ON THE RATIONALITY OF NON-GORENSTEIN Q-FANO 3-FOLDS WITH AN INTEGER FANO INDEX

IVAN CHELTSOV

All varieties are defined over \mathbb{C} and projective. Notations and notions are contained in [KMM]. I express my thanks to professors V.A. Iskovskikh and Yu.G. Prokhorov for their kind attitude to me.

§1. INTRODUCTION.

1.1. The main purpose of this article is to prove the following:

Theorem: Let X be a non-Gorenstein Q-Fano 3-fold with canonical singularities, such that $-K_X \equiv H$, where H is a Cartier divisor. If $H^3 \geq 10$, then X is rational.

1.2. The main application of 1.1 is the following:

Corollary: Let X be a normal 3-fold and H be a hyperplane section of X, such that H is an Enriques surface with Du Val singularities. Then either X is a cone over H or X is rational.

Proof: It follows from [Ch] that X is non-Gorenstein, $-2K_X \sim 2H$ and either X is a cone over H or X has canonical singularities. In the last case $H^3 \geq 10$ (see [CD]) and X is rational by 1.1. \Box

1.3. Remark: In 1.2, we can assume that X is even non-normal, but the properties of H imply that X is reduced and irreducible. In that case, it follows from [KMM, 7-2-4] that X has canonical Gorenstein singularities along H. Thus, we can take the normalization of X and repeat proof of 1.2 using 1.1.

1.4. Biregular classification of 3-folds containing Enriques surface as a hyperplane section was considered by G. Fano in [F], where he "proved" that they are rational and even "classified" them, but his paper is incorrect. A. Conte and J.P. Murre renovated G. Fano's ideas in [CM] conjecturing unproved facts.

1.5. From the modern point of view, 1.4 can be generalized in the following way:

Problem: To classify all normal 3-folds containing Enriques surface with Du Val singularities as an ample Cartier divisor.

1.6. Definition: Let X be a 3-fold with canonical singularities, such that $-K_X$ is ample, i.e. Q-Fano 3-fold with canonical singularities. Fano index of X is the maximal number λ , such that $-K_X \equiv \lambda H$, where H is a Cartier divisor. λ is a well-defined positive rational number.

1.7. In [Ch] I proved the following:

Theorem: Let X be a normal 3-fold and H be an ample Cartier divisor on X, such that H is an Enriques surface with Du Val singularities. Then either X is a generalized cone

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

over H or X is a non-Gorenstein Q-Fano 3-fold with canonical singularities and an integer Fano index.

1.8. In [P] Yu.G. Prokhorov proved the following:

Theorem: Let X be a non-Gorenstein \mathbb{Q} -Fano 3-fold with canonical singularities, such that $-K_X \equiv H$, where H is a Cartier divisor. Then the general element of |H| is an Enriques surface with Du Val singularities.

1.9. Remark: It follows from 1.7 and 1.8 that, except generalized cones, 1.5 is equivalent to the classification of non-Gorenstein Q-Fano 3-fold with canonical singularities and an integer Fano index. In the case of 3-folds with terminal cyclic quotient singularities the last problem was solved in [B] and [S].

§2. Non-Gorenstein \mathbb{Q} -Fano 3-folds with an integer Fano index.

2.1. Lemma: In 1.8, one of the following holds:

- (1) $\operatorname{Bs}|H| = \emptyset;$
- (2) $Bs|H| = \{p_1, p_2\}$, where p_1 and p_2 are simple base points of |H|, in particular, X and the general member of |H| are both smooth at p_1 and p_2 ;
- (3) $Bs|H| = \{p\}$ and $H^3 = 2$.

Moreover, $-2K_X \sim 2H$ and $\dim|H| = \frac{1}{2}H^3 + 1$. **Proof:** See [P, 3.3] and [Ch].

