
ON THE RATIONALITY OF NON-GORENSTEIN

Q-FANO 3-FOLDS WITH AN INTEGER FANO INDEX

Ivan Cheltsov

All varieties are de�ned over C and projective. Notations and notions are contained in
[KMM]. I express my thanks to professors V.A. Iskovskikh and Yu.G. Prokhorov for their
kind attitude to me.

x1. Introduction.

1.1. The main purpose of this article is to prove the following:
Theorem: Let X be a non-Gorenstein Q -Fano 3-fold with canonical singularities, such
that �KX � H, where H is a Cartier divisor. If H3 � 10, then X is rational.
1.2. The main application of 1.1 is the following:
Corollary: Let X be a normal 3-fold and H be a hyperplane section of X, such that H
is an Enriques surface with Du Val singularities. Then either X is a cone over H or X is
rational.
Proof: It follows from [Ch] that X is non-Gorenstein, �2KX � 2H and either X is a
cone over H or X has canonical singularities. In the last case H3 � 10 (see [CD]) and X

is rational by 1.1. �

1.3. Remark: In 1.2, we can assume that X is even non-normal, but the properties of H
imply that X is reduced and irreducible. In that case, it follows from [KMM, 7-2-4] that
X has canonical Gorenstein singularities along H. Thus, we can take the normalization of
X and repeat proof of 1.2 using 1.1.
1.4. Biregular classi�cation of 3-folds containing Enriques surface as a hyperplane section
was considered by G. Fano in [F], where he \proved" that they are rational and even
\classi�ed" them, but his paper is incorrect. A. Conte and J.P. Murre renovated G. Fano's
ideas in [CM] conjecturing unproved facts.
1.5. From the modern point of view, 1.4 can be generalized in the following way:
Problem: To classify all normal 3-folds containing Enriques surface with Du Val singula-
rities as an ample Cartier divisor.
1.6. De�nition: Let X be a 3-fold with canonical singularities, such that �KX is ample,
i.e. Q -Fano 3-fold with canonical singularities. Fano index of X is the maximal number �,
such that �KX � �H, where H is a Cartier divisor. � is a well-de�ned positive rational
number.
1.7. In [Ch] I proved the following:
Theorem: Let X be a normal 3-fold and H be an ample Cartier divisor on X, such that
H is an Enriques surface with Du Val singularities. Then either X is a generalized cone
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over H or X is a non-Gorenstein Q -Fano 3-fold with canonical singularities and an integer
Fano index.
1.8. In [P] Yu.G. Prokhorov proved the following:
Theorem: Let X be a non-Gorenstein Q -Fano 3-fold with canonical singularities, such
that �KX � H, where H is a Cartier divisor. Then the general element of jHj is an
Enriques surface with Du Val singularities.
1.9. Remark: It follows from 1.7 and 1.8 that, except generalized cones, 1.5 is equivalent
to the classi�cation of non-Gorenstein Q -Fano 3-fold with canonical singularities and an
integer Fano index. In the case of 3-folds with terminal cyclic quotient singularities the
last problem was solved in [B] and [S].

x2. Non-Gorenstein Q -Fano 3-folds with an integer Fano index.

2.1. Lemma: In 1.8, one of the following holds:

(1) BsjHj = ;;
(2) BsjHj = fp1; p2g, where p1 and p2 are simple base points of jHj, in particular, X

and the general member of jHj are both smooth at p1 and p2;
(3) BsjHj = fpg and H3 = 2.

