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Abstract
We classify finite groups G in PGL4(C) such that P

3 is G-birationally rigid.

Mathematics Subject Classification 14J50 · 14N05

1 Introduction

The projective space P
3 is one of the most basic objects in geometry. Its biregular and

birational symmetries have attracted attention of many mathematicians. Among them
was Hans Frederick Blichfeldt, who classified in [3] all finite subgroups of

Aut
(
P
3) ∼= PGL4

(
C

)

back in 1905. In 1917, he wrote hismagnum opus [4], which gave a detailed coverage
of classification of finite subgroups in PGL3(C) and PGL4(C). This book became a
standard reference for the theory of finite collineation groups. We want to celebrate
its centennial by enriching this classical theory with modern technique of birational
geometry.

Finite subgroups of PGL4(C) are traditionally divided into two major types: tran-
sitive and intransitive. In geometric language, transitive groups do not fix any point in
P
3 and do not leave any line invariant. Intransitive groups are those that are not tran-

sitive. Transitive groups are further subdivided into imprimitive and primitive groups.
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Imprimitive groups either leave a union of two skew lines invariant or have an orbit
of length 4 (or both). All other finite subgroups in PGL4(C) are said to be primitive.

The structure of the group Bir(P3), known as the space Cremona group, is way
more complicated than that of PGL4(C). In particular, the classification of all finite
subgroups in Bir(P3) seems to be out of reach at the moment. There are just several
sporadic known results in this direction. These include the classification of all finite
simple subgroups in Bir(P3) in [36], and some boundedness properties in [38]. The
goal of this paper is to understand how the finite subgroups of PGL4(C) described by
Blichfeldt behave as subgroups of the larger group Bir(P3).

Given a finite subgroup G in PGL4(C), the most natural birational problem is
to describe all G-birational maps from P

3 to other three-dimensional G-varieties.
Minimal Model Program implies that to solve this problem it is enough to describe
G-birational maps from P

3 to G-Mori fibre spaces (see [10, Definition 1.1.5]). In this
paper we aim to describe all finite subgroups G ⊂ PGL4(C) such that the projective
space P

3 cannot be G-birationally transformed into other G-Mori fiber spaces. In this
case, we say that P

3 is G-birationally rigid (see [10, Definition 3.1.1]). This simply
means that the following three conditions are satisfied:

(1) There is no G-rational map P
3 ��� S whose general fiber is a rational curve.

(2) There is no G-rational map P
3 ��� P

1 whose general fiber is a rational surface.
(3) There is no G-birational map P

3 ��� X such that X is a Fano threefold with
terminal singularities, the G-invariant class group of the threefold X is of rank
1 and X is not G-isomorphic to P

3 (equipped with the same action of the group
G).

The main result of our paper is the following theorem.

Theorem 1.1 Let G be a finite subgroup in PGL4(C). Then P
3 is G-birationally rigid

if and only if G is a primitive group that is not isomorphic to A5 or S5.

It is a three-dimensional analogue of the following recent result of Sakovics.

Theorem 1.2 [40] Let G be a finite subgroup in PGL3(C). Then P
2 is G-birationally

rigid if and only if G is a transitive subgroup that is not isomorphic to A4 or S4.

Let us describe the plan of the proof of Theorem 1.1. First, we show that if G is a
finite intransitive or imprimitive subgroup of PGL4(C), then P

3 is not G-birationally
rigid. This is done in Corollary 2.4. Thus, we are left with the case of finite primi-
tive groups. Up to conjugation, there are just 30 such groups. They are listed in [4,
Chapter VII]. For the reader’s convenience, in Appendix A we present these groups
together with (some) inclusions between them, including those that are necessary for
the proof of Theorem 1.1. However, we point out that we will not need the whole
classification for the proof, but only the information about the few smallest groups.

We prove that P3 is notG-birationally rigid ifG is a primitive subgroup isomorphic
toA5 orS5, see Corollary 2.10. This completes the proof of the “only if” part of The-
orem 1.1. Thus, to prove Theorem 1.1, we have to show that P3 is G-birationally rigid
for the remaining finite primitive subgroups G in PGL4(C). These can be described
as follows (as usual, we denote by µn the cyclic group of order n).
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• Primitive groups that leave a quadric surface invariant.
• Primitive subgroups in PGL4(C) that contain the imprimitive groupµ4

2 as a normal
subgroup. Some of them, like the group A4 × A4, also leave a quadric surface
invariant, so that this description is not exclusive (see the discussion in [4, §125]).

• The Klein simple group PSL2(F7).
• The groups A6, S6, and A7.
• The simple group of order 25920, which is isomorphic to PSp4(F3).

Every primitive subgroup in PGL4(C) that leaves a quadric surface invariant (and is
not isomorphic to A5 andS5) contains a subgroup isomorphic to A4 ×A4. Likewise,
every primitive subgroup that contains the imprimitive group µ4

2 and does not leave
any quadric surface invariant has a subgroup isomorphic to µ4

2 � µ5. Both of them
contain the imprimitive subgroup µ4

2 as a normal subgroup, so that they have similar
group-theoretical properties. In Sect. 6, we prove that P

3 is G-birationally rigid if G
is isomorphic either toA4 ×A4 or to µ4

2 �µ5, see Corollaries 6.7 and 6.9. If G ∼= A6,
then P

3 is G-birationally rigid by [8, Theorem 1.24]. If G ∼= PSL2(F7), then P
3 is

G-birationally rigid by [7, Theorem 1.9].
Therefore, to prove Theorem 1.1, it remains to consider primitive subgroups in

PGL4(C) that contain one of the following three groups as a proper subgroup:A4×A4,
µ4
2 �µ5, orA6. We warn the reader that in general one cannot automatically conclude

that P
3 is G-birationally rigid if it is H -birationally rigid for a subgroup H ⊂ G,

cf. Remark 6.5. However, in our particular cases, this is indeed true. We show this in
Sect. 6, seeCorollary 6.7 for groups containingA4×A4, Corollary 6.9 andLemma6.10
for groups containing µ4

2 � µ5, and Lemma 6.4 for groups containing A6.
In addition to Theorem 1.1, we also provide a classification of finite subgroupsG ⊂

PGL4(C) such that P3 isG-birationally super-rigid. Recall from [10, Definition 3.1.1]
that P

3 is said to be G-birationally super-rigid if it is G-birationally rigid and

BirG
(
P
3) = AutG

(
P
3),

where BirG(P3) and AutG(P3) are the normalizers of the group G in Bir(P3)

and Aut(P3), respectively. We prove the following

Theorem 1.3 Let G be a finite subgroup in PGL4(C). ThenP
3 is G-birationally super-

rigid if and only if G is a primitive group that is isomorphic neither to A5, nor toS5,
nor to PSL2(F7), nor to A6, nor to µ4

2 � µ5, nor to µ
4
2 � D10.

Looking at Blichfeldt’s classification of finite primitive subgroups in PGL4(C), we
conclude that P

3 is G-birationally rigid for 23 subgroups G, and is G-birationally
super-rigid for 19 subgroups G.

Let us describe the structure of the paper. In Sect. 2, we show that if G is a finite
intransitive or imprimitive subgroup of PGL4(C), or G is a primitive subgroup iso-
morphic to A5 or S5, then P

3 is not G-birationally rigid. In Sect. 3, we present basic
facts about the imprimitive group µ4

2. In Sect. 4, we study equivariant geometry of P
3

acted on by a primitive group A4 × A4. Similarly, in Sect. 5, we do the same for the
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group µ4
2 � µ5. In particular, we construct a G-commutative diagram

X
π α

χ
Y

φβ

P
3 V8 P

3

HereG is a primitive subgroupµ4
2�µ5 in PGL4(C), the morphisms π and φ are blow

ups of G-invariant smooth irreducible curves of degree 8 and genus 5, the variety V8
is a complete intersection of three quadrics in P

6 that has isolated terminal Gorenstein
singularities, the morphisms α and β are small birational contractions, and χ is a
composition of flops. Finally, in Sect. 6, we prove our Theorem 1.1 using the results
obtained in Sects. 4 and 5. In Appendix A, we present the finite primitive subgroups
of PGL4(C) from [4, Chapter VII] together with necessary inclusions between.

Throughout the paper we denote by µn the cyclic group of order n. If G is a group
and V is a variety acted on by G, we say that V is G-irreducible if G acts transitively
on the set of irreducible components of V . If Z is a subvariety of V , we will sometimes
abuse terminology and refer to the union of the images g(Z), g ∈ G, as the G-orbit
of Z . By aG-commutative diagramwewillmean a commutative diagramofG-rational
maps, see [10, p. xix]. All varieties are assumed to be projective and defined over the
field of complex numbers.

2 Birational non-rigidity

In this section we prove that if P
3 is G-birationally rigid, then G is a primitive group

that is not isomorphic to A5 or S5. We start with

Proposition 2.1 Suppose that G is a transitive subgroup in PGL4(C) such that there
exists a G-orbit in P

3 of length 4. Then there exists a G-birational map P
3 ��� V24

such that V24 is a toric Fano threefold, one has −K 3
V24

= 24, the singular locus of V24
consists of 8 quotient singularities of type 1

2 (1, 1, 1). In particular, the singularities
of V24 are terminal and Q-factorial. Moreover, one has Pic(V24) ∼= Z

3. Furthermore,
if there is no G-invariant pair of lines in P

3, then Pic(V24)G ∼= Z.

Proof By assumption, there exists a G-orbit in P
3 of length 4. Denote the points of

this G-orbit by P1, P2, P3 and P4. Without loss of generality, we may assume that

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1].

For every 1 � i < j � 4, let Li j be the line in P
3 that passes though Pi and Pj . Let

M be the linear system consisting of all sextic surfaces in P
3 that are singular along

every line Li j . Then the surfaces inM are given by
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a0x
2y2z2 + a1x

2y2w2 + a2x
2z2w2 + a3y

2z2w2 + a4x
3yzw

+ a5x
2y2zw + a6x

2yz2w + a7x
2yzw2 + a8xy

3zw + a9xy
2z2w

+ a10xy
2zw2 + a11xyz

3w + a12xyz
2w2 + a13xyzw

3 = 0 (2.2)

for [a0 : . . . : a13] ∈ P
13. The linear system M gives a rational map ψ : P

3 ��� P
13.

Note that ψ is well-defined away from the lines L12, L13, L14, L23, L24 and L34.
Moreover, the image of the map ψ is three-dimensional: one can express the ratios
x2

w2
y2

w2 and z2

w2 as rational functions of the monomials x2y2z2, x2y2w2, x2z2w2 and

y2z2w2. Denote the image of ψ by V24. By construction, the threefold V24 is toric.
Let �1, �2, �3 and �4 be the planes in P

3 that are given by x = 0, y = 0, z = 0
and w = 0, respectively. Then ψ contracts these planes to 4 different points.

To resolve the indeterminacy of the rational map ψ , let α : X → P
3 be the blow up

of the points P1, P2, P3 and P4. Denote by L̃i j the proper transform of the line Li j on
the threefold X . Let β : W → X be the blow up of the curves L̃12, L̃13, L̃14, L̃23, L̃24
and L̃34. Then there exists a G-commutative diagram:

W
β

ρ
U

γ

X

α

Y

δ
φ

P
3 ψ

V24

(2.3)

such thatρ is a composition of 12Atiyah flops, and γ , δ andφ are birationalmorphisms
that we are about to describe.

To describe ρ, denote by �̃i , 1 � i � 4, the proper transform on X of the plane�i .
Then each �̃i is a smooth del Pezzo surface of degree 6. Denote by Ei the exceptional
divisor of the birational morphism α that is mapped to the point Pi . Let �i j be the
intersection curve Ei ∩ �̃ j , and let �i j be its proper transform on the threefold W .
This gives us 12 disjoint curves �i j , 1 � i �= j � 4. The map ρ is a composition of
Atiyah flops in these curves.

To describe γ and δ, denote by Ei and �i , 1 � i � 4, the proper transforms on W
of the surfaces Ei and�i , respectively. Then all of them are smooth del Pezzo surfaces
of degree 6. Moreover, the curves flopped by ρ are pairwise disjoint (−1)-curves on
these surfaces. Denote by Êi and �̂i the proper transforms onU of the surfaces Ei and
�i , respectively. Then the surfaces Ê1, Ê2, Ê3, Ê4, �̂1, �̂2, �̂3 and �̂4 are pairwise
disjoint, all of them are isomorphic to P

2, and their normal bundles inU areOP2(−2).
The map γ is the contraction of the surfaces Ê1, Ê2, Ê3 and Ê4 to 4 quotient singular
points of type 1

2 (1, 1, 1). Similarly, the map δ is the contraction of the surfaces γ (�̂1),
γ (�̂2), γ (�̂3) and γ (�̂4). Thus, the threefold V24 has exactly 8 singular points, and
each of them is a quotient singularity of type 1

2 (1, 1, 1). In particular, the singularities
of V24 are terminal and Q-factorial.



71 Page 6 of 68 I. Cheltsov, C. Shramov

To describe φ, denote by F̂12, F̂13, F̂14, F̂23, F̂24 and F̂34 the proper transforms on
Y of the β-exceptional surfaces that are mapped to the curves L̃12, L̃13, L̃14, L̃23, L̃24
and L̃34, respectively. Then φ is the contraction of these six surfaces to the lines L12,
L13, L14, L23, L24 and L34, respectively. By [27, Theorem 4.9], the morphism φ is
the symbolic blow up of the reducible curve L12 + L13 + L14 + L23 + L24 + L34, see
also [37, §6.1].

By construction, the threefold V24 is toric Fano threefold, one has −K 3
V24

= 24

and Pic(V24) ∼= Z
3. If there is no G-invariant pair of lines in P

3, then the group G
permutes the six lines Li j transitively. This gives Pic(V24)G ∼= Z. �	

In the notation of [5], the threefold V24 in Proposition 2.1 is the terminal toric Fano
threefold№47. One can show that a general hyperplane section of the threefold V24 ⊂
P
13 is a smoothEnriques surface.Of course, this iswell-known: theEq. (2.2)was found

by Enriques to construct what is now known as an Enriques surface. The variety V24
is one of the Fano–Enriques threefolds classified by Bayle in [1]. To be precise, the
threefold V24 is a quotient of P

1 × P
1 × P

1 by an involution τ that acts as

([
x1 : y1

]
,
[
x2 : y2

]
,
[
x3 : y3

]) 
→
([

y1 : x1
]
,
[
y2 : x2

]
,
[
y3 : x3

])
.

Corollary 2.4 Suppose that G is a finite intransitive or imprimitive subgroup
in PGL4(C). Then P

3 is not G-birationally rigid.

Proof If G fixes a point in P
3, then the linear projection from this point P3 ��� P

2 is a
G-rational dominant map whose general fiber is P

1. Likewise, if there is a G-invariant
line in P

3, then the linear projection from this line P
3 ��� P

1 is a G-rational dominant
map whose general fiber is P

2. Thus, if G is intransitive, then P
3 is not G-birationally

rigid.
To complete the proof,wemay assume thatG is imprimitive. If there is aG-invariant

union of two skew lines in P
3, then the blow up of P

3 along them is a G-equivariant
P
1-bundle over P

1 × P
1. Likewise, if there exists a G-orbit in P

3 that consists of 4
points, but there is no G-invariant pair of skew lines, then P

3 is G-birational to a toric
Fano threefold V24 with terminal Q-factorial singularities such that the G-invariant
class group of V24 is of rank 1 by Proposition 2.1. Therefore, by definition, P

3 is not
G-birationally rigid in this case as well. �	

Thus, we are left with the case of primitive subgroups in PGL4(C) isomorphic toA5
or S5. Up to conjugation, there are two primitive subgroups in PGL4(C) isomorphic
to A5. One of them leaves a quadric surface invariant. Its action on P

3 comes from
the irreducible four-dimensional representation of the icosahedral group. Another one
preserves a twisted cubic curve, so that its action onP

3 comes from an irreducible four-
dimensional representation of the binary icosahedral group. Similarly, there are two
primitive subgroups in PGL4(C) isomorphic to S5. One of them preserves a quadric
surface, and its action on P

3 comes from an irreducible four-dimensional represen-
tation of the group S5. Another one leaves invariant a pair of disjoint twisted cubic
curves. Its action on P

3 comes from an irreducible four-dimensional representation of
a central extension of the group S5. In all these cases, the projective space P

3 is not
G-birationally rigid.
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Example 2.5 ([42, 2.13.1], [35, §2], [10, Example 1.2.8]) Let G be a primitive finite
subgroup A5 in PGL4(C) such that there exists a G-invariant quadric surface in P

3.
Then there is a unique G-invariant smooth cubic surface in P

3, which is known as the
Clebsch cubic surface. Denote this cubic surface by S. Then S contains a G-invariant
irreducible smooth rational sextic curve. Denote it by C. The surface S also contains a
G-invariant curve that consists of six disjoint lines, which are bi-tangents of the curve
C. Denote this curve by L6. Let π : X → P

3 be the blow-up of the rational sextic
curve C. Then there exists a G-commutative diagram (that is, a commutative diagram
of G-rational maps, see [10, p. xix] for terminology)

X
χ

π α

Y
β φ

P
3 V14 V22

HereV14 is a Fano threefoldwith six isolated ordinary double points such that−K 3
V14

=
14, and V22 is a smooth Fano threefold such that −K 3

V22
= 22 and Aut(V22) ∼=

PSL2(C), which is known as theMukai–Umemura threefold (see [34]). Themorphism
α is the contraction of the proper transforms of the irreducible components of the curve
L6, the rational mapχ is a composition of Atiyah flops in these 6 curves, themorphism
β is a flopping contraction, and φ is a contraction of the proper transform of the cubic
surface S to a smooth point of the threefold V22.

Example 2.6 [41, Application 1] Let G be a primitive finite subgroup A5 in PGL4(C)

such that P
3 contains a G-invariant twisted cubic curve C. Let π : X → P

3 be the
blow-up of the curve C. Then there exists a G-commutative diagram

X
π φ

P
3 ρ

P
2

Here φ is a P
1-bundle whose fibers are proper transforms of secants of the curve C,

and the map ρ is given by the linear system of quadric surfaces that contain C.

Example 2.7 [35, Proposition 4.7] LetG be a primitive finite subgroupS5 in PGL4(C)

such that there exists a G-invariant quadric surface in P
3. Then P

3 contains a G-
orbit �5 of length 5. Let π : X → P

3 be the blow up of this orbit. Then there exists a
G-commutative diagram

X
χ

π α

Y
β φ

P
3 V3 S
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Here α is the contraction of the proper transforms of the 10 lines in P
3 passing through

pairs of points in �5, the rational map χ is a composition of Atiyah flops in these 10
curves, the morphism β is a flopping contraction, the morphism φ is a P

1-bundle, the
variety V3 is the Segre cubic hypersurface in P

4, and S is the smooth del Pezzo surface
of degree 5.

Example 2.8 Similarly to Example 2.7, let G be a primitive finite subgroup S5
in PGL4(C) such that there exists a G-invariant quadric surface in P

3. Then such
quadric surface is smooth and unique. Denote it by Q. There is a unique G-invariant
smooth cubic surface in P

3, which is the Clebsch cubic surface. The complete inter-
section of this cubic surface and the quadric surface Q is a G-invariant irreducible
smooth sextic curve of genus 4, which is known as the Bring curve. Let π : X → P

3

be the blow up of this curve. Then there exists a G-commutative diagram

X
π φ

P
3 V3ρ

Here V3 is a cubic hypersurface in P
4 that has one isolated ordinary double point, the

morphism φ is a contraction of the proper transform of the quadric Q to the singular
point of the cubic V3, and ρ is a linear projection from this point.

The case of a primitive subgroupS5 in PGL4(C) that does not leave invariant any
quadric surfaces is a little bit more tricky.

Proposition 2.9 Suppose that G is a primitive subgroup in PGL4(C) such that G ∼=
S5, and G leaves invariant a pair of disjoint twisted cubic curves. Denote them by
C1 and C2. Let π : X → P

3 be the blow up of the curves C1 and C2. Then there is a
G-commutative diagram

X
π α

χ
Y

φβ

P
3 V12 P

1 × P
1

Here V12 is a divisor of bi-degree (2, 2) inP
2×P

2 with ten isolated terminalGorenstein
singularities, α is a small birational morphism that contracts proper transforms of ten
common secants of the curves C1 and C2, the map χ is a composition of ten flops, the
morphism β is a flopping contraction, the morphism φ is a P

1-bundle, and the action
of the group G on P

1 × P
1 is faithful.

