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Fano threefolds with infinite automorphism groups
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Abstract. We classify smooth Fano threefolds with infinite automorphism
groups.
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§ 1. Introduction

One of the most important mathematical results obtained by Iskovskikh is a clas-
sification of smooth Fano threefolds of Picard rank 1; see [1], [2]. In fact, it was he
who introduced the notion of Fano variety. Using Iskovskikh’s classification, Mori
and Mukai classified all smooth Fano threefolds of higher Picard ranks; see [3] as
well as [4] for a minor revision. Fano varieties currently play a central role in both
algebraic and complex geometry and provide key examples for number theory and
mathematical physics.

Let k be an algebraically closed field of characteristic zero. Automorphism groups
of (smooth) Fano varieties are important from the point of view of birational geom-
etry, in particular, from the point of view of birational automorphism groups of
rationally connected varieties. There is not much to study in dimension 1: the only
one-dimensional smooth Fano variety is the projective line, whose automorphism
group is PGL2(k). The automorphism groups of two-dimensional Fano varieties
(also known as del Pezzo surfaces) are already rather tricky. However, the struc-
ture of del Pezzo surfaces is classically known and their automorphism groups have
been described in detail; see [5]. There are several non-trivial examples of smooth
Fano threefolds of Picard rank 1 with infinite automorphism groups; see [6], Propo-
sition 4.4, [7] and [8]. The following recent result was obtained in [9].

Theorem 1.1 ([9], Theorem 1.1.2). Let X be a smooth Fano threefold of Picard
rank 1. Then the group Aut(X) is finite unless one of the following cases occurs.

1) The threefold X is the projective space P3 , and Aut(X)∼= PGL4(k).
2) The threefold X is a smooth quadric Q in P4 , and Aut(X) ∼= PSO5(k).
3) The threefold X is the smooth section V5 of the Grassmannian Gr(2, 5) ⊂ P9

by a linear subspace of dimension 6, and Aut(X) ∼= PGL2(k).
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4) The threefold X has Fano index 1 and anticanonical degree 22. Here the
following cases may occur:
(i) X = XMU

22 is the Mukai–Umemura threefold and Aut(X) ∼= PGL2(k);
(ii) X = Xa

22 is a unique threefold of this type such that the connected com-
ponent of the identity in Aut(X) is isomorphic to k+ ;

(iii) X = Xm
22(u) is a threefold in a certain one-dimensional family such that

the connected component of the identity in Aut(X) is isomorphic to k× .

Smooth Fano threefolds of Picard rank greater than 1 are more numerous than
those of Picard rank 1. Some of them have large automorphism groups. They have
been studied by various authors. For example, Batyrev classified all smooth toric
Fano threefolds in [10]; see also [11]. Süss [12] classified all smooth Fano threefolds
admitting a faithful action of a two-dimensional torus. Smooth Fano threefolds with
a faithful action of (k+)3 were classified in [13] (compare with [14], Theorem 6.1).
Threefolds with an action of SL2(k) were studied in [7], [15]–[17]. Some results on
higher-dimensional Fano varieties with infinite automorphism groups can be found
in [18] and [19].

The goal of this paper is to provide a classification similar to that given by
Theorem 1.1 in the case of higher Picard rank. Given a smooth Fano threefold X,
we label it (or rather its deformation family) by a pair of numbers

(X)ג = ρ.N,

where ρ is the Picard number of X and N is the number of X in the classification
tables in [3], [20] and [4]. Note that the most complete list of smooth Fano threefolds
is contained in [4].

The main result of this paper is the following theorem.

Theorem 1.2. The following assertions hold.
(i) The group Aut(X) is infinite for every smooth Fano threefold X with

(X)ג ∈ {1.15, 1.16, 1.17, 2.26, . . . , 2.36, 3.9, 3.13, . . . , 3.31,
4.2, . . . , 4.12, 5.1, 5.2, 5.3, 6.1, 7.1, 8.1, 9.1, 10.1}.

(ii) There are smooth Fano threefolds with infinite automorphism group when

(X)ג ∈ {1.10, 2.20, 2.21, 2.22, 3.5, 3.8, 3.10, 4.13},

while the general threefold in each of these families has a finite automorphism group.
(iii) The group Aut(X) is finite when X is contained in any of the remaining

families of smooth Fano threefolds.

In fact, we describe all connected components of the identity in the automor-
phism groups of all smooth Fano threefolds; see Table 1.

If X is a smooth Fano threefold and its automorphism group is infinite, then X
is rational. However, unlike the case of Picard rank 1, such a threefold X may have
a non-trivial Hodge number h1,2(X). The simplest example is given by the blow-up
of P3 along a plane cubic, that is, a smooth Fano threefold X with (X)ג = 2.28. In
this case one has h1,2(X) = 1. Using Theorem 1.2, we obtain the following result.
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Corollary 1.3 (compare with Corollary 1.1.3 in [9]). Let X be a smooth Fano
threefold with h1,2(X) > 0. Then Aut(X) is infinite if and only if

(X)ג ∈ {2.28, 3.9, 3.14, 4.2}.

If, furthermore, X has no extremal contractions to threefolds with non-Gorenstein
singularities, then (X)ג = 4.2.

Remark 1.4. Let X be a smooth Fano threefold of Picard rank at least 2. Suppose
that X cannot be obtained from a smooth Fano threefold by blowing up a smooth
irreducible curve. In this case, X is said to be primitive; see Definition 1.3 in [21].
Moreover, by Theorem 1.6 in [21], there is a (standard) conic bundle π : X → S
such that either S ∼= P2 and the Picard rank of X is 2, or S ∼= P1 × P1 and the
Picard rank of X is 3. Write ∆ for the discriminant curve of this conic bundle.
We also suppose that the group Aut(X) is infinite. Using Theorem 1.2 and the
classification of primitive Fano threefolds in [21], we see that either the arithmetic
genus of ∆ is 1, or ∆ = ∅ and π is a P1-bundle. Furthermore, in the former case it
follows from the classification that X is a divisor of bidegree (1, 2) in P2×P2 (and in
particular X also has the structure of a P1-bundle). When ∆ = ∅ and S ∼= P2, the
same classification (or [22], [23]) yields that X is either a divisor of bidegree (1, 1)
in P2 × P2, or the projectivization of an indecomposable vector bundle of rank 2
on P2 (in this case X is toric). Finally, if ∆ = ∅ and S ∼= P1 × P1, then either
X ∼= P1 × P1 × P1, or X is the blow-up of a quadric cone in P4 at its vertex.

Information about automorphism groups of smooth complex Fano threefolds can
be used to study the problem of the existence of Kähler–Einstein metrics on them.
For example, the Matsushima obstruction implies that a smooth Fano threefold
admits no such metric if its automorphism group is not reductive; see [24]. Thus,
by inspecting our Table 1 we obtain the following result.

Corollary 1.5. If X is a smooth complex Fano threefold with

(X)ג ∈ {2.28, 2.30, 2.31, 2.33, 2.35, 2.36, 3.16, 3.18, 3.21, . . . , 3.24,
3.26, 3.28, . . . , 3.31, 4.8, . . . , 4.12},

then X admits no Kähler–Einstein metric. Each family of smooth Fano threefolds
with (X)ג ∈ {1.10, 2.21, 2.26, 3.13} contains a variety admitting no Kähler–Einstein
metric.

If a smooth complex Fano threefold X has an infinite automorphism group, then
the vanishing of its Futaki invariant (a character of the Lie algebra of holomor-
phic vector fields) is necessary for the existence of a Kähler–Einstein metric on X;
see [25]. This gives us a simple obstruction for the existence of Kähler–Einstein
metrics. When X is toric, the vanishing of its Futaki invariant is also sufficient
for X to be Kähler–Einstein; see [26]. In this case, the Futaki invariant vanishes if
and only if the barycentre of the canonical weight polytope is at the origin. The
Futaki invariants of smooth non-toric Fano threefolds admitting a faithful action
of a two-dimensional torus were computed in [12], Theorem 1.1. We hope that the
results in the present paper can be used to compute the Futaki invariants of other
smooth Fano threefolds with infinite automorphism groups.
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When a smooth complex Fano variety X is acted on by a reductive group G, one
can use Tian’s α-invariant

αG(X)

to prove the existence of a Kähler–Einstein metric on X. To be precise, if

αG(X) >
dim(X)

dim(X) + 1
,

then X is Kähler–Einstein by [27]. The larger the group G, the larger the value
taken by the α-invariant αG(X). This simple criterion was used in [28]–[32] to
prove the existence of Kähler–Einstein metrics on many smooth Fano threefolds.

Example 1.6. In the notation of Theorem 1.1, one has

αPGL2(k)(XMU
22 ) =

5
6
;

see Theorem 3 in [29]. Moreover, αPGL2(k)(V5) = 5/6 by [30]. Thus, the Fano
threefolds XMU

22 and V5 are both Kähler–Einstein (when k = C).

Thanks to the proof of the Yau–Tian–Donaldson conjecture in [33], there is an
algebraic-geometric characterization of smooth complex Fano varieties admitting
Kähler–Einstein metrics in terms of K-stability. However, this criterion appears to
be ineffective in concrete cases since proving K-stability requires checking the posi-
tivity of the Donaldson–Futaki invariant for all possible degenerations of X. In the
recent paper [34], Datar and Székelyhidi proved that given an action of a reductive
group G on X, it suffices to consider only G-equivariant degenerations. For many
smooth Fano threefolds, this equivariant version of K-stability was checked in [35].
We hope that our Theorem 1.2 can be used to check this in other cases.

In some applications, it is useful to know the full automorphism group of a Fano
variety (compare with [36]). However, a complete classification of automorphism
groups is available only in dimension two [5] and in some particular cases in dimen-
sion three; see [6], Proposition 4.4, [9], § 5, and [37]. For example, at the moment
we have no information about the possible automorphism groups of smooth cubic
threefolds.

There are several interesting examples of smooth Fano varieties with infinite
automorphism groups in dimension four; see, for example, [38]. However, the situ-
ation here is very far from a classification similar to our Theorem 1.2.

