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Weakly-exceptional singularities
in higher dimensions

By Ivan Cheltsov at Edinburgh and Constantin Shramov at Moscow

Abstract. We show that infinitely many Gorenstein weakly-exceptional quotient singu-
larities exist in all dimensions, we prove a weak-exceptionality criterion for five-dimensional
quotient singularities, and we find a sufficient condition for being weakly-exceptional for six-
dimensional quotient singularities. The proof is naturally linked to various classical geomet-
rical constructions related to subvarieties of small degree in projective spaces, in particular
Bordiga surfaces and Bordiga threefolds.

1. Introduction

Unless explicitly stated otherwise, varieties are assumed to be projective, normal and
complex. Throughout the paper we use the standard language of the singularities of pairs (see
[33]). By strictly log canonical singularities we mean log canonical singularities that are not
Kawamata log terminal (see [33, Definition 3.5]).

Linear representations of finite groups induce their action on polynomial functions. In-
variant theory studies polynomial functions that are invariant under the transformations from a
given linear group. These functions form a ring, which is called a ring of invariants. From the
point of view of algebraic geometry, the rings of invariants are algebraic counterparts of the
quotients of the vector spaces by these groups, which are usually singular spaces and are called
quotient singularities.

Finite subgroups in SL2.C/ have been classified long time ago. The corresponding quo-
tients by these groups are famous A-D-E singularities, which are also known by other names
(Kleinian singularities, Du Val singularities, rational surface double points, two-dimensional
canonical singularities etc.). Taking into account the classical double cover SU2.C/! SO3.R/
and basic representation theory, we see that the singularities of type A correspond to plane ro-
tations, the singularities of type D correspond to the groups of symmetries of regular polygons,
and the singularities of type E correspond to the groups of symmetries of Platonic solids.

Shokurov suggested a higher dimensional generalization of the singularities of type E and
of both types D and E. He called them exceptional and weakly-exceptional, respectively. It
turned out that exceptional and weakly-exceptional singularities are related to the Calabi prob-
lem for orbifolds with positive first Chern class (see [9,11]). Exceptional quotient singularities
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202 Cheltsov and Shramov, Weakly-exceptional singularities in higher dimensions

of dimensions 3, 4, 5 and 6 have been completely classified by Markushevich, Prokhorov, and
the authors (see [11, 13, 36]). Moreover, we proved in [13] that seven-dimensional exceptional
quotient singularities are “too exceptional” – they simply do not exist. On the other hand,
weakly-exceptional quotient singularities have been less popular despite the fact that their def-
inition is much simpler than the definition of exceptional ones. In this paper, we will try to fill
this gap.

What is special about singularities of types D and E and how to generalize them to
higher dimensions? There are many possible answers to these questions. One of them involves
the dual graphs of their minimal resolutions of singularities. Namely, the dual graphs of the
minimal resolution of singularities of any two-dimensional quotient singularity of type D and
E always have a “fork”, i.e. a special curve that intersects three other exceptional curves in
the graph. The singularities of type A lack this property. Surprisingly, this property of having
a “very special” exceptional divisor on some resolution of singularities can be generalized to
higher dimensions for quotient singularities and other “mild” singularities.

Let .V 3 O/ be a germ of a Kawamata log terminal singularity (see [33, Definition 3.5]).
Then there exists (see, for example, [11, Theorem 3.6]) a birational morphism � WW ! V

whose exceptional locus consists of a single irreducible divisor E � W such that O 2 �.E/,
the log pair .W;E/ has purely log terminal singularities (see [33, Definition 3.5]), and �E is a
�-ample Q-Cartier divisor. The birational morphism � WW ! V is said to be a plt blow up of
the singularity .V 3 O/.

Example 1.1. Suppose that .V 3 O/ is a two-dimensional Du Val singularity. If it is of
type A, then let us choose � WW ! V to be any partial resolution of singularities that contracts
exactly one curve to the point O . In the case when .V 3 O/ is a singularity of type D or E,
let us choose � WW ! V to be the partial resolution of singularities contracting exactly one
curve that corresponds to the “central” vertex of the dual graph of the minimal resolution of
singularities of .V 3 O/ to the point O . Then � is a plt blow up of the singularity .V 3 O/
(cf. Example 1.7).

Example 1.2. Suppose that .V 3 O/ is an isolated quasihomogeneous hypersurface
singularity in CnC1 with respect to some positive integral weights .a0; : : : ; an/ such that
gcd.a0; : : : ; an/ D 1. Then .V;O/ is given by

�.x0; : : : ; xn/ D 0 � CnC1
Š Spec

�
CŒx0; : : : ; xn�

�
for some quasihomogeneous polynomial � 2 CŒx0; : : : ; xn� of degree d with respect to the
weights wt.x1/ D a1; : : : ;wt.xn/ D an. It is well known that .V 3 O/ is Kawamata log
terminal if and only if

Pn
iD0 ai > d . If this is the case, the weighted blow up of CnC1 with

weights .a0; : : : ; an/ induces a plt blow up � of .V 3 O/. If n D 1 and .V 3 O/ is of type
D or E, then the choice of weights is unique, and the morphism � constructed in this example
coincides with the morphism � constructed in Example 1.1.

Example 1.3. Suppose .V 3 O/ is a quotient singularity CnC1=G, where n > 1 and
G is a finite subgroup in GLnC1.C/. Note that quotient singularities are always Kawamata log
terminal (see [32, Remark 0.2.17]). Let �WCnC1 ! V be the quotient map. Then there is a
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commutative diagram
U


��

! // W

�

��
CnC1

�
// V;

where  is the blow up of O , the morphism ! is the quotient map that is induced by the lifted
action of G on the variety U , and � is a birational morphism. One can easily check that � is a
plt blow up of the singularity CnC1=G. Note that � may not “improve” singularities of V . For
example, if n D 1, G � SL2.C/ and G Š Z3, then this construction does not give a partial
resolution of the singularity .V 3 O/. However, if n D 1, G � SL2.C/ and .V 3 O/ is a
singularity of type D or E, then the morphism � constructed in this example coincides with
the morphism � constructed in Examples 1.1 and 1.2.

Keeping in mind Examples 1.1, 1.2, and 1.3, we state the following definition.

Definition 1.4 ([45, Definition 4.1]). We say that .V 3 O/ is weakly-exceptional if it
has a unique plt blow up.

Note that weakly-exceptional Kawamata log terminal singularities do exist (see Exam-
ple 1.7). How to decide whether the singularity .V 3 O/ is weakly-exceptional or not? Surpris-
ingly, the answer to this question depends only on the log pair .W;E/. For instance, a necessary
condition for .V 3 O/ to be weakly-exceptional says that �.E/ D O (see [34, Corollary 1.7]).
However, it follows from Example 1.1 that this condition is very far from being a criterion. To
give a criterion for .V 3 O/ to be weakly-exceptional, we must equip E with an extra struc-
ture. Namely, let R1; : : : ; Rs be all irreducible components of the locus Sing.W / of dimension
dim.W / � 2 that are contained in E. Put

DiffE .0/ D
sX
iD1

mi � 1

mi
Ri ;

wheremi is the smallest positive integer such thatmiE is Cartier at a general point of Ri . The
divisor DiffE .0/ is usually called a different (it was introduced by Shokurov in [53]). It follows
from [33, Theorem 7.5] that E is a normal variety that has at most rational singularities, and
the log pair .E;DiffE .0// is Kawamata log terminal. Thus, if �.E/ D O , then the log pair
.E;DiffE .0// is a log Fano variety, because �E is �-ample.

Theorem 1.5 ([45, Theorem 4.3], [34, Theorem 2.1]). The singularity .V 3 O/ is
weakly-exceptional if and only if �.E/ D O and the log pair .E;DiffE .0/CDE / is log canon-
ical for every effective Q-divisor DE on the variety E such that DE �Q �.KE C DiffE .0//.

Let us translate the assertion of Theorem 1.5 into a slightly different language that uses
a global log canonical threshold, that is an algebraic counterpart of the so-called ˛-invariant of
Tian introduced in [57].
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Remark 1.6. For a log Fano variety .X;BX / with at most Kawamata log terminal sin-
gularities and a finite group NG � Aut.X/ such that BX is NG-invariant, the number

sup

8<:� 2 Q

ˇ̌̌̌
ˇ
.X;BX C �DX / has Kawamata log terminal singularities
for every NG-invariant Q-Cartier effective Q-divisor DX
on the variety X such that DX �Q �.KX C BX /

9=; :
is denoted by lct.X;BX ; NG/ and is usually called the global NG-invariant log canonical thresh-
old of the log Fano variety .X;BX / (see [11, Definition 3.1]). For simplicity, we put
lct.X; NG/ D lct.X;BX ; NG/ if BX D 0, we put lct.X;BX / D lct.X;BX ; NG/ if NG is trivial,
and we put lct.X/ D lct.X;BX ; NG/ if BX D 0 and NG is trivial. If X is smooth and BX D 0,
then it follows from [10, Theorem A.3] that lct.X; NG/ D ˛ NG.X/, where ˛ NG.X/ is the ˛-
invariant of Tian of the Fano variety X . If X has at most quotient singularities and BX D 0,
then it follows from [16,40,57] that X admits a NG-invariant orbifold Kähler–Einstein metric if
lct.X;G/ > dim.X/=.dim.X/C 1/.

It follows from Theorem 1.5 that .V 3 O/ is weakly-exceptional if and only if
�.E/ D O and lct.E;DiffE .0// > 1. It should be pointed out that Theorem 1.5 is an ap-
plicable criterion. For instance, it can be used to construct weakly-exceptional singularities of
any dimension (cf. [11, Example 3.13]).

Example 1.7. In the notation and assumptions of Example 1.1, let E be the excep-
tional curve of the plt blow up � WW ! V . If .V 3 O/ is a singularity of type A, then
one can easily see that lct.E;DiffE .0// < 1, which implies that .V 3 O/ is not weakly-
exceptional by Theorem 1.5. Suppose that .V 3 O/ is a singularity of type D or E. Then
W is singular along E, and E contains exactly three singular points of the surface W . Let
us denote these points by P1; P2; P3. Then each Pi is a singular point of type Ani

for some
non-negative integer ni . Without loss of generality, we may assume that 1 6 n1 6 n2 6 n3.
Then DiffE .0/ D

P3
iD1

ni

niC1
Pi (see [15, Proposition 16.6]). The log pair .E;DiffE .0// is

Kawamata log terminal, since ni=.ni C 1/ < 1 for every i 2 ¹1; 2; 3º. Moreover, we haveP3
iD1

ni

niC1
< 2, which implies that .E;DiffE .0// is a log Fano variety. Then

lct
�
E;DiffE .0/

�
D

1 � n3

n3C1

2 �
P3
iD1

ni

niC1

D

8̂̂̂̂
<̂
ˆ̂̂:
6 if .V 3 O/ is a singularity of type E8,
3 if .V 3 O/ is a singularity of type E7,
2 if .V 3 O/ is a singularity of type E6,
1 if .V 3 O/ is a singularity of type D,

which implies that .V 3 O/ is weakly-exceptional.1)

As it clearly follows from Example 1.7, weakly-exceptional singularities are a natural
generalization of Du Val singularities of type Dn, E6, E7 and E8. On the other hand, weakly-
exceptional singularities are not classified even in dimension three. In fact, weakly-exceptional

1) Let .V 3 O/ be a germ of a Kawamata log terminal surface singularity. Then either .V 3 O/ is smooth,
or the dual graph of its minimal resolution of singularities is of A, D or E type (see [7, 26] for details). Arguing
as in the Du Val case, we see that the singularity .V 3 O/ is weakly-exceptional if and only if the dual graph is
of D or E type. Moreover, it follows from [29, Corollary 1.9] that .V 3 O/ is a quotient singularity C2=G for
some finite group G � GL2.C/. However, it is not easy to give a nice description of such G that correspond to
weakly-exceptional singularities .V 3 O/ (cf. [13, Example 1.9]).
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singularities are classified just in two cases. Firstly, three-dimensional weakly-exceptional
Kawamata log terminal isolated quasihomogeneous well-formed hypersurface singularities
(see [9]), which provides a lot of examples of Kähler–Einstein two-dimensional Fano orb-
ifolds that are hypersurfaces in weighted projective spaces (see Example 1.2 and Remark 1.6).
Secondly, three-dimensional and four-dimensional weakly-exceptional quotient singularities
are classified in [11, 36, 51] (cf. Theorems 1.9 and 1.10). The goal of this paper, as it follows
from its title, is to study weakly-exceptional quotient singularities in higher dimensions.

Let G be a finite subgroup in GLnC1.C/, where n > 1. Let

�WGLnC1.C/ �! PGLnC1.C/

be the natural projection. Put NG D �.G/ and let us identify the group PGLnC1.C/ with
Aut.Pn/. Recall that an element g 2 G is called a reflection (or sometimes a quasi-reflection)
if there is a hyperplane in Pn that is pointwise fixed by �.g/. To study the weak-exceptionality
of the singularity CnC1=G one can always assume that the groupG does not contain reflections
(cf. [13, Remark 1.16]). In this case we have the following

Theorem 1.8 ([11, Theorem 3.16]). Let G be a finite subgroup in GLnC1.C/ that does
not contain reflections. Then the singularity CnC1=G is weakly-exceptional if and only if
lct.Pn; NG/ > 1.

It should be pointed out that the assumption that G contains no reflections is crucial for
Theorem 1.8 and can not be removed (see [11, Example 1.18]). Recall that a semi-invariant
of the group G is a polynomial whose zeroes define a NG-invariant hypersurface in Pn. If the
group G has a semi-invariant of degree d , then lct.Pn; NG/ 6 d=.n C 1/. Thus, if G does
not contain reflections and G has a semi-invariant of degree at most n, then CnC1=G is not
weakly-exceptional by Theorem 1.8. Moreover, it follows from Theorem 1.8 and Example 1.7
that if G is a finite subgroup in GL2.C/ that does not contain reflections, then the singularity
C2=G is exceptional if and only if G has no semi-invariants of degree 1. A similar result holds
in dimension 3 due to

Theorem 1.9 ([11, Theorem 3.23]). Let G be a finite group in GL3.C/ that does not
contain reflections. Then the singularity C3=G is weakly-exceptional if and only if G does not
have semi-invariants of degree at most 2.

Representation theory provides various obstructions to weak exceptionality. For exam-
ple, it follows from [46, Proposition 2.1] that the subgroup G � GLnC1.C/ is transitive (i.e.
the corresponding .n C 1/-dimensional representation is irreducible) provided that the singu-
larity CnC1=G is weakly exceptional. Nevertheless, we do not expect that Definition 1.4 can
be translated into the representation-theoretic language in higher dimensions even in a very re-
strictive case of quotient singularities. Namely, NG-invariant subvarieties of large codimension
may also provide obstructions to weak exceptionality as follows from

Theorem 1.10 ([11, Theorem 4.3]). Let G be a finite group in GL4.C/ that does not
contain reflections. Then the singularity C4=G is weakly-exceptional if and only if the fol-
lowing three conditions are satisfied: the group G is transitive, the group G does not have
semi-invariants of degree at most 3, and there is no NG-invariant smooth rational cubic curve
in P3.
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Furthermore, we can construct a non-weakly exceptional six-dimensional quotient sin-
gularity arising from a transitive finite subgroup without reflections in GL6.C/ that has no
semi-invariants of degree at most 6 (see [11, Example 3.20, Lemma 3.21]). This, together with
Theorems 1.9 and 1.10, shows that the weak-exceptionality of a quotient singularity CnC1=G

crucially depends on the absence of certain special NG-invariant subvarieties in Pn. Note that
the transitivity of the subgroup G is equivalent to the absence of NG-invariant proper linear sub-
spaces in Pn. In particular, we should not expect that there exists a simple looking criterion
for a quotient singularity CnC1=G to be weakly-exceptional that works in all dimensions. On
the other hand, it is quite natural to expect that there exists such a sufficient condition (not a
criterion). This is indeed the case.

