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Nine-dimensional exceptional

quotient singularities exist

Ivan Cheltsov and Constantin Shramov

Abstract. We prove that nine-dimensional exceptional quotient singularities exist.

The Fubini–Studi metric on Pn is known to be Kähler–Einstein. Moreover, it follows
from [1] that every Kähler–Einstein metric on Pn is a pull back of the Fubini–Studi metric
(possibly multiplied by a positive real constant) via some automorphism of Pn. However,
there are plenty of non-Kähler–Einstein metrics on Pn whose Kähler forms lie in c1(P

n).
Let g = gij be such a metric with a Kähler form ω. Then one can try to obtain the
Kähler–Einstein metric on Pn out of the metric g by taking the normalized Kähler–Ricci
iterations defined by

{

ωi−1 = Ric
(

ωi

)

,

ω0 = ω,
(1)

where ωi is a Kähler form such that ωi ∈ c1(P
n). Indeed, it follows from [19] that

the solution ωi to (1) exists for every i > 1. However, it is not clear that any solution
to (1) converges to the Kähler form of the Kähler–Einstein metric on Pn in the sense of
Cheeger–Gromov (see [15]). Nevertheless, this is known to be true under an additional
assumption that we are going to describe.

Let Ḡ ⊂ Aut(Pn) be a finite subgroup. Suppose, in addition, that the metric g is
Ḡ-invariant. Let αḠ(P

n) be the Ḡ-invariant α-invariant of Tian of Pn that is introduced
in [18].

Theorem 2 ([15]). If αḠ(P
n) > 1, then any solution to (1) converges to the Kähler form

of the Kähler–Einstein metric on Pn in C∞(X)-topology.

It should be mentioned that the original result by Rubinstein proved in [15] is much
stronger than Theorem 2 and is valid for any smooth complex manifold with a positive
first Chern class. Nevertheless, even in the simplest possible case of Pn, the assertion of
Theorem 2 is still very not obvious. Thus, it is natural to ask the following

Question 3 (Rubinstein). Is there a finite subgroup Ḡ ⊂ Aut(Pn) such that αḠ(P
n) > 1?

It came as a surprise that Question 3 is strongly related to the notion of exceptional
singularity that was introduced by Shokurov in [16]. Let us recall this notion.

We assume that all varieties are projective, normal, and defined over C.
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Definition 4 (Shokurov). Let (V ∋ O) be a germ of Kawamata log terminal singularity.
Then (V ∋ O) is said to be exceptional if for every effective Q-divisor DV on the variety
V such that (V,DV ) is log canonical and for every resolution of singularities π : U → V
there exists at most one π-exceptional divisor E ⊂ U such that a(V,DV , E) = −1, where
the rational number a(V,DV , E) can be defined through the equivalence

KU +DU ∼Q π
∗

(

KV +DV

)

+
∑

a
(

V,DV , F
)

F.

The sum above is taken over all f -exceptional divisors, and DU is the proper transform
of the divisor DV on the variety U .

One can show that exceptional Kawamata log terminal singularities are straightforward
generalizations of the Du Val singularities of type E6, E7 and E8 (see [16, Example 5.2.3]),
which partially justifies the word “exceptional” in Definition 4. It follows from our earlier
result [3, Theorem 1.16] that exceptional Kawamata log terminal singularities exist in
every dimension. Surprisingly, Question 3 is almost equivalent to the following

Question 5. Are there exceptional quotient singularities of dimension n+ 1?

Recall that quotient singularities are always Kawamata log terminal. So Question 5
fits well to Definition 4. It follows from [16], [13], [3], and [4] that the answers to both
Questions 3 and 5 are positive for every n 6 5 (see Theorems 10 and 12). Moreover, it
follows from [4] that the answers to both Questions 3 and 5 are “surprisingly” negative
for n = 6. The purpose of this paper is to show that the answers to both Questions 3 and
5 are again positive for n = 8 by proving the following

Theorem 6. Let G be a finite subgroup in SL9(C) such that G ∼= 31+4 : Sp4(3) (see [6]
for notation), let φ : SL9(C) → Aut(P8) be the natural projection. Put Ḡ = φ(G). Then
4/3 > αḠ(P

8) > 10/9 and the singularity C9/G is exceptional.

