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Abstract

The purpose of this article is to develop techniques for estimating basis log canonical
thresholds on logarithmic surfaces. To that end, we develop new local intersection
estimates that imply log canonicity. Our main motivation and application is to show
the existence of Kéhler—Einstein edge metrics on all but finitely many families of
asymptotically log del Pezzo surfaces, partially confirming a conjecture of two of
us. In an appendix we show that the basis log canonical threshold of Fujita—Odaka
coincides with the greatest lower Ricci bound invariant of Tian.

Mathematics Subject Classification Primary 32Q20; Secondary 14J45 - 14C20 -
32Q15 - 32Q26 - 32Q30

1 Introduction

1.1 Estimating basis log canonical thresholds

Global and local log canonical thresholds naturally play a crucial rdle in algebraic
geometry. For instance, Shokurov’s conjecture [59] on the ascending chain condition
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for local log canonical thresholds (proved in [41]) implies the inductive step in ter-
mination of higher-dimensional log flips [2]. Likewise, Birkar’s boundedness results
[3] for global log canonical threshold imply the Borisov—Alexeev—Borisov conjec-
ture in all dimensions: the set of Fano varieties of dimension d with e-log canonical
singularities forms a bounded family for given d € N and € > 0. This conjecture
implies that the birational automorphism group of any rationally connected variety
is Jordan [53], so that, in particular, all Cremona groups are Jordan (in dimension 2
this was proved by Serre in [58]). Global log canonical thresholds are used to prove
irrationality of Fano varieties [11,54] the absence of non-trivial fiber-wise birational
maps between Mori fiber spaces [10,13,17], the uniqueness of a Kollar component of a
Kawamata log terminal singularity [19,26,27], and non-conjugacy of finite subgroups
in Cremona groups [12], Moreover, a combination of results about global and local
log canonical thresholds of del Pezzo surfaces helped to answer an old standing open
question in affine geometry [21], and make a first step towards Gizatullin’s conjecture
about automorphisms of the affine complements to Fano hypersurfaces [15].

About a decade ago, it was realized [24] that global log canonical thresholds (glcts)
are the algebraic analogues of Tian’s alpha invariants [62] that are central in the
study of Kéhler—Einstein (KE) metrics. This paved the way to using a wide range of
algebraic tools to prove existence of KE metrics via Tian’s theorem that stipulates
that an estimate on Tian’s invariant guarantees the existence of such a metric [11-
13,16,18,20,25]. While this has been arguably the most fruitful method for finding
new KE metrics, a sticking point with this approach has been that Tian’s theorem only
provides a sufficient condition for the existence of KE metrics. Recently, this has been
remedied by Fujita—Odaka [39] that introduced a new invariant, that we refer to as the
basis log canonical threshold (blct) reminiscent of the global log canonical threshold
(the blct has also been referred to as the delta invariant and the stability threshold
in the literature, see Definition 2.5 below for detailed references). The advantage
of estimating this modified threshold is that it provides a necessary and sufficient
condition for K-stability, which in turn is equivalent to the existence of KE metrics
[28,65]. In fact, in an appendix we show that the algebraic invariant blct coincides
with an analytic invariant studied by Tian almost thirty years ago, namely, the greatest
Ricci lower bound invariant.

However, while there are many techniques for estimating glcts, at the moment
rather little is known about how to actually estimate blcts. Recently, an important first
step in this direction was taken by Park—Won [52] who developed algebraic methods
for estimating blcts in dimension 2. First, they explicitly computed blct of P? similar
to what was done later for all toric Fano varieties by Blum—Jonsson [4]. Then Park
and Won used the key fact that every two-dimensional Fano variety different from
P! x P! can be (non-canonically) obtained from P? by blowing up < 8 points in
general position. This allowed them to use their toric computations to estimate blcts
from above. The Park—Won approach is quite different from computations of glcts
in the literature [12] where all estimates are done using only intrinsic geometry of
the surface. Moreover, it is not clear how to adapt toric-type computations as in [52]
to our logarithmic setting which also includes a boundary divisor. Finally, it is also
not clear how to adapt their method to higher dimensions, simply because blow-ups
of projective space or other higher-dimensional toric variety very rarely have ample
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anticanonical class. While we do not tackle this here, we believe that it should be
possible to extend our method to dimension three.

In this article we develop intrinsic techniques for estimating blcts in dimension 2.
The methods we develop are of a geometric nature and involve new criteria for log
canonicity in terms of local intersection numbers, that we believe are of independent
interest. As we show in a sequel, in the setting considered by Park—Won our methods
yield stronger estimates with perhaps more geometric proofs. Moreover, in this article
we use our new log canonicity criteria, coupled with vanishing order estimates for basis
divisors to prove the log K-stability of an important family of logarithmic surfaces.
This partially resolves a conjecture of two of us that we now turn to describe.

1.2 Kahler-Einstein edge metrics

Smooth Kiéhler—FEinstein (KE) metrics have been studied for over 80 years, with
intriguing relations to algebraic geometry emerging over the last 30 years. More
recently, motivated by suggestions of Tsuji, Tian, and Donaldson, singular Kéhler—
Einstein metrics called Kdhler—Einstein edge (KEE) metrics have been intensely
studied, mainly as a tool for understanding smooth Kihler—Einstein metrics. KEE
metrics are a natural generalization of KE metrics: they are smooth metrics on the
complement of a divisor, and have a conical singularity of angle 2z 8 transverse to
that ‘complex edge’ (i.e., the metric as being ‘bent® at an angle 277 8 along the divisor).
They tie naturally to the study of log pairs in algebraic geometry. When 8 = 1, of
course, a KEE metric is just an ordinary KE metric that extends smoothly across the
divisor, and so understanding existence of KEE metrics as well as their asymptotics
near the divisor [42] as well as the limit 8 — 1 [28,65] has attracted much work; we
refer to the survey [57] for a thorough discussion and many more references.

In [22], two of us initiated a program whose aim is to understand the behavior in
the other extreme when the cone angle B goes to zero consisting of:

(a) Classifying all triples (X, D, B) satisfying the necessary cohomological condition
(1.1) for sufficiently small B;

(b) Obtaining a condition equivalent to existence of KEE metrics for such triples;

(c) Understanding the limit, when such exists, of these KEE metrics as § tends to
zero.

The cohomological condition alluded to in (a),
— Kx — (1 — B)D is u times an ample class, for some u € R, (1.1)

is also the necessary and sufficient condition for (b) if © < 0 [42, Theorem 2J;
moreover, a classification (i.e., part (a)) is essentially impossible when u < 0 [33],
[57, §8], and so we will restrict our attention in (a)—(b) exclusively to the case u > 0,
that we have previously called the asymptotically log Fano regime [22, Definition 1.1].

Our previous work accomplished (a) in dimension 2, providing a complete classi-
fication [22, Theorem 2.1]. Furthermore, we also obtained the “necessary” portion of
(b) [22,23], and this was extended to higher dimensions by Fujita [35]. The purpose
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of this article is to complete the “sufficient” portion of (b) in dimension 2 in all but
finitely many (in fact, all but 6) of the (infinite list of) cases classified in [22].

1.3 The Calabi problem for asymptotically log Fano varieties

A special class of asymptotically log Fano varieties is as follows. This is a special case
of [22, Definition 1.1].

Definition 1.1 We say that a pair (X, D) consisting of a smooth projective variety X
and a smooth irreducible divisor D on X is asymptotically log Fano if the divisor
—Kx — (1 — B)D is ample for sufficiently small 8 € (0, 1].

This definition contains the class of smooth Fano varieties (D = 0) as well as the
classical notion of a smooth log Fano pair due to Maeda (8 = 0) [50].

One can show using a result of Kawamata—Shokurov thatif (X, D) is asymptotically
log Fano then |k(Kx + D)| (for some k € N) is free from base points and gives a
morphism [22, §1]

n: X - Z.

The following conjecture, posed in our earlier work, gives a rather complete picture
concerning (b) when D is smooth.

Conjecture 1.2 [22, Conjecture 1.11] Suppose that (X, D) is an asymptotically log
Fano manifold with D smooth and irreducible. There exist KEE metrics with angle
2nB along D for all sufficiently small B if and only if n is not birational.

This conjecture stipulates that the existence problem for KEE metrics in the small
angle regime boils down to a simple birationality criterion. In fact, this amounts to
computing a single intersection number, i.e., checking whether

(Kx + D)" = 0.

This would be a rather far-reaching simplification as compared to checking the much
harder condition of log K-stability that involves, in theory, computing the Futaki
invariant of an infinite number of log test configurations, or else estimating the blct
which involves, in theory, estimation of singularities of pairs that may occur after an
unbounded number of blow-ups.

1.4 The Calabi problem for asymptotically log del Pezzo surfaces

Following [22,57] we will refer to understanding (b) as the Calabi problem for asymp-
totically log Fano varieties. This article makes an important step towards solving this
problem in dimension 2, where Fano varieties are commonly called del Pezzo sur-
faces. To explain this, let us recall what is already known about this problem from our
previous work.
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1.4.1 The big case

The necessary direction of Conjecture 1.2 in dimension 2 is known as we now recall.