Definition 1.11. An irreducible normal variety V is said to be of Fano type if there
exists an effective Q-divisor�V on the variety V such that �.KV C�V / is a Q-Cartier ample
divisor, and the log pair .V;�V / has at most Kawamata log terminal singularities.

In this paper (see Section 2), we prove the following

Theorem 1.12. Let G be a finite group in GLnC1.C/ that does not contain reflections.
If CnC1=G is not weakly-exceptional, then there is a NG-invariant, irreducible, normal, Fano
type projectively normal subvariety V � Pn such that

deg.V / 6

 
n

dim.V /

!
;

and for every i > 1 and for every m > 0, we have hi .OPn.m/˝ IV / D h
i .OV .m// D 0, and

(1.13) h0
�
OPn.dim.V /C 1/˝ IV

�
>

 
n

dim.V /C 1

!
;

where IV is the ideal sheaf of the subvariety V � Pn. Let … be a general linear subspace in
Pn of codimension k 6 dim.V /. PutX D V \…. Then hi .O….m/˝IX / D 0 for every i > 1

and m > k, where IX is the ideal sheaf of the subvariety X � …. Moreover, if k D 1 and
dim.V / > 2, then X is irreducible, projectively normal and hi .OX .m// D 0 for every i > 1

and m > 1.

Corollary 1.14. Let G be a finite subgroup in GLn.C/ that does not contain reflec-
tions. Then the singularity Cn=G is weakly-exceptional if for every irreducible NG-invariant
subvariety V � Pn there exists no hypersurface in Pn of degree dim.V /C 1 that contains V .

Apart from their clear geometric nature, Theorem 1.12 and Corollary 1.14 are easy to
apply in many cases (but not always, since Theorem 1.12 is not a criterion). In Section 3,
we will use them to construct many explicit infinite series of Gorenstein weakly-exceptional
quotient singularities. In particular, we will use Corollary 1.14 to prove that infinitely many
Gorenstein weakly-exceptional quotient singularities exist in any dimension (see Theorem 3.1
and Corollary 3.2) and to prove

Theorem 1.15. Let p > 3 be a prime number, and let G be a subgroup in SLp.C/ that
is isomorphic to the Heisenberg group of order p3. Then Cp=G is weakly-exceptional.
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We prove Theorem 1.15 (after stating it a bit more explicitly) in Section 3 (see Theo-
rem 3.4). Theorem 1.15 gives many examples of weakly exceptional singularities in dimension
p corresponding to the groups containing the group G (cf. Theorem 1.19). Another reason
to study weak exceptionality of the quotient by the Heisenberg group is that the order of this
group is relatively small compared to that of the groups considered in Theorem 3.1

We have already seen that being weakly-exceptional is not so easy to check for a higher
dimensional quotient singularity. This is not surprising: the life is not easy in higher dimen-
sions. Surprisingly, the life is still easy in dimension five as it follows from

Theorem 1.16 (cf. Theorem 1.10). Let G be a finite subgroup in GL5.C/ that does not
contain reflections. Then the singularity C5=G is weakly-exceptional if and only if the group
G is transitive and does not have semi-invariants of degree at most 4.

However, in dimension six, nature takes its revenge. In this case we can only prove a
sufficient condition.

Theorem 1.17. Let G be a finite subgroup in GL6.C/ that does not contain reflections.
Then the singularity C6=G is weakly-exceptional if the following five conditions are satisfied:

(i) The group G is transitive.

(ii) The group G does not have semi-invariants of degree at most 5.

(iii) There is no irreducible NG-invariant smooth rational cubic scroll2) in P5.

(iv) There is no irreducible NG-invariant complete intersection of two quadric hypersurfaces
in P5.

(v) There is no irreducible NG-invariant, normal, projectively normal, non-degenerate, Fano
type threefold X � P5 with at most rational singularities of degree 6 and sectional
genus 3 such that h0.OP5.2/ ˝ IX / D 0 and h0.OP5.3/ ˝ IX / D 4 (cf. Remark 1.18
below).

The main purpose of this paper is to prove Theorems 1.12, 1.16 and 1.17, which is done
in Sections 2, 4 and 5, respectively. The proofs of Theorems 1.16 and 1.17 are based on
Theorem 1.12 and appear to be naturally linked to many classical geometric constructions,
which are very interesting on their own. For example, in the proof of Theorem 1.16 we naturally
come across various surfaces of small degree in P4, in particular singular Bordiga surfaces.

It should be pointed out that Theorem 1.16 is indeed a criterion, while Theorems 1.12
and 1.17 provide us only sufficient conditions to be weakly-exceptional. One can easily see
that Theorem 1.12 is quite far from being a criterion by comparing it with Theorems 1.9 and
1.10. On the other hand, the first four conditions in Theorem 1.17 are also necessary conditions
for the weak-exceptionality (cf. [11, Lemma 3.21]). Unfortunately, we do not know whether
the fifth condition in Theorem 1.17 is really necessary or not.

Remark 1.18. LetX be a projectively normal non-degenerate threefold in P5 of degree
6 and sectional genus 3 that has at most Kawamata log terminal singularities. If X is smooth,
then it follows from [41, Proposition 1.7] that X is a so-called smooth Bordiga scroll, which

2) This is just P1 � P2 embedded by Segre.
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is a projectivization of a two-dimensional stable vector bundle E on P2 such that c1.E/ D 0

and c2.E/ D 0. Smooth Bordiga scrolls have been studied in [38, 41, 43]. One can show that
smooth Bordiga scrolls are weak Fano threefolds, i.e. their anticanonical divisors are big and
nef. Note that smooth Bordiga scrolls are missing in the classifications obtained in [27, 28].
Smooth hyperplane sections of smooth Bordiga scrolls are known as smooth Bordiga surfaces
(see [5] and [50, Chapter XIV]), which can be obtained by blowing up P2 at 10 sufficiently
general points. It follows from [47] that some smooth Bordiga surfaces in P4 are set-theoretic
intersections of a cubic and a quartic hypersurfaces (see also [25, Proposition 19]). If one can
show that X is also a set-theoretic intersections of a cubic and a quartic hypersurfaces in P5

(without imposing any additional assumption on X , except possibly those that are used in the
fifth condition in Theorem 1.17), then the fifth condition in Theorem 1.17 is also a necessary
condition for the singularity C6=G in Theorem 1.17 to be weakly-exceptional. Unfortunately,
we do not even know whether there exists an example of a smooth three-dimensional Bordiga
scroll that is a set-theoretic intersections of a cubic and a quartic hypersurfaces. On the other
hand, there is a small chance that the fifth condition in Theorem 1.17 follows from the first
four, which would imply that it can be dropped from Theorem 1.17.

By Theorem 1.8, to apply Theorems 1.16 and 1.17, we may assume thatG � SLnC1.C/,
since there exists a finite subgroup G0 � SLnC1.C/ such that �.G0/ D NG. Every transi-
tive finite subgroup of SL2.C/ gives rise to a weakly-exceptional singularity by Theorem 1.8.
In [51], Sakovich used Theorems 1.9 and 1.10 to obtain an explicit classification of the tran-
sitive finite subgroups in SL3.C/ and SL4.C/ corresponding to three-dimensional and four-
dimensional weakly-exceptional quotient singularities, respectively. Probably, a similar classi-
fication is possible in dimensions 5 and 6 using Theorems 1.16 and 1.17, respectively. But this
task requires huge amount of computations that goes beyond the scope and the purpose of this
paper. So instead, let us apply Theorems 1.16 and 1.17 to classify all primitive (see [11, Def-
inition 1.21]) finite subgroups in SL5.C/ and SL6.C/ corresponding to five-dimensional and
six-dimensional weakly-exceptional quotient singularities, respectively.

Theorem 1.19 (cf. [11, Theorems 1.22, 5.6]). Let G � SL5.C/ be a finite primitive
group. Then the singularity C5=G is weakly-exceptional if and only if G contains the Heisen-
berg group of order 125.

Proof. The “if” part follows immediately by Theorem 1.15. Let us prove the “only if”.
Suppose that G does not contain the Heisenberg group of order 125. By Theorem 1.8, the
weak-exceptionality of the singularity C5=G depends only on the image of the group G in
PSL5.C/, so that we may assume that Z.G/ � ŒG;G� (see [21]). Then the group G is one of
the following groups: A5, A6, S5, S6, PSL2.F11/ or PSp4.F3/ (see [21, §8.5]). In all of these
cases there exists a semi-invariant of G of degree at most 4 by [11, Lemma 5.3], so that the
singularity C5=G is not weakly-exceptional by Theorem 1.8.

Theorem 1.20 (cf. [13, Theorem 1.14]). LetG be a finite primitive subgroup in SL6.C/.
Then the singularity C6=G is weakly-exceptional if and only if there exists a lift of the sub-
group NG � PGL6.C/ to SL6.C/ that is contained in the following list3):

3) We label the cases according to the notation of [21, 35].
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V 6:A6,

VIII 6:A7,

XIV (i) SU3.F3/,

(ii) an extension of the subgroup described in XIV (i) by an automorphism of order 2,

XV (i) 6:PSU4.F3/,

(ii) an extension of the subgroup described in XV (i) by an automorphism of order 2,

XVI 2:HaJ, where HaJ is the Hall–Janko sporadic simple group,

XVII (i) 6:PSL3.F4/,

(ii) an extension of the subgroup described in XVII (i) by an automorphism of order 2.

Proof. The classification of the primitive subgroups of SL6.C/ is given in [35, §3].
Browsing through it, we find that primitive subgroups of SL6.C/ that do not have semi-
invariants of degree at most 5 are exactly those listed in the assertion of the theorem (see
the proof of [13, Theorem 3.3]) and those that satisfy the hypotheses of [11, Lemma 3.24].
If G satisfies the hypotheses of [11, Lemma 3.24], then the singularity C6=G is not weakly-
exceptional by Theorem 1.8 and [11, Lemma 3.24]. If G is of type XIV (i), XIV (ii), XV (i),
XV (ii), XVI, XVII (i) and XVII (ii), then G does not have an irreducible representation W
such that 2 6 dim.W / 6 4 (see [14]), which easily implies that these cases give rise to
weakly-exceptional singularities by Theorem 1.17. If G is of type V, then G Š 6:A6 has no
irreducible two-dimensional representations (see [14]), and no irreducible representation of the
groupG of dimension 3 or 4 is contained in Sym3.V _/, where V Š C6 is theG-representation
in question. The latter can be checked by a direct computation (we used the Magma soft-
ware [6] to carry it out). Therefore, the singularity C6=G is again weakly-exceptional by
Theorem 1.17.

It seems possible to apply Theorems 1.15, 1.16, 1.17, 1.19, and 1.20 to construct non-
conjugate isomorphic finite subgroups in Cremona groups of high ranks (cf. [8, Example 6.5]).
For example, if lct.Pn; NG/ > 1 and Pn is NG-birationally super-rigid (see [8, Definition 6.1]),
then it follows from [8, Theorem 6.4] that there exists no NG � NG-equivariant birational map
Pn � Pn Ü P2n with respect to the product action of the group NG � NG on Pn � Pn. By
Theorem 1.5, we can use Theorems 1.15, 1.16, 1.17, 1.19, and 1.20 to obtain many finite
subgroups NG � Aut.Pn/ with lct.Pn; NG/ > 1. However, if n > 3, then it is usually very
hard to prove that Pn is NG-birationally super-rigid (cf. [12]). In fact, we do not know any such
example if n > 4.

Let us describe the structure of this paper. In Section 2, we prove Theorem 1.12. In
Section 3, we construct (see Theorem 3.1) infinite series of Gorenstein weakly-exceptional
quotient singularities in any dimension (in particular, proving that weakly-exceptional quo-
tient singularities exist in all dimensions), and prove Theorem 1.15. In Section 4, we prove
Theorem 1.16. In Section 5, we prove Theorem 1.17. In Appendix A, we prove an auxiliary
statement concerning smooth irreducible curves in P3 of genus 5 and degree 7: we prove that
any such curve is a set-theoretic intersection of cubics (this result might be known to experts,
but we did not manage to find a reference in the literature).

Throughout the proofs of Theorems 1.16 and 1.17 we often work with singular del Pezzo
surfaces. A good preliminary reading for the corresponding techniques may be [17]. On the
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210 Cheltsov and Shramov, Weakly-exceptional singularities in higher dimensions

other hand, the facts from the theory of representations of finite groups we will need (say, in
the proof of Theorem 3.4) do not go beyond the elementary material that can be found in any
textbook on the subject (for example, [52]).
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2. Weak-exceptionality criterion

The purpose of this section is to prove Theorem 1.12. Let G be a finite subgroup in
GLnC1.C/, and let �WGLnC1.C/ ! PGLnC1.C/ be the natural projection. Put NG D �.G/.
Let us identify PGLnC1.C/ with Aut.Pn/. Let us denote by H a general hyperplane in
Pn. Suppose that G contains no reflections and CnC1=G is not weakly-exceptional. Then
lct.Pn; NG/ < 1 by Theorem 1.8. Thus, there is an effective NG-invariant Q-divisor D on Pn

such that D �Q .nC 1/H and a positive rational number � < 1 such that .Pn; �D/ is strictly
log canonical.

Let V be a minimal center of log canonical singularities of the log pair .Pn; �D/ (see [30,
Definition 1.3] and [31]). Then it follows from the Kawamata subadjunction theorem (see [31,
Theorem 1]) that V is normal and has at most rational singularities, and for any rational number
� < .1��/.nC 1/ there is an effective Q-divisor�� on V such that �.KV C��/ �Q �H jV ,
and the log pair .V;��/ has Kawamata log terminal singularities. We see that V is a Fano type
subvariety. In particular, we see that hi .OV .mH jV // D 0 for every i > 1 and m > 0 by the
Nadel–Shokurov vanishing theorem (see [33, Theorem 2.16] or [2, Appendix]).

Let Z be the NG-orbit of the subvariety V , and let � be a rational number such that � > 1
and �� < 1. Then it follows from [11, Lemma 2.8] that there exists an effective NG-invariant
Q-divisor D0 on Pn such that D0 �Q ��D, the log pair .Pn;D0/ is strictly log canonical,
and every log canonical center of the log pair .Pn;D0/ is a component of Z. Since �� < 1,
it follows from the Nadel–Shokurov vanishing theorem that hi .IZ ˝ OPn.m// D 0 for every
i > 1 and m > 0, where IZ is an ideal sheaf of Z. Thus, the sequence of cohomology groups

0 �! H 0
�
OPn.m/˝ IZ

�
�! H 0

�
OPn.m/

�
�! H 0

�
OV .mH jZ/

�
�! 0

is exact for everym > 0, which impliesZ is connected, and V is projectively normal if V D Z.
Since Z is connected, one has V D Z by [30, Proposition 1.5].
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Put d D dim.V /. Let … be a general linear subspace in the projective space Pn of
codimension k 6 d . Put D0… D D

0j…. Then every center of log canonical singularities of the
log pair .…;D0…/ is a component of the intersection V \ …, since … is sufficiently general.
Put H… D H j… and X D … \ V . Then

K… CD
0
… �Q

�
��.nC 1/ � nC k � 1

�
H…;

where �� < 1. Thus, it follows from the Nadel–Shokurov vanishing theorem that

(2.1) hi
�
O….mH…/˝ IX

�
D 0

for every i > 1 and m > k, where IX is the ideal sheaf of the subvariety X � …. If we put
k D d , then it follows from (2.1) that

deg.V / D jV \…j D h0.OX / D h0
�
O….dH…/

�
� h0

�
O….H…/˝ IX

�
6

 
n

d

!
:

Suppose that k D 1 and d > 2. Then X is irreducible and the sequence

0 �! H 0
�
O….mH…/˝ IX

�
�! H 0

�
O….mH…/

�
�! H 0

�
OX .mH jX /

�
�! 0

is exact for every m > k D 1 by (2.1), which implies that X � … is projectively normal.
It follows from (2.1) that hi .OX .mH jX // D hi .O….mH…// D 0 for every i > 1 and

m > 1, since hi .O….mH…// D 0 for every i > 1 and m > 0.
Letƒ be a general linear subspace in Pn of codimension dC1, letN be a very big integer,

and let H1;H2; : : : ;HN be sufficiently general hyperplanes in Pn that contain ƒ. Then

(2.2)
�

Pn;D0 C
d C 1

N

NX
iD1

Hi

�
is strictly log canonical. Moreover, it follows from the construction of the log pair (2.2) that
the only centers of log canonical singularities of the log pair (2.2) are V and ƒ. Note that
V \ ƒ D ¿ by construction. Put m D d C 1. Then it follows from the Nadel–Shokurov
vanishing theorem that

h0
�
OPn.m/˝ IV[ƒ

�
D

 
nCm

m

!
� h0

�
OV .mH jV /

�
�

 
n

m

!
;

since V \ ƒ D ¿. Thus, it follows from the projective normality of the subvariety V � Pn

that

h0
�
OPn.m/˝ IV

�
D

 
nCm

m

!
� h0

�
OV .mH jV /

�
D

 
n

m

!
C h0

�
OPn.m/˝ IV[ƒ

�
;

which implies the inequality (1.13) (cf. the proof of [40, Theorem 6.1]) and completes the proof
of Theorem 1.12.
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3. Infinite series

Let G be a finite subgroup in GLnC1.C/, and let �WGLnC1.C/ ! PGLnC1.C/ be
the natural projection. Put NG D �.G/ and V D CnC1, and let us identify PGLnC1.C/ with
Aut.Pn/. Let us fix coordinates .x0; : : : ; xn/ on V , and let us use them also as projective
coordinates on Pn.