How to compute αḠ(P
n)? How to show that a given quotient singularity is exceptional?

How are Questions 3 and 5 related? How to prove Theorem 6? What are the expected
answers to Questions 3 and 5 for n = 7 and n > 9? Let us give partial answers to these
questions.

Let φ : GLn+1(C) → Aut(Pn) be the natural projection. Then there exists a finite
subgroup G in GLn+1(C) such that φ(G) = Ḡ. Put

lct
(

Pn, Ḡ
)

= sup

{

λ ∈ Q

∣

∣

∣

∣

∣

the log pair (Pn, λD) has log canonical singularities

for every Ḡ-invariant effective Q-divisor D ∼Q −KPn

}

.

Theorem 7 (see e.g., [2, Theorem A.3]). One has lct(Pn, Ḡ) = αḠ(P
n).

The number lct(Pn, Ḡ) is usually called Ḡ-equivariant global log canonical threshold of
Pn. Despite the fact that lct(Pn, Ḡ) = αḠ(P

n), we still prefer to work with the number
lct(Pn, Ḡ) throughout this paper, because it is easier to handle than αḠ(P

n). For example,
it follows immediately from the definition of the number lct(Pn, Ḡ) that lct(Pn, Ḡ) is less
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than or equal to d/(n+1) if the group G has a semi-invariant of degree d (a semi-invariant
of the group G is a polynomial whose zeroes define a Ḡ-invariant hypersurface in Pn).

Recall that an element g ∈ G is called a reflection (or sometimes a quasi-reflection) if
there is a hyperplane in Pn that is pointwise fixed by φ(g). To answer Question 5 one can
always assume that the group G does not contain reflections (cf. [4, Remark 1.16]). On
the other hand, one can easily check that there exists a finite subgroup G′ ⊂ SLn+1(C)
such that φ(G′) = Ḡ. So to answer Question 3 one can also assume that G ⊂ SLn+1(C),
which implies, in particular, that the group G does not contain reflections. Moreover, if
the group G does not contain reflections, then the singularity Cn+1/G is exceptional if
and only if the singularity Cn+1/G′ is exceptional thanks to the following

Theorem 8 ([3, Theorem 3.17]). Let G be a finite subgroup in GLn+1(C) that does not
contain reflections. Then the singularity Cn+1/G is exceptional if and only if for any
Ḡ-invariant effective Q-divisor D on Pn such that D ∼Q −KPn , the log pair (Pn, D) is
Kawamata log terminal.

Corollary 9. Let G be a finite subgroup in GLn+1(C) that does not contain reflections.
Then

• the singularity Cn+1/G is exceptional if lct(Pn, Ḡ) > 1,
• the singularity Cn+1/G is not exceptional if either lct(Pn, Ḡ) < 1,
• the singularity Cn+1/G is not exceptional if G has a semi-invariant of degree
at most n+ 1,

• for any subgroup G′ ⊂ GLn+1(C) such that G′ does not contain reflections and
φ(G′) = Ḡ, the singularity Cn+1/G is exceptional if and only if the singularity
Cn+1/G′ is exceptional.

The assumption that G does not contain reflections is crucial for Theorem 8
(see [3, Example 1.18]). On the other hand, it follows from [14, Proposition 2.1] that
G must be primitive (see for example [3, Definition 1.21]) if Cn+1/G is exceptional.
Moreover, for small n 6 4, we have the following

Theorem 10 ([13, Theorem 1.2], [3, Theorem 1.22]). Let G be a finite subgroup in
GLn+1(C) that does not contain reflections. Suppose that n 6 4. Then the following
conditions are equivalent:

• the singularity Cn+1/G is exceptional,
• lct(Pn, Ḡ) > (n+ 2)/(n+ 1),
• the group G is primitive and has no semi-invariants of degree at most n+ 1.

