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Abstract
The purpose of this article is to develop techniques for estimating basis log canonical
thresholds on logarithmic surfaces. To that end, we develop new local intersection
estimates that imply log canonicity. Our main motivation and application is to show
the existence of Kähler–Einstein edge metrics on all but finitely many families of
asymptotically log del Pezzo surfaces, partially confirming a conjecture of two of
us. In an appendix we show that the basis log canonical threshold of Fujita–Odaka
coincides with the greatest lower Ricci bound invariant of Tian.

Mathematics Subject Classification Primary 32Q20; Secondary 14J45 · 14C20 ·
32Q15 · 32Q26 · 32Q30

1 Introduction

1.1 Estimating basis log canonical thresholds

Global and local log canonical thresholds naturally play a crucial rôle in algebraic
geometry. For instance, Shokurov’s conjecture [59] on the ascending chain condition
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for local log canonical thresholds (proved in [41]) implies the inductive step in ter-
mination of higher-dimensional log flips [2]. Likewise, Birkar’s boundedness results
[3] for global log canonical threshold imply the Borisov–Alexeev–Borisov conjec-
ture in all dimensions: the set of Fano varieties of dimension d with ε-log canonical
singularities forms a bounded family for given d ∈ N and ε > 0. This conjecture
implies that the birational automorphism group of any rationally connected variety
is Jordan [53], so that, in particular, all Cremona groups are Jordan (in dimension 2
this was proved by Serre in [58]). Global log canonical thresholds are used to prove
irrationality of Fano varieties [11,54] the absence of non-trivial fiber-wise birational
maps betweenMori fiber spaces [10,13,17], the uniqueness of a Kollár component of a
Kawamata log terminal singularity [19,26,27], and non-conjugacy of finite subgroups
in Cremona groups [12], Moreover, a combination of results about global and local
log canonical thresholds of del Pezzo surfaces helped to answer an old standing open
question in affine geometry [21], and make a first step towards Gizatullin’s conjecture
about automorphisms of the affine complements to Fano hypersurfaces [15].

About a decade ago, it was realized [24] that global log canonical thresholds (glcts)
are the algebraic analogues of Tian’s alpha invariants [62] that are central in the
study of Kähler–Einstein (KE) metrics. This paved the way to using a wide range of
algebraic tools to prove existence of KE metrics via Tian’s theorem that stipulates
that an estimate on Tian’s invariant guarantees the existence of such a metric [11–
13,16,18,20,25]. While this has been arguably the most fruitful method for finding
new KEmetrics, a sticking point with this approach has been that Tian’s theorem only
provides a sufficient condition for the existence of KEmetrics. Recently, this has been
remedied by Fujita–Odaka [39] that introduced a new invariant, that we refer to as the
basis log canonical threshold (blct) reminiscent of the global log canonical threshold
(the blct has also been referred to as the delta invariant and the stability threshold
in the literature, see Definition 2.5 below for detailed references). The advantage
of estimating this modified threshold is that it provides a necessary and sufficient
condition for K-stability, which in turn is equivalent to the existence of KE metrics
[28,65]. In fact, in an appendix we show that the algebraic invariant blct coincides
with an analytic invariant studied by Tian almost thirty years ago, namely, the greatest
Ricci lower bound invariant.

However, while there are many techniques for estimating glcts, at the moment
rather little is known about how to actually estimate blcts. Recently, an important first
step in this direction was taken by Park–Won [52] who developed algebraic methods
for estimating blcts in dimension 2. First, they explicitly computed blct of P2 similar
to what was done later for all toric Fano varieties by Blum–Jonsson [4]. Then Park
and Won used the key fact that every two-dimensional Fano variety different from
P
1 × P

1 can be (non-canonically) obtained from P
2 by blowing up ≤ 8 points in

general position. This allowed them to use their toric computations to estimate blcts
from above. The Park–Won approach is quite different from computations of glcts
in the literature [12] where all estimates are done using only intrinsic geometry of
the surface. Moreover, it is not clear how to adapt toric-type computations as in [52]
to our logarithmic setting which also includes a boundary divisor. Finally, it is also
not clear how to adapt their method to higher dimensions, simply because blow-ups
of projective space or other higher-dimensional toric variety very rarely have ample
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anticanonical class. While we do not tackle this here, we believe that it should be
possible to extend our method to dimension three.

In this article we develop intrinsic techniques for estimating blcts in dimension 2.
The methods we develop are of a geometric nature and involve new criteria for log
canonicity in terms of local intersection numbers, that we believe are of independent
interest. As we show in a sequel, in the setting considered by Park–Won our methods
yield stronger estimates with perhaps more geometric proofs. Moreover, in this article
we use our new log canonicity criteria, coupledwith vanishing order estimates for basis
divisors to prove the log K-stability of an important family of logarithmic surfaces.
This partially resolves a conjecture of two of us that we now turn to describe.

1.2 Kähler–Einstein edgemetrics

Smooth Kähler–Einstein (KE) metrics have been studied for over 80 years, with
intriguing relations to algebraic geometry emerging over the last 30 years. More
recently, motivated by suggestions of Tsuji, Tian, and Donaldson, singular Kähler–
Einstein metrics called Kähler–Einstein edge (KEE) metrics have been intensely
studied, mainly as a tool for understanding smooth Kähler–Einstein metrics. KEE
metrics are a natural generalization of KE metrics: they are smooth metrics on the
complement of a divisor, and have a conical singularity of angle 2πβ transverse to
that ‘complex edge’ (i.e., the metric as being ‘bent‘ at an angle 2πβ along the divisor).
They tie naturally to the study of log pairs in algebraic geometry. When β = 1, of
course, a KEE metric is just an ordinary KE metric that extends smoothly across the
divisor, and so understanding existence of KEE metrics as well as their asymptotics
near the divisor [42] as well as the limit β → 1 [28,65] has attracted much work; we
refer to the survey [57] for a thorough discussion and many more references.

In [22], two of us initiated a program whose aim is to understand the behavior in
the other extreme when the cone angle β goes to zero consisting of:

(a) Classifying all triples (X , D, β) satisfying the necessary cohomological condition
(1.1) for sufficiently small β;

(b) Obtaining a condition equivalent to existence of KEE metrics for such triples;
(c) Understanding the limit, when such exists, of these KEE metrics as β tends to

zero.

The cohomological condition alluded to in (a),

− KX − (1 − β)D is μ times an ample class, for some μ ∈ R, (1.1)

is also the necessary and sufficient condition for (b) if μ ≤ 0 [42, Theorem 2];
moreover, a classification (i.e., part (a)) is essentially impossible when μ ≤ 0 [33],
[57, §8], and so we will restrict our attention in (a)–(b) exclusively to the case μ > 0,
that we have previously called the asymptotically log Fano regime [22, Definition 1.1].

Our previous work accomplished (a) in dimension 2, providing a complete classi-
fication [22, Theorem 2.1]. Furthermore, we also obtained the “necessary” portion of
(b) [22,23], and this was extended to higher dimensions by Fujita [35]. The purpose
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of this article is to complete the “sufficient” portion of (b) in dimension 2 in all but
finitely many (in fact, all but 6) of the (infinite list of) cases classified in [22].

1.3 The Calabi problem for asymptotically log Fano varieties

A special class of asymptotically log Fano varieties is as follows. This is a special case
of [22, Definition 1.1].

Definition 1.1 We say that a pair (X , D) consisting of a smooth projective variety X
and a smooth irreducible divisor D on X is asymptotically log Fano if the divisor
−KX − (1 − β)D is ample for sufficiently small β ∈ (0, 1].

This definition contains the class of smooth Fano varieties (D = 0) as well as the
classical notion of a smooth log Fano pair due to Maeda (β = 0) [50].

One can showusing a result ofKawamata–Shokurov that if (X , D) is asymptotically
log Fano then |k(KX + D)| (for some k ∈ N) is free from base points and gives a
morphism [22, §1]

η : X → Z .

The following conjecture, posed in our earlier work, gives a rather complete picture
concerning (b) when D is smooth.

Conjecture 1.2 [22, Conjecture 1.11] Suppose that (X , D) is an asymptotically log
Fano manifold with D smooth and irreducible. There exist KEE metrics with angle
2πβ along D for all sufficiently small β if and only if η is not birational.

This conjecture stipulates that the existence problem for KEE metrics in the small
angle regime boils down to a simple birationality criterion. In fact, this amounts to
computing a single intersection number, i.e., checking whether

(KX + D)n = 0.

This would be a rather far-reaching simplification as compared to checking the much
harder condition of log K-stability that involves, in theory, computing the Futaki
invariant of an infinite number of log test configurations, or else estimating the blct
which involves, in theory, estimation of singularities of pairs that may occur after an
unbounded number of blow-ups.

1.4 The Calabi problem for asymptotically log del Pezzo surfaces

Following [22,57] we will refer to understanding (b) as the Calabi problem for asymp-
totically log Fano varieties. This article makes an important step towards solving this
problem in dimension 2, where Fano varieties are commonly called del Pezzo sur-
faces. To explain this, let us recall what is already known about this problem from our
previous work.
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1.4.1 The big case

The necessary direction of Conjecture 1.2 in dimension 2 is known as we now recall.
According to [22, Theorems 1.4, 2.1] asymptotically log del Pezzo pairs (X , D)

(with D smooth and irreducible) for which −KX − D is big are as follows. Either
(X , D) is one of the five Maeda pairs (i.e., with −KX − D ample):

• (I.1B) := (P2, smooth conic),
• (I.1C) := (P2, line),
• (I.2.n) := (Fn, Zn) (where, for any n ≥ 0,Fn is theHirzebruch surface containing

a curve Zn whose self intersection is −n and fiber F whose self intersection is 0),
• (I.3B) := (F1, smooth element of |Z1 + F |),
• (I.4C) := (P1 × P

1, smooth bi-degree (1, 1) curve),

or else (X , D) is obtained from one of the five Maeda surfaces (XM , DM ) as follows:
X is the blow-up of XM at any number of distinct points on DM , and D is the proper
transform of DM .

According to Conjecture 1.2 none of these pairs should admit KEE metrics with
small angles. This was verified in a unified manner using flop slope stability [23,
Theorem 1.6], but can also be obtained as follows: for (I.1B) and (I.4C) [49, Example
3.12], for (I.1C) := (P2, line) and (I.2.n) aswell as their blow-ups this is a consequence
of the Matsushima theorem for edge metrics [22, Theorem 1.12, Proposition 7.1], for
(I.3B) [23,Example 2.8], for the blow-ups of (I.1B), (I.3B) and (I.4C) [23, Proposition
5.2].