According to [22, Theorems 1.4, 2.1] asymptotically log del Pezzo pairs (X, D)
(with D smooth and irreducible) for which —Ky — D is big are as follows. Either
(X, D) is one of the five Maeda pairs (i.e., with —Ky — D ample):

(I.1B) := (P2, smooth conic),

(L.1C) := (P2, line),

(I1.2.n) := (F,, Z,) (where, for any n > 0, IF,, is the Hirzebruch surface containing
acurve Z, whose self intersection is —n and fiber F' whose self intersection is 0),
(I.3B) := (IF{, smooth element of |Z| 4+ F),

(1.4C) := (P! x P!, smooth bi-degree (1, 1) curve),

or else (X, D) is obtained from one of the five Maeda surfaces (X s, Dj) as follows:
X is the blow-up of X at any number of distinct points on Dyy, and D is the proper
transform of Dyy.

According to Conjecture 1.2 none of these pairs should admit KEE metrics with
small angles. This was verified in a unified manner using flop slope stability [23,
Theorem 1.6], but can also be obtained as follows: for (I.1B) and (I.4C) [49, Example
3.12],for (I.1C) := (IP’Z, line) and (I.2.n) as well as their blow-ups this is a consequence
of the Matsushima theorem for edge metrics [22, Theorem 1.12, Proposition 7.1], for
(1.3B) [23, Example 2.8], for the blow-ups of (I.1B), (I.3B) and (I1.4C) [23, Proposition
5.2].

1.4.2 The non-big case

The harder sufficient direction of Conjecture 1.2 in dimension 2 is still partly open.
Let us recall the state-of-the-art.

According to [22, Theorems 1.4, 2.1] asymptotically log del Pezzo pairs (X, D)
(with D smooth) for which (Kx + D)? = 0 are as follows:

(X, D) is del Pezzo with D a smooth anti-canonical curve,

(I.3A) := (IF{, smooth element of [2(Z| + F))),

(1.4B) := (P! x P!, smooth bi-degree (2, 1) curve),

(I.9B.m) := (X, D) with X ablow-up of P! x P! at m distinct points on a smooth
bi-degree (2, 1) curve with no two of them on a single curve of bi-degree (0, 1),
and D is the proper transform of the bi-degree (2, 1) curve.

According to Conjecture 1.2 all of these pairs should admit KEE metrics with small
angles. The following cases are known: del Pezzo with a smooth anti-canonical curve
[42, Corollary 1], (I.3A) [22, Proposition 7.5], (I.4B) [22, Proposition 7.4]. Thus, the
only remaining cases are (I.9B.m), m > 1.

1.5 Main result

In this article, we treat all but finitely many of the remaining open cases (I.9B.m):
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Theorem 1.3 The log Fano pairs (1.9B.m), m > 7 are uniformly log K-stable for all
sufficiently small B > 0.

Indeed, recent results show that log K-stability implies the existence of a KEE
metric on a given log Fano pair (the stability implies existence of weak solutions
results of [1,66] combined with the regularity results of [40,42,51]). The finitely-
many remaining cases (I.9B.m), 1 < m < 6 require a different approach and will be
discussed elsewhere (although we omit the details, the techniques of this article can
also be used to show the cases (I.9B.5) and (I.9B.6) are log K-semistable).

In the course of the proof we develop new local intersection criteria for showing
log-canonicity on a surface—see Sect. 3. We believe these are of substantial interest
independently of their application to proving Theorem 1.3. Sections 4-5 are concerned
with the proof of Theorem 1.3. In Sect. 4 we estimate the vanishing order of divisors on
the logarithmic surfaces (I.9B.m), while in Sect. 5 we use these estimates together with
the criteria of Sect. 3 to estimate the basis log canonical threshold of the logarithmic
surfaces (I1.9B.m). The article concludes with an appendix that identifies the basis
log canonical threshold of Fano manifolds with Tian’s greatest Ricci lower bound.
After this paper was first posted, we were informed that Berman—-Boucksom—Jonsson
also obtained Theorem 5.7 independently and that Blum—Liu obtained a variant of
Lemma 5.8 [5].

2 Preliminaries

In this section—except in the last lemma where we specialize to surfaces (n = 2)—we
let X be a complex algebraic variety of complex dimension n.

2.1 Log pairs

Given a proper birational morphism 7 : ¥ — X, we define the exceptional set of 7
to be the smallest subset exc(r) C Y, such that w : Y\ exc(mw) — X\mw(exc(mr)) is an
isomorphism.

A log resolution of (X, A) is a proper birational morphism 7 : ¥ — X such that
771 (A) U {exc(m)} is divisor with simple normal crossing (snc) support in a smooth
Y. Log resolutions exist for all the pairs we will consider in this article, by Hironaka’s
theorem.

Assume that Ky + A is a Q-Cartier divisor. Given a log resolution of (X, A), write

T (Kx +A) =Ky + A+ ) eE;,

where A denotes the proper transform of A, and where exc(wr) = UE;, and E;
are irreducible codimension one subvarieties. Also, assume A = Y §; A;, with A;
irreducible codimension one subvarieties, so A = 38 A;. Singularities of pairs can
be measured as follows.

Definition 2.1 Let Z C X be a subvariety. A pair (X, A) has at most log canonical
(Ic) singularities (or klt singularities, respectively) along Z if e¢;, §; < 1 for every i
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(orif e;, 6; < 1 forevery i, respectively) such that 7 (E;) N Z # ¢ and every j such
that Aj NZ # 0.

On a normal variety, an effective Q-divisor D is a formal linear combination with
coefficients in Q4 of prime divisors. Thus, given such a D and a prime divisor F, one
has D = aF + A, for some a € Q4 and A is an effective Q-divisor with F' ¢ suppA.
The number a is called the vanishing order of D along F, denoted

ordr D.

2.2 Log canonical thresholds

Definition 2.2 Let Z C X be a subvariety and let A be Cartier Q-divisor on X. The
log canonical threshold of the pair (X, A) along Z is

letz(X, A) :=sup{A : (X, LA) is log-canonical along Z}.

Setlct(X, A) :=lctx (X, A).

Let (X, B) be a klt log pair. Let D be an effective Q-Cartier divisor on the variety
X. Recall that the log canonical threshold of the boundary D is the number

let(X, B; D) = sup {c : the pair (X, B + ¢D) is log canonical } .

Let H be an ample Q-divisor on X, and let [H] be the class of the divisor H in
Pic(X) ® Q.

A fact we will use over and over again is that the property of being lc or kit
is preserved under blow-ups, and therefore can be checked either upstairs on Y or
downstairs on X [43, Lemma 3.10]. When n = 2 this becomes quite concrete: let
7 : S — S be the blow up of a point p € S and let E := 7~ (p). Denote by A the
proper transform of A under w. Then the log pair (S, A) is Ic/klt at p if and only if
(S‘, A+ (multp A — 1)E) is Ic/klt along E [12, Remark 2.6].

Definition 2.3 Let B be an effective divisor in X. The global log canonical threshold
of the pair (X, B) with respect to [H] is

glet(X, B, [H]) := sup{c >0 : (X,B+cD)islcforevery D ~q H}.

2.3 The basis log canonical threshold
In this part we collect some known results about a basis-type invariant for log pairs
due to Fujita—Odaka [39], see also [4,29].
Let L be an ample Q-divisor in X. For any k € N such that kL is Cartier, let
dy := dimcH(X, kL) > 0.

In this article, whenever we mention multiples kL of L
we will always assume (implicitly) that k is such an integer.
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Definition 2.4 We say that D ~q L is a basis divisor if for some k € N,

1 &
D=— ),
i ,;(S’)

where s1, ..., 54, is a basis of HO%(X, kL), and where (s;) is the divisor cut out by s;.
We also say that D is the k-basis divisor associated to the basis {s; fli 1

The following definition is due to Fujita—Odaka [39, Definition 0.2], extended to
the logarithmic setting by Fujita [38, Definition 5.4] (Fujita’s definition can be shown
to equal a logarithmic version of the original definition of Fujita—Odaka, see [4,29])
who denoted it §(X, B), and Codogni—Patakfalvi [29, Definition 4.3] who denoted
it §(X, B; L). It roughly amounts to replacing “D effective Q-divisor” by “D basis
divisor” in Definition 2.3. So, it yields an invariant larger than glct, albeit one that is
significantly more difficult to compute.

Definition 2.5 Let (X, B) be a kit log pair. The basis log canonical threshold of the
pair (X, B) with respect to L is

blctoo (X, B, L) := limsupblcty (X, B, L),
k

whereblct; (X, B, L) := sup{c > 0 : (X, B+cD) is Ic for any k-basis divisor D ~q
L}.

