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Nonrational del Pezzo fibrations

Ivan Cheltsov*

(Communicated by A. Sommese)

Abstract. Let X be a general divisor in |3M + nL| on the rational scroll Proj(;_, Op1 (d;)),
where d; and n are integers, M is the tautological line bundle, L is a fibre of the natural projection
toPanddy > -+ > ds = 0. We prove that X is rational <= dy = 0andn = 1.

1 Introduction

The rationality problem for threefolds! splits in three cases: conic bundles, del Pezzo
fibrations, and Fano threefolds. The cases of conic bundles and Fano threefolds are well
studied.

Let¢: X — P! be a fibration into del Pezzo surfaces of degree k > 1 such that X is
smooth and rk Pic(X) = 2. Then X is rational if k¥ > 5. The following result is due to
[1] and [12].

Theorem 1.1. Suppose that fibres of 1 are normal and k = 4. Then X is rational if and
only if
X(X) € {07 _87 _4}7

where x(X) is the topological Euler characteristic.

The following result is due to [8].

Theorem 1.2. Suppose that K% ¢ Int NE(X) and k < 2. Then X is nonrational.

In the case when k < 2 and K% € Int NE(X), the threefold X belongs to finitely
many deformation families, whose general members are nonrational (see [13], [7], [5],
Proposition 1.5).

*The author would like to thank A. Corti, M. Grinenko, V. Iskovskikh, V. Shokurov for fruitful conversations.
L All varieties are assumed to be projective, normal, and defined over C.
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Suppose that k = 3. Then X is a divisor in the linear system |3M + nL| on the scroll

Proj (é Or1(d1)),
i=1

where n and d; are integers, M is the tautological line bundle, and L is a fibre of the
natural projection to P'. Suppose that dy > dy > d3 > dy = 0.
Suppose that X is a general® divisor in |30 +nL|. The following result is due to [8].

Theorem 1.3. Suppose that K3 ¢ Int NE(X). Then X is nonrational.

It follows from [4], [11], [2], [13], [3], [7] that X is nonrational when (d1, ds, d3,n) €
{(05 07 07 2)’ (17 07 07 0)3 (27 17 17 72)7 (17 17 15 71)}
We prove the following result in Section 3.

Theorem 1.4. The threefold X is rational <= dy = 0andn = 1.
Therefore, the threefold X is nonrational if x (X) # —14. Indeed, we have
X(X) = —4K% —54 = —4(18—6(d1+d2+d3)—8n) —54 = 18—24(dy +da+d3)—32n,

and x(X) = —14 implies (dy,ds, ds,n) = (0,0,0, 1) or (d1,ds,d3,n) = (2,1,1,—2).
The inequality 5n > 12 — 3(d + da + d3) holds when K% ¢ Int NE(X). Forn < 0,
the inequality
5n 2 12 — 3(d1 + dg + dg)

implies that K% ¢ Int NE(X) (see Lemma 36 in [3]). Hence, the threefold X does not
belong to finitely many deformation families in the case when K% € Int NE(X) (see
Section 2).

Let us illustrate our methods by proving the following result.

Proposition 1.5. Let X be double cover of the scroll
Proj (O]p:l (2) @ Op: (2) &) Opl)

that is branched over a general’divisor D € |AM — 2L|, where M is the tautological line
bundle, and L is a fibre of the natural projection to P'. Then X is nonrational.

Proof. Put V = Proj(Op1(2) & Op:1(2) @ Op1). The divisor D is given by the equation
4 1 2,22 1,2 2,2
agxy + a6x§’:c2 + oz4x‘;’:1:3 + QgTiT5 + a7 x2x3 + aexrir3z + agzlxg—k
2, .2 1 2 3 4,4 3,.3 2,2, 2 1. .3
+ afT17573 + a1 X2x5 + ox1X5 + QgTy + QyTHT3 + apT5Ts + ooy =0

in bihomogeneous coordinates on V (see § 2.2 in [10]), where 0‘31 = aé(tl,tg) is a
sufficiently general homogeneous polynomial of degree d > 0. Let

x: Y — Proj (Op:(2) ® Op1(2) ® Op1)

2,3 A complement to a countable union of Zariski closed subsets.
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be a double cover branched over a divisor A C V that is given by the same bihomoge-
neous equation as of divisor D with the only exception that ag = af = 0. Then Y is
singular, because the divisor A is singular along the curve Y3 C V that is given by the
equations 1 = x2 = 0.