In particular, both Questions 3 and 5 are equivalent for n 6 4 and can be expressed in
terms of primitivity and absence of semi-invariants of small degree of the group G. It ap-
pears that in higher dimensions the latter is no longer true, since there are non-exceptional
six-dimensional quotient singularities arising from primitive subgroups without reflections
in GL6(C) that have no semi-invariants of degree at most 6 (see [3, Example 3.25]). On
the other hand, we still believe that both Questions 3 and 5 are equivalent for every n,
which can be summarized as
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Conjecture 11. Let G be a finite subgroup in GLn+1(C) that does not contain reflections.
Then the singularity Cn+1/G is exceptional if and only if lct(Pn, Ḡ) > 1.

In fact, Conjecture 11 still holds for n = 5, because of

Theorem 12 ([4, Theorem 1.14]). Let G be a finite subgroup in SL6(C). Then the
following are equivalent:

• the singularity C6/G is exceptional,
• the inequality lct(P5, Ḡ) > 7/6 holds,
• either Ḡ is the Hall–Janko sporadic simple group (see [12]), or G ∼= 6.A7 and
Ḡ ∼= A7.

In particular, both Questions 3 and 5 are equivalent and both have positive answers
for n = 5. For n = 6, both Questions 3 and 5 are also equivalent and both have negative
answers due to

Theorem 13 ([4, Theorem 1.16]). For every finite subgroup G in GL7(C), the singularity
C7/G is not exceptional and lct(Pn, Ḡ) 6 1.

To apply Theorem 8 we may assume that G ⊂ SLn+1(C), since there exists a finite
subgroup G′ ⊂ SLn+1(C) such that φ(G′) = Ḡ. On the other hand, it is well known that
there are at most finitely many primitive finite subgroups in SLn+1(C) up to conjugation
by Jordan’s theorem for complex linear groups. Primitive finite subgroups of SL2(C)
are group-theoretic counterparts of Platonic solids and each of them gives rise to an
exceptional quotient singularity (see [16, Example 5.2.3]). Similar classification is possible
in small dimensions. For example, primitive finite subgroups of SLn+1(C) for n 6 6 have
been classified long time ago (see for example [7]). This allowed to obtain the complete
list of all finite subgroups in SLn+1(C) for every n 6 6 that give rise to exceptional
quotient singularities (see [13], [3], and [4]), which implies, in particular, that the answers
to both Questions 3 and 5 are positive for every n 6 5 and are negative for n = 6 (see
Theorem 13). We have no idea right now what are the answers to Questions 3 and 5 in
the cases when n = 7 and n > 9, but we expect that the answers to both Questions 3 and
5 may still be negative for all n≫ 0 due to the following

Theorem 14. Let G be the finite subgroup in GLn+1(C) such that Ḡ is a sporadic simple
group. Then Cn+1/G is exceptional if and only if n = 5 and Ḡ is the Hall–Janko sporadic
simple group.

Proof. Since Ḡ is simple, we may assume that G has no quasi-reflections. Explicit com-
putations in GAP (see [8]) imply that G has a semi-invariant of degree at most n+1 (and
thus Cn+1/G is not exceptional by Theorem 8) unless n = 5 and Ḡ is the Hall–Janko
sporadic simple group1. If n = 5 and Ḡ is the Hall–Janko sporadic simple group, then
the singularity Cn+1/G is exceptional by [4, Theorem 1.14]. �

1Similarly, one can show that G has a semi-invariant of degree at most n (and thus Cn+1/G is not
weakly-exceptional (see [3, Definition 3.7]) by [3, Theorem 3.16]) unless either n = 5 and Ḡ is the Hall–
Janko sporadic simple group, or n = 11 and Ḡ is the Suzuki sporadic simple group (see [17]). We expect

that in the latter case the corresponding quotient singularity is actually weakly-exceptional.
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An indirect evidence that both Questions 3 and 5 may have negative answers for all
n≫ 0 is given by

Theorem 15 ([5]). Let G be the finite primitive subgroup in GLn+1(C). Suppose that
n > 12. Then |Ḡ| 6 (n+ 2)!. Moreover, if |Ḡ| = (n+ 2)!, then Ḡ ∼= Sn+2.