Estimating the invariant blcto, (X, B, L) is of interest since it coincides with an
analytic invariant related to Ricci curvature (see Theorem 5.7 below) and also due to
the following theorem that follows from the work of Fujita—Odaka [39], Fujita [37],
Li [48], Blum—Jonsson [4] (see also [29, Corollary 4.8]). For the precise definition of
uniform log K-stability, we refer the reader to [7, Definition 8.1].

Theorem 2.6 Thetriple (X, A, —Kx — A) is uniformly log K-stable ifblctoo (X, A, —
Kx —A)> 1.

In fact, the converse also holds, due to the references cited above, but we only need
the somewhat easier direction stated.

2.4 Volume estimates on the order of vanishing

In most of this subsection we follow closely [39]. Estimating log canonical thresholds
naturally involves estimating from above orders of vanishing along divisors, oftentimes
upstairs on a resolution of the original log pair (recall Sect. 2.2). A crude upper bound
on ord r (7t* D) is the pseudoeffective threshold of the divisor 7 * L with respect to the
curve F,

T(w*L, F) = sup{A : 7*L — AF is effective}, 2.1
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since D ~g L and m7*D = ordp(7*D)F + A, with A an effective Q-divisor, whose
support does not contain the curve F. A better estimate can be obtained by using a
quantized version of the pseudoeffective threshold,

w(n*L, F) :=max{x € N : HO(Y, kn*L — xF) # 0.

When no confusion arises we will often abbreviate these two invariants by 7 and 7.
Note that,

limsup tp (7*L, F)/k = t(x*L, F), 2.2)
k

astrivially 7y /k < 7 foreveryk (lets € HO(Y, km*L—xF),then (s)/k ~q n*L— %
is effective), while if 7* L — % is big, then HO(Y, ixn*L —ixxF) # Ofora increasing
sequence of integers {ix} (rememeber we are working with Q-divisors) so 7;, > ixx,
i.e., limsup, ¢ /k > x, and now let x — 7.

Lemma 2.7 Letmw : Y — X bealog resolution of (X, A), and let F be a prime divisor
inY. Let D ~q L be a k-basis divisor. Then

w(n*L,F)

dp(x*D) < — WY, kn*L — bF),
ord (7" D) = - ; (Y, km )

and equality is attained for an appropriate choice of basis.

Proof For completeness, we provide the proof that can be easily extracted from [39,
Lemma 2.2]. Fix Y and F as in the statement. Filter H O(Y, km* L) in increasing order
of vanishing along F,

HOY, kn*L) D HO(Y,kn*L — F) 2 ... 2 HO(Y  kn*L — 4 F)
> HOY, kn*L — ©wF — F) = {0)}.

Now, fix a basis sy, ..., sq, of HO(X, kL), and let D ~@ L be the associated k-basis
divisor (recall Definition 2.4). Foreach b € {0, ..., ©x + 1} suppose that exactly i (b)
of the sections s o 7, ..., Sg, o 7w are elements in HO(Y, kx*L — bF). Note that
i(0) = h%(X, kL) and i (ty + 1) = 0, and denoting

WY, kx*L — bF) := dim HO(Y, kn*L — bF),

of course we have i (b) < h%(Y, kn*L — bF). Then,

peri®) _ Y KO kL —bF)

dp(1*D) =
ordr (D) kdp - kdy
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So we get
Tk 0
* hP(kL — bF)
ordp(m*D) < =L=1 .
F( ) < rd:
Moreover, we may choose a basis 51, ..., 54, of H 0(X , kL) as follows to obtain for

the associated k-basis divisor ﬁ,

.= W BO(kL — bF)

ordp(n*D) = rdr ,

as follows: let §7, -~-v§h0(Y,kn*L—krkF) be a basis for Ho(Y, kn*L — 1, F); thus,
i(te(F)) = hO(Y, kn*L — t F). Next, choose the following WY, kn*L — @ F +
F)—i(ty) 5; s to complete the sections from the first step to a basis for HOY, kn*L —
wF + F). Thus, i(ty — 1) = h%Y, kn*L — @ F + F). By induction, we see that
i(b) = KoY, kn*L — bF) for each b, as desired. O

Asymptotically, we may estimate the sum in Lemma 2.7 using volumes. Let us first
recall some basic facts about volumes, following [44,45].

Definition 2.8 Let D be a Cartier divisor on X. The volume of D is defined by

_ ho(X, kD)
vol(D) := lim sup ————.
k k" /n!

In fact, one may replace the limsup by a limit [44, Example 11.4.7], and by rescaling
and continuity [44, Corollary 2.2.45] vol(D) makes sense for any R-Cartier divisor
D. Also, the volume function is invariant under pull-back by a birational morphism,
i.e., vol(w* D) = vol(D). Finally,

when the divisor D is nef (i.e., a limit of ample divisors) then vol(D) = D".
2.3)

Corollary 2.9 Let w : Y — X be a log resolution of (X, A), and let F be a prime
divisorin Y. Let D ~q L be a k-basis divisor. Then,

t(n*L,F)
ordrp(n*D) < — vol(m*L — xF)dx + €,
L J
with limy €, = 0.

Proof This result is probably standard (see, e.g., [36, Lemma 4.7]), but since it plays
an important rdle in this article let us sketch a proof. By Riemann—Roch asymptotics,
L"/n! = dip /K" + O(1/k) [44, 1.4.41]. Thus,

oo + O(1/k)
nldy T L
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Define a decreasing step function by

WY, kn*L — |kx] F)
Ji(x) = r ., x €][0,00).
" /n!

Then by Okounkov body theory for filtrated linear series [6, Lemma 1.6], [45, Theorem
2.13], [7, Theorem 5.3], fr(x) = vol(w*L — x F) + €, with limy ¢z = 0; thus,

k" fi(x) _ vol(r*L — xF) n
nldy o L

€.

n
In other words, as k — o0, the function k nf:’;lix) converges pointwise to

for x € [0, 0o). Finally, using Lemma 2.7 and dominated convergence, we see that

vol(r*L—xF)
— 7

dp(r* D) < P Oy km* L — bF)
ordp ( <

kdy,
rk(n;L,F) k"f( )
X
:/ k dx + €
0 I’l'dk
1 t(n*L,F)
= — ol(m*L — xF)d €,
o, vol( xF)dx + ¢

(ex can change from line to line as long as limy €, = 0) where we used (2.2) (although it
is actually enough to use lim sup; tx (m*L, F)/k > t(n*L, F)asvol(7*L —xF) =0
for x > t(7w*L, F), i.e., it is enough to integrate until t(7*L, F)). O

The following lemma is handy when computing the volume of divisors on a surface.

Lemma 2.10 Let B be a Q-Cartier divisor on a surface S and let Z an irreducible
curve in S with Z> < 0 and B.Z < 0. Then,

B.Z
vol(B) = vol(B — 72)

Proof Take k € N so that kB is Cartier and let D € |kB|. Decompose, D =
Zordz D + A. Then,

kB.Z=D.Z = Z*ord; D+ A.Z > Z*ordy D,

and as Z% < 0 this yields

B.Z
Ordz D > k77
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and the right hand side is non-negative as B.Z < 0. Since D was any element of |k B,
we have shown that

hO(S, kB) = h0<S kB — kﬂz).
bl 9 Zz

By Definition 2.8 we are done. O

3 Local intersection estimates on surfaces

In this section we derive new criteria for log canonicity in terms of local intersection
estimates.

Let O, be the local ring of germs of holomorphic functions defined in some neigh-
borhood of p.

Definition 3.1 Let C; and C; be two irreducible curves on a surface S. Suppose that
C1 and C; intersect at a smooth point p € S. Then the local intersection number of
C1 and C, at the point p is defined by

(C1.C2)p :=dimc O, /(f1, f2),

where f1 and f> are local defining functions of C| and C, around the point p.

Definition 3.1 extends to R-divisors by linearity. For instance, say we have a curve
C and a R-divisor © meeting at the point p. We decompose Q as Q = ) _; a; Z;, where
Z;’s are distinct prime divisors and @; € R. Then,

(C.Q)p =Y ai(C.Z)y,

where (C.Z;), = 0if Z; does not pass through the point p. A useful fact we will use
often is that under a blow-up the local intersection number changes as follows,

(é.Q)q < (C.Q)p —mult, €2, with equality if C is smooth at p, 3.1

where C and Q are the proper transforms of C and €2, where p is the blown-up point
on C, and where ¢ is any point on the intersection of the exceptional divisor and
C. The classical inversion of adjunction on surfaces has the following well-known
consequence [43], [14, Theorem 7].

Lemma 3.2 Let C be an irreducible curve on a surface S, and let p be a smooth point
inboth C and S. Let a € QN [0, 1], and let Q be an effective Q-divisor on S with

C ¢ suppf2. If
(C.Q), <1,

then (S, aC + 2) is log canonical at p.
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Lemma 3.2 can be improved by taking into account the parameter a as well as the
vanishing order of Q2. Throughout this section we set

m = mult, Q.