Proof Denote by � the subgroup in G isomorphic to A5. Let π1 : X1 → P
3 be the

blow up of the curve C1, and let π2 : X2 → P
3 be the blow up of the curve C2. Then



Finite collineation groups and birational rigidity Page 9 of 68 71

X1 and X2 are isomorphic Fano threefolds. Moreover, it follows from Example 2.6
that there is a �-commutative diagram

X1

φ1 π1

X

π

ω2 ω1
X2

φ2π2

P
2

P
3

θ1 θ2
P
2

Here φ1 and φ2 are P
1-bundles, θ1 and θ2 are rational maps that are given by the linear

systems of quadrics passing through C1 and C2, respectively, and ω1 and ω2 are blow
ups of proper transforms of the curves C1 and C2, respectively. Note that the action
of � on P

2 is faithful.
Weclaim that there are exactly 10 lines inP

3 that are common secants of both twisted
cubic curves C1 and C2 (cf. [46, §2] or [19, Remark 2]). Indeed, denote by E1

1 the π1-
exceptional surface. Then themorphismφ1 is given by the linear system |π∗

1 (OP2(2))−
E1
1 |, and its fibers are proper transforms of the secant lines of the curve C1. Denote by

C2 the proper transform of the curve C2 on the threefold X1. Since C2 is �-invariant,
the curve φ1(C2) is also �-invariant. By [10, Lemma 5.3.1], there are no �-invariant
irreducible curves in P

2 of degree 1 and 3. Thus we see that either φ1(C2) is an
irreducible conic, or φ1(C2) is an irreducible curve of degree 6. The former case is
clearly impossible. Indeed, if φ1(C2) is a conic, then the induced morphism C2 →
φ1(C2) is a triple cover, so that the curve C2 has infinitely many 3-secant lines, which
are also secants of the curve C1. However, twisted cubic curves in P

2 do not have 3-
secant lines at all, because they are cut out by quadrics. Therefore, we see that φ1(C2)

is an irreducible curve of degree 6, so that the induced morphism C2 → φ1(C2) is
birational. By [10, Lemma 5.3.1], the sextic curve φ1(C2) is contained in the pencil
that consists of all �-invariant curves of degree 6 in P

2. The curve φ1(C2) must be
singular, since the curve C2 is rational. All singular curves in this pencil are described
in [10, Remark 6.1.5]. Using this description, we deduce that φ1(C2) has 10 double
points (cf. [19, Remark 5]), and these singular points form one�-orbit inP

2. Note that
the singular points of φ1(C2) are ordinary double points. Indeed, since the arithmetic
genus of the curve φ1(C2) equals 10, its singular points are either ordinary double
points or ordinary cusps. In the latter case, the curve C2 would have a �-orbit of
length 10, which is impossible by [10, Lemma 5.1.5]. Thus, every singular point of
the curve φ1(C2) is an ordinary double point. The fibers of φ1 over the singular points
of the curve φ1(C2) are exactly the proper transforms of the common secants of both
curves C1 and C2. Vice versa, if � is a common secant of the curves C1 and C2, then
θ1(�) must be a singular point of the curve φ1(C2). Hence, we conclude that there
are exactly 10 lines in P

3 that are secants of both C1 and C2, and the group � acts
transitively on them.

Denote by E1
1 the π1-exceptional surface, and denote by E2

2 the π2-exceptional
surface. Then

−KX ∼ ω∗
2

(
π∗
1

(OP2(2)
) − E1

1

)
+ ω∗

1

(
π∗
2

(OP2(2)
) − E2

2

)
.
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Moreover, both divisors π∗
1 (OP2(2))−E1

1 and π∗
2 (OP2(2))−E2

2 are nef. In particular,
the divisor −KX is nef and big, since −K 3

X = 12.
Denote the 10 common secants of bothC1 andC2 by L1, . . . , L10, and denote their

proper transforms on X by L̃1, . . . , L̃10, respectively. Then −KX intersects these
curves trivially. Moreover, the curves L̃1, . . . , L̃10 are the only irreducible curves in
X that have trivial intersection with −KX . Indeed, let C be an irreducible curve in the
threefold X such that −KX · C = 0. Then

ω2(C) ·
(
π∗
1

(OP2(2)
) − E1

1

)
= ω1(C) ·

(
π∗
2

(OP2(2)
) − E2

2

)
= 0,

and π(C) is an irreducible curve. Since φ1 is given by the linear system |π∗
1 (OP2(2))−

E1
1 |, we see that ω2(C) is contracted by φ1 to a point. Similarly, we see that ω1(C) is

contracted by φ2 to a point. Hence, the curve π(C) is a common secant of both curves
C1 and C2, which implies that C is one of the curves L̃1, . . . , L̃10.

Consider the morphism

α = π1 ◦ ω2 = π2 ◦ ω1.

We already know that the image of α is three-dimensional. Now we claim that α is
birational. Indeed, choose a general fiber of α, and suppose that it contains at least two
different points, say A and A′. Then ω1(A) = ω1(A′), so that π(A) and π(A′) lie on
a secant of the twisted cubic C2. Similarly, we have ω2(A) = ω2(A′), so that π(A)

and π(A′) lie on a secant of C1. On the other hand, since the fiber of α was chosen to
be general, we can assume that the points π(A) and π(A′) are different points of P

3.
Hence they lie on one of the lines L1, . . . , L10, which gives a contradiction.

We have constructed the morphism α : X → V12, where V12 is a divisor of
bi-degree (2, 2) in P

2 × P
2. The variety V12 is an anticanonical model of the three-

fold X , and the morphism α is given by the linear system | − KX |. The threefold
V12 has 10 isolated terminal Gorenstein singular points, which are the images of the
curves L̃1, . . . , L̃10. Thus, there exists a G-commutative diagram

X
π α

χ
Y

φβ

P
3

ψ
V12 Z

Here ψ is a birational map that is given by the linear system of quartic surfaces
in P

3 that contain both curves C1 and C2, and χ is a composition of flops in the
curves L̃1, . . . , L̃10. The map β is a flopping contraction, and the morphism φ is a
G-extremal contraction such that the divisor −KY is φ-ample. Now arguing as in
[17,42] and using [32, Theorem 3.3] together with [15, Theorem 4], we see that φ is a
P
1-bundle, and Z ∼= P

1 × P
1. Finally, using the fact that our P

3 contains exactly two
�-orbits of length 12 by [9, Lemma 3.2], we conclude that the group G acts faithfully
on Z . �	
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In fact, one can show that the variety V12 in Proposition 2.9 has isolated ordinary
double points, and χ is a composition of Atiyah flops. Moreover, one can show that
a general fiber of the rational map φ ◦ χ ◦ π−1 is a twisted cubic curve Z such that
both intersections Z ∩ C1 and Z ∩ C2 consist of 5 points.

Corollary 2.10 Let G be a subgroup in PGL4(C) such that G ∼= A5 or G ∼= S5.
Then P

3 is not G-birationally rigid.

Proof If G is not primitive, the assertion follows from Corollary 2.4. If G is primitive,
the assertion follows from Examples 2.5, 2.6, 2.7 and Proposition 2.9. Alternatively,
instead of using Example 2.7, we can use Example 2.8. �	

3 The Heisenberg group

Let ϕ : SL4(C) → PGL4(C) be the natural projection. For every group G ⊂ SL4(C),
let us denote by G the group ϕ(G). Similarly, for every element g ∈ SL4(C), we
denote by g its image ϕ(g). Let

S1 =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟⎟
⎠ , S2 =

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ ,

T1 =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ , T2 =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟
⎠ , (3.1)

and denote by H the subgroup in SL4(C) that is generated by the matrices S1, S2, T1,
T2. Then the center of H coincides with the commutator subgroup of H and consists
of ±I4, where I4 is the identity matrix. Since |H| = 32, we have H ∼= µ4

2. We say
that H is the Heisenberg group. The group H is a transitive imprimitive subgroup of
PGL4(C).

Lemma 3.2 The following assertions hold.

(i) For every non-trivial element g ∈ H, the locus of fixed points of g consists of two
skew lines Lg and L ′

g in P
3.

(ii) For two distinct non-trivial elements g and h in H, one has

{
Lg, L

′
g

}
∩

{
Lh, L

′
h

}
= ∅.

(iii) No subgroup of order 8 in H has a fixed point in P
3.

Proof Assertions (i) and (ii) are easy to check by direct computations (cf. [21, §2.2]).
Assertion (iii) follows from the transitivity of the subgroup H. �	
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Lemma 3.3 Let E be a rational or an elliptic curve. ThenH cannot act faithfully on E.

Proof If E is rational, the assertion follows from the classification of finite subgroups
of the group PGL2(C). Thus, we suppose that E is a (smooth) elliptic curve with a
faithful action of H. Then there is an exact sequence of groups

1 → E(C) → Aut(E) → µr → 1,

where E(C) is the group of points of E acting on E by translations, and r � 6. We
see that H∩ E(C) contains a subgroup isomorphic to µ3

2. This is impossible, because
there are just four 2-torsion points in E(C). �	

Denote by N the normalizer of the group H in SL4(C), and let

S = 1 + i√2

⎛

⎜⎜
⎝

i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ , T = 1 + i

2

⎛

⎜⎜
⎝

−i 0 0 i
0 1 1 0
1 0 0 1
0 −i i 0

⎞

⎟⎟
⎠ , (3.4)

where i = √−1. One can check that both S and T are contained inN, and S4 = T 5 =
−I4. Let

A = 1 + i

2

⎛

⎜
⎜
⎝

1 0 0 −1
0 1 1 0
0 i −i 0
i 0 0 −i

⎞

⎟
⎟
⎠ , B = 1 + i

2

⎛

⎜
⎜
⎝

−1 i 0 0
1 i 1 0
0 0 i −1
0 0 −i −1

⎞

⎟
⎟
⎠ .

Then A and B are contained in N, because A = T 4 · S · T · S and

B = S · T 4 · S · T · S · T 2 · S · T 3 · S · T · S · T 3 · S · T 3 · S.

Similarly, let

R = 1√
2

⎛

⎜⎜
⎝

1 i 0 0
i 1 0 0
0 0 i 1
0 0 −1 −i

⎞

⎟⎟
⎠ .

Then R is also contained in N (see [4, §124]).
It follows from [4, §124] that S and T together with H and ±i I4 generate the

group N. Let H = 〈H,±i I4〉. Then H = H, and it follows from [4, §124] that there is
an exact sequence

1 H N S6 1. (3.5)



Finite collineation groups and birational rigidity Page 13 of 68 71

Let U4 be the vector space of all H-invariant homogeneous polynomials of degree
4 in C[x, y, z, w]. Recall from [21, §2.3] that U4 is generated by the polynomials

x4 + y4 + z4 + w4, x2y2 + z2w2, x2z2 + y2w2, x2w2 + y2z2, xyzw.

This vector space is N-invariant. Write

t0 = x4 + y4 + z4 + w4

3
− 2

(
x2y2 + z2w2) − 2

(
x2z2 + y2w2) − 2

(
x2w2 + y2z2

)
,

t1 = x4 + y4 + z4 + w4

3
− 2

(
x2y2 + z2w2) + 2

(
x2z2 + y2w2) + 2

(
x2w2 + y2z2

)
,

t2 = x4 + y4 + z4 + w4

3
+ 2

(
x2y2 + z2w2) − 2

(
x2z2 + y2w2) + 2

(
x2w2 + y2z2

)
,

t3 = x4 + y4 + z4 + w4

3
+ 2

(
x2y2 + z2w2) + 2

(
x2z2 + y2w2) − 2

(
x2w2 + y2z2

)
,

t4 = −2

3

(
x4 + y4 + z4 + w4) + 8xyzw,

t5 = −2

3

(
x4 + y4 + z4 + w4) − 8xyzw. (3.6)

Note that t0 + t1 + t2 + t3 + t4 + t5 = 0, and t0, t1, t2, t3, t3, t4, t5 generate U4.

Remark 3.7 The representation of the group N/H ∼= S6 in the vector space U4 is
the standard five-dimensional representation twisted by the sign character. Indeed,
the matrix T acts on the polynomials t0, . . . , t5 as the cycle (t0 t4 t2 t5 t1), and the
matrix −S acts on t0, . . . , t5 as the permutation (t0 t1)(t2 t3)(t4 t5). Observe also that
the matrix A acts on them as the permutation (t0 t5 t2)(t1 t3 t4). Similarly, the matrix
B acts as the permutation (t0 t2 t5)(t1 t3 t4).

Let G80 be the subgroup in SL4(C) that is generated by H and the matrix T , and
let G80 be its image in PGL4(C). Then

G80 ∼= µ4
2 � µ5

by Remark 3.7. Similarly, let G320 be the subgroup in SL4(C) that is generated by
H and the matrices T and R, and let G320 be its image in PGL4(C). Then there is a
non-split exact sequence of groups

1 −→ H −→ G320 −→ µ5 � µ4 −→ 1,

see [4, §124]. Moreover, it follows from (3.5) that there exists an exact sequence of
groups

1 −→ H −→ G320 −→ µ5 � µ4 −→ 1.
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Let G160 be the subgroup in SL4(C) that is generated by H and the matrices T and
R2, and let G160 be its image in PGL4(C). Then

G160 ∼= µ4
2 �

(
µ5 � µ2

) ∼= µ4
2 � D10,

where D10 is the dihedral group of order 10, see [4, §124]. There exists an exact
sequence of groups

1 −→ H −→ G160 −→ D10 −→ 1.

Furthermore, the group G80 is a normal subgroup in both G160 and G320, and the
group G160 is a normal subgroup in G320. Let G144 be the subgroup in SL4(C) that is
generated by the subgroup H together with the matrices A and B, and let G144 be its
image in PGL4(C). Then G144 is a finite subgroup of order 576, and there exists an
exact sequence of groups

1 −→ H −→ G144 −→ µ3 × µ3 −→ 1.

Moreover, one has

G144 ∼= µ4
2 �

(
µ3 × µ3

) ∼= A4 × A4

by Remark 3.7. The groups G80, G160, G320, G144 are primitive subgroups in
PGL4(C).

It is well known that P
3 contains exactly ten H-invariant quadrics (see [21, §2.4]).

The groups G80, G160, G320 and G144 naturally act on them, because H is a normal
subgroup of these four groups. For instance, the group G80 splits them into two G-
orbits. One of them consists of the five quadrics

x2 + y2 + z2 + w2 = 0, xw + yz = 0, xz + yw = 0,

x2 + y2 − z2 − w2 = 0, x2 − y2 − z2 + w2 = 0. (3.8)

Let us denote them by Q1, Q2, Q3, Q4 and Q5, respectively. The second G80-orbit
consists of the five quadrics

x2−y2+z2−w2 = 0, xy+zw = 0, xy−zw = 0, xz−yw = 0, xw−yz = 0.
(3.9)

We will denote them byQ6,Q7,Q8,Q9 andQ10, respectively. Observe that all these
ten quadrics are smooth. Similarly, the onlyG144-invariant quadric in P

3 is the quadric
Q3, i.e. the quadric given by xz + yw = 0. In fact, we can say more.

Lemma 3.10 There are no G80-invariant surfaces inP
3 of degree 1, 2 and 3. Similarly,

there are no G144-invariant surfaces in P
3 of degree 1 and 3. Finally, there is unique

G144-invariant quadric surface in P
3.
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Proof This follows from explicit computations of symmetric powers of corresponding
four-dimensional representations of the groupsG80 andG144.We used [44] to perform
these computations. �	

Recall from Lemma 3.2(i) that for every non-trivial element g ∈ H, there exist two
skew lines Lg and L ′

g in P
3 that are pointwise fixed by g. The stabilizer of each of

these lines in H isµ3
2, and the kernel of its action on any of these lines is a subgroupµ2

generated by g. In total, there are 30 lines in P
3 that are pointwise fixed by elements

in H. Denote the set of these lines by L30. Let us describe these lines explicitly.
The group H ∼= µ4

2 acts onQ1 ∼= P
1 ×P

1 naturally. This means the following. The
group µ2

2 acts on P
1 in a standard way: in appropriate homogeneous coordinates one

of its generators acts as [u : v] 
→ [v : u], and the other by [u : v] 
→ [−u : v]. The
product action of the group µ2

2 × µ2
2 on P

1 × P
1 gives the action of the group H on

Q1.
Since every subgroup µ2 in µ2

2 fixes exactly two points in P
1, and there are three

such subgroups in µ2
2, we see that there are exactly six pairs of skew lines in Q1 that

are H-invariant. The smooth quadric surfaceQ1 contains two one-parameter families
of lines. Three of the above pairs of skew lines lie in one family of lines on Q1, and
the remaining three pairs lie in another family of lines on Q1. Let � be the line in P

3

that passes through the points [0 : i : 1 : 0] and [1 : 0 : 0 : −i], and let �̌ be the
line in P

3 that passes through the points [0 : −i : 1 : 0] and [1 : 0 : 0 : i]. Then �

and �̌ are skew lines contained in Q1. Moreover, both of them are pointwise fixed by
T 1 ◦ S2 ◦ S1 (see (3.1)), so that � and �̌ are two lines in L30. Applying powers of T to
them, we obtain 8 more lines in L30. Here T is an element of the group G of order 5
defined in (3.4). To be precise, let

�1 = �, �2 = T (�1), �3 = T (�2), �4 = T (�3), �5 = T (�4),

�̌1 = �̌, �̌2 = T (�̌1), �̌3 = T (�̌2), �̌4 = T (�̌3), �̌5 = T (�̌4). (3.11)

Then the lines in (3.11) are contained in L30. Similarly, let �′ be the line in P
3 that

passes through the points [1 : 0 : −i : 0] and [0 : 1 : 0 : −i], let �̌′ be the line in P
3

that passes through the points [1 : 0 : i : 0] and [0 : 1 : 0 : i], and let

�′
1 = �′, �′

2 = T (�′
1), �′

3 = T (�′
2), �′

4 = T (�′
3), �′

5 = T (�′
4),

�̌′
1 = �̌′, �̌′

2 = T (�̌′
1), �̌′

3 = T (�̌′
2), �̌′

4 = T (�̌′
3), �̌′

5 = T (�̌′
4). (3.12)

Then the lines in (3.12) are contained inL30. Finally, let �′′ be the line in P
3 that passes

through the points [1 : i : 0 : 0] and [0 : 0 : 1 : −i], let �̌′′ be the line in P
3 that passes

through the points [1 : −i : 0 : 0] and [0 : 0 : 1 : i], and let

�′′
1 = �′′, �′′

2 = T (�′′
1), �′′

3 = T (�′′
2), �′′

4 = T (�′′
3), �′′

5 = T (�′′
4),

�̌′′
1 = �̌′′, �̌′′

2 = T (�̌′′
1), �̌′′

3 = T (�̌′′
2), �̌′′

4 = T (�̌′′
3), �̌′′

5 = T (�̌′′
4). (3.13)

Then the lines in (3.13) are the remaining 10 lines in L30. By construction, the lines
�, �̌, �′, �̌′, �′′ and �̌′′ are contained in the quadric surface Q1.
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Table 1 Ten H-invariant
quadrics and thirty lines in them

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

�1 + − − − + − + − + −
�2 − − − + + − − + − +
�3 − − + + − + + − − −
�4 − + + − − − − − + +
�5 + + − − − + − + − −
�̌1 + − − − + − + − + −
�̌2 − − − + + − − + − +
�̌3 − − + + − + + − − −
�̌4 − + + − − − − − + +
�̌5 + + − − − + − + − −
�′
1 + − − − − + + − − +

�′
2 − − − − + + − − + +

�′
3 − − − + − + − + + −

�′
4 − − + − − − + + + −

�′
5 − + − − − − + + − +

�̌′
1 + − − − − + + − − +

�̌′
2 − − − − + + − − + +

�̌′
3 − − − + − + − + + −

�̌′
4 − − + − − − + + + −

�̌′
5 − + − − − − + + − +

�′′
1 + + − + − − − − + −

�′′
2 + − + − + − − + − −

�′′
3 − + − + + − + − − −

�′′
4 + − + + − − − − − +

�′′
5 − + + − + + − − − −

�̌′′
1 + + − + − − − − + −

�̌′′
2 + − + − + − − + − −

�̌′′
3 − + − + + − + − − −

�̌′′
4 + − + + − − − − − +

�̌′′
5 − + + − + + − − − −

Lemma 3.14 Each line among the 30 lines in L30 is contained in exactly 4 of the
quadric surfacesQ1, . . . ,Q10. Each of these quadrics contains exactly 12 such lines.
For every quadric, these 12 lines contained in it are described by Table 1. Every two
quadrics among Q1, . . . ,Q10 intersect in a quadruple of lines in L30.

Proof Direct computations. The last assertion can be also deduced from Lemma 3.3.
�	
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Let us describe the intersection points of the 30 lines in L30. Namely, let �20 be
the subset in P

3 that consists of the 20 points

[i : 0 : 0 : 1], [0 : i : 1 : 0], [1 : 0 : 1 : 0], [0 : −1 : 0 : 1], [1 : i : −i : 1],
[1 : −i : i : 1], [0 : 0 : −1 : 1], [0 : 0 : 1 : 1], [−1 : i : −i : 1], [1 : i : i : 1],
[−i : 0 : 0 : 1], [0 : −i : 1 : 0], [1 : 0 : 1 : 0], [0 : 1 : 0 : 1], [−1 : i : i : 1],
[1 : −i : −i : 1], [−1 : 1 : 0 : 0], [1 : 1 : 0 : 0], [−1 : −i : i : 1], [1 : −i : −i : 1].

(3.15)

Similarly, let �′
20 be the subset in P

3 that consists of the 20 points

[−i : i : −1 : 1], [i : 0 : 1 : 0], [i : i : 1 : 1], [0 : i : 0 : 1], [−1 : 1 : −1 : 1],
[i : −i : −1 : 1], [1 : −1 : −1 : 1], [−1 : 0 : 0 : 1], [−1 : −1 : 1 : 1], [0 : −1 : 1 : 0],
[1 : 0 : 0 : 0], [1 : 0 : 0 : 1], [0 : 0 : 0 : 1], [−i : 0 : 1 : 0], [0 : 0 : 1 : 0],
[−i : −i : 1 : 1], [0 : −i : 0 : 1], [1 : 1 : 1 : 1], [0 : 1 : 1 : 0], [0 : 1 : 0 : 0]. (3.16)

Finally, let �′′
20 be the subset in P

3 that consists of the 20 points

[i : −1 : i : 1], [0 : 0 : i : 1], [−i : 1 : i : 1], [−i : 1 : 0 : 0], [−i : −1 : i : 1],
[−i : i : 1 : 1], [−i : 1 : −i : 1], [i : −i : −1 : 1], [1 : −1 : 1 : 1], [i : −1 : −i : 1],
[1 : −1 : −1 : 1], [i : 1 : 0 : 0], [i : 1 : i : 1], [i : −i : 1 : 1], [−1 : 1 : 1 : 1],
[i : 1 : −i : 1], [0 : 0 : −i : 1], [i : −1 : −i : 1], [i : i : −1 : 1], [1 : 1 : −1 : 1].