1.4.2 The non-big case

The harder sufficient direction of Conjecture 1.2 in dimension 2 is still partly open.
Let us recall the state-of-the-art.

According to [22, Theorems 1.4, 2.1] asymptotically log del Pezzo pairs (X , D)

(with D smooth) for which (KX + D)2 = 0 are as follows:

• (X , D) is del Pezzo with D a smooth anti-canonical curve,
• (I.3A) := (F1, smooth element of |2(Z1 + F)|),
• (I.4B) := (P1 × P

1, smooth bi-degree (2, 1) curve),
• (I.9B.m) := (X , D)with X a blow-up of P1×P

1 atm distinct points on a smooth
bi-degree (2, 1) curve with no two of them on a single curve of bi-degree (0, 1),
and D is the proper transform of the bi-degree (2, 1) curve.

According to Conjecture 1.2 all of these pairs should admit KEEmetrics with small
angles. The following cases are known: del Pezzo with a smooth anti-canonical curve
[42, Corollary 1], (I.3A) [22, Proposition 7.5], (I.4B) [22, Proposition 7.4]. Thus, the
only remaining cases are (I.9B.m),m ≥ 1.

1.5 Main result

In this article, we treat all but finitely many of the remaining open cases (I.9B.m):



34 Page 6 of 36 I. A. Cheltsov et al.

Theorem 1.3 The log Fano pairs (I.9B.m),m ≥ 7 are uniformly log K-stable for all
sufficiently small β > 0.

Indeed, recent results show that log K-stability implies the existence of a KEE
metric on a given log Fano pair (the stability implies existence of weak solutions
results of [1,66] combined with the regularity results of [40,42,51]). The finitely-
many remaining cases (I.9B.m), 1 ≤ m ≤ 6 require a different approach and will be
discussed elsewhere (although we omit the details, the techniques of this article can
also be used to show the cases (I.9B.5) and (I.9B.6) are log K-semistable).

In the course of the proof we develop new local intersection criteria for showing
log-canonicity on a surface—see Sect. 3. We believe these are of substantial interest
independently of their application to proving Theorem 1.3. Sections 4–5 are concerned
with the proof of Theorem 1.3. In Sect. 4 we estimate the vanishing order of divisors on
the logarithmic surfaces (I.9B.m), while in Sect. 5we use these estimates togetherwith
the criteria of Sect. 3 to estimate the basis log canonical threshold of the logarithmic
surfaces (I.9B.m). The article concludes with an appendix that identifies the basis
log canonical threshold of Fano manifolds with Tian’s greatest Ricci lower bound.
After this paper was first posted, we were informed that Berman–Boucksom–Jonsson
also obtained Theorem 5.7 independently and that Blum–Liu obtained a variant of
Lemma 5.8 [5].

2 Preliminaries

In this section—except in the last lemmawhere we specialize to surfaces (n = 2)—we
let X be a complex algebraic variety of complex dimension n.

2.1 Log pairs

Given a proper birational morphism π : Y → X , we define the exceptional set of π

to be the smallest subset exc(π) ⊂ Y , such that π : Y\ exc(π) → X\π(exc(π)) is an
isomorphism.

A log resolution of (X ,�) is a proper birational morphism π : Y → X such that
π−1(�) ∪ {exc(π)} is divisor with simple normal crossing (snc) support in a smooth
Y . Log resolutions exist for all the pairs we will consider in this article, by Hironaka’s
theorem.

Assume that KX + � is aQ-Cartier divisor. Given a log resolution of (X ,�), write

π�(KX + �) = KY + �̃ +
∑

ei Ei ,

where �̃ denotes the proper transform of �, and where exc(π) = ∪Ei , and Ei

are irreducible codimension one subvarieties. Also, assume � = ∑
δi�i , with �i

irreducible codimension one subvarieties, so �̃ = ∑
δi �̃i . Singularities of pairs can

be measured as follows.

Definition 2.1 Let Z ⊂ X be a subvariety. A pair (X ,�) has at most log canonical
(lc) singularities (or klt singularities, respectively) along Z if ei , δ j ≤ 1 for every i
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(or if ei , δ j < 1 for every i , respectively) such that π(Ei ) ∩ Z 	= ∅ and every j such
that � j ∩ Z 	= ∅.

On a normal variety, an effective Q-divisor D is a formal linear combination with
coefficients inQ+ of prime divisors. Thus, given such a D and a prime divisor F , one
has D = aF +�, for some a ∈ Q+ and� is an effectiveQ-divisor with F 	⊂ supp�.
The number a is called the vanishing order of D along F , denoted

ordF D.

2.2 Log canonical thresholds

Definition 2.2 Let Z ⊂ X be a subvariety and let � be Cartier Q-divisor on X . The
log canonical threshold of the pair (X ,�) along Z is

lctZ (X ,�) := sup{λ : (X , λ�) is log-canonical along Z}.

Set lct(X ,�) := lctX (X ,�).

Let (X , B) be a klt log pair. Let D be an effective Q-Cartier divisor on the variety
X . Recall that the log canonical threshold of the boundary D is the number

lct
(
X , B; D) = sup

{
c : the pair

(
X , B + cD

)
is log canonical

}
.

Let H be an ample Q-divisor on X , and let [H ] be the class of the divisor H in
Pic(X) ⊗ Q.

A fact we will use over and over again is that the property of being lc or klt
is preserved under blow-ups, and therefore can be checked either upstairs on Y or
downstairs on X [43, Lemma 3.10]. When n = 2 this becomes quite concrete: let
π : S̃ → S be the blow up of a point p ∈ S and let E := π−1(p). Denote by �̃ the
proper transform of � under π . Then the log pair (S,�) is lc/klt at p if and only if
(S̃, �̃ + (multP � − 1)E) is lc/klt along E [12, Remark 2.6].

Definition 2.3 Let B be an effective divisor in X . The global log canonical threshold
of the pair (X , B) with respect to [H ] is

glct(X , B, [H ]) := sup
{
c > 0 : (X , B + cD) is lc for every D ∼Q H

}
.

2.3 The basis log canonical threshold

In this part we collect some known results about a basis-type invariant for log pairs
due to Fujita–Odaka [39], see also [4,29].

Let L be an ample Q-divisor in X . For any k ∈ N such that kL is Cartier, let

dk := dimCH
0(X , kL) > 0.

In this article, whenever we mention multiples kL of L
we will always assume (implicitly) that k is such an integer.
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Definition 2.4 We say that D ∼Q L is a basis divisor if for some k ∈ N,

D = 1

kdk

dk∑

i=0

(si ),

where s1, . . . , sdk is a basis of H
0(X , kL), and where (si ) is the divisor cut out by si .

We also say that D is the k-basis divisor associated to the basis {si }dki=1.

The following definition is due to Fujita–Odaka [39, Definition 0.2], extended to
the logarithmic setting by Fujita [38, Definition 5.4] (Fujita’s definition can be shown
to equal a logarithmic version of the original definition of Fujita–Odaka, see [4,29])
who denoted it δ(X , B), and Codogni–Patakfalvi [29, Definition 4.3] who denoted
it δ(X , B; L). It roughly amounts to replacing “D effective Q-divisor” by “D basis
divisor” in Definition 2.3. So, it yields an invariant larger than glct, albeit one that is
significantly more difficult to compute.

Definition 2.5 Let (X , B) be a klt log pair. The basis log canonical threshold of the
pair (X , B) with respect to L is

blct∞(X , B, L) := lim sup
k

blctk(X , B, L),

whereblctk(X , B, L) := sup{c > 0 : (X , B+cD) is lc for any k-basis divisor D ∼Q

L}.
Estimating the invariant blct∞(X , B, L) is of interest since it coincides with an

analytic invariant related to Ricci curvature (see Theorem 5.7 below) and also due to
the following theorem that follows from the work of Fujita–Odaka [39], Fujita [37],
Li [48], Blum–Jonsson [4] (see also [29, Corollary 4.8]). For the precise definition of
uniform log K-stability, we refer the reader to [7, Definition 8.1].

Theorem 2.6 The triple (X ,�,−KX −�) is uniformly log K-stable if blct∞(X ,�,−
KX − �) > 1.

In fact, the converse also holds, due to the references cited above, but we only need
the somewhat easier direction stated.

2.4 Volume estimates on the order of vanishing

In most of this subsection we follow closely [39]. Estimating log canonical thresholds
naturally involves estimating fromabove orders of vanishing along divisors, oftentimes
upstairs on a resolution of the original log pair (recall Sect. 2.2). A crude upper bound
on ordF (π�D) is the pseudoeffective threshold of the divisor π�L with respect to the
curve F ,

τ(π�L, F) = sup{λ : π�L − λF is effective}, (2.1)
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since D ∼Q L and π�D = ordF (π�D)F + �, with � an effective Q-divisor, whose
support does not contain the curve F . A better estimate can be obtained by using a
quantized version of the pseudoeffective threshold,

τk(π
�L, F) := max{x ∈ N : H0(Y , kπ�L − xF) 	= 0}.

When no confusion arises we will often abbreviate these two invariants by τ and τk .
Note that,

lim sup
k

τk(π
�L, F)/k = τ(π�L, F), (2.2)

as trivially τk/k ≤ τ for every k (let s ∈ H0(Y , kπ�L−xF), then (s)/k ∼Q π�L− x
k F

is effective), while if π�L− x
F is big, then H0(Y , ikπ�L− ik x F) 	= 0 for a increasing

sequence of integers {ik} (rememeber we are working with Q-divisors) so τik ≥ ik x ,
i.e., lim supk τk/k ≥ x , and now let x → τ .

Lemma 2.7 Let π : Y → X be a log resolution of (X ,�), and let F be a prime divisor
in Y . Let D ∼Q L be a k-basis divisor. Then

ordF (π�D) ≤ 1

kdk

τk (π
�L,F)∑

b=1

h0(Y , kπ�L − bF),

and equality is attained for an appropriate choice of basis.

Proof For completeness, we provide the proof that can be easily extracted from [39,
Lemma 2.2]. Fix Y and F as in the statement. Filter H0(Y , kπ�L) in increasing order
of vanishing along F ,

H0(Y , kπ�L) ⊇ H0(Y , kπ�L − F) ⊇ . . . ⊇ H0(Y , kπ�L − τk F)

⊃ H0(Y , kπ�L − τk F − F) = {0}.

