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Abstract. We study the action of the Klein simple group PSLy(F7) consisting of 168
elements on two rational threefolds: the three-dimensional projective space and a smooth
Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona
group of rank three has at least three non-conjugate subgroups isomorphic to PSLo(F7).
As a by-product, we prove that X admits a Kadhler—Einstein metric, and we construct a
smooth polarized K3 surface of degree 22 with an action of the group PSLy(F7).

Unless explicitly stated otherwise, varieties are assumed to be projective, normal
and complex.

1. Introduction

The Cremona group of rank n, usually denoted by Cr,(C), is the group of
birational automorphisms of the complex projective space P™. It is well known
that Cr1(C) = Aut(P') =2 PGLy(C). For n > 2, the structure of the group Cr,,(C)
is much more complicated than that of its subgroup Aut(lP™). So one possible way
to study the Cremona groups of high rank is by analyzing their finite subgroups.

Finite subgroups in Cry (C) 2 PGL2(C) are cyclic, Za X Zg, dihedral, Ay, and As.
Two finite subgroups in Cr;(C) are conjugate if and only if they are isomorphic.
Finite subgroups in Cry(C) have been almost completely classified in [DI06]. This is
an important and still active research direction originating in the works of Kantor,
Bertini, and Wiman.

Example 1.1 ([Ch09, Theorem B.2]). Let G be a finite simple non-abelian sub-
group. Then Cry(C) has a subgroup isomorphic to G if and only if G is one of the
following groups: As, PSLa(F7) or Ag. The group Crs(C) has exactly 3, 2 and 1
non-conjugate subgroups isomorphic to Az, PSL2(FF7) and Ag, respectively.

Much less is known about finite subgroups in Cr3(C). In fact, they were so
poorly understood until recently that Serre asked the following

Question 1.2 ([Se09, Question 6.0]). Does there exist a finite group which is not
embeddable in Cr3(C)?
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Inspired by Question 1.2 and using methods of modern three-dimensional bira-
tional geometry, Prokhorov proved the following:

Theorem 1.3 ([P09, Theorem 1.3]). Suppose that G is a finite simple non-abeli-
an subgroup. Then Cr3(C) has a subgroup isomorphic to G if and only if G is one
of the following groups: As, PSLa(F7), Ag, A7, PSLa(Fg) or PSU4(F2).

The technique introduced in [P09] allows one to handle finite subgroups in
Cr3(C) in a similar way to ones in Cry(C). Moreover, the proof of Theorem 1.3
gives us much more than just a classification. For instance, one can easily use this
proof to obtain the following;:

Theorem 1.4 ([CS09b, Cor. 1.23], [B11]). Up to conjugation the group Crs(C)
contains exactly one subgroup isomorphic to PSLo(Fg), exactly one subgroup iso-
morphic to A7 and exactly two subgroups isomorphic to PSU4(F2).

Unfortunately, the proof of Theorem 1.3 cannot be applied to study the con-
jugacy classes in Cr3(C) of the subgroups As, PSLy(F7), and Ag, mostly because
these subgroups are rather small and Cr3(C) contains many non-conjugate embed-
dings of these groups. For example, nothing is known so far about the number of
non-conjugate subgroups in Crs(C) that are isomorphic to the group As. As for
the group Ag, we have the following:

Theorem 1.5 ([CS09b]). The group Crs(C) has at least 5 non-conjugate sub-
groups isomorphic to Ag.

The main purpose of this paper is to prove the following:

Theorem 1.6. The group Cr3(C) has at least 3 non-conjugate subgroups isomor-
phic to PSLy(F7).

From now on we denote the group PSLy(F7) by G. Any embedding G < Cr3(C)
arises from some rational threefold X admitting a faithful action of the group G
(for details see [DIO6], [P09]), and the first examples of such embeddings come
from representation theory. Moreover, the normalizer of the groups G in Cr3(C) is
isomorphic to the normalizer of the group G in Bir(X). The latter group coincides
with the group of G-equivariant birational self-maps of X, which we denote by
BirG(X ). Note that the group of G-equivariant biregular self-maps of X coincides
with the normalizer of G in Aut(X), which we denote by Aut®(X).

Example 1.7. Up to conjugation, the group Aut(P?) has two subgroups isomor-
phic to PSLy(F7). The first subgroup (we will call it a subgroup of type (I)) arises
from a faithful reducible four-dimensional representation of the group PSLy(F7),
which splits as a sum of an irreducible three-dimensional representation and a
trivial one. The second subgroup (we will call it a subgroup of type (II)) arises
from a faithful irreducible four-dimensional representation of the group SLo(F7)
(see [Atl]). Note that the subgroup of type (I) fixes a point in P3, while the sub-
group of type (II) does not fix any point in P3.

The next example of an embedding G < Cr3(C) comes from the celebrated Klein
quartic curve—the unique genus 3 curve with an action of the group PSLy(F7)
(see [L99)]).
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Example 1.8 ([MS01], [GP01], [MR03], [M04]). Let € be the quartic curve in P2
that is given by

zy® + yz* 4 22® = 0 C P* = Proj(C|z, y, 2]),

and put X = VSP(C,6) (see Definition A.3). Then X is a rational smooth Fano
threefold such that
Aut(X) = Aut(C) = PSLQ(F’y),

the group Pic(X) is generated by —K x, and —K% = 22 (see Section 4, Appendix A
and [IP99]). One can show that X is a compactification of the moduli space of
(1, 7)-polarized abelian surfaces (see [MSO01], [GP01] and [MRO3] for details).

In Sections 5 and 6, we prove the following:

Theorem 1.9. Let G be a subgroup in Aut(P3) such that G = PSLy(F7) is of
type (II) in the notation of Example 1.7. Then the variety P? is G-birationally
rigid (see [CS09b, Def. 1.9]), and there is a G-equivariant birational non-biregular
involution T € Crs(C) such that

Bir?(P?) = (G, 1) = PSLy(F7) x Zo.

Theorem 1.10. Let X be the threefold constructed in Fxample 1.8. Moreover,
Bir(X) = AutY(X) = G = PSLy(F7) and the threefold X is G-birationally
superrigid (see [CS09b, Def. 1.10]).

It should be pointed out that Theorems 1.10 and 1.9 imply Theorem 1.6. More-
over, Theorem 1.10 also implies the following:

Corollary 1.11. Let G and G’ be subgroups in Aut(P3) such that G = G' =
PSLy(F7). Then G and G' are conjugate in Crs3(C) if and only if G and G’ are
conjugate in Aut(P?).

As a by-product of the proof of Theorem 1.10, in Section 6 we prove the follow-
ing:
Theorem 1.12. Let X be a threefold constructed in Example 1.8, and let R be an

effective G-invariant Q-divisor such that R ~g —Kx. Then the pair (X, R) is log
canonical.

Applying [T87, Theorem 2.1], [CS08, Theorem A.3] and Theorem 1.12, we im-
mediately obtain the following:

Corollary 1.13. Let X be a threefold constructed in Fxample 1.8. Then X has a
G-invariant Kdhler—Finstein metric.

Note that the threefold constructed in Example 1.8 admits both Kéhler-Einstein
and non-Ké&hler-Einstein smooth deformations (see [T97, Cor.1.3] and [Do08,
§5.3]). However, there was only one previously known ezplicit example of a Kdhler—
Einstein threefold in this deformation family, which is the famous Mukai—Umemura
threefold (see [Do08, Theorem 5.4.3]).
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Remark 1.1}. Let G be asubgroup in SLy(C) such that G = SLy(F7) is of type (IT)
in the notation of Example 1.7. Then the quotient singularity C* /é is weakly-
exceptional (see [P98, Def.4.1]) by [CS09a, Theorem 3.16] and [CS09a, Theo-
rem 4.3], which implies that an assertion similar to Theorem 1.12 holds for P3.
Namely, let G be a subgroup in Aut(P3) such that G = PSLy(F7) is of type (II)
in the notation of Example 1.7, and let R be an effective G-invariant Q-divisor on
P3 such that R ~g —Kps. Then the pair (P3, R) is log canonical by [CS09a, The-
orem 3.16]. In particular, it follows from [Ch07, Theorem 6.4] that one can apply
Theorems 1.10 and 1.9 to construct non-conjugate embeddings G™ < Crg,, (C) for
n = 2.

As an another by-product of the proof of Theorem 1.10, we give an example
of a smooth K3 surface admitting a faithful action of the group PSLy(F7) (see
Lemma 4.10). This might be a new example (at least we were not able to find it
in the literature).

Remark 1.15. There are other known examples of smooth K3 surfaces that admit
faithful actions of the group PSLy(FF7). The Edge quartic surface in P? (see [E47]),
the cyclic cover of degree 4 of the plane branched along the Klein quartic curve
¢ (see [Mu88]), the double cover of the plane branched over the Hessian H of the
curve € (see [Mu88]), and the variety of sum of powers VSP(10, H) (see [RS00]).
We do not know whether or not the surface provided by Lemma 4.10 is isomorphic
as a non-polarized smooth K3 surface to one these smooth K3 surfaces.

Let us sketch the proof of Theorem 1.9 (the proof of Theorem 1.10 is similar and
simpler). Let G be a subgroup in Aut(P3) such that G = PSLy(F7) is of type (II)
in the notation of Example 1.7. Then P? is not G-birationally superrigid, since
there are non-biregular G-equivariant birational selfmaps of P3. Indeed, it is well
known that there exists a unique smooth G-invariant curve C5 C P3 of degree
6 and genus 3 (see [E47]). Blowing up the curve Cg, and contracting the proper
transform of the surface in P? spanned by three-secants of the curve Cg, we obtain a
non-biregular G-equivariant birational involution 7: P3 --» P? which is not defined
along the curve Cg (see Lemma 3.8, [D99, Rem. 6.8]).

To prove that P? is G-birationally rigid and Bir®(P?) = (G, 7), it is enough to
prove the following statement: for every G-invariant linear system M without fixed
components on P3, either the log pair (P3, A\M) has non-canonical singularities,
or the log pair (P2, \'7(M)) has non-canonical singularities, where A and A" are
positive rational numbers such that AM ~g N'7(M) ~g —Kps. In fact, the latter
property is equivalent to G-birational rigidity of P3 and Bir®(P3) = (G, ) (see
[Ch09]).

Applying 7, we may assume that either the inequality multe, (M) < 1/X or
the inequality multe, (7(M)) < 1/)N holds (this is usually called “untwisting of
maximal singularities”). Thus, without loss of generality, we may assume that
multc, (M) < 1/\, which simply means that (P3, AM) is canonical in a general
point of the curve Cs. Now we have to prove that (P3, AM) has non-canonical
singularities. In [CS09b], we proposed a new approach to prove assertions of the
latter type, which we call the “multiplication by two trick”. Namely, we simply
observed that the singularities of the log pair (P3,2AM) must be worse than log
canonical if the singularities of the log pair (P, AM) are worse than canonical (see
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Lemma 2.8, cf. [CS09b, Cor.2.3]). Although the former condition is much weaker
than the latter one, we are in a position to apply the machinery of multiplier ideal
sheaves to the log pair (P3,2AM) if the singularities (P3, A\M) are not canonical.

Using the “multiplication by two trick”, we proved in [CS09b] that P3 is Ag-
birationally rigid (recall that there is a unique subgroup in Aut(P?) that is iso-
morphic to Ag up to conjugation). However, in the present case, we meet two new
problems. The first problem is that sometimes we are just unable to prove that
(P3,2XAM) is log canonical in a general point of some subvariety of P3 even though
we believe that this is true. For example, we do not know how to prove that
(P3,2AM) is log canonical in a general point of the curve Cg despite the fact that
we know that (P2, AM) is canonical in a general point of the curve C. The second
problem is worse: even if (P3, A\M) is canonical, the log pair (P3,2AM) may still
be not log canonical. One can easily construct such examples (see Example 3.11).
To solve both problems, we introduce a new technique, which we call localization
and isolation of log canonical centers. Let us describe this technique.

Suppose that the singularities of the log pair (P2, \M) are not canonical. Let
us seek for a contradiction. Take y < 2\ such that the log pair (P3, uM) is strictly
log canonical (see Section 2), and pick up a minimal center S of log canonical
singularities of (P3, uM) (see [K97], [K98], [CS09a, Def. 2.8]). The minimality of
the center S implies that the G-orbit of S is either a finite set, or a disjoint union
of irreducible curves. We use Lemma 2.13 to observe that one may assume that
every center of log canonical singularities of the log pair (P2, uM) is g(S) for some
g € G. Then, applying the Nadel-Shokurov vanishing theorem (see Theorem 2.2,
[LO4, Theorem 9.4.8]), we obtain an upper bound on the number of irreducible
components of the G-orbit of S with some additional information (for example, if
is a point, then the points in its G-orbit must impose independent linear conditions
on sections in H(Ops(4))). If S is a curve, then the Kawamata subadjunction
theorem (see Theorem 2.10, [K98, Theorem 1]) implies that S is smooth, and we
can proceed with applying the Nadel-Shokurov vanishing theorem, the Riemann—
Roch theorem, the Castelnuovo bound (see Theorem 2.14, [H77, Theorem 6.4]),
and the Corti inequality (see Theorem 2.5, [C00, Theorem 3.1]), to prove that
S = Cs. If S is a point, then analyzing small G-orbits in P3, we see that the
G-orbit of the point S consists of either 8 or 28 points (see Lemmas 3.2 and
5.12). Note that there is a unique G-orbit in P? consisting of 8 points, and there
are exactly two G-orbits in P consisting of 28 points (see Lemma 3.2). Thus, all
potentially dangerous (for the proof of Theorem 1.9) G-invariant subvarieties in
P3 are explicitly described. This is localization of log canonical centers.

Let us denote by ¥ the union of the curve Cg, the G-orbit consisting of eight
points, and both G-orbits consisting of 28 points. Now we can use brute force to
prove that (P3, AM) is canonical along ¥ keeping in mind that multCs(M) < 1/
Then we conclude that (P3,2AM) is not log canonical outside of the subset .
Thus, there exists p/ < 2X such that (P3, 4/ M) is strictly log canonical outside of
Y. Let S’ be a minimal center of log canonical singularities of the log pair (P2, /M)
that is not contained in X. Note that S’ exists by construction. If S’ is a point,
then we can proceed as before and easily obtain a contradiction with the Nadel—-
Shokurov vanishing theorem. Thus, we conclude that S’ is a curve. If S” and ¥ are
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disjoint, then we also can proceed as before and obtain a contradiction with the
Kawamata subadjunction theorem, the Nadel-Shokurov vanishing theorem, the
Riemann—Roch theorem, the Castelnuovo bound, the Corti inequality, etc. This is
1solation of log canonical centers.

If $"is a curve and S’ N'Y # @, then we have a problem. Indeed, we cannot
apply the Kawamata subadjunction theorem to S’, because the log pair (P2, /M)
may no longer be log canonical in the points of the finite set S'NY if 4/ > . Recall
that p is a rational number such that (P32, uM) is strictly log canonical, i.e.,log
canonical and not Kawamata log terminal. To solve this new problem, we have
to isolate and localize new log canonical centers again, i.e.,to repeat the previous
arguments to the union of ¥ and new potentially dangerous curves in P3. And
then there is a chance that we have to repeat this process again and again. So all
together this looks messy. And the proof of Theorem 1.9 is messy. To simplify it,
we describe all potentially dangerous log canonical centers before the proof, and
then we try to localize and isolate them together at once.

