ON THE RATIONALITY OF NON-GORENSTEIN
Q-FANO 3-FOLDS WITH AN INTEGER FANO INDEX

IvaN CHELTSOV

All varieties are defined over C and projective. Notations and notions are contained in

[KMM]. I express my thanks to professors V.A. Iskovskikh and Yu.G. Prokhorov for their
kind attitude to me.

§1. INTRODUCTION.

1.1. The main purpose of this article is to prove the following:

Theorem: Let X be a non-Gorenstein Q-Fano 3-fold with canonical singularities, such
that —Kx = H, where H is a Cartier divisor. If H3 > 10, then X is rational.

1.2. The main application of 1.1 is the following:

Corollary: Let X be a normal 3-fold and H be a hyperplane section of X, such that H
is an Enriques surface with Du Val singularities. Then either X is a cone over H or X is
rational.

Proof: It follows from [Ch] that X is non-Gorenstein, —2Kx ~ 2H and either X is a
cone over H or X has canonical singularities. In the last case H® > 10 (see [CD]) and X
is rational by 1.1. [

1.3. Remark: In 1.2, we can assume that X is even non-normal, but the properties of H
imply that X is reduced and irreducible. In that case, it follows from [KMM, 7-2-4] that
X has canonical Gorenstein singularities along H. Thus, we can take the normalization of
X and repeat proof of 1.2 using 1.1.

1.4. Biregular classification of 3-folds containing Enriques surface as a hyperplane section
was considered by G. Fano in [F|, where he “proved” that they are rational and even
“classified” them, but his paper is incorrect. A. Conte and J.P. Murre renovated G. Fano’s
ideas in [CM] conjecturing unproved facts.

1.5. From the modern point of view, 1.4 can be generalized in the following way:
Problem: To classify all normal 3-folds containing Enriques surface with Du Val singula-
rities as an ample Cartier divisor.

1.6. Definition: Let X be a 3-fold with canonical singularities, such that —Kx is ample,
i.e. Q-Fano 3-fold with canonical singularities. Fano index of X is the maximal number A,
such that —Kx = AH, where H is a Cartier divisor. A is a well-defined positive rational
number.

1.7. In [Ch] I proved the following:

Theorem: Let X be a normal 3-fold and H be an ample Cartier divisor on X, such that
H is an Enriques surface with Du Val singularities. Then either X is a generalized cone
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over H or X is a non-Gorenstein Q-Fano 3-fold with canonical singularities and an integer
Fano index.

1.8. In [P] Yu.G. Prokhorov proved the following:

Theorem: Let X be a non-Gorenstein Q-Fano 3-fold with canonical singularities, such
that —Kx = H, where H is a Cartier divisor. Then the general element of |H| is an
Enriques surface with Du Val singularities.

1.9. Remark: It follows from 1.7 and 1.8 that, except generalized cones, 1.5 is equivalent
to the classification of non-Gorenstein Q-Fano 3-fold with canonical singularities and an
integer Fano index. In the case of 3-folds with terminal cyclic quotient singularities the
last problem was solved in [B] and [S].

62. NON-GORENSTEIN Q-FANO 3-FOLDS WITH AN INTEGER FANO INDEX.

2.1. Lemma: In 1.8, one of the following holds:
(1) Bs|H| = 0;
(2) Bs|H| = {p1,p2}, where p; and po are simple base points of |H|, in particular, X
and the general member of |H| are both smooth at p; and ps;
(3) Bs|H| = {p} and H3 = 2.
Moreover, —2Kx ~ 2H and dim|H| = 1 H? + 1.
Proof: See [P, 3.3] and [Ch].
2.2. Remark: In 1.8, suppose that H3 > 4. If Bs|H| # (), then ¢|m| is a rational map of

degree two, which is not defined only in p; and ps. In that case |H| is called hyperelliptic.
If Bs|H| = (), then, by [CD, 4.5.1, 4.6.3 and 4.7.1], one of the following holds:

(1) ¢y is a birational morphism;
(2) ¢ymy is a morphism of degree two and H3 =6 or §;
(3) H? =4 and ¢y : X — P? is a morphism of degree four;

Moreover, in the last case X is a quotient of an intersection of three quadrics in P® by an
involution with a finite number of fixed points (see [CD, 4.9.2] and [I, 3.5]).

