hizy - O3 = Liaygoy + 2Ly 0y + L gotys
Hyy - Sx = Ligp gy + Ligyan + Lisniny + Lt goey-
Thus, the base locus of the pencil § consists of the lines Ly, cov, Loy 23 Loy o> Loy iers Lz gy
Liayfzr Lty oty Liep oy and Lig) (a2}

For every A € C, the quartic surface S) has isolated singularities, so that it is irreducible.
Moreover, the singular points of Sy contained in the base locus of the pencil & can be described as
follows:

Py ey type Ay with quadratic term y(z + t);

Pray 21,000 type Ayq with quadratic term xz;

Py} (epqnyt type Ay

Py ity fe.zy s type Ag;
Py ) {wyy ' type A

Then each fiber f~1()\) is irreducible by Corollary 1.5.4. This confirms () in the Main Theorem.

Let us verify () in the Main Theorem. It follows from (3.19.1) that the intersection matrix of

the lines Liuy vy, Liah(op Liap ey Liwhteys Lish i Liorter Liydtoay Loy e a0d Ly (a2
on the surface S) has the same rank as the intersection matrix of the curves L,y rv, Liay (243
Loy iy Livgnys Lty {wy,2)» @and Hy. The latter matrix is given by

Ly iy Lgadizty Loy Dby Lifew=y Ha

Lizy oy [ —6/5 1 4/5 0 0 1
Lz} {2t} 1 —6/5 0 1/5 0 1
Ly | 4/5 0 -1/5  1/2 1/2 1
Li.y g6} 0 1/5 1/2 -1/5 1/2 1
Ly (2,2} 0 1 1/2 1/2 -1 1
H,y 1 1 1 1 1 4

The rank of this matrix is 6. Moreover, we have rk Pic(Sy) = rk Pic(Sy) + 11. Thus, we conclude
that (%) holds. Then (<)) in the Main Theorem holds by Lemma 1.13.1.
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Family 3.20. In this case, the threefold X is a blow-up of the smooth quadric threefold along
a disjoint union of two lines, so that h?(X) = 0. A toric Landau-Ginzburg model of this family is
given by the Minkowski polynomial 79, which is

y 1 1 x
“+—-—+4yt+tz+-—+r+ —.
T oz Y Yz

The quartic pencil § is given by the following equation:
Y2tz + t2yz + ylxz + 2oy + t2ez 4 2yz + 222 = \zyet.
As usual, we suppose that A # co. Then
Hzy - Sx = Liap gy + Liap ey + Loty + Liap s
Hyyy - Sy = Liay g + 2Ly 0y + Ligh o (3:20.1)
Hyzy - S = 2Ly g2y + 2Lga3400-

Hyy - 53 = Liay o + Ligriny + Liaptn + Loy
Thus, the base locus of the pencil S consists of the lines L{m},{y}a L{m}’{z}, L{m},{t}, L{y},{t}, L{z},{t},

Lzt qyrs Ly ey a0d Liey g2
For every A € C, the surface Sy has isolated singularities, so that it is irreducible. The singular
points of S contained in the base locus of the pencil S can be described as follows:

Play wy iz type A
Py gy 10y 0 type Ag with quadratic term zy;
Py i34 0 type Ag with quadratic term z(x + t);
Plyy o1yt type Ag;
Praoy iy dzy: type Ap for A # —1, and type Ag for A = —1;
Py ity {z2y 0 type Ag with quadratic term y(z+y+ 2z — At) for A#0, and type Az for A =0;
Ply (i) fzayt type Ar
By Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (¥) in the Main Theorem.

If A # 0, —1, then the intersection matrix of the curves Ly ryys Liz) g1 Loy} (2.2} Lt} {o
and Hy on the surface S) is given by

RT3

Loy vy Liaddwty  Liwddezy  Ligdfawzy  Ha

Loy [ O 1/2 1/2 0 1
Lz} (vt} 1/2 —5/4 0 0 1
Lopem | 120 =56 13 1

Lt} {2y,2} 0 0 1/3 —5/6 1
H, 1 1 1 1 4

The rank of this matrix is 5. On the other hand, it follows from (3.20.1) that
Liaytyy + Liay 2y + Loy gy + Liad twty ~ Loy gy T 20000 + Ly .2}

~ 2Ly {2y 200 oy ~ Ly gy T Ly + Liay gy Ly ey ~ Ha
on the surface Sy. Thus, if A # 0, —1, then the rank of the intersection matrix of the lines L,y 1.y,
Ly 2y Loy Ly ey Lisnty Dayqutys Liwyfazys and Ligy (o 2y On the surface S is also 5.

Moreover, we have rk Pic(Sk) = rk Pic(Sk) + 12. Thus, we see that (%) holds, so that ({) in the
Main Theorem holds by Lemma 1.13.1.
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Family 3.21. In this case, the threefold X is a blow-up of P! x P? in a curve of bidegree (2,1),
so that A%2(X) = 0. A toric Landau Ginzburg model of this family is given by the Minkowski
polynomial 213, which is

z 1 z 1 1
- F+r+-—+z2+ —+-+y+—-.
Yy Yy Yy  z x
The quartic pencil § is given by the equation
22at + a:2yz + t2xz + zza:y + 1222 + t2:1:y + yzzrz + tzyz = Azyzt.
Suppose that A # co. Let C be the conic in P? that is given by y = 2z + xt + 2t = 0. Then
Higy S = Ligy {2 + 2Ly, 0y + Lie tyods

Hipy - Sy =Ly i + L e
{v} whizy T Ly s (3.21.1)
Hey - Sh = Liwy (23 + Liyy 123 + 2000103
Hgy - Sx = Ligy 1y + Liygy oy + Lizy (o + Ly fay.2)-
Thus, the base locus of the pencil S consists of the curves Lz v, Lizy ), Liyy gz Ligy ey

Ly p Liaydwer L)z, @nd C.
For every A € C, the surface Sy has isolated singularities, so that it is irreducible. Moreover,
the singular points of S contained in the base locus of the pencil S can be described as follows:

Playgyygey: type A
Py fh 4210 type Ag with quadratic term (z +2)(y+2) for A# —1, and type Az for A=—1;
Pray 21,00y type Ag with quadratic term xz;

Py (43,4,2) ¢ type Ag with quadratic term z(x +y + 2z —t — At) for A # —1, and

type Az for A = —1;

Pry iz type As with quadratic term yz;

Pyt owy: type Ar

By Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (©) in the Main Theorem.

Now let us show that ({) in the Main Theorem also holds in this case. To this end, we may
assume that A # —1. Then the intersection matrix of the curves Ly 12y, Liay fy.21r Liyy e}
Ly (2,2}, and Hy on the surface Sy is given by

Liay 2y Lediwzy Ly Lifew=y Ha

Liaygoy [ —1/3 1/3 0 0 1
Ly | 1/3 —2/3 0 1/3 1
Liy}.{t} 0 0 —3/4 1 1
L} {2y} 0 1/3 1 —5/6 1
Hy 1 1 1 1 4

The rank of this intersection matrix is 5. On the other hand, it follows from (3.21.1) that
Hy ~ Liay, a3 + 200 + Liay gy ~ Ligytay £ Ly €

~ Ly ey + Lightar T 2001 ~ Liep o + Dign o + Lianin T Lo fey.s)
on the surface Sy. Thus, the rank of the intersection matrix of the curves L.y 2y, Ly 103s Liyy (2}
Ly ey Ly Liay w2y Lty {wy,2)> and C on the surface Sy is also 5. Moreover, we have

rk Pic(Sk) = rk Pic(Sk) 4+ 12. Thus, we see that (%) holds, so that ({>) in the Main Theorem holds
by Lemma 1.13.1.
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Family 3.22. In this case, the threefold X is a blow-up of P! x P? in a conic contained in a
fiber of the projection P' x P? — P!, Thus, we have h12(X) = 0. A toric Landau-Ginzburg model
of this family is given by the Minkowski polynomial 75, which is

z 1 1 1
—+t-—Fy+zt+t—+r+ —.
x  x TYz yz
The quartic pencil § is given by
2ty + tPyz + yiaz + 2oy + t1 + 22yz + B = hayet.
Let C be a cubic curve in P3 that is given by x = yz% + yzt +¢3 = 0. Then C is singular at the
point Pp 1 - Moreover, if A # oo, then
Hyzy - Sx = Lizpqn +6,

H . S)\ - 3L + L x,tyo
{y} {y}h{t} {y}Azt} (3.22.1)
Hizy - Sx=3Ly 0 + Lizy (e
Hgy - S = Ligy gy + Loy + Loy + Liptoway-
Therefore, the base locus of the pencil § consists of the curves L,y 1y, Liyy (e3> Lizy ey Ly} fa,t}s
Lisyqars Lty {2y, and C.
For every A # oo, the surface Sy has isolated singularities, which implies that Sy is irreducible.
In this case, the singular points of S contained in the base locus of the pencil S can be described
as follows:

Py qr 400 type Ay with quadratic term y(z +¢) for A # =2, and type Ag for A = —2;
Py 1,00 type Ag with quadratic term az;
Pry iz type Ag with quadratic term yz;
Py (61 4e,2) 0 type Ag with quadratic term y(z +y + 2 —t — At);
Py ey type Az with quadratic term z(z +y + 2 — At).
Thus, it follows from Corollary 1.5.4 that [f~1(\)] = 1 for every A € C. This confirms (©) in the
Main Theorem, since h!?(X) = 0.
Let us verify () in the Main Theorem. If A\ # oo, then

Hy ~ Ligy, iy +C ~ 3Lgyy 1y + Liyy a1y

~3Ley o T Ly ety ~ Loy gy T Ly ey + eyt + Loty a2

on the surface Sy. This follows from (3.22.1). Thus, if A # oo, then the intersection matrix of
L{w},{t}a L{y},{t}7 L{z},{t}7 L{y},{w,t}7 L{z},{w,t}7 L{t},{x,y,z}7 and C on the surface S)\ has the same
rank as the intersection matrix of the curves Ly r24ys L2y (w6} Lt} and Hy. If \ # o0, —2,
then the latter matrix is

Y2}

Liyy ey Lad ety Lo {ewzy i

Lipyqeny [ —4/5 1 0 1
Lz} {a,t) 1 —5/4 0 1
Lty {z,y,2} 0 0 —2/3 1
H, 1 1 1 4

The rank of this matrix is 4. On the other hand, we have rk Pic(Sy) = rk Pic(Sy) + 13. Thus, we
see that (%) holds, so that ({>) in the Main Theorem holds by Lemma 1.13.1.
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Family 3.23. In this case, the threefold X is a blow-up of P2 blown up at a point at the
proper transform of a conic passing through this point. A toric Landau—Ginzburg model of this
family is given by the Minkowski polynomial 76, which is

z 1 1 1
-+ -—+yt+z+—+zx+ —.
r Ty Yz
The pencil S is given by the following equation:
2ty + tPyz + yioz 4 Poy + 32 + 2%yz 4 B = wyzt.
Suppose that A # co. Let C be the conic in P? given by x = yz + yt +t> = 0. Then
Hizy S = Ligy {2 + Liad ey +€,
H S)\:3L ,t+L Az,z}>
{y} {y}h{t} {y}Az,2} (3.23.1)
Hizy - Sx = Liay oy + 3Lga1 003
Hyy S = Ligy o + Lyt + Liep oy + Lioptowa)-

Thus, the base locus of the pencil § consists of the curves Lisy 1, Lizy (1), Ligrqers Lizy ey

Liy) (w21> Lity wy,2y> and C.
Observe that Sy has isolated singularities. In particular, it is irreducible. Moreover, its singular
points contained in the base locus of the pencil S can be described as follows:

Py qy 400 type Ag with quadratic term y(x + t);
Py 1 type Ayq with quadratic term az;
Pry iz type Ag with quadratic term yz;
Py iy {z,2y . type Ag with quadratic term y(z +y + 2z —t — At) for A # —1, and
type Ay for A = —1;
Py it ey type Az with quadratic term z(z +y + z — At).
Thus, by Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (©) in the Main Theorem,
since h1?(X) = 0.
To check ({») in the Main Theorem, we may assume that A # —1. Then the intersection matrix

of the curves Ly 11, Liy) f2,2) Lit},{z,y,2}> and H on the surface Sy is given by

Ly iy Ly dezy L fewzy

Ly [—8/15 0 1 1
Ly ey | O —5/4 1/4 1
Liygewsy |1 1/4 -1/2 1
H, 1 1 1 4

This matrix has rank 4. On the other hand, it follows from (3.23.1) that
Hy ~ Ligy, (23 T Ligy 1y +C ~ 3Ly 1 + Ly} fa,2)
~ Ligy 2y 3Ly 0 ~ Liay ey + Lyey + Ly + Ly foy

on the surface Sy. Hence, the rank of the intersection matrix of the curves L,y .1, Liay, (135 Liyy (3
Ly iy Ly io2) Lty {2,y,2}> and C on the surface Sy is also 4. Using the description of the singular

points of the surface Sy, we see that rk Pic(Sy) = rk Pic(Sy) 4 13. Thus, we see that (%) holds, so
that ({) in the Main Theorem holds by Lemma 1.13.1.
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Family 3.24. In this case, the threefold X is a complete intersection of divisors of tridegrees
(1,1,0) and (0,1,1) on P! x P2 x P2, Its toric Landau-Ginzburg model is given by the Minkowski
polynomial 77, which is

y 1 1 1
Tyttt -+ —.
x Yy T xyz
Thus, the quartic pencil § is given by
22yz +ytez + 2oy + iz + ez + Pyz + t1 = Ayt

Let C; be the cubic curve in P3 that is given by = = y?z 4+ yzt + t3 = 0. Then C; is singular at
the point Pg,y (1 (41, but its proper transform on U is a smooth rational curve. Let Cy be the conic
in P? that is given by y = 2z + 12 = 0. If X # oo, then

Hizy - Sx = Liay,qp + G,
Hyyy S = 2Ly {1y +Co,

(3.24.1)
Hyzy - Sh = 4Ly gy

Hyy - Sx = Ligyqy + Ly ey + Lz + L a2y

Thus, the base locus of the pencil § is a union of the curves L,y (1, Ly 16y Lizy o) Lty fay,2}
Cl, and CQ.

If A # oo, then the quartic surface S has isolated singularities, so that it is irreducible. In this
case, its singular points contained in the base locus of the pencil S can be described as follows:

Pray oy, 1ey 0 type Ag with quadratic term zy;
Py 23400 type Az with quadratic term z(z +);
Pry i type Ag with quadratic term yz;
Py gt 4y,2y - type Ay for X # —5/2, and type Ay for A = —5/2;
Py} tpdezy type Ag;
P{z},{t},{m,y} : type Ag with quadratic term z(x +y + 2z — t — At).
Thus, by Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (©) in the Main Theorem,
since h1?(X) = 0 in this case.