In fact, Collins obtained the optimal bounds for |Ḡ| for every n 6 11 if G is primitive
(his proof uses known lower bounds for the degrees of the faithful representations of
each quasisimple group, for which the classification of finite simple groups is required).
Moreover, it follows from [16], [13], [5], [3], and [4] that |Ḡ| reaches its maximum on
a subgroup Ḡ in Aut(Pn) with lct(Pn, Ḡ) > 1 if n 6 3, and this is no longer true for
4 6 n 6 6. Surprisingly, it follows from Theorem 6 that in the case when n = 8, the
number |Ḡ| reaches its maximum if G is isoclinic to a finite subgroup in GL9(C) that is
mentioned in Theorem 6. For n = 11, the number |Ḡ| reaches its maximum if Ḡ is the
Suzuki sporadic simple group.

In the remaining part of the paper we prove Theorem 6. Let G be a finite subgroup
in SL9(C) from Theorem 6. Then the embedding G →֒ SL9(C) is given by an irreducible
nine-dimensional G-representation2, which we denote by U .

The outline of the proof of Theorem 6 is as follows. We assume that lct(P8, Ḡ) < 10/9
and seek for a contradiction. There exists a Ḡ-invariant Q-divisor D on P8 and a positive
rational number λ < 10/9 such that D ∼Q −KP8 and the log pair (P8, λD) is strictly
log canonical, i.e., log canonical and not Kawamata log terminal. Arguing as in [3]
and [4], we apply Nadel–Shokurov vanishing (see [11, Theorem 9.4.8]) and Kawamata
subadjunction (see [10, Theorem 1]) to obtain restrictions on the Hilbert polynomial of the
minimal center of log canonical singularities of the log pair (P8, λD) (see [9, Definition 1.3],
[10]). Composing the latter with results coming from representation theory we obtain a
contradiction. One of the few new ingredients of the proof is the binomial trick (see
Lemma 27).

Let us list without proofs some properties of the G-representation U (Lemmas 16, 17,
18, and 19) that can be verified by direct computations. We used GAP (see [8]) to carry
them out.

Lemma 16. The group G does not have semi-invariants of degree d 6 11, and there
exists a semi-invariant of the group G of degree 12.

Denote by ∆k the collection of dimensions of irreducible subrepresentations of
Symk(U∨). We will use the following notation: writing ∆k = [. . . , r ×m, . . .], we mean

that among the irreducible subrepresentations of Symk(U∨) there are exactly r subrep-
resentations of dimension m (not necessarily isomorphic to each other). Furthermore,
denote by Σk the set of partial sums of ∆k, i.e., the set of all numbers s =

∑

r′imi, where
∆k = [. . . , r1 ×m1, . . . , r2 ×m2, . . . , ri ×mi, . . .] and 0 6 r′i 6 ri for all i. We use the
abbreviation mi for 1×mi.

2Note that the group G has two irreducible representations of dimension 9, but they differ only by an

outer automorphism of G, so that the subgroup G ⊂ SL9(C) is defined uniquely up to conjugation.
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Lemma 17. The representation Sym2(U∨) is irreducible (and has dimension 45). Futher-
more, ∆3 = [5, 160], ∆4 = [45, 180, 270], ∆5 = [36, 90, 135, 216, 270, 540],

∆6 = [4, 15, 24, 2× 80, 3× 240, 3× 480, 640],

∆7 = [9, 36, 3× 135, 3× 180, 3× 216, 270, 324, 405, 3× 540, 720, 2× 729],

∆8 = [36, 4× 45, 5× 180, 5× 270, 2× 324, 6× 360, 3× 405, 7× 540, 2× 576, 720, 729],

∆9 = [3× 5, 3× 20, 3× 30, 40, 45, 60, 80, 12× 160, 12× 240, 10× 480, 10× 640, 11× 720].