2.3. Lemma: In 2.2, let |Hp| be a linear system of elements of |H| containing O, where
O is a non-Gorenstein point of X. Then |Hp| is not composed from the pencil and has no
fixed components.

Proof: It is easy to show that dim(¢g((X)) = 3, so |Hp| is not composed from the pencil.
Suppose that [Hp| has a base component £, then dim(¢|z((£)) = 0. Intersection of
and the general member of |H| is a curve, hence ¢z |(|H|) contains ¢ g (£), which is a
contradiction. [

§3. LINEAR SYSTEM WITH MAXIMAL SINGULARITY.

3.1. In 2.3, Kx + |Ho| (or pair (Kx,|Ho|)) is not canonical in the sense of [A] or, in
other terms, linear system |Hp| has maximal singularity in the sense of V.A. Iskovskikh.
Indeed, in the neighbourhood of O elements of |Hp| are non-Gorenstein and, in particular,
have singularities worse than Du Val. The latter implies that Kx + |Ho| is not canonical.
3.2. In 3.1, let f : X — X be a terminal modification for Kx + |Ho| (see [A]) and
|Ho| = f~*(|Ho|). Then K ¢ + |Ho| = — B, where B is a non-zero effective f-exceptional
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divisor. After (K ¢ + |Ho|)-Minimal Model Program we will obtain (K ¢ + |Ho|)-negative
extremal fibration g : X — Z, where |Hp| is a strict transform of [Hp| on X.

§4. THE MAIN CASE.

4.1. Lemma: In 3.2, suppose that |ﬁo| is not contained in the fibers of g. Then X is
rational.

Proof: It is a well-known fact, see, for example, [A, 4.3]. O

4.2. Lemma: In 3.2, suppose that dim(Z) = 1. Then X is rational.

Proof: It follows from 2.3 and 4.1. [

4.3. Lemma: In 3.2, suppose that dim(Z) = 0 and H® > 10. Then X is rational.
Proof: X is a QFano 3-fold with Q-factorial terminal singularities, Pic(f( ) = Z.
Terminality of K¢ + |Ho| implies that |Ho| can have only isolated base points, which
are smooth on both X and the general element of |Ho| (see [A, 1.22]). The last statement,
Bertini theorem and the adjunction formula imply that the general element of |I:IO| is a
smooth del Pezzo surface and a Cartier divisor on X. It follows from the classification
of such pairs (X,|Hop|) (see [CF, 1.5]) that X is rational, with the possible exception of
(X, |Ho|) falling into one of the following cases:

(1) (XG C ]P)(lv 1,2, 2?3)7 |X6 N {T3 = 0}|);

(2) (XG C ]P)(lv 1,1, 2?3)7 |X6 N {TO = 0}|);

(3) (X4 CP(1,1,1,1,2),| X4 N {Ty = 0}]);

(4) (X3 C P4 |X3n {Ty = 0}]).

Note that the above linear systems may be non-complete. Thus, |ET o] is a linear subsystem
of complete linear system of dimension 4, 2, 3, 4 in cases (1), (2), (3), (4), correspondingly,
but dim|Ho| = dim|Ho| = 1 H? > 5. O

4.4. Lemma: In 2.2, suppose that ¢ g is birational and H3 > 10. Then X is rational.
Proof: By 4.1, 4.2 and 4.3, we may assume that g is a conic bundle and |ETO| is contained
in the fibers of g. This implies that dim(¢|z,(X)) = 2 and ¢5|(X) is a cone with vertex

¢1i)(O). Thus, the strict transform of the general element of |H| on X is a rational section
of g and Z is birationally isomorphic to Enriques surface, but Z should be rational (see,
for example, [A, 4.3]). O

4.5. Remark: Actually, 4.4 is enough to prove 1.2, even with assumption of 1.3.

4.6. Remark: Similar arguments imply that if X is a Q-Fano 3-fold with canonical
singularities, dim(¢|_x,|(X)) = 3 and the general element of | — Kx| has singularities
worse than Du Val, then either X is rational or pair (X, | — Kx|) is birationally equivalent
to one of the four pairs obtained in the proof of 4.3 (see also [A, 4.3]).