Theorem 3.1. Suppose that the groupG does not contain reflections, the representation
V of the groupG is irreducible, andG contains a subgroup � Š Zn

k
for some integer k > nC1

such that � is generated by the transformations 1; 2; : : : ; n defined by

i W
�
x0; x1; : : : ; xi�1; xi ; xiC1; : : : ; xn

�
7�!

�
��1x0; x1; : : : ; xi�1; �xi ; xiC1; : : : ; xn

�
;

where � is a primitive root of unity of degree k. Then the singularity CnC1=G is weakly
exceptional.

Proof. Suppose that the singularity CnC1=G is not weakly exceptional. Then it follows
from Corollary 1.14 that there exists a NG-invariant irreducible subvariety X � Pn such that
there exists a hypersurface in Pn of degree dim.X/ C 1 that contains X . Let us derive a
contradiction. To do this, we may swap G with any other group G0 � GLnC1.C/ such that
�.G0/ D NG. Thus, adding a scalar matrix diag.�; : : : ; �/ to the group G, we may assume that
G contains a subgroup � 0 Š ZnC1

k
that is generated by the transformations  00; 

0
1; 
0
2; : : : ; 

0
n

such that

 0i W
�
x0; : : : ; xi�1; xi ; xiC1; : : : ; xn

�
7�!

�
x0; : : : ; xi�1; �xi ; xiC1; : : : ; xn

�
;

where as before � is a primitive root of unity of degree k. This assumption is not crucial for the
proof, but it makes some steps clearer.

Put d D dim.X/C 1. Then d 6 n. Every � 0-invariant vector subspace in CŒx0; : : : ; xn�
consisting of forms of degree d splits into a sum of pairwise non-isomorphic one-dimensional
representations of the group � 0 that are generated by monomials. Thus, any non-trivial � 0-
invariant vector subspace in CŒx0; : : : ; xn� consisting of forms of degree d must contain a
monomial. In particular, every semi-invariant form in CŒx0; : : : ; xn� of degree d with respect
to � 0 must be a monomial. Therefore, the group G does not have semi-invariant forms in
CŒx0; : : : ; xn� of degree d , because G is transitive. Indeed, if there exists a semi-invariant
form in CŒx0; : : : ; xn� of degree d with respect to G, then this form must be a monomial
xi1xi2 : : : xid for some (not necessarily distinct) i1; i2; : : : ; id in ¹0; : : : ; nº, which implies that
the vector subspace in V given by xi1 D xi2 D � � � D xid D 0 must be G-invariant and proper,
since d 6 n.

Let W.X/ be the vector subspace in CŒx0; : : : ; xn� consisting of forms of degree d that
vanish on X . Then W.X/ is non-zero and G-invariant, because X is NG-invariant. Thus,
the vector subspace W.X/ must contain a monomial xj1

xj2
: : : xjd

for some j1; j2; : : : ; jd
in ¹0; : : : ; nº. Therefore, the subvariety X is contained in the union of hyperplanes in Pn that
are given by xj1

D 0; xj2
D 0; : : : ; xjd

D 0. Since X is irreducible, the subvariety X is
contained in one of these hyperplanes. Without loss of generality, we may assume that X is
contained in the hyperplane that is given by xj1

D 0. Therefore, the linear span of the subvari-
ety X is also contained in the hyperplane that is given by xj1

D 0, which is impossible, since
V is an irreducible representation of the group G.
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Corollary 3.2. For any N > 1 there are infinitely many Gorenstein weakly-exceptional
quotient singularities of dimension N .

In the remaining part of this section we will give a proof of Theorem 1.15. In order to do
this, we need the following

Lemma 3.3. Let p > 2 be a prime number, let P.x/ be a polynomial in QŒx� of degree
d . Put

P.x/ D

dX
iD0

bi

ci
xi ;

where bi and ci are integers such that one has ci ¤ 0 and gcd.bi ; ci / D 1. Take  2 Z.
For i 2 ¹0; : : : ; dº, let P. C i/ D ri

qi
, where ri and qi are integers such that qi ¤ 0

and gcd.ri ; qi / D 1. Suppose that r0 � r1 � � � � � rd � 0 mod p and d < p. Then
b0 � b1 � � � � � bd � 0 mod p.

Proof. For every i , put ci D ptimi , where ti is a non-negative integer, and mi is an
integer that is not divisible by p. Put t D max.t0; : : : ; td /, and put N D lcm.c0; : : : ; cd /.
Then one has N D pt lcm.m0; : : : ; md / and Nf .x/ 2 ZŒx�. Take any k 2 ¹0; : : : ; dº such
that t D tk . Then

Nf ./ �
Nr0

q0
� Nf . C 1/ �

Nr1

q1
� � � � � Nf . C d/ �

Nrd

qd
� 0 mod p;

which immediately implies that all integers Nb0=c0; Nb1=c1; : : : ; Nbd=cd must be divisible
by p, because only the zero polynomial in FpŒx� of degree d < p has d C 1 different roots.
Then

Nbk

ck
D
ptk lcm.m0; : : : ; md /bk

pt
k
mk

D
lcm.m0; : : : ; md /bk

mk

is divisible by p, which implies that bk is divisible by p. Since

gcd.bk; p
tkmk/ D gcd.bk; ck/ D 1;

we see that t D tk D 0. Hence, we have t0 D � � � D td D 0. Thus, we see that N is not
divisible by p, which implies that b0 � b1 � � � � � bd � 0 mod p, since we know that all
integers Nb0=c0; Nb1=c1; : : : ; Nbd=cd are divisible by p.

Now we are ready to prove

Theorem 3.4. Let p > 3 be a prime number. Suppose that n C 1 D p and G is
generated by the elements .x0 W x1 W : : : W xp�1/! .x1 W : : : W xp�1 W x0/ and�

x0 W x1 W : : : W xp�1
�
7�!

�
x0 W �x1 W : : : W �

p�1xp�1
�
;

where � is a primitive root of unity of degree p. Then the singularity CnC1=G is weakly
exceptional.
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214 Cheltsov and Shramov, Weakly-exceptional singularities in higher dimensions

Proof. Suppose that the singularity CnC1=G is not weakly exceptional. Then it follows
from Theorem 1.12 that there exists a NG-invariant irreducible normal Fano type subvariety
V � Pn such that

deg.V / 6

 
n

dim.V /

!
;

and hi .V;OV .m// D 0 for any i > 1 and any m > 0, where OV .m/ D OV ˝OPn.m/. Then

(3.5) h0
�
V;OV .m/

�
D h0

�
Pn;OPn.m/

�
� h0

�
Pn; IV .m/

�
;

where IV is the ideal sheaf of V .
Let Z.G/ be the center of the group G. Then Z.G/ Š Zp. It is well known that any

irreducible representation of G with a non-trivial action of the center Z.G/ is p-dimensional.
In particular, the group G has no semi-invariants of degree less than p, which implies that
dim.V / 6 p � 2.

Put Wm D H 0.Pn; IV .m//. Then Wm is a linear representation of the group G, and
Z.G/ acts non-trivially on Wm for every m 2 ¹1; : : : ; p � 1º. Therefore dim.Wm/ is divisible
by p for every m 2 ¹1; : : : ; p � 1º. Applying (3.5) for every m 2 ¹1; : : : ; p � 1º and keeping
in mind that h0.Pn;OPn.m// is divisible by p for every m 2 ¹1; : : : ; p � 1º, we see that
h0.V;OV .m// is divisible by p for every m 2 ¹1; : : : ; p � 1º. Put d D dim.V /. Since
h0.V;OV .m// D �.V;OV .m// for every m > 0, there are integers a0; a1; : : : ; ad such that

h0
�
V;OV .m/

�
D adm

d
C ad�1m

d�1
C � � � C a0

for every m > 0. Applying Lemma 3.3 to the polynomial

P.m/ D adm
d
C ad�1m

d�1
C � � � C a0;

we see that a0 D b0=c0, where gcd.b0; c0/ D 1 and b0 is divisible by p. On the other hand,
applying (3.5) for m D 0, we obtain that a0 D h0.V;OV / D 1, which is a contradiction.

4. Five-dimensional singularities

The main purpose of this section is to prove Theorem 1.16. We start with three easy
observations.

Lemma 4.1. Let NG be a finite subgroup in Aut.P1/, and let � be a NG-orbit in P1. If
j�j 2 ¹1; 2; 5; 7; 8; 9; 10; 11º, then there is a NG-orbit in P1 of length at most 2.

Proof. If j�j 2 ¹1; 2; 5; 7; 8; 9; 10; 11º, then the group NG is either cyclic or dihedral,
which implies that NG has either a fixed point or an orbit that consists of 2 points, respectively.

Lemma 4.2. Let NG be a finite subgroup in Aut.P2/. Suppose that either NG Š S4, or
NG Š A4. Then either there is a NG-invariant point in P2, or there exists at most one NG-orbit in

P2 of length 3.
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Proof. If NG Š S4, then any point fixed by the normal subgroup A4 � NG is also fixed by
NG. Thus we may assume that NG Š A4 and there exist no NG-invariant points in P2. Consider

the unique subgroup � � NG Š A4 of index 3. If there is a NG-orbit � � P2 such that j�j D 3,
then � is a stabilizer of any point of �. Let F� � P2 be the set of the points fixed by � . If
F� is infinite, then there is a line L � F� . Since the subgroup � � NG is normal, the line L
is NG-invariant, and thus NG fixes some point on P2 which is impossible by assumption. On the
other hand, if � has a finite number r of fixed points, one has r 6 nC 1 D 3.

Theorem 4.3. Let S be a rational surface with at most Du Val singularities, and let
� W QS ! S be the minimal resolution of singularities of the surface S . Then

rk Pic. NS/CK2NS D rk Pic.S/CK2S C
X
P2S

�.P / D 10;

where �.P / is the Milnor number4) of the point P .

Proof. The required equality follows from the classical Noether formula.

Now we are ready to prove Theorem 1.16. Let G be a finite subgroup in GL5.C/ that
does not contain reflections, and let �WGL5.C/ ! PGL5.C/ be the natural projection. Put
NG D �.G/. Let us identify PGL5.C/ with Aut.P4/.

Theorem 4.4. Suppose that G is transitive and does not have semi-invariants of de-
gree at most 4. If C5=G is not weakly-exceptional, then there exists a NG-invariant irreducible
non-degenerate projectively normal Fano type surface S of degree 6 with at most quotient sin-
gularities that is not contained in a quadric hypersurface in P4 such that its generic hyperplane
section is a projectively normal smooth curve of genus 3.

Proof. Suppose that C5=G is not weakly-exceptional. Then it follows from Theo-
rem 1.12 that there is an irreducible NG-invariant projectively normal Fano type subvariety
S � P4 such that

deg.S/ 6

 
4

dim.S/

!
;

and if dim.S/ > 2, then its general hyperplane section is also projectively normal.
Since G is transitive and S is NG-invariant, the subvariety S is not contained in a hyper-

plane in P4. In particular, we see that S is not a point. Since G does not have semi-invariants
of degree at most 4, we see that S is not a threefold.

If S is a curve, then deg.S/ 6 4, and thus S is a smooth rational curve of degree 4,
because S is not contained in a hyperplane in P4. On the other hand, it follows from [23, Ex-
ercise 8.7] that the secant variety of a smooth rational curve of degree 4 is a cubic hypersurface
in P4. This is impossible since G does not have semi-invariants of degree at most 4 and S is
NG-invariant. The obtained contradiction shows that S cannot be a curve.

Thus, the subvariety S is a surface. Then S has at most quotient singularities by [33,
Theorem 3.6]. Let H be a hyperplane section of the surface S � P4. Then H is projectively

4) Recall that �.P / D 0 if P 62 Sing.S/, and �.P / D n if .S 3 P / is a singularity of type An, Dn, or En.
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normal. Let IS be the ideal sheaf of the surface S . Since S is projectively normal, it follows
from the Riemann–Roch theorem5) that

(4.5)

 
nC 4

n

!
� h0

�
OP4.n/˝ IS

�
D h0

�
OS .nH/

�
D 1C

n2

2
.H �H/�

n

2
.H �KS /

for any n > 1. In particular, since S is not contained in a hyperplane in P4, it follows from
(4.5) applied for n D 1 that H � H � H � KS D 8. On the other hand, we know that
H � H > 3, since S is not contained in a hyperplane in P4. Moreover, since S is a Fano
type surface, the divisor �KS is big (see Definition 1.11), which implies that �H � KS > 0.
Thus, we see that H � H 2 ¹3; 4; 5; 6; 7º. Now plugging n D 2 into (4.5), we see that
6 � h0.OP4.2/ ˝ IS / D H � H . In particular, we must have H � H ¤ 5, since G does
not have semi-invariants of degree 2. Thus, we see that H �H 2 ¹3; 4; 6º.

IfH �H D 3, then either S is a cone over a smooth rational cubic curve, or S is a smooth
cubic scroll (see, e.g., [20]). If S is a cone over a smooth rational cubic curve, then its vertex is
NG-invariant, which is impossible since G is transitive. If S is a smooth cubic scroll, then there

is a unique line L � S such that L2 D �1, which implies that L must be NG-invariant, which
is again impossible, because G is transitive. Thus, we see that H �H ¤ 3.

If H � H D 6, then H � KS D �2, which implies that H is a smooth curve of genus
3 by the adjunction formula. Thus, if H � H D 6, then we are done, because H � H D 6

implies that h0.OP4.2/ ˝ IS / D 0. Therefore, we may suppose that H � H D 4. Since
6 � h0.OP4.2/ ˝ IS / D H �H and S is not contained in a hyperplane in P4, there are two
irreducible quadrics in P4 that contain S . Let us denote them byQ andQ0. Then S D Q\Q0,
since H �H D 4.

If S is singular, then jSing.S/j 6 4, because S has canonical singularities, since S is a
complete intersection that has Kawamata log terminal singularities. But Sing.S/ is NG-invariant,
which is impossible, since G is transitive. Thus, the surface S is smooth.

Let P be a pencil that is generated by the quadrics Q and Q0. Then P contains exactly
5 singular quadrics, which are simple quadric cones. Now it follows from Lemma 4.1 that
there exist two quadrics in P , say Q1 and Q2, such that Q1CQ2 is NG-invariant. The latter is
impossible, because G does not have semi-invariants of degree at most 4.