The plan of the paper is as follows. We study automorphisms of smooth Fano
threefolds by splitting them into several groups depending on their construction
(some of them admit several natural constructions). In § 2 we list preliminary facts
needed in the paper. In § 3 we study Fano varieties that are either direct products
of lower-dimensional varieties or cones over them. In §§ 4, 5 and 6 we study Fano
threefolds that are blow-ups of P3, the smooth quadric, and V5 respectively. In §§ 7
and 8 we study blow-ups and double covers of the flag variety W = Fl(1, 2; 3) and
products of projective spaces respectively. The next three sections are devoted to
three particularly remarkable families of varieties. In § 9 we study the blow-up of
a smooth quadric along a twisted quartic. This variety is more complicated from
our point of view than those in § 5, so we treat it separately. In § 10 we study
divisors of bidegree (1, 2) in P2 × P2. In § 11 we study smooth Fano threefolds X
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with (X)ג = 3.2. Note that the varieties in this family are trigonal, but this family
was omitted from Iskovskikh’s list of smooth trigonal Fano threefolds in [2]. Finally,
in § 12 we study the remaining sporadic families of Fano threefolds.

Summarizing §§ 3–12, we give a table (Appendix A) containing an explicit
description of the connected components of the identity in the infinite automor-
phism groups arising in Theorem 1.2.

Notation and conventions. All varieties are assumed to be projective and
defined over an algebraically closed field k of characteristic zero. Given a vari-
ety Y and a subvariety Z, we write Aut(Y ;Z) for the stabilizer of Z in Aut(Y ).
The connected components of the identity in Aut(Y ) and Aut(Y ;Z) are denoted
by Aut0(Y ) and Aut0(Y ;Z) respectively.

Throughout the paper we write Fn for the Hirzebruch surface

Fn = P
(
OP1 ⊕OP1(n)

)
.

In particular, F1 is the blow-up of P2 at a point. The blow-up of P3 at a point is
denoted by V7. We write Q for the smooth three-dimensional quadric and V5 for the
smooth section of the Grassmannian Gr(2, 5) ⊂ P9 by a linear subspace of dimen-
sion 6. We denote the flag variety Fl(1, 2; 3) of complete flags in a three-dimensional
vector space by W . It can also be described as the projectivization of the tangent
bundle of P2 or as a smooth divisor of bidegree (1, 1) in P2 × P2.

We write P(a0, . . . , an) for the weighted projective space with weights a0, . . . , an.
Note that P(1, 1, 1, 2) is the cone in P6 over a Veronese surface in P5. One has an
isomorphism

Aut
(
P(1, 1, 1, 2)

) ∼= (k+)6 o
(
(GL3(k)× k×)/k×

)
, (1.7)

where k× is embedded in the product on the right-hand side by

t 7→ (t · IdGL3(k), t
2);

compare with Proposition A.2.5 in [39].
Let n > k1 > · · · > kr be positive integers. We write PGLn;k1,...,kr

(k) for the
parabolic subgroup in PGLn(k) consisting of the images of matrices in GLn(k)
that preserve a (possibly incomplete) flag of subspaces of dimensions k1, . . . , kr. In
particular, the group PGLn;k(k) is isomorphic to the group of n× n matrices with
a zero lower-left rectangle of size (n− k)× k. One has an isomorphism

PGLn;k(k) ∼= (k+)k(n−k) o
(
(GLk(k)×GLn−k(k))/k×

)
. (1.8)

Similarly, one has

PGLn;k1,k2(k)
∼=

(
(k+)k1(n−k1) o (k+)k2(k1−k2)

)
o

(
(GLk2(k)×GLk1−k2(k)×GLn−k1(k))/k×

)
.

(1.9)

In (1.8) and (1.9), the subgroup k× is embedded in each factor as the group of
scalar matrices. We denote the group PGL2;1(k) ∼= k+ o k× by B for brevity. It is
a Borel subgroup of PGL2(k).
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When n > 5, we write PSOn;k(k) for the parabolic subgroup of PSOn(k) preserv-
ing an isotropic linear subspace of dimension k. In particular, PSOn;1(k) is the sta-
bilizer of a point on a smooth (n−2)-dimensional quadric Q in the group Aut0(Q).
One can then check that PSOn;1(k) is isomorphic to the connected component of the
identity in the automorphism group of the cone over a smooth (n− 4)-dimensional
quadric. Therefore, we have

PSO5;1(k) ∼= (k+)3 o
(
SO3(k)× k×

) ∼= (k+)3 o
(
PGL2(k)× k×

)
and

PSO6;1(k) ∼= (k+)4 o
(
(SO4(k)× k×)/{±1}

)
. (1.10)

We write PGL(2,2)(k) for the image in PGL4(k) of the group of block-diagonal
matrices in GL4(k) with two 2× 2 blocks. One has an isomorphism

PGL(2,2)(k) ∼=
(
GL2(k)×GL2(k)

)
/k×,

where the group k× is embedded in each factor GL2(k) as the group of scalar
matrices. The group PGL(2,2)(k) acts on P3 preserving two skew lines. We write
PGL(2,2);1(k) for the parabolic subgroup of PGL(2,2)(k) which is the stabilizer
of a point on one of these lines. It is the image in PGL4(k) of the group of
block-diagonal matrices in GL4(k) with two 2 × 2 blocks one of which is upper-
triangular. Thus, one has

PGL(2,2);1(k) ∼=
(
GL2(k)× B̃

)
/k×,

where B̃ is the subgroup of upper-triangular matrices in GL2(k), and k× is embed-
ded in each factor as the group of scalar matrices.

The explicit descriptions of Fano threefolds in [3], [20] and [4] will be used without
special reference. We sometimes change these descriptions slightly for simplicity.

Occasionally, we need to compute the dimension of families of Fano varieties with
certain properties considered up to isomorphism. Note that Fano varieties generally
have no moduli spaces with nice properties (compare with Lemma 6.5 below). To
appropriately describe a family parametrizing Fano varieties up to isomorphism, one
has to deal with moduli stacks and coarse moduli spaces of these stacks. However,
this is not our goal and we actually make only weaker claims in such cases. Namely,
by saying that a family of Fano varieties is d-dimensional up to isomorphism, we
mean that the corresponding parameter space P (which is always obvious from the
description of the family) contains an open subset where the natural automorphism
group of P acts with equidimensional orbits, and the corresponding quotient is
d-dimensional. The question of the irreducibility of families will not be considered
in such cases. We point out that the dimensions of families of Fano threefolds can
often be computed in a straightforward manner. In several non-obvious cases we
provide computations for the reader’s convenience.

We are grateful to I. V. Arzhantsev, S. O. Gorchinskii, A. G. Kuznetsov,
Yu.G. Prokhorov, L.G. Rybnikov, D. A. Timashev, and V. A. Vologodskii for useful
discussions. Special thanks go to the referee for a careful reading of the paper. This
paper was finished during the authors’ visit to the Mathematisches Forschunginsti-
tut in Oberwolfach in June 2018. The authors appreciated its excellent environment
and hospitality.
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§ 2. Preliminaries

Any Fano variety X with at most Kawamata log terminal singularities admits
only finitely many extremal contractions. In particular, this implies that every
extremal contraction is Aut0(X)-equivariant and, for every birational extremal
contraction π : X → Y , the action of Aut0(X) on Y is faithful. In the latter
case, Aut0(X) is naturally embedded in Aut0(Y ;Z), where Z ⊂ Y is the image of
the exceptional set of π. We will use these facts many times throughout the paper
without special reference.

The following assertion is well known to experts.

Lemma 2.1. Let Y be a Fano variety with at most Kawamata log terminal singu-
larities, and let Z ⊂ Y be an irreducible subvariety. Suppose that there is a very
ample divisor D on Y such that Z is not contained in any effective divisor linearly
equivalent to D . Then the action of Aut0(Y ;Z) on Z is faithful. Furthermore,
if Z is non-ruled, then Aut(Y ;Z) is finite.

Proof. Since the Picard group of Y is finitely generated, the linear system of D
determines an Aut0(Y )-equivariant embedding ϕ : Y → PN such that the auto-
morphisms in Aut0(Y ) are induced by automorphisms of PN . Note that Y is not
contained in a hyperplane in PN , and the same holds for Z by hypothesis. Thus,
Aut0(Y ) coincides with Aut0(PN ;Y ), and Aut0(Y ;Z) acts faithfully on Z. We
note that Aut0(Y ) and Aut0(Y ;Z) are linear algebraic groups. Thus, if the group
Aut0(Y ;Z) were non-trivial, it would contain a subgroup isomorphic to either k×
or k+. In both cases this would imply that Z is covered by rational curves. We
conclude that if Z is non-ruled, then the group Aut0(Y ;Z) is trivial and, therefore,
Aut(Y ;Z) is finite. �

The following result is classical; see, for example, [40], §§ 8, 9.

Theorem 2.2. Let X be a smooth del Pezzo surface of degree d=K2
X . Then the

following assertions hold.
– If d = 9, then Aut(X) ∼= PGL3(k).
– If d = 8, then either X ∼= P1 × P1 and Aut0(X) ∼= PGL2(k)× PGL2(k), or
X ∼= F1 and Aut(X) ∼= PGL3;1(k).

– If d = 7, then Aut0(X) ∼= B×B.
– If d = 6, then Aut0(X) ∼= (k×)2 .
– If d 6 5, then the group Aut(X) is finite.

Let π : X → S be a proper flat morphism, where X is a threefold and S is
a surface. If a general fibre of π is isomorphic to P1, then we say that π is a conic
bundle. We say that π is a standard conic bundle if X and S are smooth and

Pic(X) ∼= π∗ Pic(S)⊕ Z;

see, for example, [41], Definition 1.3, [42], Definition 1.12, or [43], § 3. In this case,
the morphism π : X → S is a Mori fibre space. Let ∆ ⊂ S be the discriminant
locus of π, that is, the locus of points P ∈ S such that the scheme fibre π−1(P ) is
not isomorphic to P1.

Remark 2.3 (see [42], Corollary 1.11). If π : X → S is a standard conic bundle,
then ∆ is a reduced curve (possibly reducible) with at most nodes as singularities.
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In this case, the fibre of π over P is isomorphic to a reducible reduced conic in P2

provided that P ∈ ∆ and P is not a singular point of ∆. When P is a singular
point of ∆, the fibre over P is isomorphic to a non-reduced conic in P2.

The following assertion will be used in §§ 6 and 10.

Lemma 2.4. Let C ⊂ P2 be an irreducible nodal cubic. Then the group Aut(P2;C)
is finite.

Proof. The action of Aut(P2;C) on C is faithful by Lemma 2.1. This action lifts to
the normalization of C, so that Aut(P2;C) acts on P1 preserving a pair of points.
Therefore, we have Aut0(P2;C) ⊂ k×.