Moreover, �2KX � 2H and dimjHj = 1
2H

3 + 1.
Proof: See [P, 3.3] and [Ch].
2.2. Remark: In 1.8, suppose that H3 � 4. If BsjHj 6= ;, then �jHj is a rational map of
degree two, which is not de�ned only in p1 and p2. In that case jHj is called hyperelliptic.
If BsjHj = ;, then, by [CD, 4.5.1, 4.6.3 and 4.7.1], one of the following holds:

(1) �jHj is a birational morphism;

(2) �jHj is a morphism of degree two and H3 = 6 or 8;

(3) H3 = 4 and �jHj : X ! P3 is a morphism of degree four;

Moreover, in the last case X is a quotient of an intersection of three quadrics in P6 by an
involution with a �nite number of �xed points (see [CD, 4.9.2] and [I, 3.5]).
2.3. Lemma: In 2.2, let jHOj be a linear system of elements of jHj containing O, where
O is a non-Gorenstein point of X. Then jHOj is not composed from the pencil and has no
�xed components.
Proof: It is easy to show that dim(�jHj(X)) = 3, so jHOj is not composed from the pencil.
Suppose that jHOj has a base component E, then dim(�jHj(E)) = 0. Intersection of E
and the general member of jHj is a curve, hence �jHj(jHj) contains �jHj(E), which is a
contradiction. �

x3. Linear system with maximal singularity.

3.1. In 2.3, KX + jHOj (or pair (KX ; jHOj)) is not canonical in the sense of [A] or, in
other terms, linear system jHOj has maximal singularity in the sense of V.A. Iskovskikh.
Indeed, in the neighbourhood of O elements of jHOj are non-Gorenstein and, in particular,
have singularities worse than Du Val. The latter implies that KX + jHOj is not canonical.

3.2. In 3.1, let f : ~X ! X be a terminal modi�cation for KX + jHOj (see [A]) and

j ~HOj = f�1(jHOj). Then K ~X + j ~HOj � �B, where B is a non-zero e�ective f -exceptional

2



divisor. After (K ~X + j ~HOj)-Minimal Model Program we will obtain (KX̂ + jĤOj)-negative

extremal �bration g : X̂ ! Z, where jĤOj is a strict transform of jHOj on X̂.

x4. The main case.

4.1. Lemma: In 3.2, suppose that jĤOj is not contained in the �bers of g. Then X is
rational.
Proof: It is a well-known fact, see, for example, [A, 4.3]. �

4.2. Lemma: In 3.2, suppose that dim(Z) = 1. Then X is rational.
Proof: It follows from 2.3 and 4.1. �

4.3. Lemma: In 3.2, suppose that dim(Z) = 0 and H3 � 10. Then X is rational.

Proof: X̂ is a Q -Fano 3-fold with Q -factorial terminal singularities, Pic(X̂) = Z.

Terminality of KX̂ + jĤOj implies that jĤOj can have only isolated base points, which

are smooth on both X̂ and the general element of jĤOj (see [A, 1.22]). The last statement,

Bertini theorem and the adjunction formula imply that the general element of jĤOj is a

smooth del Pezzo surface and a Cartier divisor on X̂. It follows from the classi�cation
of such pairs (X̂; jĤOj) (see [CF, 1.5]) that X̂ is rational, with the possible exception of

(X̂; jĤOj) falling into one of the following cases:

(1) (X6 � P(1; 1; 2; 2; 3); jX6 \ fT3 = 0gj);
(2) (X6 � P(1; 1; 1; 2; 3); jX6 \ fT0 = 0gj);
(3) (X4 � P(1; 1; 1; 1; 2); jX4 \ fT0 = 0gj);
(4) (X3 � P4; jX3 \ fT0 = 0gj).

Note that the above linear systems may be non-complete. Thus, jĤOj is a linear subsystem
of complete linear system of dimension 4, 2, 3, 4 in cases (1), (2), (3), (4), correspondingly,

but dimjĤOj = dimjHOj =
1
2H

3 � 5. �

4.4. Lemma: In 2.2, suppose that �jHj is birational and H3 � 10. Then X is rational.

Proof: By 4.1, 4.2 and 4.3, we may assume that g is a conic bundle and jĤOj is contained
in the �bers of g. This implies that dim(�jHOj(X)) = 2 and �jHj(X) is a cone with vertex

�jHj(O). Thus, the strict transform of the general element of jHj on X̂ is a rational section
of g and Z is birationally isomorphic to Enriques surface, but Z should be rational (see,
for example, [A, 4.3]). �

4.5. Remark: Actually, 4.4 is enough to prove 1.2, even with assumption of 1.3.
4.6. Remark: Similar arguments imply that if X is a Q -Fano 3-fold with canonical
singularities, dim(�j�KX j(X)) = 3 and the general element of j � KX j has singularities
worse than Du Val, then either X is rational or pair (X; j�KX j) is birationally equivalent
to one of the four pairs obtained in the proof of 4.3 (see also [A, 4.3]).
4.7. Remark: In classical terms the above construction is the \projection from the non-
Gorenstein point", which is the analogue of the famous \double projection" of G. Fano
and V.A. Iskovskikh (see [I]).

x5. The hyperelliptic case.