Now, fix a basis s1, . . . , sdk of H
0(X , kL), and let D ∼Q L be the associated k-basis

divisor (recall Definition 2.4). For each b ∈ {0, . . . , τk + 1} suppose that exactly i(b)
of the sections s1 ◦ π, . . . , sdk ◦ π are elements in H0(Y , kπ�L − bF). Note that
i(0) = h0(X , kL) and i(τk + 1) = 0, and denoting

h0(Y , kπ�L − bF) := dim H0(Y , kπ�L − bF),

of course we have i(b) ≤ h0(Y , kπ�L − bF). Then,

ordF (π�D) =
∑τk

b=1 i(b)

kdk
≤

∑τk
b=1 h

0(Y , kπ�L − bF)

kdk
.
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So we get

ordF (π�D) ≤
∑τk

b=1 h
0(kL − bF)

kdk
.

Moreover, we may choose a basis s̃1, . . . , s̃dk of H
0(X , kL) as follows to obtain for

the associated k-basis divisor D̃,

ordF (π� D̃) =
∑τk

b=1 h
0(kL − bF)

kdk
,

as follows: let s̃1, . . . , s̃h0(Y ,kπ�L−kτk F) be a basis for H0(Y , kπ�L − τk F); thus,
i(τk(F)) = h0(Y , kπ�L − τk F). Next, choose the following h0(Y , kπ�L − τk F +
F)− i(τk) s̃i ’s to complete the sections from the first step to a basis for H0(Y , kπ�L−
τk F + F). Thus, i(τk − 1) = h0(Y , kπ�L − τk F + F). By induction, we see that
i(b) = h0(Y , kπ�L − bF) for each b, as desired. ��

Asymptotically, we may estimate the sum in Lemma 2.7 using volumes. Let us first
recall some basic facts about volumes, following [44,45].

Definition 2.8 Let D be a Cartier divisor on X . The volume of D is defined by

vol(D) := lim sup
k

h0(X , kD)

kn/n! .

In fact, onemay replace the limsup by a limit [44, Example 11.4.7], and by rescaling
and continuity [44, Corollary 2.2.45] vol(D) makes sense for any R-Cartier divisor
D. Also, the volume function is invariant under pull-back by a birational morphism,
i.e., vol(π�D) = vol(D). Finally,

when the divisor D is nef (i.e., a limit of ample divisors) then vol(D) = Dn .

(2.3)

Corollary 2.9 Let π : Y → X be a log resolution of (X ,�), and let F be a prime
divisor in Y . Let D ∼Q L be a k-basis divisor. Then,

ordF (π�D) ≤ 1

Ln

∫ τ(π�L,F)

0
vol(π�L − xF)dx + εk,

with limk εk = 0.

Proof This result is probably standard (see, e.g., [36, Lemma 4.7]), but since it plays
an important rôle in this article let us sketch a proof. By Riemann–Roch asymptotics,
Ln/n! = dk/kn + O(1/k) [44, 1.4.41]. Thus,

kn

n!dk = 1

Ln
+ O(1/k)
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Define a decreasing step function by

fk(x) := h0(Y , kπ�L − �kx�F)

kn/n! , x ∈ [0,∞).

Then byOkounkov body theory for filtrated linear series [6, Lemma1.6], [45, Theorem
2.13], [7, Theorem 5.3], fk(x) = vol(π�L − xF) + εk, with limk εk = 0; thus,

kn fk(x)

n!dk = vol(π�L − xF)

Ln
+ εk .

In other words, as k → ∞, the function kn fk (x)
n!dk converges pointwise to vol(π�L−x F)

Ln

for x ∈ [0,∞). Finally, using Lemma 2.7 and dominated convergence, we see that

ordF (π�D) ≤
∑τk (π

�L,F)
b=1 h0(Y , kπ�L − bF)

kdk

=
∫ τk (π�L,F)

k

0

kn fk(x)

n!dk dx + εk

= 1

Ln

∫ τ(π�L,F)

0
vol(π�L − xF)dx + εk,

(εk can change from line to line as long as limk εk = 0)wherewe used (2.2) (although it
is actually enough to use lim supk τk(π

�L, F)/k ≥ τ(π�L, F) as vol(π�L−xF) = 0
for x > τ(π�L, F), i.e., it is enough to integrate until τ(π�L, F)). ��

The following lemma is handywhen computing the volume of divisors on a surface.

Lemma 2.10 Let B be a Q-Cartier divisor on a surface S and let Z an irreducible
curve in S with Z2 < 0 and B.Z ≤ 0. Then,

vol(B) = vol
(
B − B.Z

Z2 Z
)
.

Proof Take k ∈ N so that kB is Cartier and let D ∈ |kB|. Decompose, D =
Z ordZ D + �. Then,

kB.Z = D.Z = Z2 ordZ D + �.Z ≥ Z2 ordZ D,

and as Z2 < 0 this yields

ordZ D ≥ k
B.Z

Z2 ,
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and the right hand side is non-negative as B.Z ≤ 0. Since D was any element of |kB|,
we have shown that

h0(S, kB) = h0
(
S, kB − k

B.Z

Z2 Z
)
.

By Definition 2.8 we are done. ��

3 Local intersection estimates on surfaces

In this section we derive new criteria for log canonicity in terms of local intersection
estimates.

LetOp be the local ring of germs of holomorphic functions defined in some neigh-
borhood of p.

Definition 3.1 Let C1 and C2 be two irreducible curves on a surface S. Suppose that
C1 and C2 intersect at a smooth point p ∈ S. Then the local intersection number of
C1 and C2 at the point p is defined by

(C1.C2)p := dimCOp/( f1, f2),

where f1 and f2 are local defining functions of C1 and C2 around the point p.

Definition 3.1 extends to R-divisors by linearity. For instance, say we have a curve
C and aR-divisor�meeting at the point p. We decompose� as� = ∑

i ai Zi , where
Zi ’s are distinct prime divisors and ai ∈ R. Then,

(C .�)p :=
∑

i

ai (C .Zi )p,

where (C .Zi )p = 0 if Zi does not pass through the point p. A useful fact we will use
often is that under a blow-up the local intersection number changes as follows,

(C̃ .�̃)q ≤ (C .�)p − mult p �, with equality if C is smooth at p, (3.1)

where C̃ and �̃ are the proper transforms of C and �, where p is the blown-up point
on C , and where q is any point on the intersection of the exceptional divisor and
C̃ . The classical inversion of adjunction on surfaces has the following well-known
consequence [43], [14, Theorem 7].

Lemma 3.2 Let C be an irreducible curve on a surface S, and let p be a smooth point
in both C and S. Let a ∈ Q ∩ [0, 1], and let � be an effective Q-divisor on S with
C 	⊂ supp�. If

(C .�)p ≤ 1,

then (S, aC + �) is log canonical at p.
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Lemma 3.2 can be improved by taking into account the parameter a as well as the
vanishing order of �. Throughout this section we set

m := mult p �.

Proposition 3.3 Let C be an irreducible curve on a surface S, and let p be a smooth
point in both C and S. Let a ∈ Q ∩ [0, 1], and let � be an effective Q-divisor on S
with C 	⊂ supp�. Suppose that

(C .�)p ≤ 2 − a, if m ≤ 1,

Then (S, aC+�) is log canonical at p. (However, if m > 1we do not claim anything.)

Proof Supposem ≤ 1. Let π : S̃ → S be the blow-up at the point p, with exceptional
curveπ−1(p) = E , and let C̃ and �̃ denote the proper transforms ofC and�. Then the
log pair (S, aC+�) lifts to (S̃, aC̃+�̃+(a+m−1)E). Since a,m ≤ 1 by assumption,
a + m − 1 ≤ 1 so the latter pair is lc at a general point of E . It remains to check lc at
the intersection points of E with �̃ and C̃ . First, let q ∈ (E ∩ �̃)\C̃ . Then, (E .�̃)q ≤
E .�̃ = m ≤ 1, so by Lemma 3.2 our log pair is lc at q. Second, let {q} = E ∩ C̃ .
Again, by Lemma 3.2, it suffices to check that

(
C̃ .(�̃+(a+m−1)E)

)
q ≤ 1, and since

(C̃ .�̃)q = (C .�)p−m (by (3.1)) and (C̃ .E)q = 1 this amounts to (C .�)p+a−1 ≤ 1,
precisely our assumption. Thus, (S̃, aC̃+�̃+(a+m−1)E) is lc along E , equivalently
(S, aC + �) is lc at p. ��

We continue with a new local inequality incorporating also an additional “boundary
curve”.

Theorem 3.4 Let B and C be irreducible curves on a surface S intersect transversally
at a point p that is smooth in B,C and S. Let a, b ∈ Q ∩ [0, 1), and let � be an
effective Q-divisor on S with B,C 	⊂ supp�. Suppose that

(B.�)p

≤ m

(m−b)+
(1−a)−b if m∈(0, 1] and either a+(C .�)p − b≤1 or a+m≤1.

Then (S, (1 − b)B + aC + �) is log canonical at p. (However, if m > 1 we do not
claim anything.)

Note that the case m = 0 is trivial. Here, (x)+ := max{x, 0}. Thus, when m ≤ b
and either a + (C .�)p − b ≤ 1 or a + m ≤ 1, we are not assuming anything on
(B.�)p.

Proof The case b = 0 follows from Lemma 3.2.
Suppose then m ≤ 1 and b > 0. We will use an inductive argument. Let π :

S2 → S be the blow-up at the point p, with exceptional curve π−1(p) = E1, and let
B2,C2,�2 denote the corresponding proper transforms of B,C,�. Then the log pair
(S, (1 − b)B + aC + �) lifts to (S2, (1 − b)B2 + aC2 + �2 + (a + m − b)E1).
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Let

{p2} := B2 ∩ E1, {qC } := C2 ∩ E1.

First, let q ∈ (E1 ∩ �2)\{qC , p2}. Then, (E1.�2)q ≤ m ≤ 1, so by Lemma 3.2 our
log pair is lc at q.

Second, let us consider qC . Lemma 3.2 applied to C2 and E1 yield lc at qC if either

1 ≥ (
C2.((1 − b)B2 + �2 + (a + m − b)E1)

)
qC

= (C2.�2)qC + a + m − b,

(note C2 and B2 do not intersect at qC ) or

1 ≥ (
E1.((1 − b)B2 + �2

)
qC

= a + (E1.�2)qC

(note E1 and B2 do not intersect at qC ). Since (C2.�2)qC = (C .�)p − m by (3.1)
the first inequality holds if a + (C .�)p − b ≤ 1. Since (E1.�2)qC ≤ m the second
inequality holds if a + m ≤ 1. Thus, by our assumptions, one of these must hold, so
our pair is lc at qC .