2.2. Remark: In 1.8, suppose that $H^3 \ge 4$. If $Bs|H| \neq \emptyset$, then $\phi_{|H|}$ is a rational map of degree two, which is not defined only in p_1 and p_2 . In that case |H| is called hyperelliptic. If $Bs|H| = \emptyset$, then, by [CD, 4.5.1, 4.6.3 and 4.7.1], one of the following holds:

- (1) $\phi_{|H|}$ is a birational morphism;
- (2) $\phi_{|H|}$ is a morphism of degree two and $H^3 = 6$ or 8; (3) $H^3 = 4$ and $\phi_{|H|} : X \to \mathbb{P}^3$ is a morphism of degree four;

Moreover, in the last case X is a quotient of an intersection of three quadrics in \mathbb{P}^6 by an involution with a finite number of fixed points (see [CD, 4.9.2] and [I, 3.5]).

2.3. Lemma: In 2.2, let $|H_O|$ be a linear system of elements of |H| containing O, where O is a non-Gorenstein point of X. Then $|H_O|$ is not composed from the pencil and has no fixed components.

Proof: It is easy to show that $\dim(\phi_{|H|}(X)) = 3$, so $|H_O|$ is not composed from the pencil. Suppose that $|H_O|$ has a base component E, then $\dim(\phi_{|H|}(E)) = 0$. Intersection of E and the general member of |H| is a curve, hence $\phi_{|H|}(|H|)$ contains $\phi_{|H|}(E)$, which is a contradiction.

$\S3$. Linear system with maximal singularity.

3.1. In 2.3, $K_X + |H_O|$ (or pair $(K_X, |H_O|)$) is not canonical in the sense of [A] or, in other terms, linear system $|H_O|$ has maximal singularity in the sense of V.A. Iskovskikh. Indeed, in the neighbourhood of O elements of $|H_O|$ are non-Gorenstein and, in particular, have singularities worse than Du Val. The latter implies that $K_X + |H_O|$ is not canonical. **3.2.** In 3.1, let $f: X \to X$ be a terminal modification for $K_X + |H_O|$ (see [A]) and $|\tilde{H}_O| = f^{-1}(|H_O|)$. Then $K_{\tilde{X}} + |\tilde{H}_O| \equiv -B$, where B is a non-zero effective f-exceptional divisor. After $(K_{\tilde{X}} + |\tilde{H}_O|)$ -Minimal Model Program we will obtain $(K_{\hat{X}} + |\hat{H}_O|)$ -negative extremal fibration $g: \hat{X} \to Z$, where $|\hat{H}_O|$ is a strict transform of $|H_O|$ on \hat{X} .

$\S4$. The main case.

4.1. Lemma: In 3.2, suppose that $|\hat{H}_O|$ is not contained in the fibers of g. Then X is rational.

Proof: It is a well-known fact, see, for example, [A, 4.3].

4.2. Lemma: In 3.2, suppose that $\dim(Z) = 1$. Then X is rational.

Proof: It follows from 2.3 and 4.1. \Box

4.3. Lemma: In 3.2, suppose that $\dim(Z) = 0$ and $H^3 \ge 10$. Then X is rational.

Proof: \hat{X} is a Q-Fano 3-fold with Q-factorial terminal singularities, $\operatorname{Pic}(\hat{X}) = \mathbb{Z}$. Terminality of $K_{\hat{X}} + |\hat{H}_O|$ implies that $|\hat{H}_O|$ can have only isolated base points, which are smooth on both \hat{X} and the general element of $|\hat{H}_O|$ (see [A, 1.22]). The last statement, Bertini theorem and the adjunction formula imply that the general element of $|\hat{H}_O|$ is a smooth del Pezzo surface and a Cartier divisor on \hat{X} . It follows from the classification of such pairs $(\hat{X}, |\hat{H}_O|)$ (see [CF, 1.5]) that \hat{X} is rational, with the possible exception of $(\hat{X}, |\hat{H}_O|)$ falling into one of the following cases:

- (1) $(X_6 \subset \mathbb{P}(1, 1, 2, 2, 3), |X_6 \cap \{T_3 = 0\}|);$
- (2) $(X_6 \subset \mathbb{P}(1, 1, 1, 2, 3), |X_6 \cap \{T_0 = 0\}|);$
- (3) $(X_4 \subset \mathbb{P}(1, 1, 1, 1, 2), |X_4 \cap \{T_0 = 0\}|);$
- (4) $(X_3 \subset \mathbb{P}^4, |X_3 \cap \{T_0 = 0\}|).$

Note that the above linear systems may be non-complete. Thus, $|\hat{H}_O|$ is a linear subsystem of complete linear system of dimension 4, 2, 3, 4 in cases (1), (2), (3), (4), correspondingly, but $\dim|\hat{H}_O| = \dim|H_O| = \frac{1}{2}H^3 \geq 5$. \Box

4.4. Lemma: In 2.2, suppose that $\phi_{|H|}$ is birational and $H^3 \ge 10$. Then X is rational.

Proof: By 4.1, 4.2 and 4.3, we may assume that g is a conic bundle and $|\hat{H}_O|$ is contained in the fibers of g. This implies that $\dim(\phi_{|H_O|}(X)) = 2$ and $\phi_{|H|}(X)$ is a cone with vertex $\phi_{|H|}(O)$. Thus, the strict transform of the general element of |H| on \hat{X} is a rational section of g and Z is birationally isomorphic to Enriques surface, but Z should be rational (see, for example, [A, 4.3]). \Box

4.5. Remark: Actually, 4.4 is enough to prove 1.2, even with assumption of 1.3.

4.6. Remark: Similar arguments imply that if X is a Q-Fano 3-fold with canonical singularities, $\dim(\phi_{|-K_X|}(X)) = 3$ and the general element of $|-K_X|$ has singularities worse than Du Val, then either X is rational or pair $(X, |-K_X|)$ is birationally equivalent to one of the four pairs obtained in the proof of 4.3 (see also [A, 4.3]).

4.7. Remark: In classical terms the above construction is the "projection from the non-Gorenstein point", which is the analogue of the famous "double projection" of G. Fano and V.A. Iskovskikh (see [I]).

§5. The hyperelliptic case.

(1) $g: \hat{X} \to Z$ is a conic bundle and $|\hat{H}_O|$ is contained in the fibers of g;

(2) |H| is hyperelliptic and $\phi_{|H|}(X)$ is a cone with vertex $\phi_{|H|}(O)$.

5.2. Lemma: In 5.1, let $\pi : \overline{X} \to X$ be a resolution of the base locus of |H|, i.e. the blow up of two smooth points p_1 and p_2 on X. If $\{l\}$ is a family of rulings of $\phi_{|H|}(X)$ and $\{\overline{C}\} = \pi^{-1}\{l\}$, then:

- (1) $H\{\bar{C}\} = 2;$
- (2) the general element of $\{\overline{C}\}$ is an irreducible rational curve, whose strict transform on \hat{X} is the general fiber of g;
- (3) $\pi^{-1}(p_j)\{\bar{C}\} = 0 \ (j = 1, 2).$

Note that we will identify a family of curves with its general element when we intersect the latter with a divisor.

Proof: It follows from 5.1 that the strict transform of the general element of $\{\overline{C}\}$ on \hat{X} is contained in the fibers of g. Consider the following diagram:

$$\bar{X} \stackrel{\alpha}{\leftarrow} \check{X} \stackrel{\beta}{\rightarrow} \hat{X} \stackrel{g}{\rightarrow} Z,$$

where \check{X} is smooth, α and β are birational morphisms. $-K_{\check{X}} \equiv \alpha^*(H) - E$, where E is an effective α -exceptional divisor. $2 \leq -K_{\check{X}}\alpha^{-1}(\{\bar{C}\}) \leq H\{\bar{C}\} \leq 2$. Therefore, $2 = -K_{\check{X}}\alpha^{-1}(\{\bar{C}\}) = H\{\bar{C}\}$, which implies all the assertions. \Box

5.3. Lemma: In 5.2, let $bs{\bar{C}} \in \bar{X}$ be a union of centers of all divisors of \hat{X} that are exceptional on \bar{X} and not contained in the fibers of g. Then $bs{\bar{C}}$ is a finite set of isolated non-terminal points¹ on \bar{X} , $bs{\bar{C}} \in Bs|\bar{H}_O|$ and $\phi_{\bar{H}}(bs{\bar{C}}) = \phi_{|H|}(O)$, where $|\bar{H}| = \pi^{-1}(|H|)$ and $|\bar{H}_O| = \pi^{-1}(|H_O|)$.