The Bertini theorem implies the smoothness of A outside of the curve Y. Let C be a
curve on the threefold Y such that x(C') = Y3. Then the threefold Y has singularities of
type A; x C at general point of the curve C'. We may assume that the system

oty ta) = ad(ty, ta) = a3(ty, ta) =0

has no non-trivial solutions. Then Y has singularities of type A; x C at every point of C'.
Let a: V — V be the blow up of Y3, and 3: Y — Y be the blow up of C. Then the
diagram

Yy ———>V
s i
y ———>V

commutes, where y : Y — V is a double cover. The threefold Y is smooth.
Let E be the exceptional divisor of «, and A be the proper transform of A via a. Then

A ~ o*(4M —2L) — 2E,

hence A is nef and big, because the  pencil |a*(M — 2L) — E| does not have base points.
The morphism Y is branched over A. Then rk Pic(Y') = 3 by Theorem 2 in [9].
The linear system |g*(M — L) — E| does not have base points and gives a P!-bundle

T: f/ — PI‘Oj (O[pl (2) @b O]pl (2)) = FO,

which induces a conic bundle 7 = 70 y: ¥ — Fy. Let Y5 C V be the subscroll given by
x1 = 0, and S be a proper transform of Ys via . Then

}/—2 = PI‘Oj (O]pl (2) D O]pl) = IFQ,

and S = Y. But 7 maps S to the section of Fy that has trivial self-intersection.
Let S be a surface in Y such that x(S) = S, and Z C Y be a general fibre of the
natural projection to P'. Then — K 7 is nef and big and K2 = 2. But the morphism

aoxlg: S—Y,
is a double cover branched over a divisor that is cut out by the equation
ag(to, t1)xs + o (to, t1)xexs + ai(to, t1)xs = 0.
Let = C Fy be a degeneration divisor of the conic bundle 7. Then

E ~ AF(S) + pf(2),
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where \ and y are integers. But A = 6, because K% = 2. We have %(S’) ¢ Z. Then

[1]

p="7(9) E=8-Kg

because 1 is the number of reducible fibres of the conic bundle 7| . These fibers are given
by
2
(Oéi (to, tl)) = 404% (to, tl)O[g(to, tl),

which implies that ;1 = i—(S* )-E = 8. Then Y is nonruled by Theorem 10.2 in [11], which
implies the nonrationality of the threefold X by Theorem 1.8.3 in § IV of the book [6]. O

2 Preliminaries

All results of this section follow from [3]. Take a scroll

V = Proj (é Or1 (1)),

where d; is an integer, and dy > dy > d3 > d4 = 0. Let M and L be the tautological line
bundle and a fibre of the natural projection to P!, respectively. Then Pic(V) = ZM & ZL.
Let (t1 : to; 1 : 2 : T3 : x)) be bihomogeneous coordinates on V' such that x; = 0
defines a divisor in |M — d;L|, and L is given by t; = 0. Then |aM + bL| is spanned by
divisors
Cirigiais (1, t2)a) 2525 T = 0,
where Z?zl i; = a and ¢;y4,44:, (t1,t2) is a homogeneous polynomial of degree b +

Zj:l ijd;. LetY; C V be asubscroll z; = --- = x;_1 = 0. The following result holds
(see § 2.8 in [10]).

Corollary 2.1. Take D € |aM + bL| and q € N, where a and b are integers. Then
multyj (D) > q — ad; +b+ (d1 — dj)(q -1)<0.
Let X be a general* divisor in [3M + nL|, where n is an integer.

Lemma 2.2. Suppose X is smooth and tk Pic(X) = 2. Then d; > —n and 3d3 > —n.

Proof. We see that Yo ¢ X. Then Y3 ¢ X, because rk Pic(X) = 2. But multy, (X) <
1, because the threefold X is smooth. The assertion of Corollary 2.1 concludes the
proof. O

Lemma 2.3. Suppose X is smooth and tk Pic(X) = 2. Then we have either dy = —n
ordy = —n.