(3.17)

Explicit computations show that �20, �′
20 and �′′

20 are G80-orbits. This also follows
from Lemma 5.13.

Lemma 3.18 The set �20 ∪ �′
20 ∪ �′′

20 contains all intersection points of the lines
from L30. Moreover, for every point P ∈ �20 ∪�′

20 ∪�′′
20 there are exactly three lines

from L30 passing through P.

Proof Direct computations. �	

Now we are going to describe the G80-invariant quartic surfaces and the G144-
invariant quartic surfaces.

Lemma 3.19 There are exactly five G80-invariant irreducible quartic surfaces in P
3.

Similarly, there are exactly four G144-invariant irreducible quartic surfaces in P
3.

Proof It follows from Remark 3.7 that U4 splits as a sum of distinct one-dimensional
representations of G80 and G144. Now the assertion follows from Lemma 3.10. �	
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Up to scaling, all homogeneous semi-invariants of the group G144 of degree 4
in C[x, y, z, w] are ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = −1

4

(
t0 + t2 + t5

)
,

p1 = −
(
ξ3t0 + t2 + ξ23 t5

)
,

p2 = (ξ3 + 1)
(
t0 + ξ23 t5 + ξ3t2

)
,

p3 = (ξ3 + 1)
(
t1 + ξ23 t4 + ξ3t3

)
,

p4 = −
(
ξ3t1 + t3 + ξ23 t4

)
.

(3.20)

Here ξ3 is a primitive cubic root of unity, and t0, . . . , t5 are the polynomials defined
in (3.6). Observe that

p0 = (wy + xz)2

is the only homogeneous invariant of degree 4 of the group G144. The remaining four
polynomials p1, p2, p3 and p4 are semi-invariants, and they are irreducible. Thus, the
four irreducible G144-invariant quartic surfaces in P

3 are given by p1 = 0, p2 = 0,
p3 = 0 and p4 = 0. We will study properties of these surfaces in Sect. 4.

The eigenvectors of thematrixT on the vector space of allH-invariant homogeneous
quartic polynomials in C[x, y, z, w] are the polynomials

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q0 = t0 + t1 + t2 + t3 + t4,

q1 = ξ45 t4 + ξ35 t2 + ξ25 t5 + ξ5t1 + t0,

q2 = ξ45 t5 + ξ35 t4 + ξ25 t1 + ξ5t2 + t0,

q3 = ξ45 t2 + ξ35 t1 + ξ25 t4 + ξ5t5 + t0,

q4 = ξ45 t1 + ξ35 t5 + ξ25 t2 + ξ5t4 + t0.

(3.21)

Here ξ5 is a primitive fifth root of unity. Note that qi is the eigenvector of T that
corresponds to the eigenvalue ξ i5. The five G80-invariant quartic surfaces in P

3 are the
quartic surfaces q0 = 0, q1 = 0, q2 = 0, q3 = 0 and q4 = 0. We will study properties
of these surfaces in Sect. 5. The polynomial

q0 = 1

2

(
w4 + y4 + z4 + x4

)
+ 3x2y2 + 3z2w2 + 3x2z2 + 3y2w2 − 3x2w2 − 3y2z2.

is the only G80-invariant homogeneous quartic polynomial in C[x, y, z, w].
Lemma 3.22 There are exactly four G80-invariant surfaces in P

3 of degree 6. More-
over, they are irreducible and reduced.

Proof One can find all irreducible representations of the group G80. They can be
described as follows: 10 one-dimensional representations, 10 four-dimensional rep-
resentations, and 6 five-dimensional representations. Similarly, one can compute the
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sixth symmetric power of every four-dimensional representation. These computa-
tions imply that the sixth symmetric power of every four-dimensional representations
contains exactly 4 different one-dimensional subrepresentations. Geometrically, this
means that there are exactly four G80-invariant surfaces in P

3 of degree 6. Since P
3

does not contain G80-invariant surfaces of degree 1, 2 and 3 by Lemma 3.10, each
G80-invariant surface of degree 6 must be irreducible and reduced. We used [44] to
perform these computations. �	

One can find explicit equations of theG80-invariant sextic surfaces in P
3. However,

we decided not to do this to keep the paper shorter.

4 The group of order 144

Let us use notation and assumptions of Sect. 3. In this section, we present basic facts
about G144-orbits, G144-invariant curves and G144-invariant surfaces in P

3.
Let us start with studying basic group-theoretic properties of the groupG144. Recall

that G144 is isomorphic to

A4 × A4 ∼= µ4
2 �

(
µ3 × µ3

)
.

Note that the isomorphism G144 ∼= A4 × A4 is uniquely defined up to permutations
of the factors and automorphisms of the group A4. We will fix such an isomorphism
until the end of this section. Denote by A�

4 the diagonal subgroup in G144, i.e. the
subgroup that consists of the elements (g, g), where g ∈ A4. Similarly, denote by A∇

4
the twisted diagonal subgroup in G144, i.e. the subgroup that consists of the elements
(g, σ (g)), where g ∈ A4, and σ is an outer automorphism of A4 that is given by
conjugation with a fixed odd element of S4. By a basic subgroup in G144, we will
mean any subgroup contained in one of the factors. Similarly, we say that a subgroup
in G144 is of product type if it is a product of two basic subgroups.

Lemma 4.1 Let � be a subgroup in G144. Then the following assertions hold.

(o) If � is cyclic, then |�| ∈ {1, 2, 3, 6}.
(i) The group H contains all 2-subgroups of the group G144.
(ii) If |�| is divisible by 16, then � contains the subgroup H.
(iii) If |�| = 9, then � ∼= µ2

3 and � is of product type.
(iv) One has |�| �= 18.
(v) If |�| = 6, then � ∼= µ6

∼= µ2 × µ3, and � is of product type. Moreover, there
are just two such subgroups up to conjugation. Furthermore, every subgroup in
G144 of order 12 that contains � is isomorphic to µ2

2 × µ3 and is of product
type.

(vi) If |�| = 12 and � is not conjugate to A�
4 and A∇

4 , then the group � contains a
basic subgroup µ2

2.
(vii) If � �= G144, then |�| � 48.
(viii) If |�| > 16, then there is a surjective homomorphism � → A4.
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Proof Assertion (o) is obvious. The subgroup H is the normal Sylow 2-subgroup of
the group G144. This implies assertion (i). Assertion (ii) follows from (i) and Sylow
theorems. Assertion (iii) also follows from Sylow theorems.

Let π1 : G144 → A4 and π2 : G144 → A4 be the two projections to the factors. If
|�| = 18, then the subgroups π1(�) and π2(�) are proper subgroups, so that at least
one of them has order greater than 4, which is impossible. This proves assertion (iv).

Similarly, if |�| = 6, then, up to permutation, the groups π1(�) and π2(�) are
isomorphic to µ2 and µ3, respectively. In this case, we have � ∼= µ2 ×µ3

∼= µ6, and
the conjugacy class of � is determined by the choice of πi such that πi (�) ∼= µ2. Let
ϒ be a subgroup inG144 of order 12 that contains�. Wemay assume that π1(�) ∼= µ2
and π2(�) ∼= µ3. Then π2(ϒ) ∼= µ3, because µ3 is a maximal proper subgroup inA4.
This easily implies assertion (v).

To prove assertion (vi), we suppose that |�| = 12. If π1(�) = A4 and π2(�) = A4,
then � is conjugate to eitherA�

4 orA∇
4 . Thus, we may assume that π1(�) �= A4. Then

the kernel of π1|� contains a basic subgroup µ2
2.

To prove assertion (vii), we have to show that the index of � in G144 is not 2.
Suppose that it is. Then � is normal. Thus, the intersection of � with each factor in
G144 ∼= A4×A4 is eitherA4 or a subgroup of index 2 inA4. SinceA4 does not contain
subgroups of index 2, we see that � contains both factors, so it is the whole group
G144, which is absurd.

To prove assertion (viii), we suppose that |�| > 16. If π1(�) = A4 or π2(�) = A4,
then we are done. Otherwise, both π1(�) and π2(�) are proper subgroups of A4, so
that their orders are at most 4. This is impossible, because |�| > 16. �	

To study G144-invariant curves in P
3, we need the following result, which is a

simple consequence of the Riemann–Hurwitz formula.

Lemma 4.2 Let C be a smooth irreducible curve of genus g � 13with a faithful action
of the group G144. Then g ∈ {8, 13}, and the curve C is not hyperelliptic. Furthermore,
if � ⊂ C is a G144-orbit, then |�| ∈ {24, 48, 72, 144}. Finally, the possible numbers
ai of G144-orbits of length i ∈ {24, 48, 72} in C are contained in the following table:

g 8 13 13

a24 0 1 2
a48 0 2 0
a72 3 0 1

Proof The assertion about the lengths of G144-orbits follows from Lemma 4.1(o),
since the stabilizers in G144 of points in C are cyclic (see [10, Lemma 5.1.4]). By
Lemma 3.3, the group G144 cannot act faithfully on P

1 and on a smooth elliptic curve,
so that g � 2.

Suppose that the curve C is hyperelliptic. Since the group G144 does not contain
normal subgroups of order 2, it does not contain the hyperelliptic involution of C ,
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and we obtain a faithful action of the group G144 on P
1. The latter is impossible by

Lemma 3.3.
Let Ĉ = C/G144. Then Ĉ is a smooth curve. Let ĝ be the genus of the curve Ĉ .

Then the Riemann–Hurwitz formula gives

2g − 2 = 144
(
2ĝ − 2

) + 72a72 + 96a48 + 120a24.

Since ak � 0 and g � 13, one has ĝ = 0, so that

2g − 2 = −288 + 72a72 + 96a48 + 120a24,

Going through the possible values of g, and solving this equation case by case we
obtain the required result. �	

Denote by Q the smooth quadric in P
3 that is given by

wy + xz = 0,

which is the quadric Q3 in the notation of Sect. 3. Then Q is G144-invariant. We will
see in Lemmas 4.10 and 4.16 that this quadric contains most of G144-orbits of small
length in P

3 and most of G144-irreducible curves in P
3 that have small degree.

Observe that the action of the group G144 ∼= A4 ×A4 on the surfaceQ ∼= P
1 × P

1

is just the product action given by the natural action of the group A4 on P
1 induced

by a two-dimensional irreducible representation of the binary tetrahedral group 2.A4.
Denote this representation by V2. Then there is a G144-equivariant identification

P
3 ∼= P

(
W4

)
, (4.3)

where W4 is the four-dimensional representation of the group 2.A4 × 2.A4 in the
vector space of 2 × 2-matrices such that the first (respectively, the second) factor

2.A4 ⊂ GL(V2) ∼= GL2(C)

acts by left (respectively, right) multiplications. Then the points of the quadric Q
correspond to 2 × 2-matrices of rank 1 in W4.

Since P
1 contains two A4-orbits of length 4 and one orbit of length 6, this gives

four G144-irreducible curves in Q that are unions of 4 disjoint lines, and two G144-
irreducible curves in Q that are unions of 6 disjoint lines. Denote the former four
curves by L1

4, L2
4, L3

4 and L4
4, and denote the latter two curves by L1

6 and L2
6. Without

loss of generality, we may assume that

L1
4 ∩ L2

4 = L1
4 ∩ L1

6 = L3
4 ∩ L4

4 = L3
4 ∩ L2

6 = ∅.

In other words, onQ ∼= P
1×P

1, the curvesL1
4 andL2

4 have bi-degree (4, 0), while the
curves L3

4 and L4
4 have bi-degree (0, 4). Similarly, the curve L1

6 has bi-degree (6, 0),
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and the curve L2
6 has bi-degree (0, 6). Let

�1
16 = L1

4 ∩ L3
4, �2

16 = L1
4 ∩ L4

4, �3
16 = L2

4 ∩ L3
4, �4

16 = L2
4 ∩ L4

4.

Then �1
16, �

2
16, �

3
16 and �4

16 are G144-orbits of length 16. Similarly, let

�1
24 = L1

4 ∩ L2
6, �2

24 = L2
4 ∩ L2

6, �3
24 = L3

4 ∩ L1
6, �4

24 = L4
4 ∩ L1

6.

Then the subsets �1
24, �2

24, �3
24, �4

24 are G144-orbits of length 24. Finally, let
�36 = L1

6 ∩ L2
6. Then the subset �36 is a G144-orbit of length 36. We summarize

the intersections of the curves L1
4, L2

4, L3
4, L4

4, L1
6 and L2

6 in the following table:

L1
4 L2

4 L3
4 L4

4 L1
6 L2

6

L1
4 L1

4 ∅ �1
16 �2

16 ∅ �1
24

L2
4 ∅ L2

4 �3
16 �4

16 ∅ �2
24

L3
4 �1

16 �3
16 L3

4 ∅ �3
24 ∅

L4
4 �2

16 �4
16 ∅ L4

4 �4
24 ∅

L1
6 ∅ ∅ �3

24 �4
24 L1

6 �36

L2
6 �1

24 �2
24 ∅ ∅ �36 L2

6

Lemma 4.4 Let � be a G144-orbit in Q such that |�| � 36. Then � is one of the
G144-orbits �1

16, �
2
16, �

3
16, �

4
16, �

1
24, �

2
24, �

3
24, �

4
24, �36.

Proof This follows from the fact that P
1 contains exactly two A4-orbits of length 4,

exactly one orbit of length 6, and the remaining A4-orbits in P
1 are of length 12. �	

By construction, the smooth quadricQ contains the curves L1
4, L2

4, L3
4, L4

4, L1
6 and

L2
6. The same construction gives infinitely many G144-irreducible curves inQ that are

unions of 12 disjoint lines. Moreover, we have

Lemma 4.5 Let C be a G144-irreducible curve in Q such that deg(C) � 23. Then
either C is a disjoint union of 12 lines, or C is one of the curves L1

4, L2
4, L3

4, L4
4, L1

6,
L2
6.

Proof The curve C is a curve of bi-degree (m, n) on Q ∼= P
1 × P

1 such that m +
n � 23. The required assertion can be checked by a direct computation using the
identification (4.3), however, we prefer to provide a more geometric proof.

Without loss of generality, we may assume thatm � n. Thenm � 11. Suppose that
C is none of the curves L1

4, L2
4, L3

4, L4
4, L1

6, L2
6. Suppose also that C is not a disjoint

union of 12 lines. Then m � 1. Let us seek for a contradiction.
Let P be a point in C that is not contained in the curves L1

4, L2
4, L3

4, L4
4, L1

6, L2
6.

Let L be the line inQ that is a curve of bi-degree (0, 1) that passes through P . Then L
is not an irreducible component of the curve C , since C is G144-irreducible. Let � be
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the subgroup A4 × Id in G144 (so that � is one of the two basic subgroups A4). Then
L and C are �-invariant, and � acts faithfully on the line L . Hence, the intersection
L ∩ C is a union of �-orbits of length L · C = m � 11. On the other hand, all such
orbits are contained in the union L1

4 ∪L2
4 ∪L3

4 ∪L4
4 ∪L1

6 ∪L2
6 by Lemma 4.4, which

gives us a contradiction. �	
Corollary 4.6 Let C be a G144-invariant curve in P

3 such that deg(C) < 8. Then C is
one of the curves L1

4, L2
4, L3

4, L4
4, L1

6, L2
6.

Proof If C is not contained in the quadric Q, then

|C ∩ Q| � C · Q = 2deg(C) � 14,

which is impossible by Lemma 4.4. �	
Corollary 4.7 Let C be a G144-irreducible curve inQ, let D be a (non-empty) mobile
G144-invariant linear system on P

3, let D be a general surface in D, and let n be a
positive integer such that D ∼ OP3(n). Write

D
∣∣Q = mC + �,

where m is a non-negative integer, and � is an effective divisor on Q whose support
does not contain irreducible components of the curve C. Then m � n

4 .

Proof Suppose that m > n
4 . The curve C is a divisor of bi-degree (a, b) on Q ∼=

P
1 × P

1. But mC + � is a divisor of bi-degree (n, n), so that a < 4 and b < 4, which
is impossible by Lemma 4.5. �	
Corollary 4.8 Let C be a G144-irreducible curve inQ, let D be a (non-empty) mobile
G144-invariant linear system on P

3, and let n be a positive integer such that D ∼
OP3(n). Then multC (D) � n

4 .

Denote by �12 the subset in P
3 that consists of the 12 points

[0 : 1 : 0 : 1], [0 : −1 : 0 : 1], [1 : i : i : 1], [1 : −i : −i : 1],
[1 : −i : i : −1], [1 : i : −i : −1],

[1 : −1 : i : −i], [1 : −1 : −i : i], [1 : 1 : i : i], [1 : 1 : −i : −i],
[1 : 0 : 1 : 0], [1 : 0 : −1 : 0].

Similarly, denote by �′
12 the subset in P

3 that consists of the 12 points

[1 : 1 : 1 : 1], [1 : −1 : −1 : 1], [1 : i : 1 : −i], [1 : −i : 1 : i],
[1 : i : −1 : i], [1 : −i : −1 : −i],

[1 : 0 : i : 0], [1 : 0 : −i : 0], [0 : i : 0 : 1], [0 : −i : 0 : 1],
[1 : 1 : −1 : −1], [1 : −1 : 1 : −1].

Explicit computations show that �12 and �′
12 are G144-orbits. This also follows from

Lemma 4.12 below.
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Lemma 4.9 The subsets �12 and �′
12 are the only G144-orbits in P

3 of length 12.

Proof Let ϒ be a basic subgroup µ2
2 ⊂ G144. Recall that the action of the group ϒ

onQ ∼= P
1×P

1 is a product action, with trivial group acting on one of the factors. Let
ϒ̃ be the preimage of ϒ via the canonical projection 2.A4 → A4. Then the restriction
of the two-dimensional representation V2 to ϒ̃ is an irreducible two-dimensional
representations of the group ϒ̃ . The restriction of the four-dimensional representation
W4 of the group 2.A4×2.A4 to the group ϒ̃ splits as sumof two isomorphic irreducible
two-dimensional representations. Thus, ϒ does not have fixed points in P

3.
Let � be a G144-orbit in P

3 of length 12, and let � be the stabilizer in G144 of a
point in �. Then |�| = 12. We have seen that � does not contain ϒ . Thus, it follows
from Lemma 4.1(vi) that � is conjugate to either A�

4 or A∇
4 . Using the identification

(4.3), we see that each of the latter groups has a unique fixed point in P
3. Since we

already know two G144-orbits in P
3 of length 12, namely �12 and �′

12, the assertion
follows. �	

Now we are ready to describe G144-orbits in P
3 of small length.

Lemma 4.10 Let � be a G144-orbit in P
3 such that |�| � 35. Then � is one of the

G144-orbits �12, �′
12, �

1
16, �

2
16, �

3
16, �

4
16, �

1
24, �

2
24, �

3
24, �

4
24.

Proof One has |�| > 4, because the group G144 is primitive. This implies that

∣∣�
∣∣ ∈ {

6, 8, 9, 12, 16, 18, 24
}
.

Let � be a stabilizer in G144 of a point in�. If |�| ∈ {6, 9, 18}, then |�| is divisible
by 8, so that � contains a subgroup µ3

2 ⊂ H by Sylow theorem and Lemma 4.1(i).
This is impossible by Lemma 3.2(iii). If |�| = 8, then |�| = 18, which is impossible
by Lemma 4.1(iv). If |�| = 12, then the required assertion follows from Lemma 4.9.

Suppose that |�| = 16. Then |�| = 9, so that � ∼= µ2
3 by Lemma 4.1(iii). Recall

that the action of the group � ∼= µ3 ×µ3 onQ ∼= P
1 × P

1 is a product action. Let µ̃3
be the preimage of µ3 via the canonical projection 2.A4 → A4. Then the restriction
of the two-dimensional representation V2 to µ̃3 splits as a sum of two distinct one-
dimensional representations of the group µ̃3. The restriction of the four-dimensional
representationW4 to the group µ̃3× µ̃3 splits as sum of four pairwise non-isomorphic
one-dimensional subrepresentations, which are generated by 2 × 2-matrices of rank
1. Since matrices of rank 1 correspond to the points of the quadric Q, we see that
� ⊂ Q, so that � is one of the G144-orbits �1

16, �
2
16, �

3
16, �

4
16 by Lemma 4.4.

Suppose that |�| = 24. Then � ∼= µ6
∼= µ2 × µ3 by Lemma 4.1(v). Now argu-

ing as in the previous case, we see that � is one of the G144-orbits �1
24, �2

24, �3
24,

�4
24. �	
Let p1, p2, p3 and p4 be the quartic polynomials in (3.20). Denote by S1, S2, S3,

S4 the quartic surfaces P
3 that are given by p1 = 0, p2 = 0, p3 = 0 and p4 = 0,

respectively. Then S1, S2, S3, S4 are all G144-invariant irreducible quartic surfaces in
P
3 by Lemma 3.19. Moreover, explicit computations imply that

�12 ∈ S1 ∩ S2, �′
12 ∈ S3 ∩ S4, �12 �⊂ S3 ∪ S4, �′

12 �⊂ S1 ∪ S2. (4.11)
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In fact, we can say more.