Suppose that Aut0(P2;C) ∼= k×. Then the action of k× lifts to the projective
space

P
(
H0(P1,OP1(3))∨

) ∼= P3.

Moreover, it preserves a twisted cubic C̃ (which is the image of P1 embedded by the
latter linear system) and a point P ∈ P3 outside C̃ (such that the projection of C̃
from P provides the original embedding C ⊂ P2). Since the curve C is nodal, there
is a unique line L in P3 that contains P and intersects C̃ at two points, P1 and P2.
The line L is k×-invariant. Furthermore, the points P , P1 and P2 are k×-invariant,
so that the action of k× on L is trivial. This means that the group k× (or an
appropriate central extension of it) acts on H0(P1,OP1(3)) with certain weights
w1, w2, w3, and w4, at least two of which coincide. This in turn means that P3

cannot contain a k×-invariant twisted cubic. The resulting contradiction shows
that the group Aut0(P2;C) is trivial. �

The following assertion will be used in §§ 3, 5, 6 and 11.

Lemma 2.5. Let H be a hyperplane section of a smooth n-dimensional quadric
Y ⊂ Pn+1 , where n > 2, and let Γ ⊂ Aut(Y ) be the pointwise stabilizer of H .
Then Γ is finite and every automorphism of H is induced by an automorphism
of Y .

Proof. Denote the homogeneous coordinates on Pn+1 by x0, . . . , xn+1. Since the
group Aut(Y ) acts transitively on Pn \Y and on Y , we can assume that H is given
by x0 = 0 and Y is given by

x2
0 + · · ·+ x2

n+1 = 0

when H is smooth, and by

x0x1 + x2
2 + · · ·+ x2

n+1 = 0

when H is singular (in this case the corresponding hyperplane is tangent to Y at
the point [0 : 1 : 0 : · · · : 0]). In both cases, Γ acts trivially on the last n coordinates.
Hence Γ = {±1} in the former case and trivial in the latter. The last assertion of
the lemma is obvious. �

We now prove several auxiliary assertions about two-dimensional quadrics.

Lemma 2.6. Let C be a smooth curve of bidegree (1, n), n > 2, on P1×P1 . Suppose
that the projection of C to the first factor of P1×P1 is ramified at two points. Then
C is given by x0y

n
0 + x1y

n
1 = 0 in some coordinates [x0 : x1]× [y0 : y1] on P1 × P1 .
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Proof. It follows from the Riemann–Hurwitz formula that the ramification indices
at both ramification points of the projection of C to the first factor of P1 × P1 are
equal to n.

Consider homogeneous coordinates on the factors of P1×P1 such that the branch
points are [0 : 1] and [1 : 0] and the ramification points are [0 : 1] × [0 : 1]
and [1 : 0] × [1 : 0]. The equation of C in the local coordinates x, y at the point
[0 : 1] × [0 : 1] is a polynomial in y of degree n with unique root y = 0. Hence
this polynomial is proportional to yn. The same applies to the other ramification
point. �

Corollary 2.7. Let C ⊂ P1 × P1 be a smooth curve of bidegree (1, n), n > 2, such
that Aut(P1×P1;C) is infinite. Then C is unique up to the action of Aut(P1×P1)
and one has Aut0(P1 × P1;C) ∼= k× .

Proof. The action of Aut0(P1 × P1;C) on C is faithful by Lemma 2.1. The action
of Aut(P1 × P1;C) preserves the set of ramification points of the projection of C
to the first factor of P1×P1. The cardinality of this set is at least 2 and, therefore,
it is exactly 2. The rest follows from Lemma 2.6. �

Lemma 2.8. Up to the action of Aut(P1 × P1), there is a unique smooth curve of
bidegree (1, 1) or (1, 2) on P1 × P1 , and a (2n − 5)-dimensional family of smooth
curves of bidegree (1, n) when n > 3.

Proof. The uniqueness in the cases of bidegree (1, 1), (1, 2) is obvious.
Suppose that n > 3. The dimension of the linear system of curves of bide-

gree (1, n) on P1 × P1 is
2 · (n+ 1)− 1 = 2n+ 1.

Let C be a general smooth curve in this linear system, and let π1 be the projection
of C to the first factor of P1×P1. Then the ramification points of π1 are Aut0(P1×
P1;C)-invariant. Since for a general C there are at least 4 such ramification points,
we conclude that the group Aut0(P1×P1;C) acts trivially on C ∼= P1. On the other
hand, its action on C is faithful by Lemma 2.1. Thus the group Aut(P1 × P1;C) is
finite. Since the group Aut(P1 × P1) has dimension 6, the assertion of the lemma
follows. �

Remark 2.9. Let C be a curve of bidegree (1, n) on P1 × P1. Then

Aut0(P1 × P1;C) ∼= B×PGL2(k)

when n = 0, and Aut0(P1 × P1;C) ∼= PGL2(k) when n = 1.

We conclude this section with an elementary (but useful) observation concerning
the projection from GLn(k) to PGLn(k).

Remark 2.10. Let Γ be a subgroup of GLn−1(k) containing all scalar matrices.
Consider a subgroup Γ × k× ⊂ GLn(k) embedded in the group of block-diagonal
matrices with blocks of sizes n − 1 and 1. Then the image of Γ × k× in PGLn(k)
is isomorphic to Γ.
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§ 3. Direct products and cones

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.34, 2.36, 3.9, 3.27, 3.28, 3.31, 4.2, 4.10, 5.3, 6.1, 7.1, 8.1, 9.1, 10.1}.

Lemma 3.1. Let X1 and X2 be normal projective varieties. Then

Aut0(X1 ×X2) ∼= Aut0(X1)×Aut0(X2).

Furthermore, consider a subvariety Z ⊂ X1 and a point P ∈ X2 . Identify Z with
a subvariety of the fibre of the projection X1 ×X2 → X2 over the point P . Then

Aut0(X1 ×X2;Z) ∼= Aut0(X1;Z)×Aut0(X2;P ).

Proof. The group Aut0(X1×X2) acts trivially on the Néron–Severi group of X1×X2.
In particular, it preserves the numerical class of the pullback of a very ample divisor
on X1. It follows that the projection X1×X2 → X1 is Aut0(X1×X2)-equivariant.
We similarly see that the projection X1 ×X2 → X2 is Aut0(X1 ×X2)-equivariant,
and the first assertion of the lemma follows. The second follows easily from the
first. �

Corollary 3.2. Let X be a smooth Fano threefold. Then the following assertions
hold.

– If (X)ג = 2.34, then Aut0(X) ∼= PGL2(k)× PGL3(k).
– If (X)ג = 3.27, then Aut0(X) ∼= PGL2(k)× PGL2(k)× PGL2(k).
– If (X)ג = 3.28, then Aut0(X) ∼= PGL2(k)× PGL3;1(k).
– If (X)ג = 4.10, then Aut0(X) ∼= PGL2(k)× B×B.
– If (X)ג = 5.3, then Aut0(X) ∼= PGL2(k)× (k×)2 .
– If (X)ג ∈ {6.1, 7.1, 8.1, 9.1, 10.1}, then Aut0(X) ∼= PGL2(k).

Proof. In all these cases, X is the product of P1 and a del Pezzo surface. Thus, the
assertion follows from Lemma 3.1 and Theorem 2.2. �

Lemma 3.3. Let X be a smooth Fano threefold with (X)ג = 2.36. Then

Aut0(X) ∼= Aut
(
P(1, 1, 1, 2)

)
.

Proof. The threefoldX is the blow-up of P(1, 1, 1, 2) at its (unique) singular point. �

We refer the reader to (1.7) for a detailed description of Aut
(
P(1, 1, 1, 2)

)
.

Lemma 3.4. Let Y be a smooth Fano variety embedded in PN by the complete
linear system |D|, where D is a very ample divisor on Y such that D ∼Q −λKY for
some positive rational number λ. Let Z ⊂ Y be an irreducible non-ruled subvariety
not lying in any effective divisor of the linear system |D|. Let Ŷ be the cone in PN+1

with vertex P over Y . Then

Aut0(Ŷ ;Z ∪ P ) ∼= k×.

Proof. Note that Ŷ is a Fano variety, and its singularity at P is Kawamata log
terminal since D is proportional to the anticanonical class of Y . One has

Aut0(Ŷ ) ∼= Aut0(PN+1; Ŷ ).
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In particular, the group Aut0(Ŷ ;Z ∪ P ) is a subgroup of Aut0(PN+1; Ŷ ). The
group Aut0(Ŷ ;Z ∪ P ) preserves the linear span PN of Z and acts trivially on PN

by Lemma 2.1. It follows that Aut0(Ŷ ;Z ∪P ) is contained in the pointwise stabi-
lizer of PN ∪ P in Aut(PN+1). This stabilizer is isomorphic to k×. On the other
hand, Aut0(Ŷ ;Z ∪ P ) contains an obvious subgroup isomorphic to k×, and the
assertion follows. �

Corollary 3.5. Let X be a smooth Fano threefold with (X)ג = 3.9 or (X)ג = 4.2.
Then Aut0(X) ∼= k× .

Lemma 3.6. Let X be a smooth Fano threefold with (X)ג = 3.31. Then

Aut0(X) ∼= PSO6;1(k).

Proof. The threefold X is the blow-up of the cone Y over a smooth quadric surface
at its (unique) singular point. Therefore, we have Aut0(X) ∼= Aut0(Y ). On the
other hand, Y is isomorphic to the intersection of a smooth four-dimensional quadric
Q ⊂ P5 with the tangent space at some of its points. Using Lemma 2.5, we
see that Aut0(Y ) is isomorphic to the stabilizer of a point on Q in the group
Aut0(Q) ∼= PSO6(k). �

We refer the reader to (1.10) for a detailed description of the group PSO6;1(k).

§ 4. Blow-ups of the projective space

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.4, 2.9, 2.12, 2.15, 2.25, 2.27, 2.28, 2.33, 2.35, 3.6, 3.11, 3.12, 3.14, 3.16,
3.23, 3.25, 3.26, 3.29, 3.30, 4.6, 4.9, 4.12, 5.2}.

Lemma 2.1 immediately implies the following result.

Corollary 4.1. Let X be a smooth Fano threefold with

(X)ג ∈ {2.4, 2.9, 2.12, 2.15, 2.25}.

Then the group Aut(X) is finite.