Lemma 18. Let U45 ⊂ Sym4(U∨) be the 45-dimensional irreducible subrepresentation.
Then

U∨ ⊗ U45
∼= U90 ⊕ U135 ⊕ U180

as a G-representation, where U90, U135 and U180 are irreducible G-representations of
dimensions 90, 135 and 180, respectively.

Lemma 19. Let U24 ⊂ Sym6(U∨) be the 24-dimensional irreducible subrepresentation.
Then U∨ ⊗ U24 is an irreducible G-representation.

Now we are ready to prove Theorem 6. It follows from Theorems 7 and 8 that to prove
Theorem 6 it is enough to prove that 4/3 > lct(P8, Ḡ) > 10/9. On the other hand, one
has lct(P8, Ḡ) 6 4/3 by Lemma 16. In fact, we believe that lct(P8, Ḡ) = 4/3, but we
are unable to prove this now. To complete the proof of Theorem 6, we must prove that
lct(P8, Ḡ) > 10/9. Suppose that lct(P8, Ḡ) < 10/9. Then there is an effective Ḡ-invariant
Q-divisor D ∼Q OP8(9), and there is a positive rational number λ < 10/9 such that
(P8, λD) is strictly log canonical.

Let S be a minimal center of log canonical singularities of the log pair (P8, λD)
(see [9, Definition 1.3], [10]), let V be the Ḡ-orbit of the subvariety S ⊂ P8, and let r be
the number of irreducible components of the subvariety V . Then deg(V ) = r · deg(S).

Arguing as in the proofs of [9, Theorem 1.10] and [10, Theorem 1], we may assume that
the only log canonical centers of the log pair (P8, λD) are components of the subvariety
V (see [3, Lemma 2.8]). Then it follows from [9, Proposition 1.5] that the components of
the subvariety V are disjoint. In particular, if dim(V ) > 4, then r = 1. Put n = dim(V )
which also equals dim(S). Then n 6= 7 by Lemma 16.

Let IV be the ideal sheaf of the subvariety V ⊂ P8, and let Λ be a general hyperplane
in P8. Put H = Λ|V , hm = h0(OV (mH)) and qm = h0(OP8(m) ⊗ IV ) for every m ∈ Z.
It follows from the Shokurov–Nadel vanishing theorem (see [11, Theorem 9.4.8]) that

qm = h0
(

OP8

(

m
)

)

− hm =

(

8 +m

m

)

− hm

for every m > 1. In particular, if n = 0, then r = h1 6 9, which is impossible by
Lemma 16. Hence, we see that 1 6 n 6 6.

It follows from [10, Theorem 1] that the variety V is normal and has at most rational
singularities. Moreover, it follows from [10, Theorem 1] that for every positive rational
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number ǫ > 0 there is an effective Q-divisor BV on the variety V such that
(

KPn + λD + ǫΛ
)∣

∣

∣

V
∼Q KV +BV ,

and (V,BV ) has Kawamata log terminal singularities. In particular, taking ǫ sufficiently
small, we may assume that KV + BV ∼Q (1 − ν)H for some positive ν ∈ Q, because
λ < 10/9.

Remark 20. One can show that any irreducible representation W of the group G such
that the center Z(G) ∼= Z3 acts non-trivially on W has dimension dim(W ) divisible by 9.
Therefore one has hi ≡ 0 mod 9 for every i not divisible by 3, since Z(G) acts nontrivially
on Symi(U∨) if i is not divisible by 3.

Remark 21. One has q1 = 0 since U∨ is irreducible and q2 = 0 by Lemma 17.