Proposition 3.3 Let C be an irreducible curve on a surface S, and let p be a smooth
point in both C and S. Let a € Q N [0, 1], and let Q2 be an effective Q-divisor on S
with C ¢ supp2. Suppose that

(C.Q)p=<2—a, if m=<1,

Then (S, aC +2) is log canonical at p. (However, ifm > 1 we do not claim anything.)

Proof Supposem < 1.Letr : S — S be the blow-up at the point p, with exceptional
curve 7 ~!(p) = E,and let C and 2 denote the proper transforms of C and €2. Then the
log pair (S, aC+£2) lifts to (S,aC+Q+(a+m—1)E).Sincea, m < 1 by assumption,
a+m — 1 < 1 so the latter pair is Ic at a general point of E. It remains to check Ic at
the intersection points of E with Q and C. First, let ge(EN fZ)\C‘ . Then, (E .Q)q <
E.Q =m < 1, so by Lemma 3.2 our log pair is Ic at . Second, let {g} = E N C.
Again, by Lemma 3.2, it suffices to check that (C~‘.(S~2+ (a+m— l)E))q < 1, and since

(C.Q), = (C.Q),—m (by(3.1))and (C.E), = 1 thisamounts to (C.Q),+a—1 < 1,

precisely our assumption. Thus, (S, aC +Q+ (a+m—1)E) is Ic along E, equivalently
(S,aC + Q) islcat p. O

We continue with a new local inequality incorporating also an additional “boundary
curve”.

Theorem 3.4 Let B and C be irreducible curves on a surface S intersect transversally
at a point p that is smooth in B, C and S. Let a,b € QN [0, 1), and let Q2 be an
effective Q-divisor on S with B, C ¢ suppS2. Suppose that

(B.Q),

< ——({—a)—b if me(0, 1] and either a+(C.Q), —b=<lora+m=<1.
(m—>b)4

Then (S, (1 — b)B 4+ aC + Q) is log canonical at p. (However, if m > 1 we do not
claim anything.)

Note that the case m = 0 is trivial. Here, (x)+ := max{x, 0}. Thus, when m < b
and either a + (C.Q), — b < 1 ora +m < 1, we are not assuming anything on
(B.Q) .

Proof The case b = 0 follows from Lemma 3.2.

Suppose then m < 1 and b > 0. We will use an inductive argument. Let 7 :
S> — S be the blow-up at the point p, with exceptional curve 7 ~'(p) = E1, and let
Bs, C3, Q2 denote the corresponding proper transforms of B, C, 2. Then the log pair
(S, (1 =b)B+aC + Q) liftsto (S2, (1 —=b)By +aCy + Q2 + (a+m — b)Ey).
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Let
{p2}:=BNE;, {qc}:=CrNE]j.

First, let ¢ € (E1 N 22)\{gc, p2}. Then, (£1.222), < m < 1, so by Lemma 3.2 our
log pair is Ic at ¢g.
Second, let us consider gc. Lemma 3.2 applied to C» and E yield Ic at g if either

1> (Co.(1 =b)By+ Q + (a+m —b)Ey)), = (C2.2)g- +a+m—b,

qc

(note C and B; do not intersect at g¢) or

1> (E\.(1=b)By+ Q) =a+ (E1.Q2)g

qc

(note E7 and B> do not intersect at gc). Since (C2.22)y. = (C.Q), —m by (3.1)
the first inequality holds if a + (C.Q2),, — b < 1. Since (E£1.L22)4. < m the second
inequality holds if a + m < 1. Thus, by our assumptions, one of these must hold, so
our pair is Ic at gc.

It remains to consider p>. Lemma 3.2 yields Ic at p; if

1> (E\.(0=b)By+aCy+ ), =1—b+ (E1.22)p,.

p2

i.e., if (E1.€22)p, < b, soin particular if (E1.€22),, < m < b. We are therefore done,
unless

m > b, (3.2)

which we henceforth assume.
Set

my :=mult,, Q.
At this point, we can already set up an inductive argument to conclude the proof;
instead, for the sake of clarity, let us carry through most of the first step in induction
before switching to the general step. To start the induction, let us verify that the pair
(S2.(1 =b)By +aCy + Q0 + (a +m — b)Ey),
or, equivalently (as we are working at p,, away from C»),

(S2, (1 =b)By + Q2+ (a+m —Db)Ey)

satisfies the assumptions of the Theorem. So E is our new “C”, B, is our new “B”,

[Pl

Q; is our new “R2”, and the new “a” is

a:=a+m-—>b > a.
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First, note that ay € [0, 1), actually even ap < 1 — b (recall b > 0 throughout): if
a +m < 1 this is obvious, and if a + (C.Q), — b < I thenasm < (C.Q), we
are also done. Note also that my < m < 1 since multiplicities cannot increase under
blow-ups. So, it remains to check that

a + (E1.Q22)p, —b <1 or ay+my <1, (3.3)
and that
ma
(BoS2)py < -2y (1 =) = b, (3.4)

Let us first check (3.3). The key is to use the estimate on (B.2), in the statement, as
we will see shortly. In fact, we will prove that a statement stronger than (3.3) holds:

a+m—b=<1 o a-m+(B.Q),=<1. (3.5

The first inequality is stronger since (E1.€22), < m, while the second inequality is
stronger since (B.L2), = (B2.22), +m > m3 + m. Now, the first inequality in (3.5)

can be writtenasa+m —2b+m < lor2 < r}l :‘;’, while the second inequality can be

writtenas 1 —a+b > m+my > (B.Q)por2 > w. By our assumption
#(1 —a) — b > (B.Q)p, so we can write yet stronger inequalities:

l—a _w3l-@-b-(-0+b 1-a

2 < = ,
- b m—>b

(3.6)

m—>b

which it trivially true, concluding the proof of (3.3). It remains to check (3.4). Let us
prove this as part of an inductive argument (that will yield (3.4) as the first step in the
induction, i.e., by setting k = 2 below).

Then we are in exactly the same setting as before, and we may blow-up S5 at p; as all
the conditions of Theorem 3.4 are satisfied for (S, (1 —b)Bry + Q2+ (a+m —b)E})
at pp = By N Ej. Let k € N. By induction on the number of blow-ups, assume
that we have performed k — 1 blow-ups at p; := p, p2, ..., px—1 With exceptional
divisors Eq, ..., Ex_1, where B; is the proper transform of B;_; (and B; := B,
Q) := 2, Cy := C)and where pr = Ex_1 N By, and that at foreachi =0, ..., k—1
we have (set m| := m)

miy1 > b, (3-7)
and (seta; = a)
ajy1 =a; +m; — b, (3.3)

and

(Bi.Qi)p < ——(1 —a;) — b,
m; —b

1
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and that

either a; + (Ci-Qi)pi —b<lora;+m; <1.

We need to show that

(Bi.S4) py < ml:"f ~(1—ap) — b ifeither ay + (Cr.Q)p, —b < 1

orap +my <1

First, note that indeed either a; + (Cy.Q2) p, —b < 1 or ax +my < 1: this is checked
in each step just as we did for k = 2 with the number “2” in (3.6) being replaced by k
(we omit the details). Note that (By.S2) p, = (Bx—1.82k—1) py_; — Mk—1, S0 it suffices
to show that

mg
my — b

(Br—1-2k—1) py_y — Mg—1 < (I —ay) —b.

Since mj < myj_; and since

is decreasing in x € (b, 00), (3.9)
X —

it suffices to show (recall (3.7)) that (Bx_1.Qk—1) p,_, —mk—1 < mzl,kl_lb (1—ag)—>b,
ie.,

M1
(Br—1-2k—1)py_y =M1 < ————A —ag +mp_1 —b) —b
mpg_1 —b
— M(l —ag_1 —b) — b,
mpg_1 —-b

so we are done, by induction, if we can show that an infinite number of blow-ups
is impossible. This is indeed so, since (By.Q2%)p, = (Brk—1.2x—1) p,_; — mk—1, and
by induction m; 1 > b, so after at most N := [(B.R2),/b] blow-ups we would have
mpy+1 < b and then the pair would be Ic at py 1 by our original argument (just before
(3.2)) using Lemma 3.2 with no further need to blow-up. O

Most of the technical assumptions in Theorem 3.4 can actually be removed, to yield
the following elegant and very useful criterion.

Corollary 3.5 Let B and C be irreducible curves on a surface S intersect transversally
at a point p that is smooth in B, C and S. Let a,b € Q N[0, 1], and let Q2 be an
effective Q-divisor on S with B, C ¢ suppS2. Suppose that
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(C.Q)p .
BQ)p<————0—-a)—>b iftme(0,1].
(C.Q)p — )+
Then (S, (1 —b)B 4+ aC + Q) is log canonical at p. (However, if m > 1 we do not
claim anything.)

Note that the case m = 0, i.e., (C.Q2), = 0 is trivial since then also (B.2), =0
and (S, (1 —b)B + aC + ) is Ic at p iff (S, (1 — b)B + aC) is which is true as
1—b,a<1.