We organize this paper in the following way. In Section 2, we recall several well
known preliminary results. In Section 3, we collect results about the action of
the group PSLz2(F7) on P3. In Section 4, we collect results about the threefold
constructed in Example 1.8. In Section 5, we prove Theorem 1.9 using results
obtained in Section 3. In Section 6, we prove Theorems 1.10 and 1.12 using
results obtained in Section 4. In Appendix A, we describe Mukai’s construction
of Fano threefolds of degree 22. In Appendix B, we collect elementary results
about the groups PSLa(F7) and SL2(F7). Throughout the paper we use standard
notation for cyclic, dihedral, symmetric and alternating groups. For a group I' we
denote by 2.I' a (non-trivial) central extension of I by the central subgroup Zs.
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00185-a, P®®U 11-01-00336-a and HII-4713.2010.1.

2. Preliminaries

Throughout the paper we use the standard language of the singularities of pairs
(see [Ko97]). By strictly log canonical singularities we mean log canonical singu-
larities that are not Kawamata log terminal.

Let X be a variety that has at most log terminal singularities, and let Bx
be a formal Q-linear combination of prime divisors and mobile linear systems
Bx =% _,a;B;i + Z§:1 ¢j M, where B; and M are a prime Weil divisor and
a linear system on the variety X that has no fixed components, respectively, and
a; and ¢; are non-negative rational numbers. Note that we can consider Bx as a
Weil divisor. Suppose that By is a Q-Cartier divisor.

Definition 2.1. We say that Bx and (X, Bx) are mobile if a1 =as=...=a, =0.

Let 7: X — X be a log resolution for the log pair (X, Bx), and let B; and M;
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be the proper transforms of the divisor B; and the linear system M on the variety
X, respectively. Then

Ky + Za’Bi + Z cjM; ~q T (Kx + Bx) + ZdiEi7

i=1 j=1 i=1

where F; is an exceptional divisor of the morphism 7, and d; is a rational number.

Put 106,8y) = m. (04 ( L1d1E - las:) ).

i=1 i=1
and recall that Z(X, By ) is known as the multiplier ideal sheaf (see [L04, Sect. 9.2]).

Theorem 2.2 ([L04, Theorem 9.4.8]). Let H be a nef and big Q-divisor on X
such that Kx + Bx + H ~g D for some Cartier divisor D on the variety X. Then
HY(Z(X,Bx) ® D) =0 for every i > 1.

Let £(X,Bx) be a subscheme given by the ideal sheaf Z(X,Bx). Put LCS(X,Bx)
= Supp(L(X, Bx)).

Remark 2.3. If the log pair (X, Bx) is log canonical, then the subscheme £(X, Bx)
is reduced.

Let Z be an irreducible subvariety of the variety X.

Definition 2.4 ([K97, Def. 1.3]). The subvariety Z is said to be a center of log
canonical singularities (non-log canonical singularities, respectively) of the log pair
e either a; > 1 (a; > 1, respectively) and Z = B; for some i € {1,...,r},
e or d; < —1 (d; < —1, respectively) and Z = w(E;) for some ¢ € {1,...,m}
and some 7.

Let LCS(X, Bx) and NLCS(X, Bx) be the sets of centers of log canonical
and non-log canonical singularities of the log pair (X, Bx), respectively. Then
NLCS(X, Bx) C LCS(X, Bx).

Theorem 2.5 ([C00, Theorem 3.1]). Suppose that dim(X) = 2. Assume also that
the set NLCS(X, Bx) contains a point P € X\Sing(X), the boundary Bx is mobile
and s = 1. Then

multp(M; - My) > 4/ci,

where My and M{ are general curves in the linear system M.

Let us denote by NLCS(X, Bx) the proper subset of the variety X that is a
union of all centers in NLCS(X, Bx).

Definition 2.6 ([CS08, Definition 2.2]). The subvariety Z is said to be a cen-
ter of canonical singularities (non-canonical singularities, respectively) of the log
pair (X, Bx)if Z = n(E;) and d; < 0 (d; < 0, respectively) for some i € {1,...,m}
and some choice of the morphism 7.

Let CS(X, Bx) and NCS(X, Bx) be the sets of centers of canonical and non-

canonical singularities of the log pair (X, Bx), respectively. Then NCS(X, Bx) C
CS(X, Bx).
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Theorem 2.7 ([C00, Cor.3.4]). Suppose that dim(X) = 3. Assume also that the
set NCS(X, Bx) contains a point P € X \ Sing(X), the boundary Bx is mobile
and s = 1. Then

multp (M - M) > 4/c3,

where My and M/ are general surfaces in the linear system Mi.

Let us denote by NCS(X, By ) the proper subset of the variety X that is a union
of all centers in NCS(X, Bx).

Lemma 2.8. Suppose that X is smooth at a general point of the subvariety Z.
Then CS(X, Bx) C LCS(X,2Bx) and NCS(X, Bx) C NLCS(X,2Bx).

Proof. This is obvious, because X is smooth at a general point of Z. [
Suppose that Z € LCS(X, Bx) and (X, Bx) is log canonical along Z.

Lemma 2.9 ([K97, Prop.1.5]). Let Z' be a center in LCS(X, Bx) such that Z' #
Z. Then any irreducible component of the intersection Z N Z' is an element in
LCS(X, Bx).

Suppose that Z is a minimal center in LCS(X, Bx) (see [K97], [K98], [CS09a,
Def. 2.8]).

Theorem 2.10 ([K98, Theorem1]). The variety Z is normal and has at most
rational singularities. If A is an ample Q-Cartier Q-divisor on X, then there exists
an effective Q-divisor Bz on the variety Z such that

(Kx—i-Bx—i-A)’ZNQ KZ+BZ7

and (Z, Bz) has Kawamata log terminal singularities.
Let G be a finite subgroup of the group Aut(X).

Lemma 2.11. Let P, C' and S be a point, curve and surface in X, respectively.
Suppose that Sing(X) # P € C C S and dim(X) = 3. Suppose that P and C
are G-invariant, and either G = Ay or G = Z; x Zs. Then multp(C) > 3 and
the surface S is singular at the point P € X.

Proof. Let v: U — X be a blowup of the threefold X at the point P, let E be
the y-exceptional divisor, and let C' be the proper transforms of the curve C on
the threefold U. Then multp(C) > |C N E)|.

The group G naturally acts on E = P2, This action comes from a faithfull
three-dimensional representation of the group G, which must be irreducible, be-
cause the group G does not have two-dimensional irreducible representations and
the group G is not abelian. Thus |C' N E| > 3, and the points of the set CNE
are not contained in a single line in £ = P?, which immediately implies that the
surface S must be singular at the point P € X. O

Suppose that By is G-invariant. Recall that (X, Bx) is log canonical.

Remark 2.12. Let g be an elements in G. Then ¢g(Z) e LCS(X, Bx ). By Lemma 2.9,
we have ZNg(Z) # @ <<= Z = g(2).

Suppose that Bx is ample. Take an arbitrary rational number ¢ > 1.
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Lemma 2.13. There is a G-invariant linear system B on the variety X that has
no fized components, and there are rational numbers €1 and €3 such that1 > €1 > 0
and 1> e > 0 and

LCS(X, 1 Bx + €28) = ( | | {g(Z)}) | |NLCS(X, e1Bx + e2B),
geG

the log pair (X, e1Bx +€2B) is log canonical along g(Z) for every g € G, the equiv-
alence €1 Bx + €288 ~g €eBx holds, and NLCS(X, ¢1Bx + e28) = NLCS(X, Bx).

Proof. See the proofs of [K97, Theorem 1.10] and [K98, Theorem 1]. O
Let C be a smooth irreducible curve in P? of genus g and degree d.

Theorem 2.14 ([H77, Theorem 6.4]). If C is not contained in a hyperplane in
P3, then

—92)2

Mifdiseven,
9< d41 d—3

%ifdisodd.

Suppose, in addition, that G = PSLy(F7) and C admits a faithful action of the
group G.

Lemma 2.15. Let ¥ be a G-orbit of a point in C. Then |X| € {24,42, 56, 84,168}.

Proof. This follows from Lemma B.1, since stabilizer subgroups of all points in X
are cyclic. [

Lemma 2.16. Suppose that g < 30. Then g € {3,8,10,15,17,19,22,24, 29}, and
the number of G-orbits in C consisting of 24, 42, 56, and 84 points can be described
as follows:

genus ¢ | 24 points | 42 points | 56 points | 84 points
3 1 0 1 1
8
10
15
15
17
19
22
22
24
29

(iR Nl Nl N N R Ne )l Nao )l i Nen)
o|lr|r|lw|lololo|e|~]|—
VR Nl Heol Nanl B NCN Il Y e B I NG)
N[O WO DWW O~

Proof. Tt follows from the classification of finite subgroups of the group PGL2(C)
that g # 0, and it follows from the non-solvability of the group G that g # 1.
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Let I' C G be a stabilizer of a point in C. Then I" 2 Z;, for k € {1,2,3,4,7} by
Lemma B.1.

Put C = C/G. Then C is a smooth curve of genus g. The Riemann—Hurwitz
formula gives

2g — 2 =168(2g — 2) + 84az + 112a3 + 126a4 + 144a~,

where ay is the number of G-orbits in C with a stabilizer of a point isomorphic
to Zk.

Since a; > 0, one has g = 0, and 29 —2 = —336 + 84as + 112a3 + 126a4 + 144a~,
which easily implies the required assertions. [J

Remark 2.17. We do not claim that every case listed in Lemma 2.16 is realized.
Let L be a G-invariant line bundle on the curve C (see [D99, §1]).

Lemma 2.18. If deg(L) < 23 and L is a G-linearizable line bundle (see [D99,
§1]), then h°(Oc(L)) £ {1,2,4,5}.

Proof. If L is G-linearized, then there is a natural linear action of the group G on
H°(Oc¢(L)), and the required assertion follows from Lemma 2.15 and Appendix B.
O

Theorem 2.19 ([D99, Theorem 2.4], [MR03, Lemma 2.10]). If g = 3, then C =
¢ and there is 6 € Pic(C) such that 20 ~ K¢ and Pic®(C) = (0).

Thus, if g = 3, then deg(L) is even by Theorem 2.19, because we assume that
L is G-invariant.

Lemma 2.20. Suppose that g =8 and L is G-linearizable. Then 7|deg(L).

Proof. Suppose that 71deg(L). Then there are integers a and b such that 14a +
bdeg(L) = 8. Put D = aK¢ +bL. Then deg(D) = 8 and D is a G-linearizable line
bundle.

By the Riemann—Roch theorem, the Clifford theorem (see [H77, Theorem 5.4])
and Lemma 2.18, we have h®(O¢(D)) = 3. Then h°(O¢(Kc — D)) = 2, which
contradicts Lemma 2.18. [

Lemma 2.21. Suppose that g = 10 and L is G-linearizable. Then 3|deg(L).

Proof. Tt follows from [D99, p. 6] that there exists G-linearizable line bundle v on
C of degree 6 that generates the group of all G-linearizable line bundles on C. Then
it follows from [D99, Prop. 2.2] that 3|deg(L). O

3. Projective space

Let ¢ be a primitive seventh root of unity, let G be a subgroup in SL4(C) such
that

10 0 O 1 2 2 2
a_llo¢c o o) L [1 ¢+ @+ Gt
- 00 <4 0 7\/_—1 1 <2+C5 <3+C4 <+<6 9
00 0 ¢ 1 G+t ¢+¢ 2+
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and let us denote by the symbol Uy the corresponding faithful four-dimensional
representation of the group G (cf. Appendix B). Then G = SLy(F7) and Uy is
irreducible (see [MS73], [Atl]).

Let ¢: SLy(C) — Aut(P3) be a natural projection. Put G = ¢(G). Then G =

PSLa(F7) is of type (II) in the notation of Example 1.7.
Remark 8.1. Tt follows from [B117, Chapter VII] that Aut®(P3) = G.

Lemma 3.2. Let P be a point in P3, and let ¥ be its G-orbit. Suppose that
|X| < 41. Then either |X| = 8 and the orbit X is unique, or |X| = 24 and the orbit ¥
is unique, or |X| = 28 and there are exactly two possibilities for the orbit .

Proof. Tt follows from Corollary B.2 that |X| € {7,8,14, 21, 24,28}, because the
representation Uy is irreducible (so that |X| # 1). Let Gp be a stabilizer subgroup
in G of the point P, and let ép be the preimage of the subgroup Gp under
¢. If |¥| = 21, then Gp = 2.Dy4, which is impossible by Lemma B.9. If |¥| €
{7,14}, then G p has a subgroup isomorphic to 2.A4, which is also impossible by
Lemma B.9. Thus, we see that |X| € {8,24, 28}.

Suppose that |3| = 8. Then it follows from Lemmas B.1 and B.7 that Gp =
Z7 X Z3, the orbit ¥ does exist, the point P is the unique G p-invariant point in
P3, and ¥ is unique, since all subgroups of the group G that are isomorphic to
Z7 X Z3 are conjugate by Lemma B.1. R R

Suppose that |X| = 24. Then Gp = Z7 and Gp = Z14. Take any g € Gp such
that G p = (g), and let R,, be a one-dimensional representation of the group G P
such that g acts on R,, by multiplication by —(™. For a suitable choice of g, we
have isomorphism of G p-representations Uy = Ry @ Ry © Re & R4, which implies
that P3 contains exactly 3 different points besides P € P3, say P;, P, and Ps,
that are fixed by the group Gp. There is a unique subgroup H C G such that
Z7 x Zs = H D Gp, and we may assume that the point P; is H-invariant (that is,
corresponds to the subrepresentation Rg). Then its G-orbit consists of eight points.
Thus, we see that {P, Py, P3} is an H-orbit, which implies that the orbit ¥ exists
and it is unique.

Suppose that |©| = 28. Then Gp =2 S3. The action of Gp on P?3 is induced by a
four-dimensional representation of 2.S3. By Lemma B.9, this representation splits
as a sum of an irreducible two-dimensional representation and two non-isomorphic
one-dimensional representations. Thus, there is a unique point P’ € P? such that
P # P" and P’ is fixed by Gp. On the other hand, the group G contains exactly 28
subgroups isomorphic to Sz. Moreover, it easily follows from Lemma B.9 that two
different subgroups in G isomorphic to S3 generates either a subgroup isomorphic
to S4 or the whole group G. Thus, it follows from Lemma B.9 that no two of these
28 subgroups isomorphic to Sz can fix one point in P3. Thus, there are exactly
two G-orbits in P? consisting of 28 points.  [J

Let Xg, Y94 and Xog # Yhg be G-orbits in P3 consisting of 8, 24 and 28 points,
respectively.
The group G naturally acts on Clx1, 9, 3, x4]. Put
a = xTor3Ty4, b= x%zg + r§x4 + xizg,

2.3 2,3 2.3 2 5 5 5
c =575 + 2575 +x4x5, d=a" + xaxy + 3T, + T475,
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and e = 7ab + x5 + 2% + z]. Furthermore, put Phiy = 221 + 6ax; + b and
Phig = 829 — 20ax? — 10bx3 — 10cx; — 14a” — d,
Phig = 25 — 2ax} + ba + 2ca? 4 (6a® + d)z? + 2abx; + ac,
Phiy = 2% + 14ax] — Tbat + 14ca? — Tdx? + exy,
Phiyg = 48211 4 168ax i + 308bx1® — 1596¢x] + 126(42a* + 11d)xs—
— 8(37e + 490ab)x] + 196(12ac + 5b%)z§ + 196(15ad — 13be)x]+
+ 14(182¢? — 86ae — Tbd)x] + 28(11be — 42¢d)x?
+ 14(21d* — 16ce)xs + l4dex; — €.
Theorem 3.3 A([E47], [MS73, Theorem 1]). The forms Phis, Phis, Phis, Phig
and Phiyg are G-invariant.