If A # oo, then it follows from (3.24.1) that

Liayqey +C1 ~ 2Lgyy 1y + Co ~ 4Ly 1y ~ Liay 1y + Ligyqey + Lizy o + Ly fo2 ~ Hx

In this case, the intersection matrix of the curves L,y oy Ly evs Loy gy Lty {wy,2)» C1, and Co
on the surface Sy has the same rank as the intersection matrix of the curves L,y 11y, Ly {2
and Hy. On the other hand, if A # oo, —5/2, then the latter matrix is given by

Y2}

Ly iy L fewzy  Ha

Lz} 1) 0 1/2 1
Liy ey | 1/2 -1/4 1
H,y 1 1 4

The rank of this matrix is 3. Thus, if A # oo, —5/2, then the rank of the intersection matrix of the
curves Ly i1 Ligy gy Loy qeys Lty {w,y,2}> C1, and Cg on the surface Sy is also 3. This implies (%),
because rk Pic(Sy) = rk Pic(Sy) + 14. Then () in the Main Theorem holds by Lemma 1.13.1.
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Family 3.25. In this case, the threefold X is a blow-up of P3 in a disjoint union of two
lines. Thus, we have h?(X) = 0. A toric Landau-Ginzburg model of this family is given by the

Minkowski polynomial 24, which is
z 1 1
rt+ytz+—+—+—.
z x oz

Hence, the quartic pencil S is given by the following equation:
22yz + yPez + 2oy + 22ty + tPyz + 22 = \ayzt.
Suppose that A # co. Then

Higy - Sx = Lia} (23 + 2Ly 03 + Lia} )
H . S)\ = L z + 3L )
(v} W=} Wt} (3.25.1)
Hyzy - Sx = 2Ly 12y + Ligy 2 + Lz gy
Hyy - Sx = Ligy 1y + Ligy ey + Liey i + iy fop2)
ThUS, the base locus of the pencil S consists of the lines L{z},{z}v L{x},{t}? L{y},{z}a L{y},{t}’ L{z},{t}’

Lz} qyay> and Lgy o y.2)-
Observe that S has isolated singularities, so that it is irreducible. Moreover, its singular points
contained in the base locus of the pencil S can be described as follows:

Pray oy, 1ey 0 type Ag with quadratic term zy;
Py 2346y type Ag with quadratic term xz;
Pry it type Ag with quadratic term y(z +1);
Play(eh vty type Ay
Pla}(th gy type Ag;
Py (6 .4z,2): type Az with quadratic term y(z +y + 2 + (A + 1)t).
Therefore, by Corollary 1.5.4, every fiber f=1()\) is irreducible. This confirms (¥) in the Main
Theorem, since h%2(X) = 0.
Let us verify () in the Main Theorem. It follows from (3.25.1) that

Hy ~ Ligy 123 + 2Ly g6y + Liad fwty ~ Ligrzy +3Lgyhin

~ 2Ly (23 + Ligy 23 + Lz ~ Loy gy + Ly gy + Ly + L fow.z)

on the surface S). Thus, the intersection matrix of the lines L,y 2y, Ly ey Liyy iz Loy iy
Ly gy Liay gty and Ly 1o -1 has the same rank as the intersection matrix of the curves
Lizy iy Loy 2y Lity {ay,2}> and Hy. The latter matrix is given by

Lizyqwey  Lizyey Ly qew,zr Ha

Lizy g9y { —D/6 0 0 1
Liyy ) 0 —4/3 1/2 1
L{t} {2y} 0 1/2 -1/2 1
H, 1 1 1 4

This matrix has rank 4. This gives (%), since rk Pic(Sy) = rk Pic(Sy) + 13. Thus, we see that ()
in the Main Theorem holds by Lemma 1.13.1.
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Family 3.26. The threefold X can be obtained from P? by blowing up a disjoint union of a
point and a line, so that h?(X) = 0. A toric Landau Ginzburg model of this family is given by
the Minkowski polynomial 25, which is

y 1 1
=+ —-—+yt+z+tr+ —.
T T Yz

Then the pencil S is given by the following equation:
vtz + t2yz + yPaz + 2Pay + 2lyz + 3 = Ayt
Suppose that A # co. Then

Hzy - Sx = Ligp oy + Liad oy + Loy + Liadtwd
Hyyy - Sx = Liay gy} + 3Ly 0 (3.26.1)
Hizy - Sx = Liaygoy + 31421003
Hyy - Sy = Ligp gy + Ligy i + Lispiny + Lt doey-
Thus, the base locus of the pencil S consists of the lines Ly ¢y, Ly (23, Liay {63 Liyy {6y Ly ey
Liz} gt a0d Loty {ay,2)-
The surface Sy has isolated singularities, so that it is irreducible. Its singular points contained
in the base locus of the pencil S can be described as follows:
Py gy 16y type Aq with quadratic term zy;
Py i21,40 0 type Ag with quadratic term z(x + t);
Pry 2140 type Ag with quadratic term yz;
Py ity {z,2y . type Ag with quadratic term y(z + y — At);
Py ey type Az with quadratic term z(z +y + 2 —t — At).

By Corollary 1.5.4, every fiber f=1()\) is irreducible. This confirms (©) in the Main Theorem.

To verify () in the Main Theorem, observe that the intersection form of the curves Loy ty,tys
Ly w1y Lty {a,y,2)> and Hy on the surface Sy is given by the following matrix:

Lizyqwey  Lizyey Ly qew,zr Ha

Lizy oy [ —5/4 0 0 1
Ly ey 0 1/12 1/3 1
Lt} {2} 0 1/3 -2/3 1
Hy 1 1 1 4

The rank of this matrix is 4. On the other hand, it follows from (3.26.1) that

Liaytyy + Liay 2y + Loy gy + Liod vty ~ Liad oy + 304148
~ Ligy 2y + 3Ly 1y ~ Ligy ey + Ly oy + Ly g + Ly o2y ~ H

Thus, the rank of the intersection matrix of the lines Ly roys Liz) 23> Liay.ieys Ligy ey Lizy ey
Lizy qyiy> and Ly 154 2y is also 4. Moreover, the description of the singular points of the surface Sy
easily implies rk Pic(Sy) = rk Pic(Sy) + 13. Thus, we see that (%) holds, so that () in the Main
Theorem holds by Lemma 1.13.1.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



120 I. CHELTSOV, V. PRZYJALKOWSKI

Family 3.27. We already discussed this case in Example 1.7.1, where we also described the
pencil §. Suppose that A # co. Then

Higy - Sx = Lia} {y + Liay (23 + 2L4a) 1)
Hyyy - Sx = Ligy qy) + Liyy 2y + 2041000 (3.27.1)
Hizy - Sy = Loy, 2y + Ly 23 + 2L42),40y

Hyy - S3= Ligy o + Ly o + Liepin + L gey2)-
Thus, the base locus of the pencil § consists of the lines L,y rov, Loy 21 Liay g3 Ltz Loy
Lizyqep> and Ligy o,z
The surface S has isolated singularities, so that it is irreducible. Moreover, its singular points
contained in the base locus of the pencil S can be described as follows:

Play{ppi1t type Ay
Pray oy, 1ey 0 type Ag with quadratic term zy;
Py 2346y type Az with quadratic term xz;
P 2146y type Az with quadratic term yz;

Py {ihiy2)t type Ay

Plyy it} (zz)t type Ay

Play gt fwyyt type A

By Corollary 1.5.4, we have [f~}(\)] = 1. This confirms (¥) in the Main Theorem.

To prove (¢) in the Main Theorem, observe that the intersection matrix of the curves Ly, (1,
Lizy 23> Liyy {2y, and H) on the surface Sy is given by

Ly, ty L)z L=y Ha

Ly [ 1 12 12 1
Ly | 1/2 1 /2 1
Loy | 12 172 11

m\ 1 1 1 4

The determinant of this matrix is 5/4. On the other hand, it follows from (3.27.1) that
Hx ~ Liay ) + Dap 3 T 20y a0 ~ Day oy T Linp ey 20000

~ Ly ey + Ly ey 120000 ~ Lah i + Dbt + Lientn + L towar
Thus, the rank of the intersection matrix of the lines Ly oy, Liay 21, Liay (eys Loy 2y Loy ey
Ly gy and Ly 1o 21 is 4. As we have seen above, the description of the singular points of the
surface Sy implies rk Pic(Sk) = rkPic(Sk) + 13, so that (%) holds. This gives (<) in the Main
Theorem by Lemma 1.13.1.

Family 3.28. The threefold X is P! x F;, where F; is a blow-up of P? at a point. Thus,
we have h'2(X) = 0. A toric Landau-Ginzburg model of this family is given by the Minkowski

polynomial 29, which is

T 1 1
T+y+z+=+=+-.
z xr oy

Then the pencil S is given by
2 2 2 2 2 2, _
riyz + Yy xz + 2oy + xty + tYzz + t2yz = Azyzt.
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As usual, we suppose that A\ # oo. Then
Higy - S3 = Liay oy + Loy g2y + 2L4ay. (1)
Hyyy - Sx = Ligy uy + Ly 2y + 2L40.00 (3.28.1)
Hizy - O3 = 2Ly 2 + Ligh s + Lizyqo
Hiy Sy = Ligy gy + Ly + Lz + Ly ey
Thus, the base locus of the pencil S consists of the lines Ly, rov, Loy 21 Liay g3 Lyt iz Loy

Lz qey> and Ligy a2}
Each surface Sy has isolated singularities. In particular, it is irreducible. Its singular points
contained in the base locus of the pencil S can be described as follows:

Py iyt type Ag with quadratic term y(z + ¢);
P{x},{z},{t}i type A4 with quadratic term xz;
Py ey type Ag with quadratic term xy;
Py fh 4210 type Ag with quadratic term z(z + y);
Pray ity y.2y: type Ag;
Py} i) o2y type Ar.
Thus, each fiber f~1()\) is irreducible by Corollary 1.5.4. This confirms () in the Main Theorem.

To verify (<) in the Main Theorem, observe that the intersection matrix of the curves Ly, (.1,
Ligyy 16y Lity fa,y,2}> and Hy on the surface S) is given by

L=y Ly Ligygawzy Ha

Loy [ —2/3 2/3 0 1
Ly | 2/3 0 —1/12 1/2 1
L{t},{z,y,z} O 1/2 —1 1
Hy 1 1 1 4

This matrix has rank 4. Using (3.28.1), we see that
Hy ~ Ligy tyy + Liay 2y + 2Ly 00 ~ Loy goy + Lgyy 2y T 2L401 40

~ 2Ly 2y + Ly g2y + Lizv e ~ Loy ey + Ly T Lsyngn + L fow.z)

on the surface Sy. Thus, the rank of the intersection matrix of the lines L,y 1y, Liay {2} Lia}.{}
Liyy iz Loy ey Lizy gy and Lygy 124,23 on the surface Sy is also 4. On the other hand, we have

rk Pic(Sk) = rk Pic(Sk) 4+ 13. Thus, we see that (%) holds, so that ({>) in the Main Theorem holds
by Lemma 1.13.1.

Family 3.29. In this case, the threefold X is P? blown up in a point and a line lying on the
exceptional divisor of the blow-up of a point. We have h'?(X) = 0. A toric Landau-Ginzburg
model of this family is given by the Minkowski polynomial 26, which is

y 1 1
-+ -+yt+z+—+uz
r TYyz
Hence, the pencil S is given by the equation
iz + t2yz + yPaz + 2oy + 1 + 22yz = zyet.
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Let C be the cubic curve in P3 that is given by = = 322 + yzt + 1> = 0. Then C is singular at
the point Ppy 13,113 If A # oo, then

Hiay - Sx = Ligy, iy +C,

Hyyy - Sx = 4Lgyy 11y (3:29.1)
Hyzy - Sx = 4L1zy 41y

Hyy - Sx = Ligy 1y + Ligy ey + Lizy o + L a2}

Thus, the base locus of the pencil S consists of the curves L,y oy, Ly iy Lizyqeyr Lo fa
and C.

If A\ #£ oo, then Sy has isolated singularities, so that it is irreducible. In this case, the singular
points of S contained in the base locus of the pencil S can be described as follows:

Y2}

Pray gy 11y type Ag with quadratic term zy;
Py 3,010 type Az with quadratic term z(z +);
Pry iz type As with quadratic term yz;

Py it .4z,2) ¢ type Az with quadratic term y(z +y + 2 — At);

Piy it {ay) s type Az with quadratic term z(z +y + 2 —t — At).

By Corollary 1.5.4, we have [f~1(\)] for every A € C. This confirms () in the Main Theorem.
To verify (¢) in the Main Theorem, observe that
Liapqny +C ~ 4Ly ~ 4ar iy ~ Loyt + Liwniny + Lianin + L daws

on the surface Sy with A # co. This follows from (3.29.1). Thus, the intersection matrix of the curves
Ligy oy Loy iy Lizy g6y Liey {w,y,2)» @and C on the surface Sy has the same rank as the intersection
matrix of the lines L,y 14y and Ly (). The rank of the latter matrix is 2, because we have L%x} w =

Liay gy - Ly gy = 1/4 and L%z} = 1/2. Moreover, we have rk Pic(Sy) = rk Pic(Sy) + 15. This
shows that (¥) holds. Then (<) in the Main Theorem also holds by Lemma 1.13.1.

Family 3.30. The threefold X can be obtained from P3 blown up at a point by blowing up
the proper transform of a line passing through this point. This shows that A2(X) = 0. A toric
Landau—Ginzburg model of this family is given by the Minkowski polynomial 28, which is

PRI S
z Yy
In this case, the quartic pencil § is given by the equation
22yz + y?xz + ey + yPat + 22tz + yz = \ayzt.
Suppose that A # co. Then
Hzy - Sx = Lig gy + Loy (2 + 2Lgat 01
Hyyy - Sx = 2Lty gy + Ly 23 + Ly g (3:30.1)
Hizy - Sx = Ligy 23 + 2Lgyy, 00 + Lizp e

Hyy - S = Lgay gy + Linn + Lyt + Lipgewey
Thus, the base locus of the pencil S consists of the lines Ly ¢v, Ly (21 Liay {63 Ly (23 Lyt i
Ly and Ly a2y
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Each surface Sy is irreducible and has isolated singularities. Moreover, its singular points con-
tained in the base locus of the pencil S can be described as follows:
Py iz type Ay with quadratic term yz;
Py ey type Agq with quadratic term zy;
Py i34 type Ag with quadratic term x(z + t);
Py (21,40 type Ag with quadratic term z(y + t);
Play ity gy type Ar

By Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (¥) in the Main Theorem.