Proof If b = 0 then the assumption is (B.2),, < 1 —a so we are done by Proposition
3.3. Suppose now that b > O and m < 1.
First, m < (C.2),. Thus, by (3.9),

(B, < —— (1 —a)—b.
(m—Db)4

Thus, if
eithera + (C.Q)p —b <lora+m <1, (3.10)

Theorem 3.4 is applicable (the cases b = 1 or a = 1 are handled separately by
Proposition 3.3 since for either one we may take B = 0) and we are done. We claim
that always holds. First, if (C.2), < b the first inequality in (3.10) automatically
holds. So, suppose ((C.2), — b)y = (C.2), — b > 0. Since (B.Q2), > m,

C.Q b(l —
mE(BQ)pSﬁ(l—a)—b:]—a—b_kﬁ’
(C.Q)p—b (C.Q), —b

ie,a+m<1-— b%’ implying (3.10). O

4 Vanishing order estimates

For the remainder of the article we will concentrate on the proof of Theorem 1.3. Set,

S :=P! x IP’I, C := a smooth curve of bi-degree (1,2) C .

Denote by F a general line of bi-degree (1, 0) and by G a general line of bi-degree
O, 1).

Note that, the curve C is, by definition, cut out by a bi-degree (1, 2) polynomial. To
be more precise, let ([s : ¢], [x : y]) be the bi-homogeneous coordinate system on S.
Then C is cut out by some polynomial F(s, ¢, x, y) that is homogeneous with degree
lin s, ¢ variables and homogeneous with degree 2 in x, y variables. Up to a coordinate
change, we may assume F(s,t, x,y) = sy2 — tx2, for simplicity. (Indeed, we may
assume F' = s P(x, y)+tQ(x, y). If both P and Q are of a linear polynomial squared,
we are done. Assume that at least one of them is not a square. Apply a coordinate change
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tox, ysothat F = Csxy+1Q(x, y) with Q(x, y) = x>4axy+y?,andletx — x4+,
y — x — y, so in the new coordinates F' = Cs(x? — yz) +1(2+ a)x2 + Q2 - a)yz).
Finally, apply a linear coordinate change to s, t.)

The linear system | F| contains exactly two curves that are tangent to C. Denote
them by

FO? focn
and let
P0:=FoNC, Pog:=FsNC.

In ([s : 7], [x : y]) coordinates, one simply has Fo = {s = 0}, Fy = {t = 0}
and po = ([0 : 1], [O; 1])_and Poo = ([1 : 0],[1 : 0]). Let Fq,..., F, be distinct

bi-degree (1, 0) curves in S that are all different from the curves F and Foo. Then
each intersection F; N C consists of two points. For eachi =1, ...r, let

ﬁi Gfiﬂ?

be one of these two points.
Let

I:={i,...,i} C{0,1,...,r, o0},

let 7: S — S be the blow-up of S at the r points {D;}ic; C {Po> P1s---» Prs Doo)s
and denote by

Ej:==n"'(p). Jjel.

the exceptional curves of 7. To be precise, we note that we are blowing-up r of the
r 4+ 2 points {pg, Py, ---» Pr» Poo)- Denote by

Fo, Fi,...,F, Fo
the proper transform on the surface S of the curves Fo,F1,..., Fr, Fs (note that

exactly r of these are —1-curves and the remaining two are O-curves). Let C be the
proper transform of the curve C, so

C=rn"C-Y E;~n"(F+26) - Y Ej.
jel jel

Let

Kg:=Ks+(1—p)C.
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Then, as —Kg = 2F 4+ 2G, and Ks = n*Kg + Y ier Ejs

— K ~Q2m*F +27*G - Y E; — (1= p)(x*C =Y Ej) ~gn*F + BC,

Jjel jel
4.1
thus (S, C) is asymptotically log Fano, more precisely [22, (4.2)],
—Kpg is ample for 0 < g < r34. “4.2)
Below, we will always assume
r>717. (4.3)

To prove Theorem 1.3, we will show in Sect. 5 that for some A > 1 (independent of
k) and for any k-basis divisor D, the log pair

(S, (1 = B)C +1D) (4.4)

has Ic singularities for sufficiently small 8 > 0, and sufficiently large k. To do this,
in the present section we obtain explicit estimates on the order of vanishing of basis
divisors. This involves estimating integrals appearing in Corollary 2.9, which in turn
involves elementary computations of Seshadri constants and pseudoeffective thresh-
olds.

For the estimate on the order of vanishing, we require the Seshadri constant and the
pseudoeffective threshold (recall (2.1)). Let us recall the definition of the former. Let
X be a smooth projective variety, L an ample (Q-divisor on it, and Z a prime divisor
on it. The Seshadri constant of (X, Z) with respect to L is defined to be

o(Z,L)=sup{c>0: L —cZisample}. 4.5)

We start by computing 7(—Kg, Z).

Lemmad4.1 Let0 < B < ﬁ. One has,
1 if Z be an irreducible curve in |t*F|,
©(—Kg,Z)=3B ifZ=C, (4.6)
1 ifZ € Uie/{Ei, Fi}.

Proof If Z is an irreducible curve in |7*F|, as —Kg ~g 7n*F + BC and 7*F is
effective (has 0 self-intersection) and C has zero volume (as C2 = 4 — r < 0), we
must have t(—Kg, Z) = 1.

IfZ=C,—Kg—xC ~gn*F+(B—x)C.Forx = p we get vol(—K g — BC) =
vol(n*F) = (n*F)? = 0,s0 1(—Kp, C) = B.
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If Z = E,, say, we claim vol(—Kg — E1) = 0, ie., T(—Kg, E1) < 1. Since
—Kg —xE| ~qg n*F + BC — xE\ ~g Fi + (1 — x)E| + BC is effective for
x € [0, 1], we would thus have 7(—Kg, E1) = 1. To prove the claim, Lemma 2.10
implies that vol(—=Kg — E1) = vol(=Kg — E1 — (1 — B)Fy) = vol(B(F; + C)) =
B>vol(Fi + C) = 0 by Claim 4.2 below. If Z = F}, say, the computations are similar.
By Remark 4.3, we are done. O

Claim4.2 Leti € I. Then, vol(F; + C) = 0.

Proof Supposer > 5.Repeated application of Lemma 2.10 implies that vol(F; +C) =
Vol(F; +C—=2C) = vol(F;+C - = C—(1—- L) F) = ... = vol(a; F; +b;C).
The sequences {a;, b;} are decreasing so let a := lima;, b := lim b;. This process
will stop if aF; + bC is nef. But that implies (by intersecting with F; and C) that
a,b>0and —a+b > 0anda + (4 — r)b > 0; adding up and using that r > 5 we

see that b = 0 which then implies a = 0, so the claim follows. O

Remark 4.3 As we just saw above, the computations depend only on the intersection-
theoretic properties of Z, so they are exactly the same if Z is any element of
Uier{E;, F;} (in particular also if {0, oo} N I # ?).

By (4.2), —Kpg is ample for small g, so it makes sense o (—Kg, Z).

Lemmad.4d Let0 < B < % One has,

1 — B(r —4)/2 if Z be an irreducible curve in |w*F)|,
o(—Kpg,Z) =B ifZ=C, 4.7)
B if Z € Uiel{Ei, Fi}.

Proof For the first two cases we can actually assume 0 < 8 < ﬁ. In the first case,
using (4.1),

(—Kg—x2).C = (1 —x)m*F.C + BC* =2(1 —x) — B(r — 4),

(while (—Kg — xZ). 7 F = 28 > 0),ie,0(—Kg,Z) =1— B(r —4)/2. In the
second case,

(—Kp —xC).C = (x*F + (B —x)C).C =2 — (x = B)(r — 4),
while
(—Kg —xC).n*F = (n*F + (B — x)C).n*F = 2(B — x),
so 0(—Kg,C) = B. In the third case, say 1 € I, observe that —Kg — xE; ~q
F1 + (1 — x)E| + BC, thus to check nefness it suffices to take x < 1 and check

intersection with Fj, E1 and C. Now,

(—Kg—xE)).C=(IN+U-x)E+BO).C=1+1—-x+B@—1),
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(which is where we need 8 < 2/(r — 3)), while
(—Kg—xE).Fi=F1+(0-0)E+BC).Fil=—-14+1-x+B=8—x,

and
(=Kg—xE).Ey=(F+U-x)E+BO).Ei=1-(1-x)+B8=B+x,

so 0 (—Kg, E1) = B. If Z = Fj, say, the computations are similar. By Remark 4.3,
we are done. O

Lemmad4.5 Let0 < B < % and let D be a k-basis divisor. One has,

I Br—-4 5 ) . . R

T + O(B7) + €k, if Z be an irreducible curve in |7*F|,
ordy D < g + 0(B?) + e, ifZ=C, (4.8)

1 (r —6) .