4A complement to a Zariski closed subset in moduli.
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Proof. Suppose that r = dy +n > 0 and do < —n. Then X can be given by the equation

Z Yigu(to, to)al adakay = ap(ty, to)ara] + Z Bijn(to, t2)at adat,
i,4,k=0 0,4, k=0
itjthk=2 it+j+k=3
where «-(t1,t2) is a homogeneous polynomial of degree r, 3;;i and 7;;, are homoge-
neous polynomial of degree n + id; + jdo + kd3. Then every point of the intersection

T = X9 = T3 = Oér(tl,tg) = 0

must be singular on the threefold X, which is a contradiction. O

Lemma 2.4. Suppose X is smooth, do = d3, n < 0andrk Pic(X) = 2. Then 3ds # —n.

Proof. Suppose that 3ds = —n. Then X can be given by the the bihomogeneous equation

Z it (to, t2)zrahalaly = fa(we, w3) + an(to, t2)z} + Z Bii(to, ta)ziaakal,
4.k, 10 G,k,1=0
ititk=2 JHk+i=1
where f3(x2,23) is a homogeneous polynomial of degree 3, 3,5, and 7;; are homoge-
neous polynomial of degree n + 2d; + jds + kds and n + dy + jdo + kds respectively,
a, is a homogeneous polynomial of degree r = 3d; + n. The threefold X contains 3
subscrolls given by the equations x; = f3(x2,x3) = 0, which is impossible, because
rk Pic(X) = 2. |

The following result follows from Lemmas 2.2, 2.3 and 2.4.

Lemma 2.5. The threefold X is smooth and tk Pic(X) = 2 whenever

(1) in the case when di = 0, the inequality n > 0 holds,
(2) either diy = —m and 3ds > —n, ordy > —n, do > —n and 3ds > —n,
(3) in the case when ds = d3 and n < 0, the inequality 3dsz > —n holds.

Proof. Suppose that all these conditions are satisfied. We must show that X is smooth,
because the equality rk Pic(X) = 2 holds by Proposition 32 in [3].

The linear system |3M + nL| does not have base points if n > 0. So, the threefold
X is smooth by the Bertini theorem in the case n > 0. Therefore, we may assume that
n < 0.

The base locus of [3M +nL| consists of the curve Yy, which implies that X is smooth
outside of the curve Y, and in a general point of Y, by the Bertini theorem and Corol-
lary 2.1, respectively.

In the case when d; = —n and dy < —n, the bihomogeneous equation of the threefold
Xis
ik 2 ik
> iklto, o)z adakes = apmial + Y Bijk(to, t)ziadak,
i3,k >0 i3,k >0
itjtk=2 itj+k=3

where (3,1, and y;;;, are homogeneous polynomials of degree n +id; + jda + kdz and ag
is a nonzero constant. The curve Y} is given by z; = x2 = x3 = 0, which implies that X
is smooth.
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In the case when dy > —n and dy > —n, the bihomogeneous equation of X is

3

i ok 2 ik
> visklto,t)riadales = ailto,ta)miad + Y Bijk(to, ta)aiadak,
i,5,k=0 =1 i,5,k=0

itjtk=2 itj+k=3

where o; is a homogeneous polynomial of degree d; + n, and ;1 and ;. are homoge-
neous polynomials of degree n + idy + jdo + kds. Therefore, either o 1 zi or agxgmi

does not vanish at any given point of the curve Y, which implies that X is smooth. O

Thus, there is an infinite series of quadruples (d1, da, d3, n) such that the threefold X
is smooth, the equality rk Pic(X) = 2 holds, the inequality 5n < 12 — 3(d; + da + d3)
holds and n < 0.

3 Nonrationality

We use the notation of Section 2. Let X be a general® divisor in |3M + nL|, and suppose
that the threefold X is smooth, rk Pic(X) = 2, and X is rational. Let us show that d; = 0
andn = 1.

The threefold X is given by a bihomogeneous equation

i ,.3—1

ai(to,t2)$3$4 +a1F(to, t1, 21,22, 23, 24) + 2G(to, t1, 21, T2, 23, 74) = 0,

NE

1=0
where «; is a general homogeneous polynomial of degree n + id3, and F' and G stand for
Z 5ijkl(t0,t2)(£i$§{l}§$i and Z 'yijkl(to,tg)xi:v%mgxi

i,5,k, 120 i,5,k,0=0
itjtk4+1=2 itjt+k+1=2

respectively, where 3;;; is a general homogeneous polynomial of degree n + (i + 1)d; +
Jjda + kds, and 7,1, is a general homogeneous polynomial of degree n + idy + (j +
1)dy + kds.