Remark 3.4. In Clxq, xo, x5, 24] there are no G-invariant two-dimensional vector
subspaces in that consist of linear, quadratic, cubic, quartic, quintic or sextic forms
(see [D99, Appendix 1]).

Let F; be a surface in P that is given by the equation
Phi; (21, x2, 23, 14) = 0 C P? = PTOJ(C[Il,l’z,IS,M}),

and let F} be a surface in P3 that is given by Phi}(x1, x2, 23, 24) = 0.

Theorem 3.5 ([MS73, Theorem 1]). There are no G-invariant odd degree sur-
faces in P3, there are no G-invariant quadric surfaces in P3, and the only G-
invariant quartic surface in P3 is the surface Fj.

One can check that the surface F, is smooth.

Lemma 3.6 (cf. [MS73, Theorem 1]). The sets Fy N Fg N FL, Fa N Fg N Fig and
Fy N F{N Fiq are finite.

Proof. This follows from explicit computations. We used the Magma software
[Mag] to carry them out. [

There is a G-invariant irreducible smooth curve Cs C P3 of genus 3 and degree
6 such that Yoy = Cg N Fy, and Cy is an intersection of cubic surfaces in P3 (see
[E47, p. 154], [D99, Example 2.8]).

Lemma 3.7. Let C be a G-invariant curve in P3 such that deg(C) < 6. Then
C = Cs.

Proof. By Corollary B.2, we may assume that the curve C' is irreducible. If
the curve C is singular, then [Sing(C)| > 8 by Lemma 3.2, which easily leads
to a contradiction by applying Lemma 2.15 to the normalization of the curve C.
Then C is smooth. Since Uy is an irreducible representation of the group G,
the curve C is not contained in a plane in P3. Then C is a curve of genus 3 and
degree 6 by Theorem 2.14 and Lemma 2.16. By Theorem 2.19, there is a unique G-
invariant line bundle of degree 6 on the curve C, which implies that the embedding
C < P is unique up to the action of the group Aut®(P?). But Aut®(P3) = G by
Remark 3.1, which implies that C'= Cys. O
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Note that Cg N ¥g = & by Lemma 2.15.

Lemma 3.8. There is a non-bireqular involution T € BirG(IP’3) such that the dia-
gram
14

N -

]P>3 - == ]PJ3
commutes and (G, T) = G X Za, where o and B are blowups of the curve Cg.

Proof. The existence of the commutative diagram (3.9) is well known (see [D99,
Remark 6.8]), and the isomorphism (G, 7) = PSLy(F7) x Zz follows from the last
three lines of the proof of [D99, Lemma 6.4]. O

Let us introduce a G-invariant curve in P3, which has never been mentioned in
the literature.

Lemma 3.10. There is a G-invariant irreducible curve Ciy C P3 of degree 14
such that g C Ciy.

Proof. Let € be the genus 3 curve introduced in Example 1.8. Then Aut(¢) & G,
which implies that € admits a natural action of the group G. It follows from
Theorem 2.19 that Pic®(€) = (6), where 6 is a G-invariant line bundle of degree
2. By [D99, Lemma 6.4], there exists an isomorphism H%(O¢(76)) = Uy & Us,
where Us is an irreducible eight-dimensional representation of the group G (see
Appendix B).

The linear system |76| gives a G-equivariant embedding p: € < P! such that
there exist unique G-invariant linear subspaces Pis and Pi in P! of dimensions
3 and 7, respectively. Then p(€) NPi; = @ by Lemma 2.15. Let ¢: P11 -5 Pig
be a G-equivariant projection from Pir, put C14 = t o p(€), and identify Pig with
our P3. Then C;4 C P3 is an irreducible G-invariant curve of degree 14.

Let H be a subgroup in G such that H = Z; x Z3. Then there is an H-invariant
subset Y3 C € such that |X3] = 3. Note that X3 is a subset of the G-orbit of
length 24, which implies that ¥g C C44 if and only if |to p(2X3)| = 1 by Lemma 3.2.
Let us show that ¢ o p(X3) consists of a single point.

Let T be a vector subspace in H°(Og(760)) that consists of sections vanishing
at the subset X3, and let L; be a G-subrepresentation in H%(O¢(76)) such that
L; 2 U, for i € {4,8}. Then |to p(X3)| = 1 if and only if dim(Ls NT) = 3 by
the construction of the map ¢ o p. Let us show that dim(Ly NT) = 3.

Take a subgroup H C G such that qb(ﬁ ) = H. Then it follows from Lemma B.7
that Ls 2 Va @ Vi@ V) @ V{" and Ly = V3 ® Vi as representations of the group ﬁ,
where V3, V5, Vi, V{, V{" are different irreducible representations of dimensions 3,
3, 1, 1, 1, respectively. Thus, there is an isomorphism T 2 V3 @ V3 @ V3, because
T does not contain one-dimensional H -subrepresentations, since the curve € does
not contain H-invariant subsets consisting of deg(7¢) — 3 = 11 points. Hence
LNT=Vs O

Let us denote the points in Xg by O1,0s,...,0s, and let us denote by Q
the linear system of quadric surfaces in P that pass through Xs.
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Example 3.11. The log pair (P?,2Q) is canonical. But NLCS(P?,4Q) =

Let m: U — P3 be the blowup of the subset ¥g, and let E; be the exceptional
divisor of the birational morphism 7 such that 7(E;) = O; for every i. Then there

is a commutative diagram
™ n
(3.12)

P3***;**>]P’2,

where 9 is a rational map that is given by Q, and 7 is an elliptic fibration.

Lemma 3.13. The curve C14 has an ordinary triple point at every point of the set
Ys, the proper transform of the curve Ci4 on the threefold U is smooth, the curve
C14 is smooth outside of the points of the set Xg, the map 1: P2 —-s P2 induces
a birational map Crq --+ Y(Ch4), the curve ¥(Ciq) is a smooth curve of genus 3
and degree 4, the intersection Cg N Ch4 is empty.

Proof. Let C14 and @ be the proper transforms of the curve C'i4 and a general
surface in @ on the threefold U, respectively. Then multp,(C14) > |[C14 N E;| 2 3
by Lemma 2.11. Thus

8
4>28 — 8‘0140E’>2deg 014 ZE 014—( ( )_ZEi)Cl4:Q'Cl4>O7
=1

which implies that C'14 has an ordinary triple point at every point of the set Xg.
Since 4 = 2deg(C14)—24 = Q-C14, we see that 1(C14) is a smooth curve of genus 3
and degree 4 by Lemma B.5. Therefore C14 = n(C14), which implies that Cy4 is
smooth outside of the points of the set Xg.

Let us show that CsNCy4 = @. Suppose that CsNC14 # &. Then |CsNChyq| = 56
by Lemma 2.16, since ¥g ¢ Cs. Let S be a general cubic surface in P? such that
Cg C S. Then

42=58-Ci4 > Z multo (S)multo(Crq) > 56,
0eCgnCiy

because C14 ¢ S. Thus, the intersection Cg N Cy4 is empty. [

Lemma 3.14. Let C be a G-invariant curve such that deg(C) < 15 and g C C.
Then C = Chy4.

Proof. Let C and @) be the proper transforms of the curve C and a general sur-
face in Q on the threefold U, respectively. Then multp,(C) > |C N E;| > 3 by
Lemma 2.11. Then

8 8
6 > 30 — 8C N E;| > 2deg(C) — ZEi-C:(w*(H)—ZEi)C:Q-C>O
=1

i=1

which implies that E; - C = |C' N E;| = 3.
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We may assume that C' is a G-orbit of an irreducible curve I' C P3. Then
6 > 2deg(C) — 24 = Q - C = ddeg(n(C))

for some positive integer 4. We may assume that § = 1 if C is contracted by
7. Thus, we have deg(C) € {12,13,14,15}, which implies that either deg(I") < 2
or I' = C (see Corollary B.2).
By Lemma B.5, we have deg(¢(C)) € {1,2,3}. Then deg(C) € {12,14,15} and
0 =1. But
6 > 2deg(C) — 24 = deg(n(C)), (3.15)

which implies that deg(n(C)) € {0,4,6} by Lemma B.5.

Recall that G-invariant quartic curve and sextic curve in P? are irreducible
(see Lemma B.5), which easily implies using (3.15) that either deg(I') = 1 and
deg(C)=12,0or T =C.

If deg(T') = 1 and deg(C) = 12, then it follows from (3.15) that |n(C)| < 12,
which is impossible, since the G-orbit of every point in P? consists of at least 21
points by Lemma B.6.

We see that I' = C. Then C' is not contracted by n, since there is no G-invariant
point in P2,

Suppose that deg(C) = 15. Then C = (C) and deg(¢(C)) = 6, which immedi-
ately implies that ¢(C) is a smooth curve of genus 10 by Lemma B.5. Then there
is a natural monomorphism

Us = HO(Oy (x* (H)) = H(Op ® Oy (x*(H)) = C°,

which contradicts Lemma 2.15, since SLy(IF7) has no irreducible two-dimensional
representations.

We see that deg(C') = 14. Thus C = ¢(C), which implies that C' is a smooth
curve of genus 3. Arguing as in the proof of Lemma 3.10, we see that C' = 0(C14)
for some o € Aut?(P?). But Aut®(P?) = G by Remark 3.1. Hence, we must have
C' = (14, since the curve C'4 is G-invariant. [

Lemma 3.16. Let D be the linear system consisting of all quintic surfaces in
P3 that contain Cr4. Then D is not empty and does not have fized components,
a general surface in D has a double point in every point of the set Xg, all curves
contained in the base locus of the linear system D are disjoint from Ch4, a general
surface in D is smooth in a general point of the curve C14, any two general surfaces
in D are not tangent to each other along the curve Ciy.

Proof. Let C'14 be the proper transform of the curve C14 on the threefold U, and
let Z be the ideal sheaf of the curve C14. Put R = 7*(5H) — Zle E;. Then

K(Ou(R) & T) > h(Ou(R)) ~ h(Og,, © Ou(R)) = 48— h(Og,, @ Ou (R)) = 4,

which implies that dim(D) > 3.

Let D be a general surface in D. Then D is irreducible, because the linear
system D does not have fixed components by Theorem 3.5 and D is not composed
of a pencil by Remark 3.4.
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Let D be its proper transform of the surface D on the threefold U, and let T’
be a general fiber of the elliptic fibration n. Then

8
20 — Smulto, (D) = (w*(5H) — 3" multo, (D)Ei) T=D-T>0
=1

which implies that multp, (D) < 2. Thus multp, (D) = 2 by Lemma 2.11.

Let D’ be a general surface in D such that D # D’. Hence there is pu € Z~g
such that D-D’ = uCh4+ B+ Z, where Z is a curve not contained in the base locus
of the linear system D, and B is a curve contained in the base locus of the linear
system D such that C14 € Supp(B). Then

25 = deg(D - D') = 14p + deg(B) + deg(Z) > 20 + deg(2)

by Lemma 3.7. Thus, we see that u = 1 and deg(B) +deg(Z) < 11, which implies,
in particular, that the surfaces D and D’ are not tangent to each other along C14,
since p = 1.

Note that B is G-invariant, because D is G-invariant. Therefore deg(B) > 6 by
Lemma 3.7.

If the base locus of the linear system D consists of the curve Cy4, then Cy4 is
a scheme-theoretic intersection of surfaces in D outside some finite subset of the
curve Chy4, because p = 1.

Let Z and B be the proper transforms of the curves Z and B on the threefold
U, respectively, and let () be a proper transform of a general quadric surface in Q
on the threefold U. Then

8
0<Q-B=2deg(B)~ > E;-B
=1

3 if O; € Supp(B),

<22 — <22 —
< 22 —8|Supp(B) N E;| < 22 8X{Oif0igsupp(3)7

which implies that g N Supp(B) = @. But
3+ multp, (Z) = multp, (C14) + multp, (B) + multp, (Z) = multe, (D1 - D2) > 4,

which implies that ¥g C Supp(Z). Hence

8
2deg(Z) —8 > 2deg(Z) ~ Y Ei-Z=Q-Z >0,

=1

which implies that deg(Z) > 4, and deg(Z) = 4 if and only if Z is contracted
by 1. But 10 < 6 + deg(Z) < deg(B) + deg(Z) < 11, which implies that either
deg(B) = 7 and deg(Z) = 4, or deg(B) = 6 and deg(Z) = 5.

If deg(Z) = 4, then D is contracted by the morphism 7 to a curve of degree
d, then D ~ d(7*(2H) — 2?21 E;), which is a contradiction. Thus, we see that
deg(B) = 6 and deg(Z) = 5.

By Lemma 3.7, we have B = Cg. Therefore Cs N C14 = @ by Lemma 3.13. O

Let us study some properties of the subset Yo C P3| which also hold for .
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Lemma 3.17. Let Z be a G-invariant curve in P3 that contains the set Yog.
Then deg(Z) > 16 if the set Xag imposes independent linear conditions on quartic
surfaces in P3.

Proof. Suppose that the set o8 imposes independent linear conditions on quartic
surfaces in P3, and suppose that deg(Z) < 15. Let us derive a contradiction.

Without loss of generality, we may assume that Z is a G-orbit of an irreducible
curve Z£j.

Put Z = 22:1 Z;, where Z; is an irreducible curve in P? and r € Z~(. Then
deg(Z) = rdeg(Z;) < 15, which implies that r» € {1,7,8,14} by Corollary B.2.
Thus, if r # 1, then deg(Z;) € {1,2}.

If deg(Z1) = 2 and r # 1, then r = 7, which contradicts Lemma 3.2. Hence Z;
is a line if r # 1.

Let T' be the stabilizer subgroup in G of the curve Z;. If r = 7, then I' &
S4, which implies that |Z; N Xas| > 6, which is impossible, since Yag imposes
independent linear conditions on quartic surfaces. R

Let T be the smallest subgroup of the group G such that ¢(I') = T". Then

e if 7 =8, then ' = 2.(Z7 x Z3), which contradicts Lemma B.7.
e if r = 14, then I = 2.A4, which contradicts Lemma B.9.

Thus, we see that the curve Z is irreducible.

By Lemma 2.15, the curve Z must be singular at every point of the set Yog,
which implies that Z # C14 by Lemma 3.13. Hence Y5 ¢ Z by Lemma 3.14.

Let A be a point in ¥sg. Then there exists a quartic surface S C P3? such
that S contains all points of the set ¥ag \ {A} and the surface S does not contain
the point A. Therefore

ddeg(Z)=S-Z> Y multo(Z2) > Y 2>54,
Oexas\{A} Oexas\{A}

which implies that deg(Z) > 14. Thus, either deg(Z) = 14 or deg(Z) = 15.