Put d = Hn = deg(V ) and HV (m) = χ(OV (m)). Then the Shokurov–Nadel vanishing
theorem (see [11, Theorem 9.4.8]) implies that HV (m) = hm for every m > 1. Recall
that HV (m) is a Hilbert polynomial of the subvariety V , which is a polynomial in m of
degree n with leading coefficient d/n!.

Lemma 22. For any non-negative integer δ one has

d = hδ+n+1 −

(

n

1

)

hδ+n +

(

n

2

)

hδ+n−1 + . . .+ (−1)nhδ+1.

Proof. Induction by n. �

Lemma 23. If 4 6 n 6 5, then d is divisible by 3. If n = 6, then d is divisible by 9.

Proof. Suppose that n = 6. Applying Lemma 22 with δ = 0 and δ = 1, we get

h7−6h6+15h5−20h4+15h3−6h2+h1 = d = h8−6h7+15h6−20h5+15h4−6h3+h2, (24)

which gives 21h6 − 21h3 ≡ 0 mod 9 by subtracting two equalities in (24), reducing
everything modulo 9, and using Remark 20. Thus h6−h3 ≡ 0 mod 3, and 15h6−6h3 ≡ 0
mod 9. The latter equality combined with (24) implies that d ≡ 0 mod 9.

If n = 5, a similar argument shows that d ≡ 0 mod 3.
Finally, suppose that n = 4. Applying Lemma 22 for δ = 0, we get

h5 − 4h4 + 6h3 − 4h2 + h1 = d,

which gives d ≡ 6h3 ≡ 0 mod 3, since h5, h4, h2, and h1 are divisible by 3 by Remark 20.
�

Remark 25. If n = 6, then q3 = 0. Indeed, if q3 > 0, then q3 > 2 by Lemma 17, so that
d < 9, which is impossible by Lemma 23. Similarly, if n = 6 and q4 > 0, one has d = 9.

Remark 26. One has hm 6 hm+1 and qm 6 qm+1 for all m > 1.

91



CHELTSOV and SHRAMOV

Let Λ1,Λ2, . . . ,Λn be general hyperplanes in P8. Put Πj = Λ1 ∩ . . .∩Λj , Vj = V ∩Πj ,
Hj = Vj∩H, and BVj

= BV |Vj
for every j ∈ {1, . . . , n}. Put V0 = V , BV0

= BV , H0 = H,

Π0 = P8. For every j ∈ {0, 1, . . . , n}, let IVj
be the ideal sheaf of the subvariety Vj ⊂ Πj .

Recall that Πj
∼= P8−j and put qi(Vj) = h0(OΠj

(i)⊗ IVj
) for every j ∈ {0, 1, . . . , n}.

Lemma 27. Suppose that i > j + 1 and j ∈ {1, . . . , n}. Then

qi(Vj) = qi −

(

j

1

)

qi−1 +

(

j

2

)

qi−2 − . . .+ (−1)jqi−j .

Proof. For every j ∈ {0, 1, . . . , n}, it follows from the adjunction formula that

KVj
+BVj

∼Q (j + 1− ν)Hj ,

because KV + BV ∼Q (1 − ν)H and (Vj , BVj
) has at most Kawamata log terminal sin-

gularities. Applying the Nadel–Shokurov vanishing theorem to the log pair (Vj , BVj
), we

see that h1(OVj
(i)) = 0 for every i > j + 1 and every j ∈ {0, 1, . . . , n}. Thus, we have

h0
(

OVj

(

(i+ 1)Hj

)

)

− h0
(

OVj

(

iHj

)

)

= h0
(

OVj+1

(

(i+ 1)Hj+1

)

)

(28)

for every i > j + 1 and every j ∈ {0, . . . , n − 1}. Now applying the Nadel–Shokurov
vanishing theorem to the log pair (Πj , λD|Πj