To verify (¢) in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Sk) + 13. On the other
hand, it follows from (3.30.1) that

Hy ~ Ligy qyy + Liay (23 + 20y 10 ~ 2Ly qyy T Liyy 23 + Ly o
~ Liwy 2y T 2Ly 23 + Lz ~ Loy gy + Ly gy + Ly + L fow.z)

on the surface Sx. Thus, the intersection matrix of the lines sy riys Loy 21y Liay gy Liyy iz}
Liyy 6y Lizyqey> and Ly 12 -y has the same rank as the intersection matrix of the curves Ly 1,
Lizy 23> Lity 2,23 and Hy. The latter matrix is given by

Liayty Dy Ly dewzy  Ha

Lz} {y} 0 1/4 0 1
Lizy {2} 1/4 —7/12 0 1
L{t},{cc,y,z} 0 O _3/2 1
Hy, 1 1 1 4

Its rank is 4, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.

Family 3.31. The threefold X can be obtained by blowing up an irreducible quadric cone
in P4 at its vertex. This implies that h%?(X) = 0. A toric Landau-Ginzburg model of this family
is given by the Minkowski polynomial 27, which is

z x 1
Tyttt -
z Yy
Then the pencil S is given by the following equation:
Pyz + taly + taz + 22yz 4+ vy’z + ayz? = \ayzt.
Suppose that A # co. Then
Hzy S = Ligy g + Loy g2y + 2Lgap 10
Hyyy - Sx = 2Ly gy + Ly 23 + Ly g (331.1)
Hizy - Sx=2Lgay oy + Ligy (e + Liap e
Hyy - Sy = Ligy 0 + Ly + Lyt + L goyey-

Thus, the base locus of the pencil S consists of the lines L,y ¢v, Ly, (21 Liay {63 Ly 123 Lyt iy
Lizy gy and Ly gy 2
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Each surface Sy is irreducible, it has isolated singularities, and its singular points contained in
the base locus of the pencil S can be described as follows:

Py iz type Ag with quadratic term yz;

Py ey type Agq with quadratic term zy;

Py 100 type Ayg with quadratic term xz;

Py izpin type Ar;

Pla}(th gy type Ar

Thus, by Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (¥) in the Main Theorem,
since h1?(X) = 0.

To verify () in the Main Theorem, observe that rkPic(Sy) = rk Pic(Sy) + 13. Moreover, it
follows from (3.31.1) that
Hx~ Liay oy + Dapay T 20040 ~ 200y + Lhisr + Lo

~ 2Ly 2y + Ly 2y + Lizv e ~ Liay ey + Ly gy + Lisyngo + L faw.2)

on the surface S). Thus, the intersection matrix of the lines Ly cov, Loy (21> Liadgers Liy) g2y
Ligy 6y Lizyqey, and Ly 12,2) has the same rank as the intersection matrix of the curves L,y 1.y,
Ligy 2y Liyy =), and Hy. The latter matrix is given by

Ly, ty L)z L=y Ha
Lizy (v} —1/20 1/4 1/2 1

Ly | 1/4 =1/20 172 1
Lo | 12 172 —1/2 1
m\ 1 1 1 4

The determinant of this matrix is —3/25. Thus, we see that (%) holds. Then ({) in the Main
Theorem holds by Lemma 1.13.1.

4. FANO THREEFOLDS OF PICARD RANK 4

Family 4.1. The threefold X is a divisor of degree (1,1,1,1) on P! x P! x P! x P!, In this
case, we have h12(X) = 1. A toric Landau-Ginzburg model of this family is given by the Minkowski
polynomial 2354.1, which is

y .,y

1 Y 1 3 z 1 1
rT+y+z+ =+ =
z

z oz
ettt ettt i Tt Ty
The quartic pencil § is given by the following equation:
22yz + xyPz + xy2® + a2yt + P2t 4+ 22t + y22t 4+ ayt® + 22 + atz
+ 3yzt? + 22t + yt® + 213 = \wyzt.

As usual, we assume that A # oo (just for simplicity).
Let C be the conic in P3 given by x = yz + yt + 2t = 0. Then

Hizy - S\ = Ligy 1y + Liay g2ty 6

Hiyy S = Ligy oy + Lyt + Ly gety + Ligy ey (4.11)
Hzy - Sx = Ligy oy + Lizpiny + Loy ety + Lizyfway

Hyy - Sx = Ligy iy + Ly + Lian i + Ly fowa)-
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Thus, the base locus of the pencil § consists of the curves Ly 11, Liyy 3 Ligtgers Lizy iy

Ligy faap Lid ety Liey etr Liep ity Loy fwztys Loty gay,z), and €.
Observe that S_4 = Hy, ;1 + S, where S is a cubic surface in P3 that is given by

yt? + 2t + 22t + %t + 3yzt + y?z + y22 + ayz = 0.

On the other hand, if A # —4, then S is irreducible and has isolated singularities. Moreover, if
A # —3,—4, then the singular points of S) contained in the base locus of the pencil S can be
described as follows:

Py ey type Ag with quadratic term (z +¢)(y +1);
Py 2340yt type Ag with quadratic term (x +t)(2 + t);
Pry 21400 type Az with quadratic term yz;
Py gt w2y - type Ay with quadratic term (z +t)(x +y + 2 +1t) — (A + 4)at;
Py o1 4zey s type Ap with quadratic term (z +¢)(y + 2) + (A + 4)yz.
Furthermore, the surface S_3 has the same types of singularities at the points Py (21 11y, Pla) {y},4t}
Pry ity Pray {64,231 and Py ) (2,- In addition to this, the surface S_3 is also singular at
the points [0:&3:1:€3] and [0:£2:1:&3), where &3 is a primitive cube root of unity. Both these
points are singular points of the surface S_3 of type A;.
For A # —4, the surface Sy has du Val singularities at the base points of the pencil S. Therefore,
by Corollary 1.5.4, the fiber f1()) is irreducible for every A # —4. Moreover, the points Py 140

P{x}v{y}v{t}7 P{y},{z},{t}? P{x},{t}7{y7z}7 and P{y},{z},{x,t} are gOOd double points of the surface S_4.
Furthermore, the surface S_4 is smooth at general points of the curves Ly (11, Ly 215 Liyy e}

Ly Ligy oty Digy gzt Ly gead Lz fwtd Lt v,z Lty fe,y,2)> and C. Thus, we see that
[f1(—4)] = [S_4] =2

by (1.8.3) and Lemmas 1.8.5 and 1.12.1. This confirms (©) in the Main Theorem.

To verify ({) in the Main Theorem, we may assume that A\ # —4. Then the intersection
matrix of the curves Liay (13, Liay y.2tp Liyy ety Liyd ety Lishivty Lit) oy.2), and Hy on the
surface S is given by

Ly iy Lehwaty Lide Lozt Lihwe Ligfzw=zy Ha

Liay.qy  —1/6 1/2 2/3 0 0 1/2 1
Ligytweny | 1/2 —3/2 0 1 1 1/2 1
Lgpiany | 2/3 0 ~5/6 1 0 0 1
Liy} gz} 0 1 1 —5/4 1/4 0 1
Lz} {y.t} 1 1 0 1/4 —5/4 0 1
Lty oy | 1/2 1/2 0 0 0 -3/2 1
Hy 1 1 1 1 1 1 4

This matrix has rank 7. On the other hand, it follows from (4.1.1) that
Hy ~ Ligy g1y + Liay fyety +C ~ Ligy 23 + Ligy gy + Ligd oty + Ligha0)
~ Ly oy + Ly + Ly oy + Loy gury ~ Diar ey + Ly o + Lisriey + Ly a2y
Moreover, we also have 2L,y 4y + Ly} (2,0} T Liz} {ay ~ Hx, because
Hig1y - Soo = 2Lay g1y + Ly} oty + Lz} fat)-

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 328 2025



126 I. CHELTSOV, V. PRZYJALKOWSKI

Therefore, the intersection matrix of the curves Ly a1, Ly Loy Lo Ly faeys
L{y},{z,t}’ L{z},{z,t}’ L{z},{y,t}v L{x},{y,z,t}’ L{t},{x,y,z}’ and C on the surface S)\ has the same rank as
the intersection matrix of the curves L{m}’{t}, L{r},{y,z,t}7 L{y},{w,t}7 L{y},{z,t}7 L{z},{y,t}7 L{t},{m,y,z}7
and Hy. But rk Pic(Sy) = rk Pic(Sy) + 9. Therefore, we conclude that (%) holds. Then (<)) in the
Main Theorem holds by Lemma 1.13.1.

Family 4.2. In this case, the threefold X is a blow-up of the irreducible quadric cone in P4
at its vertex and a smooth elliptic curve that does not pass through the vertex. This shows that
h'2(X) = 1. A toric Landau-Ginzburg model of this family is given by the Minkowski polyno-
mial 663, which is

z z T y 2 2 1 1
r+ty+-+-+-+-"+-"+-+—+ —.
Yy x Yy T T Yy yz xz

The quartic pencil S is given by the equation
22yz 4+ xyz + x2t + y2tt + 2ot + yPat + 2uzt? 4 2yt + 2P + yt® = \ayzt.

For simplicity, we assume that A # oco.

If A ## —2, then S, is irreducible and has isolated singularities. On the other hand, we have
S_9 = Hy,,p + S, where S is an irreducible cubic surface given by the equation zyz + z2t + 3 4
22t 4 222 + y2t = 0.

Let C; be the conic in P3 that is given by = yz + (2 +t)2 = 0, and let C5 be the conic in P3
that is given by y = 22 + (2 + t)? = 0. Then

Hyzy - Sx = Liay (3 + Loy 1y + €1

H . S)\ =1L T + L + 627
{y} {=}{v} {yh{t} (4.2.1)

Hyzy - Sx = 3Ly 1y + Lizy fay)
Hyy - Sx = Ligy 1y + Ligy ey + Ly 1y + Ly oy

Thus, the base locus of the pencil S consists of the curves L,y cor, Lizy i)y Ligyqnys Lizy ey
Lz fwwys Ly ey Crs and Ca.

If A # —2, then the singular points of Sy contained in the base locus of the pencil S can be
described as follows:

Py oy ey type Ag with quadratic term ¢(z + y);

Py 3,010 type Ag with quadratic term z(z + );

Py (214 type Ag with quadratic term z(y + t);
Pray (4200 type Ag with quadratic term 2+ y? + dzy;
Py it ey type Az with quadratic term z(z +y — 2t — At).

Therefore, by Corollary 1.5.4, the fiber f=1()) is irreducible for every A # —2. Moreover, the

points Pryy (1,(p Playtehity Plartwr gty Doy dyp itz 204 Pray 0y o,y are good double points of
the surface S_o. Furthermore, the surface S_» is smooth at general points of the curves L 1,1,

L{z},{t}v L{y},{t}v L{z},{t}v L{z},{x,y}v L{t},{x,y}’ Cl, and CQ. ThUS, we see that [f_l(—2)] = [5_2] =2
by (1.8.3) and Lemmas 1.8.5 and 1.12.1. This confirms (©) in the Main Theorem.

To verify ({) in the Main Theorem, we may assume that A # —2. By (4.2.1), we have
Hy ~ Ligy 1y} + Liay 0y +C1 ~ Ligy,qyy + Ly (o +C2
~ 3Ly gy T Ly fewy ~ Loy iy T Ly ey + Liay e + Lty oy
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on the surface Sy. Since Hy, 3 - Sx = 2Ly 1y + Lizy fegy + Lity, {2y}, We also have

2Ly 1y + Loy foyy + Lity fayy ~ Ha

Thus, the intersection matrix of the curves L{I},{y}7 L{x},{t}? L{y},{t}’ L{z},{t}’ L{z},{z,y}? L{t},{:c
C1, and Cy on the surface Sy has the same rank as the intersection matrix

W

Ly fewy Laddety L{o{ewy i

Liyeny [ —D/4 1 1/4 1
Loyen| 1 —7/12 12 1
Loyen| 174 1/2 -1 1

m\ 1 1 1 4

Its rank is 4. On the other hand, we have rk Pic(gk) = rk Pic(Sk) + 12, because the quadratic term
of the defining equation of the surface S\ at Py 1 42,0 18 x? 4+ 32 + Azy, which is irreducible
over k. Then (<)) in the Main Theorem holds by Lemma 1.13.1.

Family 4.3. In this case, the threefold X is a blow-up of P! x P! x P! along a smooth rational
curve of tridegree (1,1,2). Thus, we have h1?(X) = 0. A toric Landau-Ginzburg model of this
family is given by the Minkowski polynomial 740, which is

y .y

111
T+y+z+ S+ -
z x

z oz
+-+—-+-+-+
y T oz Yy x
The quartic pencil § is given by the following equation:
a:2yz + yzza: + z2y$ + y2ta: + yztz + 2%tz + z2ty + tzya: + 22z + t2yz = Azyzt.

As usual, we suppose that \ # oo.
The base locus of the pencil S consists of the lines L{x},{y}v L{x},{z}? L{z},{t}’ L{y},{z}a L{y},{t}’

Ly Ly twaty L tzty Lizpqway> a0d Ly (o y,2), because
Hizy - S\ = Liay ) + Liay o) + Loy iy + Loy ez
Hyyy Sy = Liay gy + Lyt + Lo + Ly ey (43.1)
Hizy - Sx = Ligy oy + Ly tay T Lisniny + Ly s

Hyy - Sx = Ligy 10y + Ligyqey + Lz + L o2}

For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Pay gy eyt type A

Pay gy iyt type Au

Play zyq00 type Ar

Pry iz type Ag with quadratic term yz;
Py b eyt type A for A # =3, and type Ay for A = —3;
Py (=) yay: type Ay for X # =3, and type Ay for A = —=3;
Pray (63, 4y,2y 0 type Ay for A # —3, and type Ay for A = —3.

Then [f~1(A\)] = 1 for every A € C by Corollary 1.5.4. This confirms (V) in the Main Theorem.