Proof. These varieties are blow-ups of P3 along smooth curves of positive genus
that are not contained in a plane. �

Corollary 4.2. Let X be a smooth Fano threefold with (X)ג ∈ {3.6, 3.11}. Then
the group Aut(X) is finite.

Proof. The variety X is a blow-up of a smooth Fano variety Y with Y)ג ) = 2.25.
Thus the assertion follows from Corollary 4.1. �

Lemma 4.3. Let X be a smooth Fano threefold with (X)ג = 2.27. Then

Aut0(X) ∼= PGL2(k).

Proof. The threefold X is the blow-up of P3 along a twisted cubic curve C. Apply-
ing Lemma 2.1, we see that the group Aut0(X) ∼= Aut0(P3;C) is a subgroup of
Aut(C) ∼= PGL2(k). On the other hand, since the curve C ∼= P1 is embedded in P3

by a complete linear system, one has Aut(C) ⊂ Aut0(P3;C). �
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Lemma 4.4. Let X be a smooth Fano threefold with (X)ג = 2.28. Then

Aut0(X) ∼= (k+)3 o k×.

Proof. The threefold X is the blow-up of P3 along a plane cubic curve. Applying
Lemma 2.1, we see that Aut0(X) is isomorphic to the pointwise stabilizer of a plane
in Aut(P3) ∼= PGL4(k). �

Lemma 4.5. Let X be a smooth Fano threefold with (X)ג = 2.33 or 2.35. Then
Aut0(X) is isomorphic to PGL4;2(k) or PGL4;1(k) respectively.

Proof. The threefold X with (X)ג = 2.33 (resp. (X)ג = 2.35) is the blow-up of P3

along a line (resp. at a point). Thus the assertion of the lemma follows from the
definitions of the corresponding parabolic subgroups in Aut(P3) ∼= PGL4(k). �

Lemma 4.6. There is a unique smooth Fano threefold X with (X)ג = 3.12 such
that Aut0(X) ∼= k× . For all other smooth Fano threefolds X with (X)ג = 3.12, the
group Aut(X) is finite.

Proof. The threefold X is the blow-up of P3 along the disjoint union of a line ℓ and
a twisted cubic Z. There is an isomorphism Aut0(X) ∼= Aut0(P3;Z ∪ ℓ). Consider
the pencil P of planes through l in P3. This pencil is Aut0(P3;Z ∪ ℓ)-invariant.
Thus there is an exact sequence of groups

1 → AutP → Aut0(P3;Z ∪ ℓ) → Γ,

where AutP preserves every member of P, and Γ is a subgroup of Aut(P1). Since
a general plane Π ∼= P2 in P intersects Z ∪ ℓ along the union of ℓ and three
non-collinear points outside ℓ, we see that the (connected) group AutP is trivial. On
the other hand, Γ is also connected and all planes in P tangent to Z are Γ-invariant.
Since there are at least two such planes in P, we conclude that Γ can be infinite
only when there are exactly two of them. This condition means that ℓ is the line
of intersection of two osculating planes of Z. Conversely, if ℓ is constructed in
this way, then the group Aut0(X) ∼= Aut0(P3;Z ∪ ℓ) is isomorphic to the stabilizer
of the two corresponding points of tangency on Z in Aut(P3;Z) ∼= PGL2(k), that
is, to k×. It remains to notice that this configuration is unique up to the action
of Aut(P3;Z). �

Lemma 4.7. Let X be a smooth Fano threefold with (X)ג = 3.14. Then
Aut0(X) ∼= k× .

Proof. The threefold X is the blow-up of P3 along the union of a point P and
a smooth cubic curve Z contained in a plane Π disjoint from P . Thus, we have
Aut0(X) ∼= Aut0(P3;Z ∪ P ). The plane Π is Aut0(X)-invariant. The action of
Aut0(P3;Z ∪ P ) on Π is trivial by Lemma 2.1, and the desired assertion follows. �

Lemma 4.8. Let X be a smooth Fano threefold with (X)ג = 3.16. Then
Aut0(X) ∼= B.

Proof. The threefold X is the blow-up of V7 along the proper transform of a twisted
cubic Z passing through the centre P of the blow-up V7 → P3. Therefore Aut0(X)
is isomorphic to the subgroup of Aut(P3) preserving Z and P . It remains to note
that the stabilizer of Z in Aut(P3) is isomorphic to PGL2(k). �
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Lemma 4.9. Let X be a smooth Fano threefold with (X)ג = 3.23. Then

Aut0(X) ∼= (k+)3 o (B×k×).

Proof. The threefold X is the blow-up of V7 along the proper transform of a conic Z
passing through the centre P of the blow-up V7 → P3. Therefore Aut0(X) is
isomorphic to the subgroup Θ of Aut(P3) preserving Z and P .

Choose a point P ′ not contained in the linear span of Z, and let Γ be the
subgroup of Θ that fixes P ′. Then Θ ∼= (k+)3oΓ. On the other hand, Γ is the image
in PGL4(k) of a group Γ′ such that the image of Γ′ in PGL3(k) ∼= Aut(P2) is the
group that preserves a conic in P2 and a point on this conic. The assertion now
follows from Remark 2.10; compare with Lemma 5.3 below. �

Lemma 4.10. Let X be a smooth Fano threefold with (X)ג = 3.25. Then

Aut0(X) ∼= PGL(2,2)(k).

Proof. The threefold X is the blow-up of P3 along a disjoint union of two lines,
ℓ1 and ℓ2. Therefore Aut0(X) is isomorphic to the subgroup of Aut(P3) that
preserves ℓ1 and ℓ2. �

Lemma 4.11. Let X be a smooth Fano threefold with (X)ג = 3.26. Then

Aut0(X) ∼= (k+)3 o (GL2(k)× k×).

Proof. The threefold X is the blow-up of P3 along a disjoint union of a line ℓ
and a point P . Therefore Aut0(X) is isomorphic to the subgroup of Aut(P3) that
preserves ℓ and P . The quotient of this group by its unipotent radical is isomorphic
to the image in PGL4(k) of the subgroup of GL4(k) consisting of block-diagonal
matrices with blocks of sizes 2, 1 and 1. The desired assertion now follows from
Remark 2.10. �

Lemma 4.12. Let X be a smooth Fano threefolds with (X)ג = 3.29. Then

Aut0(X) ∼= PGL4;3,1(k).

Proof. The threefold X is the blow-up of V7 along a line in the exceptional divisor
E∼= P2 of the blow-up V7→P3 of a point P on P3. Therefore Aut0(X) is isomorphic
to the subgroup of Aut(P3) that preserves P and a plane Π through P . �

Lemma 4.13. Let X be a smooth Fano threefold with (X)ג = 3.30. Then

Aut0(X) ∼= PGL4;2,1(k).

Proof. The threefold X is the blow-up of V7 along the proper transform of a line ℓ
passing through the centre P of the blow-up V7 → P3. Therefore Aut0(X) is
isomorphic to the subgroup of Aut(P3) preserving ℓ and P . �

Lemma 4.14. There is a unique smooth Fano threefold X with (X)ג = 4.6. More-
over, one has

Aut0(X) ∼= PGL2(k).



Fano threefolds 873

Proof. The variety X can be described as the blow-up of P3 along three disjoint
lines, ℓ1, ℓ2 and ℓ3. Thus, Aut0(X) ∼= Aut0(P3; ℓ1 ∪ ℓ2 ∪ ℓ3). Note that there
is a unique quadric Q′ passing through ℓ1, ℓ2 and ℓ3; see, for example, [44],
Exercise 7.2. Hence Q′ is preserved by Aut0(P3; ℓ1 ∪ ℓ2 ∪ ℓ3). Furthermore, the
quadric Q′ is smooth. Since the elements of Aut(Q′) are linear, one has

Aut0(P3; ℓ1 ∪ ℓ2 ∪ ℓ3) ∼= Aut0(Q′; ℓ1 ∪ ℓ2 ∪ ℓ3).

Since the lines ℓi are disjoint, they are rulings of the same family of lines on Q′ ∼=
P1 × P1. The assertions of the lemma now follow since the subgroup of Aut(P1) ∼=
PGL2(k) preserving three points of P1 is finite and PGL2(k) acts transitively on
triples of distinct points of P1. �

Lemma 4.15. Let X be a smooth Fano threefold with (X)ג = 4.9. Then

Aut0(X) ∼= PGL(2,2);1(k).

Proof. The threefold X is the blow-up of a one-dimensional fibre of the morphism
π : Y → P3, where π is the blow-up of P3 along two disjoint lines, ℓ1 and ℓ2.
Therefore, Aut0(X) is isomorphic to the subgroup of Aut(P3) that preserves ℓ1, ℓ2
and a point on one of these lines. �

Lemma 4.16. Let X be a smooth Fano threefold with (X)ג = 4.12. Then

Aut0(X) ∼= (k+)4 o
(
GL2(k)× k×

)
.

Proof. The threefold X is obtained by blowing up two one-dimensional fibres of
the morphism π : Y → P3, where π is the blow-up of P3 along a line ℓ. Therefore,
Aut0(X) is isomorphic to the subgroup of Aut(P3) that preserves ℓ and two points
on it. The quotient of this group by its unipotent radical is isomorphic to the image
in PGL4(k) of the subgroup of GL4(k) consisting of block-diagonal matrices with
blocks of sizes 2, 1 and 1. The desired assertion now follows from Remark 2.10. �

Lemma 4.17. Let X be a smooth Fano threefold with (X)ג = 5.2. Then

Aut0(X) ∼= k× ×GL2(k).

Proof. The threefold X is obtained by blowing up two one-dimensional fibres con-
tained in the same irreducible component of the exceptional divisor of the morphism
π : Y → P3, where π is the blow-up of P3 along two disjoint lines, ℓ1 and ℓ2. There-
fore, Aut0(X) is isomorphic to the subgroup of Aut(P3) that preserves ℓ1, ℓ2 and
two points on one of them. This group is in its turn isomorphic to the image
in PGL4(k) of the subgroup of GL4(k) consisting of block-diagonal matrices with
blocks of sizes 2, 1 and 1. The desired assertion now follows from Remark 2.10. �

§ 5. Blow-ups of the quadric threefold

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.7, 2.13, 2.17, 2.23, 2.29, 2.30, 2.31, 3.10, 3.15, 3.18, 3.19, 3.20, 4.4, 5.1}.
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Let Q ⊂ P4 = P(V ) be a smooth quadric, and let F : V → k be the corresponding
quadratic form of rank 5. We say that a quadratic form (defined on a linear space U)
has rank k on P(U) (or vanishes when k = 0) if it has rank k on U .