Let Y be a threefold given by 1 F + x2G = 0. Then Y3 C Y, where Y3 is given by
T = X9 = 0.

Lemma 3.1. The threefold Y has 2d; + 2ds + 4ds + 4n > 0 isolated ordinary double
points.

Proof. The threefold Y is singular exactly at the points of V' where
x1 = x2 = F(to, t1, 71, T2, 73, 74) = G(to, t1, 1, T2, T3,24) = 0

by the Bertini theorem. But Y3 = Proj(Op:(ds) ® Op1) = Fg,, where (to : t1;25 1 24)
can be considered as natural bihomogeneous coordinates on the surface Y.

5 A complement to a countable union of Zariski closed subsets.
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Let C' and Z be the curves on Y3 that are cut out by the equations F' = 0 and G = 0,
respectively. Then C and Z are given by the equations

Z Bri(to, tz)rhzl, =0 and Z Yri(to, to)zkal =0
k,1>0 k,1>0
k+1=2 k+1=2
respectively, where Bx; = Book; and vk = ~ooki- The degrees of [y and v are n+d; +
kds and n + ds + kds, respectively.
Let O be a point of the scroll V' such that the set

x1 =29 = F(to, t1, 21, %2, 23, 24) = G(to, 1,21, 22,23, 24) =0

contains the point O. Then O € C N Z and O € Sing(Y). It is easy to see that O is an
isolated ordinary double point of the threefold Y™ in the case when the curves C' and Z are
smooth and intersect each other transversally at the point O.

Put M = My, and L = Lly,. Then C € |2M + (n+d;)L| and Z € |2M + (n +
d2).Z/| But

|2M + (n+ d1)L|

does not have base points, because d; +n > 0 by Lemma 2.2. So, the curve C is smooth.

The linear system |2M + (n + dy)L| may have base components, and Z may not

be reduced or irreducible. We have to show that C intersects Z transversally at smooth
points of Z, because

|CNZ|=C - Z=2dy+ 2dy + 4d3 + 4n,

where 2d; + 2ds + 4ds + 4n > 0 by Lemmas 2.2, 2.3 and 2.4.

Suppose that d; > —n. Then dy > —n by Lemma 2.3. We see that |2M + (n+dg) L]
does not have base points. Then Z is smooth and C' intersects 7 transversally at every
pointof C'N Z.

We may assume that d; = —n. Let Yy C Y3 be a curve given by x3 = 0. Then

CNYy =0,

and either the linear system |2M + (n+d3)L| does not have base points, or the base locus
of the linear system |2M + (n + dg)L| consist of the curve Y;. However, we have

CNZcCYs\Ya,
which implies that C' intersects the curve Z transversally at smooth points of Z. O

Let w: V — V be the blow up of Y3, and Y be and the proper transforms of Y via 7.
Then R
Y ~7*(3M +nL) - E,

where E is and exceptional divisor of 7. The threefold Y is smooth.

Lemma 3.2. The equality vk Pic(Y') = 3 holds.
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Proof. The linear system |7* (M — dy L) — E| does not have base points. Thus, the divisor

Y ~7*(3M +nL) — E

is nef and big when n > 0 by Lemmas 2.2, 2.3 and 2.4. Hence, the equality rk Pic(Y) = 3
holds in the case when n > 0 by Theorem 2 in [9]. So, we may assume that n < 0.

Let w: Y — P! be the natural projection and S be the generic fibre of w, which is
considered as a surface defined over the function field C(¢). Then S is a smooth cubic
surface in P2, which contains a line in P® defined over the field C(t), because Y3 C Y.
Then rk Pic(S) > 2.