4.7. Remark: In classical terms the above construction is the “projection from the non-
Gorenstein point”, which is the analogue of the famous “double projection” of G. Fano
and V.A. Iskovskikh (see [I}).

§5. THE HYPERELLIPTIC CASE.

5.1. Suppose that 1.1 is wrong, then, in 2.2 and 3.2, the following holds:
(1) g : X — Z is a conic bundle and |Hp| is contained in the fibers of g;
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(2) |H| is hyperelliptic and ¢z(X) is a cone with vertex ¢z(O).
5.2. Lemma: In 5.1, let 7 : X — X be a resolution of the base locus of |H|, i.e. the

blow up of two smooth points p; and p on X. If {I} is a family of rulings of ¢ z|(X) and
{C} = 7= {1}, then:

(1) H{C} =2;
(2) the general element of {C'} is an irreducible rational curve, whose strict transform
on X is the general fiber of g;

(3) 7 Lp){CY =0 (i = 1, 2).
Note that we will identify a family of curves with its general element when we intersect
the latter with a divisor.
Proof: It follows from 5.1 that the strict transform of the general element of {C'} on X is
contained in the fibers of g. Consider the following diagram:

x&exA x4z

where X is smooth, a and S are birational morphisms. —Ky = o*(H) — E, where
E is an effective a-exceptional divisor. 2 < —Kga~1({C}) < H{C} < 2. Therefore,
2 =—-Kya }({C}) = H{C}, which implies all the assertions. [J
5.3. Lemma: In 5.2, let bs{C} € X be a union of centers of all divisors of X that
are exceptional on X and not contained in the fibers of g. Then bs{C} is a finite set of
isolated non-terminal points’ on X, bs{C'} € Bs|Ho| and ¢z (bs{C}) = ¢z(O), where
|H| = =~(|H]) and |Ho| = 7~*(|Ho). i
Proof: The two last assertions are obvious. To prove the first one suppose that bs{C}
contains an irreducible curve V. Then V should intersect 7=!(p;) or 7= (p2). Therefore
X is smooth in the general point of V', which contradicts the inequality in the proof of 5.2.
In the same way, we obtain that bs{C} contains only isolated non-terminal points. [
5.4. Proof of 1.1: In 5.3, it follows from [CD, 4.5.1, 4.5.2 and 4.5.3] that:
(1) ¢y7)(X) is a cone over F;, where i =0, 1 or 2;
(2) if $oo and e are the exceptional section and ruling of F;, then ¢ z/(X) is the
contraction 0 of the exceptional section M of v : P(Op, ® O, (h)) — F;, where
h~ Soo+ (i + k)e and k = (H?® — 2i — 2);
(3) the ramification divisor of @z consists of ¢ (7~ (p;)) (j = 1, 2) and divisor 6(D),
where D ~ rM + v* (4500 + (4 + 2i)e).
We may assume that D does not contain M. 5.2 implies that 6~ (¢yz (7 (p;)) (4 =1, 2)
is contained in the fibers of 7. Note that r» > 1, because otherwise ¢|_F}| ({I}) splits, which

is impossible by 5.2. Moreover, » > 2, because r = 1 implies that g has a section and X is
rational. Let so be the general element in |so + ie|. Then v~ 1(sg) = Fi4 4. Let s’ and €’
be the exceptional section and ruling of y~"(sg). Then D|,-1(y,) ~ 5., + (4 + 2i)e’ and

1Point € X is isolated non-terminal if the desingularisation of X contains an exceptional divisor with
zero discrepancy, whose image on X is .