Since the ample generator of Pic(Q) determines an embedding Q ↪→ P4,
Lemma 2.1 immediately implies the following assertion.

Corollary 5.1. Let X be a smooth Fano threefold with

(X)ג ∈ {2.7, 2.13, 2.17}.

Then the group Aut(X) is finite.

Proof. These varieties are blow-ups of Q along smooth curves of positive genus that
are not contained in a hyperplane section. �

Lemma 5.2. Let X be a smooth Fano threefold with (X)ג = 2.23. Then the group
Aut(X) is finite.

Proof. The threefold X is the blow-up of Q along a curve Z that is the com-
plete intersection of a hyperplane section H of Q with another quadric. One has
Aut0(X) ∼= Aut0(Q;Z). Thus, there is an exact sequence of groups

1 → ΓH → Aut(Q;Z) → Aut(H;Z),

where ΓH is the pointwise stabilizer of H in Aut(Q;Z). Since Z is an elliptic
curve, the group Aut(H;Z) is finite by Lemma 2.1. Furthermore, ΓH is finite by
Lemma 2.5. Thus, the group Aut(X) is also finite. �

Lemma 5.3. Let X be a smooth Fano threefold with (X)ג = 2.30 or 2.31. Then
the group Aut0(X) is isomorphic to PSO5;1(k) or PSO5;2(k) respectively.

Proof. Both assertions are obvious since the threefolds X with (X)ג = 2.30 (resp.
(X)ג = 2.31) are obtained by blowing up points (resp. lines) on a smooth quadric
threefold. �

To understand the automorphism groups of more complicated blow-ups of Q
along conics and lines, we need some elementary auxiliary facts.

Lemma 5.4. Let C = Π∩Q be the conic on Q cut out by a plane Π, and let ℓΠ be
the line orthogonal to Π with respect to F . Let FΠ and FℓΠ be the restrictions of F
to the cones over Π and ℓΠ respectively. Then

3− rk(FΠ) = 2− rk(FℓΠ).

In particular, ℓΠ ⊂ Q if and only if C is a double line, ℓΠ is tangent to Q if and
only if C is reducible and reduced, and ℓΠ intersects Q transversally if and only if
C is smooth.

Proof. The numbers on both sides of the equality are the dimensions of the kernels
of FΠ and FℓΠ respectively. Both are equal to dim(Π ∩ ℓΠ) + 1. �

Lemma 5.5. Let C = Π ∩ Q be the conic on Q cut out by a plane Π, and let ℓΠ
be the line orthogonal to Π with respect to F . Let ℓ ⊂ Q be a line disjoint from C .
Then the following assertions hold.

(i) The lines ℓ and ℓΠ are disjoint.
(ii) If L is a linear three-dimensional subspace of P4 containing ℓ and ℓΠ , then

L ∩Q is smooth.
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Proof. Suppose that ℓ and ℓΠ are not disjoint. Put ℓ∩ℓΠ=P . Consider any point
P ′ ∈ C and the line ℓP ′ through P and P ′. The quadratic form F vanishes at P
and P ′, and the corresponding vectors are orthogonal to each other with respect
to F . It follows that F vanishes on ℓP ′ , whence ℓP ′ ⊂ Q. Thus, the cone T
over C with vertex P is contained in Q. In particular, T is contained in the
tangent space to Q at P and, since the intersection of this tangent space with Q is
two-dimensional, T is exactly this intersection. This means that ℓ is contained in
the cone and, therefore, intersects C. The resulting contradiction proves part (i).

Thus, the linear span L of ℓ and ℓΠ is three-dimensional. Suppose that L∩Q is
singular. Then the restriction of F to L is degenerate, so its kernel is non-trivial.
Hence there is a point P lying in Q, in Π and, therefore, in C. It also lies on ℓ
by Lemma 5.4 since ℓ lies on Q and the intersection of its orthogonal plane (con-
taining P ) with Q is ℓ. Thus, C intersects ℓ. The resulting contradiction proves
part (ii). �

Lemma 5.6. Let C1 and C2 be disjoint smooth conics on Q, ℓ1 and ℓ2 their orthog-
onal lines, and L the linear span of ℓ1 and ℓ2 . Then L ∼= P3 and Q ∩ L is smooth.

Proof. Let Π1 and Π2 be the planes containing C1 and C2. Then the linear space
orthogonal to L is Π1∩Π2. However, Π1 and Π2 intersect each other at a point since
otherwise the curves C1 and C2 intersect each other at the points of Π1 ∩Π2 ∩Q.

Suppose that Q∩L is singular. Then the rank of the restriction of F to L is not
maximal. This means that there is a point P lying in the kernel of the restricted
quadratic form. Then P ∈ Q, P ∈ Π1 and P ∈ Π2. Hence C1 intersects C2. �

Lemma 5.7. Let C ⊂ Q be a smooth conic. Then

Aut(Q;C) ∼= PGL2(k)× k×,

where the factor PGL2(k) acts faithfully on C while the factor k× is the pointwise
stabilizer of C in Aut(Q).

Proof. Let Π ∼= P2 be the linear span of C. By Lemma 5.4, the line ℓ orthogonal
to C intersects Q at two points, P1 and P2. Since the automorphisms of Q are
linear, they preserve Π and ℓ. Choose coordinates x0, . . . , x4 in P4 such that the
plane Π is given by x0 = x1 = 0, the line ℓ is given by

x2 = x3 = x4 = 0,

the points P1 and P2 are P1 = [1 : 0 : 0 : 0 : 0] and P2 = [0 : 1 : 0 : 0 : 0], and the
curve C is given by

x0 = x1 = x2
2 + x2

3 + x2
4 = 0.

Then Q is given by
x0x1 + x2

2 + x2
3 + x2

4 = 0.

One has
Aut0(Q;C) = Aut0(Q;C ∪ P1 ∪ P2).

The subgroup Aut0(Q;C ∪ P1 ∪ P2) ⊂ PGL2(k) is the image of the subgroup Γ ∼=
O3(k) of GL5(k) that consists of block-diagonal matrices with blocks of sizes 3, 1
and 1, where the 3×3-block is an orthogonal matrix and the entries of the 1×1 blocks
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are inverse to each other. Since Γ contains no scalar matrices but ± IdGL5(k), we
see that the subgroup SO3(k)× k× ⊂ Γ of index 2 is mapped isomorphically onto
the image of Γ in PGL5(k). Therefore, one has

Aut0(Q;C) ∼= PSO3(k)× k× ∼= PGL2(k)× k×.

The other assertions of the lemma are obvious. �

Lemma 5.8. There is a unique smooth Fano threefold X with (X)ג = 2.29. More-
over,

Aut0(X) ∼= PGL2(k)× k×.

Proof. The variety X is the blow-up of Q along a smooth conic C. This means
that Aut0(X) ∼= Aut0(Q;C). The desired assertion follows from Lemma 5.7. �

Lemma 5.9. There is a unique Fano threefold X with (X)ג = 3.10 and Aut0(X) ∼=
(k×)2 . There is a one-dimensional family of Fano threefolds X with (X)ג = 3.10
and Aut0(X) ∼= k× . For any other smooth Fano threefold X with (X)ג = 3.10, the
group Aut(X) is finite.

Proof. The threefold X is the blow-up of Q along two disjoint conics, C1 and C2.
Thus, one has

Aut0(X) ∼= Aut0(Q;C1 ∪ C2).

By Lemma 5.4, the line orthogonal to Ci intersects Q at two points, P (i)
1 and P (i)

2 .
Thus,

Aut0(Q;C1 ∪ C2) = Aut0
(
Q;

⋃
P

(i)
j

)
.

By Lemma 5.6, the linear span L of the set {P (i)
j } is isomorphic to P3 and the

corresponding quadric Q′ = Q ∩ L is smooth. Moreover, the points P (i)
1 and P

(i)
2

cannot lie on the same ruling of Q′ ∼= P1 × P1 by Lemma 5.4.
Let π1 and π2 be the projections of Q′ ∼= P1×P1 to its factors. If |{π1(P

(i)
j )}| > 3

and |{π2(P
(i)
j )}| > 3, then Aut

(
Q′;

⋃
P

(i)
j

)
is finite since the stabilizer of three or

more points on P1 is finite. Thus, the group Aut0(Q;C1 ∪ C2) ∼= Aut0(X) is finite
by Lemma 2.5. Hence we can assume that |{π1(P

(i)
j )}| = 2. If |{π2(P

(i)
j )}| = 2,

then Aut0(Q′; {P (i)
j }) ∼= (k×)2 and, since the automorphisms of Q′ act on it by

elements of PGL4(k), one has Aut0(X) ∼= (k×)2. Note that automorphisms of
a non-singular quadric surface act transitively on quadruples of points of the type
considered. Moreover, any two smooth hyperplane sections of a quadric threefold
can be identified by means of an automorphism of the quadric threefold. It follows
that all varieties X with Aut0(X) ∼= (k×)2 are isomorphic. In the case when
|{π2(P

(i)
j )}| > 3, we similarly obtain a one-dimensional family of varieties X with

Aut0(X) ∼= k×. (One has |{π2(P
(i)
j )}| = 4 for a generic element of this family.) �

Lemma 5.10. Let X be a smooth Fano threefold with (X)ג = 3.15. Then X is
unique up to isomorphism, and Aut0(X) ∼= k× .
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Proof. The threefold X is the blow-up of Q along a disjoint union of a smooth
conic C and a line ℓ. One has Aut0(X) ∼= Aut0(Q;C ∪ ℓ). By Lemma 5.4, the line
orthogonal to C intersects Q at two points, P1 and P2. Thus,

Aut0(Q;C ∪ ℓ) ∼= Aut0(Q; ℓ ∪ P1 ∪ P2).

By Lemma 5.5, the linear span L of the line ℓ and the points P1 and P2 is isomorphic
to P3 and the quadric Q′ = Q ∩ L is smooth. By Lemma 2.5, we have

Aut0(Q; ℓ ∪ P1 ∪ P2) ∼= Aut0(Q′; ℓ ∪ P1 ∪ P2).