Lemma 4.12 One has Sing(S1) = Sing(S2) = �12 and Sing(S3) = Sing(S4) = �′
12.

Moreover, all singular points of the surfaces S1, S2, S3 and S4 are ordinary double
points.

Proof It is enough to show the required assertions for the surface S1, since the proof
is identical in the remaining cases. We already know that S1 is irreducible. Taking a
general plane section of the surface S1, we see that either S1 has isolated singularities,
or Sing(S1) contains aG144-invariant curve of degree atmost 3. The latter is impossible
by Corollary 4.6. Thus, the surface S1 has at most isolated singularities.

To see that S1 is singular at every point of the G144-orbit �12, one can simply
take partial derivatives of the polynomial p1, and plug the point [0 : 1 : 0 : 1]
into them. Alternatively, one can use the fact that the stabilizer in G144 of every
point in �12 is isomorphic to A4. Since the group A4 does not have faithful two-
dimensional representations, the surface S1 must be singular at every point of �12 by
[10, Lemma 4.4.1].

Thus, we see that S1 has isolated singularities and �12 ⊂ Sing(S1). Moreover, the
surface S1 cannot have more that two non-Du Val singular points by [45, Theorem 1].
Thus, the surface S1 has at most Du Val singularities by Lemma 4.10.

Let f : S̃1 → S1 be the minimal resolution of singularities of the surface S1. Then
S̃1 is a smooth K3 surface. Then

rk Pic
(
S̃1

)
� rk Pic

(
S1

) + ∣∣Sing(S1)
∣∣ = rk Pic

(
S1

) + 12 + ∣∣Sing(S1)\�12
∣∣.

On the other hand, the rank of the Picard group of a smooth K3 surface is at most 20,
so that Sing(S1) = �12, since S1 does not contain G144-orbits of length less than 12
by Lemma 4.10. Moreover, the same arguments imply that every singular point of the
surface S1 is an ordinary double point, since otherwise we would have

20 � rk Pic
(
S̃1

)
� rk Pic

(
S1

) + 2
∣∣Sing(S1)

∣∣ = rk Pic
(
S1

) + 24 � 25,

which is absurd. �	
Corollary 4.13 Let � be one of the G144-orbits �12 or �′

12 and let M be a linear
system that consists of cubic surfaces in P

3 containing �. Then � is the base locus of
the linear systemM.

Proof By Lemma 4.12, we have � = Sing(Si ) for some i ∈ {1, 2, 3, 4}. Recall
that the surface Si is given by the equation pi (x, y, z, w) = 0, where pi is the quartic
polynomial in (3.20). Thus, the linear systemM contains the linear system that consists
of cubic surfaces

λ0
∂ pi
∂x

+ λ1
∂ pi
∂ y

+ λ2
∂ pi
∂z

+ λ3
∂ pi
∂w

= 0,

where [λ0 : λ1 : λ2 : λ3] ∈ P
3. The base locus of the latter system is Sing(Si )

= �. �	
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Remark 4.14 Let H be the plane section of the quadric Q. Then there is an exact
sequences of G-representations

0 −→ H0
(
OP3

(
2
)) −→ H0

(
OP3

(
4
)) −→ H0

(
OQ

(
4H

)) −→ 0.

On the other hand, the divisors L1
4 +L3

4, L1
4 +L4

4, L2
4 +L3

4, L2
4 +L4

4 are contained in
the linear system |OQ(4H)|. Thus, each intersection among S1 ∩ Q, S2 ∩ Q, S3 ∩ Q
and S4 ∩ Q is one of the unions L1

4 ∪ L3
4, L1

4 ∪ L4
4, L2

4 ∪ L3
4 and L2

4 ∪ L4
4.

Using this remark, we see that for every G144-orbit among �1
16, �

2
16, �

3
16 and �4

16,
there exists exactly one quartic surface among S1, S2, S3 and S4 that does not contain
it. This implies

Lemma 4.15 Let C be a G144-invariant curve in P
3 of degree less than 12. Then

C ⊂ Q.

Proof We may assume that C is G144-irreducible. Suppose that C is not contained in
the quadric Q. Let us seek for a contradiction. Observe that

C · Q = 2 · deg(C) � 22.

Thus, it follows from Lemma 4.4 that deg(C) = 8, and the intersectionC∩Q is one of
the orbits �1

16, �
2
16, �

3
16 or �4

16. Then the curve C does not contains other G144-orbits
of length 16 in P

3, because all of them lie inQ by Lemma 4.10. Let Sk be the surface
among S1, S2, S3 and S4 that does not contain C ∩ Q. Then Sk does not contain the
curve C . On the other hand, we have

C · Sk = 4 · deg(C) = 32.

Hence, the intersection C ∩ Sk is one of the G144-orbits �1
16, �2

16, �3
16, �4

16 by
Lemma 4.10. This is impossible, since Sk does not contain the G144-orbit C ∩Q, and
C does not contain other G144-orbits of length 16. �	
Lemma 4.16 Let C be a reducible G144-irreducible curve in P

3 of degree less than
16. Then C ⊂ Q.

Proof Suppose that C is not contained in the quadric Q. Then deg(C) � 12 by
Lemma 4.15. Moreover, since

30 � 2 · deg(C) = C · Q,

we see that deg(C) = 12 by Lemma 4.4.
Let C = C1 + · · · + Cr , where Ci is an irreducible curve of degree d. Denote by

� the stabilizer in G144 of the curve C1. Since rd = deg(C) = 12 and G144 does not
have subgroups of index 2 by Lemma 4.1(vii), we see that either r = 3 and d = 4,
or r = 4 and d = 3, or r = 6 and d = 2, or r = 12 and d = 1. If d �= 1, then C1
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is not contained in a plane, because there are no G144-orbits in P
3 of length at most

6 by Lemma 4.10. In particular, the curve C1 is not a conic, so that r �= 6. We also
conclude that � acts faithfully on C1 and on its normalization in the case when d �= 1.
Thus, the curve C is either a union of 3 irreducible quartic curves, or a union of 4
cubic curves, or a union of 12 lines. Let us deal with each of these cases one by one.

Suppose that r = 3 and d = 4. Then |�| = 48, so that � contains the subgroup H
by Lemma 4.1(ii). On the other hand, the curve C1 must be either rational or elliptic,
because d = 4 and C1 is not contained in a plane. This is impossible by Lemma 3.3.

Suppose that r = 4 and d = 3. ThenC1 is a twisted cubic curve. One has |�| = 36,
so that� has a surjective homomorphism toA4 by Lemma 4.1(viii). This is impossible
by the classification of finite subgroups in PGL2(C).

We see that r = 12 and d = 1, so that C1 is a line and |�| = 12. Since C ·Q = 24,
we conclude from Lemma 4.4 that C ∩ Q is one of the G144-orbits �1

24, �2
24, �3

24
or �4

24. Without loss of generality, we may assume that C ∩ Q = �1
24. We see that

every irreducible component of the curveC contains exactly twopoints in�1
24, because

every line Ci can intersect Q by at most two points. Write C1 ∩ �1
24 = {P, Q}, and

denote the stabilizer of the point P in G144 by �P . Then |�P | = 6, so that �P ∼= µ6
by Lemma 4.1(v). On the other hand, the stabilizer of this point in � has index at
most 2. This means that this stabilizer is the group �P , so that �P ⊂ �. Now using
Lemma 4.1(v) again, we see that � ∼= µ2

2 × µ3 and � is of product type. Pick an
element γ ∈ � such that γ /∈ �P and the order of γ is two. Recall that

�1
24 = L1

4 ∩ L2
6.

Then γ preserves the irreducible component of L1
4 that contains the point P . Denote

it by L . This means that Q = γ (P) ∈ L , so that the lines L and C1 coincide, which
is impossible, since C1 is not contained in Q by assumption. �	

Let us describe the intersections Si ∩ S j , 1 � i < j � 4.

Lemma 4.17 Both S1 ∩ S2 and S3 ∩ S4 are G144-irreducible curves that are unions of
16 lines.

Proof It is enough to show that S1 ∩ S2 is a G144-irreducible curve that is a union of
16 lines, since the proof is identical in the remaining case. Write

S2
∣
∣
S1

=
r∑

i=1

ni Zi ,

where each Zi is a G144-irreducible curve, each ni is a positive integer, and r � 1.
We may assume that deg(Zi ) � deg(Z j ) for i � j . Then

16 =
r∑

i=1

nideg(Zi ).
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Note that the intersection S1 ∩ S2 does not contain the curve L1
6 and the curve L2

6,
simply because S1 and S2 do not contain them. Indeed, the restrictions S1|Q and S2|Q
are divisors of bi-degree (4, 4) on the quadricQ ∼= P

1 ×P
1, while both curves L1

6 and
L2
6 are divisors onQ of bi-degree (6, 0) and (0, 6), respectively. Moreover, it follows

from Remark 4.14 that the intersection S1 ∩ S2 cannot contain two curves among L1
4,

L2
4, L3

4 and L4
4. Thus, it follows from Lemmas 4.5 and 4.15 that one of the following

cases holds:

• either r = 1 and n1 = 1,
• or r = 2, n1 = n2 = 1, deg(Z2) = 12, and Z1 is one of the curves L1

4, L2
4, L3

4,
L4
4.

Let f : S̃1 → S1 be the minimal resolution of singularities of the surface S1.
Then the action of the group G144 lifts to the surface S̃1. Denote by E1, . . . , E12 the
exceptional curves of the birational morphism f . Let E = E1 + · · · + E12, and let H
be a plane section of the surface S1. Denote by Z̃i the proper transform of the curve
Zi on the surface S̃1. Then

r∑

i=1

Zi ∼ f ∗(4H) − mE

for some none-negative integer m. Moreover, we have m � 2, since S2 is singular at
every point of �12. On the other hand, since S̃1 is a smooth K3 surface, we have

Z̃2
i � −2 · deg(Zi ),

because the curve Z̃i cannot consist of more than deg(Zi ) irreducible components.
If r = 2, then Z̃2

1 = −8 and Z̃1 · E = 0, since Z1 is a disjoint union of 4 lines that
does not contain �12. In this case, we have

−24 = −2 · deg(Z2
)

� Z̃2
2 =

(
f ∗(4H) − mE − Z̃1

)2 = 64 − 24m2 − 40 � −72,

which is absurd.
Thus, we see that r = 1, so that S1 ∩ S2 = Z1 is a G144-irreducible curve of degree

16. This gives

−32 = −2 · deg(Z1
)

� Z̃2
1 =

(
f ∗(4H) − mE

)2 = 64 − 24m2 � −32,

so that Z̃2
1 = −2 · deg(Z1). This easily implies that Z1 is a union of deg(Z1) = 16

lines, cf. the proof of [10, Lemma 10.1.1]. �	
As we already mentioned in Remark 4.14, each of the intersections S1 ∩Q, S2 ∩Q,

S3∩Q and S4∩Q is one of the unionsL1
4∪L3

4,L1
4∪L4

4,L2
4∪L3

4 orL2
4∪L4

4. On the other
hand, we just proved that the intersections S1 ∩ S2 and S3 ∩ S4 are G144-irreducible
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curves. Thus, without loss of generality, we may assume that

S1 ∩Q = L2
4 ∪L4

4, S2 ∩Q = L1
4 ∪L3

4, S3 ∩Q = L1
4 ∪L4

4, S4 ∩Q = L2
4 ∪L3

4.

(4.18)
Using this, we can determine which G144-orbit �1

16, �2
16, �3

16, �4
16 is contained in

which surface S1, S2, S3 and S4. This is summarized in the following table.

S1 S2 S3 S4

�1
16 − + + +

�2
16 + + + −

�3
16 + + − +

�4
16 + − + +

Observe that the intersection S1 ∩ S3 contains the curve L4
4, the intersection S1 ∩

S4 contains the curve L2
4, the intersection S2 ∩ S3 contains the curve L1

4, and the
intersection S2 ∩ S4 contains the curve L3

4. This gives

Lemma 4.19 One has

S1 ∩ S3=L4
4 ∪ C4

12, S1 ∩ S4=L2
4 ∪ C2

12, S2 ∩ S3=L1
4 ∪ C1

12, S2 ∩ S4 = L3
4 ∪ C3

12,

where C1
12, C

2
12, C

3
12 and C

4
12 are distinct G144-invariant irreducible smooth curves in

P
3 of degree 12 and genus 13.

Proof It is enough to prove that S1 ∩ S3 = L4
4 ∪ C4

12, where C
4
12 is a G144-invariant

irreducible smooth curve of degree 12 and genus 13. We see from (4.18) that S1 and
S3 contain the curve L4

4. Thus, we write

S3
∣∣
S1

= mL4
4 +

r∑

i=1

ni Zi ,

wherem is a positive integer, each Zi is a G144-irreducible curve that is different from
L4
4, each ni is a positive integer, and r � 0. Then

16 = 4m +
r∑

i=1

nideg(Zi ).

Note that r is actually positive, since S3|S1 is an ample divisor. Ifm � 2 or r � 2, then
deg(Zi ) < 12 for each curve Zi , so that Zi is contained in Q by Lemma 4.15, which
contradicts (4.18). Thus, we see that m = 1 and r = 1. Similarly, we obtain n1 = 1.

For simplicity, denote Z = Z1. Let H be a plane section of the surface S1. Then

S3
∣∣
S1

= L4
4 + Z ∼ 4H .
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Note that the curve Z is contained in the smooth locus of S1, because S1 ∩ S3 does
not contain �12 by (4.11). Thus, we have

−8 + L4
4 · Z = L4

4 ·
(
L4
4 + Z

)
= 4H · L4

4 = 16,

so that L4
4 · Z = 24 on the surface S1. This gives

Z2 + 24 = Z2 + L4
4 · Z = Z ·

(
L4
4 + Z

)
= 4H · Z = 48,

so that Z2 = 24.
If Z is reducible, then Z is contained in the quadric Q by Lemma 4.16, which is

impossible, because S1 ∩ Q = L2
4 ∪ L4

4 by (4.18). Thus, we see that Z is irreducible.
Then it has arithmetic genus 13. If Z is singular, then it has at least 12 singular points by
Lemma 4.10. In this case, the genus of its normalization is at most 1, which contradicts
Lemma 4.2. Therefore, we see that the curve Z is smooth. �	
Corollary 4.20 Let C be one of the curves C1

12, C
2
12, C

3
12, C

4
12, and letM be the linear

system of surfaces inP
3 of degree 6 that contains C. Then the base locus ofM consists

of the curve C.

Proof Without loss of generality, we may assume that C = C4
12. Then C is contained

in S1 and

S3
∣∣
S1

= L4
4 + C .

by Lemma 4.19. Note that both curves L4
4 and C are contained in the smooth locus

of the surface S1 by (4.11) and Lemma 4.12. Let H be a plane section of S1, and let
D = 2H + L4

4. Then D2 = 24 and D is nef, since D · L4
4 = 0. Using the Riemann–

Roch formula and Nadel vanishing theorem (see [30, Theorem 9.4.8]), we see that
h0(OS1(D)) = 14. This implies that the linear system |D| does not have fixed curves.
Indeed, if it does, then its fixed part must be the curve L4

4, so that

14 = h0
(
OS1

(
D

)) = h0
(
OS1

(
2H

)) = 10,

which is absurd. Thus |D| does not have base points by [39, Corollary 3.2]. Therefore,
the linear system |6H − C | is base point free. Since S1 is projectively normal, we
immediately obtain the required assertions. �	
Corollary 4.21 Let D be a (non-empty) mobile G144-invariant linear system on P

3,
let n be a positive integer such that D ∼ OP3(n), and let C be one of the curves C1

12,
C2
12, C

3
12 or C

4
12. Then multC (D) � n

4 .

Proof Without loss of generality, we may assume that C = C4
12. Then C is contained

in the surface S1 by Lemma 4.19, and S3|S1 = L4
4 + C . Let D be a general surface in



Finite collineation groups and birational rigidity Page 31 of 68 71

D. Then

D|S1 = aC + bL4
4 + �,

where a and b are non-negative integers such that a � multC (D), and� is an effective
divisor on S1 whose support contains neither C nor any irreducible component of the
curve L4

4. Then

aC + bL4
4 + � ∼Q

n

4

(
L4
4 + C

)
.

If a > n
4 , then b < n

4 , since we have

(n
4

− b
)
L4
4 ∼Q

(
a − n

4

)
C + �.

Therefore, if a > n
4 , then

0 > −8
(n
4

− b
)

=
(n
4

− b
)
L4
4 · L4

4 =
(
a − n

4

)
L4
4 · C + L4

4 · � � 0,

which is absurd. This shows that multC (D) � a � n
4 as required. �	

Now we are ready to prove.

Theorem 4.22 Let C be G144-irreducible curve in P
3 such that deg(C) � 15. Then

one of the following cases holds:

• deg(C) = 4, and C is one of the curves L1
4, L2

4, L3
4, L4

4;• deg(C) = 6, and C is one of the curves L1
6 or L2

6;• deg(C) = 12, and C is one of the smooth irreducible curves C1
12, C

2
12, C

3
12, C

4
12;• deg(C) = 12, and C is a union of 12 disjoint lines contained in the quadric Q.

Proof By Lemma 4.5, we may assume that C is not contained in the quadric Q.
Then deg(C) � 12 by Lemma 4.15, and C is irreducible by Lemma 4.16. Moreover,
since

30 � 2 · deg(C) = C · Q,

we see that deg(C) = 12 by Lemma 4.4. Let us show that C is one of the smooth
irreducible curves C1

12, C
2
12, C

3
12 or C

4
12.

Since C ·Q = 24, it follows from Lemma 4.4 that C ∩Q is a G144-orbit of length
24, and C intersects Q transversally at the points of C ∩ Q. In particular, the curve
C is smooth at these points. Recall from Lemma 4.10 that all G144-orbits of length
24 in P

3 and all G144-orbits of length 16 in P
3 are contained in Q. Thus, the curve C

does not contain G144-orbits of length 24 that are different from C ∩ Q, and it does
not contain G144-orbits of length 16. Without loss of generality, we may assume that

C ∩ Q = �1
24 = L1

4 ∩ L2
6
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Recall that�1
24 is contained in S2∩S3, because S2∩Q = L1

4∪L3
4 and S3∩Q = L1

4∪L4
4,

see (4.18). Since S2 · C = S3 · C = 48, it follows from Lemma 4.10, (4.11) and
Lemma 4.12 that one of the following cases holds:

• the curve C is contained in one of the surfaces S2 and S3,
• both S2 and S3 are tangent to C at the points of �1

24, and S2 ∩C = S3 ∩C = �1
24,• S2 ∩ C = �1

24 ∪ �12 or S3 ∩ C = �1
24 ∪ �′

12.

Suppose that S2 ∩ C = �1
24 ∪ �12. Since C is irreducible, it must be singular at

every point of �12 by Lemma 4.2. Then

48 = S2 · C � |�1
24|mult�1

24
(S2) + |�12|mult�12(S2)mult�12(C) � 72,

which is absurd. Thus, we have S2 ∩ C �= �1
24 ∪ �12. Similarly, we see that the

intersection S3 ∩ C is not the union �1
24 ∪ �′

12.
Suppose that the surfaces S2 and S3 are tangent to the curve C at the points of �1

24,
and

S2 ∩ C = S3 ∩ C = �1
24.

LetP be the pencil generated by S2 and S3. ThenP isG144-invariant. Moreover, every
surface in this pencil either contains C or is tangent to the curve C at the points of �1

24
(here we include the case when the surface is singular at some points of �1

24). This
implies that there exists a surface S in P that contains C . Indeed, let P be a point in
C that is not contained in �1

24, and let S be a surface in P that passes through P . If C
is not contained in S, then we obtain contradictory inequalities

48 = S · C �
∑

Q∈�1
24

multQ
(
S · C

)
+ multP

(
S · C

)
� 2|�1

24| + 1 = 49,

because S is tangent to C at the points of �1
24. Thus, we see that the curve C is

contained in S. Moreover, if S is not G144-invariant, then there exists ḡ ∈ G144 such
that ḡ(S) �= S, so that ḡ(S) ∈ P , and the surfaces S and ḡ(S) generate thewhole pencil
P . This implies that C is contained in S2 ∩ S3, which is not the case by assumption.

We are left with the case when C is contained in one of the surfaces S2 and S3.
Without loss of generality, we may assume that C ⊂ S2. Let us show that the curve C
is also contained in S3. This would imply that C = C1

12 by Lemma 4.19.
Let f : S̃2 → S2 be the minimal resolution of singularities of the surface S2. Then

the action of the group G144 lifts to the surface S̃2. Denote by E1, . . . , E12 the f -
exceptional curves. Let E = E1 + · · · + E12, and let H be a plane section of the
surface S2. Denote by C̃ the proper transform of the curve C on the surface S̃2. Recall
from Lemma 4.19 that S2 ∩ S3 = L1

4 ∪ C1
12 and S2 ∩ S4 = L3

4 ∪ C3
12. Denote by C̃

1
12

and C̃3
12 the proper transforms on the surface S̃2 of the curvesC1

12 andC
3
12, respectively.

Similarly, denote by L̃1
4 and L̃3

4 the proper transforms on the surface S̃2 of the curves
L1
4 and L3

4, respectively. Since

Sing(S2) = �12 �⊂ S3 ∪ S4
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by (4.11) and Lemma 4.12, we have

L̃1
4 + C̃1

12 ∼ L̃3
4 + C̃3

12 ∼ f ∗(4H).