Dl -1(s,) does not contain s/ . Latter implies that 4 + 2i > r(i + k), r = 2 and only four
cases are possible:

(1) i=0, k=2, H? = 10;

(2) i=1,k=2, H®=12;

(3) i=2, k=2, H>=14;

(4) i=2, k=1, H®=10.
In these cases we will use an improved version of the previous arguments. ¢z contracts
two divisors B; to the lines b; contained in ¢z (7~ *(p;)) (j = 1, 2), the general fiber of
¢a|B; is the elliptic curve (see [CD, 4.5.1]). It can be deduced from [Ch] that Kx ~
—H + w(B; — B). Note that at least one 7(B;) (j = 1, 2) should contain O. We claim
that ¢|z)(O) € bj (j =1, 2). Suppose by conta ins ¢g((0), but by does not. Then 7(B;)
(j =1, 2) is 2-Cartier and we may even assume that Bs and w(Bsg) are Cartier, because
otherwise K x is not Cartier in the points where 7(B3) is not Cartier and we can apply
all the previous arguments to non-Gorenstein point of X different from O, whose image
under ¢g| is not the vertex of ¢g(X). Let T = ¢|_F}| (6(y~1(e)), then 7(T) ~ 27m(B>)
and T is Cartier. 7(T)m(Bz2) = ), because 7(T) can intersect 7(Bz) only in ps. Similarly,

Trn~(p1) = 0 and T does not contain ¢3|}}|(¢|H|(O)), hence |T'| is a free linear system.
The latter implies that bs{C} contains some curve in ¢|}—}|(¢5| u|(0)), which is impossible
by 5.3. Therefore, b; is a line in ¢z (7~ (p;)) (j = 1, 2) containing ¢ g (0). It follows
from [CD, 4.5.2 and 4.5.3] that 0(D) has singularities along b; (j = 1, 2). Now we are
ready to apply the arguments about D|771(S) to the above cases, where s is a moveable
smooth curve in ;. In the first case, let s ~ s + ¢, which contains ¢ g(H)b; (j =1, 2),
where we identify H with a general enough element in |H| and F;. In the second case, let

s ~ $p, which contains ¢|g|(ﬂ)bj (j =1 or j=2). In the last two cases, let s ~ so, which

contains ¢,z (H)b; (j =1, 2). Inequalities similar to the ones we used in the first part of
the proof give us a contradiction. [

§6. ADDENDUM: THE CASE OF A SMALL DEGREE.

6.1. In this chapter we will prove the following;:
Theorem: In 2.3, suppose that X has no isolated non-terminal non-Gorenstein points or
¢ym is birational. Then only the following possibilities exist:

(1) X is rational;

(2) pair (X, |Hp|) is birationally equivalent to one of the four pairs obtained in the
proof of 4.3;

(3) X falls into case (3) of 2.2.

6.2. Remark: In 2.3, the non-rationality of X and 2.2 imply that either X falls into case
(3) of 2.2 or we can apply to X the arguments of the previous chapters except 5.4, because
we used there only non-rationality of X and deg(¢g) =1 or 2.

6.3. Lemma: Let S be an irreducible surface and {D} be a family of curves on S,
such that two general elements of {D} have non-empty intersection and have no common
components. Then the general element of {D} is connected.
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Proof: We may assume that S is normal. Let v: S — S be the desingulrisation of S and
F*({D}) be the numerical inverse image of the general element of {D} on S. The general
element of f*({D}) is nef and big on S, which implies that f*({D}) is connected. Thus,
the general element of f(f*({D})) is connected. O

6.4. Proof of 6.1: 5.3 implies that bs{C'} does not contain non-Gorenstein points. Let
o0 :Y — X be a canonical cover. Then the general element of o=1({C}) is a disjoint
union of two rational curves. The general element of o ~1(|Hp|) is irreducible and we can
apply 6.3 to 0 ~!(|Hp|) and the subfamily of o=1({C}) consisting of curves contained in
o (|Hol). O