To complete the proof of Theorem 1.16 we are going to show that there are no surfaces S
satisfying the conditions implied by Theorem 4.4. If C5=G is weakly-exceptional, then G is
transitive by [46, Proposition 2.1] and does not have semi-invariants of degree at most 4 by
Theorem 1.8. Thus, since Fano type surfaces are rational (cf. [58]) and have big anticanonical
divisors by Definition 1.11, the assertion of Theorem 1.16 follows from Theorem 4.4 and the
following

Theorem 4.6. Let S be an irreducible NG-invariant normal surface in P4 of degree 6
and let H be its general hyperplane section. Then �KS is not big if the following conditions
are satisfied:

(A) The surface S is projectively normal.

(B) The surface S is rational.

5) Recall that the Riemann–Roch theorem in the usual form is valid for Cartier divisors on surfaces with
quotient (and even rational) singularities, see [48, Theorem 9.1].
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(C) The surface S has at most quotient singularities.

(D) The surface S is not contained in a quadric hypersurface.

(E) The curve H is a smooth curve of genus 3.

(F) The curve H is projectively normal (considered as a subvariety in P3).

(G) The group G is transitive.

It should be pointed out that some of the conditions (A)–(F) in Theorem 4.6 may be
redundant. For example, one can show that (F) follows from (A), (C), (D) and (E) (see the
proof of [24, Theorem 2.1], [37, Theorem 4.4] and [1]). Still we prefer to keep them all,
because we do not care. In the remaining part of this section we prove Theorem 4.6. To do this
we will need two auxiliary results that may be useful on their own (cf. [56]).

Lemma 4.7. Let P1; : : : ; P10 be 10 different points in P2, let � W QS ! P2 be the blow
up of the points P1; : : : ; P10, let  W OS ! P2 be the blow up of the points P1; : : : ; P8, let OP9
and OP10 be the preimages of the points P9 and P10 on the surface OS . Suppose that the linear
system j�K QS j is empty, �K OS is nef and big, and neither OP9 nor OP10 is contained in a curve in
OS that has trivial intersection with �K OS . Then �K QS is not big.

Proof. The surface OS is a weak del Pezzo surface, i.e.�K OS is big and nef. Let  W OS ! NS

be its anticanonical model, i.e.  is given by the linear system j�nK OS j for n � 0. Then NS is
a del Pezzo surface with canonical singularities such that K2

NS
D 1, and  contracts all curves

that have trivial intersection with �K OS (they are .�2/-curves, i.e. smooth rational curves with
self-intersection �2). It is well known that j�2K NS j is free from base points and induces a
double cover ıW NS ! Q, where Q is a quadric cone in P3.

By assumption both points . OP9/ and . OP10/ are contained in a smooth locus of the
surface NS . Moreover, there exists no curve in j�K NS j that contains both points . OP9/ and
. OP10/, because otherwise the linear system j�K QS j would not be empty. Thus, the points
ı ı . OP9/ and ı ı . OP10/ are not contained in one ruling of the quadric cone Q.

Let �W QS ! OS be the blow up of the points OP9 and OP10, and let E9 and E10 be the
exceptional divisors of the blow up � such that �.E9/ D OP9 and �.E10/ D OP10. Then we have
a diagram

QS
� //

�
��

OS

 ��



��
P2 NS

ı // Q:

Since�2K QSCE9CE10 � �
�.�2K OS /�E9�E10, the linear system j�2K QSCE9CE10j

does not have base curves except possibly the curves E9 and E10, because the points ı ı. OP9/
and ı ı . OP10/ are not contained in one ruling of the quadric cone Q. Indeed, the base locus
of the linear system �.j�2K QS C E9 C E10j/ consists of the points of the surface OS that are
mapped to one of the points ı ı . OP9/ or ı ı . OP10/ by ı ı  , because  is an isomorphism in
a neighborhood of the points OP9 and OP10, and ı ı . OP9/ and ı ı . OP10/ are not contained in
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218 Cheltsov and Shramov, Weakly-exceptional singularities in higher dimensions

one ruling of the quadric coneQ. Thus, the divisor �2K QS CE9CE10 is nef and big, because
.�2K QS CE9 CE10/

2 D 2 and�
�2K QS CE9 CE10

�
�E9 D

�
�2K QS CE9 CE10

�
�E10 D 1:

One the other hand, we see that �K QS � .�2K QS C E9 C E10/ D 0, which implies that �K QS
cannot be big.

Lemma 4.8. Let a group NG act faithfully on P2. Let P D ¹P1; : : : ; P10º be a NG-
invariant collection of 10 points on P2, and denote by � W QS ! P2 the blow up of the points
P1; : : : ; P10. Suppose that the following conditions hold:

(i) There are no cubic curves passing through all points of P .

(ii) If a NG-invariant curve C � P2 passes through at least r of the points of P , then one has
4 deg.C / � r > 4.

(iii) There are no NG-orbits of length at most 2 on P2.

(iv) There are no NG-orbits of length at most 4 contained in P2 nP .

Then the anticanonical class �K QS is not big.

Proof. To start with, we are going to prove that the group NG acts transitively on the
set P . Keeping in mind (iii), one can easily see that for a non-transitive action there are the
following possibilities to split P into NG-orbits: either P is a union of two NG-orbits of length
5, or it is a union of a NG-orbit of length 6 and a NG-orbit of length 4, or it is a union of a NG-orbit
of length 4 and two NG-orbits of length 3, or it is a union of a NG-orbit of length 7 and a NG-orbit
of length 3. Let us exclude these possibilities case by case.

Assume that P contains a NG-orbit P 0 of length 5. If there are at least 3 points of P 0 that
lie on a lineL, then each of the images ofL under the action of NG also contains at least 3 points
of P 0. This is possible only if the NG-orbit of L consists of at most 2 lines. The latter implies
that there is a NG-orbit on P2 that consists of at most 2 points, which contradicts (iii). Thus, the
5 points of P 0 are in general position, so that there is a unique conic C in P2 passing through
all points of P 0, and C is non-singular. By Lemma 4.1 there is a NG-orbit on C of length at
most 2, which contradicts (iii).

Assume that P contains a NG-orbit P 0 of length 4. The same argument as above shows
that the points of P 0 are in general position, so that the pencil of conics passing through the
points of P 0 has exactly 3 degenerate members, and each of them is a union of two distinct
lines. The intersection points of these pairs of lines give a NG-orbit P 00 of length at most 3. By
(iv) one has P 00 � P , so that by (iii) one has jP 00j D 3. Thus, P 000 D P n.P 0[P 00/ is another
NG-orbit of length 3 contained in P by (iii).

Note that NG acts faithfully on the finite set P 0 since an automorphism of P2 is defined by
the images of 4 points in general position. Hence there is an embedding NG ,! S4. Keeping in
mind that j NGj is divisible by 12 since NG has orbits of lengths 3 and 4, we see that either NG Š S4
or NG Š A4. Lemma 4.2 implies that there is a NG-invariant point on P2, which is impossible
by (iii).

Assume that P contains a NG-orbit P 0 of length 7. We are going to prove that the points
of P 0 are in general position, i.e. there are no lines passing through 3 points of P 0 and there
are no conics passing through 6 points of P 0.
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Suppose that there is a line L1 passing through 3 points of P 0. Let L D ¹L1; : : : ; Lkº

be the NG-orbit of the line L. Denote by l the number of lines from L passing through each
point from P 0, and by p the number of points from P 0 lying on each line from L. One has
p > 3 by assumption and p 6 4 by (i). On the other hand, one has l 6 3 since jP 0j D 7.
Using the equality 7l D pk, one finds that k is divisible by 7, and thus l D p D 3 and k D 7.
It is easy to see that there are no irreducible conics passing through 6 of the points from P 0

(indeed, otherwise there would exist a line from L intersecting such conic in at least 3 points).
Let Q† be a surface obtained by blowing up the 7 points of P 0 and † be an anticanonical model
of Q†. Then † is a del Pezzo surface of degree 2 with 7 Du Val singular points of type A1 (that
are images of the proper transforms of lines from L), which easily leads to a contradiction.

Suppose that there is an irreducible conic C passing through at least 6 points of P 0.
Then C is NG-invariant, since otherwise there would exist another irreducible conic passing
through at least 6 points of P 0 and thus intersecting C in at least 5 points. On the other hand,
the curve C cannot be NG-invariant by (ii).

We see that the 7 points of P 0 are in general position, so that the surface Q† obtained
by the blow up � 0W Q† ! P2 of the points of P 0 is a smooth del Pezzo surface of degree 2.
Moreover, NG � Aut. Q†/, so that jAut. Q†/j is divisible by 7. Using [18, Table 6], one obtains
that NG is a subgroup of the Klein group PSL2.F7/; moreover, NG must be isomorphic either to
PSL2.F7/ itself, or to a group F21 Š Z7 Ì Z3, or to the cyclic group Z7. The former two
cases are impossible, since Q† is NG-minimal if NG contains F21 by [18, Theorem 6.17], which
contradicts the existence of the NG-invariant morphism � 0. The latter case is impossible since
j NGj must be also divisible by 3 since NG has an orbit of length 3 on P2.

We see that NG acts transitively on the points of P . Let us consider the following condition
(�): there exist 8 points of P (say, P1; : : : ; P8) such that the surface Q† obtained by blowing up
these points is a weak del Pezzo surface, and the preimages of the other two points of P (i.e. P9
and P10) are not contained in .�2/-curves of Q†. Since j�K QS j is empty, because there are no
cubic curves passing through all points of P , we see that it follows from Lemma 4.7 that �K QS
is not big assuming that (�) holds. Let us show that the failure of (�) leads to a contradiction.

Suppose that (�) does not hold. It means that either there exists a line containing at
least 4 points of P , or there exists an irreducible conic containing at least 7 points of P , or
there exists an irreducible cubic containing at least 9 points of P and singular at one of these
points. Moreover, (i) implies that in the latter list of possibilities one can replace “at least” by
“exactly”.

Suppose that there exists an irreducible cubic, say, Z1, containing 9 points of P , say,
P1; : : : ; P9, and singular at one of these points, say, P1. Consider an element g2 2 NG such that
g2.P1/ D P2 (it exists since the action of NG on P is transitive) and put Z2 D g2.Z1/. Note
that Z2 ¤ Z1 since Z1 is smooth at P2 while Z2 is singular at that point. If P1 2 Z2, then

(4.9) 9 D Z1 �Z2 >
2X
iD1

multPi
.Z1/multPi

.Z2/C

9X
iD3

multPi
.Z1/multPi

.Z2/ D 10;

which is a contradiction. If P1 62 Z2, consider an element g3 2 NG such that g3.P1/ D P3 and
putZ3 D g3.Z1/. If P1 2 Z3, replaceZ2 byZ3. If P1 62 Z3, note that P2 2 Z3 and P3 2 Z2
and replace Z1 by Z3. In both cases a computation similar to (4.9) leads to a contradiction.

Suppose that there exists an irreducible conic C1 passing through 7 points of P . Let
C D ¹C1; : : : ; Ckº be the NG-orbit of the conic C1. Denote by c the number of conics from C

passing through each point from P ; note that there are exactly 7 points from P lying on each
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conic from C . Thus one has 7k D 10c. Put Pi D P n Ci , 1 6 i 6 k. If k > 4, then there are
indices i1; i2 2 ¹1; : : : ; kº such that Pi1 \Pi2 ¤ ¿. Hence the conics Ci1 and Ci2 intersect by
at least 5 points which is impossible. Therefore k 6 3. Moreover, the cases k D 1 and k D 2

are impossible by (ii), so that k D 3 and 10c D 21, which is again a contradiction.
Therefore, we conclude that there exists a line L1 passing through 4 points of P . Let

L D ¹L1; : : : ; Lkº be the NG-orbit of the line L1. Denote by l the number of lines from L

passing through each point from P ; note that there are exactly 4 points from P lying on each
line from L. One has l 6 3 since jP j D 10 and k > 5 by (ii). Using the equality 10l D 4k,
one finds that l D 2 and k D 5. Thus, the set L consists of 5 lines in general position. By (ii),
the group NG acts transitively on the set L. Hence there exists a NG-orbit � � P2 that consists
of 5 points in general position, so that there is a unique (and thus NG-invariant) smooth conic C
passing through the points of �. By Lemma 4.1, there exists a NG-orbit �0 � C of length at
most 2. A contradiction with (iii) completes the proof.

Now we are ready to prove Theorem 4.6. Let S be an irreducible normal surface in P4

of degree 6, let H be its general hyperplane section, and let NG be a finite subgroup in Aut.P5/
such that S is NG-invariant. As usual, we identify Aut.P5/ with PGL5.C/. Suppose that the
conditions (A)–(F) in Theorem 4.6 are satisfied.

Lemma 4.10. The curve H is not hyperelliptic.

Proof. The required assertion follows from (F) (see [24, Theorem 2.1]).

Let f W QS ! S be the minimal resolution of singularities of the surface S , and let QH be
the proper transform of the curve H on the surface QS . Then the action of the group NG lifts to
the surface QS , and QH � f �.H/, because H is a general hyperplane section of the surface S .
Note that �KS �H D �K QS � QH D 2 by the adjunction formula and (E).

Lemma 4.11. The linear systems j�K QS j and j�KS j are empty.

Proof. If j�KS j contains a NG-invariant fixed curve C , then C must be either a line or a
conic in P4, because H � C 6 �KS �H D 2. Hence, it follows from (G) that j�KS j does not
contain fixed curves if j�KS j is not empty.

Suppose that j�KS j ¤ ¿. Then every curve in j�KS j is either a union of two lines or a
conic in P4, because �KS �H D 2. Hence either j�KS j is free from base points or its base
locus must consist of at most 4 points. The latter case is impossible by (G). Hence, the linear
system j�KS j is free. In particular, the divisor �KS is Cartier, which implies that the surface
S has Du Val singularities by (C). Since�KS �H D 2, a generic curve in j�KS jmust be either
a disjoint union of two lines or a smooth conic, which is impossible by the adjunction formula.

Finally, j�K QS j D ¿ is implied by j�KS j D ¿.

Lemma 4.12. The equalities K2
QS
D �1 and h0.O QS .K QS C QH// D 3 hold, the linear

system jK QS C QH j is free from base points and induces a birational morphism � W QS ! P2.
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Proof. It follows from the Riemann–Roch theorem and the Nadel–Shokurov vanishing
theorem that

h0
�
O QS .K QS C

QH/
�
D �

�
O QS .K QS C

QH/
�
D �.O QS /C

QH � . QH �K QS /

2
D 3;

because �.O QS / D 1 by (B). One the other hand, there is an exact sequence of cohomology
groups

0 �! H 0
�
O QS .K QS /

�
�! H 0

�
O QS .K QS C

QH/
�
�! H 0

�
O QH .K QS /

�
;

which implies that h0.O QS .K QS C QH// D 3 and jK QS C QH j does not have base points contained
in the curve QH , because h0.O QS .K QS // D 0 by (B), h0.O QH .K QH // D 3 by (E), and jK QH j
is free from base points by (E). Thus, every base curve of the linear system jK QS C QH j is f -
exceptional. In particular, the divisorK QSC QH is nef, sinceK QS is f -nef, because the resolution
of singularities f is minimal. Thus, we see that

(4.13) K2
QS
C 2 D .K QS C

QH/2 > 0;

which gives K2
QS

> �2. On the other hand, it follows from the Riemann–Roch theorem that

h0
�
O QS .�K QS /

�
> �

�
O QS .�K QS /

�
D �.O QS /CK

2
QS
D 1CK2

QS
;

because h2.O QS .�K QS // D h0.O QS .2K QS // D 0 and �.O QS / D 1 by (B). Since j�K QS j is empty
by Lemma 4.11, we see that K2

QS
6 �1. Thus, either K2

QS
D �1 or K2

QS
D �2. Applying

Theorem 4.3, we see that

(4.14) rk
�
Pic. QS/

�
D 10 �K2

QS
6 12;

which implies jSing.S/j 6 11. By (G), we see that either S is smooth, or 5 6 jSing.S/j 6 11.
Moreover, it follows from (4.14), (C) and (G) that only one of the following cases is possible:

� The surface S is smooth and f is an isomorphism.