It remains to consider p2. Lemma 3.2 yields lc at p2 if

1 ≥ (
E1.((1 − b)B2 + aC2 + �2)

)
p2

= 1 − b + (E1.�2)p2 ,

i.e., if (E1.�2)p2 ≤ b, so in particular if (E1.�2)p2 ≤ m ≤ b. We are therefore done,
unless

m > b, (3.2)

which we henceforth assume.
Set

m2 := mult p2 �2.

At this point, we can already set up an inductive argument to conclude the proof;
instead, for the sake of clarity, let us carry through most of the first step in induction
before switching to the general step. To start the induction, let us verify that the pair

(S2, (1 − b)B2 + aC2 + �2 + (a + m − b)E1),

or, equivalently (as we are working at p2, away from C2),

(S2, (1 − b)B2 + �2 + (a + m − b)E1)

satisfies the assumptions of the Theorem. So E1 is our new “C”, B2 is our new “B”,
�2 is our new “�”, and the new “a” is

a2 := a + m − b > a.
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First, note that a2 ∈ [0, 1), actually even a2 ≤ 1 − b (recall b > 0 throughout): if
a + m ≤ 1 this is obvious, and if a + (C .�)p − b ≤ 1 then as m ≤ (C .�)p we
are also done. Note also that m2 ≤ m ≤ 1 since multiplicities cannot increase under
blow-ups. So, it remains to check that

a2 + (E1.�2)p2 − b ≤ 1 or a2 + m2 ≤ 1, (3.3)

and that

(B2.�2)p2 ≤ m2

m2 − b
(1 − a2) − b. (3.4)

Let us first check (3.3). The key is to use the estimate on (B.�)p in the statement, as
we will see shortly. In fact, we will prove that a statement stronger than (3.3) holds:

a2 + m − b ≤ 1 or a2 − m + (B.�)p ≤ 1. (3.5)

The first inequality is stronger since (E1.�2)q ≤ m, while the second inequality is
stronger since (B.�)p = (B2.�2)p2 +m ≥ m2 +m. Now, the first inequality in (3.5)
can be written as a+m−2b+m ≤ 1 or 2 ≤ 1−a

m−b , while the second inequality can be

written as 1− a+ b ≥ m +m2 ≥ (B.�)p or 2 ≥ (B.�)p−(1−a)+b
b . By our assumption

m
m−b (1 − a) − b ≥ (B.�)p, so we can write yet stronger inequalities:

2 ≤ 1 − a

m − b
or 2 ≥

m
m−b (1 − a) − b − (1 − a) + b

b
= 1 − a

m − b
, (3.6)

which it trivially true, concluding the proof of (3.3). It remains to check (3.4). Let us
prove this as part of an inductive argument (that will yield (3.4) as the first step in the
induction, i.e., by setting k = 2 below).

Thenwe are in exactly the same setting as before, andwemay blow-up S2 at p2 as all
the conditions of Theorem 3.4 are satisfied for (S2, (1−b)B2 +�2 + (a+m−b)E1)

at p2 = B2 ∩ E1. Let k ∈ N. By induction on the number of blow-ups, assume
that we have performed k − 1 blow-ups at p1 := p, p2, . . . , pk−1 with exceptional
divisors E1, . . . , Ek−1, where Bi is the proper transform of Bi−1 (and B1 := B,
�1 := �,C1 := C) and where pk = Ek−1 ∩ Bk , and that at for each i = 0, . . . , k−1
we have (set m1 := m)

mi+1 > b, (3.7)

and (set a1 = a)

ai+1 = ai + mi − b, (3.8)

and

(Bi .�i )pi ≤ mi

mi − b
(1 − ai ) − b,
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and that

either ai + (Ci .�i )pi − b ≤ 1 or ai + mi ≤ 1.

We need to show that

(Bk .�k)pk ≤ mk

mk − b
(1 − ak) − b if either ak + (Ck .�k)pk − b ≤ 1

or ak + mk ≤ 1

First, note that indeed either ak + (Ck .�k)pk − b ≤ 1 or ak +mk ≤ 1: this is checked
in each step just as we did for k = 2 with the number “2” in (3.6) being replaced by k
(we omit the details). Note that (Bk .�k)pk = (Bk−1.�k−1)pk−1 −mk−1, so it suffices
to show that

(Bk−1.�k−1)pk−1 − mk−1 ≤ mk

mk − b
(1 − ak) − b.

Since mk ≤ mk−1 and since

x

x − b
is decreasing in x ∈ (b,∞), (3.9)

it suffices to show (recall (3.7)) that (Bk−1.�k−1)pk−1 −mk−1 ≤ mk−1
mk−1−b (1−ak)−b,

i.e.,

(Bk−1.�k−1)pk−1 − mk−1 ≤ mk−1

mk−1 − b
(1 − ak + mk−1 − b) − b

= mk−1

mk−1 − b
(1 − ak−1 − b) − b,

so we are done, by induction, if we can show that an infinite number of blow-ups
is impossible. This is indeed so, since (Bk .�k)pk = (Bk−1.�k−1)pk−1 − mk−1, and
by induction mi+1 > b, so after at most N := �(B.�)p/b� blow-ups we would have
mN+1 < b and then the pair would be lc at pN+1 by our original argument (just before
(3.2)) using Lemma 3.2 with no further need to blow-up. ��

Most of the technical assumptions in Theorem 3.4 can actually be removed, to yield
the following elegant and very useful criterion.

Corollary 3.5 Let B and C be irreducible curves on a surface S intersect transversally
at a point p that is smooth in B,C and S. Let a, b ∈ Q ∩ [0, 1], and let � be an
effective Q-divisor on S with B,C 	⊂ supp�. Suppose that
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(B.�)p ≤ (C .�)p

((C .�)p − b)+
(1 − a) − b if m ∈ (0, 1].

Then (S, (1 − b)B + aC + �) is log canonical at p. (However, if m > 1 we do not
claim anything.)

Note that the case m = 0, i.e., (C .�)p = 0 is trivial since then also (B.�)p = 0
and (S, (1 − b)B + aC + �) is lc at p iff (S, (1 − b)B + aC) is which is true as
1 − b, a ≤ 1.

Proof If b = 0 then the assumption is (B.�)p ≤ 1− a so we are done by Proposition
3.3. Suppose now that b > 0 and m ≤ 1.

First, m ≤ (C .�)p. Thus, by (3.9),

(B.�)p ≤ m

(m − b)+
(1 − a) − b.

Thus, if

either a + (C .�)p − b ≤ 1 or a + m ≤ 1, (3.10)

Theorem 3.4 is applicable (the cases b = 1 or a = 1 are handled separately by
Proposition 3.3 since for either one we may take B = 0) and we are done. We claim
that always holds. First, if (C .�)p ≤ b the first inequality in (3.10) automatically
holds. So, suppose ((C .�)p − b)+ = (C .�)p − b > 0. Since (B.�)p ≥ m,

m ≤ (B.�)p ≤ (C .�)p

(C .�)p − b
(1 − a) − b = 1 − a − b + b(1 − a)

(C .�)p − b
,

i.e., a + m ≤ 1 − b
a+(C .�)p−b−1

(C .�)p−b , implying (3.10). ��

4 Vanishing order estimates

For the remainder of the article we will concentrate on the proof of Theorem 1.3. Set,

S := P
1 × P

1, C := a smooth curve of bi-degree (1, 2) ⊂ S.

Denote by F a general line of bi-degree (1, 0) and by G a general line of bi-degree
(0, 1).

Note that, the curve C is, by definition, cut out by a bi-degree (1, 2) polynomial. To
be more precise, let ([s : t], [x : y]) be the bi-homogeneous coordinate system on S.
Then C is cut out by some polynomial F(s, t, x, y) that is homogeneous with degree
1 in s, t variables and homogeneous with degree 2 in x, y variables. Up to a coordinate
change, we may assume F(s, t, x, y) = sy2 − t x2, for simplicity. (Indeed, we may
assume F = sP(x, y)+ t Q(x, y). If both P and Q are of a linear polynomial squared,
we are done.Assume that at least one of them is not a square.Apply a coordinate change
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to x, y so that F = Csxy+t Q(x, y)with Q(x, y) = x2+axy+y2, and let x → x+y,
y → x − y, so in the new coordinates F = Cs(x2 − y2) + t((2+ a)x2 + (2− a)y2).
Finally, apply a linear coordinate change to s, t .)

The linear system |F | contains exactly two curves that are tangent to C . Denote
them by

F0, F∞,

and let

p0 := F0 ∩ C, p∞ := F∞ ∩ C .

In ([s : t], [x : y]) coordinates, one simply has F0 = {s = 0}, F∞ = {t = 0}
and p0 = ([0 : 1], [0; 1]) and p∞ = ([1 : 0], [1 : 0]). Let F1, . . . , Fr be distinct
bi-degree (1, 0) curves in S that are all different from the curves F0 and F∞. Then
each intersection Fi ∩ C consists of two points. For each i = 1, . . . r , let

pi ∈ Fi ∩ C

be one of these two points.
Let

I := {i1, . . . , ir } ⊂ {0, 1, . . . , r ,∞},

let π : S → S be the blow-up of S at the r points {pi }i∈I ⊂ {p0, p1, . . . , pr , p∞},
and denote by

E j := π−1(p j ), j ∈ I ,

the exceptional curves of π . To be precise, we note that we are blowing-up r of the
r + 2 points {p0, p1, . . . , pr , p∞}. Denote by

F0, F1, . . . , Fr , F∞

the proper transform on the surface S of the curves F0, F1, . . . , Fr , F∞ (note that
exactly r of these are −1-curves and the remaining two are 0-curves). Let C be the
proper transform of the curve C , so

C = π�C −
∑

j∈I
E j ∼ π�(F + 2G) −

∑

j∈I
E j .

Let

Kβ := KS + (1 − β)C .
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Then, as −KS = 2F + 2G, and KS = π�KS + ∑
j∈I E j ,

− Kβ ∼Q 2π�F + 2π�G −
∑

j∈I
E j − (1 − β)(π�C −

∑

j∈I
E j ) ∼Q π�F + βC,

(4.1)

thus (S,C) is asymptotically log Fano, more precisely [22, (4.2)],

−Kβ is ample for 0 < β < 2
r−4 . (4.2)

Below, we will always assume

r ≥ 7. (4.3)

To prove Theorem 1.3, we will show in Sect. 5 that for some λ > 1 (independent of
k) and for any k-basis divisor D, the log pair

(
S, (1 − β)C + λD

)
(4.4)

has lc singularities for sufficiently small β > 0, and sufficiently large k. To do this,
in the present section we obtain explicit estimates on the order of vanishing of basis
divisors. This involves estimating integrals appearing in Corollary 2.9, which in turn
involves elementary computations of Seshadri constants and pseudoeffective thresh-
olds.