6.5. Remark: In 2.2, suppose X is not rational and does not fall into case (3). Then
either X is birationally equivalent to one of the four 3-folds obtained in the proof of 4.3
or dim(¢|_g (X)) = 2, the general element of | — K x| has singularities worse than Du

Val and, in notations of 3.2, the strict transform of | — Kx| on X is contained in the fibers
of g. Indeed, restricting | — Kx| on the general element of |H| we obtain that | — Kx|
has no fixed components and dim(¢|_x (X)) > 2. Suppose that dim(¢|_g (X)) = 3,
then the general element of | — K x| has Du Val singularities, because otherwise either X
is rational or pair (X, | — Kx/|) is birationally equivalent to one of the four pairs obtained
in the proof of 4.3 (see 4.6). Thus, X has no isolated non-terminal non-Gorenstein points
and we can apply 6.1. Therefore, dim(¢|_x (X)) = 2 and, as above, we obtain that the
general element of | — K x| has singularities worse than Du Val. Let 7 : X’ — X be a
terminal modification for Kx + | — Kx|. Then

—Kx ~7 (|- Kx|)+ F, 2=—-Kx7 ' ({C}) = (1| - Kx|) + F)7 ' ({C}),

where F' is a non-zero effective 7-exceptional divisor. The arguments in the proof of 6.1
imply that Fr=1({C}) > 0. If 77}(] — Kx|)7~1({C}) = 1, then g has a section and X
is rational. Thus, 771(] — Kx|)77}({C}) = 0, which implies that the strict transform of
| — Kx| on X is contained in the fibers of g.

§7. APPLICATIONS: THE CASE OF TERMINAL CYCLIC QUOTIENT SINGULARITIES.

7.1. In this chapter, X and H are as in 2.2, and X has terminal cyclic quotient singularities.
The latter implies that X is a quotient of a smooth Fano 3-fold by an involution with eight
fixed points, which is the canonical cover of X (see [S]).

7.2. Corollary: In 7.1, suppose that the canonical cover of X is one of the following
3-folds:

(1) an intersection of three divisors of type (1,1) in P? x P? (H3 = 10);

(2) P! x Sy (H? =12);

(3) a divisor of type (1,1,1,1) in P! x P x P! x P! (H? = 12);

(4) a blow up of the cone over a smooth qudric in P? with the center in a disjoint union
of the vertex and an elliptic curve (H? = 14);

(5) an intersection of two quadrics in P° (H? = 16);

(6) P x S (H® = 18);

(7) P! x P! x P! (H3 = 24);



where S; is the dell Pezzo surface of degree j. Then X is rational.

7.3. Remark: In 7.1, suppose that the canonical cover of X is one of the following
3-folds:

(1) P! x Sy (H? = 6);
(2) a blow up of an intersection of two quadrics in P5 with the center in an elliptic
curve, which is an intersection of two hyperplane sections (H3 = 8).

Then X is a blow up of (2) of 7.2 in the first case and (4) of 7.2 in the second, hence X is
rational.

7.4. Corollary: In 7.1, suppose that the canonical cover of X is a double cover of P2
ramified in a sextic (H® = 8). Then either X is rational or pair (X,|Hp|) is birationally
isomorphic to (X¢ C P(1,1,2,2,3),|XsN{T5 = 0}|) with terminal Q-factorial singularities.
Proof: By 6.1, it is enough to show that pair (X,|Hp|) is not birationally isomorphic to
(X3 € P4, |X3N{Tp = 0}|). By [B, 6.1.2], ¢ is a morphism of degree two and ¢z |(X)
is an intersection of two quadrics, which implies the statement. [

7.5. Remark: In 7.1, suppose that the canonical cover of X is a blow up of a double
cover of P2 ramified in a sextic with the center in an elliptic curve, which is an intersection
of two elements of the half-anticanonical linear system (H3 = 4). Then X is a blow up of
3-fold from 7.4. Thus, either X is rational or pair (X, |Hp|) is birationally isomorphic to
(X6 C P(1,1,2,2,3), | X6 N {T5 = 0}|) with terminal Q-factorial singularities.