If deg(Z) = 15, then Z C FyNFsN F§ by Lemma 2.15, since 60, 90 and 120 are
not equal to 24ny 4+ 42n9 + 56n3 + 84n4 + 168ns; for any non-negative integers nq,
na, ng, ng and ns. Then deg(Z) = 14 by Lemma 3.6.

Let Z be the normalization of the curve Z, and let g be the genus of the curve
Z. Then

g < 66 — |Sing(Z)| < 38, (3.18)

because the projection from a general point of the curve Z gives us a birational
isomorphism between Z and a plane curve of degree 13 with at least |Sing(Z)]
singular points.

Note that G naturally acts on both curves Z and Z. Let us show that Z \ ¥og
is smooth.

Suppose that Sing(Z) # Yas. Let A be a G-orbit of a point in Sing(Z) \ Zas.
Then |A| < 66 — |3ag| = 38 by (3.18), and |A| € {24,28} by Lemma 3.2. If
A = Cg N Fy, then

2=15-7> multo(S)multo(Z) > 48,
OeA
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where S is a general cubic surface such that Cg C S. Thus, we see that |A| # 24
by Lemma 3.2, which implies that |A| = 28. Therefore, it follows from (3.18) and
Lemma 2.16 that g € {3,8,10} and the points of the set A U Xog must be singular
points of the curve Z of multiplicity two, which implies that Z has at least two
G-orbits consisting of 56 points, which contradicts Lemma 2.16.

Thus, we see that Z is smooth outside of the set Yos.

Let B be a sufficiently general point of the curve Z, let M be a linear system
consisting of all quartic surfaces in P? that contain the set Yog U B. Then one has
dim(M) > 35 —29 = 6.

Let M be a general surface in M. If Z ¢ M, then

56 = M - Z > multg(M)multp(Z) + Y multo(M)multo(Z) > 57,
O€Xag

which is a contradiction. Thus, the curve Z is contained in the base locus of
the linear system M, which implies that the linear system M is G-invariant,
because Z is G-invariant.

The linear system M does not have fixed components by Theorem 3.5 and
M is not composed of a pencil by Remark 3.4. This implies, in particular, that
the surface M is irreducible.

Let M’ be another general surface in the linear system M. Put M-M' = uZ+7,
where p € Z~, and T is an effective one-cycle such that Z ¢ Supp(Y). Then

16 = deg(M - M) = 14 + deg(T),

which implies that ¢ = 1, and the base locus of the linear system M contains
no curves except Z, because there are no G-invariant lines or conics in P3. Thus
multz (M) = 1 and deg(Y) = 2, which implies, in particular, that the surface M
is uniruled.

Let M” be another general surface in the linear system M. Then the intersec-
tion M N M’ N M" consists of the curve C' and the intersection T N M" | which
immediately implies that the base locus of the linear system M consists of at most
8 points outside of the curve Z. Thus, it follows from Lemma 3.2 that either
the base locus of the linear system M consists of the curve Z, or the base locus of
the linear system M consists of the curve Z and the set Xg.

Let Q be a general surface in the linear system Q. If ¥g C M N M’, then

2=Q M-M=Q-Z+ > multo(Q)multo(T) =
0OeXg
=28+ > multo(Q)multo(T) > 36,
0OeXyg

which implies that Xg ¢ MNM’. Hence Z is the base locus of the linear system M.

By adjunction formula, we see that the singularities of the surface M are not
canonical, which implies that (P2, M) is not canonical by [Ko97, Theorems 4.8.1
and 7.9] (cf. [Ko97, Theorem 7.5]). But Z ¢ NCS(P?, M), because multz(M) = 1.
Thus, the set NCS(P3, M) contains a point P € Z. Thus

2if P € Yog,

multp(T) > 4 — multp(Z) = {3 if P ¢ S
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since multp(M) > 2. Let © be the G-orbit of the point P. Then O] > 28 by
Lemma 3.2, and

8=M-M'-M'"—M"-Z=M". Z multo (M )multo (Y) > 56,
0O€o
which is a contradiction. O

Let R be a linear system consisting of all quartic surfaces in P? that pass
through 228-

Lemma 3.19. If the set Yog imposes independent linear conditions on quartic
surfaces in P3, then every curve in the base locus of the linear system R contains
no points of the set Yog.

Proof. Let C be an irreducible curve in P? such that C is contained in the base
locus of the linear system R, let Z be the G-orbit of the curve C, let Ry and Ry be
general surfaces in R. Put Ry - Ro = uZ+ Y, where y € Z~¢, and T is an effective
one-cycle such that C' ¢ Supp(Y). Then 16 = deg(R; - Ra) = pdeg(Z) + deg(Y),
which implies that deg(Z) < 15 by Remark 3.4. Now it follows from Lemma 3.17
that Yog ¢ Z and C N Xgg = @ if the points of the set Yog impose independent
linear conditions on quartic surfaces in P3. [

We do not know whether or not ¥9g imposes independent linear conditions on
quartic surfaces.

4. Compactified moduli space of (1, 7)-polarized abelian surfaces
Let € be a curve in P? that is given by the equation
ot oyt 2 4 3e(2?y? 4+ 2222 + 9%2?) = 0 € P2 = Proj(Cla, y, 2]), (4.1)

where e = —1/2 4+ \/—7/2. Then € is isomorphic to the curve described in Exam-
ple 1.8 (see [L99, p.55]).

Remark 4.2. The Hessian curve of the curve € is a smooth sextic curve (see [DK93,
Example 6.1.1]).

Remark 4.3. The quartic € is not degenerate (see [DK93, Definition 2.8]). To
see this, apply [DK93, Theorem 6.12.2] (keeping in mind [DK93, Def. 6.12.1]) and
use [DK93, Cor. 6.6.3], [DK93, Example 6.7] and Remark 4.2 above.

Put e = —1/2 — /=7/2. Let 9: SL3(C) — Aut(P?) = PGL3(C) be a natural
projection. Put

-1 0 0 01 0
A= o o -1, B=[o00 1],
0o -1 0 1 0 0
0 1 -1 1 €
c=110 0o |, e 0 |,
0 0 -1 1
put G = ¢¥((4, B,C, D)), and let X = VSP(€,6) (see Definition A.3). By [L99,
p. 55], we have Aut(¢) = G = (4, B,C, D) = PSLQ(IF7)
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Theorem 4.4 ([MS01, Theorem 4.4]). The threefold X is a smooth Fano three-
fold such that Pic(X) = Z[-Kx] and (—Kx)3 = 22.

The action of the group G on the plane P? induces its natural action on the three-
fold X. Therefore, the vector space H’(Ox(—Kx)) has a natural structure of
a 14-dimensional representation of the group G.

Theorem 4.5. In the notation of Appendix B, one has
HY(Ox(~Kx)) =TI Ws® Ws.
Proof. We may assume that W = W5. By Theorem A.5, one has
Ur = Sym®(Wy') /W3 2 Wy 2 UY,
where all isomorphisms are isomorphisms of G-representations. Hence, we have
Ups 2 N (Uq) /(WY @ UY) =2 NP(Wr) /(W @ Wr) 2 Uy,

which implies the required assertion by Corollary B.4. O
Corollary 4.6. There is a unique G-invariant surface in | — Kx]|.
Let us identify X with its anticanonical image in P'3 (see Appendix A).

Lemma 4.7. Let Q C X be a surface swept out by the lines contained in X . Then
Q ~ —2Kx, and Q is irreducible.

Proof. By [P90], the surface @ is reduced and Q ~ —2Kx. Suppose that @ is
reducible. Then @ = @ UQ2, where @)1 and @2 are irreducible surfaces such that
Q1 # Q2. Then Q1 ~ Q2 ~ —Kx, and both @1 and @2 must be G-invariant. On
the other hand, there is a unique G-invariant surface in | — K x| by Lemma 4.5,
which is a contradiction. [J

In the remaining part of this section we are going to prove the following result.

Theorem 4.8. Let ¥ be a G-orbit of a point in X such that || < 20. Then
|X| € {8,14}, and if |X| = 8, then X is unique.

Remark 4.9. There exist finitely many points in X whose G-orbits consist of 14
points.

Before proving Theorem 4.8, let us use Theorem 4.8 to prove the following
result.

Lemma 4.10. Let F' be the unique G-invariant surface in | — Kx|. Then F is
smooth.

Proof. The minimal resolution of the surface F' admits a faithful action of the group
PSLa(F7), which implies that F' is smooth by [Og02, Claim 2.1] if it has at most
canonical singularities. Let us show that F' has at most canonical singularities
(Du Val singularities). It is well known that F' has canonical singularities if and
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only if the surface F' has rational singularities (see [K0o97, Theorem 1.11]). By
Theorem 1.12, the log pair (X, F') is log canonical.

Suppose that F' has worse than canonical singularities. Let S be a minimal
center in LCS(X, F). Then S # F by Theorem 2.10, because F has worse than
canonical singularities. Hence, either S is a curve or a point by Theorem 2.10. Let
Z be the G-orbit of the subvariety S. Then Z C F.

Choose any € € Q such that 2 > ¢ > 1. Then, arguing as in the proof of
[K97, Theorem 1.10], we can find a G-invariant Q-divisor D such that D ~q €F,
the log pair (X, D) is log canonical, and every minimal center in LCS(X, D) is an
irreducible component of the subvariety Z (see Lemma 2.13).

Let H be a sufficiently general hyperplane section of the threefold X, and
let Zz be the ideal sheaf of the subvariety Z. Then there is an exact sequence
of G-representations

0— H(Ox(H)®Iz) — H*(Ox(H)) = H°(0Oz ® Ox(H)) — 0
by Theorem 2.2. Put ¢ = h°(Ox(H) ® Zz). One has
K (07 ® Ox(H)) =14 —q € {6,7,13}, (4.11)

because ¢ € {1,7,8} by Theorem 4.5, since Z C F. Hence S is not a point by
Theorem 4.8.

We see that S is a curve. Moreover, S is a smooth curve of genus g such that
—Kx - S =deg(S) > 2g — 1 by Theorem 2.10. By Remark 2.12, the curve Z is
a disjoint union of smooth irreducible curves. Let r be the number of connected
components of the curve Z. Put d = deg(S). Then

g<d—g+1<r(d—g+1)=14—q€ {6,7,13} (4.12)

by (4.11), which implies that d < 13 4+ g < 27.

Let us show that » = 1. Suppose that » > 2. Then r» > 7 and r # 13 by
Corollary B.2. Thus r =7 and d — g + 1 = 1 by (4.12), which implies that d = g.
But d > 2g — 1, so that d = g = 1, which is absurd.

We see that r = 1. There is a natural faithful action of the group G on
the curve S. But d = 134+ g—¢q > 29 — 1, by (4.12), which implies that g < 14 —q.
Hence g € {3,8,10} by Lemma 2.16.

Let us show that ¢ = 3. Suppose that ¢ # 3. Then g € {8,10}. It fol-
lows from (4.12) that ¢ < 14 — ¢ < 6, which implies that ¢ = 1, because
q € {1,7,8}. Hence, it follows from (4.12) that d € {20,22}, which is impossi-
ble by Lemmas 2.20 and 2.21.

Thus, we have g = 3, so that d = 16 — ¢ by (4.12), where ¢ € {1,7,8}. By
Theorem 2.19, there is a G-invariant line bundle 6 € Pic(S) of degree 2 such that
Pic®(S) = (0), which implies that ¢ = 8 and H|g ~ 2K, because d = 16 — q.
Thus d = 8.

Let @ be a surface in X that is spanned by lines. Then @ is G-invariant. If
S ¢ Q, then |QNS| < 2deg(S) = 16, which is impossible by Lemma 2.15. Thus, we
see that S C QN F. By Lemma 4.7, the surface @ is irreducible, and Q ~ —2K x.
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Let P be a general point in S. There exists a line L C X such that P € L. If
L ¢ F, then

1=deg(L)=F- L > multp(F)multp(L) > multg(F) > 2,

which simply means L C F'. Since g # 0, the generality of the point P € S implies
that the surface F' is swept out by lines, which is impossible since Q ¢ F. 0O

Remark 4.13. Let 3 be a G-invariant subset of the threefold X such that we have
|X| € {8,14}, and let F be the unique G-invariant surface in | — Kx|. Then F is
smooth by Lemma 4.10. Since G acts symplectically on F', it follows from [X96]
that XN F = 2.

Now we are going to prove Theorem 4.8. Put
0 = X\{T € Hilbg(P?) | I is polar to the curve C'} C Hilbg(P?).

Lemma 4.14. Let ¥ be a G-orbit in O such that |X| < 20. Then |X| =8 and &
18 unique.

Proof. Tt follows from [MRO03, §2.3] that there exists an effective one-cycle
m1L1 —+ -4 mTLT ~ OIP’2 (6)

on IP? that corresponds to a point in 3, where L; are lines in P? and m; are positive
integers.
Without loss of generality, we may assume that m; > --- > m,. Then

(ma,...,m.) € {(2,1,1,1,1),(3,1,1,1),(2,2,1,1),(2,2,2), (4,2)}

by [MR03, Theorem 1.1] (cf. [M04, Theorem A]). Thus, it follows from |X| < 20
that (my,...,m,) = (2,2,2), because the smallest G-invariant subset in P2 has at
least 21 points by Lemma B.6.

Let us consider the lines Ly, Ly, L3 as points in the dual projective plane P2
with a natural action of the group G, and let € be the unique G-invariant quartic
curve in P2. Then €N{L,, Lo, L3} # @ by [MRO3, Prop. 3.13], which easily implies
that |X| = 8 and ¥ is unique by Lemma 2.16. [

Therefore, to prove Theorem 4.8 it is enough to consider only G-orbits of points
in X \ O, which are points in X that can be represented by polar hexagons to
the curve €.

Suppose that the assertion of Theorem 4.8 is false. Let us derive a contradiction.

By Lemmas 4.14 and B.1, there are six lines L1, ..., Lg on P? such that

F(x,y,2) = Li(2,y,2) + -+ Lg(z,9, 2), (4.15)
where L;(x,y,z) is a linear form such that L; is given by L;(z,y,z) = 0, and

the stabilizer subgroup of the hexagon 2?21 L; in the group G is isomorphic either
to Z7 X Zs or to Sy.
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Remark 4.16. Thelines L1, ..., Lg are distinct since the quartic € is not degenerate
(see Remark 4.3).

Lemma 4.17. Let g € G be an element of order 7. Then Z?Zl L; is not g-
invariant.

Proof. Suppose that 2?21 L; is g-invariant. Then g¢(L;) = L; for every i €
{1,...,6}. Take M € SL3(C) such that ¥(M) = g~! and M7 = 1. Then
Li((z,y,2)M) = M\Li(x,y,z) for some \; € C for every i € {1,...,6}, ie.,
A1, ..., Ag are eigenvalues of the matrix M.

Since g has order 7, we have A\] = ... = A\l = 1. We may assume that

AL = A2 = A3 = Ay = As,
since L1, ..., Lg are different lines. Then \¢ # A1 by (4.15). Thus one obtains
|L1 n Lg n L3 n L4 n L5| =1 and L1 n Lg n L3 n L4 n L5 ¢ L6. Therefore
6 5
> Li(w,y,2) = F((x,y,2)M) = \gLg(x,y,2) + A1 Y Li(@,y,2),
i=1 i=1
by (4.15), which easily implies that A\] = A\§ = 1. Hence A\; = \¢ = 1, which is
a contradiction. [
Let T' be a stabilizer subgroup in G of the hexagon E?Zl L;, ThenT' & S,
by Lemma 4.17. We may assume that I' = ()(A),¥(B),¢(C)), because G has
two subgroups isomorphic to S up to a conjugation (see Lemma B.1), which are

switched by an outer automorphism in Aut(G) that can be realized as a complex
conjugation in appropriate coordinates.