For the estimate on the order of vanishing, we require the Seshadri constant and the
pseudoeffective threshold (recall (2.1)). Let us recall the definition of the former. Let
X be a smooth projective variety, L an ample Q-divisor on it, and Z a prime divisor
on it. The Seshadri constant of (X , Z) with respect to L is defined to be

σ(Z , L) = sup
{
c > 0 : L − cZ is ample

}
. (4.5)

We start by computing τ(−Kβ, Z).

Lemma 4.1 Let 0 < β < 2
r−4 . One has,

τ(−Kβ, Z) =

⎧
⎪⎨

⎪⎩

1 if Z be an irreducible curve in |π�F |,
β if Z = C,

1 if Z ∈ ∪i∈I {Ei , Fi }.
(4.6)

Proof If Z is an irreducible curve in |π�F |, as −Kβ ∼Q π�F + βC and π�F is
effective (has 0 self-intersection) and C has zero volume (as C2 = 4 − r < 0), we
must have τ(−Kβ, Z) = 1.

If Z = C , −Kβ − xC ∼Q π�F + (β − x)C . For x = β we get vol(−Kβ −βC) =
vol(π�F) = (π�F)2 = 0, so τ(−Kβ,C) = β.
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If Z = E1, say, we claim vol(−Kβ − E1) = 0, i.e., τ(−Kβ, E1) ≤ 1. Since
−Kβ − xE1 ∼Q π�F + βC − xE1 ∼Q F1 + (1 − x)E1 + βC is effective for
x ∈ [0, 1], we would thus have τ(−Kβ, E1) = 1. To prove the claim, Lemma 2.10
implies that vol(−Kβ − E1) = vol(−Kβ − E1 − (1 − β)F1) = vol(β(F1 + C)) =
β2vol(F1 +C) = 0 by Claim 4.2 below. If Z = F1, say, the computations are similar.
By Remark 4.3, we are done. ��
Claim 4.2 Let i ∈ I . Then, vol(Fi + C) = 0.

Proof Suppose r > 5. Repeated application of Lemma2.10 implies that vol(Fi+C) =
vol(Fi +C− r−5

r−4C) = vol
(
Fi +C− r−5

r−4C−(1− 1
r−4 )Fi

) = . . . = vol(a j Fi +b jC).
The sequences {a j , b j } are decreasing so let a := lim a j , b := lim b j . This process
will stop if aFi + bC is nef. But that implies (by intersecting with Fi and C) that
a, b ≥ 0 and −a + b ≥ 0 and a + (4 − r)b ≥ 0; adding up and using that r > 5 we
see that b = 0 which then implies a = 0, so the claim follows. ��
Remark 4.3 As we just saw above, the computations depend only on the intersection-
theoretic properties of Z , so they are exactly the same if Z is any element of
∪i∈I {Ei , Fi } (in particular also if {0,∞} ∩ I 	= ∅).

By (4.2), −Kβ is ample for small β, so it makes sense σ(−Kβ, Z).

Lemma 4.4 Let 0 < β < 2
r−3 . One has,

σ(−Kβ, Z) =

⎧
⎪⎨

⎪⎩

1 − β(r − 4)/2 if Z be an irreducible curve in |π�F |,
β if Z = C,

β if Z ∈ ∪i∈I {Ei , Fi }.
(4.7)

Proof For the first two cases we can actually assume 0 < β < 2
r−4 . In the first case,

using (4.1),

(−Kβ − x Z).C = (1 − x)π�F .C + βC2 = 2(1 − x) − β(r − 4),

(while (−Kβ − x Z).π�F = 2β > 0), i.e., σ(−Kβ, Z) = 1 − β(r − 4)/2. In the
second case,

(−Kβ − xC).C = (π�F + (β − x)C).C = 2 − (x − β)(r − 4),

while

(−Kβ − xC).π�F = (π�F + (β − x)C).π�F = 2(β − x),

so σ(−Kβ,C) = β. In the third case, say 1 ∈ I , observe that −Kβ − xE1 ∼Q

F1 + (1 − x)E1 + βC , thus to check nefness it suffices to take x < 1 and check
intersection with F1, E1 and C . Now,

(−Kβ − xE1).C = (F1 + (1 − x)E1 + βC).C = 1 + 1 − x + β(4 − r),
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(which is where we need β < 2/(r − 3)), while

(−Kβ − xE1).F1 = (F1 + (1 − x)E1 + βC).F1 = −1 + 1 − x + β = β − x,

and

(−Kβ − xE1).E1 = (F1 + (1 − x)E1 + βC).E1 = 1 − (1 − x) + β = β + x,

so σ(−Kβ, E1) = β. If Z = F1, say, the computations are similar. By Remark 4.3,
we are done. ��
Lemma 4.5 Let 0 < β < 2

r−3 and let D be a k-basis divisor. One has,

ordZ D ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
− β(r − 4)

8
+ O(β2) + εk, if Z be an irreducible curve in |π�F |,

β

2
+ O(β2) + εk, if Z = C,

1

2
− β(r − 6)

8
+ O(β2) + εk, if Z ∈ ∪i∈I {Ei , Fi },

(4.8)

with limk εk = 0. In the first and third cases εk does not depend on the choice of Z.

Proof The result follows from Lemmas 4.1 and 4.4 and Corollary 2.9 by estimating
the volume integral

1

K 2
β

∫ τ

0
vol(−Kβ − x Z)dx = 1

K 2
β

∫ σ

0
(Kβ +x Z)2dx+ 1

K 2
β

∫ τ

σ

vol(−Kβ − x Z)dx

= 1

K 2
β

∫ σ

0
(K 2

β + 2x Z .Kβ + x2Z2)dx

+ 1

K 2
β

∫ τ

σ

vol(−Kβ − x Z)dx

= σ + 1

K 2
β

[ Z2

3
σ 3

+ Z .Kβσ 2 +
∫ τ

σ

vol(−Kβ − x Z)dx
]
. (4.9)

We will also use the estimate

∫ τ

σ

vol(−Kβ − x Z)dx≤(τ − σ)(Kβ +σ Z)2=(τ − σ)(K 2
β + 2σ Z .Kβ + σ 2Z2).

(4.10)
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First, let Z be an irreducible curve in |π�F |. Then Z2 = 0, and

Z .Kβ = −2β, K 2
β = 4β − β2(r − 4),

thus

K 2
β + 2σ Z .Kβ + σ 2Z2 = 4β − β2(r − 4) − (2 − (r − 4)β)2β = O(β2),

and as τ − σ = O(β), we get (4.10)= O(β3). Thus, by Lemmas 4.1 and 4.4,

1

K 2
β

∫ τ

0
vol(−Kβ − xπ�F)dx

≤ σ + −2βσ 2 + O(β3)

4β − β2(r − 4)

= 1 − r − 4

2
β + −2βσ 2 + O(β3)

4β − β2(r − 4)
= 1

2
− r − 4

8
β + O(β2).

Second, let Z = C . Then σ = τ = β, i.e., (4.10)= 0. Thus,

1

K 2
β

∫ τ

0
vol(−Kβ − xC)dx = β +

4−r
3 β3 + (−2 + β(r − 4))β2

4β − β2(r − 4)
= β

2
+ O(β2).

Third, say 1 ∈ I and let Z = E1 (the proof for Z = F1 is identical as E1 and F1
play symmetric roles in the computations). Then, as σ = −E1.Kβ = β,

1

K 2
β

∫ τ

0
vol(−Kβ − x Z)dx

= β + 1

4β − β2(r − 4)

[
O(β3) +

∫ 1

β

vol(−Kβ − x Z)dx
]

= β + O(β2) + 1

4β − β2(r − 4)

∫ 1

β

vol(−Kβ − x Z)dx .

(4.11)

The remaining integral can be simplified using Lemma 2.10. Indeed, (−Kβ −
x Z).F1 = β − x, so

vol(−Kβ − x Z) = vol(−Kβ − x Z − (x − β)F1), x ∈ (β, 1).

The divisor on the right hand side is nef for

x ≤ σ ′ := σ(−Kβ + βF1, Z + F1) = 1 + β(5 − r)/2

since−Kβ −x Z−(x−β)F1 ∼Q∼ (1−x)E1+(1−x+β)F1+βC and this intersects
non-negatively with E1 and F1 while intersecting with C gives 2 − 2x + β(5 − r).
Similarly to (4.10), we estimate
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∫ 1

σ ′
vol(−Kβ − x Z)dx =

∫ 1

σ ′
vol

( − Kβ + βF1 − x(Z + F1)
)
dx

≤ β
r − 5

2

(
(Kβ − βF1)

2 + 2σ ′(Z + F1).(Kβ − βF1)

≤ β
r − 5

2

(
4β + β2(5 − r) − 4βσ ′) = O(β3),

as (Z + F1)2 = 0 and (Kβ −βF1)2 = 4β +β2(5−r), (Z + F1).(Kβ −βF1) = −2β.
Next,

∫ σ ′

σ

vol(−Kβ − x Z)dx =
∫ σ ′

σ

vol
( − Kβ + βF1 − x(Z + F1)

)
dx

=
∫ σ ′

0
−

∫ σ

0
vol

( − Kβ + βF1 − x(Z + F1)
)
dx,

and we can compute each integral as in (4.9), namely,

∫ σ ′

σ

vol(−Kβ − x Z)dx = σ ′(Kβ − βF1)
2 + (Z + F1)2

3
(σ ′)3

+ (Z + F1).(Kβ − βF1)(σ
′)2

− σ(Kβ − βF1)
2 − (Z + F1)2

3
σ 3

− (Z + F1).(Kβ − βF1)σ
2

=
(
1 + 3 − r

2
β

) (
4β + β2(5 − r)

)
− 2β((σ ′)2 − σ 2)

=
(
1 + 3 − r

2
β

) (
4β + β2(5 − r)

)

−2β
(
1 + β(5 − r) + O(β2)

)

= 2β + β2(5 − r + 6 − 2r + 2r − 10) + O(β3)

= 2β + β2(1 − r) + O(β3).