To verify (¢) in the Main Theorem, observe that rk Pic(Sk) = rk Pic(Sx) + 9. On the other
hand, it follows from (4.3.1) that the intersection matrix of the lines Ly 1, Liay {2} Lia}. gt}

L zr Ligyr gy Lieney Liaddyety Dighizay Lisypys a0d Ly goy,zp on the surface Sy has
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the same rank as the intersection matrix of the curves Ly 0, Liay t21s Ly iers Liyy iz Loy i
Lty (2y,2y, and Hy. If A # —3, the latter matrix is given by

Ly Ly L Lodnisy Lo Lgdfew:z i

Ly [ —1/2  1/2  1/2 1/2  1)2 0 1
Laynin | 172 =1/2 172 1)2 0 0 1
Ly | 1/2 12 -1/2 0 1/2 1/2 1
Lo | 172 12 0 -1 1/2 0 1
Loy | 1/2 0 /2 1/2  —1/4 1 1
Liyowey | O 0 1/2 0 1 -3/2 1
oo\ 1 1 1 1 1 1 4

Its rank is 7, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.

Family 4.4. In this case, the threefold X is a blow-up of a quadric in two non-collinear points
and the proper transform of a conic passing through these two points. We have h'"?(X) = 0. A toric
Landau—Ginzburg model of this family is given by the Minkowski polynomial 426, which is

T 1 1
Y + -+ % + -+ -

x
rT+y+z+—+-=
z oz oy Yy T

The quartic pencil § is given by
xzyz + y2za: + z2y:r + x2ty + y2tac + 2%tz + yztz + 22 + tzyz = A\zyzt.
Suppose that A # co. Then
Hizy - S\ = Ly oy + Liay f2) + Liay ey + Loy (s
Hyyy - Sx = Ligy oy + Ly £y + L + Ligh ey (441)
Hizy - S = Ligy oy + Lihisy T Lay o + L ey

Hyy - S = Ligy ey + Ly oy + Liep oy + Liohtowa)-
Each surface S is irreducible, it has isolated singularities, and its singular points contained in
the base locus of the pencil S can be described as follows:

Py gy 11y type Ag with quadratic term zy;

Py 2346y type Aq;

Py zpin type Ag;

Py iz type As with quadratic term yz for A # —2, and type A5 for A = —2;
Py iy {eyy: type Ay for A # =3, and type Az for A = —3.

Then each fiber f~1()\) is irreducible by Corollary 1.5.4. This confirms () in the Main Theorem.

Let us prove () in the Main Theorem. We may assume that A # —2, —3. Then the intersection
matrix of the curves L{I}y{yyt% L{y},{x,t}7 L{y}7{z}, L{z},{t}7 L{z},{z,y}v L{t},{x,y,z}a and H) on the
surface S is given by

Ly wy Ldiey Loty Dbty Liaddew) Lifewszy Ha

Liay. ey [ —5/4 1/4 0 0 0 0 1
Liyey | 1/4 —5/4 1 0 0 0 1
Liyy (2} 0 1 -1/2 1/2 1/2 0 1
Ly} 0 0 1/2 —1/2 1/2 1/2 1
Liz) g 0 0 2 12 -3/4 1/2 1
Lity (wv.2) 0 0 0 1/2 1/2 -3/2 1
Hy 1 1 1 1 1 1 4
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This matrix has rank 7. Thus, it follows from (4.4.1) that the rank of the intersection matrix of
the lines Loy ryys Liw) iz Loy Diwyier Langns Lighdnys Loty Ligh ey Lizyfoyys and
L) {wy,2} 18 also 7. But 1k Pic(Sk) = rkPic(Sk) + 9, so that (%) holds. Then (¢) in the Main
Theorem holds by Lemma 1.13.1.

Family 4.5. In this case, the threefold X is a blow-up of P! x P? in a disjoint union of curves
of bidegrees (2,1) and (1,0). We have h'?(X) = 0. A toric Landau-Ginzburg model of this family
is given by the Minkowski polynomial 425, which is

z 1 1 1
e et
y z Yy x

rty+z+24 Y
z x

Then the pencil S is given by the equation
a:2yz + yzzx + zzy:r + y2tx + yztz + 22t + tzyaz + t2zx + t2yz = A\zyzt.
Suppose that A # co. Then

Higy - Sx = Lia} ) + Liwy (o) + Lot ey + Ly fwts
Hyyy S = Ligy ) + Ligh ey T Lign ey + Lt (45.1)
Hizy - Sx = Ligy oy + Ly ey + Lt ey + Liad twatds
Hyy - S = Ligy 0y + Ly oy + Liep oy + Lieh oz
Observe that Sy is irreducible, it has isolated singularities, and its singular points contained in
the base locus of the pencil S can be described as follows:
Playw) ey type Ay
Py qy 40 type Az with quadratic term x(y +¢) for A # =2, and type Ay for A = —2;
Py 21400 type Agg
Pry iz type As with quadratic term yz;
Proy 2y yty o type Ap for A # —2, and type Ay for A = —2.

Then each fiber f~1()\) is irreducible by Corollary 1.5.4. This confirms () in the Main Theorem.

It follows from (4.5.1) that the intersection matrix of the base curves of the pencil S on the
surface Sy has the same rank as the intersection matrix of the curves Ly, rov, Liay (23 Lia} {1}
L{y}’{z}, L{y}{z’t}, L{t},{x,y,z}7 and H)y. If X\ # —2, the latter matrix is given by

Ly oy Ly Ly Loddsy Loty Ligfewzy  Ha

Lizyqy [ —3/4  1/2 3/4 1/2 1 0 1
Lo | 172 =172 12 1/2 0 0 1
Ly | 3/4 12 —=3/4 0 0 1 1
Ligy | 1/2 1/2 0 —-1/2 1/2 0 1
Liy} =) 1 0 0 1/2 —5/4 0 1
Lt} {a,y.2} 0 0 1 0 0 -2 1
H,y 1 1 1 1 1 1 4

The determinant of this matrix is 39/128. However, we also have rk Pic(Sy) = rkPic(Sy) + 9.
Therefore, we see that () in the Main Theorem holds by Lemma 1.13.1.
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Family 4.6. In this case, the threefold X is a blow-up of P? in a disjoint union of three
lines. Thus, we have h?(X) = 0. A toric Landau-Ginzburg model of this family is given by the
Minkowski polynomial 423, which is

z 1 1 1 1 1
r+y+z+-—+-+-+-—-+—+ —.
Yy oz oy x xz XY

The quartic pencil § is given by the following equation:
a:2yz + y2za: + z2y:r + 22tz + t2ya: + t2zx + tzyz + t3y + 32 = Azyzt.

As usual, we assume that \ # oco.
Let C; be the conic in P? that is given by x = yz + yt + 2t = 0, and let Co be the conic in P3
that is given by y = xz + 2t +t?> = 0. Then

Hygy - Sx = 2Ly 1y + Ca,
H{y} - Sy = L{y}{z} + L{y},{t} + Co, (4 ] 1)
Hiy - Sy = Ligy 3 + 200y 1 + Lizy fot)s

Hyy - Sx = Ligy iy + Ly ey + Liey i + i fop2)

For every A, the surface Sy is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Py qh 400 type Az with quadratic term x(y + ¢) for A # —3, and type As for A = —3;
Py 100 type Ag with quadratic term az;
Pry iz type As with quadratic term yz;

Ploy it pz}® type Ay

Pl (s} o} type Ay for A # =3, and type Ag for A = —3;

Py (thqwy: tyPe Ar

By Corollary 1.5.4, each fiber f1()) is irreducible. This confirms (©) in the Main Theorem.

To verify (¢) in the Main Theorem, observe that rk Pic(Sy) = rkPic(Sk) + 11. On the other
hand, it follows from (4.6.1) that the intersection matrix of the curves 2L 11, Liyy (2} Liy) g1}
Ly iy Lizy ety Loty fa,y,2}> C1, and Co has the same rank as the intersection matrix of the curves
L{w},{t}a L{y}{z}, L{y},{t}a L{z},{t}, and H)y. If X\ #£ —3, then the latter matrix is given by

Ly L=y Loty Lo Ha

Ly [—1/12 0 /4  1/3 1
L 0O =12 12 12 1
Loyl 1/4 12 =172 14 1
Laan| 173 1/2 14 —1/12 1

m\ 1 1 1 1 4

Its rank is 5, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.
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Family 4.7. In this case, the threefold X can be obtained by blowing up a smooth hyper-
surface in P? x P? of bidegree (1,1) in a disjoint union of two smooth rational curves. This shows
that h'2(X) = 0. A toric Landau-Ginzburg model of this family is given by the Minkowski
polynomial 215, which is

z 1 1 1 1
THy+z+ -+ -+ -+ =+ —.
y oz Yy T  xZ

The quartic pencil § is given by
a:2yz + y2za: + z2y$ + 22tx + t2y:1: + 22z + tzyz + t3y = Axyzt.
Suppose that A # co. Then

Hizy - Sx = Ligp oy + 2Ly 10 + Liad (o
Hyyy - Sx = Ligy, ) + Ligp o) + Ligh iy + Ligh e (47.1)
Hezy - Sx = Ligy ey + 2Ly + Lishgotys
Hyy - Sx = Ligp gy + Ligyan + Lispiny + L gowey-
Thus, the base locus of the pencil S consists of the lines L,y co1, Lizy 113 Ly 23 Ligyieys Lizy ey
Liayzr Lty tep Liapgotys a0d Ligy fo,y,2)-

For every A € C, the surface S) has isolated singularities. Thus, we conclude that every
surface Sy is irreducible. Moreover, the singular points of Sy contained in the base locus of the
pencil S can be described as follows:

Py ey type Az with quadratic term x(y +1t);

Py 100 type Ag with quadratic term xz;

Pry iz type Ag with quadratic term yz;

Py iy =y type Ay for A # —2, and type Ay for A = —2;
Py ¢y 4p.23 0 type Ag;
Py (tpqwyt tyPe Ar

By Corollary 1.5.4, each fiber f1()) is irreducible. This confirms (©) in the Main Theorem.

To verify (¢) in the Main Theorem, observe first that rk Pic(Sx) = rk Pic(Sk) + 10. On the
other hand, it follows from (4.7.1) that the intersection matrix of the lines L.y 1,0, Lz} (63> Liy}.{z}>
L{y},{t}7 L{z},{t}a L{:c},{z7t}7 L{y},{z,t}7 L{z},{z,t}v and L{t},{x,y,z} on the surface Sy has the same rank
as the intersection matrix of the curves L{m},{t}, L{m},{z,t}, L{y},{z,t}a L{z},{x,t}, L{t},{x,y,z}, and H).
If A # —2, then the latter matrix is given by

Ly iy Laygety Ddiety Loy Ly fawzy  Ha

Ly (—1/6 2/3 0 1/3 1/2 1
Lizy =y | 2/3 —5/6 1/2 1/3 1/2 1
Ligyzy | 0 1/2 —5/4 0 0 1
Liyen | 1/3 1/3 0 —4/3 0 1

Ly fazy | 1/2 1/2 0 0 —1 1
H), 1 1 1 1 1 4

Its rank is 6, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.
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Family 4.8. The threefold X can be obtained by blowing up P! x P! x P! along a smooth
rational curve of tridegree (1,1,0). Then h'?(X) = 0. A toric Landau-Ginzburg model of this
family is given by the Minkowski polynomial 216, which is

1 1

z z 1
r+y+z+—-—+—+-—+—+—.
Yy T z Yy =z

The quartic pencil § is given by
22yz + yPza + 22yx + 2Pt + 2Pty + Py + rx + tPyz = \ayst.
Suppose that A # co. Then

Higy - Sx = Ligp iy + Liap s + Liap iy + Lot
Hyyy S = Ligy ) + Ligh ey T Lign ey + Lt (481)
Hyzy - Sx = Ligy (o) + Ly £ + 21420001
Hyy - S = Ligy ey + Ly oy + Liep oy + Ligptowa)-
Thus, the base locus of the pencil S consists of the lines L,y rov, Liay 21 Liay g3 Ltz Ligy (e
Ly oy Loy dey Ligy ey @0d Ly gy, 2)-
For every A\ € C, the surface S) is irreducible, it has isolated singularities and its singular points
contained in the base locus of the pencil S can be described as follows:

Play wy (210 type A

Play wyqn s type A

Py ey type As with quadratic term xz;

Py 2146y type Az with quadratic term yz;
Py gz type Ay for A % =2, and type A; for A = —2;
Py feyy: type Ar

By Corollary 1.5.4, each fiber f~1()) is irreducible. This confirms (¥) in the Main Theorem.

To verify (¢) in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Sk) + 10. On the other
hand, it follows from (4.8.1) that the intersection matrix of the lines Ly} 1y, Liz} {2} Lia}{t}s
L{y}7{z}, L{y},{t}7 L{z},{t}a L{x}v{zvt}7 L{y},{z,t}7 and L{t}7{x,y7z} on the surface Sy has the same rank
as the intersection matrix of the curves L,y 1oy, Loy (2} Liay 200 Liyyiz0) Loy} ey, and Hy.
If A # —2, then the latter matrix is given by

Ly y Liadizy Dadgety Liwdizer Loy Ha

Loy [ —1/2 1/2 1/2 1/2 /2 1
Ly | 1/2 —-1/2 1)2 0 0o 1
Leneal| 172 12 =3/4  1)2 0o 1
Lopn | 1/2 0 /2 =3/4  3/4 1
Logan | 1/2 0 0 3/4 -3/4 1
o\ 1 1 1 1 1 4

Its rank is 6, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.
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Family 4.9. In this case, the threefold X is a blow-up of P? in a disjoint union of two lines
and an exceptional curve of the blow-up. We have h’?(X) = 0. A toric Landau-Ginzburg model
of this family is given by the Minkowski polynomial 81, which is

y 1 1 1
~t+-—-—+4yt+tz+-—+zr+ —.
T x Y Yz

The quartic pencil § is given by
Ytz + Pyz + yPer + Pyr + Pz + 2tyz + 3 = \ayzat.
As usual, we suppose that A\ # oo. Then

Hizy - Sx = Liap iy + Liap ey + Loty + Liad s
Hyyy - Sx = Lizp gy + 2Lgyp 0 + 2Lgy) e (49.1)
Hizy - Sx = Liay a3 + 3Ly 401
Hyy - Sy = Ligy 0 + Ligy o + Ly + Loy

Thus, we see that the base locus of the pencil § consists of the eight lines Ly c0, Lizy (21 Lia} ()

Ly Diap ey Liadtu s Ly ey a0d Lig (.23
For every A € C, the surface S is irreducible and has isolated singularities. Moreover, the
singular points of Sy contained in the base locus of the pencil S can be described as follows:

Py gy 11y 0 type Ag with quadratic term zy;
Py i34 type Ag with quadratic term z(x + t);
Pry it type Ag with quadratic term yz;
Py itpfezy type Ay
Py ity fzwy s type Ag with quadratic term z(z +y + 2z —t — At).