Moreover, we have L̃1
4+L̃3

4 ∼ f ∗(2H), so that C̃ ·(L̃1
4+L̃3

4) = 24. Using Lemma 4.4
and keeping in mind that the curve C contains the G144-orbit �1

24 = L1
4 ∩ L2

6, we
conclude that C̃ · L̃1

4 = 24 and C̃ · L̃3
4 = 0. Thus

48 = C̃ ·
(
L̃1
4 + C̃1

12

)
= 24 + C̃ · C̃1

12,

so that C̃ · C̃1
12 = 24. Therefore, it follows from Hodge index theorem that

∣∣∣
∣

C̃2 C̃ · C̃1
12

C̃ · C̃1
12 C̃1

12 · C̃1
12

∣∣∣
∣ =

∣∣∣
∣
C̃2 24
24 24

∣∣∣
∣ � 0.

This implies that either C̃2 � 22 or C̃2 = 24. Therefore, the arithmetic genus of the
curve C̃ is at most

C̃2

2
+ 1 � 13.

If C̃ is singular, then it has at least 12 singular points by Lemma 4.10. In this case,
the genus of its normalization is at most 1, which contradicts Lemma 4.2. Thus, we
see that the curve C̃ is a smooth curve of genus C̃2

2 + 1. Therefore, it follows from
Lemma 4.2 that C̃2 = 24, because C̃ contains G144-orbits of length 24, for instance,
the G144-orbit C̃ ∩ L̃1

4. Thus, it follows from Hodge index theorem that the curves C̃
and C̃1

12 are numerically equivalent on S̃2, so that C̃ ∼ C̃1
12. Hence C̃ · E = 0, so that

C does not contain the singular locus of the surface S2, which implies that

C + L1
4 ∼ 4H .

Since S2 is projectively normal, we see that C = C1
12 by Lemma 4.19. �	

5 The group of order 80

Let us use notation and assumptions of Sect. 3. In this section, we present basic facts
about G80-orbits, G80-invariant curves and G80-invariant surfaces in P

3. Let us start
with the following very easy group-theoretic result.

Lemma 5.1 Let � be a proper non-trivial subgroup of the group G80. Then � is
isomorphic to one of the following groups:µ2,µ

2
2,µ

3
2,µ

4
2, orµ5.Moreover, a subgroup

of G80 isomorphic to µ4
2 is unique, and a subgroup isomorphic to µ5 is unique up

to conjugation. Furthermore, the only non-trivial proper normal subgroup of G80 is
H ∼= µ4

2.
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Proof Sylow theorems imply that the order of every non-trivial element of G80 equals
either 2 or 5. If every non-trivial element of � has order 2, then � is contained in the
Sylow 2-subgroup of G80, which is exactly H. If every non-trivial element of � has
order 5, then � ∼= µ5. The uniqueness assertions for subgroups isomorphic to µ4

2 and
µ5 also follow from Sylow theorems.

Suppose that � contains both elements of order 2 and elements of order 5. Then it
is isomorphic to �′

� µ5, where �′ is a non-trivial proper subgroup of the group H
that is invariant under the action of

G80/H ∼= µ5 ⊂ GL4
(
F2

)

onH. However, the groupµ5 is not a subgroup of GLk(F2) for k � 3. This implies that
the action of µ5 on F4

2 is irreducible, so that H has no non-trivial proper µ5-invariant
subgroups. Therefore, we see that � = G80.

Now we suppose that � is a non-trivial normal subgroup of G80. Then � is not
isomorphic to µ5. Also we know from the above arguments that it cannot be a proper
subgroup of µ4

2. Thus, if � � µ4
2, then � must contain both elements of order 2 and

elements of order 5. This implies that � = G80. �	
Corollary 5.2 Let G be a finite subgroup in PGL4(C) that is isomorphic to G80. Then
G is conjugate to G80.

Proof It follows from [4, Chapter VII] that G is conjugate to G80 provided that G is
primitive. Suppose G is not primitive. Let us seek for a contradiction. To start with,
suppose that G is transitive. Then either there exists a G-orbit of length 4, or there
exists aG-invariant pair of skew lines. In the former case, we have a non-trivial homo-
morphismG → S4. In the latter case, we have a non-trivial homomorphismG → S2.
None of this is possible by Lemma 5.1.

Thus, we see that G is intransitive. Then either there exists a G-invariant point P ,
or there exist a G-invariant line L . In the former case, the group G acts faithfully on
the tangent space TP (P3) ∼= C

3 by [10, Lemma 4.4.1], which is impossible, because
GL3(C) does not contain subgroups isomorphic to µ4

2. In the latter case, we obtain a
homomorphism

G → Aut
(
L
) ∼= PGL2

(
C

)
.

We conclude from Lemma 5.1 and the classification of finite subgroups in PGL2(C)

that the kernel of this homomorphism contains the subgroup in G isomorphic to µ4
2,

so that this subgroup must fix every point in L , which is again impossible by [10,
Lemma 4.4.1]. �	

To study G80-invariant curves in P
3, we need the following result, which follows

from the Riemann–Hurwitz formula.

Lemma 5.3 Let C be a smooth irreducible curve of genus g � 19 with a faithful
action of the group G80. Then g ∈ {5, 13, 17}, and C is not hyperelliptic. Furthermore,
if � ⊂ C is a G80-orbit, then |�| ∈ {16, 40, 80}. Finally, the possible numbers ai of
G80-orbits of length i ∈ {16, 40} in C are contained in the following table:
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g 5 13 17

a16 2 1 3
a40 1 3 0

Proof The assertion about the lengths of G80-orbits follows from Lemma 5.1, since
the stabilizers inG80 of points inC must be cyclic (see [10, Lemma 5.1.4]). Moreover,
the groupG80 cannot act faithfully onP

1 and on a smooth elliptic curve by Lemma 3.3.
Hence, one has g � 2.

Suppose that the curve C is hyperelliptic. Since the group G80 does not contain
normal subgroups of order 2 by Lemma 5.1, it does not contain the hyperelliptic
involution of C , and we obtain a faithful action of the group G80 on P

1. We already
proved that this is impossible by Lemma 3.3.

Let Ĉ = C/G80. Then Ĉ is a smooth curve. Let ĝ be the genus of the curve Ĉ .
Then the Riemann–Hurwitz formula gives

2g − 2 = 80
(
2ĝ − 2

) + 40a40 + 64a16.

Since ak � 0 and g � 19, one has ĝ = 0, so that

2g − 2 = −160 + 40a40 + 64a16,

Going through the possible values of g, and solving this equation case by case we
obtain the required result. �	
Lemma 5.4 There are exactly four G80-orbits of length 16 in P

3.

Proof A subgroup µ5 ⊂ G80 has a fixed point in P
3, so that the length of its G80-orbit

is 16 by Lemma 5.1. This shows that there is at least one G80-orbit of length 16 in P
3.

Now let � be a stabilizer of a point in a G80-orbit of length 16. Then � ∼= µ5.
By Lemma 5.1, the subgroup � is conjugate to the subgroup generated by the image
T in PGL4(C). On the other hand, the eigenvalues of the matrix T are four distinct
primitive fifth roots of unity. Since the normalizer of � in G80 coincides with � by
Lemma 5.1, we conclude that there are exactly four G80-orbits of length 16 in P

3. �	
Let us denote theG80-orbits of length16 inP

3 by�1
16,�

2
16,�

3
16 and�4

16.Computing
the null-spaces of thematrices T −ξ i5 I4, 1 � i � 4, one can find these orbits explicitly.
In particular, we may assume that

[
(−1 + i)ξ35 + (−1 + i)ξ25 − ξ5 − 1 : 1 + (1 + i)ξ25 + ξ5 : 1

+(1 + i)ξ35 + ξ5 : ξ5 − 1
] ∈ �1

16,[
(1 + i)ξ35 + (1 − i)ξ25 + iξ5 + 1 : −2ξ35 + (−1 − i)ξ25 − ξ5 − 2 − i : (−1 + i)

ξ35 + iξ5 + i : ξ5 − 1
] ∈ �2

16,
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[ − 2iξ35 + (1 − i)ξ25 − iξ5 + 1 − 2i : (1 − i)ξ35 − (1 + i)ξ25 + ξ5 − i : (1 − i)

ξ35 − iξ5 − i : ξ5 − 1
] ∈ �3

16,

and

[
(−1 + i)ξ25 + iξ5 + i : (1 + i)ξ35 + (1 + i)ξ25

+iξ5 + i : −1 + (−1 − i)ξ35 − ξ5 : ξ5 − 1
] ∈ �4

16.

Recall from Sect. 3, that there are three G80-orbits �20, �′
20 and �′′

20 of length 20
in P

3 described by (3.15), (3.16) and (3.17), respectively.

Lemma 5.5 The orbits �20, �′
20 and �′′

20 are the only G80-orbits of length 20 in P
3.

Proof Let � be a G80-orbit of length 20, let P be a point in �, and let � be the
stabilizer in G80 of the point P . Then � ∼= µ2

2 by Lemma 5.1. Let γ1, γ2 and γ3 be
three non-trivial elements in �. Then the locus of fixed points of each of them consists
of two skew lines in P

3 by Lemma 3.2(i). One of the lines from each pair must pass
through the point P , so that P ∈ �20 ∪ �′

20 ∪ �′′
20 by Lemma 3.18. �	

To describe G80-orbits in P
3 of length 40, recall from Lemma 3.2(i) that there are

30 lines in P
3 such that each of them is pointwise fixed by some non-trivial element

in H. These lines have been described in (3.11), (3.12) and (3.13). Let

L10 =
5∑

i=1

�i +
5∑

i=1

�̌i .

Similarly, let

L′
10 =

5∑

i=1

�′
i +

5∑

i=1

�̌′
i .

Finally, we let

L′′
10 =

5∑

i=1

�′′
i +

5∑

i=1

�̌′′
i .

Then L10, L′
10, L′′

10 are G80-irreducible curves by construction.

Lemma 5.6 The curve L10 is a disjoint union of ten lines, L′
10 and L′′

10 are nodal
unions of ten lines, Sing(L′

10) = �′
20 �⊂ L′′

10 and Sing(L′′
10) = �′′

20 �⊂ L′
10. Moreover,

one has

L10 ∩ L′
10 ∩ L′′

10 = L′
10 ∩ L′′

10 = �20, L10 ∩ L′
10 = �20 ∪ �′

20,

L10 ∩ L′′
10 = �20 ∪ �′′

20,
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and �20 ∪ �′
20 ∪ �′′

20 ⊂ L10. Furthermore, the G80-orbit of every point in

(
L10 ∪ L′

10 ∪ L′′
10

)
\
(
�20 ∪ �′

20 ∪ �′′
20

)

consists of 40 points, and every G80-orbit in P
3 of length 40 is contained in L10 ∪

L′
10 ∪ L′′

10.

Proof It is straightforward to check using explicit equations of the lines ofL10 that they
are pairwise disjoint. Similarly, we see that L10 contains �20, �′

20 and �′′
20. Likewise,

the curve L′
10 contains �20 and �′

20, and it does not contain �′′
20. Moreover, for every

point in �′
20, there are exactly two among the ten lines of L′

10 that pass through this
point, and all these ten lines are pairwise disjoint away from �′

20. This means that the
curve L′

10 is nodal and Sing(L′
10) = �′

20. In fact, one can also check that

�′
i ∩ �′

j �= ∅ ⇐⇒ �̌′
i ∩ �̌′

j �= ∅ ⇐⇒ �′
i ∩ �̌′

j �= ∅ ⇐⇒ j − i = ±1 mod 5.

Similarly,we see thatL′′
10 contains�20∪�′′

20, and it does not contain�′
20. Furthermore,

for every point in �′′
20, there are exactly two lines among the ten lines of L′′

10 that pass
through this point, the lines of L′′

10 do not intersect each other in other points, and

�′′
i ∩ �′′

j �= ∅ ⇐⇒ �̌′′
i ∩ �̌′′

j �= ∅ ⇐⇒ �′′
i ∩ �̌′′

j �= ∅ ⇐⇒ j − i = ±2 mod 5.

In particular, the curve L′′
10 is nodal, and Sing(L′′

10) = �′′
20.

Explicit computations show that

L′
10 ∩ L′′

10 = �20, L10 ∩ L′
10 = �20 ∪ �′

20, L10 ∩ L′′
10 = �20 ∪ �′′

20.

By Lemma 3.2(i), the curves L10, L′
10 and L′′

10 contain all G80-orbits in P
3 of

length 40.Vice versa, let P be a point inL10∪L′
10∪L′′

10 such that P /∈ �20∪�′
20∪�′′

20,
and let � be its G80-orbit. Then |�| �= 80 by construction. Thus, we have |�| = 40
by Lemmas 5.1 and 5.5. �	
Corollary 5.7 Let � be a G80-orbit in P

3 such that |�| < |G80| = 80. Then one of
the following possibilities holds:

• either |�| = 40 and � ⊂ L10 ∪ L′
10 ∪ L′′

10,
• or |�| = 20 and � is one of the G80-orbits �20, �′

20, �
′′
20,

• or |�| = 16 and � is one of the G80-orbits �1
16, �

2
16, �

3
16, �

4
16.

Proof Let � be a stabilizer of a point in �. If � ∼= µ2, then |�| = 40, and the
assertion follows from Lemma 5.6. If � ∼= µ2

2, then |�| = 20, and the assertion
follows from Lemma 5.5. If � ∼= µ5, then |�| = 16, and the assertion follows from
Lemma 5.4. Otherwise, the group � contains a subgroup µ3

2 ⊂ H by Lemma 5.1,
which is impossible by Lemma 3.2(iii). �	

Now we are ready to prove.
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Lemma 5.8 Let C be a reducible G80-invariant curve in P
3 such that deg(C) � 15.

Then C is one of the curves L10, L′
10 or L′′

10.

Proof Wemay assume that the curve C is G80-irreducible. Write C = C1 + · · ·+Cr ,
where each Ci is an irreducible curve. Then r � 2 by assumption. Let d be the degree
of the curve C1. Then

15 � deg(C) = dr .

Let � be the stabilizer in G80 of the curve C1. Then there exists an exact sequence of
groups

1 → �C1 → � → Aut(C1),

where �C1 fixes the curveC1 pointwise. By Corollary 5.7, there are only finitely many
G80-orbits in P

3 of length at most 20. Thus, we see that |�C1 | < 4, so that either �C1

is trivial or �C1
∼= µ2.

By Lemma 5.1, the group � is one of the groups µ2, µ
2
2, µ

3
2, µ

4
2 or µ5. Since

r |�| = |G80| = 80

and 15 > dr , we see that either r = 5 or 10.
Suppose that r = 5. Then � ∼= µ4

2 and �/�C1 ⊃ µ3
2. Hence, the curve C1 is not

rational, because the group µ3
2 does not act faithfully on P

1. Since d � 3, the curve
C1 is a smooth plane cubic curve. Hence there is a G80-invariant set of 5 planes in P

3,
which implies that there exists a G80-orbit in P

3 of length 5. The latter is impossible
by Corollary 5.7.

Thus, we see that r = 10, which implies that d = 1, so that C1 is a line. In this
case � ∼= µ3

2 and �C1
∼= µ2, because µ3

2 cannot act faithfully on P
1. Then C1 is

one of two lines that is pointwise fixed by �C1 , cf. Lemma 3.2(i). Now it follows
from Lemma 5.6 that C1 is an irreducible component of one of the curves L10, L′

10,
L′′
10. �	

Corollary 5.9 There are no G80-invariant curves in P
3 of degree less than 5.

Proof Let C be a G80-invariant curve in P
3 of degree less 5. Then C is irreducible by

Lemma 5.8. Thus the genus of its normalization is at most 3, which is impossible by
Lemma 5.3. �	

Using Lemma 3.14, we obtain the following two technical results.

Lemma 5.10 Let M (respectively, M′, M′′) be the linear system of surfaces in P
3

of degree 6 (respectively, 4, 4) that contains L10 (respectively, L′
10, L′′

10). Then the
base locus of M (respectively, M′, M′′) does not contain curves except for L10
(respectively, L′

10, L′′
10).
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Proof Recall from Sect. 3, that P
3 contains ten H-invariant quadrics Qi , where 1 �

i � 10, which are defined by Eqs. (3.8) and (3.9). For every i < j < k, define the
reducible sextic surface

Ti, j,k = Qi + Q j + Qk .

By Lemma 3.14, the curve L10 is contained in T1,2,4, T3,5,6, T2,4,5, T2,3,5, T7,8,9,
T1,6,10 and T6,9,10, so that these surfaces are contained in the linear systemM. Using
Lemma 3.14, one can check that

T1,2,4 ∩ T3,5,6 = L10 ∪ �′
1 ∪ �̌′

1 ∪ �′
3 ∪ �̌′

3 ∪ �′′
2 ∪ �̌′′

2 ∪ �′′
3 ∪ �̌′′

3 ∪ �′′
4 ∪ �̌′′

4 ∪ �′′
5 ∪ �̌′′

5.

On the other hand, the sextic surface T2,4,5 does not contain the lines �′
1 and �̌′

1, and
the sextic surface T2,3,5 does not contain the lines �′

3 and �̌′
3. This also follows from

Lemma 3.14. Similarly, the sextic surface T7,8,9 does not contain the lines �′′
4, �̌

′′
4, �

′′
5

and �̌′′
5, the sextic surface T1,6,10 does not contain the lines �′′

3 and �̌′′
3, and the sextic

surface T6,9,10 does not contain the lines �′′
2 and �̌′′

2. Thus, the intersection of the above
seven sextic surfaces does not contain other curves except for L10, so that the same
holds for the base locus of M.

For every i < j , define the reducible quartic surface

Ri, j = Qi + Q j .

By Lemma 3.14, the curve L′
10 is contained in R6,7, R8,10 and R9,10, so that these

surfaces are contained in the linear system M′. Using Lemma 3.14 one more time,
we see that

R6,7 ∩ R8,10 = L′
10 ∪ �5 ∪ �̌5.

However, the surface R9,10 does not contain the lines �5 and �̌5. This shows that the
base locus of M′ does not contain curves except for L′

10.
Similarly, the quartics R1,2, R3,4 and R4,5 contain the curveL′′

10.UsingLemma3.14,
one can check that

R1,2 ∩ R3,4 = L′′
10 ∪ �4 ∪ �̌4.

However, the surface R4,5 does not contain the lines �4 and �̌5, which implies that the
base locus of M′′ does not contain curves except for L′′

10. �	

Lemma 5.11 Let D be a (non-empty) mobile G80-invariant linear system on P
3, and

let n be a positive integer such that D ∼ OP3(n). Then

max
{
multL10

(D)
,multL′

10

(D)
,multL′′

10

(D)}
� n

4
.
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Proof Let us use the notation of the proof of Lemma 5.6. Let D be a general surface
in D. Since the lines �1, �5, �̌1 and �̌5 are contained in the quadric surface Q1 by
Lemma 3.14, we have

D|Q1 = m
(
�1 + �5 + �̌1 + �̌5

) + �,

where m is a non-negative integer such that m � multL10(D), and � is an effective
divisor onQ1 whose support does not contain the lines �1, �5, �̌1 and �̌5. ByLemma5.6,
the lines �1, �5, �̌1 and �̌5 are disjoint. Thus, wemay assume that these lines are divisors
of bi-degree (1, 0) onQ1 ∼= P

1 × P
1. Let � be a general line inQ1 that is a divisor of

bi-degree (0, 1). Then

n = D · � = m
(
�1 + �5 + �̌1 + �̌5

) · � + � · � � m
(
�1 + �5 + �̌1 + �̌5

) · � = 4m,

so that multL10(D) � m � n
4 as required. Similarly, it follows from Lemma 3.14 that

the quadric Q1 also contains the lines �′′
1, �

′′
2, �

′′
4, �̌

′′
1, �̌

′′
2 and �̌′′

4. Moreover, it follows
from the proof of Lemma 5.6 that the four lines �′′

1, �
′′
2, �̌

′′
1 and �̌′′

2 are disjoint. Arguing
as in the previous case, we see that multL′′

10
(D) � n

4 . Finally, observe that it also

follows from Lemma 3.14 that the quadric Q6 contains the lines �′
1, �′

2, �′
3, �̌′

1, �̌′
2

and �̌′
3. Furthermore, in the proof of Lemma 5.6 we established that the four lines �′

1,
�′
3, �̌

′
1 and �̌′

3 are disjoint, which implies that multL′
10

(D) � n
4 . �	

Remark 5.12 As we mentioned in the proof of Lemma 5.6, the lines �′
1, �′

2, �′
3, �′

4

and �′
5 form a “wheel” in P

3, the lines �̌′
1, �̌

′
2, �̌

′
3, �̌

′
4 and �̌′

5 also form a “wheel”, and
these two wheels intersect by ten points in �′

20. Using Lemma 5.10, one can check
that there exists a G80-commutative diagram

W
π α

P
3

ρ
X4

Hereπ is the blow up of the curveL′
10, themorphismα is given by the linear system |−

KW |, the map ρ is given by be the linear system of quartic surfaces in P
3 that contain

L′
10, and X4 is a quartic threefold in P

4. This configuration of ten lines in P
3 has been

studied by Todd [43] under generality assumption (and without group action). He
constructed the same commutative diagramwith α being a small birational morphism.
However, the position of our 10 lines is not general from this point of view. Namely, it
follows from the proof of Lemma 5.11 that the map α contracts the proper transforms
of the quadricsQ6,Q7,Q8,Q9 andQ10 (so that ourG80-commutative diagram can be
called a bad G80-Sarkisov link similarly to the terminology of [14]). One can consider
this as a geometrical meaning of Lemma 5.11. Similarly, the lines of L′′

10 form the
same configuration in P

3, which results in a similar G80-commutative diagram; the
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only difference in this case is that α contracts the proper transforms of the quadrics
Q1, Q2, Q3, Q4 and Q5.