� 5 6 jSing.S/j 6 11, and f contracts exactly one smooth irreducible rational curve to
every singular point of the surface S .

� jSing.S/j D 5, and f contracts exactly two smooth irreducible rational curves that inter-
sect transversally in one point to every singular point of the surface S .

The linear system jK QS C QH j induces a rational map � W QS Ü P2. If jK QS C QH j is
free from base points, then it follows from (4.13) that either K2

QS
D �1 and � is a birational

morphism, or K2
QS
D �2 and jK QS C QH j is composed of a pencil. Moreover, if jK QS C QH j is

free from base points and is composed of a pencil, then �. QS/ must be a smooth conic and
�j QH W

QH ! �. QS/ must be a double cover, because .K QS C QH/ � QH D 4. By Lemma 4.10, we
know that QH is not hyperelliptic. Thus, the case when jK QS C QH j is free from base points and
K2
QS
D �2 is impossible. Therefore, to complete the proof it is enough to prove that jK QS C QH j

is free from base points.
Suppose that jK QS C QH j has a base point P 2 QS . Then it follows from [49, Theorem 1]

that there exists an effective Cartier divisor E on the surface QS such that P 2 Supp.E/ and
either QH �E D 0 and E2 D �1 or QH �E D 1 and E2 D 0.
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If QH � E D 0 and E2 D �1, then E is f -exceptional, which implies that S must be
singular at the point f .P /. If QH � E D 1 and E2 D 0 and S is smooth, then E is a line in
S � P4, which implies that �1 D K QS �E C 1 D .E C QH/ �E > 0 by the adjunction formula,
because K QS C QH is nef. Thus, in both cases the surface S must be singular.

Let r be the number of f -exceptional irreducible curves. Let us denote these curves
by E1; : : : ; Er . Put E D QL C

Pr
iD1 aiEi , where QL is an effective Cartier divisor on the

surface QS such that none of its components is f -exceptional, and ai is a non-negative integer.
Put ni D �E2i . Then ni > 2 for every i 2 ¹1; : : : ; rº, because f is minimal.

Suppose that QH � E D 0 and E2 D �1. Then E is f -exceptional, which simply means
that QL D 0. If f contracts exactly one smooth irreducible rational curve to every singular point
of the surface S , then

�2 D E2 D

� rX
iD1

aiEi

�2
D �

rX
iD1

a2i ni 6 �2
rX
iD1

a2i ;

which is a contradiction. Thus, we see that jSing.S/j D 5, and f contracts exactly two smooth
irreducible rational curves that intersect transversally in one point to every singular point of
the surface S . Without loss of generality, we may assume that f .E1/ D f .E2/ D f .P / and
f .P / ¤ f .Ei / for every i 62 ¹1; 2º. Then

�1 D E2 D �a21n1 C 2a1b2 � a
2
2n2

6 �2a21 C 2a1a2 � 2a
2
2 D �a

2
1 � a

2
2 � .a1 C a2/

2;

which immediately leads to a contradiction. Thus, we see that the case when QH � E D 0 and
E2 D �1 is impossible.6)

Therefore, we see that QH � E D 1 and E2 D 0. Put L D f . QL/. Then L is a line in
S � P4, because H � L D QH � E D 1. We see that QL is an irreducible smooth rational curve.
Then it follows from the adjunction formula that �1 � QL2 D .K QS C

QH/ � QL > 0, because we
already proved that the divisor K QS C QH is nef. Thus, we see that QL is a smooth rational curve
on the surface QS such that QL2 6 �1. If L \ Sing.S/ D ¿, then

0 D E2 D QL2 C

� rX
iD1

aiEi

�2
6 QL2;

which is impossible, since QL2 6 �1. Thus, we see that L \ Sing.S/ ¤ ¿.
If f contracts exactly one smooth irreducible rational curve to every singular point of the

surface S , then

0 D E2 6 QL2 �
rX
iD1

�
a2i ni � 2ai

�
6 QL2;

because either QL � Ei D 0 or QL � Ei D 1, since the curve L is smooth (it is a line in S � P4).
Keeping in mind that QL2 6 �1, we see that jSing.S/j D 5, and f contracts exactly two smooth
irreducible rational curves that intersect transversally in one point to every singular point of the
surface S . So, we have r D 10.

6) As was pointed out to us by Yuri Prokhorov, the contradiction can be obtained much easier in this case.
Namely, if E2 D �1 and E is f -exceptional, then .K QS C E/ � E > 0, since K QS is f -nef, which implies that S
has non-rational singularities by [4]. However, the surface S has rational singularities by (C).
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Let us denote five singular points of the surface S by O1, O2, O3, O4 and O5. Without
loss of generality, we may assume that f .Ei / D f .EiC1/ D Odi=2e for every i 2 ¹1; : : : ; 9º.
Since L is smooth and (G) holds, we may assume that

QL �E1 D QL �E3 D QL �E5 D QL �E7 D QL �E9 D 1

and QL does not intersect the curves E2, E4, E6, E8 and E10. Then

0 D E2 D QL2 �

10X
iD1

a2i ni C 2

4X
iD0

a2iC1 C 2

4X
iD0

a2iC1a2iC2;

which implies that QL2 > 0. Indeed, for every i 2 ¹1; 3; 5; 7; 9º, we have

2ai C 2aiaiC1 � a
2
i ni � a

2
iC1niC1 6 �.ai � aiC1/2 � .ai � 1/2 � .a2iC1 � 1/ 6 0;

because ai and aiC1 are non-negative integers. Since we already proved that QL2 6 �1, we see
that our assumption that jK QSC QH j has a base point was wrong, which completes the proof.

Note that the birational morphism � W QS ! P2 is NG-equivariant, because the line bundle
K QS C

QH is NG-invariant. Since K2
QS
D �1, the morphism � contracts 10 irreducible smooth

rational curves. Let us denote them by E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10.

Lemma 4.15. The curves E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 are pairwise
disjoint.

Proof. To complete the proof, we must show that E2i D �1 for every i 2 ¹1; : : : ; 10º.
Suppose that this is not true. Then there should be at least one curve among E1; : : : ; E10
whose self-intersection is not �1. On the other hand, there should be at least one curve among
E1; : : : ; E10 whose self-intersection is �1. We may assume that there is k 2 ¹2; : : : ; 9º such
that E2i D �1 for every i 6 k, and E2i ¤ �1 for every i > k. By the adjunction formula,
we have K QS � Ei D �2 � E

2
i > �1. Since .K QS C QH/ � Ei D 0, we see that E2i ¤ �1 if

and only if E2i D �2 and Ei is contracted by f to a singular point of the surface S . On the
other hand, if E2i D �1, then QH � Ei D 1, which implies that f .Ei / is a line in S � P4.
In particular, we see that E2i D �2 for every i > k. Since the set

S10
iD1Ei is NG-invariant, it

easily follows from (G) that k D 5. Moreover, it follows from (G) that NG acts transitively on
the set ¹E6; E7; E8; E9; E10º.

The birational morphism � contracts the curves E1; : : : ; E10 to 5 points in P2. Let us
denote these points by O1, O2, O3, O4 and O5. Without loss of generality, we may assume
that Ei and EiC5 are contracted by f to the point Oi for every i 2 ¹1; : : : ; 5º.

Let L be a line in P2, and let QL be its proper transform on the surface QS . Then it follows
from the adjunction formula that QH � QL D 3C QL2, which implies that QL2 > �3, and QL2 D �3
if and only if QL is contracted by f to a singular point of the surface S . In particular, we see that
there exists no line in P2 that passes through all points O1; : : : ; O5. Similarly, if L contains
four points among O1; : : : ; O5, then L must be NG-invariant and QL2 6 �3, which implies that
f . QL/ is a NG-invariant point in S , which is impossible by (G).

We see that no 4 among the points O1; : : : ; O5 lie on a line in P2. In particular, there
exists a unique reduced conic in P2 that passes through the points O1; : : : ; O5. Let us denote
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this conic by C , and let us denote by QC its proper transform on the surface QS . Then C and QC
are NG-invariant curves. If C is irreducible, then QC 2 6 �1 and it follows from the adjunction
formula that QH � QC D 4C QC 2 6 3, which implies that f . QC/ is contained in a proper NG-invariant
linear subspace in P4, which is impossible by (G). Thus, the conic C is reducible. Then at
least one component of the curve f . QC/ (not necessary the linear span of this component) is
contained in a proper NG-invariant linear subspace in P4, which is impossible by (G).

Put Pi D �.Ei /, 1 6 i 6 10, and put P D ¹P1; P2; : : : ; P10º. Let us check that P

satisfies all hypothesis of Lemma 4.8. It follows from Lemma 4.11 that there are no cubic
curves passing through all points of P .

Lemma 4.16. Let C be a NG-invariant curve in P2 that passes through at least r of the
points of P . Then 4 deg.C / � r > 4.

Proof. Suppose that 4 deg.C / � r 6 3. Let us show that this assumption leads to a
contradiction.

Let QC be the proper transform of the curve C on the surface QS . Then QC is NG-invariant,
which implies that the set f . QC/ is also NG-invariant.

Since deg.C / 6 3=4 C r=4 6 3=4 C 10=4 D 13=4, we see that degC 6 3. Hence
C consists of at most three irreducible components. In particular, it follows from (G) that no
components of the curve QC are contracted by f . Hence, we see that f . QC/ is a curve in S � P4

of degree

f �.H/ � QC D

�
��
�
OP2.4/

�
�

10X
iD1

Ei

�
� QC(4.17)

D 4 deg.C / �
10X
iD1

multPi
.C / 6 4 deg.C / � r 6 3;

which immediately implies that QC is reducible by (G), because any irreducible curve of degree
at most 3 is contained in a hyperplane in P4. Moreover, we see that f . QC/ is a union of three
different lines by (G), because any curve of degree at most 2 is contained in a hyperplane in
P4. Since degC 6 3, we see that C is a union of three lines. Then it follows from (4.17) that

3 D f �.H/ � QC D 12 �

10X
iD1

multPi
.C / 6 12 � r 6 3;

which implies that r D 9. Thus, the curve C passes through exactly 9 points in P , which
implies that (at least) one curve among f .Ei /, 1 6 i 6 10, is NG-invariant, which is impossible
by (G), because the curves f .Ei / are lines in S � P4.

It follows from (G) that there are no NG-orbits of length at most 4 contained in S . Thus,
there are no NG-orbits of length at most 4 contained in QS , which implies that there are no NG-
orbits of length at most 4 contained in P2 n P . Similarly, it follows from (G) that there are no
NG-orbits of length at most 2 on P , because the curves f .Ei / are lines in S � P4. Therefore,

we see that P satisfies all hypothesis of Lemma 4.8. Thus, the divisor �K QS is not big by
Lemma 4.8, which completes the proof of Theorem 4.6.
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5. Six-dimensional singularities

The main purpose of this section is to prove Theorem 1.17. We start with an easy obser-
vation.

Lemma 5.1. Let G be a transitive finite subgroup in GLnC1.C/ such that NG Š S4.
Then n 6 3.

Proof. Since the Schur multiplier of the group NG Š S4 is Z2, we may assume that
either G Š S4 or G Š 2:S4. Therefore, there is an irreducible .n C 1/-dimensional linear
representation V Š CnC1 of either the group 2:S4, or the group S4. Since the group S4 does
not have irreducible representations of dimension greater than 4, we may assume thatG Š 2:S4
and the center of the group 2:S4 acts non-trivially on V . Then .nC 1/2 6 j2:S4j � jS4j D 24,
which implies that n 6 3.

Now we are ready to prove Theorem 1.17. Let G be a finite subgroup in GL6.C/ that
does not contain reflections, and let �WGL6.C/ ! PGL6.C/ be the natural projection. Put
NG D �.G/. Let us identify PGL6.C/ with Aut.P5/. Suppose that G is transitive, the group G

does not have semi-invariants of degree at most 5, there is no irreducible NG-invariant smooth
rational cubic scroll in P5, and there is no irreducible NG-invariant complete intersection of two
quadric hypersurfaces in P5.

Theorem 5.2. If C6=G is not weakly-exceptional, then there exists an irreducible NG-
invariant, normal, projectively normal, non-degenerate Fano type threefold X � P5 of degree
6 and sectional genus 3 such that h0.OP5.2/˝ IX / D 0 and h0.OP5.3/˝ IX / D 4.

In the remaining part of this section we will prove Theorem 5.2, which implies Theo-
rem 1.17. Suppose that C6=G is not weakly-exceptional. By Theorem 1.12, there is an irre-
ducible NG-invariant, irreducible, normal, projectively normal Fano type subvariety X � P5

such that

deg
�
X
�

6

 
5

dim.X/

!
;

and X has more additional properties that we are about to describe. Let IX be the ideal sheaf
of the subvariety X � P5. Then hi .OP5.m/˝ IX / D 0 for every i > 1 and for every m > 0.
Let H be a general hyperplane section of the subvariety X � P5. If dim.X/ > 2, then H
is irreducible, projectively normal and hi .OH ˝ OP5.m// D 0 for every i > 1 and m > 1.
Since G is transitive and X is NG-invariant, the subvariety X is not contained in a hyperplane in
P5. In particular, we see that X is not a point. SinceG does not have semi-invariants of degree
at most 5, we see that X is not a fourfold.

Lemma 5.3. The linear system jmH j does not have NG-invariant divisors for every pos-
itive integer m 6 5.

Proof. Since X is projectively normal, the sequence

(5.4) 0 �! H 0
�
OP5.m/˝ IX

�
�! H 0

�
OP5.m/

�
�! H 0

�
OX .mH/

�
�! 0
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is exact. We can consider (5.4) as an exact sequence of linear G-representations. If jmH j
contains a NG-invariant divisor, then G has a semi-invariant of degree m. But G does not have
semi-invariants of degree at most 5 by assumption.

Unfortunately, we can not claim now that X has Kawamata log terminal singularities,
since�KX is not necessary a Cartier divisor. Nevertheless, we know thatX has at most rational
singularities (see [32, Theorem 1.3.6]). If X is a surface, then X has quotient singularities.

Lemma 5.5. The subvariety X is not a curve.

Proof. If X is a curve, then X is a smooth rational curve of degree 5, because
deg.X/ 6 5 and X is not contained in a hyperplane in P5. Then NG acts faithfully on X .
If NG 6Š S4, then there is a NG-invariant effective divisor in Pic.P1/ of degree 20, which is im-
possible by Lemma 5.3. Since the group G does not have semi-invariants of degree at most 5,
we see that NG Š S4, which contradicts Lemma 5.1, because G is transitive.

Lemma 5.6. If h0.OP5.2/˝ IX / ¤ 0, then h0.OP5.2/˝ IX / > 3.

Proof. Since the group G does not have semi-invariants of degree at most 5, we see that
h0.OP5.2/˝ IX / ¤ 1. Thus, we must prove that h0.OP5.2/˝ IX / ¤ 2.

Suppose that h0.OP5.2/˝ IX / D 2. Then there exists a NG-invariant pencil of quadrics
in P5 whose base locus contains X . Let us denote this pencil by P . Since the group G does
not have semi-invariants of degree at most 5 and G is transitive, the base locus of the pencil
P is an irreducible threefold that is a NG-invariant complete intersection of two quadrics in P ,
which is impossible by assumption.

Since X is projectively normal, there is an exact sequence of cohomology groups

(5.7) 0 �! H 0
�
OP5.n/˝ IX

�
�! H 0

�
OP5.n/

�
�! H 0

�
OX .nH/

�
�! 0

for every n > 1. Let f W QX ! X be the resolution of singularities of the variety X . If X is
a surface, then we assume that f is a minimal resolution of singularities. Put QH D f �.H/.
Then QH is nef and big. Hence, it follows from the Nadel–Shokurov vanishing theorem that

(5.8) �
�
O QX .K QX C

QH/
�
D h0

�
O QX .K QX C

QH/
�
:

Lemma 5.9. If X is a surface, then deg.X/ ¤ 4.