We notice that P1 and P2 lie on different rulings of Q′ ∼= P1 × P1 because oth-
erwise the line through P1 and P2 lies on Q. Hence the images of ℓ, P1 and P2

under the projection to the base of the family of lines on Q′ containing ℓ are three
points on P1, so that their stabilizer is finite. On the other hand, projecting P1

and P2 to the base of the other family, we obtain two points on P1, and their stabi-
lizer in Aut(P1) is k×. Since the automorphisms of P1 preserving the two points are
induced from automorphisms of Q′ and Q, we see that Aut0(X) ∼= k×. Moreover,
any two smooth hyperplane sections of the quadric threefold Q can be mapped to
each other by an automorphism of Q. Finally, for every line on a smooth quadric
surface and any two points on this quadric lying outside the line and on different
rulings, there is an automorphism of the quadric sending them to any other pre-
scribed line and two points satisfying the same geometric conditions. This proves
the remaining assertion of the lemma. �

Lemma 5.11. There is a unique smooth Fano threefold X with (X)ג = 3.18. More-
over, one has

Aut0(X) ∼= B×k×.

Proof. The variety X is the blow-up of the quadric Q at a point P and along the
proper transform of some conic C passing through P . Thus, Aut0(X) is a group of
automorphisms of Q preserving C and P . The desired assertion now follows from
Lemma 5.7. �

Remark 5.12. Another description of the smooth Fano threefold X with (X)ג =
3.18 was given in [20], § 12. Namely, X is described as the blow-up of P3 along
the disjoint union of a line and a conic. These descriptions are equivalent. Indeed,
after the blow-up of the conic on P3, the normal bundle of the proper transform
Π̃ ∼= P2 of the plane Π containing the conic is isomorphic to OP2(−1). Hence one
can contract Π̃ and obtain a smooth quadric threefold. The line on P3 becomes
a conic passing through the point which is the image of Π̃.

Lemma 5.13. There is a unique smooth Fano threefold X with (X)ג = 3.19. More-
over, one has

Aut0(X) ∼= k× × PGL2(k).

Proof. The variety X is the blow-up of two distinct points P1, P2 on Q such that
the line ℓ through P1 and P2 in P4 is not contained in Q. Thus, one has Aut0(X) ∼=
Aut0(Q;P1 ∪ P2), and all elements of this group preserve the line ℓ since they are
linear. They also preserve its orthogonal plane Π and the corresponding conic
Π ∩ Q, which is smooth by Lemma 5.4. The desired assertion now follows from
Lemma 5.7. �
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Lemma 5.14. There is a unique smooth Fano threefold X with (X)ג = 3.20. One
has

Aut0(X) ∼= k× × PGL2(k).

Proof. The threefold X is the blow-up of Q along two disjoint lines, ℓ1 and ℓ2. One
has Aut0(X) ∼= Aut0(Q; ℓ1 ∪ ℓ2). Let L be the linear span of ℓ1 ∪ ℓ2. Then L ∼= P3

and the quadric surface Q′ = L ∩ Q is smooth. The lines ℓ1 and ℓ2 are contained
in the same family of lines on Q′ because they are disjoint by assumption. Since
the stabilizer in Aut(P1) of two points on P1 is the multiplicative group k× and
since the natural restriction homomorphism PGL4(k) → Aut(Q′) is surjective, we
see that Aut0(X) ∼= k× × PGL2(k) by Lemma 2.5. The uniqueness of X follows
easily since any two smooth hyperplane sections of the quadric threefold Q can be
mapped to each other by an automorphism of this quadric. �

Lemma 5.15. There is a unique smooth Fano threefold X with (X)ג = 4.4. More-
over, one has

Aut0(X) ∼= (k×)2.

Proof. The variety X is the blow-up of two points P1, P2 on the quadric Q followed
by the blow-up of the proper transform of a smooth conic C passing through them.
Thus, Aut0(X) is a group of automorphisms of Q preserving C, P1 and P2. Hence
the assertion of the lemma follows from Lemma 5.7. �

Lemma 5.16. Let X be a smooth Fano threefold with (X)ג = 5.1. Then

Aut0(X) ∼= k×.

Proof. Let π : Y → Q be the blow-up of Q along a smooth conic C. Then X is
the blow-up of Y at three distinct (one-dimensional) fibres of π over three points
of C. Therefore, Aut0(X) is isomorphic to the connected component of the identity
in the pointwise stabilizer of C in the group Aut(Q). The rest is straightforward;
see the proof of Lemma 5.7. �

§ 6. Blow-ups of the quintic del Pezzo threefold

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.14, 2.20, 2.22, 2.26}.

Let V5 be a smooth section of the Grassmannian Gr(2, 5) ⊂ P9 by a linear
subspace of dimension 6. Then V5 is a smooth Fano threefold of Picard rank 1
and anticanonical degree 40. It is known that the group Pic(V5) is generated by
an ample divisor H such that −KV5 ∼ 2H and H3 = 5. The linear system |H| is
base-point-free and gives an embedding V5 ↪→ P6.

The group Aut(V5) is known to be isomorphic to PGL2(k); see, for example, [6],
Proposition 4.4, or [45], Proposition 7.1.10. Moreover, the threefold V5 consists of
three PGL2(k)-orbits that can be described as follows (see [7], Lemma 1.5, [20],
Remark 3.4.9, [46], Proposition 2.13). The unique one-dimensional orbit is a ratio-
nal normal curve C ⊂ V5 of degree 6. The unique two-dimensional orbit is S \ C,
where S is an irreducible surface in the linear system |2H| whose singular locus
consists of the curve C.
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Corollary 6.1. Let P be a point of V5 \ S . Then the stabilizer of P in Aut(V5)
is finite.

One can show that the stabilizer of a point in V5 \ S is isomorphic to the octa-
hedral group, but we will not use this fact.

Lemma 6.2. Let X be a smooth Fano threefold with (X)ג = 2.14. Then Aut(X)
is finite.

Proof. The threefold X is the blow-up of V5 along a smooth complete intersection C
of two surfaces in the linear system |H|. Then

Aut0(X) ∼= Aut0(V5;C).

Since C is a smooth elliptic curve, the group Aut0(V5;C) acts trivially on it. On
the other hand, it follows from Lemma 7.2.3 in [45] that C is not contained in the
surface S because deg(C) = 5. Hence there is a point P ∈ C such that P ̸∈ S
and P is fixed by Aut0(X). Now, applying Corollary 6.1, we see that the group
Aut0(V5;C) is trivial, whence Aut(X) is finite. �

Remark 6.3. There is a PGL2(k)-equivariant identification of the Hilbert scheme Hℓ
of lines on V5 with the plane P2; see [46], Proposition 2.20 (compare with Theorem I
in [47]). This plane contains a unique PGL2(k)-invariant conic, which we denote
by C. By [48], § 1.2.1, and [20], Remark 3.4.9, the lines on V5 contained in S are
parametrized by the points of the conic C, and they are exactly the tangent lines
to C. Moreover, if C is a line on V5 contained in S, then its normal bundle is

NC/V5
∼= OP1(1)⊕OP1(−1)

by Proposition 2.27 in [46]. Likewise, if C ̸⊂ S, then NC/V5
∼= OP1 ⊕OP1 .

Remark 6.4. Let C be either a line or an irreducible conic in V5, π : X → V5

the blow-up of C, and E the exceptional surface of π. Then the linear sys-
tem |π∗(H) − E| is base-point-free because V5 is a scheme-theoretic intersection
of quadrics in P6, and V5 contains no planes. Thus, the divisor −KX ∼ π∗(2H)−E
is ample.

Lemma 6.5. Up to isomorphism, there are exactly two smooth Fano threefolds X
with (X)ג = 2.26. For one of them, we have

Aut0(X) ∼= k×

and for the other, Aut0(X) ∼= B.

Proof. In this case, the threefoldX is the blow-up of V5 along a line C. Moreover, by
Remark 6.4, the blow-up of any line on V5 is a smooth Fano variety. By Remark 6.3,
the Hilbert scheme Hℓ of lines on V5 is isomorphic to P2 and the action of Aut(V5) ∼=
PGL2(k) on Hℓ is faithful by Lemma 4.2.1 in [9]. Therefore we have

Aut0(X) ∼= Aut0(V5;C) ∼= Γ,

where Γ is the stabilizer in PGL2(k) of the point [C] ∈ Hℓ. Furthermore, the Hilbert
scheme Hℓ consists of two PGL2(k)-orbits, one of which is the conic C and the other
is Hℓ \ C. If [C] ∈ C, then Γ ∼= B. But if [C] ∈ Hℓ \ C, then Γ ∼= k×. Thus, up
to isomorphism, we have exactly two smooth Fano threefolds X with (X)ג = 2.26,
and the corresponding group Aut0(X) is isomorphic to B, k× respectively. �
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Remark 6.6. Let C be a line on the threefold V5, and let π : X → V5 be the blow-up
of this line. By Remark 6.4, the threefold X is smooth and (X)ג = 2.26. By
Lemma 6.5, either Aut0(X) ∼= k× or Aut0(X) ∼= B. This could be proved without
using the Hilbert scheme of lines on V5. Indeed, it follows from [21], p. 117, or [20],
Proposition 3.4.1, that there is a commutative diagram

X
η

  

π

~~
V5

φ // Q,

where Q is a smooth quadric threefold in P4, the rational map φ is the projection
from the line C, and the morphism η is the blow-up of a twisted cubic in Q (we
denote this cubic by C3). If C is not contained in the surface S, then

E ∼= P1 × P1.

Likewise, if C is contained in S, then E ∼= F2. This follows from Remark 6.3. In
both cases, η(E) is a hyperplane section of Q that passes through the curve C3;
see [20], Proposition 3.4.1(iii). If C is not contained in S, then this hyperplane
section is smooth. Otherwise the surface η(E) is a quadric cone, so that the induced
morphism E → η(E) contracts the (−2)-curve of the surface E ∼= F2. Thus, one
has

Aut(X) ∼= Aut(V5;C) ∼= Aut(Q;C3),

where the group Aut(Q;C3) can easily be described explicitly since the pair (Q,C3)
is unique up to projective equivalence (in each of the two cases). Indeed, fix homo-
geneous coordinates [x : y : z : t : w] on P4. We may assume that η(E) is cut out
on Q by the hyperplane {w = 0}. Then we can identify C3 with the image of the
map

[λ : µ] 7→ [λ3 : λ2µ : λµ2 : µ3 : 0].