Altogether, we have shown

1

K 2
β

∫ τ

0
vol(−Kβ − x Z)dx

= β + O(β3) + 1

4β + β2(4 − r)

[∫ τ

σ

vol(−Kβ − x Z)dx

]

≤ β + O(β3) + 1

4β + β2(4 − r)

[
2β + β2(1 − r)

+ O(β3) + O(β3)
]
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= 1

4β + β2(4 − r)

[
2β + β2(5 − r) + O(β2)

]
+ O(β2)

≤ 1

2
− β(r − 6)

8
+ O(β2),

as desired. By Remark 4.3, we are done. Note that from our proof it follows that εk
only depends on the class of Z . ��

5 Basis log canonical thresholds

We use the same notation as in Sect. 4. The purpose of this section is to prove Theo-
rem 1.3 by showing that for all sufficiently large k and some λ > 1 (independent of
k) and for any k-basis divisor D ∼Q −Kβ = −KS − (1 − β)C , the log pair

(
S, (1 − β)C + λD

)
(5.1)

has log canonical singularities for sufficiently small β > 0 (independent of k).
Let us fix such β, k, D, and set

λ := 1 + β

100
. (5.2)

We split the argument into several lemmas.

Claim 5.1 The pair (5.1) is lc at S\(C ∪i∈I {Ei , Fi }) for all sufficiently large k.
Proof Let p ∈ S\(C ∪i∈I {Ei , Fi }). Thus, π(p) /∈ {pi }i∈I , so if we let 
 be the (1, 0)-
curve passing through π(p) then Z := π−1(
) ∈ |π�F | is a smooth irreducible curve
passing through p. As p /∈ C , the pair (5.1) is lc at p if and only if the pair

(
S, λD

)

is. Write λD = λZ ordZ D + �. Then

(Z .�)p ≤ Z .�= Z .(λD − λZ ordZ D)= Z .(λ(Z+βC)−λZ ordZ D)=2βλ≤1,

for β small so we are done by Lemma 3.2 (using ordZ D ≤ 1/2 (by Lemma 4.5) it
follows that λ ordZ D ≤ 1 so Lemma 3.2 is applicable)). ��
Claim 5.2 The pair (5.1) is lc at ∪i∈I {Ei , Fi }\C for all sufficiently large k.

Proof Say 1 ∈ I and let p ∈ E1\C . Again, it suffices to show the pair
(
S, λD

)
is lc

at p. Decompose λD as λD = � + λE1 ordE1 D. Then,

(E1.�)p ≤ E1.� = E1.(λD − λE1 ordE1 D)

= E1.(λ(E1+F1+βC) − λE1 ordE1 D)=λ(β + ordE1 D) ≤ 1,

for β small by Lemma 4.5 and (5.2), so we are done by Lemma 3.2 (once again we
know that λ ordE1 D ≤ 1 by Lemma 4.5). ��
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Claim 5.3 The pair (5.1) is lc at C\({p0, p∞} ∪ ⋃
i∈I {Ei , Fi }

)
for all sufficiently

large k.

Proof Let p ∈ C\({p0, p∞} ∪ ⋃
i∈I {Ei , Fi }

)
. As in the proof of Claim 5.1, let Z ∈

|π�F | be a smooth irreducible curve passing through p. Write

λD + (1 − β)C = λZ ordZ D + (1 − β + λ ordC D)C + �.

As Z intersects C transversally at p (as p ∈ {p0, p∞}), by Corollary 3.5 it suffices to
show that

mult p � ≤ 1 (5.3)

and that

C .� ≤ (Z .�)p

((Z .�)p − β + λ ordC D)+
(1 − λ ordZ D) − β + λ ordC D.

For (5.3), note that by (5.4) mult p � ≤ (Z .�)p = O(β). Now,

C .� = C .
(
λD − λZ ordZ D − λC ordC D

)

= C .
(
λ(π�F + βC) − λZ ordZ D − λC ordC D

)

= λ(2 + β(4 − r) − 2 ordZ D − (4 − r) ordC D)

by Lemma 4.5, while

(Z .�)p ≤ Z .� = Z .
(
λD − λZ ordZ D − λC ordC D

)

= 2λ(β − ordC D).
(5.4)

As λ > 1, this is larger than β − λ ordC D, and using (3.9), it suffices to show

2λ

(
1 − ordZ D + r − 4

2
(ordC D − β)

)
≤ 2λ(β − ordC D)

β(2λ − 1) − λ ordC D
(1 − λ ordZ D)

− β + λ ordC D,

i.e.,

1 − ordZ D+ r − 5

2
(ordC D − β)≤ β − ordC D

β(2λ − 1)−λ ordC D
(1−λ ordZ D)+ λ−1

2λ
β,

i.e.,

ordZ D

(
λ(β − ordC D)

β(2λ − 1) − λ ordC D
− 1

)
+ 1 + r − 5

2
(ordC D − β)

≤ β − ordC D

β(2λ − 1) − λ ordC D
+ λ − 1

2λ
β,
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i.e.,

ordZ D
β(1 − λ)

β(2λ − 1) − λ ordC D
+ 1 + r − 5

2
(ordC D − β)

≤ β − ordC D

β(2λ − 1) − λ ordC D
+ λ − 1

2λ
β.

The first term is negative while the last is positive, and since ordC D − β < 0 and
r − 5 ≥ 2, suffices to show

1 ≤ (β − ordC D)

(
1

λ(β − ordC D) + β(λ − 1)
+ 1

)

i.e.,

λ(β − ordC D) + β(λ − 1) ≤ (β − ordC D)
(
1 + λ(β − ordC D) + β(λ − 1)

)

i.e.,

(β − ordC D)
(
(λ − 1)(1 − β) − λ(β − ordC D)

) + β(λ − 1) ≤ 0 (5.5)

By Lemma 4.5 and (5.2), for β sufficiently small,

(β − ordC D)
(
(λ − 1)(1 − β) − λ(β − ordC D)

) + β(λ − 1)

≤ (β − ordC D)
(
(λ − 1)(1 − β) − λβ/3

) + β(λ − 1)

≤ −β

4
(β − ordC D) + β(λ − 1) ≤ −β2

12
+ β(λ − 1) ≤ 0,

proving (5.5). ��
Claim 5.4 The pair (5.1) is lc at {C ∩ E1, . . . ,C ∩ Er ,C ∩ F1, . . . ,C ∩ Fr } for all
sufficiently large k.

Proof We prove the result for p = C ∩ E1 (the proof for other cases is similar). Write

λD + (1 − β)C = λE1 ordE1 D + λF1 ordF1 D + (1 − β + λ ordC D)C + �.

Note that E1 intersects C transversally at p and F1 does not pass through p. We have

{
λβ − λ ordC D + λ ordE1 D − λ ordF1 D = E1.� ≥ multp�,

λβ − λ ordC D − λ ordE1 D + λ ordF1 D = F1.� ≥ 0.

From these two inequalities we get multp� ≤ 2λ(β − ordC D) = O(β) and

λ ordE1 D − λ ordF1 D ≤ λ(β − ordC D). (5.6)
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In particular, multp� ≤ 1. Then by Corollary 3.5 if suffices to show

C .� ≤ (E1.�)p

((E1.�)p − β + λ ordC D)+
(1 − λ ordE1 D) − β + λ ordC D.

Now, using (5.6),

C .� = C .
(
λD − λE1 ordE1 D − λF1 ordF1 D − λC ordC D

)

= C .
(
λ(π�F + βC) − λE1 ordE1 D − λF1 ordF1 D − λC ordC D

)

= λ(2 + β(4 − r) − ordE1 D − ordF1 D − (4 − r) ordC D)

≤ λ(2 + β(5 − r) − 2 ordE1 D − (5 − r) ordC D)

and

(E1.�)p ≤ E1.� = E1.
(
λD − λE1 ordE1 D − λF1 ordF1 D − λC ordC D

)

= λβ − λ ordC D + λ ordE1 D − λ ordF1 D ≤ 2λ(β − ordC D).

As λ > 1, this is larger than β − λ ordC D, and using (3.9), it suffices to show

2λ

(
1 − ordE1 D + r − 5

2
(ordC D − β)

)
≤ 2λ(β − ordC D)

β(2λ − 1) − λ ordC D
(1 − λ ordE1 D)

− β + λ ordC D,

i.e.,

1 − ordE1 D + r − 6

2
(ordC D − β)

≤ β − ordC D

β(2λ − 1) − λ ordC D
(1 − λ ordE1 D) + λ − 1

2λ
β,

i.e.,

ordE1 D

(
λ(β − ordC D)

β(2λ − 1) − λ ordC D
− 1

)
+ 1 + r − 6

2
(ordC D − β)

≤ β − ordC D

β(2λ − 1) − λ ordC D
+ λ − 1

2λ
β,

i.e.

ordE1 D
β(1 − λ)

β(2λ − 1) − λ ordC D
+ 1 + r − 6

2
(ordC D − β)

≤ β − ordC D

β(2λ − 1) − λ ordC D
+ λ − 1

2λ
β.



34 Page 28 of 36 I. A. Cheltsov et al.

The first term is negative while the last is positive, so it suffices to show

1 − β − ordC D

β(2λ − 1) − λ ordC D
≤ r − 6

2
(β − ordC D),

i.e.,

(λ − 1)
2β − ordC D

β(2λ − 1) − λ ordC D
≤ r − 6

2
(β − ordC D).

Using Lemma 4.5, (5.2) and (4.3) it suffices to show (for β small)

β

100
· 2β

β − 2
3β

≤ 1

2
· (β − 2

3
β),

i.e., 3β/50 ≤ β/6, so we are done. ��
To finish the proof of Theorem 1.3, it remains to show that the pair (5.1) is lc at

p = C ∩ F0 (for C ∩ F∞ the proof is similar). Then there are two cases to consider,
since the argument depends on whether the point p0 is blown up or not. The more
difficult case is the following:

Claim 5.5 Suppose that p0 is not blown up, then the pair (5.1) is lc at p = C ∩ F0 for
all sufficiently large k.

Proof In this case, the curve F0 intersects C tangentially at p. Write

λD = λF0 ordF0 D + λC ordC D + �.

We put

m = mult p �.

Since 2βλ = λD.F0 = 2λ ordC D + �.F0 ≥ 2λ ordC D + m, we get

m ≤ 2λ(β − ordC D). (5.7)

Let g : S̃ → S be the blow-up of the point p, and let G be the exceptional curve
of g. We let C̃ , F̃0 and �̃ be the proper transform of C , F0 and � respectively on the
surface S̃. We put

p̃ = C̃ ∩ G, m̃ = multP̃�̃.