Proof. Suppose that X is a surface and deg.X/ D 4. Let us use the usual notation
for the rational normal scrolls (see, e.g., [23, Example 8.2.6]). Since X is non-degenerate,
it follows from [20] that X is either a cone over a rational normal curve in P4, or a rational
normal scroll X1;3, or a rational normal scroll X2;2, or a Veronese surface. The first two cases
are impossible since otherwise there would exist a NG-invariant point or a NG-invariant line in
P5, respectively, which would contradict the transitivity of G. If X is a rational normal scroll
X2;2, then the family of linear spans of the one-parameter family of conics on X sweeps out
an irreducible NG-invariant smooth rational cubic scroll, which is impossible, since we assume
that there is no such threefolds in P5. Thus, we see that X is a Veronese surface. Then it
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follows from [23, Exercise 8.8] that the secant variety of the surface X is a cubic hypersurface
in P5, which must be NG-invariant, because X is NG-invariant. The latter is impossible, since we
assume that the group G does not have semi-invariants of degree at most 5.

Lemma 5.10. If X is a surface and deg.X/ D 5, then �KX �H ¤ 5.

Proof. Suppose that X is a surface such that deg.X/ D 5 and �KX �H D 5. It follows
from (5.8) and the Riemann–Roch theorem that

h0
�
O QX .K QX C

QH/
�
D 1C

.K QX C
QH/ � QH

2
D 1;

which means that there is a unique effective divisor D in the linear system jK QX C QH j. More-
over, sinceD � QH D 0, the support of the divisorD is contained in the exceptional locus of the
morphism f . On the other hand, for any effective divisor E supported in the exceptional locus
of the morphism f , one hasK QX �E > 0 andE � QH D 0, because we assume that f is a minimal
resolution of singularities. Therefore, we must have D � 0. Since KX CH � f�.K QX C QH/,
we see that K QX � � QH � f

�.KX /, which implies that X is a del Pezzo surface with K2X D 5
that has at most Du Val singularities. Then X cannot have more than 4 singular points, which
implies thatX is smooth, because the groupG is transitive. We see thatX is an anticanonically
embedded smooth del Pezzo surface of degree 5. Thus the action of NG lifts isomorphically to
the vector spaceH 0.OX .H// D H

0.OX .�KX // Š C6. Moreover, it follows from the transi-
tivity of the group G that NG acts faithfully on the surface X . Thus, the group NG is a subgroup
of the symmetric group S5 acting on C6, since Aut.X/ Š S5. The sum of all .�1/-curves in
X is a NG-invariant divisor that is linearly equivalent to �2KX (cf. [8, Lemma 5.7]), which is
impossible by Lemma 5.3.

Lemma 5.11. If X is a surface and deg.X/ D 6, then �KX �H ¤ 4.

Proof. Suppose that X is a surface such that deg.X/ D 6 and �KX �H D 4. It follows
from (5.8) and the Riemann–Roch theorem that

h0
�
O QX .K QX C

QH/
�
D 1C

.K QX C
QH/ � QH

2
D 2:

Let QC1 and QC2 be general curves in jK QX C QH j. Put C1 D f . QC1/ and C2 D f . QC2/. Then
every curve in the pencil jKXCH j is a curve of degree at most 2, sinceH �C1 D H �C2 D 2. In
particular, either the base locus of the linear system jKX CH j contains a NG-invariant curve of
degree at most 2, or the intersection C1\C2 consists of at most 4 points. Since G is transitive,
we must have C1 \ C2 D ¿, so that jKX C H j is base point free. In particular, the divisor
KX is Cartier, which implies that X has at most Du Val singularities. Furthermore, one has
.KX CH/

2 D 0, which implies that K2X D 2, and the pencil jKX CH j induces a morphism
# WX ! P1 whose general fiber is a smooth rational curve. Then the morphism # induces a
homomorphism � W NG ! Aut.P1/.

Note that h2.OX .�KX // D h0.OX .2KX // by the Serre duality, and h0.OX .2KX // D 0
since H �KX < 0. Then h0.OX .�KX // > 1CK2X D 3 by the Riemann–Roch theorem. Let
us show that the base locus of the linear system j�KX j does not contain curves.
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Suppose that the base locus of the linear system j�KX j contains curves. Then the base
locus of the linear system j�KX j contains a NG-invariant curve. Let us denote it by E. Then
deg.E/ 6 3, because deg.E/ 6 �KX �H D 4 and h0.OX .�KX // > 1. Since G is transitive,
the only possibility is that E is a disjoint union of three lines in P5. Let us denote these lines
by L1, L2, and L3. Then G acts transitively on the set ¹L1; L2; L3º. Moreover, there is a line
L in X � P5 such that �KX � L1CL2CL3CL, and jLj is NG-invariant and free from base
curves. Applying the adjunction formula to L, we see that �2 D .KX C L/ � L D �3L1 � L,
which is a contradiction. Hence, the base locus of the linear system j�KX j does not contain
curves.

Since the base locus of the linear system j�KX j does not contain curves, the divisor�KX
is nef. Furthermore, the divisor�KX is big since .�KX /2 D 2, which implies thatX is a weak
del Pezzo surface of degree 2. Let � WX ! NX be the blow-down of all curves that has trivial
intersection with �KX . Then NX is a possibly singular del Pezzo surface of degree 2, i.e. �K NX
is ample andK2

NX
D 2. Moreover, the action of the group NG on the surface X induces a faithful

action of the group NG on the surface NX .
Let �W NX ! P2 be the double cover that is given by the linear system j�K NX j, letR be the

ramification divisor in P2 of the double cover �, let NR be the curve in NX such that �. NR/ D R,
and let � be the involution in Aut. NX/ that is induced by �. Then � induces an exact sequence
of groups

1 �! Z2
˛
�! Aut. NX/

ˇ
�! � �! 1;

where im.˛/ D h�i, � is a subgroup in Aut.P2/ such that R is �-invariant, and ˇ is induced
by the double cover �. Since NX is a quartic hypersurface in P .1; 1; 1; 2/ and � is induced by
the natural projection P .1; 1; 1; 2/! P2, this sequence splits, so we have Aut. NX/ Š � � Z2.
Note that � is known as the Geiser involution of the surface NX .

Suppose that X is singular. Then it follows from Theorem 4.3 that

(5.12) rk Pic.X/CK2X C
X
P2X

�.P / D 10;

where �.P / is a Milnor number of a point P 2 X . Since G is transitive, we see that
jSing.X/j > 6, and all singular points of the surface X are ordinary double points. By (5.12)
one has jSing.X/j 6 7. If jSing.X/j D 7, then rk Pic.X/ D 1, which implies that X Š NX

is a del Pezzo surface of degree 2 that has 7 singular points, which easily leads to a contradic-
tion. But G acts transitively on the set of singular points of the surface X (indeed, otherwise
NG would have an orbit of length at most 3, which is impossible since G is transitive). Thus,

we see that jSing.X/j D 6, which implies that either �KX is already ample, or there exists an
irreducible curve Z � X such that �KX � Z D 0. In the latter case Sing.X/ \ C ¤ ¿, since
NX can not have more than 6 singular points. Thus, if there exists an irreducible curve Z � X

such that �KX � Z D 0, then Z Š P1 and Z contains all singular points of the surface X .
Applying the adjunction formula to the proper transform of the curve Z on the surface QX , we
see that Z2 D 1, which is impossible, since Z2 < 0, because Z is contracted by � . Thus,
we see that �KX is ample, so that X D NX is a del Pezzo surface of degree 2 with 6 singular
points. In fact, such del Pezzo surface is unique, since R must be a union of 4 lines in general
position. Since rk Pic.X/ D 2 by (5.12), every fiber of the morphism # is an irreducible ratio-
nal curve. Since X has only ordinary double points, every fiber of # contains either none or
two singular points of the surface X . Thus, six singular points of the surface X must split in
pairs, which implies that there is a �. NG/-orbit in P1 that contains at most 3 points. Then there
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is a �. NG/-orbit in P1 that contains at most 2 points. In particular, there exist two fibres F1 and
F2 of the morphism # such that the divisor F1 C F2 is NG-invariant. Hence F1 C F2 C NR is a
NG-invariant divisor as well, but F1 C F2 C NR � 2H , which is impossible by Lemma 5.3. The

obtained contradiction shows that the surface X can not be singular.
Therefore, the surface X is smooth. Then every fiber of the morphism # is reduced,

and # has exactly 6 reducible fibers, which consist of two smooth rational curves intersecting
transversally in one point. In particular, we see that there exists a NG-orbit inX that consists of 6
points, since there are no NG-orbits in X that consist of at most 5 points, becauseG is transitive.
Then there exists a �. NG/-orbit in P1 that consists of 6 points, which implies that �. NG/ 6Š A5.
In particular, we see that NG 6Š A5. We must consider two cases: X Š NX and X 6Š NX .

Suppose that X Š NX and �. NG/ 6Š S4. Then there exists a �. NG/-orbit in P1 that contains
either 1 or 2 or 4 points, because we already proved that �. NG/ 6Š A5. Thus, there are 4 (not
necessary distinct) fibers NF1, NF2, NF3, NF4 of the morphism # such that the divisor

P4
iD1
NFi is

NG-invariant. Then 2 NRC
P4
iD1
NFi � 4H , and the divisor 2 NRC

P4
iD1
NFi is NG-invariant, which

is impossible by Lemma 5.3. The obtained contradiction shows that �. NG/ Š S4 if X Š NX .
Suppose that X Š NX . Then �. NG/ Š S4. Moreover, it follows from Lemma 5.1 that

NG 6Š S4, which implies that j NGj > 48. Since X=h�i Š P2, we see that the h�i-invariant
subgroup of the group Pic.X/ is Z, which implies that � 62 NG, since the pencil jKX C H j
is NG-invariant. Thus, we see that NG Š ˇ. NG/. Browsing through the list of the possible
automorphism groups of smooth del Pezzo surfaces of degree 2 (see [18, Table 6]) and using
the fact that j NGj is divisible by 24 and j NGj > 48, we see that � is a subgroup of the following
groups: PSL2.F7/, .Z4�Z4/ÌS3, or 4:A4. On the other hand, the only subgroup of the group
PSL2.F7/ that admits a surjective homomorphism to S4 is isomorphic to S4 (see [14]), which
implies that either � Š .Z4�Z4/ÌS3 or � Š 4:A4. If � Š 4:A4, then the center of the group
NG must be contained in the kernel of the homomorphism  , because the group S4 has trivial

center. Thus, if � Š 4:A4, then the monomorphism ˇ composed with the natural epimorphism
4:A4 ! A4 gives a monomorphism NG ! A4, which is impossible, since j NGj > 48. Thus,
we see that � Š .Z4 � Z4/ Ì S3. Then it follows from the existence of the epimorphism
 W NG ! S4, that either NG Š ˇ. NG/ D � Š .Z4 � Z4/ Ì S3, or � Š S4 (cf. the proof of
[18, Theorem 6.17]). Since we already know that � 6Š S4, then NG Š � . It follows from the
proof of [18, Theorem 6.17] that the NG-invariant subgroup of the Picard group is Z, which is a
contradiction, since jKX CH j is NG-invariant. The obtained contradiction shows that X 6Š NX .

Since X 6Š NX , we see that the divisor �KX is not ample. Let E1; : : : ; Er be all irre-
ducible curves that are contracted by � , letC1 andC2 be general curves in the pencil jKXCH j.
Then C1 and C2 are smooth irreducible curves, and Ri � Ej > 1 for all i and j , since none of
the curves E1; : : : ; Er can not be a component of any curve in the pencil jKX CH j. Since

�K NX � �.C1/ D �KX � C1 D �K NX � �.C2/ D �KX � C2 D 2;

we see that either the curves �.C1/ and �.C2/ are smooth rational curves such that � ı �.C1/
and � ı �.C2/ are conics in P2, or � ı �.C1/ and � ı �.C2/ are lines in P2.

Let us suppose that � ı �.C1/ and � ı �.C2/ are lines in P2. Then the intersection
� ı �.C1/ \ � ı �.C2/ consists of a single point in R, which implies that �.C1/ \ �.C2/
also consists of a single point that must be the unique singular point of the surface NX . So, we
see that �.E1/ D � � � D �.Er/. If this point is not an ordinary double point of the surface
NX , then X � P5 contains a NG-orbit of length at most 3, which is impossible, because G is

transitive. Hence, we see that r D 1 and NX has one singular point, which is an ordinary double
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point. In particular, the curve E1 is NG-invariant. On the other hand, the curves �.C1/ and
�.C2/ are curves in the linear system j�K NX j that are singular at the point �.E1/. Moreover,
the multiplicity of the curves �.C1/ and �.C2/ at the point �.E1/ must equal 2, which implies
that E1 � C1 D E1 � C2 D 2. Then

H �E1 D C1 �E1 �KX �E1 D C2 �E1 �KX �E1 D 2;

which is impossible, since G is transitive. The obtained contradiction shows that the curves
� ı �.C1/ and � ı �.C2/ are not lines in P2.

We see that � ı �.C1/ and � ı �.C2/ are conics in P2. Then the curves �.C1/ and �.C2/
are smooth, which implies that Ci �Ej D 1 for every i and j . Then

H �Ei D Cj �Ei �KX �Ei D 1

for every i and j , which implies that r > 3, since the group G is transitive. If NX has a NG-
invariant singular point that is not an ordinary double point of the surface NX , then X contains a
NG-orbit of length at most 3, which is impossible, becauseG is transitive. On the other hand, we

know that rk Pic. NX/Cr D 8 by Theorem 4.3, which implies that 3 6 r 6 7. Since the singular
points of the surface NX are Du Val singular points, we see that either NX has only ordinary
double points, or the set Sing. NX/ consists of 2 singular points of type A3, or the set Sing. NX/
consists of 3 singular points of type A2. However, if the set Sing. NX/ consists of 2 singular
points of type A3, then X contains a NG-orbit of length at most 4, which is impossible, because
G is transitive. Similarly, if the set Sing. NX/ consists of 3 singular points of type A2, then X
contains a NG-orbit of length at most 3, which is impossible, because G is transitive. Therefore,
we see that NX has only ordinary double points, which implies that the curves E1; : : : ; Er are
disjoint and all points �ı�.E1/; : : : ; �ı�.Er/ are different. Note that �ı�.E1/; : : : ; �ı�.Er/
are all singular points of the curveR, and they are ordinary double points of the curveR. Since®

� ı �.E1/; : : : ; � ı �.Er/
¯
� � ı �.C1/ \ � ı �.C2/;

we see that r 6 4, because the intersection � ı �.C1/ \ � ı �.C2/ consists of at most four
points, and the curves � ı �.C1/ and � ı �.C2/ are conics in P2.

Suppose that there is a point P 2 P2 that is fixed by ˇ. NG/. If P 62 Sing.R/, then X has
a NG-orbit of length at most 2, which is impossible, because G is transitive. If P D � ı �.Ei /

for some i 2 ¹1; : : : ; rº, then the intersection of the curve Ei and a proper transform of the
curve NR on the surface X is a NG-invariant set of two points, which is impossible, since G is
transitive. We see that there is no ˇ. NG/-invariant point in P2.