Therefore, it follows from Corollary 1.5.4 that the fiber f~1()) is irreducible for every A € C. This
confirms (©) in the Main Theorem in this case, since h1?(X) = 0.

To verify (¢) in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Sy) + 11. This immediately
follows from the description of singular points of the surface Sy given above. Note also that

Ligy gy + Liay 2y + Loy ey + Loy qwty ~ Loy foy + 200 + 200 (20
~ Ligy oy + 300y 1y ~ Ly oy + Ligy o + Ly gy + Ly a2y ~ H

on the surface Sy. This follows from (4.9.1). Using this, we see that the intersection matrix of

the lines Loy o}y Loy 1 Loy ter Liwpter Liepter Liab vty Liwp gz and Loty (ay2p on the
surface Sy has the same rank as the intersection matrix of the curves L,y 1y 11, Liyy 35 Ly {2,635
L4y {2,,2}, and Hy. The later matrix is not hard to compute:

Lizy vy Lidqey Lwygzty  Ligpdew,zy Ha

Liyawny [ —5/4 1/3 0 0 1
Lo | 173 —112 23 12 1
Ly} (=t} 0 2/3 —4/3 0 1
Lit}y {o..2) 0 1/2 0 -5/6 1
H,y 1 1 1 1 4

The rank of this matrix is 5. Thus, we conclude that (%) holds in this case, so that (<) in the
Main Theorem also holds by Lemma 1.13.1.
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Family 4.10. In this case, we have X = P! x S;, where S7 is a smooth del Pezzo surface of
degree 7. This shows that h'?(X) = 0. A toric Landau-Ginzburg model of this family is given by
the Minkowski polynomial 84, which is

y 1 1 1
“+—-—+yt+z+-—+-—-+ux
r T z oy
Thus, the quartic pencil S is given by the following equation:
y2tz + t2zy + y2mz + zQxy + tzmy + t2xz + m2zy = A\zyzt.
Suppose that A # co. Then
Higy - S3 = Liay oy + Liay g2y + Liay iy + L) futy
Hyyy - S3 = Liay vy + Ligy g2y + 21434 (4.10.1)
Hizy 53 = Ligy (o) T Ligy (o) + 2L, 00

Hyy - S = Liay gy + Lignn + Lyt + Lipgewey
Thus, the base locus of the pencil S consists of the lines Ly ¢v, Ly, (23 Liay {63 Ly 123 Lyt iy

Ly ey Loy qyay and Ligy fay,2)-
For every A € C, the surface S, is irreducible and has isolated singularities. Moreover, the
singular points of Sy contained in the base locus of the pencil S can be described as follows:

Play wyiz0 type A
Pray gy 10y type Ag with quadratic term zy;
Py i34 type Ag with quadratic term z(x + t);
Pry i type Ag with quadratic term yz;
Py () fe2) 0 type Ag;
Py fzayt type Ar

Therefore, using Corollary 1.5.4, we see that the fiber f=1()) is irreducible for every A € C. This
confirms () in the Main Theorem in this case, because h?(X) = 0.

Let us prove ({») in the Main Theorem. Observe that the intersection matrix of the curves
L{x},{y}v L{:c},{z}? L{z},{y,t}’ L{t},{x,y,z}’ and H)\ on the surface S)\ is given by

Loy vy Ladizy Loy iwtr  Liedqew,zy Ha

Lizy oy [ —1/2 1/2 1/2 0 1
Lisy gy | 1/2 —5/6 1 0 1
Lispwey | 1/2 1 —5/4 0 1
Lt} {2y,2} 0 0 0 -1 1
Hy, 1 1 1 1 4

The rank of this matrix is 5. On the other hand, it follows from (3.30.1) that
Hy ~ Liay gy} + Liay 2} + Liay gy + Loy futy ~ Liar oy + Liy ey + 20000

~ Lizy s + Lyt 12000 ~ Lahin + Lyt + Lian + Do)
on the surface Sy. Therefore, the intersection matrix of the lines Ly, covs Loy (21 Liay {63 Liy) g1
Ly ey Lizy 46y Lizy fy.ty> and Ly (o4 -1 has the same rank as the intersection matrix of the curves

L{z},{y}v L{x},{z}7 L{x},{y,t}7 L{t},{x,y,z}a and H)\. On the other hand, we also have I‘kPiC(gk) =
rk Pic(Sk) + 11. Thus, we see that (%) holds. Then we use Lemma 1.13.1 to conclude that ({) in
the Main Theorem also holds in this case.
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Family 4.11. For a description of the threefold X, see [8]. In this case, we have h12(X) = 0.
A toric Landau—Ginzburg model of this family is given by the Minkowski polynomial 82, which is

y 1 11
L4yt —+-+a
r rz oy

Then the quartic pencil S is given by the following equation:
yztz + t2zy + y2a:z + zzzry + t3y + t2xz + a:2zy = Axyzt.

As usual, we assume that A # oo.
Let C be the conic in P? that is given by z = yz + 2zt +t> = 0. Then
Hzy - Sy = Ligy g + Liap 0y +€,
Hyyy - Sy = Liay ) + Ligy 23 + 2Lgyp, 0010 (411.)
Hizy - Sx = Ligy ey + 314210
Hyy 53 = Ligp g + Lyt + Lishty + Lighgoyey-
For every A, the surface Sy is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil § can be described as follows:
Pray o), 11y 0 type Ag with quadratic term zy;
Py 2340yt type Ag with quadratic term z(z + );
Pry 24 type Ay with quadratic term yz;
Py ity fe.zy s type Ag;
P{z},{t},{m,y} . type Ag with quadratic term z(x +y + 2z — t — At).
By Corollary 1.5.4, the fiber f=1()) is irreducible for every A € C. This confirms (©) in the Main
Theorem, since h%2(X) = 0.

The description of the singular points of the surface Sy gives rk Pic(Sy) = rk Pic(Si) + 12. On
the other hand, it follows from (4.11.1) that

Hy ~ Liay () + Liay g1y 7€ ~ Liay ) + Ligy 123 + 2Ly 40
~ Ligy 2y + 300y 0 ~ Diay o + Ligy gy + Lian ey + Lty a2}

on the surface S). Therefore, the intersection matrix of the curves Ly rv, Loy qys Liyy 2}
Ly ey Lizy ey Lty ey}, and C has the same rank as the intersection matrix of the curves
L{w},{y}7 L{m}’{t}, L{t},{m,y,z}a and Hy. The latter matrix is given by

Ly ity Doyt Loy dewzy i

Liayy [ —1 1/2 0 1
Lo | 12 712 1 1
Lip ey | 0 1 -5/6 1
Hy 1 1 1 4

The rank of this matrix is 4. Thus, we see that (%) holds in this case. Then (<{) in the Main
Theorem also holds by Lemma 1.13.1.
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Family 4.12. In this case, the threefold X is a blow-up of P? in a line and two exceptional
curves of the blow-up. We have h»2(X) = 0. A toric Landau Ginzburg model is given by the
Minkowski polynomial 83, which is

Y Y 1 1
-+ —+-Fyt+z+-+z
r xz Y

Then the quartic pencil S is given by the following equation:
yztz + t2y2 + t22y + y2:1:z + zzajy +t2xz + a:2zy = Axyzt.

Here, for simplicity, we suppose that A # oc.
Let C be the conic in P that is given by & = yz + yt 4+ 2t = 0. Then
Hzy - Sx = Liap gy + Liar,n +6,
Hyyy - Sy = Liay gy + Ligy 123 + 2Lgy1, 0005 (4.12.1)
Hizy - Sx = 2Ly} oy + 2L(a) 0y
Hyy - 53 = Liay o + Ligriny + Liapin + Loy
This shows that the base locus of the pencil § consists of the curves Ly oy, Liay (13 Liyy (2}
Ligriy Ly Lty g2y, and €.

Every surface S} is irreducible, it has isolated singularities, and its singular points contained in
the base locus of the pencil S can be described as follows:
Play iy} =)+ type Ag
Pray oy, 11y 0 type Ag with quadratic term zy;
Proy e300 type Ay
Pry 240 type As with quadratic term yz;
Pupy gty {z,2) 0 type Ay
Pray gy fopy s type Ar
By Corollary 1.5.4, every fiber f~1()) is irreducible. This confirms (©) in the Main Theorem.
One has rk Pic(Sy) = rk Pic(Sk) 4+ 12. On the other hand, it follows from (4.12.1) that

Hy ~ Liay () + Liay g1y +C ~ Liay o) + Liyy 123 + 2Ly 40

~ 2Lgyy 02y T 200y 0 ~ Loy + Dggy gy + Ly + Ly fow.z)

on the surface Sx. Thus, the intersection matrix of the curves Lz cor, Liay (eys Liyy (23 Liyy e}
Ly gy Lty {e,y,2}> and C on the surface S\ has the same rank as the intersection matrix of the
curves Loy oy, Ly (1ys Lt} fz,y,2), and Hy. The latter matrix is given by

Lyt Ly L dewzy i

Ly [ —1/2  1/2 0 1
Loy | 1/2 —3/4 1 1
Liowey | 0 1 -1 1
o\ 1 1 1 4

Its rank is 4, so that (%) holds. Then (<) in the Main Theorem holds by Lemma 1.13.1.
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Family 4.13. Recall that this family was missed in [8] and later found in [12]. In this case, the
threefold X is a blow-up of P! x P! x P! along a smooth rational curve of tridegree (1,1,3). Thus,
we have h'2(X) = 0. A toric Landau-Ginzburg model of this family is given by the Minkowski
polynomial 1080, which is

The quartic pencil § is given by
22yz + xyPe + oy + 2?2t +oylet + 2% 4+ ayt® + 202t 4 2yzt? + at? + 23 = \wyzt.

As usual, we suppose that \ # oo.
Let C be the conic in P3 that is given by y = 2z + 2t + tz = 0. Then

Hygy - Sx = Liay (23 + Liay (1 + 2L0a) (1)

Hyyy - Sx = Lygy 1y + Liyy {2y +6C, (413.1
Hezy - Sh= Ligy 2y T 2000 1 + Lz faptd

Hyy - Sx = Ligyqy + Ligy ey + Lz + L a2y

Therefore, we conclude that the base locus of the pencil S consists of the curves L,y 12y, Liay, (43

Ligytp Lisr o Lot gways Ligrters Lishgway Liapgay,zp, and €.
For every A € C, the surface S is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Ppay gy 16y type Ag with quadratic term y;
Py 3,000 type Ag with quadratic term z(x +t);
Py a4 type Ag
Py i qyty . type Ag with quadratic term x(x +y + ¢ + 32 + Az) for A # -3, and
type Ay for A = —3;
Py ity zwy: type Ag with quadratic term z(z +y + 2z — 2t — At) for A # —3, and
type Ag for A = —3;
0:1: =3 —=X:—1]: type Ay for A # —3, and type A4 for A = —3.

Thus, using Corollary 1.5.4, we conclude that the fiber f~1()\) is irreducible for every A € C. This
confirms () in the Main Theorem, since h!2(X) = 0.

Using the above description of the singular points of the surface Sy, we see that rk Pic(gk) =
rk Pic(Sk) + 10. On the other hand, it follows from (4.13.1) that

Hy ~ Liay (23 + Liay 1y + 204y ty0y ~ Liyy gy + Ligh ety €
~ Ligy oy + 200y 0 + Ly fayy ~ Dy + Dy + Lisr ey + Ly a2}

on the surface S). Hence, the intersection matrix of the curves L,y 1, Liay g3 Liyy ey, L=y
L{w},{y,t}, L{y},{m,t}, L{z},{x,y,t}, L{t},{m,y,z}v and C on the surface S)\ has the same rank as the
intersection matrix of the curves Ly 1y 115 Liyy (2.4 Lizyi6ys Loy ety Lo fa,y,2}> @and Hy. Using
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Propositions A.1.2 and A.1.3, we see that the latter matrix is

Ly wey Loz L Lspfewty L {ewzy

Lizy gy [ —D/6 1/3 1 1/3 0 1
Ly} {ot} 1/3 —4/3 0 1 0 1
Lizy,q0) 1 0 —1/6 1/3 1/3 1
Lizy(ewny | 1/3 1 1/3 —2/3 1/3 1
Lty w2} 0 0 1/3 1/3 —4/3 1
Hy, 1 1 1 1 1 4

Observe that the rank of this matrix is 6. Thus, we see that (¥ ) holds. Then it follows from
Lemma 1.13.1 that ({) in the Main Theorem also holds in this case.

5. FANO THREEFOLDS OF PICARD RANK 5

Family 5.1. In this case, the threefold X is a quadric blown up in a conic and three exceptional
curves of the blow-up. We have h%?(X) = 0. A toric Landau-Ginzburg model of this family is
given by the Minkowski polynomial 1082, which is

2 2 z oz 1 z
oSS S —
y T 'y x xy Ty

1 z vy
Tyt - +=+ =
z oy
The quartic pencil S is given by
:rzzy + yzajz + acyif2 + 22zt + yzzt + 2zat? + 2zyt2 + 22xt + z2yt + 283 4 222 = Azyzt.
Suppose that A # co. Then
Hiay - Sx = Ligy (23 + Liay oy + Liayfuty T Lah gyt
Hyyy - Sx = Ly 12y + Ligy gy + Ly gey + Lighge,ztps (5.1.1)
Hizy - Sx = Liay {2y + Ligy 2y + 203,000
Hyy - Sx = Liay gy + Ligy + Lz + Ly ey
Thus, the base locus of the pencil S consists of the lines Ly r21, Liay (13, Liyy 23> Loy 1oy Lz ey

Lz} fy.1 Db tetds Ladtyetrs Dy gezay a0d Lig gagy-
For every A € C, the surface S has isolated singularities, so that it is irreducible. The singular
points of S contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type Ao with quadratic term z(y + t);

Py i21,40 0 type Ag with quadratic term z(x + t);

Py qy gy type Az with quadratic term t(x +y +t) for A # —3, and type Aj for A = —3;
Py fagy: type Ar

Thus, it follows from Corollary 1.5.4 that the fiber f=1()\) is irreducible for every A € C. This
confirms () in the Main Theorem, because h'?(X) = 0.