Lemma 4.18. The group I' acts transitively on the lines L1, Lo, Ls, L4, Ls, Lg.

Proof. Since the action of the group I' on P? comes from an irreducible three-
dimensional representation of the group I', the I'-orbit of every line in P2 contains
at least 3 lines. But the only I'-invariant 3-tuple of lines in P2 is given by zyz = 0.
O

Let Q be a stabilizer subgroup in I' of the line L;. Then either ) & Zy X Zo
or Q) =7,.

Lemma 4.19. The group ) is not isomorphic to Z,.

Proof. Suppose that Q = Z,. Then we may assume that € is generated ¢(CB).
One has

0 0 1
cB=[0 1 0],
~1.0 0

and the eigenvalues of the matrix CB are 1 and ++/—1.

Note that (0,1,0) is the eigenvector of the matrix C'B that corresponds to
the eigenvalue 1, and (Fy/—1,0, 1) is its eigenvector that corresponds to the eigen-
value £v/—1. Thus Li(z,y,2) = u(z + +/—1z), where p is a non-zero complex
number. The hexagon 2?21 L; is given by

(& — V=12)( + V=12)(y + V=12)(y — vV=12)(2 + V=1y)(z = V~1y) = 0,
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which implies that the quartic form z# + y* + 2% + 3e(z?y? + 2222 + y22?) is equal
to

(e = V=12)" + pa(x + V=12)" + pa(y + V-12)*
+ pa(y — V=12)* + ps(z + V=1y)* + pe(z — vV=1y)*

for some (pu1, pi2, p3, fa, 15, i) € CC. In particular, we obtain a system of linear
equations

Apg +4dpa =1 — V=T,

Apg 4+ 4pg =1 — /T,

dps +4pe =1 — V=T,

H1+ po + ps + pa =1,
which is inconsistent. [

Thus, we see that Q = Zs X Zo.

Lemma 4.20. The subgroup §2 is not contained in a subgroup of the group G
isomorphic to Ay.

Proof. Suppose that (2 is contained in a subgroup of the group G that is isomorphic
to A4. Then

100 1 0 0 -1 0 0 -1 0 0
o={(o1o0)lo -1 0o |, 0o -1 o[ o0 1 0]}
001 0 0 -1 0 0 1 0 0 -1

which implies that the G-orbit of the line L; is the curve that is given by xyz = 0,
which is impossible by Lemma 4.18. [

By Lemma 4.20, we may assume that € is generated by (AB) and ¥(C).
Therefore

100 0 -1 0 01 0 -1 0 0
o={(o 1 0]l -1 0o o {10 0o [0 -10]F
00 1 0 0 -1 00 -1 0 0 1

and the equation of the hexagon 3°°_ L; is (22 —22)(y® —22)(22—¢?) = 0. Arguing
as in the proof of Lemma 4.19, we obtain a contradiction.
The assertion of Theorem 4.8 is proved.

5. Proof of Theorem 1.9

Throughout this section we use the assumptions and notation of Section 3.
Suppose that Theorem 1.9 is false. Let us derive a contradiction.

Lemma 5.1. There is a G-invariant linear system M without fixed components
on P? such that NCS(P3,AM) # @ and NCS(P3, N'7(M)) # &, where X and N
are positive rational numbers such that AM ~g N 7(M) ~g Ops(4).
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Proof. The required assertion is well known (see [C00], [Ch09, Theorem A.16],
[Ch09, Cor.A.22]). O
The assertion of Lemma 5.1 is known as the Noether—Fano inequality.
Lemma 5.2. Either multc, (M) < 1/X or multe, (1(M)) < 1/N.
Proof. This is easy (cf. the proof of [Ch09, Lemma B.15]). O

Without loss of generality, we may assume that multc (M) < 1/A. Then
Cs ¢ NCS(P3, AM). Note that the set NLCS(IP3,2AM) contains every center in
NCS(P3,A\M) by Lemma 2.8. However, the set NLCS(P3,2AM) may be non-
empty even if NCS(P?, AM) = & (see Example 3.11).

Lemma 5.3. Let A be a union of all curves contained in NLCS(P3,2AM). Then
deg(A) < 15.

Proof. Let M, and M, be general surfaces in M, and let H be a sufficiently general
hyperplane in P3. Then

16/ =H-M;-My> > multp (M1 : Mg) > deg(A) /X2
PeANH
by Theorem 2.5, which implies that deg(A) < 15. O
Lemma 5.4. The set NCS(P3, A\M) does not contain any point in ¥g L Cg.

Proof. Let M; and Ms be general surfaces in M, and let @) be a general surface
in Q. Then

32/N=Q M- My> Y multo, (M1 : Mg) — Smulto, (M1 : Mg),
0;€Xg

which implies that NCS(P3, AM) does not contain any point in ¥g by Theorem 2.7.
Suppose that NCS(PP?, A\M) contains a point P € Cs. Put My - My = vCs + T,
where p is a non-negative integer, and T is an effective one-cycle such that
Cs ¢ Supp(Y). Then multp(vCiq + Y) = 4/A? by Theorem 2.7. Let © be the G-
orbit of the point P. Then |©| > 24 by Lemma 2.15.
Let S be a general cubic surface in P? such that Cs C S. Then

48/ —18r=5-T> Y multo(T) = [O]multo(Y) > 24(4/)\2 - u),
[0S

because Cg is a scheme-theoretic intersection of cubic surfaces in P3. Thus v >
8/A\2. Let H be a sufficiently general hyperplane in P3. Then

16/\> =H My -My=vH -Ce+H Y >vH-Cg = 6p,

which implies that v < 8/(3A?), which is a contradiction, since v > 8/\2. [0
Lemma 5.5. The set NCS(IP3, AM) does not contain the curve Cy.
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Proof. Suppose that C14 € NCS(P3,AM). Let us put g = multe,, (M) and
m = multo, (M). Then p > 1/ because C14 € NCS(P3, AM).

Let us find an upper bound for . Let M7 and My be general surfaces in M,
and let H be a sufficiently general hyperplane in P3. Then

16/ =H-M;-My> Y multc,, (M1 : Mg) > 1442,
PeC4NH

which implies that u < 1/8/7/A. Thus, we have 1/\ < u < /8/7/\.
Let us find a lower and an upper bound for m.

Let C14 and M be the proper transforms of the curve Ci4 and the linear sys-
tem M on the threefold U, respectively, and let C' be a general conic in F; = P?
such that C14 N E; C C. Then |C14 N Eq| = 3 and the points of the set C'14 N Ey
are non-coplanar (see the proof of Lemma 2.11), which implies that the conic C' is
not contained in the base locus of the linear system M. Hence

2m=C-M > Z multp (M) > Z multe, | (M) =
PeC14NEy PeCi14NE;
which implies that m > 3u/2. Thus, we see that m > 3/(2)\), since p > 1/A.

Let us find an upper bound for m (a trivial upper bound m < 2/ follows by
Lemma 5.4).

Let M; and M be the proper transforms on U of the surfaces M; and Mo,
respectively, and let @ be the proper transform of a general surface in the linear
system Q. Then

32/X° —8m’ =Q My -My> > multy (M- M,)
PeC14NQ
= dmulty (M1 -My) > 4p® > 4/N°,
which implies that m < /7/2/X. Thus, we have 3/(2)\) < m < /7/2/\.
Let v: W — U be the blowup of the smooth curve Ci4, let F' be the v-

exceptional divisor, let M and D be the proper transforms of M and D (see
Lemma 3.16) on W, respectively. Then

8
A * 4 *
M ~q (T ov) ()\H> —mEU (E
R 8
D ~q (mov)"(bH) — 220*(Ei) — F.
i=1

Let D be a general surface in D. Then D is nef by Lemma 3.16 and (5.6).

Let M7 and M5 be the proper transforms on W of the surfaces M; and Mo,
respectively. Then

80/A2 — 2(17p% + 4m? + 56y /A — 24mp) = D - M,y - My > 0,

because D is nef and F3 = —12. Put p = ) and m = mA. One has

(5.6)

1702 + 4m? 4 56 — 24mu > 40, 1<u<\/§, g<m<\/7

which easily leads to a contradiction. [
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Lemma 5.7. The set NCS(P3, A\M) does not contain any point in C14.

Proof. Suppose that NCS(P3, A\ M) contains a point P € Cy4. By Lemma 5.4,
we have P ¢ g, which implies that P is a smooth point of the curve Ci4, by
Lemma 3.13.

Choose M7 and M> to be general surfaces in the linear system M. Put M;-Ms
= uCi4 + T + =, where p is a non-negative integer, and T and = are effective
one-cycles such that Ci4 ¢ Supp(Y), every irreducible component of the curve
Supp(Y) intersects the curve C14 by a non-empty set, and none of the irreducible
components of the curve Supp(Z) intersects C14. Then multp(uCiy + T) > 4/)\2
by Theorem 2.7.

Let H be a sufficiently general hyperplane in P3. Then

16/\° =H - My My =pH-Cy+H- (Y +Z) > pH - Cry = 14y,

which implies that u < 8/(7\?).

Let © be the G-orbit of the point P. Then |©| > 42 by Lemma 2.15.

Let D be a general quintic surface in the linear system D (see Lemma 3.16).
Then

80/\% = T0p > 80/X* = T0u—D-Z=D-T > > multo(Y)
0O€o
= [©|multo () > 42(4/X* — p),

which immediately leads to a contradiction. [J
Thus, the set NLCS(IP3, 2AM) contains a center that is not contained in C14UCs.

Lemma 5.8. Suppose that NLCS(P3,2AM) contains a curve C different from
both Cs and C14. Then C14 & NLCS(P3,2AM), and if Cs € NLCS(P3, A\M), then
one has Ce N C = & and deg(C) < 9.

Proof. Let Z be a G-orbit of the curve C. If C;4 € NLCS(P3,2AM), then
deg(Z) + 14 = deg(Z) + deg(C14) < 15 by Lemma 5.3, which is a contradiction,
because there are no G-invariant lines in P3.

Suppose that Cg € NLCS(P3, AM). Then deg(C) < deg(Z) < 9 by Lemma 5.3.
Thus, to complete the proof, we must show that Cs N Z = &.

Suppose that CsNZ # @. Then |CsNZ| > 24 by Lemma 2.15. Let Z be a proper
transform of the curve Z on the threefold V' (see (3.9)), and let S be a proper
transform on V of a general cubic surface in P? that passes through the curve Cs.
Then

3>3deg(Z) — |CsNZ| > 5 - Z = deg(B(2)),

which implies that Z is contracted by 8 by Lemma 3.7, since 5(Z) is G-invariant.
The only curves contracted by the morphism [ are proper transforms of the lines

in P3 that are trisecants of the curve Cgs. Then 5(Z) C Cg, the subset 5(Z) is

G-invariant and |8(Z)] < 9, which is impossible by Lemma 2.15. O

It follows from Lemmas 5.4, 5.5 and 5.7 that the set NLCS(P3, 2AM) contains
an irreducible subvariety that is not contained in Cg U C14. In fact, we can say
a little bit more than this.
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Lemma 5.9. There are p € Q and S € LCS(P3, uM) such that

the inequalities 0 < p < 2\ hold,

the log pair (P2, uM) is log canonical along S,

the subvariety S is a minimal center in LCS(P3, uM),

the subvariety S is not a point of the set Xg,

the subvariety S is neither the curve Cg nor the curve Cy,

exactly one of the following six cases is possible:

(A) the log pair (P3, uM) has log canonical singularities,

(B) NCS(P3, uM) = C14 and S is a point such that S & Cia,

(C) NCS(P3, uM) = S5 and SN Ss = @

(D) NCS(P3,uM) = Cs and S is a curve such that SN Cs = @ and
deg(5) <9,

(E) NCS(IP’?’,MM) Cs and S is a point such that S & g,

(F) NCS(P3, uM)= CgUEg and S is a curve such that one has SN (CeUXg)
=@ and deg(S) <

(G) NCS(P3, uM) = Cg U Ys and S is a point such that S & Cg U Xg.

Proof. Let us show how to find p and S in several steps. Put
(1 = sup {e €eQ | the log pair (P?, e M) is log canonical} ,

and let S; be a minimal center in LCS(P3, 43 M). Then py < 2.

If Sy is a curve, then S; NY¥g = @ by Lemmas 3.14 and 5.3, since S is smooth
by Theorem 2.10. If S; N Xg = @ and S; # C, then we have the case (A) by
putting 4 = p1 and S = S;. Thus, to complete the proof, we may assume that
either Sl N 28 7£ g or Sl = CG'

Let us consider the mutually excluding cases S1 N Xg # @ and 51 = Cg sepa-
rately.

Suppose that S; = Cgs. Put

o = sup {e €eQ | the log pair (P?, eM) is log canonical outside Cg } < 2M,

let T, be a center in the set LCS(P3, ua M) such that To # Cg, and let Sz be
a minimal center in the set LCS(P3, uo M) such that Sy C Ty. If Ty is a curve,
then deg(T2) < 9 and To N Xg = T, N Cg = & by Lemmas 3.14, 5.3 and 5.8, since
C14N Cs = @ by Lemma 3.13 and Cg € NLCS(P?, 2AM).

If T5 is a curve and Sy = T, then we have the case (D) by putting u = ps and
S = Sy. If Ty is a curve and S is a point, then we have the case (E) by putting
w= o and S = Sy. If To = Sy is a point not in Mg, then we have the case (E)
by putting u = ue and S = Ss. Thus, to finish the case S; = Cg, we may assume
that So = T5 is a point in Xg. Put

b3 = sup {e S0) |the log pair (P?,eM) is log canonical outside Cg U g } < 2,

let T3 be a center in the set LCS(P3, u3 M) such that T3 ¢ Cg U g, and let S3
be a minimal center in the set LCS(P3, u3M) such that S C T3. If T3 is a curve,
then deg(T3) < 9 and T3 N Xg = T5N Cs = & by Lemmas 3.14, 5.3 and 5.8, since
C14N Cs = @ by Lemma 3.13 and Cg € NLCS(P?, 2AM).
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If T5 is a curve and S35 = T3, then we have the case (F) by putting pu = ue
and S = Sy. If Ty is a curve and Ss is a point, then we have the case (G) by
putting p = po and S = Sy. If T, = S5 is a point, then we have the case (G) by
putting 4 = po and S = S5. Therefore, the case S1 = Cp is done, and we may
assume that S; N Xg # &, which implies that the subvariety S; is a point in Xg by
Theorem 2.10 and Lemmas 3.14 and 5.3. Put

Wy = sup {e eQ | the log pair (P?, eM) is log canonical outside Yg } < 2M,

let T3 be a center in the set LCS(P?, uyM) such that Ty ¢ Xg, and let S5 be
a minimal center in the set LCS(P?, ubM) such that S5 C Tj. Note that if S
is a point in Xg, then Ty # S5, which implies that T4 must be the curve C14 by
Lemmas 3.14 and 5.3.

If Ty is a point, then S} = T4, and we have the case (C) by putting pu = b
and S = 5. So, to complete the proof, we may assume that 74 is an irreducible
curve.