), we see that h1(OΠj
(i)⊗IVj

) = 0 for every
i > j + 1 and every j ∈ {0, 1, . . . , n}. This implies that

qi(Vj) =

(

8− j + i

i

)

− h0
(

OVj

(

iHj

)

)

(29)

for every i > j + 1 and every j ∈ {0, 1, . . . , n}. Combining (28) and (29), we have

qi(Vj−1)− qi−1(Vj−1)

=

(

9− j

i

)

− h0
(

OVj−1

(

iHj−1

)

)

−

(

8− j + i

i− 1

)

+ h0
(

OVj−1

(

(i− 1)Hj−1

)

)

=

=

(

9− j

i

)

−

(

8− j + i

i− 1

)

− h0
(

OVj

(

iHj

)

)

=

(

8− j + i

i

)

− h0
(

OVj

(

iHj

)

)

= qi(Vj)

for every i > j + 1 and every j ∈ {1, . . . , n}. Thus, we see that

qi(Vj) = qi(Vj−1)− qi−1(Vj−1) (30)

for every i > j + 1 and every j ∈ {1, . . . , n}. Iterating (30), we obtain the required
equality. �

Lemma 27 allows one to obtain bounds on the numbers qi.

Remark 31. There are trivial bounds 0 6 qi(Vj) <
(

8−j+i
i

)

.

Recall that q1 = q2 = 0 by Remark 21, and q3 = 0 if n = 6 by Remark 25. Therefore,
Remark 31 implies
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Corollary 32. If n = 5, one has

0 6 q4 − 3q3 < 126. (33)

If n = 6, one has

0 6 q5 − 4q4 < 126. (34)

Playing with the numbers qi(Vj), we can obtain

Lemma 35. Suppose that n > 4. Then
(

9

n

)

−
nd

2
> qn(Vn−1) >

(

9

n

)

− nd− 1.

Proof. Recall that the variety Vn−1 ⊂ P8−n+1 is a smooth curve of degree d, since V is
normal. Since n > 4, we see that Vn−1 is irreducible. Let g be the genus of the curve
Vn−1. It follows from the adjunction formula that KVn−1

+ BVn−1
∼Q (n − ν)Hn−1,

because KV +BV ∼Q (1− ν)H. In particular, one has 2g − 2 < dn.
Applying the Nadel–Shokurov vanishing theorem to the log pair (Πn−1, λD|Πn−1

), we
see that

qm(Vn−1) =

(

8− n+ 1 +m

m

)

− h0
(

OVn−1

(

mHn−1

)

)

for every m > n. Since 2g − 2 < dn, the divisor nHn−1 is non-special. Therefore, it
follows from the Riemann–Roch theorem that

qn(Vn−1) =

(

9

n

)

− nd+ g − 1,

which implies the required inequalities, since 2g − 2 < dn and g > 0. �

Combining Lemmas 35 and 27 and recalling the trivial bounds from Remark 31, we
obtain

Corollary 36. If n = 4, then

max
(

0, 125− 4d
)

6 q4 − 3q3 6 125− 2d. (37)

If n = 5, then

max
(

0, 125− 5d
)

6 q5 − 4q4 + 6q3 6 126−
5d

2
. (38)

If n = 6, then

0 6 q6 − 5q5 + 10q4 − 10q3 6 83− 3d. (39)

As a by-product of Corollary 36, we get

Corollary 40. If n = 4, then d 6 62. If n = 5, then d 6 50. If n = 6, then d 6 27.
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The above restrictions reduce the problem to a combinatorial question of finding all
polynomials HV of degree n with a leading coefficient d/n!, such that hm = HV (m) ∈ Σm

for sufficiently many m > 1, and such that the numbers hm and qm = h0(OP8(m))− hm
satisfy the conditions arising from Lemma 23, Corollaries 32, 36 and 40, and Remarks 21,
25 and 26. This can be done in a straighforward way, although the number of cases to be
considered is so large that we had to delegate this part of the proof to a simple computer
program. Finally, we get the following four lemmas which we leave without proofs.