- ﬂT + 0B + e, ifZ € UieilEs, Fi)

with limy € = 0. In the first and third cases €x does not depend on the choice of Z.

Proof The result follows from Lemmas 4.1 and 4.4 and Corollary 2.9 by estimating
the volume integral

1 (7 1 [° 1 [T
F/ vol(—Kp — xZ)dx = F/ (Kﬁ+xZ)2dx+F/ vol(—Kpg — xZ)dx
g 70 g /0 e

1 o
- P/ (Kj +2xZ.Kg +x*Z%)dx
B 0
1 T
+ Ff vol(—Kg — xZ)dx
ﬂ o
172% ,
=0 + —2[?0‘
K3

T
+Z.Kpo? +/ vol(—K g — xZ)dx]. (4.9)

o

We will also use the estimate

T
f vol(—Kg — xZ)dx <(t — G)(Kﬁ+UZ)2:(T — (T)(Ké +20Z.Kg + JZZZ).
(4.10)
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First, let Z be an irreducible curve in |n*f|. Then Z2 = 0, and
Z.Kp=-2B. Kj=4p—p*r—4),
thus
Ki+20Z.Kg+022> =4B = B*(r —4) — 2 — (r —HB)2B = 0(BY).

andas t — o = O(f), we get (4.10)= 0(,33). Thus, by Lemmas 4.1 and 4.4,

1 T _
F/ vol(—Kpg — xm*F)dx
B 0

—2B02 4+ 0(B%)
=0t -9
r—4 =26+ 0pB) 1 r—4

1 _ - 2
=1 2 ﬂ+4,8—,32(r—4) ) 8 p+ OB

Second, let Z = C. Theno =t = B, i.e., (4.10)= 0. Thus,

[T L B (240 -4 B )
K—/%/O vol(—Kpg — xC)dx = B + Py sy p— —5—1—0(,3 ).

Third, say 1 € I and let Z = E (the proof for Z = Fj is identical as E1 and F
play symmetric roles in the computations). Then, as o = —E.Kg = B,

Kié /(;T vol(—Kg — xZ)dx
= ! o(p* 1 I(—Kp —xZ)d 4.11
—ﬂ+m[ (ﬂ)+/ﬁV0(— g—x )X] (4.11)

_ 2 ! ol K
_,3+0(,3)+4,8_’32(r_4)/ﬁ\/01( Kg —xZ)dx.

The remaining integral can be simplified using Lemma 2.10. Indeed, (—Kg —
xZ).Fi =8 —x,so

vol(—Kg —xZ) =vol(—=Kg —xZ — (x — B)F1), xe(B,1).
The divisor on the right hand side is nef for
x<o :=0(—Kg+BFI,Z+F)=14+p05-r)/2
since —Kg—xZ—(x—pB)F1 ~9~ (1-x)E;+(1—x+p)F1+ BC and this intersects

non-negatively with E| and F; while intersecting with C gives 2 — 2x + B(5 — r).
Similarly to (4.10), we estimate
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1 1
/ vol(—K g —xZ)dx:/ vol( — Kg + BF| — x(Z + F1))dx
O-/ !

o

-5
< ﬁrT((Kﬂ — BF)? +20'(Z + F\).(Kg — BFY)

_5
< ,BrT(4ﬂ FBG5—r) — 4,30’) = 08,

as (Z+Fi)*> =0and (Kg — BF1)? = 4B+ B>(5—r), (Z+ F1).(Kg — BF1) = —2.
Next,

! {7/

/G vol(—Kg —xZ)dx = f vol( —Kg+BF —x(Z+ Fl))dx

(o2

:/ —/ vol( — Kp + BF1 — x(Z + F))dx,
0 0

and we can compute each integral as in (4.9), namely,

’

(Z + F1)?

fa vol(—Kp — xZ)dx = o' (Kg — BF1)* + 3 (o))}
+(Z+ F).(Kg — BF)(0')?
2

—o(Kp — BF1)* — (z +3F1) o’

—(Z+ F).(Kg — BF1)o?

= (1 + 3%;3) (48+ 826 -1) = 280" — o)
3—r )
- <1+T/3) <4ﬁ+ﬂ (5—;»))

~2p (14861 +0(8?)

=28+ B25—r+6—2r+2r —10) + O(8%)
=284 —r) + 0(B).

Altogether, we have shown

1 T
— vol(—Kg — xZ)dx
K2 /0

B

T

=B+ 0B+ vol(—Kp — xZ)dxi|

1
4B + p*(4 —r) [/a

<B+0(8) + [28+8%0 -1

B+ pa—r)
+0(8) + 08" ]
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1 2c 2 2
BrRa—y [P HPG-n o) ]+ ow)

<L PO o,

-2 8

as desired. By Remark 4.3, we are done. Note that from our proof it follows that €
only depends on the class of Z. O

5 Basis log canonical thresholds

We use the same notation as in Sect. 4. The purpose of this section is to prove Theo-
rem 1.3 by showing that for all sufficiently large k and some A > 1 (independent of
k) and for any k-basis divisor D ~g —Kg = —Kgs — (1 — B)C, the log pair

(S, (1= B)C +AD) (5.1)

has log canonical singularities for sufficiently small 8 > 0 (independent of k).
Let us fix such 8, k, D, and set

N
=14 oo, (5.2)

We split the argument into several lemmas.

Claim 5.1 The pair (5.1) is lc at S\(C U;er {E;, F;}) for all sufficiently large k.

Proof Let p € S\(C Ujer {E;, F;}). Thus, w(p) ¢ {p;}ie1,soif welet £ be the (1, 0)-
curve passing through 7 (p) then Z := 7 ~!(£) € |7*F| is a smooth irreducible curve
passing through p. As p ¢ C, the pair (5.1) is Ic at p if and only if the pair (S, A D)
is. Write AD = AZ ordz D + A. Then

(Z.A)y<Z.A=Z.(AD — 1Z ordz D)=Z.(MZ+BC)—rZ ordz D)=2pr<]1,

for B small so we are done by Lemma 3.2 (using ordz D < 1/2 (by Lemma 4.5) it
follows that Aordz D < 1 so Lemma 3.2 is applicable)). O

Claim 5.2 The pair (5.1) is lc at U;er{E;, F;}\C for all sufficiently large k.

Proof Say 1 € I and let p € E;\C. Again, it suffices to show the pair (S, AD) is Ic
at p. Decompose AD as AD = A + AE;ordg, D. Then,

(E1.A)p < E1.A = E1.(AD — LEy ordg, D)
= E|.(ME1+F1+BC) — AEjordg, D)=A(8 +ordg, D) <1,

for f small by Lemma 4.5 and (5.2), so we are done by Lemma 3.2 (once again we
know that L ordg, D < 1 by Lemma 4.5). O
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Claim 5.3 The pair (5.1) is lc at C\({po, Poo} U U/ LEi, F,-}) for all sufficiently
large k.

Proof Let p € C\({po. poo} U U, {Ei. Fi}). As in the proof of Claim 5.1, let Z €
|7* F| be a smooth irreducible curve passing through p. Write

AD+ (1 —-B8)C=rZordz D+ (1 — B+ Aordc D)C + Q.

As Z intersects C transversally at p (as p € {po, Pso}), by Corollary 3.5 it suffices to
show that

mult, Q < 1 (5.3)

and that

(Z.2))
CcCQ< (1 —Xxordz D) — B+ rordc D.
(Z.9), — B + rordc D)y
For (5.3), note that by (5.4) mult, 2 < (Z.2), = O(B). Now,

C.Q2=C.(AD — AZordz D — AC ord¢ D)
= C.(Mx*F + BC) — AZordz D — AC ord¢ D)
=12+ B@—r)—2o0rdz D — (4 —r)ordc D)

by Lemma 4.5, while

(Z.Q), < Z.Q=Z.(AD —AZordz D — AC ord¢ D)

5.4)
= 2)(B — ordc D).
As A > 1, this is larger than § — A ord¢ D, and using (3.9), it suffices to show
r—4 2)1(B — ord¢ D)
20 (1—ordz D de D — < 1—Aordz D
( ordz D = (orde 'B)>_,3(2A—1)—Aorch( ordz )
— B+ rorde D,
ie.,
| —ordy D+ (orde D — py< —P =D\ ody D)+t g
— or or — — X or —8,
z 2 ¢ = B2r—1)—rordc D z 2
ie.,
M(B —ordc D) r—>5
dz D -1 1 dec D —
ordz (ﬁ(zx—l)—,\ordcz) >+ + 5 (orde D= 5)
B —ordc D A—1

<
_,B(ZA—I)—Aorch+ 2 p
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i.e.,
B(1 — ) r—5
dy D 1 de D —
oMz D ) —hordep LT T e D=h)
B —ordc D A—1

< .
=BG —D—rordeD T p

The first term is negative while the last is positive, and since ordc D — 8 < 0 and
r — 5 > 2, suffices to show

1
1= (8 —ordc D) (A(,B —ordc D) + B(A — 1) " 1>

ie.,
A(p —ordc D)+ B(A — 1) < (B —ordc D)(l +A(p —ordc D) + B(A — 1))
ie.,

(B —orde D)((A —1)(1 — B) = A(B —ord¢c D)) + B(A—1) <0 (5.5)
By Lemma 4.5 and (5.2), for 8 sufficiently small,

(B —ordc D)((r — 1)(1 = B) = A(B — ordc D)) + B(r — 1)
< (B —ordc D)((» — (1 = B) = 2B/3) + B(L — 1)

2
<L —otepypo-n=-L 1 po-n=o
proving (5.5). O
Claim 5.4 The pair (5.1)islcat{CNE{,...,CNE,,CNFy,...,CNFE,} forall
sufficiently large k.