If S, =Ty, then S} is a smooth curve such that deg(S5) < 15 by Theorem 2.10
and Lemma 5.3, which immediately implies that T4 N Xg = & by Lemma 3.14. If
Sh =Ty # Cs, then we have the case (C) by putting p = ph and S = S5, If S}
is a point not in X, then we have the case (C) by putting p = p5 and S = S5.
Hence, to complete the proof, we may assume that either S} is a point of the set
Yg and Ty = Cy, or we have S}, = T = Cs. Let us consider these cases separately.

Suppose that S} is a point of the set ¥g and T4 = C14. Put

Wy = sup {e eQ ’the log pair (P?, e M) is log canonical outside Cjy } < 2),

let 7% be a center in the set LCS(P3, M) such that T4 ¢ Ch4. Then T} is a point
by Lemma 5.8, which implies that we have the case (B) by putting u = p5 and S =
Tj.

To complete the proof, we may assume that S) = Tj = Cg. Put

Wy = sup {e €cQ ’ the log pair (P?, eM) is log canonical outside Cg U g } < 2),

let T% be a center in the set LCS(P?, u4 M) such that T4 ¢ Cg N g, and let SY
be a minimal center in the set LCS(P?, 4 M) such that S§ C T4. Note that
C14 ¢ LCS(P3,2AM) by Lemma 5.8.

If T{ is a point, then S§ = T4, and we have the case (G) by putting p = p4
and S = S%. Thus, we may assume that T4 is a curve. Then one has deg(74') <9
and T} N Ce=T4 N Lg =2 by Lemmas 3.14, 5.3 and 5.8, since Cs € LCS(P3, 2AM)
# Ci4. Finally, we put p = pf4 and S = S%. Then we have the case (G) if
the center S% is a point, and we have the case (F) if the center S¥ is a curve,
which completes the proof. [J

Let € be any rational number such that u < ey < 2X\. Then it follows from
Lemma 2.13 that there is a G-invariant linear system B on P2 such that B does
not have fixed components, and there are positive rational numbers €; and e such
that 1 > €1 > €3 > 0 and

LCS(P?, e, uM + e38) = ( L] {g(S)}) | |NLCS(P?, pM),

geG
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the log pair (P3,e;uM + €2B) is log canonical at every point of g(Z) for every
g € G, and e uM + €28 ~q epM. Let Z be the G-orbit of the subvariety S. Then
one of the following cases is possible:
(A) LOS(P3, e uM + e2B) = Z,
) LCS(P3, e3uM + €2B) = Z 11 Cy4 and Z is finite set,
) LCS(P3, e;uM + e2B) = Z LI Bg,
) LOS(P3, e1uM + €2B) = Z U Cg and Z is a curve such that deg(Z) < 9,
) LCS(P3, e3uM + €2B) = Z U Cg and Z is a finite set such that Z # g,
) LCS(P3, e1uM+e2B) = ZLIC LY and Z is a curve such that deg(Z) < 9,
(G) LCS(P3, e1uM + €28) = Z U Cg LU Bg and Z is a finite set.
Put D = e;uM+e3B8. Let £ be the union of all connected components of the log
canonical singularity subscheme £(P3, D) whose supports contain no components
of the subvariety Z. Then

@ in the case (A),
C14 in the case (B),
Supp(£L) = { Y in the case (C),
Cs in the cases (D) and (E),
Cs U Xg in the cases (F) and (G).

Let Z(P3, D) be the multiplier ideal sheaf of the log pair (P3, D). Then
K (O ® Ops(4)) + h°(Oz ® Ops(4)) = 35 — h°(Ops(4) ® Z(P*, D)) < 35 (5.10)
by Theorem 2.2.

Corollary 5.11. Suppose that Z is a finite set. Then Z contains at most 35
points, and Z imposes independent linear conditions on quartic surfaces in P3.

Lemma 5.12. Suppose that S is a point. Then |Z| # 24.

Proof. Suppose that |Z| = 24. Then Z = 334 by Lemma 3.2, and there is a
hypersurface F' of degree 4 in P3 such that Z\.S C F and S ¢ F by Corollary 5.11.
Thus, there is a unique point P € Cg such that P # S and Flc, = P+ Z\ S ~
Fy|lcy, = Z, which implies that P ~ S on Cg, which is impossible, since Cg is
a smooth curve of genus 3. [J

Lemma 5.13. The subvariety S is a curve.

Proof. Suppose that S is a point. By Lemmas 3.2 and 5.12 and Corollary 5.11, we
have |Z| = 28, because Z # Xg. Without loss of generality, we may assume that
7 = Yog.

Let M; and M; be general surfaces in M. Put My-M; = Z4+ A, where = and A
are effective cycles such that Supp(Z) N Supp(A) consists of finitely many points,
and Supp(Z) D Yog ¢ Supp(A). If S € NCS(P3, AM), then mults(Z) > 4/A2 by
Theorem 2.7.

Let R be a general surface in R (see Lemma 3.19). Then Supp(Z) N R consists
of at most finitely many points by Lemma 3.19 and Corollary 5.11. Thus, we must
have

64/X* 264/ ~R-A=R-Z> Y multp(Z) = 28mults(S),
PeXog



THREE EMBEDDINGS OF THE KLEIN SIMPLE GROUP 333

which implies that mults(Z) < 16/(7A?). So g(S) &€ NCS(P3, AM) for every g € G.
Note that Yag ¢ Cg U C14 by Lemma 2.15, since Cg is smooth and Sing(C14) =
Y.
It follows from Lemmas 5.4, 5.5 and 5.7 that the set NLCS(P3, 2AM) contains
an irreducible subvariety that is not contained in Cg U C14 U Xog. Put

p=sup{e€Q | the log pair (P?, e M) is log canonical outside Cg U Cy4 U Sas .

The set LCS(P?, uM) contains every point in Xog. If > p, then NLCS(P3, uM)
also contains every point in Yog. It follows from Lemma 2.8 that 1 < 2A. Note
that p > p.

Let Q be a center LCS(P3, uM) such that Q ¢ Cs U C14 U Xog. Note that
does exist. Let us choose a center I' € LCS(P?, uM) in the following way:

e if 2 is a point, then we put I' = (,
e if ) is a curve that is a minimal center in LCS(P3, M), then we put I’ = €,
e if ) is a curve that is not a minimal center in LCS(P3, uM),

then let T' be a point in Q that is also a center in LCS(P3, uM).

Let A be a G-orbit of the center I'' Then AN Xg = ANXes = F by Lem-
mas 3.14, 3.17, 5.8, 5.3.

Let € be a rational number such that 4 < eu < 2\. Arguing as in the proof
of Lemma 2.13, we obtain a G-invariant linear system B’ on IP? such that B’ does
not have fixed components. Moreover, we can choose positive rational numbers ¢
and €5 such that 1 > €1 > e > 0 and

LCS(P?, e;uM + e:8') <|_|{g >|_|( | ] {P})UNLCS(P?’,MM)

geG PeXog

if u=p, or

LCS(P3, e uM + e8') (|_|{g )UNLCS(IP’?’,MM)

geqG

if > p.

Put D = e;uM + eaB’. Then I is a connected component of the subscheme
L(P3, D). Let £ be the union of all connected components of the subscheme
L(P3, D) whose supports contain no components of the subvariety A. Then
ho(O, ® Ops(4)) > 28, since Yo C Supp(L).

Let Z(P3, D) be the multiplier ideal sheaf of the log pair (P3, D). Then

h2(Oa ® Ops(4)) = 35 — h®(Ops (4) ® Z(P3, D)) — h° (O, ® Ops(4)) < 7

by Theorem 2.2, which implies that I' is not a point by Lemma 3.2. We see that
A is a curve. By Theorem 2.10, the curve A is a smooth curve in P? of degree d
and genus g < 2d. Then

deg(A)
deg(T)

deg(A)

(d+1) <32
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which gives d < 3. Thus, we have A # T, so that deg(A) > 7deg(T") by Corol-
lary B.2. We have

deg(A)
deg(T")

deg(A)

21 <7(2d+1) < (2d +1) dog(T

(2d+1) < (4d—g+1) <7,

which is a contradiction. [

By Theorem 2.10, the curve S is a smooth curve of degree d and genus g such
that g < 2d, which implies, in particular, that the case (B) is not possible by
Lemma 5.8.

Let G5 be the stabilizer in G of the subvariety S. Put p = h°(L ® Ops(4)), put
q = h°(Ops(4) ® Z(P3, D)), and let  be the number of irreducible components of
the curve Z. Then

r(dd—g+1)=35—q—p (5.14)

by (5.10), the Riemann—Roch theorem and Remark 2.12.
Lemma 5.15. The equality r = 1 holds.
Proof. Suppose that r £ 1. Then r > 7 by Corollary B.2, which implies that

dd—g+1= w <5
by (5.14). But g < 2d. Then 4d — g + 1 < 5, which implies that g = p = ¢ = 0,
d=1landr="7.
The induced action of the group Gg = S4 on the line S is faithful, which implies
that S C F}, since G g-invariant subsets in S have at least 6 points. Then Z C Fy,
which contradicts g =0. O

Therefore, we see that Z = S.

Remark 5.16. Let I be the trivial representation of the group G. By Lemma B.8
we have
HO(Ops(4)) =T dWsd Ws @ Wy @ Wy @ W,

where W; is an irreducible representation of the group G = PSLa(F7) of dimen-
sion 4. Then p+q & {2,3,4,5,10,11,17}, because p is divisible by 8. If S C Fy,
then p+q ¢ {0,2,3,4,5,6,10,11,12,17}.

Note that there is a natural faithful action of the group G on the curve S.
Lemma 5.17. We have g € {3,8,10,15,17,22,24,29}.

Proof. This follows from Lemmas 2.16 and 3.2, since g < 2d < 30 by Lemma 5.3.
O

Lemma 5.18. Suppose that d # 6 and d # 12. Then S C Fy.

Proof. Suppose that S ¢ Fy. Then F, NS is a union of some G-orbits Ay, ..., As.
Thus Y _7_, n;|A;| =4d for some positive integers n1, no, . ..,ns. Using Lemma 2.16,
we obtain that d = 14, s = 1, ny = 1 and |A1] = 56. Then g = 224+¢+p < 2d = 28,
which implies that g = 22 by Lemma 5.17 and Remark 5.16. By Lemma 2.16, we
have |A1| # 56, which is a contradiction. [

Note that d € {6,7,8,9} in the cases (D), (E), (F), (G).
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Lemma 5.19. The equality d = 6 is impossible.
Proof. Suppose that d = 6. Then it follows from Lemma 5.17 that

3<g=q+p—-10<2d =12,

which implies that g € {3,8,10}. But g < 4 by Theorem 2.14. Hence S = Cg by
Lemma 3.7, which is a contradiction, because S # Cg by the choice of the center
S € LCS(P3, uM). O

Lemma 5.20. The equality d =7 is impossible.

Proof. Suppose that d = 7. Then g < 7 by Theorem 2.14 and g=3 by Lemma 5.17.

By Lemma 5.18, we see that S C Fy. Arguing as in the proof of Lemma 5.17,
we see that the curve S is contained in the intersection F4 N Fg N Fi4, which is
impossible by Lemma 3.6. O

Lemma 5.21. The equality d = 8 is impossible.

Proof. Suppose that d = 8. Then g < 9 by Theorem 2.14 and g € {3,8} by
Lemma 5.17. By Lemma 5.18, we see that S C Fjy. Arguing as in the proof
of Lemma 5.17, we see that the curve S is contained in Fy N Fg N F§ if g = 8.
Thus g = 3 by Lemma 3.6. Then Ops(1)|s ~ 2Kg by Theorem 2.19, which is
impossible, since the vector space H°(Og(2K3)) is an irreducible six-dimensional
representation of the group G = PSLy(F7) by Lemma B.4. O

Lemma 5.22. The equality d =9 is impossible.

Proof. Suppose that d = 9. Then g < 12 by Theorem 2.14 and g € {3,8,10}
by Lemma 5.17. By Lemma 5.18, we have S C Fj. Arguing as in the proof
of Lemma 5.17, we see that S C Fy N Fg N F§ if g = 8. Similarly, we see that
SCF,NFsNFif g=3. Thus g = 10 by Lemma 3.6. Then S is a complete
intersection of two cubic surfaces in P3 (see [H77, Example 6.4.3]), which is im-

possible, because there are no G-invariant pencils of cubic surfaces by Remark 3.4.
a

Thus, the cases (D), (E), (F), (G) are not possible.
Lemma 5.23. The equality d = 10 is impossible.

Proof. Suppose that d = 10. Then p + ¢ & {2,4,11} by Lemma 5.18 and Re-
mark 5.16. But g = 6 + ¢ + p < 2d = 20, which implies that g € {8,10,15,17} by
Lemma 5.17. Thus, we see that ¢ = 15 and p+ ¢ = 9. By Lemma 5.18, we see
that S C Fy. Arguing as in the proof of Lemma 5.17, we see that the curve S is
contained in the intersection Fy N Fg N FY, which is impossible by Lemma 3.6. [

Lemma 5.24. The equality d = 11 is impossible.

Proof. Suppose that d = 11. Then p + ¢ ¢ {0,5,12} by Lemma 5.18 and Re-
mark 5.16. But ¢ = 10 + ¢ + p < 2d = 22, which implies that g € {10,15,17,22}
by Lemma 5.17. Thus, we see that ¢ = 17 and p+ ¢ = 7. By Lemma 5.18, we see
that S C Fy. Arguing as in the proof of Lemma 5.17, we see that the curve S is
contained in the intersection Fy N Fg N F§, which is impossible by Lemma 3.6. [
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Lemma 5.25. The equality d = 12 is impossible.

Proof. Suppose that d = 12. Then p 4+ ¢ ¢ {3,5,10} by Remark 5.16. But
g =14+ g+ p < 2d = 24, which implies that g € {15,17,22,24} by Lemma 5.17.
Thus either g = 15 or g = 22. Arguing as in the proof of Lemma 5.17 and using
Lemma 2.16, we see that S C F; N Fg N F§, which is impossible by Lemma 3.6.
O

Lemma 5.26. The equality d = 13 is impossible.

Proof. Suppose that d = 13. Then p + ¢ ¢ {4,6} by Lemma 5.18 and Re-
mark 5.16. But ¢ = 18 + ¢ + p < 2d = 26, which implies that g € {22,24} by
Lemma 5.17. Thus p + g € {4,6}, which is a contradiction. O

Lemma 5.27. The equality d = 14 is impossible.

Proof. Suppose that d = 14. Then p+¢ # 0 by Lemma 5.18 and Remark 5.16. But
g =22+4+qg+p < 2d = 28, which implies that ¢ = 22 by Lemma 5.17. Thus
p = q = 0, which is a contradiction. [

By Lemmas 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27 and Theorem 2.14,
one has d > 15, which implies that d = 15 by Lemma 5.3. Then p + g # 3 by
Lemma 5.18 and Remark 5.16. But g = 26 + ¢ + p < 2d = 30, which implies that
g =29 by Lemma 5.17. Thus, we have p 4+ ¢ = 3, which is a contradiction.

The assertion of Theorem 1.9 is proved.

6. Proof of Theorem 1.10

Throughout this section we use the assumptions and notation of Theorem 1.10,
and we identify the threefold X with its anticanonical image in P*? (cf. Theorem
4.5). Suppose that Theorem 1.10 is false. Let us derive a contradiction.