Proof: The two last assertions are obvious. To prove the first one suppose that $bs{\bar{C}}$ contains an irreducible curve V. Then V should intersect $\pi^{-1}(p_1)$ or $\pi^{-1}(p_2)$. Therefore \bar{X} is smooth in the general point of V, which contradicts the inequality in the proof of 5.2. In the same way, we obtain that $bs{\bar{C}}$ contains only isolated non-terminal points. \Box **5.4. Proof of 1.1:** In 5.3, it follows from [CD, 4.5.1, 4.5.2 and 4.5.3] that:

- (1) $\phi_{|\bar{H}|}(\bar{X})$ is a cone over \mathbb{F}_i , where i = 0, 1 or 2;
- (2) if s_{∞} and e are the exceptional section and ruling of \mathbb{F}_i , then $\phi_{|\bar{H}|}(\bar{X})$ is the contraction δ of the exceptional section M of $\gamma : \mathbb{P}(\mathcal{O}_{\mathbb{F}_i} \oplus \mathcal{O}_{\mathbb{F}_i}(h)) \to \mathbb{F}_i$, where $h \sim s_{\infty} + (i+k)e$ and $k = \frac{1}{4}(H^3 2i 2);$
- (3) the ramification divisor of $\phi_{|\bar{H}|}$ consists of $\phi_{\bar{H}}(\pi^{-1}(p_j))$ (j = 1, 2) and divisor $\delta(D)$, where $D \sim rM + \gamma^*(4s_{\infty} + (4+2i)e)$.

We may assume that D does not contain M. 5.2 implies that $\delta^{-1}(\phi_{|\bar{H}|}(\pi^{-1}(p_j)))$ (j = 1, 2)is contained in the fibers of γ . Note that $r \geq 1$, because otherwise $\phi_{|\bar{H}|}^{-1}(\{l\})$ splits, which is impossible by 5.2. Moreover, $r \geq 2$, because r = 1 implies that g has a section and X is rational. Let s_0 be the general element in $|s_{\infty} + ie|$. Then $\gamma^{-1}(s_0) \cong \mathbb{F}_{i+k}$. Let s'_{∞} and e'be the exceptional section and ruling of $\gamma^{-1}(s_0)$. Then $D|_{\gamma^{-1}(s_0)} \sim rs'_{\infty} + (4+2i)e'$ and

¹Point $\bar{x} \in \bar{X}$ is isolated non-terminal if the desingularisation of \bar{X} contains an exceptional divisor with zero discrepancy, whose image on \bar{X} is \bar{x} .

 $D|_{\gamma^{-1}(s_0)}$ does not contain s'_{∞} . Latter implies that $4 + 2i \ge r(i+k)$, r = 2 and only four cases are possible:

(1) $i = 0, k = 2, H^3 = 10;$ (2) $i = 1, k = 2, H^3 = 12;$ (3) $i = 2, k = 2, H^3 = 14;$ (4) $i = 2, k = 1, H^3 = 10.$