To verify (&) in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Sk) + 8. This follows from
the description of the singular points of the surface Sy for A # —3. On the other hand, it follows
from (5.1.1) that

Liay, 2y + Loy ey + Liay futy + Liad fy.zr ~ Lip ey + Lih ey + L ety + Liy) {2}
~ Ligy 2y + Ligy 23 200000 ~ Liay gy + Liyy gy + Ly 1o + Ligy oy ~ Ha
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on the surface S). Thus, the intersection matrix of the lines Ly 2y, Loy ey Lyy iz Loy e
L{z},{t}v L{x},{y,t}v L{y},{x,t}v L{x},{y,z,t}’ L{y},{x,z,t}v and L{t},{x,y} on the surface S)\ has the same
rank as the intersection matrix of the curves Ly oy vy Loy gy263 Liyd gty Liyy ozt Lizy i
Ly 4y, and Hy. If A # —3, then the latter matrix is given by

Ly ey Dbz Dbty Lihiezsy Lizpgy Ly Ha

Liay.wy [ —5/4 1 3/4 0 0 1/4 1
Lia} fy,21) 1 -2 0 1 0 0 1
Liyey | 3/4 0 —5/4 1 0 1/4 1
Liyy (o2} 0 1 1 —2 0 1 1
Lizy o 0 0 0 0 -1/6 1/3 1
Liyan | 1/4 0 1/4 1 1/3  —7/12 1
H,y 1 1 1 1 1 1 4

Its determinant is 7/9. This shows that (%) holds. Thus, we can use Lemma 1.13.1 to conclude
that ({) in the Main Theorem also holds in this case.

Family 5.2. In this case, the threefold X is a blow-up of P? in a disjoint union of two lines and
a disjoint union of two exceptional curves of the blow-up that lie on the same irreducible component
of the blow-up. We have h'?(X) = 0. A toric Landau-Ginzburg model of this family is given by
the Minkowski polynomial 219, which is

x x y 1 1
r+yt+z+—-—+-—+=+-—+-—.
z Yy T Yy x

Thus, the quartic pencil § is given by the equation
:1:22y + y23:z + zza:y + a:zty + 2tz + y2tz + 22z + t2zy = Azyzt.
Suppose that A # co. Then

Hzy - Sx = Liap gy + Loy ey + Loy + Liad g
Hyyy - 53 = Liay g + Lighizy + Lyt + Lightay (5:2.1)
Hizy - Sx = 2L{ay g2y + Liyy 2y + Liapten
Hyy - Sx = Liay o + Lgriny + Lisntn + Loy

For every A, the surface Sy is irreducible, it has isolated singularities, and its singular points

contained in the base locus of the pencil S can be described as follows:

Py iz : type Ag with quadratic term z(x + y);

Pray oy, 1ey 0 type Ag with quadratic term zy;

Py 2340t type Ag with quadratic term z(z + 1);

Plyygar s type Ay

Play ity dy.zy: type Ar.

Therefore, using Corollary 1.5.4, we see that the fiber f=1()) is irreducible for every A € C. This
confirms () in the Main Theorem, since h1:2(X) = 0.

Using (5.2.1), we see that the intersection matrix of the lines L{m},{y}, L{m},{z}, L{w},{t}v L{y}{z},
L{y},{t}v L{z},{t}’ L{x},{y,t}v L{y},{x,t}’ and L{t},{x,y,z} on the surface S)\ has the same rank as the
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intersection matrix of the curves L{w},{y}v L{m}’{z}, L{y}{z}, L{y},{t}7 L{m}’{t}, and Hy. The latter
matrix is given by

Ly Ledntzy Lz Loy Ly Ha
Lz} (v} —1/3 2/3 2/3 1/2 1/2 1

Lo | 2/3 —1/6 2/3 0 2/3 1
Lo | 2/3 2/3 =3/2  1)2 0 1
Loy | 1/2 0 /2 —3/4 1/4 1
Lov | 1/2 2/3 0 1/4  —-1/12 1

m\ 1 1 1 1 1 4

Note that this matrix has rank 6. Moreover, using the description of the singular points of the
surface Sy, we see that rkPic(Sx) = rkPic(Sk) +9. This shows that (¥) holds in this case.
Then (<) in the Main Theorem holds by Lemma 1.13.1.

Family 5.3. In this case, we have X = P! x Sg, where Sg is a smooth del Pezzo surface of
degree 6. This implies that h12(X) = 0. A toric LandauGinzburg model of this family is given by
the Minkowski polynomial 218, which is

z 1 1 1
+-+-+-+-.
y z y =z

Therefore, the corresponding pencil S is given by the following equation:

ﬂc+y—|—z+g
z
mzzy + yzmz + zQxy + yzxt + 22zt + t2xy + t2xz + tzzy = A\zyzt.
Suppose that A # co. Then
Higy - Sx = Lia} {y} + Lia} {2} + 2L1a) 1)
Hyyy - Sx = Ligy gy + Ligy o3 + Ly o + Liyy 00 (5:3.1)
Hiy - Sy = Ligy oy + Lo + Ly gy + Lz (ot
Hy - Sx = Ligy 1y + Liygy 1oy + Lizy (o + Ly fay.2)-

Thus, the base locus of the pencil S consists of the lines Ly, ro1, Liay (21 Lia) g3 Lyt iz Ligy ey

Ly Lightatys Lieydwy a0d L (.2
For every A, the surface Sy is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

Play uh izt type Ag
Py i34 0 type Ag with quadratic term z(z + t);
Py qy 400 type Ag with quadratic term z(y + t);
Pry iz type As with quadratic term yz;

Py ey type Ar.

Thus, by Corollary 1.5.4, the fiber f~1()\) is irreducible for every A € C. This confirms () in the
Main Theorem, since h!?(X) = 0.

Now let us verify ({») in the Main Theorem. On the surface Sy, we have
Hy ~ Liay gy} + Liay 23 + 20y 00 ~ Ly oy + Lir 4oy + Lyt + Ly gz
~ Loy oy T Ly ey T Lisyn oy T Lisywny ~ Liaygey + Lgyytey T Lzt + Liy g,z
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This follows from (5.3.1). Thus, the intersection matrix of the lines Ly r0, Ly g1, Lia) e}
L{y},{z}a L{y},{t}’ L{z},{t}v L{y},{z,t}v L{z},{y,t}v and L{t}7{x,y7z} has the same rank as the intersection
matrix of the curves L{w},{y}7 L{m}’{z}, L{y}’{z}, L{y},{t}a L{z},{t}7 and H). The latter matrix is
given by
Lizp vy Liap ey Lintzy Liwrdy Ly Ha
Lizyqoy [ —2/3 1/2 1/2 1/3 0 1

Ly | 172 =2/3  1/2 0 1/3 1
Lol 1720 120 120 120 120 1
Ly | 1/3 0 12 —7/12 1/4 1
Leyn| 0 /3 12 1/4  -7/12 1

m\ 1 1 1 1 1 4

Its rank is 6. On the other hand, it follows from the description of the singular points of the
surface S that rk Pic(Sk) = rk Pic(Sk) + 9, so that (%) holds in this case. Thus, by Lemma 1.13.1,
we see that () in the Main Theorem also holds in this case.

6. FANO THREEFOLDS OF PICARD RANK 6

Family 6.1. We have X = P! x S5, where S5 is the smooth del Pezzo surface of degree 5.
In particular, we have h'?(X) = 0. A toric Landau-Ginzburg model of this family is given by the
Minkowski polynomial 283, which is
1 11 3 3 2
-4zt —4-t2y++E L
Y Yy oz x T x
Thus, the corresponding pencil S is given by the equation
22yz + x2t? 4+ xy2® + 263 + ayt? + 2w’z + 3yat? + 3yPet + 3z = Iryzt.
For simplicity, we suppose that A # oo.
Let C be the conic in P? that is given by t = (z + y)?2 + 2z = 0. Then
Hyzy - Sx = Lz} £} + 3Lgay gy 11
Hygy - Sx = Ligy 23 + 2Lgyh (0 + Ligh e (6.0.1)
Hizy - Sx = Liay o3 + Ligp a3 + 2L 400
Hyy - Sx = Ligyp + Lisp 0 +C.
Thus, the base locus of the pencil S consists of the curves Ly 12y, Liay fyeys Liyy iz Lyt i
Ligy gwty> Ly gy, and C.
For every A € C, the surface Sy is irreducible and has isolated singularities. Moreover, if

A # —1,-5, then the singular points of S) contained in the base locus of the pencil S can be
described as follows:

Py gy 16y type Ag with quadratic term wy;
Pry g type Ag with quadratic term yz;
Py ey aty s type Ay
Py ey type Ag with quadratic term 22+ 12+ (A + 3)tz;
0:=2:A4+3+VA2+6A+5:2]: type A,.
Thus, in the notation of Subsection 1.8, the set X consists of the points Py 2y 113, Pl {y}.{t}s
Py} (ehiaty a0d Py i), (a9}
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The description of the singular points of the surface Sy also gives
rk Pic(Sy) = rk Pic(Sy) + 10. (6.1.2)

Observe that the singular point Py 1y 2,4 contributes @ to this formula. Similarly, the singular
points [0: —2: X+ 3 £ VA% + 6\ + 5:2] also contribute @ to (6.1.2).

To verify (V) in the Main Theorem, observe that the surface Sy has du Val singularities at the
base points of the pencil S provided that A # —1, —5. Thus, by Corollary 1.5.4, the fiber f=1()\) is
irreducible for every A € C such that A # —1, —5. Moreover, we have

Lemma 6.1.3. One has [f~}(=1)] = [f71(=5)] = 1.

Proof. It is enough to prove that [f~1(—1)] = 1, since the proof in the other case is identical.
Observe that the points Py 1 15 Plat gy, (63 and Ppyy 2y 1243 are good double points of the
surface S_j. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

-1 —
[f (_1)]_[*9 ]+DP{}{t}{ 1+DP{}{t}{zy}

In the neighborhood of the point Py ¢, {wy} the morphism « in (1.9.3) is just a blow-up of this
point. Moreover, its exceptional surface that is mapped to P} (11 (2.} does not contain base curves
of the pencil S because the quadratic term of the surface Sy at this point is 22 + t2 + (A + 3)tz.
Furthermore, the point Py 11} 24} 18 a double point of the surface S_;. In fact, the surface S_l

— 0. Then D!

has a singularity of type Dy at Pp.} (1) (2,41- We see that AP{ ) Pioy ity dent =

by (1.10.9), so that [f~1(=1)]=1. O

Thus, we conclude that f~1(\) is irreducible for every A € C. This confirms (¥) in the Main
Theorem, since h%2?(X) = 0.

To verify () in the Main Theorem, observe that

Hy ~ Liay 2y + 3L(ay yy ~ Liyr e + 2Ly 0 + Liyy ety
~ Liay oy + Ligy 2y + 200y ~ Ly + Lisypp +€

on the surface Sy. This follows from (6.1.1). Thus, the intersection matrix of the curves Ly, 1.1,
Ligy vy Loy Ly ey Liyy ety Lizyqep> and C on the surface Sy has the same rank as the
intersection matrix of the curves L,y 121, Liy) (215 Lyy) ey, and Hy. If A # —1, =5, then the latter
matrix is given by

Loy 4=y Lunizy Lupgey Ha

Lz} (2} —2 1 0 1
Ly} {2} 1 -1/2 1/2 1
Ly} {t} 0 1/2 -7/12 1

Hy 1 1 1 4

The rank of this matrix is 4. Thus, using (6.1.2), we see that (%) holds. Then (<{) in the Main
Theorem holds by Lemma 1.13.1.

7. FANO THREEFOLDS OF PICARD RANK 7

Family 7.1. In this case, we have X = P! x S;, where S, is a smooth del Pezzo surface of
degree 4. This implies that h12(X) = 0. A toric Landau-Ginzburg model of this family is given by
the Minkowski polynomial 505, which is

1 1 2y 2x 1 9 x?
St It TS +——|—3y—|—3:1:+—
&z Yy Yy
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Hence, the corresponding pencil S is given by the following equation:
22y + Pz + 22xy + 2%tz + 2%tz + Py + vPz + 3yPxz + 322y + 232 = Awyzt.

For simplicity, we suppose that A # oo.
Let C be the cubic curve in P? that is given by ¢ = xyz + (z + y)* = 0. This curve is singular
at the point Pg,y 1 (1. Moreover, we have

Hygy - Sx = Liay (g1 + Lia} {23 + 2L0a) (11

Hyyy - Sx = Ligy (g} + Ly} (2} + 2Ly} fo it} (7.11)

Hy - Sh = Ligy 123 + Liyy 123 + 2000 103
Hy - S = Liapqn +C

Thus, the base locus of the pencil S consists of the curves Ly rys Liay (2}, Liyy iz} Ly, (o)
Lizy,ty1)> Ly ey, and C.

If A #£ —2,—6, then S is irreducible and has isolated singularities. In this case, the singular
points of S contained in the base locus of the pencil S can be described as follows:

Py qyp =1+ type Au;
Py 0y type Ag with quadratic term wy;
Py iy {eyy: type As with quadratic term 22 41?2 — (A +4)zt;

0:—2:X4+4+ VA2 +8XA+12:2]: type Ay;
[2:0: A +4+ VA2 +8\+12:2]: type A;.

ThllS, the set X consists of the points P{y},{z},{t}v P{:c},{y}7{t}? P{y},{z},{x,t}v and P{z},{t}7{x,y}'
The description of the singular points of the surface S also gives

rk Pic(Sy) = rk Pic(Sy) + 9. (7.1.2)

Note that the singular point P,y 1y 24 contributes 3 to this formula. Similarly, the singular
points [0: —2: X + 4 + VA2 4+ 8\ + 12:2] contribute @ to this formula. Similarly, the singular
points [—2:0: A + 4 + VA2 + 8\ + 12: 2] also contribute @ to (7.1.2).

To verify (V) in the Main Theorem, observe that the surface Sy has du Val singularities at the
base points of the pencil S provided that A # —2, —6. Thus, by Corollary 1.5.4, the fiber f~1()\) is
irreducible for every A € C such that A #£ —2, —6. On the other hand, we have

Lemma 7.1.3. One has [f~1(-2)] = [f~1(-6)] = 1.

Proof. Observe that both surfaces S_s and S_g have non-isolated singularities. Namely, the
surface S_o is singular along the line z +y + 2 =z +y 4+t =0, and S_g is singular along the line
r+y—z=x+y+t=0. However, both these surfaces are irreducible. This can be checked by
analyzing their hyperplane sections.