Lemma 6.1. There is a G-invariant linear system M without fixed components
on X such that NCS(X, \M) # &, where X is a positive rational number such that
—Kx ~g AM.

Proof. The required assertion is well known (see [C00], [Ch09, Cor. A.18]). O
Lemma 6.2. Let A be a union of all curves in NLCS(X, 2AM). Then deg(A) <21.
Proof. Let M; and My be general surfaces in M, and let H be a general surface
in the linear system | — Kx|. By Theorem 2.5, we have

22/N' =H-My-My > Y multp(My-My) > (H-A)/\* = deg(A)/N\?,

PEANH
which implies that deg(A) < 21. O

By Lemma 2.8, the set NLCS(X, 2AM) contains every center in NCS(X, AM).
Put
[k = sup {e S0) ‘ the log pair (X, eM) is log canonical} <2,

let X3 be the unique G-invariant subset of the threefold X consisting of 8 points
(see Lemma 6.3), and let F' be the unique G-invariant surface in the linear system
| — Kx| (see Corollary 4.6).
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Lemma 6.3. Suppose that ¥g C LCS(X,uM). Then ¥g ¢ NCS(X,AM), and
the set NLCS(X, 2AM) does not contain curves that pass through a point in Xg.

Proof. Take € € Q such that 1i <€ < 2\, By Lemma 2.13, there is a G-invariant
linear system without fixed components B on X, and there are €1 € Q > € such
that 1 > /6\1 > /6\2 > 0 and ]LCS(X,glﬁM +€28) = 283 the IOg pair (X,/G\lﬁ./\/l +€28)
is log canonical, and € M + €8 ~q €uM. Put D =& M + &B.

Let Z(X, 15) be the multiplier ideal sheaf of the log pair (X, 15), and let H be
a general surface in the linear system | — K x|. The sequence of groups

0 — H(Ox(H)®I(X,D)) — H(Ox(H)) —» H°(Ox,) = 0

is exact by Theorem 2.2. Then Yg imposes independent linear conditions on sur-
faces in | — Kx|.

Let D be a linear subsystem of the linear system | — K x| that consists of all
surfaces passing through 3g. Then it follows from Theorem 4.5 that D is the unique
five-dimensional G-invariant linear subsystem of the linear system | — K x| and
F & D. 1t is clear that the base locus of the linear system D does not contain
surfaces.

Suppose that the base locus of the linear system D does not contain any curve
that passes through a point in ¥g. Let us show that this assumption implies
everything we have to prove.

Let M; and Ms be general surfaces in the linear system M. Put M;-M; = Z4A,
where = and A are effective one-cycles such that ¥g C Supp(Z), Xg ¢ Supp(A) and
Supp(Z) N Supp(A) consists of at most finitely many points. Let D be a general
surface in the linear system D. Since |Supp(E) N D| < 400, one has

22/X* 222/ ~D-A=D-2> Y multp(Z) = 8multp(=),
PeXg

for every point P € Xg. Then NCS(X,AM) contains no points in g by Theo-
rem 2.7.
Let Z be a G-orbit of an irreducible curve in X such that ¥g C Z. Then

deg(Z2)=D-Z > Y multp(D)multp(Z) > > multp(Z) >24
PeXg PeXg

by Lemma 2.11. Hence NLCS(X,2AM) contains no components of the curve Z
by Lemma 6.2, which implies that NLCS(X,2AM) does not contain curves that
pass through a point in Xg.

To complete the proof, we must show that the base locus of the linear system
D contains no curves that contain a point in Xg. Suppose that this is not true.
Let us derive a contradiction.

The base locus of the linear system D contains a curve C that is a G-orbit
of an irreducible curve such that X5 C C. Then multp(C) > 3 for every P €
g by Lemma 2.11.
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Let Q1, Q2, @3 and Q4 be general points in X, and let H be a linear subsystem
in | — Kx| that consists of all surfaces that contain the set {Q1, @2, @3, Q4}. Then
H N D is a pencil, and the base locus of the linear system #H contains no curves.

Let H be a general surface in ‘H, and choose D1 and D5 to be general surfaces
in the pencil HND. Then

4
22=H-Dy-Dy > » mult, (H)multq, (Dy)multg, (Ds) + [HNC| > 4+ deg(C),
i=1

since deg(C) = |H N C|. Thus, we see that deg(C) < 18.
Note that C' ¢ F, since Xg ¢ F. Therefore, we have

> multp(C) < [FNC| < F-C =deg(C) < 18,
PeFNC

because C' ¢ F. Applying Theorem 4.8, we see that deg(C) =F -C =|FNC|=
14 and C is smooth at every point of the set F N C. Then C is reducible by
Lemma 2.15.

Put C = Y_, C;, where C; is an irreducible curve and r € Z~o. Then one
has r = 14/deg(C1). By Corollary B.2, either deg(C7) = 1 or deg(Ci) = 2. On
the other hand, we know that deg(C4)+1 > |C1NXsg|, since Xg imposes independent
linear conditions on surfaces in | — K x|. Hence, we must have

14 8-3

r> o —
deg(C’l) ’Cl Nn3g

)

because mult p(C) > 3 for every point P € ¥g. Therefore |C; NXg| = 1+ deg(Ch).
Note that deg(C1) # 1. Indeed, if deg(Cy) = 1, then |C1 N Es| =2 and r = 28,
because the group G acts doubly transitive on the set Xg (see [E47, p. 173]), which
is a contradiction.
Thus, we see that C is an irreducible conic and r = 7, so that |C; N Xg| = 3.
Let Pi; be a plane in P13 such that C; € Pi;. Then Pi; contains 3 lines L%,
L? and L? such that |L} N Xg| = |[L? N Xg| = |[L3 N Sg| = 2, and the G-orbit of
the line L1 consists of 28 different lines, since G acts doubly transitive on Yg.
Now one can easily see that the G-orbit of the plane Pi; consists of at least
28/3 > 9 planes, which is impossible since the G-orbit of Pi; consists of at most
r =7 planes. [

By Lemma 6.3, the set NLCS(X, 2AM) contains a center that is not contained
in Zg. Put

L = sup {e 0 ‘ the log pair (X, eM) is log canonical outside of the subset 28}

in the case when Y3 C LCS(X, uM). If 5 ¢ LCS(X, uM), then put p = f.

Lemma 6.4. There exist a minimal center in LCS(X, uM) that is not a point of
the set Xg.
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Proof. This immediately follows from Lemma 6.3. O

Let S be a minimal center in LCS(X, uM) such that S ¢ g, and let Z be its
G-orbit.

Remark 6.5. If Z =S and S is a curve, then Z N g = & by Theorem 2.10 and
Lemma 2.15.

Let € be any rational number such that u < ey < 2X\. Then it follows from
Lemma 2.13 that there exists a G-invariant linear system B on X such that B does
not have fixed components, and there exist positive rational numbers ¢; and es
such that 1 > €1 > €9 > 0 and

LCS(X, e1uM + e28) = ( | ] @(5)}) | |NLCS(X, uM),

geG

the log pair (X, e;uM + €28) is log canonical at every point of the subvariety Z,
and €;puM + 28 ~g euM. Put D = e;uM + €28. By Lemma 6.4, we may have
the following cases:

(A) LCS(X, D) = Z and the log pair (X, D) is log canonical,

(B) LCS(X,D) = ZUXg and Z is a finite set,

(C) LCS(X,D) = Z1UXg and Z is a curve.

Let £ be the union of all connected components of the subscheme L£(X, D)
whose supports do not contain any component of the subvariety Z. Then

_ [ in the case (A),
Supp(£) = {28 in the cases (B) and (C).

Let Z(X, D) be the multiplier ideal sheaf of the log pair (X, D), and let H be
a general surface in the linear system | — K x|. Then

hY(Oz ® Ox(H)) = 14 — h°(Ox (H) ® Z(X, D)) — h°(O,) < 14 (6.6)

by Theorem 2.2, since £ is at most a zero-dimensional subscheme. We have h°(O)e
{0,8).

Corollary 6.7. If Z is a finite set, then |Z| < 14 and the points of Z impose
independent linear conditions on surfaces in | — Kx|.

Lemma 6.8. The subvariety S is a curve.

Proof. Suppose that S is not a curve. Then |Z| = 14 by Theorem 4.8 and Corol-
lary 6.7, because we know that Z # Yg. Note that Z is not contained in any
surface in | — Kx| by Corollary 6.7. Let R be a linear subsystem of the linear
system | — 2K x| that consists of all surfaces in | — 2K x| that pass through the set
Z. Then its base locus consists of the set Z by [EK87, Theorem 2].

Let M; and M, be general surfaces in the linear system M. Put M; - My =
E 4 A, where E and A are effective one-cycles such that Z C Supp(ZE) and Z ¢
Supp(A) and Supp(Z) N Supp(A) consists of at most finitely many points. If
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S € NCS(X,AM), then mults(Z) > 4/A? by Theorem 2.7. Let R be a general
surface in the linear system R. Then

44//\2 > 44//\2 _R-A=R-= Z multp(E) = 14mults (2),

which implies that g(S) & NCS(X, AM) for every g € G.
By Lemma 6.3, the set NLCS(X,2AM) contains a center not contained in the
set Yg U Z. Put

u= sup{e 0) | the log pair (X, eM) is log canonical outside of the set ¥g U Z }

Note that ¢ > p and S € LCS(X,uM). Moreover, if u > p, then S €
NLCS(X, uM), because S € LCS(X,uM). It follows from Lemma 2.8 that
W< 2\

Let T' be a center in LCS(X, uM) such that I' ¢ Yg U Z, and let A be its
G-orbit. Then AN Xg = @ by Lemma 6.3. Note that ANZ = @ if I is a point
and I’ € NLCS(X, 2AM).

Suppose that the set NLCS(X, 2AM) does not contain curves in X that have
a non-empty intersection with the set Z. Let us use this assumption to derive
a contradiction.

Let € be a rational number such that pu < eu < 2A. Arguing as in the proof
of Lemma 2.13, we obtain a G-invariant linear system B’ on X such that B’ does
not have fixed components. Moreover, we can choose positive rational numbers ¢
and ey such that 1 > €1 > €5 > 0 and

LCS(X, e1uM + e25') ( | |{o(r ) | | ( L] {g(S)}) | |NLCS(X, M)

geG geG

if u=p, or

LCS(X, e1uM + e218') < | | {g(r >|_|N]L(CS(X, M)

geqG

if > p.

Put D = e;uM + eaB’. Then T is a connected component of the subscheme
L(X, D). Let £ be the union of all connected components of the subscheme £(X, D)
whose supports do not contain any component of the subvariety A. Then Z C
Supp(L), which implies that h°(O,® Ox (H)) > 14, because NLCS(X, 2AM) does
not contain curves that have a non-empty intersection with Z.

Let Z(X, D) be the multiplier ideal sheaf of the log pair (X, D). Then

h(Oa ® Ox(H)) =14 — h°(Ox(H) ® Z(X, D)) — h°(O, ® Ox(H)) < 0,

by Theorem 2.2. Thus, we have h°(Oa ® Ox(H)) = 0, which implies that T" is not
a point. It follows from Theorem 2.10 that I" is a smooth curve of genus g such
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that H -T' > 2g — 1. By Remark 2.12, the curve A is a disjoint union of smooth
curves isomorphic to I'. Then

0="h"0Or®Ox(H)) 2 H-T—g+1>0,

which is a contradiction.

Thus, there is a curve C; € NLCS(X, 2AM) such that C; N Z # @. Let C be
the G-orbit of the curve C;. Then NLCS(X, 2AM) contains every irreducible com-
ponent of the curve C, which implies that deg(C) < 21. Hence, we have Z C C.
But multp(C) > 3 for every P € 3g by Lemma 2.11. Thus, we have

42 > 2deg(C)=R-C > Z multp(R)multp(C) > 42,
Pez

where R is a general surface in R. Therefore deg(C) = 21 and multp(C) = 3 for
every P € ¥g. Note that C ¢ F, since Z ¢ F. Thus

multp(C)|FNC| <multp(F-C)|FNC|=F-C=deg(C) =21,

for every point P € Z. So the curve C is smooth at every point of the set FF N C
by Theorem 4.8, which immediately implies that C' is reducible by Lemma 2.15.

Put C = Y ;_, C;, where C; is an irreducible curve and r € Zso. Then
deg(Cy) € {1,3}. But deg(C1) + 1 > |Cy N Z|, because the points of Z impose
independent linear conditions on surfaces in | — K x|. We have

21 14 -3

deg(C) ' Joinz]

because multp(C) > 3 for every point P € Z. Thus deg(Cy) = 1, » = 21 and
|C1NZ| = 2. Since irreducible components of the curve C are lines and multp(C) =
3 for every point P € Z, we can easily see that each connected component of
the curve C must have at least 4 components, so that C has at most 6 connected
components. Then C' is connected by Corollary B.2.

Let P be a point in Z, let Gp be its stabilizer subgroup in G. Then Gp = Ay
by Lemma B.1, and there are exactly 3 irreducible components of the curve C
containing P, since multp(C) = 3. Without loss of generality, we may assume
that P = C; N Cy N C5. The group Gp naturally acts on the set {C1,C2,Cs},
which implies that there is a subgroup G’» C Gp = A4 such that G5 acts trivially
on {C1,Cs,C3} and G = Zy X Zs. Note that Cy is G'p-invariant. Let P be
the point in Z N Cy such that P # P, and let G be its stabilizer subgroup in G.
Then

ZQXZQ%GIF)CGpgAgl’

because Z N Cy = {P, P}. But the group G contains a unique subgroup that is
isomorphic to G’p, which very easily (almost immediately) implies that every point
of the set Z is G'p-invariant, which is impossible, since the group G acts faithfully
on Z, because the group G is simple. [
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By Theorem 2.10, the curve S is a smooth curve of genus ¢ such that deg(S) >
2g—1. By Remark 2.12, the curve Z is a disjoint union of smooth curves isomorphic
to S. Let r be the number of connected components of the curve Z. Put d =
deg(S). Then

r(d—g+1)=14-h"(Ox(H) ® I(X, D)) — h*(O,) (6.9)
by (6.6). Note that h°(O,) = 0 if and only if £(X,D) = Z. Finally, put ¢ =
rY(Ox(H) ® Z(X, D)).

Lemma 6.10. One has L(X,D) = Z.

Proof. Suppose that Z C £(X, D). Then h°(O,) = 8. Tt follows from (6.9) that
r(d—g+1) =6—q < 6, since h°(Oz) # 0. But d — g +1 > 1, which implies
that r = 1. Therefore ¢ < d —g+ 1 = 6 — g < 6, which implies that ¢ = 3
by Lemma 2.16. If S ¢ F, then |FFN S| < 21 by Lemma 6.2, which contradicts
Lemma 2.15. We see that S C F. But ¢ < 6, so that ¢ = 1 by Lemma 4.5.
Thus d = 7. There is a natural faithful action of the group G on the curve S such

that every G-invariant divisor on S has even degree by Theorem 2.19. Hence d is
even, which is a contradiction. [

In particular, we see that the cases (B) and (C) are impossible.
Lemma 6.11. Suppose that deg(S) =1. Thenr # 7.