In these cases we will use an improved version of the previous arguments. $\phi_{|\bar{H}|}$ contracts two divisors B_j to the lines b_j contained in $\phi_{\bar{H}}(\pi^{-1}(p_j))$ (j = 1, 2), the general fiber of $\phi_{|\bar{H}|}|_{B_j}$ is the elliptic curve (see [CD, 4.5.1]). It can be deduced from [Ch] that $K_X \sim$ $-H + \pi (B_1 - B_2)$. Note that at least one $\pi (B_i)$ (j = 1, 2) should contain O. We claim that $\phi_{|H|}(O) \in b_j$ (j = 1, 2). Suppose b_1 conta ins $\phi_{|H|}(O)$, but b_2 does not. Then $\pi(B_j)$ (j = 1, 2) is 2-Cartier and we may even assume that B_2 and $\pi(B_2)$ are Cartier, because otherwise K_X is not Cartier in the points where $\pi(B_2)$ is not Cartier and we can apply all the previous arguments to non-Gorenstein point of X different from O, whose image under $\phi_{|H|}$ is not the vertex of $\phi_{|H|}(X)$. Let $T = \phi_{|\bar{H}|}^{-1}(\delta(\gamma^{-1}(e)))$, then $\pi(T) \sim 2\pi(\bar{B}_2)$ and T is Cartier. $\pi(T)\pi(B_2) = \emptyset$, because $\pi(T)$ can intersect $\pi(B_2)$ only in p_2 . Similarly, $T\pi^{-1}(p_1) = \emptyset$ and T does not contain $\phi_{|\bar{H}|}^{-1}(\phi_{|H|}(O))$, hence |T| is a free linear system. The latter implies that $bs\{C\}$ contains some curve in $\phi_{|\vec{H}|}^{-1}(\phi_{|H|}(O))$, which is impossible by 5.3. Therefore, b_j is a line in $\phi_{\bar{H}}(\pi^{-1}(p_j))$ (j = 1, 2) containing $\phi_{|H|}(O)$. It follows from [CD, 4.5.2 and 4.5.3] that $\delta(D)$ has singularities along b_j (j = 1, 2). Now we are ready to apply the arguments about $D|_{\gamma^{-1}(s)}$ to the above cases, where s is a moveable smooth curve in \mathbb{F}_i . In the first case, let $s \sim s_{\infty} + e$, which contains $\phi_{|\bar{H}|}(H)b_j$ (j = 1, 2), where we identify H with a general enough element in |H| and \mathbb{F}_i . In the second case, let $s \sim s_0$, which contains $\phi_{|\bar{H}|}(H)b_j$ (j=1 or j=2). In the last two cases, let $s \sim s_0$, which contains $\phi_{|\bar{H}|}(H)b_j$ (j = 1, 2). Inequalities similar to the ones we used in the first part of the proof give us a contradiction. \Box

$\S6$. Addendum: the case of a small degree.

6.1. In this chapter we will prove the following:

Theorem: In 2.3, suppose that X has no isolated non-terminal non-Gorenstein points or $\phi_{|H|}$ is birational. Then only the following possibilities exist:

- (1) X is rational;
- (2) pair $(X, |H_O|)$ is birationally equivalent to one of the four pairs obtained in the proof of 4.3;
- (3) X falls into case (3) of 2.2.

6.2. Remark: In 2.3, the non-rationality of X and 2.2 imply that either X falls into case (3) of 2.2 or we can apply to X the arguments of the previous chapters except 5.4, because we used there only non-rationality of X and $\deg(\phi_H) = 1$ or 2.

6.3. Lemma: Let S be an irreducible surface and $\{D\}$ be a family of curves on S, such that two general elements of $\{D\}$ have non-empty intersection and have no common components. Then the general element of $\{D\}$ is connected.

Proof: We may assume that S is normal. Let $\gamma : \tilde{S} \to S$ be the desingulrisation of S and $f^*(\{D\})$ be the numerical inverse image of the general element of $\{D\}$ on \tilde{S} . The general element of $f^*(\{D\})$ is nef and big on \tilde{S} , which implies that $f^*(\{D\})$ is connected. Thus, the general element of $f(f^*(\{D\}))$ is connected. \Box