5.1. Suppose that 1.1 is wrong, then, in 2.2 and 3.2, the following holds:

(1) g : X̂ ! Z is a conic bundle and jĤOj is contained in the �bers of g;
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(2) jHj is hyperelliptic and �jHj(X) is a cone with vertex �jHj(O).

5.2. Lemma: In 5.1, let � : �X ! X be a resolution of the base locus of jHj, i.e. the
blow up of two smooth points p1 and p2 on X. If flg is a family of rulings of �jHj(X) and

f �Cg = ��1flg, then:

(1) Hf �Cg = 2;
(2) the general element of f �Cg is an irreducible rational curve, whose strict transform

on X̂ is the general �ber of g;
(3) ��1(pj)f �Cg = 0 (j = 1; 2).

Note that we will identify a family of curves with its general element when we intersect
the latter with a divisor.
Proof: It follows from 5.1 that the strict transform of the general element of f �Cg on X̂ is
contained in the �bers of g. Consider the following diagram:

�X
�
 �X

�
! X̂

g
! Z;

where �X is smooth, � and � are birational morphisms. �K �X � ��(H) � E, where
E is an e�ective �-exceptional divisor. 2 � �K �X�

�1(f �Cg) � Hf �Cg � 2. Therefore,
2 = �K �X�

�1(f �Cg) = Hf �Cg, which implies all the assertions. �

5.3. Lemma: In 5.2, let bsf �Cg 2 �X be a union of centers of all divisors of X̂ that
are exceptional on �X and not contained in the �bers of g. Then bsf �Cg is a �nite set of
isolated non-terminal points1 on �X, bsf �Cg 2 Bsj �HOj and � �H(bsf �Cg) = �jHj(O), where

j �Hj = ��1(jHj) and j �HOj = ��1(jHOj).
Proof: The two last assertions are obvious. To prove the �rst one suppose that bsf �Cg
contains an irreducible curve V . Then V should intersect ��1(p1) or �

�1(p2). Therefore
�X is smooth in the general point of V , which contradicts the inequality in the proof of 5.2.
In the same way, we obtain that bsf �Cg contains only isolated non-terminal points. �

5.4. Proof of 1.1: In 5.3, it follows from [CD, 4.5.1, 4.5.2 and 4.5.3] that:

(1) �j �Hj( �X) is a cone over Fi , where i = 0; 1 or 2;

(2) if s1 and e are the exceptional section and ruling of Fi , then �j �Hj( �X) is the

contraction Æ of the exceptional section M of 
 : P(OFi
� OFi

(h)) ! Fi , where
h � s1 + (i+ k)e and k = 1

4(H
3 � 2i� 2);

(3) the rami�cation divisor of �j �Hj consists of � �H(�
�1(pj)) (j = 1; 2) and divisor Æ(D),

where D � rM + 
�(4s1 + (4 + 2i)e).

We may assume that D does not containM . 5.2 implies that Æ�1(�j �Hj(�
�1(pj)) (j = 1; 2)

is contained in the �bers of 
. Note that r � 1, because otherwise ��1
j �Hj

(flg) splits, which

is impossible by 5.2. Moreover, r � 2, because r = 1 implies that g has a section and X is
rational. Let s0 be the general element in js1 + iej. Then 
�1(s0) �= Fi+k . Let s

0
1 and e0

be the exceptional section and ruling of 
�1(s0). Then Dj
�1(s0) � rs01 + (4 + 2i)e0 and

1Point �x 2 �X is isolated non-terminal if the desingularisation of �X contains an exceptional divisor with
zero discrepancy, whose image on �X is �x.
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Dj
�1(s0) does not contain s01. Latter implies that 4 + 2i � r(i+ k), r = 2 and only four
cases are possible:

(1) i = 0, k = 2, H3 = 10;
(2) i = 1, k = 2, H3 = 12;
(3) i = 2, k = 2, H3 = 14;
(4) i = 2, k = 1, H3 = 10.