Denote by S0, S1, S2, S3 and S4 the quartic surfaces in P
3 that are given by the

equations q0 = 0, q1 = 0, q2 = 0, q3 = 0 and q4 = 0, respectively. Here q0, q1, q2,
q3 and q4 are quartic polynomials in (3.21). Then S0, S1, S2, S3 and S4 are the only
G80-invariant quartic surfaces in P

3 by Lemma 3.10.

Lemma 5.13 The polynomials q0, q1, q2, q3 and q4 are irreducible. Moreover, the
surface S0 is smooth, and the surfaces S1, S2, S3 and S4 have isolated ordinary double
points. Furthermore, we have

Sing(S1) = �1
16, Sing(S2) = �2

16, Sing(S3) = �3
16, Sing(S4) = �4

16.

Proof We can deduce all required assertions using the explicit formulas of the poly-
nomials q0, q1, q2, q3 and q4. However, most of these assertions follow easily from
general facts. Namely, the irreducibility of the polynomials q0, q1, q2, q3 and q4 fol-
lows from Lemma 3.10. Now taking the general plane section of the surface Si , we
see that either it has isolated singularities, or its singular locus contains a G80-curve
of degree less than 4. The latter is impossible by Corollary 5.9. Thus, the surfaces S0,
S1, S2, S3 and S4 have isolated singularities.

By [45, Theorem 1], the surface Si cannot have more that two non-Du Val singular
points. Thus, the surface Si has at most Du Val singularities by Corollary 5.7. Then its
minimal resolution of singularities is a smooth K3 surface. Now using Corollary 5.7
and the fact that the rank of the Picard group of a smooth K3 surface is at most 20, we
see that either Si is smooth, or Si has isolated ordinary double points, and its singular
locus is one of the G80-orbits �1

16, �
2
16, �

3
16 or �4

16. Taking partial derivatives of the
polynomial q0 at the points of the set�1

16∪�2
16∪�3

16∪�4
16, we see that S0 is smooth.

Similarly, we see that Sing(Si ) = �i
16 for 1 � i � 4. �	

Corollary 5.14 Let � be one of the G80-orbits �1
16, �

2
16, �

3
16, �

4
16, and let M be the

linear system that consists of cubic surfaces in P
3 containing �. Then � is the base

locus of the linear system M.

Proof See the proof of Corollary 4.13. �	
The G80-orbits �20, �′

20 and �′′
20 are not contained in any of the quartic surfaces

S0, S1, S2, S3 and S4. By Lemma 5.6 and Corollary 5.7, this shows that each curve
amongL10,L′

10,L′′
10 intersects each surface among S0, S1, S2, S3 and S4 transversally

in a G80-orbit of length 40. Furthermore, by Lemma 5.6, the curves L10, L′
10 and L′′

10
contain all G80-orbits of length 40, and they are disjoint away from the G80-orbits of
length 20. Thus, we conclude that the surfaces S0, S1, S2, S3 and S4 contain exactly
three G80-orbits of length 40. Observe also that S0 contains all G80-orbits �1

16, �
2
16,

�3
16, �

4
16. This gives the following

Corollary 5.15 The group Pic(S0)G80 is generated by the plane section of S0.
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Table 2 Incidence between Si
and �

j
16

S1 S2 S3 S4

�1
16 Sing(S1) + − +

�2
16 − Sing(S2) + +

�3
16 + + Sing(S3) −

�4
16 + − + Sing(S4)

Proof By [33, Lemma 2.1], the action of the group G80 on the K3 surface S0 is
symplectic. Thus, the surface S0/G80 is a singular K3 surface. By construction, it has
four Du Val singular points of type A4 and three Du Val singular points of type A1.
The minimal resolution of singularities of this surface is a smooth K3 surface. Since
the rank of the Picard group of a smooth K3 surfaces cannot exceed 20, we see that
the rank of the Picard group of the surface S0/G80 must be 1. This shows that the rank
of the group Pic(S0)G80 is also 1. Since Pic(S0) has no torsion and the intersection
form of curves on the surface S0 is even, we see that the group Pic(S0)G80 is generated
by the plane section of S0. �	

Table 2 showswhichG80-orbit�1
16,�

2
16,�

3
16 and�4

16 is contained inwhich surface
S1, S2, S3 and S4.

In particular, we see that � j
16 ⊂ Si if and only if j �= 2i mod 5.

Now we are ready to prove.

Theorem 5.16 Let C be a G80-irreducible curve in P
3 such that deg(C) � 15.

Then C �⊂ S0 and one of the following cases holds:

• deg(C) = 10, and C is one of the curves L10, L′
10, L′′

10,• deg(C) = 12, and C is an irreducible smooth curve of genus 5 that is contained
in exactly one surface among S1, S2, S3, S4,

• deg(C) = 8, and C is an irreducible smooth curve of genus 5 such that either
C = S1 ∩ S4 and C contains Sing(S1)∪Sing(S1), or C = S2 ∩ S3 and C contains
Sing(S2) ∪ Sing(S3).

Proof Recall from Corollary 5.15 that the group Pic(S0)G80 is generated by the plane
section HS0 of the surface S0. Since there is an exact sequence of G80-representations

0 −→ H0
(
OP3

(
n − 4

)) −→ H0
(
OP3

(
n
)) −→ H0

(
OS0

(
nHS0

)) −→ 0

for every n � 1, we see that S0 does not contain C by Lemma 3.10.
By Lemma 5.8, we may assume that C is irreducible. Let d = deg(C). Then

4d = S0 · C = 16a + 40b

for some non-negative integers a and b, because�20,�′
20 and�′′

20 are not contained in
S0. Keeping in mind that d � 5 by Corollary 5.9, we have the following possibilities:
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d a b

8 2 0
10 0 1
12 3 0
14 1 1

Suppose that d = 14. Since a = 1 and S0 contains all G80-orbits of length 16 in
P
3, we see that the curve C contains a unique G80-orbit of length 16. Without loss of

generality, we may assume that C contains �1
16. Then C �⊂ S3, because S3 does not

contain �1
16, see Table 2. By Corollary 5.7, this implies that

56 = 4d = S3 · C

is divisible by 40, which is absurd. This shows that d �= 14, so that d � 12.
Pick four general points O1, O2, O3 and O4 in the curve C . Since C is irreducible,

their stabilizers in H are trivial. In particular, the H-orbits of these points consist
of 16 different points. On the other hand, the vector space generated by the quartic
polynomials

q0(x, y, z, w), q1(x, y, z, w), q2(x, y, z, w), q3(x, y, z, w), q4(x, y, z, w),

contains all H-invariant polynomials of degree 4. There exists [λ0 : λ1 : λ2 : λ3 :
λ4] ∈ P

4 such that the polynomial

λ0q0(x, y, z, w) + λ1q1(x, y, z, w) + λ2q2(x, y, z, w)

+λ3q3(x, y, z, w) + λ4q4(x, y, z, w)

vanishes at the four pointsO1,O2,O3 andO4. The latter polynomial defines a (possibly
reducible or non-reduced) H-invariant quartic surface S in P

3. Then S contains O1,
O2, O3 and O4 together with their H-orbits. This implies that

4d = S · C � 64

provided that the curve C is not contained in S. Since d � 12, we see that C ⊂ S.
Thus, the vector space of all H-invariant quartic polynomials in C[x, y, z, w] that
vanish along C is at least one-dimensional. Since H is a normal subgroup in G80, the
group

G80/H ∼= µ5

acts on this space. Keeping in mind that µ5 is abelian, we see that there exists at
least one G80-invariant quartic polynomial in C[x, y, z, w] that vanishes along the
curve C . Moreover, if d � 10, then the rank-nullity theorem implies that the vector
space consisting of all H-invariant quartic polynomials in C[x, y, z, w] that vanish
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along C is at least two-dimensional, because we can repeat the same arguments with
three general points in C instead of four. Therefore, if d � 10, then there exists at
least two linearly independent G80-invariant quartic polynomials in C[x, y, z, w] that
vanish at the curve C . Now using Lemma 5.13, we see that C is contained in one of
the surfaces S1, S2, S3 or S4. Moreover, if d � 10, then C is contained in at least two
surfaces among S1, S2, S3, S4.

Let t ∈ {1, 2, 3, 4} be such that C is contained in St . Denote by H the plane section
of the surface St . If d �= 12, then there is k ∈ {1, 2, 3, 4} such that C is contained in
the surfaces Sk and k �= t . In this case, we have

Sk |St = C + Z ,

where Z is a G80-invariant effective divisor such that H · Z = 16 − d � 8. On the
other hand, we already proved earlier that P

3 does not contain G80-invariant curves
of degree less than 8. This shows that d �= 10, so that either d = 8 or d = 12.

Recall that �t
16 is the singular locus of the surface St . Let f : S̃t → St be the

minimal resolution of singularities of the surface St . Then the action of the group G80
lifts to the surface S̃t , because f is the minimal resolution of singularities. Denote by
E1, . . . , E16 the f -exceptional curves, and denote by C̃ the proper transform of the
curve C on the surface S̃t . Let E = E1 + · · · + E16 and H̃ = f ∗(H). Then

C̃ ∼Q f ∗(C) − m

2
E

for some non-negative integer number m. By Hodge index theorem, one has

0 �
∣∣∣
∣

H̃2 H̃ · (C̃ + m
2 E)

H̃ · (C̃ + m
2 E) (C̃ + m

2 E)2

∣∣∣
∣ =

∣∣∣
∣
4 d
d (C̃ + m

2 E)2

∣∣∣
∣ = 4(C̃2 + 8m2) − d2.

This implies

C̃2 � d2

4
− 8m2.

Let g be the genus of the normalization of the curve C̃ , and let pa(C̃) be its arithmetic
genus. Then

g � pa(C̃) − ∣∣Sing(C̃)
∣∣ = C̃2

2
+ 1 − ∣∣Sing(C̃)

∣∣

� d2

8
− 4m2 + 1 − ∣∣Sing(C̃)

∣∣

� 144

8
− 4m2 + 1 − ∣∣Sing(C̃)

∣∣ = 19 − 4m2 − ∣∣Sing(C̃)
∣∣.

On the other hand, it follows from Lemma 5.3 that g � 5. Thus, as P
3 does not have

G80-orbits of length less than 16 by Corollary 5.7, we see that the curve C̃ is smooth,
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one has

g = pa(C̃) � 19 − 4m2,

and m � 1. In particular, since m � 1, we see that the curve C is also smooth.
Moreover, since g � 19, we have g ∈ {5, 13, 17} by Lemma 5.3.

Suppose that g = 17. ThenC contains threeG80-orbits of length 16 by Lemma 5.3.
Thus, the curveC contains everyG80-orbit�i

16 except for�
j
16 such that j = 2t mod 5,

because these are the only G80-orbits of length 16 contained in the surface St . Since
C contains �t

16 = Sing(St ), we have m � 1, which implies that m = 1, because we
proved already that m � 1. Since we also proved that g � 19 − 4m2, we have

17 = g � 19 − 4m2 = 15,

which is absurd. This shows that g �= 17.
Suppose that g = 13. Then C contains one G80-orbit of length 16 by Lemma 5.3.

Recall that there exists r ∈ {1, 2, 3, 4} such that the surface Sr that does not contain
this G80-orbit. Then C �⊂ Sr , so that Sr · C must be a multiple of 40 by Lemma 5.3.
Since

Sr · C = 4d,

we see that d is divisible by 10. This is impossible, because we already proved that
either d = 8 or d = 12. This shows that g �= 13.

We have seen that C is a smooth curve of degree d ∈ {8, 12} and genus 5 that is
contained in St such that t �= 0. In particular, we have seen that there are no G80-
invariant curves in P

3 of degree less than 8. Thus, if d = 12, then St is the only surface
among S1, S2, S3 and S4 that contains C . Therefore, to complete the proof of the
theorem, we may assume that d = 8. We have to show that either C = S1 ∩ S4 and C
contains Sing(S1) ∪ Sing(S1), or C = S2 ∩ S3 and C contains Sing(S2) ∪ Sing(S3).

Recall that C is also contained in a quartic surface Sk such that k �= t . Then

4H ∼ Sk |St = C + Z , (5.17)

where Z is a G80-invariant effective divisor such that H · Z = 8. Since we already
proved that P

3 does not contain G80-invariant curves of degree less than 8, we see
that Z is an irreducible curve of degree 8. Moreover, we already proved that every
G80-invariant curve in P

3 of degree 8 is a smooth curve of genus 5. In particular, we
see that Z is a smooth curve of genus 5. Note that, a priori, we may have the case
when Z = C (and it will turn out that this is exactly the case).

Suppose that both curves C and Z do not contain the singular locus of the surface
St . Then C2 = Z2 = 8 by the adjunction formula, which gives

32 = 4H · C = C · (C + Z) = C2 + C · Z = 8 + C · Z ,
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which implies that C · Z = 24. This is impossible. Indeed, if we have C = Z ,
then C · Z = C2 = 8. Similarly, if C �= Z , then

C · Z = 16α + 40β

for some non-negative integers α and β, because C only contains G80-orbits of length
16, 40 and 80 by Lemma 5.3. Thus, we see that C · Z �= 24. This shows that either C
or Z contains �t

16 = Sing(St ).
If �t

16 ⊂ C , then �t
16 ⊂ Z by (5.17), because both C and Z are smooth. Similarly,

if �t
16 ⊂ Z , then �t

16 ⊂ C . Thus, we see that �t
16 ⊂ C ∩ Z . Applying the same

arguments to the surface Sk , we see that

Sing(Sk) = �k
16 ⊂ C ∩ Z ,

which implies that k + t = 5 (see Table 2).
Denote by Z̃ the proper transform of the curve Z on the surface S̃t . Then

C̃ + Z̃ ∼ f ∗(4H) − E .

This follows from the fact that C + Z is a Cartier divisor at every point of �t
16,

because both C and Z are smooth and �t
16 ⊂ C ∩ Z . As above, the adjunction

formula gives C̃2 = Z̃2 = 8. Then

8 + C̃ · Z̃ = C̃2 + C̃ · Z̃ = C̃ · (
C̃ + Z̃

) = C̃ · (
f ∗(4H) − E

) = 32 − C̃ · E = 16,

so that C̃ · Z̃ = 8. Keeping in mind that C̃ only contains G80-orbits of length 16,
40, 80, we see that C̃ = Z̃ . Then C = Z , so that Sk ∩ St = C and k + t = 5 as
required. This completes the proof of Theorem 5.16. �	

It should be pointed out that Theorem 5.16 does not assert that the projective
space P

3 contains G80-irreducible curves of degree 8 and 12.

Remark 5.18 The G80-invariant curves of degree 8 in P
3 do exist. In fact, there are

exactly two of them. Indeed, one can show that the ideal in C[x, y, z, w] generated by
the polynomials

q1(x, y, z, w), q4(x, y, z, w),
∂q1
∂x

∂q4
∂ y

− ∂q4
∂x

∂q1
∂ y

,
∂q1
∂x

∂q4
∂z

− ∂q4
∂x

∂q1
∂z

,

∂q1
∂x

∂q4
∂w

− ∂q4
∂x

∂q1
∂w

,
∂q1
∂ y

∂q4
∂z

− ∂q4
∂ y

∂q1
∂z

,
∂q1
∂ y

∂q4
∂w

− ∂q4
∂ y

∂q1
∂w

,
∂q1
∂z

∂q4
∂w

− ∂q4
∂z

∂q1
∂w

defines a one-dimensional subscheme in P
3. This shows that the scheme-theoretic

intersection S1 · S4 is not reduced. By Theorem 5.16, this implies that the set-theoretic
intersection S1 ∩ S4 is a G80-invariant irreducible smooth curve of genus 5. Similarly,
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we see that S2∩ S3 is another G80-invariant irreducible smooth curve of genus 5. Note
that the curves S1 ∩ S4 and S2 ∩ S3 are projectively equivalent, since

R(S1) = S2, R(S2) = S4, R(S4) = S3, R(S3) = S1.

This also implies that both of these curves areG160-invariant, and they are swapped by
the group G320. In particular, there exists a smooth irreducible curve of genus 5 with
an action of the group G160 ∼= µ4

2 � D10. This curve is well-known: it is a complete
intersection in P

4 that is given by

⎧
⎪⎨

⎪⎩

x20 + x21 + x23 + x24 + x25 = 0,

x20 + ξ5x
2
1 + ξ25 x

2
3 + ξ35 x

2
4 + ξ45 x

2
5 = 0,

ξ45 x
2
0 + ξ35 x

2
1 + ξ25 x

2
3 + ξ5x

2
4 + x25 = 0,

(5.19)

where ξ5 is a primitive fifth root of unity. This was proved by JosephMcKelvey in [31],
who also proved that µ4

2 � D10 is the full automorphism group of the curve (5.19),
see also [22,29]. The curve given by (5.19) is a special case of the so-called Humbert
curves, which have been discovered by Humbert in [23], and have been studied by
Edge in [20].

Remark 5.20 Let C be a G80-invariant curve of degree 8 in P
3. Then C is a smooth

curve of genus 5 by Theorem 5.16. Thus, it contains unique G80-orbit of length 40
by Lemma 5.3. We claim that this orbit is the intersection L10 ∩ C . To show this,
let us describe the intersections �1 ∩ S1, �1 ∩ S2, �1 ∩ S3 and �1 ∩ S4, where �1 is
the irreducible component of the curve L10 defined in (3.11). Note that �1 is the line
in P

3 that passes through the points [0 : i : 1 : 0] and [1 : 0 : 0 : −i], so that is
parameterized by

[
μ : λi : λ : −μi

]
,

where [λ : μ] ∈ P
1. To find the intersections �1 ∩ S1, �1 ∩ S2, �1 ∩ S3 and �1 ∩ S4, we

may assume that λ = 1, because [0 : i : 1 : 0] is not contained in S1 ∪ S2 ∪ S3 ∪ S4.
Substituting the point [μ : i : 1 : −μi] into the polynomials q1, q2, q3, q4 defined in
(3.21), we see that both intersections �1 ∩ S1 and �1 ∩ S4 are given by

μ4 − (4ξ35 + 4ξ25 + 2)μ2 + 1 = 0,

and both intersections �1 ∩ S2 and �1 ∩ S3 are given by

μ4 + (4ξ35 + 4ξ25 + 2)μ2 + 1 = 0.

Thus, we see that �1 ∩ S1 = �1 ∩ S4 and �1 ∩ S2 = �1 ∩ S3. Since C is one of the
curves S1 ∩ S4 or S2 ∩ S3 by Theorem 5.16, the intersection L10 ∩ C is the unique
G80-orbit in C of length 40.
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We will show later that P
3 contains G80-invariant curves of degree 12 (see

Lemma 5.26).

Remark 5.21 Let C be a G80-invariant curve in P
3 of degree 12. By Theorem 5.16,

the curve C is smooth, its genus is 5, and C ⊂ St , where St is one of the surfaces S1,
S2, S3 and S4. By Remark 5.18, the surface St contains an irreducible G80-invariant
curve Z such that 2Z = Sk |St , where k + t = 5. If C does not contain Sing(St ), then
Z · C = 24, which is impossible, because the only G80-orbits contained in C are of
lengths 16, 40 and 80 by Lemma 5.3. Thus, we see that C contains the singular locus
of the surface St .

The first consequence of Theorem 5.16 is

Corollary 5.22 Let C be an irreducible G80-invariant curve in P
3 of degree 12, let D

be a mobile G80-invariant linear system on P
3, let n be a positive integer such that

D ∼ OP3(n). Then multC (D) � n
4 .

Proof By Theorem 5.16, the curve C is a smooth curve of genus 5 that is contained in
a surface among S1, S2, S3, S4. Denote this surface by S, and denote by H its general
plane section. Let D be a general surface in D. Then

D
∣∣
S = mC + � ∼ nH ,

where m is a non-negative integer such that m � multC (D), and � is an effective
divisor on S such that C �⊂ Supp(�).

Recall from Lemma 5.13, that Sing(S) is one of the G80-orbits�1
16,�

2
16,�

3
16,�

4
16,

and S has isolated ordinary double points. Let f : S̃ → S be the minimal resolution of
singularities of the surface S. Then the action of the group G80 lifts to the surface S̃.
Denote by E1, . . . , E16 the f -exceptional curves, denote by C̃ the proper transform
of the curve C on the surface S̃, and denote by �̃ the proper transform of the divisor
� on the surface S̃. Let E = E1 + · · · + E16. Then E2 = −32 and

mC̃ + �̃ ∼Q f ∗(nH) − εE

for somenon-negative rational number ε.Moreover, the curve C̃ is a smooth irreducible
curve of genus 5, so that C̃2 = 8 by the adjunction formula.