Proof. Suppose that » = 7. Then ¢ = 0 by (6.9). In particular, we have S ¢ F.
Then |[FNZ| < F-Z = 7, which contradicts Theorem 4.8, because F' N Z is
G-invariant. O

Lemma 6.12. The equality r = 1 holds.

Proof. Suppose that r > 2. Then r > 7 by Corollary B.2. If r > 8, then d—g+1 =1
by (6.9), which implies that g = d > 2¢g — 1, which leads to a contradiction.

We see that r = 7, so that 1 <d—g+1<2by (6.9). Hence d— g+ 1 = 2,
since the equality d — g + 1 = 1 leads to a contradiction. Therefore, we have
g=d—12> 2g— 2, which gives g < 2 and d < 3. Therefore ¢ = 0 and d = 1,
which is impossible by Lemma 6.11. [

Thus, there is a natural faithful action of the group G on the curve S. We have
d=134¢g—q > 2g — 1, which implies that ¢ < 14 — g. Note that g < 14 — ¢ < 14.
Then g € {3,8,10} by Lemma 2.16.

Lemma 6.13. The curve S is contained in the surface F.

Proof. If S ¢ F, then |FFN S| < 21 by Lemma 6.2, which is impossible by
Lemma 2.15. O

Applying Lemmas 4.5 and 6.13, we see that g € {1,7,8}.
Lemma 6.14. The equality g = 3 holds.

Proof. Suppose that g # 3. Then g € {8,10}. It follows from (6.9) that ¢ <
14 — g < 6, which implies that ¢ = 1. Then d € {20,22}, which is impossible by
Lemmas 2.20 and 2.21. [

Thus, we have d = 16 — ¢, where ¢ € {1,7,8}.
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Lemma 6.15. The equality d = 8 holds.

Proof. By Theorem 2.19, there is a G-invariant line bundle § € Pic(S) of degree 2
such that PicG(S’) is generated by 0. In particular, we see that d is even. But
d=16—gqand ¢ € {1,7,8},s0 that d =8. O

Let @ be a surface in the threefold X that is swept out by lines. Then @ ~
—2K x and the surface @ is irreducible by Lemma 4.7. Note that @ is G-invariant.

Lemma 6.16. The curve S is contained in Q N F.

Proof. By Lemma 6.13, we have S C F. If S ¢ @, then |@Q N S| < 2deg(S) = 16,
which is impossible by Lemma 2.15. Thus, we see that S C QN F. O

The surface F' is a smooth K3 surface by Lemma 4.10. Then S-S5 = 0 on
the surface X. Put Q|F =mS + A, where m € Z~p, and A is a curve such that
S ¢ Supp(A). Then

16 =2deg(S) = (mS+A)-S=mS-S+A-S=4dm+ A -5, (6.17)

which implies that |ANS| < 12. Hence, it follows from Lemma 2.15 that Supp(A)N
S = &, since A is G-invariant. Then A = &, because Supp(A) U S is connected
(see [H77, Corollary 7.9]). Now it follows from (6.17) that m = 4, which imme-
diately leads to a contradiction, since 44 = @Q - F - H = 4H - § = 32, where H is
a general surface in | — Kx|. The obtained contradiction completes the proof of
Theorem 1.10.

Proof of Theorem 1.12. Suppose that the pair (X, R) is not log canonical. Put
[ = sup {e eQ ‘ the log pair (X, eR) is log canonical} < 1.

Let S be a minimal center of log canonical singularities of the log pair (X, uR) (see
[K98], [CS09a]), and let Z be the G-orbit of the subvariety S. Then dim(S) < 1
since —K x generates the group Pic(X).

Take € € Q such that 1 > ¢ > 0. By Lemma 2.13, there is a G-invariant
Q-divisor D such that D ~g eR, the singularities of the log pair (X, D) are log
canonical, and every minimal center of log canonical singularities of the log pair
(X, D) is an irreducible component of the subvariety Z.

Let Z(X, D) be the multiplier ideal sheaf of the log pair (X, D). Then the se-
quence

0— H(Ox ® I(X,D)) — H°(Ox) = H°(Oz) = 0

is exact by Theorem 2.2. In particular, we see that Z is connected. By Lemma 2.9,
the subvariety Z is irreducible. Hence, we must have Z = S.

The variety X does not contain G-invariant points by Theorem 4.8. Thus, we see
that S must be a curve. Then S is a smooth and rational curve by Theorem 2.10,
which is impossible, because the group G cannot act non-trivially on P!. 0O
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A. Prime Fano threefolds of degree 22
In this section we describe Mukai’s constructions of prime Fano threefolds of
degree 22. Let F(x,y,z) be a quartic form, let C' be a curve in P? defined by
F(z,y,2) =0 CP?*= Proj((C[a:,y,z]),

and let L1, Lo, L3, Ly, Ls, Lg be six different lines in P2,
Definition A.1. We say that 2?21 L; is a hexagon in P2.

Let I;(x,y, z) be a linear form such that the line L; is given by l;(z,y,z) = 0.
Definition A.2 ([DK93, Def. 4.1]). The hexagon 0_, L; is polar to the curve
Cif F(z,y,2) = 2?21 12z, y, 2).

Consider 2?21 L; as an element of the Hilbert scheme of points in the dual
plane P2.

Definition A.3 ([Mu89], [Mu92], [S01]). The variety of polar hexagons to the
curve C is

VSP(C,6) = {T € Hilbg (2) | T is polar to the curve C'}  Hilbg (B2).

Put X = VSP(C,6). Note that X is a smooth Fano threefold of anticanonical
degree 22 provided that C'is general (see [Mu89, Theorem 5], [Mu92, Theorem 11]).
Below we will assume that X is smooth.

Put W = Spec(C[z,y, z]) = C3. Then F(z,y,z) € Sym*(W") and the partial
derivatives of the form F(z,y, z) give an embedding ¢: W — Sym®(WV).

Suppose that C' is not degenerate (see [DK93, Def. 2.8]). Then every hexagon
T € X defines a six-dimensional subspace Wr C Sym® (W) such that ¢(W) C Wr.
This gives a rational map X --» Gr(3,Uy;), where U; = Sym®(WV)/W. The
constructed rational map X --» Gr(3,Ur) can be extended to an embedding
X < Gr(3,Uy;). This gives an embedding X < P(A3(Uy)).

There is a natural sequence of maps

A*(W) @ Sym* (W) - (W @ W) @ (Sym?(W) ® Sym?(W))
2, Sym?(W) @ Sym?* (W) —Ls A2 (Sym® (W),
and it follows from [DK93, Sect. 2.3] that the quartic form F(z,y, z) defines a nat-
ural map 6p: Sym?(W) — Sym?(WV). Since the quartic C' is not degenerate,

the map 0 is invertible. Therefore, there is a natural choice of a non-zero element
55;1 € Sym*(W) via the natural map

Hom (Sym?*(W"), Sym®*(W)) = Sym*(W) ® Sym?(W) N Sym* (W),

which implies that the composition yoBoq gives a map ¢: A2(W) — A?(Sym?®(W)),
where A?2(W) X WV,
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Lemma A.4. Letw be an element in im(¢) considered as a skew form on the space

Sym®(WY), and let Pi C Sym® (W) be the kernel of the form w. Then im(¢)C Pi.
Proof. This is a straightforward computation. [
By Lemma A.4, the map ¢ gives us a map WV — A2(UY). Therefore, one has
WY eUY 5 AUY)2 Uy 5 A2 (UY)
so that v o ¢ is a monomorphism. Put Uy = A3(U;)/(WY @ UY) = C* and
consider im(v o o) as a 21-dimensional linear system of hyperplanes in P(A3(Uy))

vanishing on the image of the threefold X. This gives us a natural embedding
X < P(UM)

Theorem A.5 (cf.[Mu89], [Mu92], [S01]). The embedding X —P(Ui4) is the an-
ticanonical embedding.

B. Representation theory

In this section we collect some facts about the groups PSLo(F7) and SLa(F7).

Lemma B.1 ([Atl]). Let T be a mazimal subgroup in PSLa(F7). Then
o cither I' 2 Z7 x Zs and I is unique up to conjugation,
o or I' 2 S, and PSLy(F7) contains two subgroups isomorphic to T up to con-
jugation.
Corollary B.2. If PSLy(F7) acts transitively on a finite set 3 such that |3| < 41,
then |X| € {1,7,8,14,21,24,28}.
The group PSLo(F7) has exactly six non-isomorphic irreducible representa-

tions (see [Atl]), which we denote by I, W3, Wy, Ws, W7, Wg. The values of
their characters are listed in the table:

d| (2|3 @)
i 1121 | 56 | 42 | 24 24
I 1 1 1 1 1 1
Ws | 3| —1 0 1 € €
wy | 3| -1] 0 1 € €
We | 6 | 2 0 0 | -1 -1
We | 71 -1 1 |-11]0
Ws | 8 0 -1 0 1 1

We use the following notation. The first row represents the conjugacy classes
in PSLy(F7): the symbol id denotes the identity element, the symbol (n) denotes
a class of elements of order n, the symbols (7) and (7') denote two different conju-
gacy classes of elements of order 7; note that if g € (7), then g2 € (7) and g* € (7),
while g3 € (7), g°> € (7') and g% € (7'). The second row lists the number of ele-
ments in each conjugacy class. The next six rows list the values of the characters
of irreducible representations. By e we denote the complex number —1/2++/—7/2,
and by e its complex conjugate.
Looking at the above table, one easily obtains the following corollaries.
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Corollary B.3. Let T be a subgroup of the group PSLo(F7) such that T = Ay.
Then W3 is an irreducible I'-representation, and Wg is a sum of two irreducible
three-dimensional I'-representations.

Corollary B.4. The following isomorphisms of the representations of the group
PSLy(F7) hold:

Sym?*(Ws) = We = Sym*(Wy'), A*(Wy/) = Wa, Sym®(Wy) = Wy & W,
AYW7) = A3(Wo)Y = A3(Wr), Wr @ Wy = W @ Wy ® W,
NWr) 2TeWsa Wsd Wy & Wy & Ws.

Let G be a subgroup in SL3(C) that is isomorphic to PSLy(F7). Consider the
natural projection ¢: SL3(C) — Aut(P?) and put G = ¢(G). Then G = G.

Lemma B.5 ([YY93, Sect. 2.10]). There are no G-invariant curves in P? of de-
grees 1,2, 3, and 5. There is a unique G-invariant curve in P2 of degree 4, which
18 1somorphic to the quartic curve described in Example 1.8. There is a unique
G-invariant curve in P? of degree 6, which is isomorphic to the Hessian curve of
the quartic curve described in Example 1.8.

Lemma B.6. There are no G-invariant subsets in P2 consisting of at most 20
points.

Proof. Restricting W3 to subgroups of the group PSLo(FF7), we obtain the required
assertion. [

Let T be a subgroup in SLy(F7), and let 7: SLy(F7) — PSL2(F7) be a natural
epimorphism. Then I' 2 2.7(T") if 7(T") is isomorphic to PSLy(F7), Sy, Ay, Z7 x Z3,
D4, or Sg.

The following table contains the character values of one four-dimensional and
one eight-dimensional irreducible representation of the group SLo(7) and some
information about its subgroups:

id | —id) (3)3 | (3)6 | (M7 | (T)7] (Tra | (D14 | (2)a|(4)s ] (4)s

G 1] 1 | 56|56 |24 (24| 24 | 24 | 42 | 42 | 42
2.54 171 8 8 0 0 0 0 | 18] 6 | 6
2.A4 111 8 8 0 0 0 0 6 1010
2(Z7xZg)|1 | 1 | 14| 14| 3 3 3 3 0] 01O
2.Dy 1710 0 0 0 0 0 | 10| 2 2
2.53 171 2 2 0 0 0 0 0] 0
U, 4 |41 |-1|a | a|—-a|—«a 0 0

Us 8| -8 —-1] 1 1 1|1 -1|-1]101]07]O0

We use the following notation. The first row represents the conjugacy classes
in SLy(F7): the symbol id denotes the identity element, the symbol —id denotes
the element different from id such that —id € ker(w), the symbol (n); denotes
a conjugacy class that consists of elements of order k£ such that their images in
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PSL3(F7) have order n. The next six rows list the number of elements in the corre-
sponding conjugacy classes in some subgroups of the group SLa(F7). The last two
rows list the values of the characters of two irreducible representations. The sym-
bol o denotes the complex number — (¢ + ¢® + (%), where ( is a primitive seventh
root of unity, and « denotes the complex conjugate of «.

Lemma B.7. Suppose that T' 2 2.(Z7 x Zs3). Then Uy 2T & J and
Us=TeT & J1®Js

as representations of the group T, where J, J1 and Jy are pairwise non-isomorphic
one-dimensional representations, while T and T are irreducible three-dimensional
representations.

Proof. Let x4 and xs be the characters of the representations Uy and Ug, respec-
tively. Then (x4, x4) = 2, which immediately implies that Uy = J & T for some
one-dimensional representations J and some irreducible three-dimensional repre-
sentations T' of the group I', because irreducible representations of the group I
are either one-dimensional or three-dimensional. Similarly, we have (xs, xs) = 4,
which implies that Ug =& J; ® Jo ® T B T» for some one-dimensional representa-
tions J; 2 Jo and some irreducible three-dimensional representations 77 2 T of
the group T.

We may assume that T» = T', because there exist exactly two three-dimensional
representations of the group I' with a non-trivial action of its center. But (x4, xs) =
1, which implies that neither J; nor Js is isomorphic to J. [

Note that we can consider PSLo (F7)-representations as SLa (F7)-representations.

Lemma B.8. One has Sym*(Uy) = I&Ws®Ws S W7 &Wr@Ws as representations
of the group PSLa(F7) or the group SLo(F7).

Proof. This follows from elementary and explicit computations (see also [D99,
Appendix 1]). O

Lemma B.9. As a representation of the group T, the representation Uy splits as
a sum of two irreducible two-dimensional subrepresentations if I' = 2.4, a sum
of two irreducible two-dimensional subrepresentations if I' = 2.A4, a sum of two
irreducible two-dimensional subrepresentations if ' = 2.Dy4, a sum of an irre-
ducible two-dimensional and two non-isomorphic one-dimensional subrepresenta-
tions if I' =2 2.S3.

Proof. Let x4 be the character of the representations Uy. If I' & 2.Dy4, then
(x4, x4) = 2, which easily implies that U, splits as a sum of two irreducible two-
dimensional subrepresentations, because 2.D4 has no odd-dimensional non-trivial
irreducible representations.

Since all irreducible representations of the group 2.A4 with a non-trivial action
of its center are two-dimensional, the representation U, splits as a sum of two
irreducible two-dimensional subrepresentations of the group I' if I' &2 2.A4 or I' &2
2.54.

To complete the proof, we may assume that I' = 2.S3. Then there is an epi-
morphism I' — Z4. Let U be the standard unitary two-dimensional irreducible
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representation of the group I, let J and J; be one-dimensional representations of
the group I' that arise from the faithful non-isomorphic one-dimensional represen-
tations of the group Z,. Then Uy 2 U & J @ J; as can be seen from the following
table that lists the character values of these representations:

id | —id | (3)s | (3)s | (2)a
253 | 1 1 2 2 6
U, 4 —4 1 -1 0
U 2 -2 -1 1 0
J | 4| —4 1 -1 | -1
J1 4 —4 1 -1 | —v—1

where we use notation similar to that used in the table above. [
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