6.4. Proof of 6.1: 5.3 implies that $bs\{C\}$ does not contain non-Gorenstein points. Let $\sigma: Y \to X$ be a canonical cover. Then the general element of $\sigma^{-1}(\{C\})$ is a disjoint union of two rational curves. The general element of $\sigma^{-1}(|H_O|)$ is irreducible and we can apply 6.3 to $\sigma^{-1}(|H_O|)$ and the subfamily of $\sigma^{-1}(\{C\})$ consisting of curves contained in $\sigma^{-1}(|H_O|)$. \Box

6.5. Remark: In 2.2, suppose X is not rational and does not fall into case (3). Then either X is birationally equivalent to one of the four 3-folds obtained in the proof of 4.3 or $\dim(\phi_{|-K_X|}(X)) = 2$, the general element of $|-K_X|$ has singularities worse than Du Val and, in notations of 3.2, the strict transform of $|-K_X|$ on \hat{X} is contained in the fibers of g. Indeed, restricting $|-K_X|$ on the general element of |H| we obtain that $|-K_X|$ has no fixed components and $\dim(\phi_{|-K_X|}(X)) \geq 2$. Suppose that $\dim(\phi_{|-K_X|}(X)) = 3$, then the general element of $|-K_X|$ has Du Val singularities, because otherwise either X is rational or pair $(X, |-K_X|)$ is birationally equivalent to one of the four pairs obtained in the proof of 4.3 (see 4.6). Thus, X has no isolated non-terminal non-Gorenstein points and we can apply 6.1. Therefore, $\dim(\phi_{|-K_X|}(X)) = 2$ and, as above, we obtain that the general element of $|-K_X|$ has singularities worse than Du Val. Let $\tau : X' \to X$ be a terminal modification for $K_X + |-K_X|$. Then

$$-K_{X'} \sim \tau^{-1}(|-K_X|) + F, \ 2 = -K_{X'}\tau^{-1}(\{C\}) = (\tau^{-1}(|-K_X|) + F)\tau^{-1}(\{C\})$$

where F is a non-zero effective τ -exceptional divisor. The arguments in the proof of 6.1 imply that $F\tau^{-1}(\{C\}) > 0$. If $\tau^{-1}(|-K_X|)\tau^{-1}(\{C\}) = 1$, then g has a section and X is rational. Thus, $\tau^{-1}(|-K_X|)\tau^{-1}(\{C\}) = 0$, which implies that the strict transform of $|-K_X|$ on \hat{X} is contained in the fibers of g.

§7. Applications: the case of terminal cyclic quotient singularities.

7.1. In this chapter, X and H are as in 2.2, and X has terminal cyclic quotient singularities. The latter implies that X is a quotient of a smooth Fano 3-fold by an involution with eight fixed points, which is the canonical cover of X (see [S]).

7.2. Corollary: In 7.1, suppose that the canonical cover of X is one of the following 3-folds:

- (1) an intersection of three divisors of type (1,1) in $\mathbb{P}^3 \times \mathbb{P}^3$ ($H^3 = 10$);
- (2) $\mathbb{P}^1 \times S_4$ ($H^3 = 12$);
- (3) a divisor of type (1, 1, 1, 1) in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ $(H^3 = 12);$
- (4) a blow up of the cone over a smooth qudric in \mathbb{P}^3 with the center in a disjoint union of the vertex and an elliptic curve $(H^3 = 14)$;
- (5) an intersection of two quadrics in \mathbb{P}^5 $(H^3 = 16)$;
- (6) $\mathbb{P}^1 \times S_6 \ (H^3 = 18);$
- (7) $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ ($H^3 = 24$);

where S_j is the dell Pezzo surface of degree j. Then X is rational.

7.3. Remark: In 7.1, suppose that the canonical cover of X is one of the following 3-folds:

- (1) $\mathbb{P}^1 \times S_2 \ (H^3 = 6);$
- (2) a blow up of an intersection of two quadrics in \mathbb{P}^5 with the center in an elliptic curve, which is an intersection of two hyperplane sections $(H^3 = 8)$.

Then X is a blow up of (2) of 7.2 in the first case and (4) of 7.2 in the second, hence X is rational.