Note that G, C̃ and F̃0 are three smooth curves intersecting pairwise transversally at
p̃.



Basis log canonical thresholds, local intersection… Page 29 of 36 34

To show the pair (5.1) is lc at p, it suffices to show the pair

(S̃, (1 − β + λ ordC D)C̃ + λF̃0 ordF0 D+�̃+(λ ordF0 D + m − β+λ ordC D)G)

is lc at any point q ∈ G.
First, suppose that q 	= p̃. We then need to prove that the pair

(S̃, �̃ + (λ ordF0 D + m − β + λ ordC D)G)

is lc at q. Note that (λ ordF0 D + m − β + λ ordC D) ≤ 1 by Lemma 4.5 and (5.7),
so we may apply Lemma 3.2 at q and it suffices to prove

G.�̃ ≤ 1,

which is true since G.�̃ = m ≤ 1 (recall (5.7)).
To finish the proof, it then suffices to show that the pair

(S̃, (1 − β+λ ordC D)C̃+λF̃0 ordF0 D+�̃+(λ ordF0 D + m − β + λ ordC D)G)

is lc at p̃.
Let h : Ŝ → S̃ be the blow up of p̃ and let H be the exceptional curve of h. We

let Ĉ , F̂0, Ĝ and �̂ be the proper transform of C̃ , F̃0, G and �̃ respectively on the
surface Ŝ. Then Ĉ , F̂0 and Ĝ intersect transversally with H at three different points.
Also notice that

2λ(β − ordC D) − m − m̃ = F̂0.�̂ ≥ 0,

so we get

m + m̃ ≤ 2λ(β − ordC D). (5.8)

Using m̃ ≤ m, we have

m̃ ≤ λ(β − ordC D). (5.9)

And also, using Lemma 4.5, (5.8) and (4.3) we have (for small β)

(2λ ordF0 D + m + m̃ − 2β + 2λ ordC D) ≤ 1. (5.10)

Now to finish the proof, it is enough to show that the log pair (Ŝ, (1 − β +
λ ordC D)Ĉ+λF̂0 ordF0 D+�̂+(λ ordF0 D+m−β +λ ordC D)Ĝ+(2λ ordF0 D+
m + m̃ − 2β + 2λ ordC D)H) is lc at any point o ∈ H .

First, suppose that o /∈ Ĉ ∪ F̂0 ∪ Ĝ. Then we need to show

(Ŝ, �̂ + (2λ ordF0 D + m + m̃ − 2β + 2λ ordC D)H))
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is lc at o. By (5.10) and Lemma 3.2, it is enough to show H .�̂ ≤ 1, but H .�̂ = m̃ ≤ 1
(recall (5.9)).

Second, suppose that o = H ∩ F̂0. Then we need to show

(Ŝ, λF̂0 ordF0 D + �̂ + (2λ ordF0 D + m + m̃ − 2β + 2λ ordC D)H)

is lc at o. By 5.10 and Lemma 3.2, it is enough to show

H .(λF̂0 ordF0 D + �̂) ≤ 1,

i.e., λ ordF0 D + m̃ ≤ 1, and this follows from Lemma 4.5 and (5.9).
Third, suppose that o = H ∩ Ĝ. Then we need to show

(Ŝ, �̂ + (λ ordF0 D + m − β + λ ordC D)Ĝ

+(2λ ordF0 D + m + m̃ − 2β + 2λ ordC D)H)

is lc at o. By (5.10) and Lemma 3.2, it is enough to show

H .(�̂ + λ ordF0 D + m − β + λ ordC D)Ĝ) ≤ 1,

i.e., λ ordF0 D + m + m̃ − β + λ ordC D ≤ 1, which holds by Lemma 4.5 and (5.8).
Hence, to conclude the proof, it suffices to show the pair

(Ŝ, (1 − β + λ ordC D)Ĉ + �̂ + (2λ ordF0 D + m + m̃ − 2β + 2λ ordC D)H)

is lc at o = H ∩ Ĉ . Note that multo �̂ ≤ m̃ ≤ 1, so by Corollary 3.5, it suffices to
show

(Ĉ .�̂)o ≤ (H .�̂)o

((H .�̂)o − (β − λ ordC D))+
(1 − (2λ ordF0 D + m + m̃

− 2β + 2λ ordC D)) − (β − λ ordC D).

Nowusing Lemma 4.5, (4.3), (5.2) and (5.8), it is clear that, for β sufficiently small,

(2λ ordF0 D + m + m̃ − 2β + 2λ ordC D) ≤ 1 − β

10
.

Also, (Ĉ .�̂)o ≤ C .� ≤ 3, and using (5.9), (H .�̂)o ≤ H .�̂ = m̃ ≤ λ(β − ordC D).

So by (3.9) it suffices to show

3 + (β − λ ordC D) ≤ λ(β − ordC D)

λ(β − ordC D) − (β − λ ordC D)
· β

10
,

i.e., 3+ (β − λ ordC D) ≤ λ(β−ordC D)
(λ−1)β · β

10 . Using Lemma 4.5 and (5.2), it is enough

show 3 + β ≤ β− 2
3β

β2/100
· β
10 , i.e., 3 + β ≤ 10

3 , concluding the proof. ��



Basis log canonical thresholds, local intersection… Page 31 of 36 34

Claim 5.6 Suppose that p0 is blown up, then the pair (5.1) is lc at p = C ∩ F0 for all
sufficiently large k.

Proof In this case, both E0 and F0 meet C transversally at p. Write

λD = λE0 ordE0 D + λF0 ordF0 D + λC ordC D + �.

Put m = mult p �. We have

{
λβ + λ ordE0 D − λ ordF0 D − λ ordC D = �.E0 ≥ m,

λβ − λ ordE0 D + λ ordF0 D − λ ordC D = �.F0 ≥ m.

Summing up, we get

m ≤ λ(β − ordC D). (5.11)

Then by Lemma 4.5, r ≥ 7 and (5.2), we clearly have (for β small enough)

(λ ordE0 D + λ ordF0 D + m − β + λ ordC D) ≤ 1. (5.12)

Let g : S̃ → S be the blow up of p and let G be the exceptional curve of h. We
let C̃ , Ẽ0, F̃0 and �̃ be the proper transform of C , E0, F0 and � respectively on the
surface Ŝ. Then C̃ , Ẽ0 and F̃0 intersect transversally with H at three different points.

To show the pair (5.1) is lc at p, it is enough to show the pair

(S̃, (1 − β + λ ordC D)C̃ + λẼ0 ordE0 D + λF̃0 ordF0 D + �̃

+(λ ordE0 D + λ ordF0 D + m − β + λ ordC D)G)

is lc at any point q ∈ G.
First suppose that q /∈ C̃ ∪ Ẽ0 ∪ F̃0, then we need to show the pair

(S̃, �̃ + (λ ordE0 D + λ ordF0 D + m − β + λ ordC D)G)

is lc at q. Using (5.12) and Lemma 3.2, it suffices to showG.�̃ ≤ 1, butG.�̃ = m ≤ 1
(recall (5.11)).

Second, suppose that q = G ∩ Ẽ0. Then we need to show the pair

(S̃, λẼ0 ordE0 D + �̃ + (λ ordE0 D + λ ordF0 D + m − β + λ ordC D)G)

is lc at q. Using (5.12) and Lemma 3.2, it suffices to show

G.(λẼ0 ordE0 D + �̃) ≤ 1,

i.e., λ ordE0 D +m ≤ 1, which is true by Lemma 4.5, (5.2) and (5.11). The proof for
q = G ∩ F̃0 is similar.
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So to finish the proof, it suffices to show the pair

(S̃, (1 − β + λ ordC D)C̃ + �̃ + (λ ordE0 D + λ ordF0 D + m − β + λ ordC D)G)

is lc at q = H ∩ C̃ . Since multq �̃ ≤ m ≤ 1 by (5.11), then by Corollary 3.5, it
suffices to show

(C̃ .�̃)q ≤ (G.�̃)q

((G.�̃)q − (β − λ ordC D))+
(1 − (λ ordE0 D + λ ordF0 D

+m − β + λ ordC D)) − (β − λ ordC D).

Now using Lemma 4.5, (4.3), (5.2) and (5.11), we have (for β small enough)

(λ ordE0 D + λ ordF0 D + m − β + λ ordC D) ≤ 1 − β

10
.

Also we have (C̃ .�̃)q ≤ C .� ≤ 3, and by (5.11), (G.�̃)q ≤ G.�̃ = m ≤ λ(β −
ordC D). So by (3.9) it suffices to show

3 + (β − λ ordC D) ≤ λ(β − ordC D)

λ(β − ordC D) − (β − λ ordC D)
· β

10
,

i.e., 3 + (β − λ ordC D) ≤ λ(β−ordC D)
(λ−1)β · β

10 Using Lemma 4.5 and (5.2), it is enough

show 3 + β ≤ β− 2
3β

β2/100
· β
10 , i.e., 3 + β ≤ 10

3 , concluding the proof. ��
Claims 5.1–5.6 and Definition 2.5 imply that there exists b := b(r) such that for all

rational β ∈ (0, b) we have blctk(S, (1 − β)C,−KS − (1 − β)C) ≥ 1 + β
100 for all

sufficiently large k. Thus, blct∞(S, (1 − β)C,−KS − (1 − β)C) ≥ 1 + β
100 . Hence,

Theorem 1.3 follows from Theorem 2.6.