Suppose that r D 3. Then NG acts transitively on jSing.R/j, since there are no ˇ. NG/-fixed
points in P2. One has �.C1/ � �.C1/ D �.C2/ � �.C2/ D 3=2, which implies that the pencil
jKX CH j is not �-invariant. In particular, we see that � 62 NG, which implies that NG Š ˇ. NG/.
Note that either R is a union of a line and a nonsingular cubic curve, or R is an irreducible
plane quartic curve with three ordinary double points. In the former case each component of
the curve R must be ˇ. NG/-invariant, which implies that there exists a point in P2 that is fixed
by ˇ. NG/, which is impossible. Thus, we see that R is an irreducible plane quartic curve with
three ordinary double points. In particular, the group ˇ. NG/ acts faithfully on the curve R. Let
�W QR ! R be the normalization of the curve R. Then the faithful action of the group ˇ. NG/ on
the curve R induces a faithful action of the group ˇ. NG/ on the curve QR. On the other hand,
the curve QR is rational, which implies that either ˇ. NG/ Š S4, or QR contains a ˇ. NG/-orbit of
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length at most 2. The former case is impossible by Lemma 5.1, since NG Š ˇ. NG/. Hence,
there is a ˇ. NG/-orbit � � QR that consists of at most 2 points. Then �.�/ 6� Sing.R/, since
otherwise one of the points of Sing.R/ would be fixed by ˇ. NG/, which is impossible. Hence,
the surface X contains a NG-orbit that consists of at most 2 points, which is impossible, since G
is transitive.

Thus, we see that r D 4. Then either R is a union of a line and an irreducible singu-
lar cubic curve, or R is a union of two irreducible conics that intersect each other transver-
sally. In the former case there exists a ˇ. NG/-fixed point in P2, which is impossible. Thus,
we see that R is a union of two irreducible conics. Let us call them T1 and T2. Let QT1
and QT2 be irreducible curves in X such that � ı �. QT1/ D T1 and � ı �. QT2/ D T2. Then
QT1 � C1 D QT1 � C2 D QT2 � C1 D QT2 � C2 D 0, which implies that the curves QT1 and QT2

are contained in the pencil jKX C H j. Note that in this case the pencil jKX C H j is h�i-
invariant, so we do not know whether � is contained in NG or not. On the other hand, we have
2H � 2 QT1C 2 QT2C

P4
iD1Ei , and the divisor 2 QT1C 2 QT2C

P4
iD1Ei is NG-invariant, which is

impossible by Lemma 5.3.

Lemma 5.13. If X is a surface and deg.X/ D 7, then �KX �H ¤ 3.

Proof. Suppose that X is a surface such that deg.X/ D 7 and �KX �H D 3. Then it
follows from (5.8) and the Riemann–Roch theorem that h0.OX .KX CH// > 3. One the other
hand, there is an exact sequence of cohomology groups

0 �! H 0
�
OX .KX /

�
�! H 0

�
OX .KX CH/

�
�! H 0

�
OH .KH /

�
Š C3;

which implies that h0.OX .KX C H// 6 3, since h0.OX .KX // D 0, because X is of Fano
type. Thus, we see that h0.OX .KX CH// D 3.

Suppose that there is a NG-invariant curve contained in the base locus of the linear system
jKX CH j. Since .KX CH/ �H D 4 and dimjKX CH j > 1, this curve must be a disjoint
union of three lines, because G is transitive. Let us denote these lines by L1, L2, and L3.
Then NG acts transitively on these lines. One has KX C H � L1 C L2 C L3 C L, where L
is a line on X such that jLj is free from fixed components. In particular, the linear system jLj
has at most one base point since L is a line, which implies that jLj is base point free by the
transitivity of NG, because the base locus of the linear system jLj must be NG-invariant. Hence,
we may assume that L is contained in the smooth locus of the surface X , so that the adjunction
formula implies �2 D .KX CL/ �L > �H �L D �1, which is a contradiction. Therefore, the
base locus of the linear system jKX CH j consists of at most finitely many points.

Suppose that jKX C H j is not composed of a pencil. Let C1 and C2 be two general
curves in jKX CH j, let ƒ1 and ƒ2 be the linear spans of the curves C1 and C2 in P5. Then
the curves C1 and C2 are irreducible by the Bertini theorem, which implies that ƒ1 and ƒ2
are proper linear subspaces of P5. Note that ƒ1 ¤ ƒ2, since G is transitive. Hence, the set
ƒ1\C2 consists of at most deg.C2/ D 4 points. Moreover, the base locus of the linear system
jKX CH j is contained in ƒ1 \ C2, which immediately implies that jKX CH j is base point
free, since G is transitive.

If jKX CH j is composed of some pencil P , then arguing as in the case when jKX CH j
is not composed of a pencil, we easily see that the base locus of the pencil P consists of at
most 4 points, which implies that jKX CH j is base point free, since the group G is transitive
and P must be NG-invariant. Thus, we can conclude that the linear system jKX C H j is base
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point free. In particular, the divisor KX is Cartier, which implies that X has at most Du Val
singularities, since we know already that X has at most quotient singularities.

Note that .7KXC3H/ �H D 0. By the Hodge index theorem one has .7KXC3H/2 6 0,
which implies that K2X 6 1. Now we are going to show that h0.OX .�KX // D 0.

Suppose that h0.OX .�KX // > 2. Since G is transitive, j�KX j is NG-invariant and
�KX � H D 3, we see that the linear system j�KX j does not have fixed curves. In partic-
ular, the divisor �KX is nef. Recall that �KX is big, since X is of Fano type. Therefore,
the surface X must be a weak del Pezzo surface. In particular, we have K2X > 1, which im-
plies that K2X D 1, because we already proved that K2X 6 1. It is well known that j�KX j
has a unique base point, which is impossible, since G is transitive. Therefore, we see that
h0.OX .�KX // 6 1.

Suppose that h0.OX .�KX // D 1. Since �KX � H D 3 and G is transitive, the only
possibility is that the unique effective divisor D in j�KX j must be a disjoint union of three
lines, because G is transitive. Since �KX is a Cartier divisor and D is a smooth curve, we
see that D is contained in the smooth locus of the surface X . This immediately leads to a
contradiction by the adjunction formula. Therefore, one has h0.OX .�KX // ¤ 1.

We see that h0.OX .�KX // D 0. Note that h2.OX .�KX // D h0.OX .2KX // by the
Serre duality, and h0.OX .2KX // D 0 since H � KX < 0. Thus, the Riemann–Roch theorem
implies that h0.OX .�KX // > 1CK2X , so that K2X 6 �1. On the other hand, since the linear
system jKX C H j is base point free, one has 0 6 .KX C H/

2 D K2X C 1, which implies
that K2X D �1 and .KX CH/2 D 0. Then the linear system jK CH j gives us a morphism
 WX ! P2 such that  .X/ is a curve. So the linear system jK C H j is composed of a
pencil. Note that  .X/ can not be a line. In fact, one can easily see that  .X/ must be a
smooth conic, because .KX CH/ �H D 4. Indeed, the degree of the curve  .X/ is a number
of irreducible components of a general element in jK C H j. Since .KX C H/ � H D 4,
we see that  .X/ is either an irreducible conic or an irreducible quartic, since all irreducible
components of a general element in jK CH j must have the same degree in P5. If  .X/ is an
irreducible quartic, then a general curve in jKX C H j is a disjoint union of four lines in P5,
which immediately leads to a contradiction with the adjunction formula. So, we see that  .X/
must be a smooth conic.

Let C be a fiber of the morphism  over a general point in  .X/. Then C is an irre-
ducible conic in P2, and KX C H � 2C . The pencil jC j is base point free and it induces a
morphism # WX ! P1, whose general fiber is an irreducible conic in P5. Thus, we obtain the
following diagram where v2WP1 ! P2 is the second Veronese embedding:

X

#

~~

 

""
P1

v2

Š //  .X/ �
� // P2:

Let us prove that X is smooth. Suppose that X is singular. By Theorem 4.3, we have

(5.14) rk Pic.X/CK2X C
X
P2X

�.P / D 10;

where �.P / is the Milnor number of a point P 2 X . Since G is transitive, it follows from
(5.14) that jSing.X/j > 6 and all singular points of the surface X are ordinary double points.
Let r be the number of reducible fibers of the morphism # . Since H � C D 2, every reducible
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fiber of the morphism # consists of two different lines in P5 intersecting transversally in one
point. In particular, there is a NG-invariant subset in X that consists of exactly r points, which
implies that either r D 0 or r > 6. Note that rk Pic.X/ D r C 2. Therefore r D 0, since other-
wise it would follow from (5.14) that 10 D r C jSing.X/j C 1 > 13, which is a contradiction.
Since r D 0, it follows from (5.14) that jSing.X/j D 9. Since every fiber of the morphism # is
an irreducible rational curve and X has only ordinary double points, every fiber of # contains
either none or two singular points of the surface X . Thus, nine singular points of the surface
X must split in pairs, which is impossible. Therefore, the surface X is smooth.

Note that h2.OX .C � 2KX // D h0.OX .3KX � C// by the Serre duality. Thus the
Riemann–Roch theorem implies that

h0
�
OX .C � 2KX /

�
> 1C

.C � 2KX / � .C � 3KX /

2
D 3;

because h0.OX .3KX � C// D 0, since H � .3KX � C/ D �11 < 0. Now we are going to
prove that the linear system jC � 2KX j has no base curves.

Suppose that the linear system jC � 2KX j contains a fixed curve. Then there exists a
non-zero effective divisor Z on the surface X such that the linear system jC � 2KX � Zj
has no base curves, i.e. Z is a union of one-dimensional components of the base locus of the
linear system jC � 2KX j taken with appropriate multiplicities. Then Z must be NG-invariant,
which implies that H � Z > 3, since the group G is transitive. On the other hand, we have
H �Z < H � .C � 2KX / D 8, since h0.OX .C � 2KX // > 1. Let M be a general curve in the
linear system jC � 2KX �Zj. Then 1 6 M �H 6 5. Note that KX �M 6 �1, because jM j is
free from base curves and �KX is big, since X is of Fano type. Thus, we have

(5.15) 0 6 2C �M D .KX CH/ �M 6 H �M � 1:

Suppose that H �M 6 2. Then C �M D 0 by (5.15), which implies that M is contained
in the fibers of the morphism # . IfH �M D 1, this means thatM is a component of a reducible
fiber of the morphism # , which is impossible since M 2 > 0. If H �M D 2, then M cannot
consist of two components of different reducible fibers of the morphism # , because M 2 > 0.
Thus, if H �M D 2, then M 2 jC j, since H �M D H � C , which is impossible, since

h0
�
OX .C � 2KX /

�
> 3 > 2 D h0

�
OX .C /

�
:

Therefore, we see that H �M > 3.
Suppose that H �M D 3. Arguing as above, we see that M is not contained in the fibers

of the morphism # . Thus, we must have C �M > 1, so that C �M D 1 by (5.15). In particular,
the linear system jM j is not composed of a pencil unless jM j is a pencil itself, since otherwise
one would have C �M > 2. In particular, the curve M is irreducible by the Bertini theorem.
Therefore, the curve M is a section of the morphism # , which implies that M is smooth and
rational. Applying the adjunction formula to the curve M , one obtains

�2 D .KX CM/ �M D �1CM 2 > �1;

which is a contradiction. Thus, we see that H �M ¤ 3.
Suppose that H �M D 4 and C �M > 1. Then C �M D 1 by (5.15). In particular, the

linear system jM j is not composed of a pencil unless jM j is a pencil itself, since otherwise one
would have C �M > 2. Hence, the curve M is irreducible by the Bertini theorem. Therefore,
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the curve M is a section of the morphism # , which implies that M is smooth and rational.
Applying the adjunction formula to the curveM , we see that�2 D .KXCM/�M D �2CM 2,
which implies that M 2 D 0. Hence, the linear system jM j is composed of a pencil, which
implies that jM j is a pencil, since M is irreducible. The latter is impossible since we already
proved that h0.OX .M// > 3. Thus, we see that if H �M D 4, then C �M D 0.

Suppose that H �M D 4 and C �M D 0. Since jM j is free from base curves, we must
have M � 2C , because H �M D 2H � C . Note that H � Z D 4. Thus, since the group G
is transitive, the divisor Z is either a union of two different conics in P5 or a union of four
different lines in P5. Let us consider these cases separately.

Suppose thatZ is a union of two different conics in P5. Let us denote these conics byR1
and R2. Let ƒ1 and ƒ2 be linear spans in P5 of the conics R1 and R2. Then ƒ1 \ƒ2 D ¿,
because G is transitive and Z is NG-invariant. On the other hand, we have C � Z D 4, which
implies that both intersections C \R1 and C \R2 consist of two points, because the conic C
is a fiber of the morphism  over a general point in  .X/. Thus, the linear span in P5 of the
conic C intersects both linear subspaces ƒ1 and ƒ2 by lines, which is impossible since ƒ1
and ƒ2 are disjoint. Thus, we see that Z can not be a union of two different conics in P5.

We see that Z is a union of four different lines. Let us denote these lines by L1, L2, L3,
and L4. Then NG acts transitively on these lines, because G is transitive. It follows from the
Riemann–Roch theorem that

h0
�
OX .H � C/

�
> 1C

.H � C/ � .H � C �KX /

2
D 3;

since the equality h2.OX .H � C// D h0.OX .KX �H C C// holds by the Serre duality, and
h0.OX .KX �H CC// D 0, becauseH � .KX �H CC/ D �8 < 0. By Theorem 4.3, we have
�.X/ D 11, which implies that the morphism # has 9 reducible fibers. Thus, it follows from
Lemma 4.1 that there exist two curves C1 and C2 in the pencil jC j such that the divisor C1CC2
is NG-invariant. Since G is transitive, we see that C1 [ C2 is not contained in a hyperplane in
P5. In particular, one has h0.OX .H �2C // D 0. On the other hand, there is an exact sequence
of cohomology groups

0 �! H 0
�
OX .H � 2C /

�
�! H 0

�
OX .H � C/

�
�! H 0

�
OC .H � C/

�
;

which implies that h0.OX .H �C// D 3, since h0.OX .H � 2C // D 0, h0.OC .H �C// D 3
and h0.OX .H�C// > 3. On the other hand, one can easily see that the linear system jH�C j is
base point free, since the linear spans in P5 of the conics C1 and C2 are disjoint. Furthermore,
the linear system jH�C j is not composed of a pencil since .H�C/2 D 3 > 0. Let � WX ! P2

be a morphism that is given by the linear system jH � C j. Then � is NG-equivariant, surjec-
tive and generically three-to-one. Note that � can be considered as a projection from a two-
dimensional linear subspace in P5. Since Li � .H �C/ D 0 for every i 2 ¹1; 2; 3; 4º, the lines
L1, L2, L3, andL4 are contracted by � . Moreover, the points �.L1/, �.L2/, �.L3/, and �.L4/
are different and are not contained in a line in P2, becauseL1[L2[L3[L4 is not contained in
a hyperplane in P5, since G is transitive. Let �W NG ! Aut.P2/ be the homomorphism induced
by the morphism � . Then �. NG/ acts faithfully on the set ¹�.L1/; �.L2/; �.L3/; �.L4/º since
every element in Aut.P2/ is defined by the images of 4 points in general position. In particu-
lar, we see that �. NG/ is a subgroup of the group S4, which implies that there is a �. NG/-invariant
conic in P2. Therefore, there exists a NG-invariant divisor in the linear system j2H � 2C j. Let
us denote this divisor by B . Then BCC1CC2 � 2H , and BCC1CC2 is NG-invariant, which
is impossible by Lemma 5.3. The obtained contradiction shows that H �M ¤ 4.
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Suppose that H �M D 5. Then H � Z D 3, which implies that the curve Z is a union
of three lines transitively interchanged by NG, because G is transitive. Let us denote these
lines by L1, L2 and L3. We have 3Lj � C D 4 � C � M for every j 2 ¹1; 2; 3º. Since
0 6 C � M 6 4 by (5.15), we see that C � M D 1. In particular, the linear system jM j
is not composed of a pencil unless jM j is a pencil itself, since otherwise one would have
C �M > 2. Hence, the curve M is irreducible by the Bertini theorem. Therefore, the curve M
is a section of the morphism # , which implies that M is smooth and rational. Furthermore, we
haveKX �M D .2C �H/ �M D �3. Now applying the adjunction formula toM , we see that
�2 D .KX CM/ �M D �3 CM 2, which implies that M 2 D 1. Thus, it follows from the
Riemann–Roch theorem that

h0
�
OX .M � C/

�
> 1C

.M � C/ � .M � C �KX /

2
D 1;

because h2.OX .M � C// D h0.OX .KX �M C C// D 0 by the Serre duality, since one has
H � .KX �M C C/ D �6 < 0. Keeping in mind that .M � C/2 D �1, we see that the base
locus of the linear system jM � C j contains a NG-invariant curve. Let us denote this curve by
R. Then H � R 6 H � .M � C/ D 3, which implies that the curve R is a union of three lines
transitively interchanged by NG, since G is transitive. Let us denote these lines by L01, L02 and
L03. Then

1 D C �M D C � .M � C/ D C �
�
L01 C L

0
2 C L

0
3

�
D 3C � L01 D 3C � L

0
2 D 3C � L

0
2;

which is a contradiction. Therefore H �M ¤ 5.
Thus, the assumption that jC �2KX j has a fixed curve implies thatH �M > 5. However,

we proved earlier that 1 6 M �H 6 5. So, we see that jC � 2KX j has no based components,
i.e. the curve Z does not exist. On the other hand, one has �KX � .C � 2KX / D 0, which is
impossible, because the divisor �KX is big, since the surface X is of Fano type. The obtained
contradiction completes the proof of Lemma 5.13.