To conclude the proof we must prove that rk Pic(S) = 2, because there is an exact
sequence

0 — Z[r*(L)] — Pic(Y) — Pic(S) — 0,

because every fibre of 7 is reduced and irreducible (see the proof of Proposition 32 in [3]).
Let S be an example of the surface .S that is given by the equation

z(q(t)a? + p(t)w?) + y(r(t)y* + s(t)z*) = 0 C Proj (Clz, y, 2,1]),
where ¢(t), p(t), r(t), s(t) are polynomials such that the inequalities
deg(q(t)) >0, deg(p(t)) 20, deg(r(t)) >0, deg(q(t)) =0

hold. The existence of the surface S follows from the equation of the threefold Y.
Let K be an algebraic closure of the field C(¢), let L be a line z = y = 0, and let

v: S — P!
be a projection from L. Then + is a conic bundle defined over C(¢). But « has five

geometrically reducible fibres F, Fy, F5, Fy, F;5 defined over F such that

e F; = F,UF,, where F; and F} are geometrically irreducible curves,
¢ the curve L U Fj is cut out on the surface S by the equation

y=c'Va(t)/r(t)z,

where e = —(1++/—3)/2and i € {1,2,3},
e the curve Fy U L is cut out on the surface .5 by the equation z = 0,
e the curve F5 U L is cut out on the surface S by the equation y = 0.

The group Gal(IK/C(t)) acts naturally on the set

Y= {FMFQ;F3aF47F57F15F27F37F47F5}7
because the conic bundle v is defined over C(t). The inequality rk Pic(S) > 2 im-
plies the existence of a subset I' C ¥ consisting of disjoint curves such that I' C X is
Gal(K/C(t))-invariant.
The action of Gal(K/C(t)) on the set X is easy to calculate explicitly. Putting

A={F,F,F,F,FF}, A={F,FE}, =={FF},
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we see that the group Gal(K/C(t)) acts transitively on each subset A, =, A, because
we may assume that g(t), p(t), r(t), s(t) are sufficiently general. But each subset A, Z,

A does not consist of disjoint curves. Hence, the equality rk Pic(S) = 2 holds, which
implies that rk Pic(.S) = 2. g

The linear system |7*(M — doL) — E| does not have base points and induces a P2-
bundle R
TV — Pl"Oj (Opl (dl) (&) O]pl (dg)) = FT,

where r = d; — do. Let [ be a fibre of the natural projection F,, — P!, and sg be an
irreducible curve on the surface F,. such that s3 = r, and sq is a section of the projection
F, — P!. Then

(M — doL) — E ~ 7%(s0)

and 7* (L) ~ 7*(1). The morphism 7 induces a conic bundle 7 = 7|y : ¥ — F,.
Let A be the degeneration divisor of the conic bundle 7. Then

A ~ Bseo + pul,

where p is a natural numbNer, and s is the exceptiogal section of the surface [F,..
Let S be a surface in Y and B be a threefold in V' dominating the curve sg. Then

B = PI‘Oj (O]pl (dl) (&3] O[Pl (dg) (&) O[Pl)

and m7(B) = B.Butm(B)NY = 7(5) U Ys.
The surface Y3 is cut out on 7( B) by the equation x1 = 0, where (B) € |M —dy L.
We have
S ~2T + (dl +n)F,

where T is a tautological line bundle on B, and F is a fibre of the projection B — P!
Then
K% = —5d;, +2ds — 4dy — 3n + 8

andu:so-A:5d1 — 2d3 + 4ds + 3n.
It follows from the equivalence 2Ky, + A ~ So + (3dy — 2d3 + 6d3 + 3n — 4)I that

2K, + Al #0 <= 3d; — 2d3 + 6da +3n > 4,

which implies that Y is nonrational by Theorem 10.2 in [11] if 3d; — 2d3 + 6d2 +3n > 4.
The threefold Y is nonruled if and only if it is nonrational, because the threefold Y is
rationally connected. So, the threefold X is nonrational by Theorem 1.8.3 in § IV of the
book [6] whenever
3d1 — 2d3 + 6dy + 3n > 4,

which implies that 3d; — 2d3 + 6ds + 3n < 4, because we assume that X is rational.

We see that either d; = O andn = 1 ord; = 1 and do = n = 0 by Lemmas 2.2,
2.3 and 2.4, but the threefold X is birational to a smooth cubic threefold in the case when
d; = 1 and do = n = 0, which is nonrational by [4]. Then dy = 0 and n = 1. The
assertion of Theorem 1.4 is proved.
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