By Remark 5.21, the curve C contains Sing(S). Then C̃ · E = 16. Let T be the
divisor f ∗(6H) − C̃ − E . Then T · E = 16 and T 2 = 8, so that

h0
(OS̃(T )

) = 6 + h1
(OS̃(T )

) − h2
(OS̃(T )

)

= 6 + h1
(OS̃(T )

) + h0
(OS̃(−T )

) = 6 + h1
(OS̃(T )

)
� 6

by the Riemann–Roch formula and Serre duality, since T · f ∗(H) = 12 > 0.
We claim that the linear system |T | does not have base curves. Indeed, suppose it

does. Then T ∼ F + M , where F is the fixed part of the linear system |T |, and M is
its mobile part. Then M · f ∗(H) � 3, because S is not uniruled. This gives

0 � f (F) · H = F · f ∗(H) = 12 − M · f ∗(H) � 9.
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Since F is G80-invariant, it follows from Theorem 5.16 that either F is contracted by
f , or f (F) is an irreducible smooth curve of degree 8 and genus 5. In the former case
we have F = r E for some integer r � 1, so that

M2 =
(
T − r E

)2 = 6 − 2rT · E − 32r2 � 6 − 32r2 < 0,

which is absurd. Thus, we see that f (F) is an irreducible smooth curve of degree 8 and
genus 5. Denote its proper transform on S̃ by C̃8. Then C̃8 ⊂ Supp(F) and C̃2

8 = 8.
Hence, it follows from the Riemann–Roch formula and Serre duality that

h0
(OS̃(F)

)
� h0

(OS̃(C̃8)
) = 6 + h1

(OS̃(C̃8)
) − h2

(OS̃(C̃8)
)

= 6 + h1
(OS̃(C̃8)

) + h0
(OS̃(−C̃8)

) = 6 + h1
(OS̃(C̃8)

)
� 6,

which is also absurd, since F is the fixed part of the linear system |T |. Thus, we see
that the linear system |T | does not have base curves.

Let Z be a general curve in |T |. Then Z · E = 16 and

Z · C̃ = C̃ · (
6 f ∗(H) − C̃ − E

) = 48.

On the other hand, the divisor Z is nef, so that Z · �̃ � 0. Therefore, we have

0 � Z · �̃ = Z ·
(
f ∗(nH) − mC̃ − εE

)
= 12n − mZ · C̃ − εZ · E � 12n − 48m,

which implies that multC (D) � m � n
4 . �	

Corollary 5.23 Let C be a G80-invariant curve of degree 12 in P
3, and let M be the

linear system of surfaces in P
3 of degree 6 that contains C. Then the base locus ofM

does not have curves that are different from C.

Proof The required assertion easily follows from the proof of Corollary 5.22. Namely,
let us use notation of the proof of Corollary 5.22. Then the linear system | f ∗(6H) −
C̃ − E | is free from base curves. This was shown in the proof of Corollary 5.22. In
particular, the linear system |6H − C | does not have base points. Since the quartic
surface S is projectively normal, we immediately obtain the required assertions. �	

Now let us prove that G80-invariant curves of degree 12 in P
3 do exist.

Lemma 5.24 Each surface among S1, S2, S3, S4 contains at least one G80-invariant
curve of degree 12.

Proof Let C be a smooth curve of genus 5 that admits a faithful action of the group
G80. Then it follows from [18, Proposition 2.2] that there exists an exact sequence of
groups

0 −→ Hom
(
G80, C

∗) −→ Pic
(
G80,C

) −→ Pic
(
C

)G80 −→ H2(G80, C
∗) −→ 0,

(5.25)
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where Pic(G80,C) stands for the group of G80-equivariant line bundles on C . One
can compute that Hom(G80, C

∗) ∼= µ5 and H2(G80, C
∗) ∼= µ2

2. Moreover, one has
C/G80 ∼= P

1, so that it follows from [18, (2.2)] that

Pic
(
G80,C

) ∼= Z ⊕ µ5.

Furthermore, let κ be a positive generator of the free part of Pic(G80,C). Then it
follows from [18, (2.1)] that deg(κ) = 8, so that we may assume that κ = KC .
Therefore, there is an exact sequence

0 −→ Z −→ Pic(C)G80 −→ µ2
2 −→ 0.

Thus, either Pic(C)G80 ∼= Z ⊕µ2 or Pic(C)G80 ∼= Z ⊕µ2
2. In both cases, there exists

a G80-invariant 2-torsion line bundle on C . In the former case, such a 2-torsion is
unique, and there exists a G80-invariant line bundle θ ∈ Pic(C) such that 2θ ∼ KC ,
i.e. the divisor θ is a G80-invariant theta-characteristic. In the latter case, there are
exactly three non-trivial G80-invariant 2-torsion line bundles on C , and there are no
G80-invariant theta-characteristics.

Let D be a 2-torsion divisor on C such that its class in Pic(C) is G80-invariant.
Then

h0
(OC (KC + D)

) = h0
(OC (−D)

) + 4 = 4

by the Riemann–Roch formula. Moreover, the linear system |KC + D| does not have
base points, because the degree of the divisor KC + D is 8, and C does not contain
G80-orbits of length less than 16 by Lemma 5.3. So, the linear system |KC + D| gives
a G80-equivariant morphism

σ : C → P

(
H0(OC (KC + D))∨

)
.

By Corollary 5.2, we can identify the action of the group G80 on P(H0(OC (KC +
D))∨)with the action of the groupG80 on P

3 introduced in Sect. 3. Note that σ(C) is a
G80-invariant curve of degree at most deg(KC +D) = 8. Thus, the degree of the curve
σ(C) is 8 by Theorem 5.16. In particular, this gives another proof that P

3 contains
a G80-invariant curve of degree 8 (see Remark 5.18). Note that Theorem 5.16 also
implies that the curve σ(C) is smooth, and either σ(C) = S1 ∩ S4 or σ(C) = S2 ∩ S3.
Hence the morphism σ induces an isomorphism C ∼= σ(C). Since the curves S1 ∩ S4
and S2 ∩ S3 are projectively equivalent by Remark 5.18, we see that the class of the
divisor D in Pic(C) is uniquely determined.

We see that there exists a unique G80-invariant 2-torsion line bundle on C , which
implies that there exists a G80-invariant theta-characteristic θ ∈ Pic(C). In fact, there
are exactly two such theta-characteristics: one is θ , and another one is θ + D. Arguing
as above, we see that both linear systems |KC + θ | and |KC + D + θ | are free
from base points and define G80-equivariant morphisms C → P

7, where P
7 are the
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projectivizations of H0(OC (KC + θ))∨ and H0(OC (KC + D + θ))∨, which are
eight-dimensional representations of central extensions of the group G80 given by the
images of KC + θ and KC + D + θ in

H2(G80, C
∗) ∼= µ2

2

in (5.25), respectively. One can show that these eight-dimensional representations split
as sums of two four-dimensional representations, so that there exists aG80-equivariant
map ς from C to a three-dimensional projective space that is given by some G80-
invariant three-dimensional linear subsystem P in |KC + θ | or |KC + D + θ |. By
Corollary 5.2, we can identify the action of the group G80 on the target space of ς

with the action of the group G80 on P
3 introduced in Sect. 3. Since the degree of both

divisors KC + θ and KC + D+ θ is 12, the linear system P does not have base points.
Thus, the curve ς(C) is a G80-invariant curve whose degree divides

deg(KC + θ) = deg(KC + D + θ) = 12.

Hence, ς(C) is a smooth curve of degree 12 and genus 5 by Theorem 5.16.
By Theorem 5.16, the curve ς(C) is contained in a unique quartic surface among

S1, S2, S3 and S4. Let R be the element in PGL4(C) defined in Sect. 3, cf. Remark 5.18.
Then

R(S1) = S2, R(S2) = S4, R(S4) = S3, R(S3) = S1,

so that the cyclic group generated by R acts transitively on the set {S1, S2, S3, S4}.
Since this group also acts transitively on the set

{
ς(C), R(ς(C)), R

2
(ς(C)), R

3
(ς(C))

}
,

we conclude that each surface among S1, S2, S3, S4 contains a unique curve among

ς(C), R(ς(C)), R
2
(ς(C)) and R

3
(ς(C)). �	

Now we are going to describe all G80-invariant curves of degree 12 in P
3.

Lemma 5.26 There are exactly eight G80-invariant curves of degree 12 in P
3. More-

over, each quartic surface among S1, S2, S3, S4 contains exactly two such curves.
Furthermore, the union of these two curves is cut out on the quartic surface by a
G80-invariant sextic surface in P

3.

Proof ByTheorem5.16, it is enough to show that S1 contains exactly twoG80-invariant
curves of degree 12, and the union of these two curves is cut out by a G80-invariant
sextic surface in P

3. In the remaining cases, the proof is the same.
By Lemma 5.24, the surface S1 contains aG80-invariant curve of degree 12. Denote

this curve by C12, and consider the exact sequence of G80-representations
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0 −→ H0(OP3(6) ⊗ IC12

) −→ H0(OP3(6)
)

−→ H0(OC12(9KC )
) −→ H1(OP3(6) ⊗ IC12

) −→ 0,

where IC12 is the ideal sheaf of the curve C12. By Lemma 3.22, the vector
space H0(OP3(6)) contains exactly four one-dimensional subrepresentations of G80,
and H0(OC12(9KC )) contains exactly three one-dimensional subrepresentations of the
group G80, which correspond to three G80-invariant effective divisors on C of degree
72. Hence, there is a G80-invariant sextic surface R in P

3 that contains the curve
C12. By Lemma 3.22, the surface R is irreducible and reduced, so that Theorem 5.16
implies that

R
∣∣
S1

= C12 + Z12,

where Z12 is an irreducible smooth G80-invariant curve of degree 12 and genus 5.
By Remark 5.21, both curves C12 and Z12 contain the singular locus of the surface

S1. Let f : S̃1 → S1 be the minimal resolution of singularities of the surface S1.
Then the action of the group G80 lifts to the surface S̃1. Denote by E1, . . . , E16
the exceptional curves of the birational morphism f . Denote by C̃12 and Z̃12 the
proper transforms of the curves C12 and Z12 on the surface S̃1, respectively. Let
E = E1 + · · · + E16 and let H be a plane section of the surface S1. Then

C̃12 + Z̃12 ∼ f ∗(6H) − E,

because both curves C12 and Z12 are smooth. Then C̃12 · Z̃12 = 48, which implies,
in particular, that C̃12 �= Z̃12, because C̃12 · C̃12 = Z̃12 · Z̃12 = 8 by the adjunction
formula.

To complete the proof, we have to show that S1 does not contain G80-invariant
curves of degree 12 that are distinct from C12 and Z12. Suppose that this is not the
case, i.e. the surface S1 contains a G80-invariant curve Z of degree 12 such that Z is
distinct from the curves C12 and Z12. Let us seek for a contradiction.

Let Z̃ be the proper transform of the curve Z on S̃1 via f . Then Z̃ ·(C̃12+ Z̃12) = 56.
Since the only G80-orbits in Z̃ are of lengths 16, 40 and 80 by Lemma 5.3, we see that
either Z̃ · C̃12 = 16 and Z̃ · Z̃12 = 40, or Z̃ · C̃12 = 40 and Z̃ · Z̃12 = 16. Without
loss of generality, we may assume that Z̃ · C̃12 = 16 and Z̃ · Z̃12 = 40. Then

(
C̃12 + f ∗(2H) − Z̃

)2 = 0.

Thus, it follows from the Riemann–Roch formula and Serre duality that

h0
(
OS̃

(
C̃12 + f ∗(2H) − Z̃

))

= 2 + h1
(
OS̃

(
C̃12 + f ∗(2H) − Z̃

)) − h2
(
OS̃

(
C̃12 + f ∗(2H) − Z̃

))
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= 2 + h1
(
OS̃

(
C̃12 + f ∗(2H) − Z̃

)) − h0
(
OS̃

(
Z̃ − C̃12 − f ∗(2H)

))

= 2 + h1
(
OS̃

(
C̃12 + f ∗(2H) − Z̃

))
� 2.

Hence, the linear system |C̃12 + f ∗(2H) − Z̃ | is at least a pencil. Moreover, it does
not contain base curves. Indeed, suppose it does. Then

C̃12 + f ∗(2H) − Z̃ ∼ F + M,

where F is the fixed part of the linear system |C̃12+ f ∗(2H)− Z̃ |, and M is its mobile
part. Then

0 � f (F) · H = F · f ∗(H) = 8 − M · f ∗(H) < 8.

ByTheorem5.16, this implies that F is contracted by f , so that F = mE for somem �
1. Then

M2 =
(
C̃12 + f ∗(2H) − Z̃ − mE

)2 = −32m2,

which is absurd. This shows that the linear system |C̃12 + f ∗(2H) − Z̃ | is free from
base curves. Since

(
C̃12 + f ∗(2H) − Z̃

)2 = 0,

we see that it has no base points, so that it is composed of a base point free pencil.
This pencil gives a G80-equivariant morphism υ : S̃ → P

1, whose general fibers are
smooth elliptic curves (by the adjunction formula). This is impossible, because H is
the only non-trivial proper normal subgroup of the group G80 by Lemma 5.1, and the
group H does not act faithfully on rational and elliptic curves by Lemma 3.3. This
completes the proof of Lemma 5.26. �	

Recall from Remark 5.18 that there are two G80-invariant curves of degree 8 in
P
3. These curves are just the intersections S1 ∩ S4 or S2 ∩ S3 taken with the reduced

structure. Furthermore, these curves are smooth curves of genus 5 by Theorem 5.16.

Proposition 5.27 (cf. [2,16,17]) Let C be a G80-invariant curve of degree 8 in P
3,

and let π : X → P
3 be a blow up of the curve C. Then there exists a G80-commutative

diagram

X

π

α

ι
X

π

α

V8
υ

V8

P
3 τ

P
3

(5.28)
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where V8 is theFano threefoldwith terminalGorenstein singularities such that−K 3
V8

=
8, the map α is a flopping contraction, the map τ is a birational map, υ is an isomor-
phism, and ι is a composition of flops that acts on Pic(X) in the following way:

{
ι∗

(
E

) ∼ 24π∗(H) − 7E,

ι∗
(
π∗(H)

) ∼ 7π∗(H) − 2E,

where H is a plane in P
3, and E is the π -exceptional divisor. Moreover, the dia-

gram (5.28) is also G160-commutative.

Proof Without loss of generality, we may assume that C = S1 ∩ S4. Denote by S̃1
and S̃4 the proper transforms of the surfaces S1 and S4 on the threefold X , respectively.
Recall from Theorem 5.16 thatC contains singular loci of the surfaces S1 and S4. This
implies that S̃1 and S̃4 are smooth, because the singularities of the surfaces S1 and S4
are isolated ordinary double points by Lemma 5.13. Furthermore, we have

S̃1 ∼ S̃4 ∼ −KX ∼ π∗(4H) − E .

Since −K 3
X = 8, we see that the intersection S̃1 ∩ S̃4 is a G80-invariant smooth curve

isomorphic to C . Let us denote this curve by C̃ . Note that C̃ is the scheme-theoretic
intersection of the surfaces S̃1 and S̃4, and

S̃1 · C̃ = S̃4 · C̃ = −K 3
X = 8,

so that−KX is nef and big. By the Base Point Free Theorem (see [24, Theorem 1.3.6]),
the linear system | − nKX | gives a birational morphism α : X → V8 for some
n � 0, where V8 is the Fano threefold with canonical Gorenstein singularities such
that −K 3

V8
= 8.

Let us show that the birationalmorphismα is small (cf. [25,Theorems4.9 and4.11]).
Suppose that α is not small. Then there exists a prime divisorG that is contracted by α.
One has (−KX )2 · G = 0. On the other hand, we have G ∼ π∗(aH) − bE for some
positive integers a and b. Then a = 3b, since

0 = (−KX )2 · G =
(
π∗(4H) − E

)2 ·
(
π∗(aH) − bE

)
= 8(a − 3b).

If α(G) is a point, then

0 = −KX · G2 = 4(a2 − 4ab + 8b2) = 20b2,

which is absurd. Thus, we see that α(G) is a curve, so that the intersection G ∩ S̃1
contains a curve. Then

0 = (−KX )2 · G = G|S̃1 · S̃2|S̃1 = G|S̃1 · C̃,
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which implies that C̃ is not an ample divisor on the surface S̃1. On the other hand,
arguing as in the proof of Corollary 5.22, one can show that the linear system |2C̃ −
π∗(H)|S̃1 | is free from base points, which implies the ampleness of the divisor

π∗(H)|S̃1 +
(
2C̃ − π∗(H)|S̃1

)
∼ 2C̃ .

The obtained contradiction implies that the birational morphism α is small.
Since α is a small birational morphism, the singularities of the threefold V8 are

terminal. Moreover, there exists a G80-commutative diagram

X
π α

χ
Y

φβ

P
3 V8 Z

(5.29)

such that χ is a composition of flops, β is a small birational morphism, and φ is an
extremal contraction such that−KY isφ-ample.Observe that the threefoldY is smooth,
because the threefold X is smooth and χ is a composition of flops. Now arguing as in
the proof of [16, Proposition 4.4], we see that the morphism φ is birational, one has
Z ∼= P

3, and φ is a blow up of a smooth curve of degree 8 and genus 5. Moreover,
this proof also implies that

D̃ ∼ 24π∗(H) − 7E, (5.30)

where D̃ is the proper transform on X of the φ-exceptional surface.
By Corollary 5.2, we may assume that the diagram (5.29) is G80-commutative.

Then φ is a blow up of one of the two G80-invariant smooth curves of degree 8 and
genus 5. By Remark 5.18, the group G320 swaps these curves. Thus, composing the
map φ with an appropriate element in G320, we may assume that φ is a blow up
of the curve C . Therefore, we can identify X with Y and φ with π . This gives the
G80-commutative diagram (5.28) with

ι = χ, τ = π ◦ ι ◦ π−1, υ = α ◦ ι ◦ α−1.

Since V8 is an anticanonicalmodel of the threefold X , themapυ must be biregular. The
action of ι on Pic(X) follows from (5.30), since ι∗(KX ) ∼ KX . The diagram (5.28)
also G160-commutative, because Aut(C) ∼= G160 by Remark 5.18. �	

Using Remark 5.20, one can show that the morphism α in Proposition 5.27 con-
tracts the proper transforms of the curve L10. Using this, one can prove that V8 in
Proposition 5.27 is a complete intersection of three quadrics in P

6 that has 10 isolated
ordinary double points.
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6 Birational rigidity

Let G be a finite subgroup in PGL4(C). In this section we prove Theorems 1.1 and
1.3, which are the main results of our paper. To do this, we will use the following
well-known result, which goes back to the classical works of Noether, Fano, and
Iskovskikh.

Theorem 6.1 [10, Theorem 3.3.1] Let � be a subset in BirG(P3). Suppose that for
every non-empty G-invariant mobile linear system D on P

3, there exists γ ∈ � such
that the log pair (P3, 4

n γ (D)) has canonical singularities, where n be a positive
integer that is defined by γ (D) ∼ OP3(n). Then P

3 is G-birationally rigid, and the
group BirG(P3) is generated by � and AutG(P3).

Corollary 6.2 Suppose that for every non-empty G-invariant mobile linear system D
on P

3, the log pair (P3, 4
nD) has canonical singularities, where n be a positive integer

that is defined by D ∼ OP3(n). Then P
3 is G-birationally super-rigid.

The following simple fact is useful for the proof of G-birational rigidity of P
3.

Lemma 6.3 Let D be a non-empty G-invariant mobile linear system on P
3, and let Z

be a G-irreducible curve in P
3. Then

multZ
(D)

� n
√
deg

(
Z
) ,

where n is a positive integer such that D ∼ OP3(n).

Proof Let D1 and D2 be two general surfaces in D. Then

D1 · D2 = mZ + �,

wherem is a positive integer such thatm � mult2Z (D), and� is an effective one-cycle
on P

3 such that Supp(�) does not contain irreducible components of the curve Z . Let
H be a general plane in P

3. Then

n2 = H · D1 · D2 = H ·
(
mZ + �

)
� m · deg(Z) � mult2Z (D) · deg(Z),

which implies the required inequality. �	
To illustrate Lemma 6.3 and Corollary 6.2, let us prove.

Lemma 6.4 Suppose that G contains a proper subgroup isomorphic to A6. Then P
3

is G-birationally super-rigid.

Proof Let D be a non-empty G-invariant mobile linear system on P
3. Then D ∼

OP3(n) for some positive integer n. By Corollary 6.2, to complete the proof, we have
to show that the singularities of the log pair (P3, 4

nD) are canonical. By assumption,



Finite collineation groups and birational rigidity Page 57 of 68 71

the group G contains a subgroup isomorphic toA6. Denote it by�. It follows from [8,
§4] that there are two�-irreducible curvesL6 andL′

6 inP
3 such thatL6∩L′

6 = ∅, and
each of them is a disjoint union of 6 lines. Moreover, it follows from [8, Theorem 4.3]
that the log pair (P3, 4

nD) has canonical singularities provided that

max
{
multL6

(D)
,multL′

6

(D)}
� n

4
.

On the other hand, it follows from the proof of [8, Theorem 4.9] that

min
{
multL6

(D)
,multL′

6

(D)}
� n

4
.

Note that � is a primitive subgroup in PGL4(C). In particular, it does not have
orbits of length at most 4, and it does not leave invariant any line or a pair of lines
in P

3. This implies that G also enjoys these properties, so that it is primitive as well.
Thus, it follows from Blichfeldt’s classification [4, Chapter VII] that G is one of the
following groups:S6, A7, or a simple group of order 25920. If G ∼= S6, then the log
pair (P3, 4

nD) has canonical singularities, because G permutes the curves L6 and L′
6

in this case, so that

multL6(D) = multL′
6
(D).