In these cases we will use an improved version of the previous arguments. �j �Hj contracts

two divisors Bj to the lines bj contained in � �H(�
�1(pj)) (j = 1; 2), the general �ber of

�j �HjjBj is the elliptic curve (see [CD, 4.5.1]). It can be deduced from [Ch] that KX �
�H + �(B1 � B2). Note that at least one �(Bj) (j = 1; 2) should contain O. We claim
that �jHj(O) 2 bj (j = 1; 2). Suppose b1 conta ins �jHj(O), but b2 does not. Then �(Bj)
(j = 1; 2) is 2-Cartier and we may even assume that B2 and �(B2) are Cartier, because
otherwise KX is not Cartier in the points where �(B2) is not Cartier and we can apply
all the previous arguments to non-Gorenstein point of X di�erent from O, whose image
under �jHj is not the vertex of �jHj(X). Let T = ��1

j �Hj
(Æ(
�1(e)), then �(T ) � 2�(B2)

and T is Cartier. �(T )�(B2) = ;, because �(T ) can intersect �(B2) only in p2. Similarly,
T��1(p1) = ; and T does not contain ��1

j �Hj
(�jHj(O)), hence jT j is a free linear system.

The latter implies that bsfCg contains some curve in ��1
j �Hj

(�jHj(O)), which is impossible

by 5.3. Therefore, bj is a line in � �H(�
�1(pj)) (j = 1; 2) containing �jHj(O). It follows

from [CD, 4.5.2 and 4.5.3] that Æ(D) has singularities along bj (j = 1; 2). Now we are
ready to apply the arguments about Dj
�1(s) to the above cases, where s is a moveable

smooth curve in Fi . In the �rst case, let s � s1 + e, which contains �j �Hj( �H)bj (j = 1; 2),

where we identify �H with a general enough element in j �Hj and Fi . In the second case, let
s � s0, which contains �j �Hj( �H)bj (j = 1 or j = 2). In the last two cases, let s � s0, which

contains �j �Hj( �H)bj (j = 1; 2). Inequalities similar to the ones we used in the �rst part of
the proof give us a contradiction. �

x6. Addendum: the case of a small degree.

6.1. In this chapter we will prove the following:

Theorem: In 2.3, suppose that X has no isolated non-terminal non-Gorenstein points or
�jHj is birational. Then only the following possibilities exist:

(1) X is rational;
(2) pair (X; jHOj) is birationally equivalent to one of the four pairs obtained in the

proof of 4.3;
(3) X falls into case (3) of 2.2.

6.2. Remark: In 2.3, the non-rationality of X and 2.2 imply that either X falls into case
(3) of 2.2 or we can apply to X the arguments of the previous chapters except 5.4, because
we used there only non-rationality of X and deg(�H) = 1 or 2.

6.3. Lemma: Let S be an irreducible surface and fDg be a family of curves on S,
such that two general elements of fDg have non-empty intersection and have no common
components. Then the general element of fDg is connected.
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Proof: We may assume that S is normal. Let 
 : ~S ! S be the desingulrisation of S and
f�(fDg) be the numerical inverse image of the general element of fDg on ~S. The general

element of f�(fDg) is nef and big on ~S, which implies that f�(fDg) is connected. Thus,
the general element of f(f�(fDg)) is connected. �

6.4. Proof of 6.1: 5.3 implies that bsfCg does not contain non-Gorenstein points. Let
� : Y ! X be a canonical cover. Then the general element of ��1(fCg) is a disjoint
union of two rational curves. The general element of ��1(jHOj) is irreducible and we can
apply 6.3 to ��1(jHOj) and the subfamily of ��1(fCg) consisting of curves contained in
��1(jHOj). �

6.5. Remark: In 2.2, suppose X is not rational and does not fall into case (3). Then
either X is birationally equivalent to one of the four 3-folds obtained in the proof of 4.3
or dim(�j�KX j(X)) = 2, the general element of j � KX j has singularities worse than Du

Val and, in notations of 3.2, the strict transform of j �KX j on X̂ is contained in the �bers
of g. Indeed, restricting j � KX j on the general element of jHj we obtain that j � KX j
has no �xed components and dim(�j�KX j(X)) � 2. Suppose that dim(�j�KX j(X)) = 3,
then the general element of j �KX j has Du Val singularities, because otherwise either X
is rational or pair (X; j �KX j) is birationally equivalent to one of the four pairs obtained
in the proof of 4.3 (see 4.6). Thus, X has no isolated non-terminal non-Gorenstein points
and we can apply 6.1. Therefore, dim(�j�KX j(X)) = 2 and, as above, we obtain that the
general element of j � KX j has singularities worse than Du Val. Let � : X 0 ! X be a
terminal modi�cation for KX + j �KX j. Then

�KX0 � ��1(j �KX j) + F; 2 = �KX0��1(fCg) = (��1(j �KX j) + F )��1(fCg);

where F is a non-zero e�ective � -exceptional divisor. The arguments in the proof of 6.1
imply that F��1(fCg) > 0. If ��1(j � KX j)��1(fCg) = 1, then g has a section and X

is rational. Thus, ��1(j �KX j)��1(fCg) = 0, which implies that the strict transform of

j �KX j on X̂ is contained in the �bers of g.

x7. Applications: the case of terminal cyclic quotient singularities.

7.1. In this chapter, X andH are as in 2.2, andX has terminal cyclic quotient singularities.
The latter implies that X is a quotient of a smooth Fano 3-fold by an involution with eight
�xed points, which is the canonical cover of X (see [S]).
7.2. Corollary: In 7.1, suppose that the canonical cover of X is one of the following
3-folds:

(1) an intersection of three divisors of type (1; 1) in P3 � P3 (H3 = 10);
(2) P1 � S4 (H3 = 12);
(3) a divisor of type (1; 1; 1; 1) in P1 � P1 � P1 � P1 (H3 = 12);
(4) a blow up of the cone over a smooth qudric in P3 with the center in a disjoint union

of the vertex and an elliptic curve (H3 = 14);
(5) an intersection of two quadrics in P5 (H3 = 16);
(6) P1 � S6 (H3 = 18);
(7) P1 � P1 � P1 (H3 = 24);
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where Sj is the dell Pezzo surface of degree j. Then X is rational.
7.3. Remark: In 7.1, suppose that the canonical cover of X is one of the following
3-folds:

(1) P1 � S2 (H3 = 6);
(2) a blow up of an intersection of two quadrics in P5 with the center in an elliptic

curve, which is an intersection of two hyperplane sections (H3 = 8).

Then X is a blow up of (2) of 7.2 in the �rst case and (4) of 7.2 in the second, hence X is
rational.
7.4. Corollary: In 7.1, suppose that the canonical cover of X is a double cover of P3

rami�ed in a sextic (H3 = 8). Then either X is rational or pair (X; jHOj) is birationally
isomorphic to (X6 � P(1; 1; 2; 2; 3); jX6\fT3 = 0gj) with terminal Q -factorial singularities.
Proof: By 6.1, it is enough to show that pair (X; jHOj) is not birationally isomorphic to
(X3 � P4; jX3 \ fT0 = 0gj). By [B, 6.1.2], �jHj is a morphism of degree two and �jHj(X)
is an intersection of two quadrics, which implies the statement. �

7.5. Remark: In 7.1, suppose that the canonical cover of X is a blow up of a double
cover of P3 rami�ed in a sextic with the center in an elliptic curve, which is an intersection
of two elements of the half-anticanonical linear system (H3 = 4). Then X is a blow up of
3-fold from 7.4. Thus, either X is rational or pair (X; jHOj) is birationally isomorphic to
(X6 � P(1; 1; 2; 2; 3); jX6 \ fT3 = 0gj) with terminal Q -factorial singularities.
7.6. Enriques 3-fold: In 7.1, suppose that the canonical cover of X is a double cover
of P1 � P1 � P1 rami�ed in a divisor of type (1; 1; 1) (H3 = 6), then �jHj is birational
morphism to the non-normal 3-fold of degree six. It is well-known that:

(1) �H(X) can be represented in P3 by equation

x1x2x3x4(x
2
0 + x0

P4
i=1 aixi +

P4
i;j=1 bijxixj)+

+c1x
2
2x

2
3x

2
4 + c2x

2
1x

2
3x

2
4 + c3x

2
1x

2
2x

2
4 + c4x

2
1x

2
2x

2
3 = 0;

and if x0 = 0, then we obtain the classical representation of Enriques surfaces as a
sextic passing doubly through the edges of the tetrahedron;

(2) �H(X) has six double planes given by xi = xj = 0 (1 � i < j � 4), four triple
lines given by xi = xj = xk (1 � i < j < k � 4) and intersecting in one ordinary
quadruple point of �H(X);

(3) each triple line contains two non-ordinary quadruple points, which are the images
of eight non-Gorenstein points of X.

Projection from every non-triple line on �H(X) containing the images of two non-
Gorenstein points of X is a conic bundle structure2 on X. Moreover, it is easy to see
that all conic bundle structures on X given by linear subsystems of jHj can be obtained in

such a way. In [�E] S.Yu. �Endryushka and in [BV] L.P. Botta and A. Verra independently
proved that the general X is birationally equivalent to the standart conic bundle with a
smooth degeneration curve of genus �ve, whose primian is not a jacobian of a curve and is
isomorphic to the intermediate jacobian of X. Thus, the general X is not rational and, by

2The conic bundle structure is a rational map, which is birationally equivalent to a conic bundle.
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6.1, pair (X; jHOj) is birationally isomorphic to one of the following pairs with terminal
Q -factorial singularities:

(1) (X6 � P(1; 1; 2; 2; 3); jX6 \ fT3 = 0gj);
(2) (X3 � P4; jX3 \ fT0 = 0gj);
(3) (X4 � P(1; 1; 1; 1; 2); jX4 \ fT0 = 0gj).

Actually, only the third case occurs. Indeed, in the �rst case, �jX6\fT3=0gj is a morphism

of degree two to the singular quadric X2 in P
4. jHOj should correspond to the projection of

X2 to P
3 from a smooth point of X2 not contained in the singular locus of the rami�cation

divisor of �jX6\fT3=0gj. Latter implies that the normalization of the general element

of fH2
Og is a connected curve of genus two, but it is not very hard to show that the

normalization of the general element of fH2
Og is a connected curve of genus one, i.e. it is

a contradiction. In the second case, the cubic should be smooth. Hence its intermediate
jacobian J(X3) is a primian of standard conic bundle with a smooth degeneration curve
of genus six. Moreover, J(X3) is irreducible as a principally polarized abelian variety and
coincides with its GriÆths' component, which implies that the second case is impossible.
Thus, the pair (X; jHOj) is birationally isomorphic to (X4 � P(1; 1; 1; 1; 2); jX4\fT0 = 0gj).
�jX4\fT0=0gj : X4 ! P3 is a morphism of degree two rami�ed in quartic Q with isolated
singular points, which correspond to the singular points of X. The strict transform of jHOj
on X4 is the complete linear system j � 1

2KX4
j. The above arguments about conic bundle

structures on X given by linear subsystems of jHOj imply that Q has exactly six singular
points, which are the images under rational map �jHOj of non-Gorenstein points of X
not contained in one triple line with O. Moreover, Q contains three lines lj (j = 1; 2; 3),
which are the images under rational map �jHOj of double planes of �jHj(X) passing through

�jHj(O). Each lj contains two singular points of Q and \3j=1lj is a smooth point on Q,
which is the image under rational map �jHOj of the triple line containing �jHj(O).
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