7.4. Corollary: In 7.1, suppose that the canonical cover of X is a double cover of \mathbb{P}^3 ramified in a sextic $(H^3 = 8)$. Then either X is rational or pair $(X, |H_O|)$ is birationally isomorphic to $(X_6 \subset \mathbb{P}(1, 1, 2, 2, 3), |X_6 \cap \{T_3 = 0\}|)$ with terminal Q-factorial singularities. **Proof:** By 6.1, it is enough to show that pair $(X, |H_O|)$ is not birationally isomorphic to $(X_3 \subset \mathbb{P}^4, |X_3 \cap \{T_0 = 0\}|)$. By [B, 6.1.2], $\phi_{|H|}$ is a morphism of degree two and $\phi_{|H|}(X)$ is an intersection of two quadrics, which implies the statement. \Box

7.5. Remark: In 7.1, suppose that the canonical cover of X is a blow up of a double cover of \mathbb{P}^3 ramified in a sextic with the center in an elliptic curve, which is an intersection of two elements of the half-anticanonical linear system $(H^3 = 4)$. Then X is a blow up of 3-fold from 7.4. Thus, either X is rational or pair $(X, |H_O|)$ is birationally isomorphic to $(X_6 \subset \mathbb{P}(1, 1, 2, 2, 3), |X_6 \cap \{T_3 = 0\}|)$ with terminal Q-factorial singularities.

7.6. Enriques 3-fold: In 7.1, suppose that the canonical cover of X is a double cover of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ ramified in a divisor of type (1, 1, 1) $(H^3 = 6)$, then $\phi_{|H|}$ is birational morphism to the non-normal 3-fold of degree six. It is well-known that:

(1) $\phi_H(X)$ can be represented in \mathbb{P}^3 by equation

$$x_1 x_2 x_3 x_4 (x_0^2 + x_0 \sum_{i=1}^4 a_i x_i + \sum_{i,j=1}^4 b_{ij} x_i x_j) + c_1 x_2^2 x_3^2 x_4^2 + c_2 x_1^2 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4^2 + c_4 x_1^2 x_2^2 x_3^2 = 0,$$

and if $x_0 = 0$, then we obtain the classical representation of Enriques surfaces as a sextic passing doubly through the edges of the tetrahedron;

- (2) $\phi_H(X)$ has six double planes given by $x_i = x_j = 0$ $(1 \le i < j \le 4)$, four triple lines given by $x_i = x_j = x_k$ $(1 \le i < j < k \le 4)$ and intersecting in one ordinary quadruple point of $\phi_H(X)$;
- (3) each triple line contains two non-ordinary quadruple points, which are the images of eight non-Gorenstein points of X.

Projection from every non-triple line on $\phi_H(X)$ containing the images of two non-Gorenstein points of X is a conic bundle structure² on X. Moreover, it is easy to see that all conic bundle structures on X given by linear subsystems of |H| can be obtained in such a way. In [É] S.Yu. Éndryushka and in [BV] L.P. Botta and A. Verra independently proved that the general X is birationally equivalent to the standart conic bundle with a smooth degeneration curve of genus five, whose primian is not a jacobian of a curve and is isomorphic to the intermediate jacobian of X. Thus, the general X is not rational and, by

 $^{^{2}}$ The conic bundle structure is a rational map, which is birationally equivalent to a conic bundle.

6.1, pair $(X, |H_O|)$ is birationally isomorphic to one of the following pairs with terminal \mathbb{Q} -factorial singularities:

- (1) $(X_6 \subset \mathbb{P}(1, 1, 2, 2, 3), |X_6 \cap \{T_3 = 0\}|);$
- (2) $(X_3 \subset \mathbb{P}^4, |X_3 \cap \{T_0 = 0\}|);$
- (3) $(X_4 \subset \mathbb{P}(1, 1, 1, 1, 2), |X_4 \cap \{T_0 = 0\}|).$