Now using Lemmas 5.9, 5.10, 5.11, and 5.13, we are ready to prove the following

Lemma 5.16. The subvariety X is not a surface.

Proof. Suppose that X is a surface. Then it follows from the Riemann–Roch theorem
that

(5.17) h0
�
OX .nH/

�
D �

�
OX .nH/

�
D 1C

n2

2
.H �H/ �

n

2
.H �KX /

for any n > 1. In particular, since X is not contained in a hyperplane in P5, it follows from
(5.7) that H �H �H �KX D 10. On the other hand, we know that H �H > 4, since S is not
contained in a hyperplane in P5. Moreover, since X is of Fano type, the divisor �KX is big,
which implies that �H �KX > 1. Thus, we see that H �H 2 ¹4; 5; 6; 7; 8; 9º. Now plugging
n D 2 into (5.7) and (5.17), we see that h0.OP5.2/˝ IX / D 10 �H �H . Then H �H 6 7

by Lemma 5.6, which implies that H � H 2 ¹4; 5; 6; 7º. Since H � H � H � KX D 10, we
immediately obtain a contradiction using Lemmas 5.9, 5.10, 5.11, and 5.13.

Thus, we see that X is a threefold. Put d D H �H �H .
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Lemma 5.18. The inequality d > 5 holds.

Proof. Since G is transitive, the threefold X is not contained in a hyperplane. Further-
more, the threefold X is not a cone since the vertex of a cone is a linear space, which again
contradicts transitivity of NG. Hence it follows from [54, Theorem 1] that X is either a com-
plete intersection of two quadrics, or a projection from P6 of a hyperplane section of the Segre
variety P1 � P3 � P7. The former case is impossible by assumption, and the latter case is
impossible since X is projectively normal.

By Lemma 5.18 the threefold X is not contained in an intersection of two quadrics in P5

(indeed, otherwise either X would be contained in a hyperplane, or one would have d 6 4).
On the other hand, h0.OP5.2/ ˝ IX / ¤ 1 since NG does not have invariant quadrics in P5.
Therefore, we have the following

Corollary 5.19. The equality h0.OP5.2/˝ IX / D 0 holds.

Recall that f W QX ! X is a resolution of singularities of the threefold X . Let c2. QX/
be the second Chern class of the threefold QX . Put  D f �.H/ � .K QX � K QX C c2. QX// and
k D �H �H �KX . Then k > 1, since X is of Fano type. Then

h0
�
OX .nH/

�
D �

�
OX .nH/

�
D d

n3

6
C k

n2

4
C
n

12
 C 1

by the Riemann–Roch theorem. Using (5.7) and Corollary 5.19, we see that

(5.20)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

d

6
C
k

4
C


12
C 1 D 6;

4d

3
C k C



6
C 1 D 21;

9d

2
C
9k

4
C


4
C 1 D 56 � h0

�
OP5.3/˝ IX

�
;

which implies that 10 D d C k=2 and h0.OP5.3/˝ IX / D k=2. Keeping in mind that d > 5

by Lemma 5.18 and k > 1, we see that d 2 ¹5; 6; 7; 8; 9º.
Note that d ¤ 9, since otherwise one would have h0.OP5.3/ ˝ IX / D 1 so that NG

would have an invariant cubic in P5 which is not the case by assumption. Finally, if d D 8,
then h0.OP5.3/ ˝ IX / D 2 so that there is a NG-invariant pencil P of cubics in P5. For two
different hypersurfaces R1; R2 2 P the intersection R1 \ R2 consists of the threefold X and
a threefold T of degree deg.T / D 9 � d D 1. Thus T is a NG-invariant projective subspace
of P5, which is impossible by assumption.

The next two lemmas deal with the (slightly more difficult) cases d D 5 and d D 7.

Lemma 5.21. The inequality d ¤ 5 holds.

Proof. Suppose that d D 5. Then k D 10, because 10 D d C k=2. Since one has
.KX C 2H/ �H

2 D 0, the sectional genus of X is 1. Note that X is rationally connected by
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[58], because X is of Fano type. Applying [22, Theorem 5.4] and keeping in mind that X can
be neither a scroll over an elliptic curve nor a generalized cone over such scroll, we get

1 D 3C deg.X/ � h0
�
OX .H/

�
D 2;

which is a contradiction.

Lemma 5.22. The inequality d ¤ 7 holds.

Proof. Suppose that d D 7. Then k D 6 and h0.OP5.3/˝ IX / D 3, because one has
10 D d C k=2 and h0.OP5.3/˝ IX / D k=2. Thus, an intersection of X with a general linear
subspace in P5 of codimension 2 is a smooth curve of genus 5 and degree 7 (cf. Theorem A.1).

Let P be the linear system of cubic hypersurfaces in P5 that contains X . Then X is the
only threefold in the base locus of the linear system P , because G is transitive. Let Y1; Y2; Y3
be three general hypersurfaces in P . Then Y1\Y2 D X [Q, whereQ is a threefold of degree
deg.Q/ D 2. Moreover, it follows from Corollary A.3 thatQ is a (reduced) irreducible quadric
threefold.

Let H.Y1; Y2/ be the unique hyperplane in P5 that contains Q. Then\
Y1;Y2

H.Y1; Y2/ D ¿;

since otherwise this intersection would be a NG-invariant proper linear subspace of P5, which
is impossible, because G is transitive.

Put S D Q\Y3. Then S is a reduced surface of degree 6 by Corollary A.3. On the other
hand, the intersection H.Y1; Y2/ \ X is a surface that contains the surface S . Therefore, the
scheme-theoretic intersection H.Y1; Y2/ � X is reduced and consists of a union of a surface S
and some two-dimensional linear subspace … � P5. (Note that the existence of the plane …
follows from [42, Proposition 8] in the case when X is smooth.)

A priori, the plane … depends on the choice of the divisors Y1, Y2, and Y3 in the linear
system P . In fact, the plane … must vary when one varies the divisors Y1, Y2, and Y3 in the
linear system P , because G is transitive. Hence, the surface H is swept out by lines, which
implies that its Kodaira dimension �.H/ is �1.

Let R be the general hyperplane section of H � X � P5. Then R � KH D d � k,
which implies that H � KH D 1. Thus, we have �.OH .R// D �.OH /C 3 by the Riemann–
Roch theorem. Since H is projectively normal, we have h0.OH .R// D 5. On the other hand,
we know that h1.OH .R// D h2.OH .R// D 0. Since �.OH .R// D �.OH / C 3, one has
�.OH / D 2, which implies that h2.OH / > 1. Let �W NH ! H be a resolution of singularities.
Then h2.O NH / D h

2.OH /, becauseH has rational singularities. But h0.O NH .KX // D h
2.O NH /

by the Serre duality, which implies that NH is a surface of general type, which is impossible
since �.H/ D �. NH/ D �1.

Therefore, we see that d D 6. Then k D 8 and h0.OP5.3/ ˝ IX / D 4, because
10 D d C k=2 and h0.OP5.3/ ˝ IX / D k=2, which implies that the sectional genus of
the threefold X is 3 by the adjunction formula. Thus, we proved that X is an irreducible
NG-invariant projectively normal non-degenerate Fano type threefold of degree 6 and sectional

genus 3 such that h0.OP5.2/˝ IX / D 0 and h0.OP5.3/˝ IX / D 4. This completes the proof
of Theorem 5.2.
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A. Curves of genus 5 and degree 7

Let C be a smooth irreducible curve in P3 of genus 5 and degree 7, let � WX ! P3 be a
blow up of the curve C , let E be the �-exceptional divisor, and let H be a general hyperplane
in P3.

Theorem A.1. The divisor �KX is ample, and j��.3H/ � Ej is free from base points
and induces a morphism �WX ! P2 that is a conic bundle with a discriminant curve of
degree 5.

Proof. The required assertion is well known in the case when C is a scheme-theoretic
intersection of cubic hypersurfaces in P3 (see [39, Proposition 7.5]). It is known that generic
smooth connected curve in P3 of genus 5 and degree 7 is a scheme-theoretic intersection of
cubic hypersurfaces in P3 (see [39, Corollary 6.2, Proposition 7.5]). Unfortunately, we failed
to find any reference with a proof that the same holds for any smooth connected curve in P3 of
genus 5 and degree 7. So we decided to prove it here.

Recall that the curve C is called m-regular in the case when

H 1
�
OP3.m � 1/˝ IC

�
D H 2

�
OP3.m � 2/˝ IC

�
D 0;

where IC is the ideal sheaf of C . It is well known that C is a scheme-theoretic intersec-
tion of hypersurfaces of degree m in P3 if it is m-regular (see [19, Exercise 20.21]). How-
ever, our curve C is not 3-regular, since h2.OP3.1/ ˝ IC / D 1. On the other hand, it
follows from [3, Exercise D.14 (6)] that the curve C is projectively normal, which implies
that h1.OP3.n/ ˝ IC / D 0 for every non-negative integer n. Moreover, it follows from the
Riemann–Roch theorem that h2.OP3.2/˝ IC / D 0, which implies that C is 4-regular. Thus,
the curve C is a scheme-theoretic intersection of quartic hypersurfaces in P3. In particular, the
divisor �KX is nef. Since �K3X D 16 (this is obvious), we see that �KX is big and nef.

It follows from the projective normality of the curve C that C is not contained in any
quadric hypersurface in P3 and h0.OP3.3/˝ IC / D 3, which implies that

h0
�
OX .�

�.3H/ �E/
�
D 3:

Let P be a sufficiently general point in P3 that is not contained in the image under the
morphism � of the base locus of the linear system j��.3H/ � Ej, and let S1 and S2 be two
general cubic surfaces in P3 that pass through C and contain P . Then S1 � S2 D C C �,
where� is an effective one-cycle in P3 such that P 2 Supp.�/. SinceH �� D 2, we see that
C 6� Supp.�/, which implies that S1 and S2 are smooth in the general point of the curve C ,
the base locus of the linear system j��.3H/�Ej does not contain fixed components and does
not contain curves in E that are not contracted by � to points in C .

To complete the proof it is enough to prove that j��.3H/ � Ej is base point free. Note
that the linear system j��.3H/�Ej is base point free if its base locus does not contains curves
that are not contained in E, since .��.3H/ � E/3 D 0 and j��.3H/ � Ej does not contain
curves inE that are not contracted by � to points in C . In particular, we see that j��.3H/�Ej
is base point free if C is a set-theoretic intersection of cubic hypersurfaces in P3.

Suppose that the base locus of the linear system j��.3H/ � Ej contains an irreducible
curve QZ such that QZ 6� E. Let us show that this assumption leads to a contradiction.
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Let QS1 and QS2 be the proper transforms of the surfaces S1 and S2 on the threefold X ,
respectively. Then QS1 and QS2 are general surfaces in j��.3H/ � Ej. Let Q� be the proper
transform of the one-cycle� on the threefoldX . Then QS1 � QS2 D Q�C QF , where QF is an effective
one-cycle onX whose support consists of finitely many curves inX that are contracted by � to
points inC . By assumption, we know that QZ � Q�. PutZ D �. QZ/. ThenZ ¤ �, sinceP 62 Z
and P 2 Supp.�/. We see thatZ is a line and QZ the unique curve in the base locus of the linear
system j��.3H/�Ej that is not contained in the surface E, because 2 D H �� > H �Z > 1.
In particular, we see that � is reduced.

Let us show that the divisor ��.3H/ � E is nef. Suppose that this is not the case. Then
.��.3H/�E/ � QZ < 0. But 0 > .��.3H/�E/ � QZ D 3�E � QZ and 4�E � QZ D �KX � QZ > 0,
which implies that Z is a 4-section of the curve C . Since it follows from the Riemann–Roch
theorem that h0.OC .KC �H jC // D 1, the existence of a 4-section to the curve C immediately
implies that the curve C is either trigonal or hyperelliptic, which is not the case (see the proof
of [39, Corollary 6.2]).

Thus, we see that ��.3H/ � E is nef. In particular, the divisor �KX is ample. Then
QF D 0, because .��.3H/�E/3 D 0 and ��.3H/�E is �-ample. Similarly, we see the base

locus of the linear system j��.3H/�Ej consists of the curve QZ. We have Q� D QZC QR, where
QR is an irreducible curve on X such that �. QR/ is a line. Then

0 D
�
��.3H/ �E

�3
D
�
��.3H/ �E

�
� QS1 � QS2

D
�
��.3H/ �E

�
� QZ C

�
��.3H/ �E

�
� QR;

which implies that .��.3H/�E/ � QZ D .��.3H/�E/ � QR D 0, because ��.3H/�E is nef.
In particular, the curves QR and QZ both generate the extremal ray of the cone of effective cycles
NE.X/ that is different from the ray contracted by � . Put R D �. QR/. Then both lines Z and
R must be 3-secants of the curve C , because .��.3H/ �E/ � QZ D .��.3H/ �E/ � QR D 0.

Since the base locus of the linear system j��.3H/�Ej consists of the curve QZ, we must
have QR \ QZ D ¿, because .��.3H/ � E/ � QR D 0. Then R \ Z D ¿. Indeed, suppose
that R \ Z ¤ ¿. Then R \ Z is a point contained in C . Let QL be the curve in X such that
�. QL/ D R \Z. Then QR \ QL is a point, and QL � QS1, because otherwise we must have

1 D
�
��.3H/ �E

�
� QL > mult QL\ QR. QS1/Cmult QL\ QZ. QS1/ > 2;

which is absurd. Similarly, we see that QL � QS2, which is impossible, because we already
proved that QF D 0. Thus, we see that R \Z D ¿, i.e. the lines R and Z are disjoint.7)

Let  WX ! B be a contraction of the extremal ray in NE.X/ that is generated by QR.
Then  must be a conic bundle and B must be a smooth surface (see [39, Proposition 4.16]).
Since �. QR/ contains the point P , which is a sufficiently general point in P3, we see that 
must be a P1 bundle, which is impossible by [55]. The obtained contradiction completes the
proof.

Corollary A.2 (cf. [24, Theorem 3.2]). The curve C is a scheme-theoretic intersection
of cubic hypersurfaces in P3.

7) As was pointed out to us by Eduardo Ballico, the curve � is connected, because C is arithmetically
Cohen–Macaulay and thus � is arithmetically Cohen–Macaulay as well (see [44, Proposition 1.2]). Then � is a
reducible conic.
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Corollary A.3. Let S1, S2 and S3 be three general cubic surfaces in P3 that pass
through C . Then S1 � S2 D C C � for an irreducible reduced conic � � P3 such that the
zero-cycle S3 �� is reduced and consists of 7 distinct point in �.
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