Appendix: Blct and the greatest Ricci lower bound

Let X be a Fano manifold. A well-known result of Demailly states glct(X ,−KX ) =
α(X), i.e., the global log canonical threshold coincides with Tian’s α-invariant [24].
Here we show that the basis log canonical threshold of Fujita–Odaka coincides with
Tian’s β-invariant. Recall the definition of the latter

β(X) := sup{ b : Ric ω ≥ bω, [ω] = c1(X)},

where Ric ω := −√−1/2π ·∂∂ log det(gi j ) denotes the Ricci form ofω = √−1/2π ·
gi j (z)dz

i ∧ dz j . This invariant was the topic of Tian’s article [63] although it was not
explicitly defined there, but was first explicitly defined by one of us in [55, (32)], [56,
Problem 3.1] and was later further studied by Székelyhidi [61], Li [46], Song–Wang
[60], and Cable [9].
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Theorem 5.7 On a Fano manifold X, β(X) = min{blct∞(X ,−KX ), 1}.
Some special cases of this are known. First, the result is inspired by the work of

Blum–Jonssonwho derived this identity in the special toric case by directly computing
blct∞(X ,−KX ) [4, Corollary 7.19] and observing it coincides with Li’s formula for
β(X) for toric X [46]. Second, Theorem 5.7 is known if (X ,−KX ) is semistable in
an algebraic/analytic sense. Indeed, Li [48] showed that β(X) = 1 if and only if the
Mabuchi energy is bounded below solving a problem posed by one of us [56, Problem
3.1]. He also showed, using [28,65], that this happens if and only if (X ,−KX ) is K-
semistable. On the other hand, by Fujita–Odaka and Blum–Jonsson [4,39] (X ,−KX )

is K-semistable if and only if blct∞(X ,−KX ) ≥ 1. Below we give a short proof of
Theorem 5.7 in the remaining case, i.e., when (X ,−KX ) is K-unstable, namely, when
β(X) ∈ (0, 1) (β(X) is positive by the Calabi–Yau theorem), so Theorem 5.7 reduces
to the formula

blct∞(X ,−KX ) = β(X). (5.13)

Our strategy will be to use the scaling property b−1blct∞(X ,−KX ) = blct∞
(X ,−bKX ) for 0 < b ∈ Q [4, Remark 4.5] and show blct∞(X ,−bKX ) ≥ 1 for
b ∈ (0, β(X)) ∩ Q and blct∞(X ,−bKX ) ≤ 1 for b ∈ (β(X), 1) ∩ Q.

The proof makes use of KEE metrics (see Sect. 1.2 and [57] for background). In
the edge setting, one has an analogue of β(X) due to Donaldson [34] and Li–Sun [48]:
for all m ∈ N sufficiently large, choose �m ∈ | − mKX | a smooth divisor (exists by
Bertini’s theorem), denote by [�m] the current of integration along �m , and set

β(X ,�m/m) := sup{b > 0 : Ric ω = bω + (1 − b)[�m]/m, [ω] = c1(X)}.

It is known that [60] (see also [47, Corollary 2.4])

lim
m

β(X ,�m/m)) = β(X). (5.14)

In particular, fixing any b ∈ (0, β(X))∩Q, there ism0 ∈ N such that β(X ,�m/m)) >

b for all m ≥ m0, and by definition and there are KEE metrics with Ricci curvature b
andwith angles 2π(1−b)/m along�m (here we use [49, Theorem 1.1] that guarantees
the interval of such values of b is connected) and therefore (X , (1−b)�m/m,−bKX )

are log K-semistable [49, Corollary 1.12]. Thus by [29, Corollary 4.8], we have

blct∞(X , (1 − b)�m/m,−bKX ) ≥ 1.

By definition, blct∞(X ,−bKX ) ≥ blct∞(X , (1 − b)�m/m,−bKX ). Thus, blct∞
(X ,−bKX ) ≥ 1 for each b ∈ (0, β(X)) ∩ Q, so blct∞(X ,−KX ) ≥ β(X).

For the other direction of (5.13) we make use an algebraic counterpart of (5.14):

Lemma 5.8 For b ∈ (0, 1) ∩ Q, limm blct∞(X , (1 − b)�m/m,−bKX ) = blct∞
(X ,−bKX ).
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Proof As just noted, one direction follows from the definitions.
For the reverse direction, first fix k, and then let c ∈ (

0, blctk(X ,−bKX )
)
. Let

D ∼Q −bKX be a k-basis divisor, so (X , cD) is lc. Observe that, of course, (X ,�m)

is lc (as �m is smooth). Recall that if (X , A) and (X , B) are lc then so is (X , (1 −
δ)A+ δB) for any δ ∈ (0, 1) [12, Remark 2.1]. Thus (X , (1− δ)cD+ δ�m) is lc. Put
δ = (1 − b)/m to obtain that

blctk(X , (1 − b)�m/m,−bKX ) ≥ (1 − O(1/m)) blctk(X ,−bKX ).

Now let first k and then m tend to infinity to conclude. ��
Thus, suppose that blct∞(X ,−bKX ) > 1 for some b ∈ (β(X), 1) ∩ Q. By

Lemma 5.8 blct∞
(
X , (1− b)�m/m,−bKX

)
> 1 and (X , (1− b)�m/m,−bKX ) is

uniformly log K-stable for all sufficiently large m [29, Corollary 4.8]. So it follows
from [28,65] (see also [66]) that there exists a KEE metric associated to this triple,
i.e., that β(X ,�m/m) ≥ b, contradicting (5.14). Thus, blct∞(X ,−bKX ) ≤ 1, i.e.,
blct∞(X ,−KX ) ≤ b for all b ∈ (β(X), 1) ∩ Q. This concludes the proof of (5.13)
and hence of Theorem 5.7.

Remark 5.9 In the last paragraph one may also use [8, Corollary 2.11] to obtain the
polarized pair

(
X ,−bKX

)
is K-semistable in the adjoint sense, hence twisted K-

semistable in the sense of [32] (see [7, Proposition 8.2]). So [31, Proposition 10]
guarantees that for some b ∈ (β(X), 1), we can find two Kähler forms ω, α cohomol-
ogous to c1(X) such that Ric ω = bω + (1 − b)α, that is again a contradiction.
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40. Guenancia, H., Pǎun, M.: Conic singularities metrics with prescribed Ricci curvature: the case of

general cone angles along normal crossing divisors, preprint, arxiv:1307.6375
41. Hacon, C., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. Math. 180(2), 523–571

(2014)
42. Jeffres, T., Mazzeo, R., Rubinstein, Y.A.: Kähler–Einstein metrics with edge singularities, (with an

appendix by C. Li and Y.A. Rubinstein). Ann. Math. 183, 95–176 (2016)
43. Kollár, J.: Singularities of pairs. In: Algebraic Geometry (Santa Cruz, 1995), pp. 221–287. American

Mathematical Society, Providence (1997)
44. Lazarsfeld, R.: Positivity in Algebraic Geometry, I, II. Springer, Berlin (2004)
45. Lazarsfeld, R., Mustata, M.: Convex bodies associated to linear series. Ann. Sci. Eco. Norm. Sup. 42,

783–835 (2009)
46. Li, C.: Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226, 4921–4932

(2011)
47. Li, C.: Yau–Tian–Donaldson correspondence for K-semistable Fanomanifolds. J. Reine Angew.Math.

733, 55–85 (2017)
48. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166, 3147–3218 (2017)

https://doi.org/10.1007/s40879-018-0237-x
http://arxiv.org/abs/1806.07180
http://www2.imperial.ac.uk/~skdona/KENOTES.PDF
http://www2.imperial.ac.uk/~skdona/KENOTES.PDF
http://arxiv.org/abs/1509.02808
http://arxiv.org/abs/1602.00901
http://arxiv.org/abs/1709.08209
http://arxiv.org/abs/1602.01305
http://arxiv.org/abs/1307.6375


34 Page 36 of 36 I. A. Cheltsov et al.

49. Li, C., Sun, S.: Conical Kähler–Einstein metric revisited. Commun. Math. Phys. 331, 927–973 (2014)
50. Maeda, H.: Classification of logarithmic Fano threefolds. Compos. Math. 57, 81–125 (1986)
51. Mazzeo, R., Rubinstein, Y.A.: The Ricci continuity method for the complexMonge–Ampère equation,

with applications to Kähler–Einstein edge metrics. C. R. Math. Acad. Sci. Paris 350, 693–697 (2012)
52. Park, J., Won, J.: K-stability of smooth del Pezzo surfaces, preprint, arxiv:1608.06053
53. Prokhorov, Yu., Shramov, C.: Jordan property for Cremona groups. Am. J. Math. 138, 403–418 (2016)
54. Pukhlikov, A.V.: Birational geometry of Fano direct products. Izv. Math. 69, 1225–1255 (2005)
55. Rubinstein, Y.A.: Some discretizations of geometric evolution equations and the Ricci iteration on the

space of Kähler metrics. Adv. Math. 218, 1526–1565 (2008)
56. Rubinstein, Y.A.: On the construction of Nadel multiplier ideal sheaves and the limiting behavior of

the Ricci flow. Trans. Am. Math. Soc. 361, 5839–5850 (2009)
57. Rubinstein,Y.A.: Smooth and singularKahler–Einsteinmetrics. In:Albin, P., et al. (eds.)Geometric and

SpectralAnalysis. Contemp.Math., vol. 630.Amer.Math. Soc. andCentreRecherchesMathématiques,
Providence (2014)

58. Serre, J.-P.: A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of
rank 2 over an arbitrary field. Mosc. Math. J. 9, 193–208 (2009)

59. Shokurov, V.: Three-dimensional log perestroikas. Izv. Ross. Akad. Nauk Ser.Mat. 56, 105–203 (1992)
60. Song, J., Wang, X.: The greatest Ricci lower bound, conical Einstein metrics and Chern number

inequality. Geom. Topol. 20, 49–102 (2016)
61. Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147,

319–331 (2011)
62. Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with c1(M)>0. Invent. Math. 89,

225–246 (1987)
63. Tian, G.: On stability of the tangent bundles of Fano varieties. Internat. J. Math. 3, 401–413 (1992)
64. Tian, G.: Kähler–Einstein metrics on algebraic manifolds. In: Transcendental Methods in Algebraic

Geometry (Cetraro 1994). Lecture Notes in Math, vol. 1646, pp. 143–185 (1996)
65. Tian, G.: K-stability and Kähler–Einstein metrics. Comm. Pure. Appl. Math. 68, 1085–1156 (2015)
66. Tian, G., Wang, F.: On the existence of conic Kähler-Einstein metrics, preprint (2018)
67. Tsuji, H.: Stability of tangent bundles of minimal algebraic varieties. Topology 27, 429–442 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1608.06053

	Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces
	Abstract
	1 Introduction
	1.1 Estimating basis log canonical thresholds
	1.2 Kähler–Einstein edge metrics
	1.3 The Calabi problem for asymptotically log Fano varieties
	1.4 The Calabi problem for asymptotically log del Pezzo surfaces
	1.4.1 The big case
	1.4.2 The non-big case

	1.5 Main result

	2 Preliminaries
	2.1 Log pairs
	2.2 Log canonical thresholds
	2.3 The basis log canonical threshold
	2.4 Volume estimates on the order of vanishing

	3 Local intersection estimates on surfaces
	4 Vanishing order estimates
	5 Basis log canonical thresholds
	Appendix: Blct and the greatest Ricci lower bound
	References