Actually, only the third case occurs. Indeed, in the first case, $\phi_{|X_6 \cap \{T_3=0\}|}$ is a morphism of degree two to the singular quadric X_2 in \mathbb{P}^4 . $|H_O|$ should correspond to the projection of X_2 to \mathbb{P}^3 from a smooth point of X_2 not contained in the singular locus of the ramification divisor of $\phi_{|X_6 \cap \{T_3=0\}|}$. Latter implies that the normalization of the general element of $\{H_O^2\}$ is a connected curve of genus two, but it is not very hard to show that the normalization of the general element of $\{H_Q^2\}$ is a connected curve of genus one, i.e. it is a contradiction. In the second case, the cubic should be smooth. Hence its intermediate jacobian $J(X_3)$ is a primian of standard conic bundle with a smooth degeneration curve of genus six. Moreover, $J(X_3)$ is irreducible as a principally polarized abelian variety and coincides with its Griffiths' component, which implies that the second case is impossible. Thus, the pair $(X, |H_O|)$ is birationally isomorphic to $(X_4 \subset \mathbb{P}(1, 1, 1, 1, 2), |X_4 \cap \{T_0 = 0\}|)$. $\phi_{|X_4 \cap \{T_0=0\}|} : X_4 \to \mathbb{P}^3$ is a morphism of degree two ramified in quartic Q with isolated singular points, which correspond to the singular points of X. The strict transform of $|H_O|$ on X_4 is the complete linear system $\left|-\frac{1}{2}K_{X_4}\right|$. The above arguments about conic bundle structures on X given by linear subsystems of $|H_O|$ imply that Q has exactly six singular points, which are the images under rational map $\phi_{|H_O|}$ of non-Gorenstein points of X not contained in one triple line with O. Moreover, Q contains three lines l_i (j = 1, 2, 3), which are the images under rational map $\phi_{|H_O|}$ of double planes of $\phi_{|H|}(X)$ passing through $\phi_{|H|}(O)$. Each l_j contains two singular points of Q and $\bigcap_{j=1}^3 l_j$ is a smooth point on Q, which is the image under rational map $\phi_{|H_O|}$ of the triple line containing $\phi_{|H|}(O)$.

References

- [A] Alexeev V., General elephants of Q-Fano 3-folds, Comp. Math. 91 (1994), 91–116.
- [B] Bayle L., Classification des variéts complexes projectives de dimension trois dont une section hyperplane generale est une surface d'Enriques, J. Reine Angew. Math. **449** (1994), 9–63.
- [BV] Botta L.P., Verra A., The non rationality of the generic Enriques' threefold, Comp.Math. 48 2 (1983), 167–184.
- [CD] Cossec F.R., Dolgachev I.V., Enriques surface I, vol. 76, Birkhäuser, 1989.
- [CF] Campana F., Flenner H., Projective threefolds containing a smooth rational surface with ample normal bundle, J. Reine Angew. Math. 440 (1993), 77–98.
- [Ch] Cheltsov I., Three-dimensional algebraic varieies that have a divisor with numerically trivial canonical class, Russian Math. Survey **51** (1996), 140–141.
- [CM] Conte A., Murre J.P., Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces, Ann. Souola Norm. Sup. de Pisa 12 (1985), 43–80.
- [É] Éndryushka S.Yu., Nonrationality of the general Enriques variety, Math. USSR Sbornik 51 (1985 1), 267–273.
- [F] Fano G., Sulle varietá algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno, Memorie societa dei XL 24 (1938), 41–66.
- [I] Iskovskikh V.A., Anticanonical models of 3-folds, Modern problem of mathematics 12 (1979), 59-157.
- [KMM] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 383–360.

- [P] Prohorov Yu.G., Notes on 3-folds with hyperplane sections Enriques surfaces, Mat. Sbornik 186 9 (1995), 113-124.
- [S] Sano T., On classifications of non-Gorenstein Q-Fano 3-folds of Fano index 1, J. Math. Soc. Japan 47 2 (1995), 369–380.