Proof We prove the result for p = C N E| (the proof for other cases is similar). Write
AD+ (1 —=pB)C =AEjordg, D+ AFiordp, D+ (1 — B+ Aordc D)C + Q.
Note that E intersects C transversally at p and F; does not pass through p. We have

AB —Aordec D + Aordg, D — Aordp, D = E1.Q > mult, 2,
AB—Aorde D — Aordg, D+ Aordp, D = F1.Q2 > 0.

From these two inequalities we get mult, 2 < 2A(8 — ord¢c D) = O(f) and

rordg, D — Aordr, D < A(B — ordc D). (5.6)
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In particular, mult, €2 < 1. Then by Corollary 3.5 if suffices to show

co e (E19),

1 —Xordg, D) — B+ lordc D.
_((El.Q)p—ﬁ+korch)+( £ D) =p ¢

Now, using (5.6),

C.Q=C.(AD — AE ordg, D — AF) ordf; D — AC ord¢ D)
= C.(M(x*F + BC) — AEy ordg, D — AF ordf; D — AC ord¢ D)
=12+ pBMA—r)—ordg, D —ordr, D — (4 — r)ordc D)
<A24+B(G5—-r)—=2o0rdg, D — (5 —r)ordc D)

and

(E1.Q)p < E1.Q = E1.(AD — LEj ordg, D — A Fj ordp, D — AC ord¢ D)
=AB —Aordc D+ Aordg, D — dordp, D < 20(B — ordc D).

As X > 1, this is larger than § — A ord¢ D, and using (3.9), it suffices to show

2 (1—ordp D+ —(orde D — p)) < 2B —odeD) e D)
— Or Or — — A Or
E1 2 ¢ = BQ2r—1)—rordc D E1
— B+ Aorde D,
ie.,
r—=6
1 —ordg, D+ 3 (ordc D — B)
B —ordc D A—1
< 1 —xordg, D)+ 28,
= B —1) —sodep o~ AordE DY+ —=h
ie.,
MB —ordc D) r—=6
dg, D 1) +1 de D —
OreE: (,B(ZA—I)—Aorch )+ + 5 (orde D= B)
—orde D A—1
e s S
B2h—1)—rordc D~ 2x
i.e.
dg, D pA=H 14+ =% e D - p)
Oor o1 —
EL2 8020 — 1) — rorde D 2 ¢
B —ordc D r—1

< .
= B@A—D—rordeD T p
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The first term is negative while the last is positive, so it suffices to show

B —ordc D r—=6
1— < (B —ordc D),
BR2A—1)—Arordc D 2
ie.,
28 —ordc D r—=6
=D < (B —ord¢ D).

B2r—1)—rorde D — 2

Using Lemma 4.5, (5.2) and (4.3) it suffices to show (for § small)

B 28 1 2
m.ﬂ—%ﬂ SE'(ﬂ_g,B)’
i.e., 38/50 < B/6, so we are done. O

To finish the proof of Theorem 1.3, it remains to show that the pair (5.1) is Ic at
p = C N Fy (for C N Fy the proof is similar). Then there are two cases to consider,
since the argument depends on whether the point pg is blown up or not. The more
difficult case is the following:

Claim 5.5 Suppose that pq is not blown up, then the pair (5.1) is lc at p = C N Fy for
all sufficiently large k.

Proof In this case, the curve Fy intersects C tangentially at p. Write
AD = AFyordgy D + ACordc D + Q.
We put
m = mult, Q.
Since 28A = AD.Fy =2Arordec D + Q.Fy > 21 ordc D 4+ m, we get
m < 2\(B — ord¢ D). 5.7

Let g : S — S be the blow-up of the point p, and let G be the exceptional curve
of g. We let C, Fy and 2 be the proper transform of C, Fy and €2 respectively on the
surface S. We put

p=CNG, m=mult;Q.

Note that G, € and Fj are three smooth curves intersecting pairwise transversally at
p-
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To show the pair (5.1) is Ic at p, it suffices to show the pair
(S, (1 =B +rorde D)C + AFyordg, D+Q+(Lordg, D +m — f+1ordc D)G)

is Ic at any point g € G.
First, suppose that g 7% p. We then need to prove that the pair

(8,Q+ (rordp, D +m — B+ rordc D)G)

is Ic at ¢. Note that (Aordgy D +m —  + Aordc D) < 1 by Lemma 4.5 and (5.7),
so we may apply Lemma 3.2 at g and it suffices to prove

G.Q<1,

which is true since G.Q = m < 1 (recall (5.7)).
To finish the proof, it then suffices to show that the pair

(S, (1 = B4+rorde D)C+1Fyordr, D+Q+(hordg, D +m — B+ »ordc D)G)
is Ic at p. y
Leth : § — S be the blow up of p and let H be the exceptional curve of . We
let C, FQ, G andAQ pe the proper transform of C, Fy, G and Q2 respectively on the
surface S. Then C, Fjy and G intersect transversally with H at three different points.
Also notice that
2.(B —ordc D) —m —im = Fy.Q > 0,
SO we get
m+m < 2A(B —ordc D). (5.8)
Using m < m, we have
m < A(B —ordc D). (5.9)
And also, using Lemma 4.5, (5.8) and (4.3) we have (for small )
(2rordp, D +m +m —2B +2xordc D) < 1. (5.10)
Now to finish the proof, it is enough to show that the log pair (S, (1 - B+
Aordce D)C+AF0 ord g, D—}—Q—l—(k ordg, D+m—pB+Aordc D)G+(2A ordg, D+
m+m —2p +2xrordc D)H) is Ic at any pointo € H.

First, suppose that o ¢ C U Fy U G. Then we need to show

(S, Q2+ rordg, D +m + i — 28 + 21 ordc D)H))
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islcat o. By (5.10) and Lemma 3.2, it is enough to show H.Q <1, but HQ=m <1
(recall (5.9)). .
Second, suppose that o = H N Fy. Then we need to show

(S, AFgordp, D + 2+ (21 ordg, D +m + i — 28 + 21 ord¢c D)H)
is Ic at 0. By 5.10 and Lemma 3.2, it is enough to show
H.(\Fpordp, D+ ) <1,

i.e.,, Aordp, D +m < 1, and this follows from Lemma 4.5 and (5.9).
Third, suppose that o = H N G. Then we need to show

(8, Q2+ (Aordg, D +m — B+ rordc D)G
+Q@rordg, D +m +m —2p 4+ 2rordc D)H)

is Ic at 0. By (5.10) and Lemma 3.2, it is enough to show
H.(Q+ iordg, D4+ m — B+ rorde D)G) < 1,

ie, Aordg, D +m +m — B+ Lordc D < 1, which holds by Lemma 4.5 and (5.8).
Hence, to conclude the proof, it suffices to show the pair

(8, (1 =B+ rorde D)C + Q24 2hordg, D +m + 1 — 28 + 2x orde D)H)

islc at o = H N C. Note that mult, Q < m < 1, so by Corollary 3.5, it suffices to
show

@9, < — 2o
((H.2), — (B —Arorde D))+
—2B+4+2Aro0rdc D)) — (B — Lorde D).

(1 —=Q@Aiordry D +m +m

Now using Lemma4.5, (4.3), (5.2) and (5.8), it is clear that, for § sufficiently small,

Qrordp, D +m +m —2B +2rordc D) <1 — ﬁ

Also, (C.Q), < C.Q < 3, and using (5.9), (H.Q), < H.Q = m < A(B — ord¢ D).
So by (3.9) it suffices to show

A(B — ordc D) B

3+ B =dode D) = s D~ (B —sode D) 10°

ie,3+(B—Arordc D) < W(;f—rld)%m . %. Using Lemma 4.5 and (5.2), it is enough
B—38

show 3 4+ 8 < 577100 1%, ie,34+ 8 < %, concluding the proof. O
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Claim 5.6 Suppose that pg is blown up, then the pair (5.1) is lc at p = C N Fy for all
sufficiently large k.

Proof In this case, both Eg and Fy meet C transversally at p. Write
AD = AEgordg, D + AFyordg, D + AC ordc D + .

Put m = mult, 2. We have

AB+Aiordgy D —Aordp, D — Aordc D = Q.Eog > m,
AB —Arordg, D +Aordp, D —Aorde D = Q.Fy > m.