Lemma 41. There are no polynomials H(m) of degree n 6 3 such that the values hm =
H(m) are in Σm for 1 6 m 6 6 and hi 6 hi+1 for 1 6 i 6 5.

Lemma 42. If H(m) is a polynomial of degree n = 4 with a leading coefficient d/n! with
d 6 62 and d divisible by 3, such that the values hm = H(m) are in Σm for 1 6 m 6 6,
and the numbers hm and qm =

(

8+m
m

)

− hm satisfy the bounds of Remark 26 and (37),
then d = 36, q1 = q2 = q3 = 0, q4 = 45, q5 = 270.

Lemma 43. If H(m) is a polynomial of degree n = 5 with a leading coefficient d/n! with
d 6 50 and d divisible by 3, such that the values hm = H(m) are in Σm for 1 6 m 6 9, and
the numbers hm and qm =

(

8+m
m

)

− hm satisfy the bounds of Remark 26, (38) and (33),
then d = 45, q1 = q2 = q3 = q4 = q5 = 0, q6 = 39, q7 = 270.

Lemma 44. There are no polynomials H(m) of degree n = 6 with a leading coefficient
d/n! with d 6 27 and d divisible by 9, such that the values hm = H(m) are in Σm for
1 6 m 6 9, and the numbers hm and qm =

(

8+m
m

)

− hm satisfy the bounds of Remark 26,
(39) and (34).

Applying Lemmas 41, 42, 43, and 44 to the Hilbert polynomial HV (m), we end up
with the following two possibilities: either n = 4, d = 36, q1 = q2 = q3 = 0, q4 = 45,
q5 = 270, or n = 5, d = 45, q1 = q2 = q3 = q4 = q5 = 0, q6 = 39, q7 = 270.

Remark 45. Let W be a G-subrepresentation in H0
(

IV ⊗ OP8(m)
)

. Then there is a

natural map of G-representations ψ : U∨⊗W → H0(IV ⊗OP8(m+1)), which is obviously
a non-zero map.

Let us suppose that n = 4. Then q4 = 45, so that by Lemma 17 there is an ir-
reducible 45-dimensional G-subrepresentation U45 ⊂ H0(IV ⊗ OP8(4)). Thus, there is
a morphism of G-representations ψ5 : U

∨ ⊗ U45 → H0(IV ⊗ OP8(5)), which is a non-
zero map by Remark 45. On the other hand, H0

(

IV ⊗ OP8(5)
)

has no 180-dimensional
G-subrepresentations by Lemma 17. Put q′5 = dim(Imψ5). Keeping in mind the split-
ting of U∨ ⊗ U45 described in Lemma 18, we see that q′5 equals either 90, or 135, or
225. Since q5 = 270, there must exist a (possibly reducible) G-subrepresentation of
H0(IV ⊗ OP8(5)) of dimension q5 − q′5, i.e., of dimension 180, 135 and 45, respectively.
Neither of these cases is possible by Lemma 17 (in particular, the second case is impos-
sible since H0

(

IV ⊗ OP8(5)
)

contains a unique G-invariant subspace of dimension 135).
Therefore, one has n 6= 4.
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Finally, we see that n = 5. Then q6 = 39, so that by Lemma 17 there is an irre-
ducible 24-dimensional G-subrepresentation U24 ⊂ H0(IV ⊗ OP8(6)). Therefore there is
a morphism of G-representations ψ7 : U

∨ ⊗ U24 → H0(IV ⊗OP8(7)), which is a non-zero
map by Remark 45. Since U∨ ⊗ U24 is an irreducible 216-dimensional G-representation
by Lemma 19, we see that ψ7 is injective. Since q7 = 270, there must exist a (possibly
reducible) G-subrepresentation of H0(IV ⊗OP8(7)) of dimension 270−216 = 54, which is
impossible by Lemma 17. The obtained contradiction completes the proof of Theorem 6.
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