It is enough to prove that [f~1(—2)] = 1, since the proof in the other case is identical. Observe
that the points Py 23 113, Plat. v} (63> and Py} (2}, (2.} are good double points of the surface S_.
Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

_1 -2
[f (_2)] =1+ DP{z},{t}»{wvy}’

Arguing as in the proof of Lemma 6.1.3, we get D;{z e 0, so that [f~}(=2)]=1. O
Zyy 1LY
We see that f~1()) is irreducible for every A € C. This confirms (©) in the Main Theorem.
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Let us verify ({) in the Main Theorem. It follows from (7.1.1) that the intersection matrix of the
curves L{x},{y}v L{x},{z}v L{y},{z}a L{z},{t}v L{z},{y,t}v L{y},{x,t}, and C on the surface S)\ has the same
rank as the intersection matrix of the curves Ly, 1, Lyt 23, Ly fa,ry> and Hy. If A # =2, -6,
then the latter matrix is given by

Ly izy Dy ey Loy Ha

Larin [ —3/2  1/2 0o 1
Ly | 1/2 —2 1 1
Ly ey | 0 1 —-5/4 1
H, 1 1 1 4

Its rank is 4, so that (¢») in the Main Theorem holds by (7.1.2) and Lemma 1.13.1.

8. FANO THREEFOLDS OF PICARD RANK 8

Family 8.1. We discussed this case in Example 1.10.11, where we also described the pencil S.
Let us use the notation of this example and assume that A # oo. Then

Higy 3= Liay ) + Loy g2y + 2L (a0

Hiyy Sy = Ligy gy + 3Ly (1.2 (8.1.1)
Hizy - 53 = Liay {2y + 3142y 1)

Hipy - Sy = Ly g +C-

If A #£ —4, -8, then the surface S) is irreducible and has isolated singularities. In fact, in this
case, we can say more.

Lemma 8.1.2. Suppose that A # —4,—8. Then the singular points of Sy contained in the
base locus of the pencil S can be described as follows:

Plyy {epiny type Agz;

Proy gt g2y 0 type As;

A+3+VAZ+ 120 +32:0:-2:2]: type Ao;
A+3+ \/m:—Z:O:Z]: type As.

Proof. Taking partial derivatives, we see that the singular points of Sy contained in the base
locus of the pencil S are the points described in the statement of the lemma. To describe their
types, we start with Py 1 1. In the chart z = 1, the surface Sy is given by

yz + t3 + Higher order terms = 0,

where we order the monomials with respect to the weights wt(y) = 3, wt(z) = 3, and wt(t) = 2.
This implies that Py} (.} (4} is a singular point of type As.

To describe the type of the singular point P,y (41 ¢y .1, we consider the chart y = 1 and change
coordinates as follows: T =x, Z =241, £ =¢. Then S} is given by

—72 + (A + 6)Tt — 1 + Higher order terms = 0.
Note that
—B A+ A+ 6)TE— 17 =—(T— (A+3+ VA2 + 12X+ 32)F) (T — (A +3 — VA2 + 12\ 4 32)1),

and this quadratic form has rank 2, because A # —4, —8. Introducing new coordinates z = Z,
Y =7/Z, and t = t/Z, we obtain the equation of the blow-up of the surface Sy at P,y ) {y,2}- It is

T2 AN+6)tT+t2 =222 (N +6)t224+ 220+ 122+ 3t222 + 13222 + 3t 2322
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The two exceptional curves of the blow-up are given by 2 =¢ = 0 and 2 = § = 0. They intersect at
the point (0,0, 0), which is a singular point of the obtained surface. To blow up the latter point, we
introduce new coordinates Z = 2, j = /%, and t = tA/ Z. After dividing by 22, we rewrite the latter
equation as

B2 ZT— (N6 =222 —t2+12F— (\+6)taz + 3722 + 3t 2723 + £ 332*

The quadratic form of this equation has rank 3, so that this surface has an ordinary double point
at (0,0,0). This implies that P,y 14y 1,2} 18 a singular point of type As.

Now we describe the type of the floating singular points. We will only consider the singular
point [A + 3 + VA2 + 12\ + 32:0: —2: 2|, because the calculations in the other cases are similar.
Let us introduce an auxiliary parameter p € C such that A\ = —(4u? — 4p — 1)/(u(p — 1)). We
assume that g # 0,1. Then

A+34+ VA2 +120432:0:—-2:2] = [u—1:0: —p: .

Taking the chart ¢t = 1 and introducing new coordinates Z =z + (u — 1)/, g =y, and z = z — 1,
we see that S is given by

(2u — D)ZF + (1 — 1)?2% + Higher order terms = 0.

Here, as above, we order the monomials with respect to the weights wt(Z) = 3, wt(y) = 3, and
wt(Z) = 2. This implies that [ —1:0: —p: u] is a singular point of type A,. O

Note that the singular locus of the surface S_4 consists of the point Py (1 (-1 and the line
{r —t = y+ z+t = 0}. Similarly, the singular locus of the surface S_g consists of the point
P2} {y3.{z and the line {x +t =y + 2+t = 0}. Moreover, we have

Lemma 8.1.3. Both surfaces S_g and S_4 are irreducible.
Proof. It suffices to prove that S_4 is irreducible, because the other case can be handled in a

similar way. Let IT be the plane {t = z}. Denote by C4 the intersection S_4 NII. Then Cy is the
quartic curve in II 2 P? that it is given by

a:2yz + a:y3 + 63:y2z + 10:1:3,/z2 + 823 + y23 =0.

This curve has exactly two singular points: [1:0:0:0] and [1:—2:1:1]. Moreover, the point
[1:0:0:0] is an ordinary double point of the curve Cy, and the point [1:—2:1:1] is an ordinary
cusp of the curve Cy. This implies that the curve Cj is irreducible, so that the surface S_4 is also
irreducible. [

In Example 1.10.11, we proved that [f~1(A\)] = 1 for every A € C. Thus, we conclude that ()
in the Main Theorem holds in this case.

Let us verify () in the Main Theorem. It follows from (8.1.1) that the intersection matrix of
the curves Lz 1y Loy (23 Lieyeys Liy)ft,2} Liz){ty}, and C on the surface Sy has the same
rank as the intersection matrix of the curves L,y (1, Ligy f2y, and Hy. If A # —4, -8, then the
latter matrix is given by

Liay gy aygzy Ha

Ligyquy [ —2 1 1
Ly | 1 -2 1
Hy 1 1 4

Its determinant is 18 # 0. On the other hand, we have rk Pic(Sy) = rk Pic(S) + 9. Thus, we see
that (%) holds. Then (<)) in the Main Theorem holds by Lemma 1.13.1.
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9. FANO THREEFOLDS OF PICARD RANK 9

Family 9.1. In this case, we have X = P! x Sy, where Sy is a smooth del Pezzo surface
of degree 2. In particular, we have h%?(X) = 0. This case is somewhat similar to the cases of
families 2.2 and 2.3. As in these two cases, this family does not have toric Landau—Ginzburg
models with reflexive Newton polytope. Let p be the Laurent polynomial

(a+b+1)% 1
—— t+c+-.
ab c

Then p gives the commutative diagram (X&) by [16, Proposition 16].
Let v: C3 --» C* x C* x C* be a birational transformation given by the change of coordinates

a=uzxz, b=x—zz—1, c= —.
Y

As for family 2.2, we can use v to expand ("X) to the commutative diagram (2.2.1). The only
difference is that now the pencil S is given by the equation

23y = \yz —y? — 22 (xt — zz — 12), (9.1.1)

where A € CU {oc}. As for family 2.2, we will follow the scheme described in Section 1. The only
difference is that now Sy is the quartic surface given by equation (9.1.1).
Let Q be the quadric in P? given by xt — xz — t?> = 0. Then

Seo = Hyyy + Hizy + Q.

On the other hand, if A # oo, then S} is irreducible and has isolated singularities.
Let C; be the conic in P? given by y = ot — 2z — t> = 0, and let Cy be the cubic curve in P3
given by z = 23 + yt(x +t) = 0. If X\ # oo, then

H{y} - S\ = 2L{y}7{z} + Cq, H{z} - S\ = L{y},{z} + Co, Q-5 = 6L{m}’{t} + C;. (9.1.2)

Thus, the base locus of the pencil S consists of the curves Ly 111, Ly (21, C1, and Co.
If A # oo, then the singular points of S contained in the base locus of the pencil S can be
described as follows:

Py oy, type A
Pray 42y type A for A # 2, and non-du Val for A = +2;

[0: X+ VA2 —4:2:0]: type A5 for X\ # +2, and non-du Val for A = +2.

Thus, it follows from (1.10.8) and Lemma 1.12.1 that the fiber f~1(\) is irreducible for every A € C.
This confirms (©) in the Main Theorem.

To verify ({) in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Sx) + 9. Indeed, the min-
imal resolution Sk — S of the point Py, ¢y 12} is given by three consecutive blow-ups that have
three irreducible (over k) exceptional curves. Two of them are geometrically reducible, and one is ge-
ometrically irreducible. Similarly, the minimal resolution Sy — Sy of the point [0: X+ VA2 —4:2:0]
has five exceptional curves, and the minimal resolution of the point P,y (.} (+} has one exceptional
curve.

If A # oo, then it follows from (9.1.2) that
1
Hy ~ 2Ly ) +C1 ~ Ligy o) +C2 ~@ 3Lgap, 1 + 561
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on the surface Sx. Thus, if A # oo, then the intersection matrix of the curves L,y 1y and Hy on
the surface Sy has the same rank as the intersection matrix of the curves Ly, 1y, Liyy (2}, C1, Ca,
and Hy. On the other hand, if A # oo, £2, the former matrix is given by

Liay ey Ha
Ly (—3/2 1
H), 1 4 )
The rank of this matrix is 2. Thus, we see that () holds in this case. By Lemma 1.13.1, this
confirms ({») in the Main Theorem.

10. FANO THREEFOLDS OF PICARD RANK 10

Family 10.1. In this case, we have X = P! x Sy, where S; is a smooth del Pezzo surface of
degree 1. In particular, we have h''2(X) = 0. This case is very similar to the case of family 2.1.
As in that case, this family does not have toric Landau—Ginzburg models with reflexive Newton
polytope. However, there are Laurent polynomials with non-reflexive Newton polytopes that give
the commutative diagram ("X). One of them is the Laurent polynomial

z+y+1)° 1
#_’_Z_i__’
Ty z

which we also denote by p.
Let : C3 --s» C* x C* x C* be a birational transformation given by the change of coordinates

1 1

___17 y:bTv 2=1Y.

xr =
b2c c

S| =

Arguing as in Subsection 1.9, we can expand (*X) to the commutative diagram (2.1.1). The only
difference is that now the pencil S is given by the equation

zyc = Azy — 22 — y*)(abe — b?c — a?), (10.1.1)

where A € CU {oc}. Here ([z:y],[a:b:c]) is a point in P! x P2,

As for family 2.1, we will follow the scheme described in Section 1, and we will use the assump-
tions and notation introduced in that section. The only difference is that P3 is now replaced by
P! x P? and that Sy is now the surface in P! x P? given by (10.1.1). As for family 2.1, we will
extend our handy notation in Subsection 1.6 to bilinear sections of P x P2,

Let S be the surface in P! x P? given by abc — b?>c — a® = 0. Then S is irreducible. Moreover,
we have

Soo = Hyzy + Hyyp +5.
On the other hand, if X\ # oo, then S) is irreducible and has isolated singularities.

Let C; be the curve in P! x P? given by = = abc — b?>c — a® = 0, and let Cy be the curve in
P! x P2 given by y = abc — b*c — a® = 0. Then

H{x}~5)\=C1, H{y}uS)\:Cg, S-S =0C +CQ+9L{a},{c}- (10.1.2)

Thus, the base locus of the pencil S consists of the curves Ci, C2, and Lyq) (c}-
If A # oo, then the only singular points of Sy contained in the base locus of the pencil S are
the points

((AN£VA2—4:2],[0:1:0]). (10.1.3)
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If A # +2, then the surface Sy has a singularity of type Ag at each of the points (10.1.3). If A = £2,
then (10.1.3) gives the points ([£1:1],[0:1:0]). One can check that the surface Sio has triple
singularities at these points.

Remark 10.1.4. There exists a commutative diagram

Vy Vs Vi

,32 'y

|

Pl < P2 o ___

where ¢ is a rational map given by the pencil S, the morphism S; is the blow-up of the curve Cy,
the morphism S5 is the blow-up of the proper transform of the curve Cs, the morphism f3 is the
blow-up of a curve that dominates the curve Cy, the morphism 34 is the blow-up of a curve that
dominates the curve Co, and < is a birational morphism that is a composition of nine blow-ups of
smooth curves that dominate the curve Ly, 03 Note that the curve C; has a node at the point
P2y {ay{p}- Similarly, the curve C; has a node at the point Py (a1 (3. Thus, both threefolds V;
and V5 are singular. Moreover, the morphism (3 blows up a nodal curve that is contained in the
smooth locus of the threefold V5. Similarly, the morphism g4 blows up a nodal curve contained in
the smooth locus of the threefold V3. Thus, the threefold V has four isolated ordinary double points.
However, all of them are contained in the fiber g=!(occ0), which consists of the proper transforms
on V of the following surfaces: Hy,y, Hy, S, the exceptional surface of the morphism i, and the
exceptional surface of the morphism 5. Thus, the singularities of the threefold V' are not important
for the proof of the Main Theorem in this case. Note that

~Ky ~ g *(o0).

If we want to keep this condition and make V smooth, we must compose 7 with a small resolution of
singular points of the threefold V. However, the resulting smooth threefold would not be projective
(cf. the proof of [16, Proposition 29]). Indeed, by construction, the threefold V' is Q-factorial, so it
does not admit projective small resolutions.

Note that the surfaces in the pencil S do not have fixed singular points, so that ¥ = @. Thus,
using (1.8.3), we get [f71(\)] = 1 for every A € C. This confirms (V) in the Main Theorem, since
h12(X) = 0.

To verify () in the Main Theorem, observe that rk Pic(Sy) = rk Pic(Si) + 8. On the other
hand, if A # o0o,+2, the rank of the intersection matrix of the curves Ci, Ca, and L4 ¢} on
the surface Sy is 2. This follows from (10.1.2). Thus, we see that (%) holds in this case. By
Lemma 1.13.1, this confirms ({) in the Main Theorem.