Summing up, we get
m < A(B —ord¢c D). (5.11)
Then by Lemma 4.5, » > 7 and (5.2), we clearly have (for g small enough)
(Aordg, D+ Aordp, D +m — B+ Aordec D) < 1. (5.12)
Letg : S — S be the blow up of p and let G be the exceptional curve of h. We
let C Eo, Fo and € be the proper transform of C, Eg, Fy and Q2 respectively on the
surface S. Then C, Eq and F intersect transversally with H at three different points.

To show the pair (5.1) is Ic at p, it is enough to show the pair

(S, (1 = B+ rordc D)C + rEgordg, D + AFyordg, D + Q
+(@ordg, D+ Lordp, D +m — B + Aordc D)G)

islcatany pointg € G. ~
First suppose that ¢ ¢ C U Ey U Fpy, then we need to show the pair

(8, Q2+ (hordg, D + rordg, D +m — B + rorde D)G)
islcatg. Using (5.12) and Lemma 3.2, it suffices to show GQ<1,butG.Q=m<1
(recall (5.11)). y
Second, suppose that g = G N Ey. Then we need to show the pair
(S,rEgordg, D + Q + (hordg, D + rordg, D +m — B + rordc D)G)
is Ic at ¢. Using (5.12) and Lemma 3.2, it suffices to show

G.(\Egordg, D +Q) < 1,

i.e.,, Aordg, D +m < 1, which is true by Lemma 4.5, (5.2) and (5.11). The proof for
g = G N Fy is similar.
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So to finish the proof, it suffices to show the pair
(S,(1 =B +rordec D)C + Q + (rordg, D + ordg, D4+ m — B + rordc D)G)

islcatg = HN C. Since mult, Q < m < 1 by (5.11), then by Corollary 3.5, it
suffices to show

- (G.Q),

(C.Q)y < —
((G.Q)g — (B —2ordc D))+
+m — B+ Aordc D)) — (B — Lord¢c D).

(I —(Aordgy D + Aordg, D

Now using Lemma 4.5, (4.3), (5.2) and (5.11), we have (for § small enough)

(Aordgy D+ Aordpy D +m — B+ dordec D) <1 — %
Also we have (C.Q), < C.Q < 3, and by (5.11), (G.Q)y < G.Q =m < A(f —
ordc D). So by (3.9) it suffices to show

M(B —ordc D) ﬁ
—orde D) — (B — Aorde D) 10

34+ (B—Arorde D) < XT:

ie,3+ (8 —Aordec D) < W(;g—r]d)%D) . % Using Lemma 4.5 and (5.2), it is enough
p-3p

show 3 4+ 8 < 577100 ° 1%, ie,3+ 8 < 13—0, concluding the proof. O

Claims 5.1-5.6 and Definition 2.5 imply that there exists b := b(r) such that for all
rational 8 € (0, b) we have blct (S, (1 — g)C,—Ks— (1 —p)C) > 1+ 1'% for all
sufficiently large k. Thus, blctso (S, (1 — B)C, —Ks — (1 — B)C) > 1 + l%' Hence,
Theorem 1.3 follows from Theorem 2.6.

Appendix: Blct and the greatest Ricci lower bound

Let X be a Fano manifold. A well-known result of Demailly states glct(X, —Kx) =
a(X), i.e., the global log canonical threshold coincides with Tian’s a-invariant [24].
Here we show that the basis log canonical threshold of Fujita—Odaka coincides with
Tian’s B-invariant. Recall the definition of the latter

B(X) :=sup{ b : Ric w > bw, [w] = c1(X)},

where Ric w := —/—1/2n .90 log det(gl?) denotes the Ricci formof w = /—1/27 -
gl.j(z)dzi A dz’. This invariant was the topic of Tian’s article [63] although it was not
explicitly defined there, but was first explicitly defined by one of us in [55, (32)], [56,
Problem 3.1] and was later further studied by Székelyhidi [61], Li [46], Song—Wang
[60], and Cable [9].
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Theorem 5.7 On a Fano manifold X, B(X) = min{blctsc (X, —Kx), 1}.

Some special cases of this are known. First, the result is inspired by the work of
Blum—Jonsson who derived this identity in the special toric case by directly computing
blctso (X, —Kx) [4, Corollary 7.19] and observing it coincides with Li’s formula for
B(X) for toric X [46]. Second, Theorem 5.7 is known if (X, —Kx) is semistable in
an algebraic/analytic sense. Indeed, Li [48] showed that B(X) = 1 if and only if the
Mabuchi energy is bounded below solving a problem posed by one of us [56, Problem
3.1]. He also showed, using [28,65], that this happens if and only if (X, —Kx) is K-
semistable. On the other hand, by Fujita—Odaka and Blum—Jonsson [4,39] (X, —Kx)
is K-semistable if and only if blctoo (X, —Kx) > 1. Below we give a short proof of
Theorem 5.7 in the remaining case, i.e., when (X, — K x) is K-unstable, namely, when
B(X) € (0, 1) (B(X) is positive by the Calabi—Yau theorem), so Theorem 5.7 reduces
to the formula

bletoo (X, —Kx) = B(X). (5.13)

Our strategy will be to use the scaling property b~ !'blctoo (X, —Kx) = blcts
(X, —bKx) for 0 < b € Q [4, Remark 4.5] and show blcty (X, —bKx) > 1 for
b € (0, 8(X)) NQ and blctoo (X, —bKx) < 1 forb € (B(X), H NQ.

The proof makes use of KEE metrics (see Sect. 1.2 and [57] for background). In
the edge setting, one has an analogue of (X)) due to Donaldson [34] and Li—Sun [48]:
for all m € N sufficiently large, choose A, € | — mKx| a smooth divisor (exists by
Bertini’s theorem), denote by [A,,] the current of integration along A,,, and set

B(X, Ay /m) :=sup{b > 0 : Ric w = bw + (1 —b)[Ap]/m, [w] = c1(X)}.
It is known that [60] (see also [47, Corollary 2.4])

lim B(X, Ay /m)) = B(X). (5.14)

In particular, fixing any b € (0, B(X))NQ, thereis mg € Nsuch that 8(X, A,,/m)) >
b for all m > my, and by definition and there are KEE metrics with Ricci curvature b
and with angles 2w (1 —b) /m along A, (here we use [49, Theorem 1.1] that guarantees
the interval of such values of b is connected) and therefore (X, (1 —b)A,,/m, —bKx)
are log K-semistable [49, Corollary 1.12]. Thus by [29, Corollary 4.8], we have

blctoo (X, (1 = b)A,,/m, —bKx) > 1.

By definition, blcteo (X, —bKx) > blctoo(X, (1 — b)A,,/m, —bKx). Thus, blcty
(X, —-bKyx) > 1foreach b € (0, (X)) NQ, soblctoo (X, —Kx) > B(X).
For the other direction of (5.13) we make use an algebraic counterpart of (5.14):

Lemma5.8 For b € (0,1) N Q, lim, blctoo (X, (1 — b)Ay/m, —bKx) = blcty
(X, —bKx).
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Proof As just noted, one direction follows from the definitions.

For the reverse direction, first fix k, and then let ¢ € (0, blety (X, —bKx)). Let
D ~g —bKx be a k-basis divisor, so (X, ¢D) is lc. Observe that, of course, (X, A,)
is Ic (as A, is smooth). Recall that if (X, A) and (X, B) are Ic then so is (X, (1 —
8)A+4B) forany é € (0, 1) [12, Remark 2.1]. Thus (X, (1 —8§)cD +8§A,,) is lc. Put
8 = (1 — b)/m to obtain that

blety (X, (1 — b)Ap/m, —bKx) > (1 — O(1/m)) blety (X, —bKx).

Now let first k and then m tend to infinity to conclude. O

Thus, suppose that blctoo (X, —bKx) > 1 for some b € (B(X),1) N Q. By
Lemma 5.8 blctog (X, (1 —b)A,/m, —bKx) > 1 and (X, (1 —b)A,,/m, —bKx) is
uniformly log K-stable for all sufficiently large m [29, Corollary 4.8]. So it follows
from [28,65] (see also [66]) that there exists a KEE metric associated to this triple,
i.e., that B(X, A,,/m) > b, contradicting (5.14). Thus, blctso (X, —bKx) < 1, i.e.,
blctoo (X, —Kx) < b forall b € (B(X), 1) N Q. This concludes the proof of (5.13)
and hence of Theorem 5.7.

Remark 5.9 In the last paragraph one may also use [8, Corollary 2.11] to obtain the
polarized pair (X ,—bK X) is K-semistable in the adjoint sense, hence twisted K-
semistable in the sense of [32] (see [7, Proposition 8.2]). So [31, Proposition 10]
guarantees that for some b € (8(X), 1), we can find two Kéhler forms @, & cohomol-
ogous to c¢1(X) such that Ric @ = bw + (1 — b)«, that is again a contradiction.
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