If η(E) is smooth, then we may assume that Q is given by

xt− yz + w2 = 0. (6.7)

In this case, it follows from Lemma 2.5 and Corollary 2.7 that Aut0(Q;C3) ∼= k×.
Here the action of the group k× is given by

ζ : [x : y : z : t : w] 7→ [x : ζ2y : ζ4z : ζ6t : ζ3w].

Similarly, if η(E) is singular, one can show that Aut0(Q;C3) ∼= B.

For every line on V5 there is a unique surface in |H| that is singular along this
line. This surface is spanned by the lines in V5 that intersect the given line. More
precisely, we have the following result.

Lemma 6.8. Let S be a surface in |H| that has non-isolated singularities. Then
S is singular along a line C and smooth outside C . If C ⊂ S , then S contains no
irreducible curves of degree 3. Likewise, if C ̸⊂ S , then S contains no irreducible
curves of degree 3 that intersect C . In this case, the surface S contains a unique
Aut0(V5;C)-invariant irreducible cubic curve disjoint from C . Moreover, this curve
is a twisted cubic curve.
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Proof. One can assume that H is a general surface in |H|. Then H is a smooth del
Pezzo surface of degree 5, and

S|H ∈ | −KH |,

so that S|H is an irreducible singular curve of arithmetic genus 1. It follows that
S|H has a unique singular point (an ordinary isolated double point or an ordinary
cusp). This shows that S is singular along a certain line C and S has only isolated
singularities outside C.

We use the notation of Remark 6.6. Let S̃ be the proper transform of the
surface S on the threefold X. Then S̃ is the exceptional surface of the birational
morphism η. In particular, the surface S is smooth outside the line C.

Note that S̃ ∼= Fn for some integer n > 0. If C is not contained in S, then n = 1.
This follows from the proof of Lemma 13.2.1 in [45]. Indeed, let s be an irreducible
curve in Fn such that s2 = −n, and let f be a general fibre of the natural projection
ξ : Fn → P1. Then

−S̃|S̃ ∼ s + kf

for some integer k. We have

−7 = 2 +KQ · C3 = S̃3 = (s + kf)2 = −n+ 2k,

whence k = (n− 7)/2. Thus, if C is not contained in S, then η(E) is a smooth
surface. It follows that

E|S̃ ∼ s +
n− 1

2
f

is a section of the natural projection S̃ → P1 and, therefore, n = 1 because otherwise
0 6 E|S̃ · s = −(n+ 1)/2. In a similar vein, if C is contained in S, then η(E) is
a quadric cone, whence

E|S̃ = Z + F,

where Z and F are irreducible curves in S̃ such that Z is a section of the projection ξ
and F is the fibre of ξ over the singular point of the cone η(E). In this case we
have

Z ∼ s +
n− 3

2
f ,

so that 0 6 Z · s = −(n+ 3)/2 when n ̸= 3. Hence, if C ⊂ S, then n = 3.
Let M be an irreducible curve in S such that M ̸= C, and let M̃ be the proper

transform of M on the threefold X. Then

M̃ ∼ as + bf

for some non-negative integers a and b. Moreover, M ̸= s since s ⊂ E ∩ S̃. In
particular, we have

0 6 s · M̃ = s · (as + bf) = b− na,

whence b > na. Thus, if C is contained in S, then, since n = 3, we have

deg(M) = π∗(H) · M̃ = (s + 4f) · M̃ = b+ a > 4a.

It follows that deg(M) ̸= 3.
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To complete the proof of the lemma, we may assume that C is not contained
in S and M is an irreducible cubic curve. We need to show that such a curve M
indeed exists and is unique. As above, we see that

3 = deg(M) = π∗(H) · M̃ = (s + 3f) · M̃ = b+ 2a > 3a,

whence M̃ ∼ s + f . In particular, the curve M is disjoint from C since E ∩ S̃ = s.
It follows from Remark 6.6 that Aut0(X) ∼= Aut0(V5;C) ∼= Aut0(Q;C3) ∼= k×

and
Aut(X) ∼= Aut(V5;C) ∼= Aut(Q;C3).

Thus, to complete the proof of the lemma, it is enough to show that the linear
system | s + f | contains a unique irreducible Aut0(X)-invariant curve. To do this,
observe that the group Aut(Q;C3) contains a slightly larger subgroup Γ∼=
k× o Z/2Z. Indeed, let Q be the quadric given by the equation (6.7). Then the
additional involution acts on Q as

[x : y : z : t : w] 7→ [t : z : y : x : w].

This group Γ acts faithfully on the surface S̃ ∼= F1.
We claim that the linear system | s + f | contains a unique Γ-invariant curve

(compare with the proof of Lemma 13.2.1 in [45], where a similar claim was proved
for a subgroup of Γ isomorphic to D10). Indeed, let θ : S̃ → P2 be the contraction
of the curve s. Then θ determines a faithful action of Γ on P2. It is easy to check
that P2 contains a unique Γ-invariant line. We denote this line by ℓ and write ℓ̃ for
its proper transform on S̃. Then ℓ does not contain the point θ(s), whence

ℓ̃ ∼ s + f .

Thus, the curve ℓ̃ is a unique Γ-invariant curve in the linear system | s + f |.
Note that ℓ̃ is an Aut0(X)-invariant curve in | s + f |. Moreover, it is a unique

irreducible Aut0(X)-invariant curve in | s + f |. This completes the proof of the
lemma. �

Corollary 6.9. Let C be a twisted cubic curve in V5 , π : X → V5 the blow-up
of C , and E the exceptional surface of π . Then the linear system |π∗(H) − E| is
base-point-free and the divisor −KX is ample.

Proof. It is enough to show that |π∗(H)−E| is base-point-free. Suppose that this
is not the case. Then V5 contains a line L which is either a secant of C or tangent
to C. This follows since V5 is a scheme-theoretic intersection of quadrics and V5

contains no quadric surfaces. Let S be the surface in |H| that is singular along L.
Then C is contained in S. This contradicts Lemma 6.8. �

Lemma 6.10. Up to isomorphism, there is a unique smooth Fano threefold X with
(X)ג = 2.20 such that the group Aut(X) is infinite. Moreover, in this case one has
Aut0(X) ∼= k× .

Proof. In this case, the threefold X is the blow-up of V5 along a twisted cubic curve.
Denote this cubic curve by C. Then

Aut0(X) ∼= Aut0(V5;C).

Note that C is not contained in the surface S by Lemma 7.2.3 in [45].



Fano threefolds 883

By Corollary 6.9, there is a commutative diagram

X
η

  

π

��
V5

φ // P2,

(6.11)

where φ is a linear projection from the twisted cubic C and the morphism η is the
standard conic bundle given by the linear system |π∗(H)−E|. Simple computations
show that the discriminant of the conic bundle η is a curve of degree 3. Denote it
by ∆. Then ∆ has at most isolated ordinary double points by Corollary 2.3.

Note that the diagram (6.11) is Aut(X)-equivariant. Moreover, if the group
Aut0(X) is not trivial, then it acts non-trivially on the plane P2 in (6.11)
because Aut0(X) acts non-trivially on the π-exceptional surface E (this follows
from Corollary 6.1 since C is not contained in S).

Using Lemmas 2.1 and 2.4, we see that the curve ∆ must be reducible. Thus,
we can write ∆ = ℓ+M , where ℓ is a line and M is a conic (possibly reducible).

Let S̃ be a surface in |π∗(H)− E| such that η(S̃) = ℓ. We put S = π(S̃). Then
S̃ and S are non-normal by construction. Thus, it follows from Lemma 6.8 that S
is singular along a line in V5. Denote this line by L. Then L is not contained in S
by Lemma 6.8. Hence Aut0(V5;L) ∼= k× by Remark 6.6.

Since Lmust be Aut0(V5;C)-invariant, we see that either Aut0(V5;C) is trivial or

Aut0(V5;C) ∼= k×.

In the latter case, Lemma 6.8 yields that C is a unique Aut0(V5;C)-invariant twisted
cubic curve contained in the surface S. Thus, up to the action of Aut(V5), there
is a unique choice for C such that the group Aut0(V5;C) is non-trivial, and in this
case one has Aut0(V5;C) ∼= k×. In fact, Lemma 6.8 also implies that this case does
indeed occur. �

We need the following fact about rational quartic curves in P3.

Lemma 6.12. Let C4 be a smooth rational quartic curve in P3 . Then C4 is con-
tained in a unique quadric surface. Moreover, this quadric surface is smooth.

Proof. A dimension count shows that C4 is contained in a quadric surface, which
we denote by S. This surface is unique since otherwise C4 would be a complete
intersection of two quadric surfaces in P3, which is not the case since C4 is smooth
and rational.

Suppose that S is singular. Then S is an irreducible quadric cone. Let α : F2 → S
be the blow-up of the vertex of this cone, and let C̃4 be the proper transform of the
curve C4 on the surface F2. We write s for the unique (−2)-curve on F2 and f for
the general fibre of the natural projection F2 → P1. Then

C̃4 ∼ as + bf

for some non-negative integers a and b. Moreover,

b = (s + 2f) · (as + bf) = deg(C4) = 4
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because α is given by the linear system | s + 2f |. Since C̃4 is smooth and rational,
we see that a = 1. Then

s · C̃4 = s · (s + 4f) = 2.

It follows that the curve C4 = α(C̃4) is singular. The resulting contradiction shows
that S is a smooth quadric. �

We conclude this section by proving the following result.

Lemma 6.13. Up to isomorphism, there is a unique smooth Fano threefold X with
(X)ג = 2.22 such that the group Aut(X) is infinite. Moreover, in this case one has
Aut0(X) ∼= k× .

Proof. The threefold X is the blow-up of V5 along a smooth conic. Denote this
conic by C. It follows easily from Remark 6.4 that there is a commutative diagram

X
η

  

π

��
V5

φ // P3,

(6.14)

where π is the blow-up of C, the morphism φ is a linear projection from the conic C,
and the morphism η is the blow-up of a smooth rational quartic curve, which we
denote by C4. The diagram (6.14) is Aut(X)-equivariant. Thus, we see that

Aut(X) ∼= Aut(V5;C) ∼= Aut(P3;C4).