APrPENDIX. CURVES ON SINGULAR SURFACES

Let S be a normal surface, and let C and Z be distinct irreducible curves in S. For every point
P € S, one can define the intersection multiplicity (C' - Z)p € Q>¢ as in [18]. As in the case when
S is smooth, one has

C-Z= Y (C-Z)p.

pPeCnZz

In this appendix, we present two simple results (probably well-known to many experts) that can be
used to compute the (local) intersection multiplicity (C'- Z)p and the (global) self-intersection C?
in simple cases. These results are Propositions A.1.2 and A.1.3 below.
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A.1. Intersection multiplicity. Fix a point O € C N Z. Let 7: S — S be the minimal
resolution of singularity of the point O, and let G, ..., G,, be the exceptional curves of the birational
morphism w. Denote by C and Z the proper transforms of the curves C and Z on the surface S ,
respectively. Following [18], one can define 7*(C') as

n
T(C)=C+ ) aG
i=1
for some positive rational numbers aq,...,a, such that

(5 + zn:alGZ> . GZ =0.
i=1

Similarly, we have
T(Z) =2+ bG
i=1
for some positive rational numbers bq,...,b,. We define
C-Z= (5 + ZaiGi> : <2 + ZbiGZ) =*(C)-7*(Z) =7*(C) - Z = C - 7*(2).
i=1 i=1
Let G = G1U...UG),. Then one can define (C - 7)o as
C-Z)o=C-2-C-Z+ >  (C-2)p. (A.1.1)
PeCNZNG

The main goal of this appendix is to prove the following two simple results.

Proposition A.1.2. Suppose that O is a du Val singular point of the surface S, both curves
C and Z are smooth at O, and C intersects Z transversally at the point O. Then the following
assertions hold:

(i) The point O is a singular point of S of type A, or D,,.
(ii) If O is a singular point of type A, and the proper transforms of the curves C and Z on the

surface S intersect the k-th and r-th exceptional curves in the chain of exceptional curves
of the minimal resolution of O, then

T(n—i—ll—k) for <k,
(C-2)o= "

En+1-r7) for >k

—nx1 forr>k

(iii) If O is of type Dy, then (C-Z)o =1/2.
Proposition A.1.3. Suppose that O is a du Val singular point of the surface S and the curve C
is smooth at the point O. Then the following holds:
(i) The point O is a singular point of S of type A,, Dy, Eg, or E;.
(ii) If O is a singular point of type A, and C intersects the k-th exceptional curve in the chain
of exceptional curves of the minimal resolution of O, then

k(n+1—k)

C?=C%+
n+1

(iii) If O is a singular point of type Dy, then either C? = C?2+1o0rC2=C%+ n/4.
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(iv) If O is a singular point of type Eg, then C? = C? + 4/3.
(v) If O is a singular point of type Er, then C? = C? + 3/2.
Propositions A.1.2 and A.1.3 follow from Corollaries A.2.2 and A.2.3 and Lemmas A.3.1, A.3.2,
and A.4.1-A.4.3, which we will prove below.
A.2. Singular points of type A. In this subsection, we suppose that the surface S has a
du Val singularity of type A,, at the point O, where n > 1. Then we may assume that
-2 if ¢ =y,
Gi-Gj =<0 if |[i—j]>1,
1 if |i—j]=1
If the curve C' is smooth at O, then C is smooth along G, it intersects exactly one curve among

G1,...,G,, and this intersection is transversal and consists of one point. The same holds for Z in
the case when Z is smooth at O. This is well known (see [2]).

Lemma A.2.1. Suppose that C is smooth at O and cn G # @. Then

iln+1—k) .

_ <
. T for i <k,
) k(n+1—9) .

T fOT' Z>k’.

In particular, one has ap =k(n+1—k)/(n+1).

Proof. We may assume that n > 2, since the assertion for n = 1 is obvious. Replacing k by
n+ 1 — [, we may assume that £ < (n+ 1)/2. Then

0:5'Gn:—2an—|—an_1.
Ifk=1,then 1 =C-G; = —2a; + a, and
Ozé-Gi:—2ai+ai_1+ai+1

in the case when n > i > 1. This gives a; = (n +1 —14)/(n + 1) in this case.
Thus we may assume that k > 2, so that n > 3. Then 0 = C' - G; = —2a; + a3 and

1= 5 -G = —2a; +a;_ 1+ ag1-
For every i # k such that ¢ #£ 1 and i # n — 1, we also have
0=C-Gi=—2a;+a; 1 +a, 1.

Solving this system of equations, we obtain the required assertion. [

Corollary A.2.2. Suppose that both C' and Z are smooth at O. Suppose that C' intersects the
curve Z transversally at O. Suppose also that CN Gy # & and ZN G, # &. Then

77“(7?4-—51—16‘) for r <k,
C-Z)o= "
( Jo kE(n+1—-r)
— for r> k.
n+1

Proof. Since C intersects Z transversally at O, we have CNZNG =o. But
C-Z= (w*(C)—ZaiGi> Z=C-Z-a.
i=1
Thus, the required assertion follows from (A.1.1) and Lemma A.2.1. [
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Corollary A.2.3. Suppose that C is smooth at O and C NGy # . Then

k(n+1—k)

C?=C%+
n+1

Proof. One has

n 2
~2 * _ o) 2 2 P
C? = <7r (©) ;az(;z) C?—a = C%— ——

by Lemma A.2.1. 0O

Remark A.2.4. Suppose that n > 3. Then there exists a commutative diagram

such that g is the blow-up of the point O and « is a birational morphism that contracts the curves
G, ..., G,_1 to the singular point of type A, _s. Denote by G, G, C, and Z the proper transforms
of the curves G1, G,, 5, and Z on the surface S , respectively. If C' and Z are smooth at O and
the curve C intersects Z transversally at O, then the curves C' and Z are smooth and at most one
of them passes through the intersection point G N G,,.

A.3. Singular points of type D. Now we suppose that the surface S has a du Val singularity
of type ID,, at the point O, where n > 4. We start with the following.

Lemma A.3.1. Suppose that n = 4, both C' and Z are smooth at O, and C intersects the
curve Z transversally at O. Then (C-Z)o =1/2 and C? = C? + 1.

Proof. We may assume that the intersection form of the curves G, Go, G3, G4 is given by

Gi1 G2 Gz Gy
Gi[—-2 1 1 1

G|l 1 -2 0 0
Gs| 1 0O -2 0
G\ 1 0 0o -2

Then 2G1 + G2 + G3 + Gy is the fundamental cycle of the singular point O (see [2]). This implies
6’ . (2G1 + Gy + Gs + G4) = multo(C) =1.

Thus, we see that ~5 N Gy = @. Hence, we may assume that C- -Gy = 1, which implies that
C-Gy=C-G3=C-G4 =0, which gives

14+ a; —2ay =0,

as +as +ay —2a; =0,

a; — 2a3 = 0,

a; — 2a4 = 0.
Solving this system of equations, we see that a; =1, ap = 1, a3 = 1/2, and a4 = 1/2. This implies
C? = C? + 1. Note also that there exists a commutative diagram
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such that g is the blow-up of the point O and « is a birational morphism that contracts the curves
G, G3, and G4 to three ordinary double points of the surface S. Denote by C and Z the proper
transforms of the curves C' and Z on the surface S , respectively. If C and Z are smooth at O and
the curve C intersects Z transversally at O, then (C - Z)o = 1/2, because C N Z N a(G1) = @, the
curves C and Z are smooth along «(G1), and each of them contains a singular point of S contained
ina(Gy). O

Now we suppose that n > 5. In this case, we may assume that the intersection form of the

exceptional curves G1,...,G), is given by the following matrix:

Gi G2 Gz Ga Gs ... Gn-1 Gp

g /-2 1 1 1 0 0 0

a1 -2 0 0 0 ... 0 0

|1 0 -2 0 0 ... 0 0

a1 0 0 -2 1 0 0

G| 0 0 0 1 =2 0 0

Gor | O 0O 0 0 O -2 1
G \0 0 0 0 0 1 -2

Lemma A.3.2. Suppose that C and Z are smooth at O and C intersects Z transversally at
the point O. Then

(C-Z)o = %

If CNG, # @, then C? = C?+1. Otherwise, one has C? = C? + n/4.

Proof. Recall from [2] that 2G1 + G2 + G3 + 2G4 + ... + 2G—1 + G, is the fundamental
cycle of the singular point O. Then

6' (2G1 +Go+G3+2G4+ ...+ 2G4 —I—Gn) = multo(c) =1.

This shows that C-G; = C -Gy = ... = C -Gy =0and C-Go+C-G3+C -G, = L
Hence, the curve C intersects exactly one of the curves Go, G3, or GG,,, and it intersects this curve
transversally at a single point. Similarly, the same holds for the curve Z.

Let 3: S — S be the blow-up of the point O. Then we have the following commutative diagram:

where « is a birational morphism that contracts the curves G,...,G,_2 and G,. Thus, we see
that o(Gp—1) is the exceptional curve of the blow-up 5. Note that a(G) is an isolated ordinary
double point of the surface S. Similarly, we see that the surface S has a du Val singular point of
type Dp,_2 at the point a(G1) = ... = a(Gp—_2). Here, we assume that D3 = As.

Denote by ? and Z the proper transforms on S of the curves C and Z , respectively. Since
neither C' nor Z intersects the curve G,_1, each of the curves C' and Z must pass through some
singular point of S contained in 3(G,_1). Furthermore, we have C N Z = @, since the curve C
intersects the curve Z transversally at O. Thus, without loss of generality, one can assume that
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C-Gp=1and Z-Gy=1. This gives the following system of equations:

2a1—a2—a3—a4:6"G1:0,
2a2—a1:5-G2:O,
2a3—a1:5-G3:O,
2a4—a1—a5:6'~G4:O,

2&5—&4—&6:6'G5:0,

2a, 1 —a, 2 —a, = 5 : Gn—l = 07

2an—an_1:5-Gn:1.

Solving it, we obtain a; = 1, ag = a3 =1/2, and a4 = ... = a,, = 1. In particular, we have

~ ~ . n ~ 1
C'Z:<7T (C’)—;aiGZ)~Z:C"Z—a2:C-Z—§.

Hence, we see that (C'- Z)o = 1/2. Similarly, we get C2 = C2 + 1.
Similarly, we have the following system of equations:

2by —by—bs—bs=2-G; =0,
%by —b1 =2 -Gy =1,

%bs — by = Z -G53 =0,

%bs— by —bs=2-G4 =0,

9bs — by —bg = Z - G5 = 0,

2bn—l - bn—2 - bn = Z : Gn—l = 07
2b, —b,_1=7-G, = 0.

Solving it, we see that

n—2 n
1 1 2 1 3

As above, this gives Z2 = Z2+n /4. This completes the proof of the lemma. [

A.4. Singular points of type E. Now we consider the case when S has a du Val singularity
of type [Eg, E7, or Eg at the point O. We start with the following fact.

Lemma A.4.1. Suppose that S has a du Val singularity of type Eg at the point O and both
curves C and Z are smooth at O. Then C' is tangent to Z at the point O and

~ 4
2_ A2, 2
cc=C +3.
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Proof. We have n = 6. We may assume that the intersection form of the curves G, ...,Gg is
given by the following matrix:

G1 G2 G3 G4 Gs GG

a.f/-2 1 1 1 0 O
Gl 1 -2 0 0 0 O
Gs|] 1 0 -2 0 1 O
G4 1 0 0 -2 0 1
Gs| 0O 0 1 0 -2 0
Gg\0 O 0 1 0 =2

Thus, the curve G is a fork curve.
Let B: S — S be the blow-up of the point O. Then there exists a commutative diagram

where « is a contraction of the curves G; and Gs,...,Gs. We see that a(Gy) is the exceptional
curve of the blow-up 3. This curve contains one singular point of the surface S. Denote it by P.
Then P is the image of the curves G and Gs, ..., Gs. Note that S has a du Val singular point of
type A5 at the point P.

Let C and Z be the proper transforms on S of the curves C and Z, respectively. Then both
C and Z are smooth along a(G3). We claim that C N Z = P. Indeed, the fundamental cycle of
the singular point O is G5 + Gg + 2G5 + 2G5 + 2G4 + 3G1. Thus, the curve C does not intersect
the curves G, ...,Gy4. Similarly, we see that the curve A does not intersect the curves Gy, ..., Gy.
Hence, without loss of generality, we may assume that C NGy # @. Then CNGg = @ and
C - G5 = 1. Similarly, we see that either ZnN Gs # O or ZnN G¢ # . In both cases, we have
CNZ = P, so that the curve C is tangent to Z at the point O.

Since C-Gs=1and C-G1=C-Gy=C -G3=C-Gy=C -Gg, we get the following system
of equations:

(2a1—a2—a3—a4:5’-G1:0,
ag—alzé-ngo,
2a3—a1—a5:5-03:0,
2a4—a1—a6:5-G4:0,
2a5—a3:6’-G5:1,
2a6—a4:5-G6:O.

Solving it, we see that a; =2, ag =1, a3 =5/3, ay = a5 = 4/3, and ag = 2/3. Thus

~ 5 4 4 2 ~ 4
C?=(n*(C)=2G, =Gy — =G5 — -Gy — =G5 — =G | - C=C* — =
<7T() 1233343536> 3

which gives C2 = C2+4/3. [
Lemma A.4.2. Suppose that S has a du Val singularity of type E7 at the point O and both

curves C and Z are smooth at O. Then C is tangent to Z at the point O and
~ 3
C?=C"+ 3.
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Proof. We may assume that the intersection form of the curves Gi,...,G7 is given by the

following matrix:
G1 Ga G3 Ga Gs GG G7

a./-2 1 1 1 0 0 0
Gef 1 -2 0 0 O 0 O
as|] 1 0 -2 0 1 0 O
G4 1 0 0 -2 0 1 O
Gs| 0 0 1 0 -2 0 O
G| 0O 0 0 1 0 -2 1
G:\0 0 0 0 0 1 =2

Thus, the curve (G7 is a fork curve.

The fundamental cycle of the singular point O is 2G5 + 2Gg + 2G5 + 3G3 + 3G4 + 4G1 + G7.
This shows that 5'G7:1and6’-01:6’-6’2:5'6’3:5'6’4:5'05:é-ngo,Which
gives the following system of equations:

2a —ag—az—ay=C-G; =0,
ag—alzé-ngO,
2a3—a1—a5:6'~G3:0,
2a4—a1—a6:6'~G4:0,
2a5—a3:5-G5:O,
2a6—a4—a7:6'~G6:0,

\2&7—8.6:5'(;7:1.

Then a; = 3, ap = 3/2, ag = 2, ay = 5/2, a5 = 1, ag = 2, and a; = 3/2. This gives C2 = C2 + 3/2.
Arguing as in the proof of Lemma A.4.1, we see that C is tangent to Z at the point O. [

Finally, we conclude this appendix by proving the following.
Lemma A.4.3. If S has a du Val singularity of type Eg at O, then C is singular at O.

Proof. This follows from the fact that the coeflicients of all exceptional curves of the minimal
resolution of O in the fundamental cycle are greater than 1. [
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