Similarly, if G is a simple group of order 25920, then the log pair (P3, 4
nD) also has

canonical singularities, because this group containsS6 as a subgroup (see [11, p. 26]).
To complete the proof, we may assume that G ∼= A7. Let Z be a G-orbit of the

curve L6. Then deg(Z) = 42, so that multL6(D) � n
4 by Lemma 6.3. Similarly, we

see that multL′
6
(D) � n

4 . Thus, it follows from [8, Theorem 4.3] that the log pair

(P3, 4
nD) has canonical singularities. �	

Remark 6.5 Let � be a subgroup of the group G. If P
3 is �-birationally super-rigid,

then it is alsoG-birationally super-rigid. This follows fromCorollary 6.2 and equivari-
antMinimalModel Program (see [6,Corollary 1.4.3]).However, ifP3 is�-birationally
rigid, then we cannot immediately conclude that P

3 is G-birationally rigid. A priori,
the projective space P

3 can be G-birational to a Fano threefold X with terminal sin-
gularities such that the G-invariant class group of the threefold X is of rank 1, but the
�-invariant class group is not of rank 1. We refer the reader to [26] for a discussion
of a similar problem for the action of Galois groups.

Now we will state two technical propositions and use them to prove Theorems 1.1
and 1.3. After this, we will present the proofs of these propositions. Let G144 be the
primitive subgroup in PGL4(C) constructed in Sect. 3 and dealt with in Sect. 4.

Proposition 6.6 Let D be a non-empty G144-invariant mobile linear system on P
3,

and let n be a positive integer such that D ∼ OP3(n). Then the log pair (P3, 4
nD) has

canonical singularities.
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Proposition 6.6 and Corollary 6.2 imply the following:

Corollary 6.7 Suppose that G contains G144. Then P
3 is G-birationally super-rigid.

Similarly, let G80 and G160 be primitive subgroups in PGL4(C) constructed in
Sect. 3 and dealt with in Sect. 5. Let C1 and C2 be two distinctG80-invariant irreducible
smooth curves of degree 8 and genus 5 in P

3 constructed in Sect. 5.

Proposition 6.8 LetD be a non-empty G80-invariant mobile linear system on P
3, and

let n be a positive integer such that D ∼ OP3(n). Suppose that

max
{
multC1

(D)
,multC2

(D)}
� n

4
.

Then the log pair (P3, 4
nD) has canonical singularities.

Proposition 6.8 and Theorem 6.1 imply the following:

Corollary 6.9 Suppose that G = G80 or G = G160. Then P
3 is G-birationally rigid.

Proof Let � be a subgroup in BirG(P3) that is generated by the birational maps con-
structed in Proposition 5.27. Let D be a non-empty G-invariant mobile linear system
on P

3. For every σ ∈ �, let nσ be a positive integer such that σ(D) ∼ OP3(nσ ). Then
there is γ ∈ � such that

nγ = min
{
nσ

∣∣∣ σ ∈ �
}
.

Let n = nγ and M = γ (D). By Theorem 6.1, to prove the required assertion, it is
enough to show that the log pair (P3, 4

nM) has canonical singularities. Suppose that
this is not true. By Proposition 6.8, either multC1(M) > n

4 or multC2(M) > n
4 . In the

former case, we let C = C1. In the latter case, we let C = C2. Let τ be the birational
map constructed in Proposition 5.27 starting from the curve C . Then τ ∈ � and

τ
(M) ∼ OP3

(
7n − 24multC

(M))

by Proposition 5.27. This contradicts the minimality of n, since 7n − 24multC (D)

< n. �	
To prove Theorems 1.1 and 1.3, we need the last auxiliary result.

Lemma 6.10 Suppose that the group G contains G80, and that G does not coincide
with G80 and G160. Then P

3 is G-birationally super-rigid.

Proof Let D be a non-empty G-invariant mobile linear system on P
3. Then D ∼

OP3(n) for some positive integer n. By Corollary 6.2, to complete the proof, we have
to show that the singularities of the log pair (P3, 4

nD) are canonical. This follows from
Proposition 6.8 provided that

max
{
multC1

(D)
,multC2

(D)}
� n

4
,
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because D is also G80-invariant. Let us prove the latter inequality.
Let Z be a G-orbit of the curve C1. Recall from Sect. 5 that C1 is G160-

invariant. Moreover, it follows from Remark 5.18 that Z �= C1. Thus, we have
deg(Z) � 2deg(C1) = 16, so that multC1(D) � n

4 by Lemma 6.3. Similarly, we
see that multC2(D) � n

4 . Therefore, the log pair (P3, 4
nD) has canonical singularities

by Proposition 6.8. �	
Now we are ready to prove the main results of our paper.

Proof (Proof of Theorems 1.1 and 1.3) By Corollary 2.4, we may assume that G is
a primitive subgroup in PGL4(C). By Corollary 2.10, we may assume that G is not
isomorphic toA5 andS5. For the remaining groups, we use the classification provided
by Blichfeldt in [4, Chapter VII], see Appendix A.

If G ∼= PSL2(F7), then P
3 is G-birationally rigid and is not G-birationally super-

rigid by [7, Theorem 1.9]. Similarly, if G ∼= A6, then P
3 is G-birationally rigid and is

not G-birationally super-rigid by [8, Theorem 1.24]. Moreover, if G contains A6 as a
proper subgroup, then P

3 is G-birationally super-rigid by Lemma 6.4.
Recall from [4, Chapter VII] that up to conjugation all remaining finite primitive

subgroups of PGL4(C) belongs to one of the following two classes. The first class
consists of primitive groups that leave a smooth quadric surface in P

3 invariant and
contain G144 (see [4, §121]). The second class consists of primitive groups contain-
ing an imprimitive normal subgroup µ4

2 (see [4, §124]). These classes overlap. For
instance, the group G144 ∼= µ4

2 � (µ3 ×µ3) itself is contained in both of them (see [4,
§125]). However, if G is in the second class and is not in the first class, then G must
contain the subgroup G80 (see [4, §124]). Therefore, to complete the proof we may
assume that G contains either G144 or G80.

If the group G contains G144 as a subgroup, then the projective space P
3 is G-

birationally super-rigid by Corollary 6.7. If G = G80 or G = G160, then P
3 is

G-birationally rigid by Corollary 6.9, and it is notG-birationally super-rigid by Propo-
sition 5.27. Finally, if G contains G80 and neither G = G80 nor G = G160, then P

3

is G-birationally super-rigid by Lemma 6.10. �	
Thus, to complete the proofs of our main results, it is enough to prove Proposi-

tions 6.6 and 6.8. This is what we are going to do in the remaining part of this section.
Namely, suppose that either G = G144 or G = G80. Let D be a G-invariant mobile
linear system on P

3. Then D ∼ OP3(n) for a positive integer n. If G = G80, we also
suppose that

max
{
multC1

(D)
,multC2

(D)}
� n

4
. (6.11)

To prove Propositions 6.6 and 6.8, we have to show that the singularities of the log
pair (P3, 4

nD) are canonical. Suppose that this is not true. Let us show that this assump-
tion leads to a contradiction.

Lemma 6.12 Let C be a G-irreducible curve in P
3. Then multC (D) � n

4 .

Proof By Lemma 6.3, we may assume that deg(Z) � 15. If G = G144, the assertion
follows from Theorem 4.22 together with Corollaries 4.8 and 4.21. If G = G80, the
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assertion follows from the classification of G80-invariant curves of small degree done
in Theorem 5.16 together with Lemma 5.11, Corollary 5.22, and our assumption (6.11)
on curves of degree 8. �	

Thus, the log pair (P3, 4
nD) is canonical away from finitely many points in P

3 (see,
for instance, [13, Proposition 5.14]). On the other hand, this log pair is not canonical
at some point P ∈ P

3 by assumption. Denote by � the G-orbit of the point P . Let D1
and D2 be two sufficiently general surfaces in D. Then

multO
(
D1 · D2

)
>

n2

4
(6.13)

for every point O ∈ � by [12, Corollary 3.4].
For every r � 2, denote byMr the linear system of surfaces of degree r in P

3 that
contain �. IfMr is not empty, let Mr be a general surface inMr . In this case (6.13)
implies that

rn2 = Mr · D1 · D2 �
∑

O∈�

multO
(
D1 · D2

)
>

n2

4
|�|

provided thatMr does not contain any irreducible component of the one-cycle D1 ·D2.
Thus, if the base locus of the linear system Mr does not contain curves, then (6.13)
implies the inequality

|�| < 4r . (6.14)

We expect that the base locus of the linear systemMr contains no curves for r = �|�|
4 �.

Unfortunately, we failed to prove this, so instead we use an alternative approach that
utilizes results obtained in Sects. 4 and 5. Let us start with

Corollary 6.15 If G = G144, then |�| � 16. Similarly, if G = G80, then |�| � 20.

Proof If G = G144 and |�| < 16, then |�| = 12 by Lemma 4.10. If G = G80 and
|�| < 20, then |�| = 16 by Lemma 5.7. Thus, the base locus of the linear system
M3 contains no curves by Corollaries 4.13, 5.7 and 5.14. This gives a contradiction
with (6.14). �	

Recall from Lemma 3.10 that there is unique G144-invariant quadric surface in P
3.

Lemma 6.16 Suppose that G = G144. Let Q be the unique G-invariant quadric sur-
face in P

3. Then � is not contained in Q.

Proof Suppose that � is contained in Q. Then the log pair (P3,Q + 4
nD) is not log

canonical at every point of �. Thus, the log pair (Q, 4
nD|Q) is not log canonical

at every point of � by Inversion of Adjunction (see [28, Theorem 5.50]). Hence,
there is μ < 4

n such that the log pair (Q, μD|Q) is not Kawamata log terminal. By
Corollary 4.7, this log pair is Kawamata log terminal away from finitely many points
in Q.
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Let I be the multiplier ideal sheaf of the log pair (Q, μD|Q). Then the ideal I
defines a (non-empty) zero-dimensional subscheme L of the quadric Q such that the
support of the subscheme L contains �. Moreover, this subscheme is G-invariant,
because D is G-invariant. Let H be a plane section of the quadric Q. Then

h1
(
I ⊗ OQ

(
2H

)) = 0

by Nadel vanishing theorem (see [30, Theorem 9.4.8]). Now using the exact sequence
of sheaves

0 −→ I ⊗ OQ
(
2H

) −→ OQ
(
2H

) −→ OL ⊗ OQ
(
2H

) −→ 0,

we see that

∣∣�
∣∣ � h0

(OL
) = h0

(
OL ⊗ OQ

(
2H

))
� h0

(
OQ

(
2H

)) = 9,

which is impossible by Lemma 4.4. �	
Lemma 6.17 Let C be a G-irreducible curve in P

3 such that deg(C) � 15. Then
� �⊂ C.

Proof Suppose that � ⊂ C . Let us seek for a contradiction. We have

D1 · D2 = mC + �,

where m is a non-negative integer, and � is an effective one-cycle on P
3 such that

Supp(�) does not contain irreducible components of the curve C . Hence, it follows
from (6.13) that

multO
(
�

)
>

n2

4
− m · multO

(
C

)
(6.18)

for every point O ∈ �. Let H be a plane in P
3. Thus

n2 = H · D1 · D2 = H ·
(
mC + �

)
= m · deg(C) + H · � � m · deg(C). (6.19)

For every r � 2, denote by Br the linear system that consists of surfaces of degree
r in P

3 containing C . If the base locus of Br does not contain G-irreducible curves
different from C , then it follows from (6.18) that

r
(
n2 − m · deg(C)

)
= Br ·

(
D1 · D2 − mC

)

= Br · � �
∑

O∈�

multO
(
�

)
> |�|

(
n2

4
− m · multO

(
C

))
, (6.20)

where Br is a sufficiently general surface in the linear system Br .
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Suppose that G = G144. By Lemma 6.16 and Theorem 4.22, the curve C is a
smooth irreducible curve of degree 12 and genus 13. In particular, we have |�| � 24
by Lemma 4.2. Moreover, it follows from Corollary 4.20 that the base locus of the
linear systemB6 does not contain curves different fromC . Thus, it follows from (6.20)
that

6(n2 − 12m) > 24
(n2

4
− m

)
,

so that 0 > 48m, which is absurd.
We see that G = G80. Let us use the notation of Sect. 5. By Theorem 5.16, one of

the following cases holds:

• deg(C) = 8, and C is an irreducible smooth curve of genus 5;
• deg(C) = 12, and C is an irreducible smooth curve of genus 5;
• deg(C) = 10, and C is one of the curves L10, L′

10, L′′
10.

Note that in the former two cases one has |�| � 40 by Lemma 5.3 and Corollary 6.15.
Also, we know from (6.19) that n2 � m · deg(C) > 4m. Let us consider the above
possibilities case by case.

If deg(C) = 8, then the base locus of B4 does not contain G-irreducible curves
different from C by Theorem 5.16. Hence (6.20) gives

4n2 − 32m = 4
(
n2 − 8m

)
> |�|

(
n2

4
− m

)
� 40

(
n2

4
− m

)
= 10n2 − 40m.

This implies that 6n2 < 8m. On the other hand, one has 8m � n2 by (6.19), which is
absurd.

If deg(C) = 12, then the base locus of B6 does not contain curves different from
C by Corollary 5.23. Hence (6.20) gives

6n2 − 72m = 6
(
n2 − 12m

)
> |�|

(
n2

4
− m

)
� 40

(
n2

4
− m

)
= 10n2 − 40m,

which is absurd.
Thus, we see that C is one of the curves L10, L′

10 or L′′
10. In particular, by (6.19)

we have n2 � 10m > 8m.
If C = L′

10 or C = L′′
10, then the base locus of B4 does not contain G-irreducible

curves different from C by Lemma 5.10, so that Lemma 5.6 and (6.20) give

4n2 − 40m = 4
(
n2 − 10m

)
> |�|

(
n2

4
− 2m

)
� 20

(
n2

4
− 2m

)
= 5n2 − 40m,

which is absurd. Thus, neither C = L′
10 nor C = L′′

10 (that is, � is not contained
in L′

10 and in L′′
10). We see that C = L10.
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ByLemma5.10, the base locus ofB6 does not containG-irreducible curves different
from C . If |�| �= 20, then Lemma 5.6 implies that |�| � 40, so that (6.20) gives

6n2 − 60m = 6
(
n2 − 10m

)
> |�|

(
n2

4
− m

)
� 40

(
n2

4
− m

)
= 10n2 − 40m,

which is absurd. We see that C = L10 and |�| = 20. Then � ⊂ L′
10 ∪ L′′

10 by
Lemma 5.6. However, we just proved that � is not contained in L′

10 and L′′
10. �	

Corollary 6.21 One has |�| > 35.

Proof Assume that |�| � 35. Let us seek for a contradiction.
Suppose that G = G144. Then � is not contained inQ by Lemma 6.16. Thus, � is

one of two G144-orbits of length 12 by Lemma 4.10. This contradicts Corollary 6.15.
Thus, we see that G = G80. Then |�| � 20 by Corollary 6.15, so that |�| = 20.

Hence, � is contained in one of the curves L10, L′
10 or L′′

10 by Lemmas 5.5 and 5.6,
which is impossible by Lemma 6.17. �	

Nowwe are going to use themultiplication by two trick that was introduced in [7,8].
Recall that P ∈ � is a center of non-canonical singularities of the log pair (P3, 4

nD), so
that multP (D) > n

4 (see [13, Proposition 5.14]). This immediately implies that P is a
center of non-log canonical singularities of the log pair (P3, 8

nD). In particular, the log
pair (P3, 8

nD) is not log canonical at P . Thus, there is a positive rational numberμ < 8
n

such that (P3, μD) is log canonical at the point P , and it is not Kawamata log terminal
at the point P . Of course, the same holds for every point in�, because� is theG-orbit
of the point P , and the linear system D is G-invariant.

Lemma 6.22 The log pair (P3, μD) is Kawamata log terminal in a punctured neigh-
borhood of every point in �.

Proof Suppose that the required assertion is not true. Then there exists aG-irreducible
curve C in P

3 such that � ⊂ C and (P3, μD) is not Kawamata log terminal in every
point of the curve C . Let D1 and D2 be two general surfaces in D. Then

D1 · D1 = mC + �,

wherem is a positive integer, and� is an effective one-cycle on P
3 such that Supp(�)

does not contain irreducible components of the curve C . By [12, Theorem 3.1], one
has

m � 4

μ2 >
n2

16
.

Let H be a general plane in P
3. Then

n2 = H · D1 · D2 = H ·
(
mC + �

)
= m · deg(C) + H · �
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� m · deg(C) >
n2

16
· deg(C),

so that deg(C) � 15, which is impossible by Lemma 6.17. �	
Let I be the multiplier ideal sheaf of the log pair (P3, μD). Then the ideal I is

not trivial, since (P3, μD) is not Kawamata log terminal. Thus, it defines a (non-
empty) subscheme L of P

3 such that the support of the subscheme L contains �.
Since D is mobile, the subscheme L has no two-dimensional components. Moreover,
the subscheme L is reduced in a neighborhood of every point in �, because the log
pair (P3, μD) is log canonical at every point of �. Furthermore, every point of � is
an isolated irreducible component of the subscheme L by Lemma 6.22. On the other
hand, it follows from Nadel vanishing theorem (see [30, Theorem 9.4.8]) that

h1
(
I ⊗ OP3

(
4
)) = 0.

Now using the exact sequence of sheaves

0 −→ I ⊗ OP3
(
4
) −→ OP3

(
4
) −→ OL ⊗ OP3

(
4
) −→ 0,

we see that

|�| � h0
(
OL ⊗ OP3

(
4
))

� h0
(
OP3

(
4
)) = 35,

which is impossible byCorollary 6.21. The obtained contradiction completes the proof
of Propositions 6.6 and 6.8. This in turns completes the proof of Theorems 1.1 and
1.3.

Acknowledgements The authors are grateful to Igor Dolgachev, David Eklund, Takeru Fukuoka, Alexan-
der Kuznetsov, Dmitrii Pasechnik, Yuri Prokhorov, and Dmitrijs Sakovics for useful discussions. Special
thanks go to the referee for his careful reading of our paper. The first draft of this paper was written dur-
ing Ivan Cheltsov’s stay at the Max Planck Institute for Mathematics in 2017. He would like to thank
the institute for the excellent working condition. Both authors were supported by the Russian Academic
Excellence Project “5-100”. Ivan Cheltsov was supported by the Royal Society grant No. IES/R1/180205.
Constantin Shramov was supported by RFBR Grants 15-01-02164 and 15-01-02158, by Young Russian
Mathematics award, and by the Foundation for the Advancement of Theoretical Physics and Mathematics
“BASIS”.

Appendix A: Finite primitive groups

In diagrams (A.1), (A.2), and (A.3) below, we present all the finite primitive subgroups
of PGL4(C) together with some inclusions between them, including those that are
necessary for the proof of Theorem 1.1. We emphasize that we will not need the
whole classification for the proof, but only the information about the few smallest
groups.

By µn we denote the cyclic group of order n. The inclusions are depicted by
arrows going from a smaller group to a larger one. We point out that there are
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indeed several additional inclusions (apart from those that are obtained merely by
composing those inclusions that we list). For instance, the group A4 × A4 from dia-
gram (A.1) and the groupA6 from diagram (A.3) are both subgroups of µ4

2 �A6 from
diagram (A.2).

In diagram (A.1), we list all finite primitive subgroups of PGL4(C) that leave
invariant a quadric surface. The larger “connected component” of the diagram contains
the groups 1◦–12◦ described in [4, §§121, 122]; the smaller “connected component”
contains the group (B) described in [4, §102] and the group (H) described in [4,
§119]. We denote by Ĝ × G the group generated by G × G and an involution that
exchanges the factors of G×G. This group is isomorphic to (G×G)�µ2. However,
we reserve the notation (A4 × A4) � µ2 not for a group of the latter type, but for a
different subgroup of PGL4(C) generated by A4 and an element of order 2 that does
not exchange the factors; this element can be thought of as a product of two elementary
transpositions in the factors ofS4 ×S4 ⊃ A4 ×A4. We refer the reader to [4, §121]
for details. The above group is contained as a subgroup of index two in two other
primitive subgroups of PGL4(C) preserving a quadric surface so that in both cases
an additional element of order 2 exchanges the factors of A4 × A4 ⊂ (A4 × A4) �

µ2, see [4, §122] for details. We denote these two groups by
̂

(A4 × A4) � µ
(1)
2 and

̂
(A4 × A4) � µ

(2)
2 .

̂S4 × S4 Â5 × A5

S4 × S4 S4 × A5 A5 × A5

̂
(A4 × A4) � µ

(1)
2

̂
(A4 × A4) � µ

(2)
2 A4 × S4 A4 × A5 S5

(A4 × A4) � µ2 Â4 × A4 A5

A4 × A4

(A.1)
In diagram (A.2), we list all finite primitive subgroups of PGL4(C) that contain

a subgroup isomorphic to µ4
2 except for those that leave invariant a quadric surface.

These are the groups 13◦–21◦ described in [4, §124]. We denote by D10 the dihe-
dral group of order 10. By F .G we mean a non-split extension of a group G by a
group F .
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µ4
2.S6

µ4
2.S5 µ4

2 � A6 µ4
2.S5

µ4
2 � A5 µ4

2.(µ5 � µ4) µ4
2 � A5

µ4
2 � D10

µ4
2 � µ5

(A.2)

Finally, in diagram (A.3), we list the remaining finite primitive subgroups
of PGL4(C). These are the groups (A), (C), (D), (E), and (F) described in [4, §102],
and the groups (G) and (K ) described in [4, §119].

PSp4(F3)

S6 A7

S5 A6 PSL2(F7)

A5

(A.3)
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