7.6. Enriques 3-fold: In 7.1, suppose that the canonical cover of X is a double cover
of P! x P! x P! ramified in a divisor of type (1,1,1) (H® = 6), then ¢4 is birational
morphism to the non-normal 3-fold of degree six. It is well-known that:

(1) ¢r(X) can be represented in P? by equation

4 4
21 8ow34 (0] + w0 Doy @iwi + Doy iy bijTiws)+
+clm%m§mi + CQ:E%;U%;UZ + Cgl'%l’%l’i + 043:%:17%:17% =0,
and if (o = 0, then we obtain the classical representation of Enriques surfaces as a
sextic passing doubly through the edges of the tetrahedron;

(2) ¢u(X) has six double planes given by z; = z; = 0 (1 < i < j < 4), four triple
lines given by x; = z; = x5 (1 <4 < j < k < 4) and intersecting in one ordinary
quadruple point of ¢ (X);

(3) each triple line contains two non-ordinary quadruple points, which are the images
of eight non-Gorenstein points of X.

Projection from every mnon-triple line on ¢z (X) containing the images of two non-
Gorenstein points of X is a conic bundle structure? on X. Moreover, it is easy to see
that all conic bundle structures on X given by linear subsystems of |H| can be obtained in
such a way. In [E] S.Yu. Endryushka and in [BV] L.P. Botta and A. Verra independently
proved that the general X is birationally equivalent to the standart conic bundle with a
smooth degeneration curve of genus five, whose primian is not a jacobian of a curve and is
isomorphic to the intermediate jacobian of X. Thus, the general X is not rational and, by

2The conic bundle structure is a rational map, which is birationally equivalent to a conic bundle.



6.1, pair (X, |Hop|) is birationally isomorphic to one of the following pairs with terminal
Q-factorial singularities:

(1) (XG C ]P)(lv 1,2, 2?3)7 |X6 N {T3 = 0}|);

(2) (X3 C P | X530 {Tp = 0}));

(3) (X4 CcP(1,1,1,1,2),| X4yN {To = 0}]).
Actually, only the third case occurs. Indeed, in the first case, ¢|x;n{r,=0}| i @ morphism
of degree two to the singular quadric X5 in P4. |Hp| should correspond to the projection of
X, to P? from a smooth point of X5 not contained in the singular locus of the ramification
divisor of ¢|x;n{7,=0}|- Latter implies that the normalization of the general element
of {H2} is a connected curve of genus two, but it is not very hard to show that the
normalization of the general element of {H3} is a connected curve of genus one, i.e. it is
a contradiction. In the second case, the cubic should be smooth. Hence its intermediate
jacobian J(X3) is a primian of standard conic bundle with a smooth degeneration curve
of genus six. Moreover, J(X3) is irreducible as a principally polarized abelian variety and
coincides with its Griffiths’ component, which implies that the second case is impossible.
Thus, the pair (X, |Ho|) is birationally isomorphic to (X4 C P(1,1,1,1,2), | X4N{Ty = 0}]).
| xyn{To=0}| : X4 — P3 is a morphism of degree two ramified in quartic Q with isolated
singular points, which correspond to the singular points of X. The strict transform of |Ho|
on X4 is the complete linear system | — %K x,|- The above arguments about conic bundle
structures on X given by linear subsystems of |Hp| imply that @ has exactly six singular
points, which are the images under rational map ¢ g, of non-Gorenstein points of X
not contained in one triple line with O. Moreover, @) contains three lines [; (j =1, 2, 3),
which are the images under rational map ¢, z,,| of double planes of ¢|z(X) passing through
¢1m)(0). Each I; contains two singular points of @ and ﬂ?zllj is a smooth point on @,
which is the image under rational map ¢g,,| of the triple line containing ¢ g(O).
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