By Lemma 6.12, the curve C4 is contained in a unique quadric surface, which
we denote by S. This surface is smooth, again by Lemma 6.12. Thus, we have

S ∼= P1 × P1

and C4 is a curve of bidegree (1, 3). Note that Aut0(P3;C4) ∼= Aut0(S;C4) by
Lemma 2.1. Thus, by Corollary 2.7, there is a unique (up to projective equiva-
lence) choice for C4 such that the group Aut0(P3;C4) is non-trivial. In this case,
Corollary 2.7 also yields that Aut0(P3;C4) ∼= k×. This case does indeed occur. For
example, let C4 be given by the parametrization

[u4 : u3v : uv3 : v4],

where [u : v] ∈ P1. In this case, the quadric S is given by xt = yz, where [x : y : z : t]
are the homogeneous coordinates on P3. Since C4 is a scheme-theoretic intersection
of cubic surfaces in P3, we see that the blow-up of P3 along C4 is indeed a Fano
threefold, which can also be obtained by blowing up V5 along a smooth conic. �

§ 7. Blow-ups of the flag variety

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.32, 3.7, 3.13, 3.24, 4.7}.
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Recall that we are denoting the (unique) smooth Fano threefold with (X)ג = 2.32
by W . This threefold is isomorphic to the flag variety Fl(1, 2; 3) of complete flags
in a three-dimensional vector space as well as to the projectivization of the tangent
bundle of P2 and to a smooth divisor of bidegree (1, 1) on P2 × P2.

We start with the following well-known result.

Lemma 7.1. One has Aut0(W ) ∼= PGL3(k), and each of the two natural projec-
tions W → P2 induces an isomorphism

Aut0(W ) ∼= Aut(P2) ∼= PGL3(k).

Proof. The proof is left to the reader. �

Lemma 7.2. Let X be a smooth Fano threefold with (X)ג = 3.7. Then the group
Aut(X) is finite.

Proof. The threefold X is the blow-up of the flag variety W along a smooth curve C
which is a complete intersection of two divisors in the linear system

∣∣− 1
2KW

∣∣. By
the adjunction formula, C is an elliptic curve. We have Aut0(X) ⊂ Aut0(W ;C).

Let π1 : W → P2 and π2 : W → P2 be the natural projections. They are
Aut0(W )-equivariant. We put C1 = π1(C) and C2 = π2(C). Since the intersec-
tion numbers of the fibres of each projection πi with divisors in the linear system∣∣− 1

2KW

∣∣ are equal to 1, we see that both curves C1 and C2 are isomorphic to C.
Hence we have

Aut0(W ;C) ⊂ Aut(P2;C1)×Aut(P2;C2).

On the other hand, the groups Aut(P2;C1) and Aut(P2;C2) are finite by
Lemma 2.1. �

We will need the following simple auxiliary result.

Lemma 7.3 ([38], Lemma 6.2(a)). Let C1 and C2 be irreducible conics in P2 . Then
the following assertions hold.

(i) If |C1 ∩ C2| = 1, then Aut0(P2;C1 ∪ C2) ∼= k+ .
(ii) If C1 and C2 are tangent to each other at two distinct points, then Aut0(P2;

C1 ∪ C2) ∼= k× .

We now proceed to Fano varieties X with (X)ג = 3.13.

Lemma 7.4. The following assertions hold.
– There is a unique smooth Fano threefold X with (X)ג = 3.13 and

Aut0(X) ∼= PGL2(k).

– There is a unique smooth Fano threefold X with (X)ג = 3.13 and
Aut0(X) ∼= k+ .

– For all other smooth Fano threefolds X with (X)ג = 3.13, one has
Aut0(X) ∼= k× .

Proof. A smooth Fano threefold X with (X)ג = 3.13 is the blow-up of the flag
variety W along a curve C such that the natural projections π1 and π2 map C
isomorphically onto smooth conics in P2, which we denote by C1 and C2 respectively.
Put S1 = π−1

1 (C1) and S2 = π−1
2 (C2). Then Si ∼= P1 × P1, the intersection S1 ∩ S2
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is a curve of bidegree (2, 2) on S1
∼= P1 × P1, and C is its irreducible component of

bidegree (1, 1). One has
Aut0(X) ∼= Aut0(W ;C).

The curve C and the surfaces Si are Aut0(W ;C)-invariant. Moreover, the pro-
jections πi : W → P2 are Aut0(W ;C)-equivariant and the conics Ci are invariant
under the corresponding action of Aut0(W ;C) on P2.

Note that the threefold W can be used to identify one copy of P2 with the dual
of the other. On the other hand, C1 can be used to identify the plane P2 ⊃ C1 with
its dual. Using these identifications, we may regard C2 as a conic contained in the
same projective plane P2 as the conic C1. Then C1 and C2 are Aut0(W ;C)-invariant
under the natural action of Aut0(W ;C) on P2. We conclude that

Aut0(W ;C) ∼= Aut(P2;C1 ∪ C2).

Since W is the flag variety Fl(1, 2; 3), we can describe the curve S1 ∩ S2 ⊂W as

S1 ∩ S2 = {(P, ℓ) ∈W | P ∈ C1 and ℓ is tangent to C2}.

The induced double covers πi : S1 ∩ S2 → Ci are branched exactly over the points
of C1 ∩ C2. If S1 ∩ S2 is a reduced curve, then its arithmetic genus is equal to 1.
In this case, since S1 ∩ S2 contains an irreducible component of bidegree (1, 1) on
S1
∼= P1×P1, we see that one of the following cases must occur: either |C1∩C2| = 2

and C1 is tangent to C2 at both points of their intersection C1∩C2, or |C1∩C2| = 1.
If the intersection S1 ∩ S2 is not reduced, then it is just the curve C taken with
multiplicity 2, so that the conics C1 and C2 coincide. Recall that the conics C1 and
C2 are irreducible in all of these cases.

Suppose that the conics C1 and C2 are tangent at two distinct points. (Note
that there is a one-parameter family of such pairs of conics, up to isomorphism.)
Then one has Aut0(P2;C1 ∪ C2) ∼= k× by Lemma 7.3(ii).

Suppose that the conics C1 and C2 are tangent with multiplicity 4 at a single
point. (Note that there is exactly one such pair of conics, up to isomorphism.)
Then one has Aut0(P2;C1 ∪ C2) ∼= k+ by Lemma 7.3(i).

Finally suppose that the conics C1 and C2 coincide. Then

Aut0(P2;C1 ∪ C2) ∼= PGL2(k). �

Remark 7.5. A smooth Fano threefoldX with (X)ג = 3.13 and Aut0(X) ∼= PGL2(k)
was considered in [36], Example 2.4; see also [16].

Lemma 7.6. Let X be a smooth Fano threefold with (X)ג = 3.24. Then Aut0(X) ∼=
PGL3;1(k).

Proof. The threefoldX is the blow-up of the flag varietyW along a fibre of one of the
natural projections W → P2. The required assertion follows since the morphisms
X →W and X → P2 are Aut0(X)-equivariant. �

Lemma 7.7. Let X be a smooth Fano threefold with =(X)ג 4.7. Then

Aut0(X) ∼= GL2(k).
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Proof. The threefold X is the blow-up of the flag variety W along two disjoint
fibres C1, C2 of the projections π1, π2 : W → P2 respectively. Therefore, we have
Aut0(X) ∼= Aut0(W ;C1 ∪ C2). Put P = π1(C1) and ℓ = π1(C2). Then ℓ is a line
on P2. Note that P ̸∈ ℓ since the curves C1 and C2 are disjoint. Recall that the
Aut0(X)-equivariant projection π1 induces an isomorphism Aut0(W ) ∼= Aut(P2).
Under this isomorphism, the subgroup Aut0(W ;C1 ∪C2) is mapped to a subgroup
of Aut(P2; ℓ ∪ P ).

We claim that the group Aut0(X) is actually isomorphic to Aut0(P2; ℓ∪P ).
Indeed, let σ be an arbitrary element of Aut0(P2; ℓ ∪ P ) and let σ̂ be its (unique)
preimage in Aut0(W ). Then σ̂ preserves the curve C1 = π−1

1 (P ) and the surface
S = π−1

1 (ℓ). Moreover, C2 is the unique fibre of π2 contained in S. It follows that
σ̂ also preserves C2.

We conclude that Aut0(X) is isomorphic to the stabilizer of the disjoint union
of a line and a point in P2. The desired assertion now follows from Remark 2.10. �

§ 8. Blow-ups and double covers of direct products

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.2, 2.18, 3.1, 3.3, 3.4, 3.5, 3.8, 3.17, 3.21, 3.22, 4.1, 4.3, 4.5, 4.8, 4.11, 4.13}.

Lemma 8.1. Suppose that Y = Pn1×· · ·×Pnk and let θ : X → Y be a smooth dou-
ble cover of Y branched over a smooth divisor of multidegree (d1, . . . , dk). Suppose
that ni + 1 6 di 6 2ni for every i. Then the group Aut(X) is finite.

Proof. Let πi be the projection of Y to the ith factor and let Hi be a hyperplane
in this factor. Then the divisor class

H =
k∑
i=1

π∗i (Hi)

determines the Segre embedding of X. On the other hand, the branch divisor Z is
divisible by 2 in the group Pic(Y ) and, therefore, is not contained in any effective
divisor in the linear system |H|. Moreover, the canonical class of Z is numerically
effective by the adjunction formula, whence Z is not uniruled. Thus it follows from
Lemma 2.1 that the group Aut(Y ;Z) is finite. On the other hand, X is a Fano
variety and the projections πi ◦ θ : X → Pni are extremal contractions. It fol-
lows that they are Aut0(X)-equivariant. Hence the map θ is Aut0(X)-equivariant,
so that Aut0(X) is a subgroup of Aut(Y ;Z). �

Corollary 8.2. Let X be a smooth Fano threefold with (X)ג ∈ {2.2, 3.1}. Then
the group Aut(X) is finite.

Proof. A smooth Fano threefold with (X)ג = 2.2 is a double cover of P1 × P2 with
branch divisor of bidegree (2, 4). A smooth Fano threefold with (X)ג = 3.1 is
a double cover of P1 × P1 × P1 with branch divisor of tridegree (2, 2, 2). Hence the
desired assertion follows from Lemma 8.1. �

Lemma 8.3. Let X be a smooth Fano threefold with (X)ג = 2.18. Then the group
Aut(X) is finite.
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Proof. The variety X is a double cover of P1×P2 branched over a divisor Z of bide-
gree (2, 2). The natural morphisms from X to P1 and P2 are extremal contractions,
whence the double cover θ : X → P1×P2 is Aut0(X)-equivariant. Thus, Aut0(X) is
a subgroup of Aut(P1×P2;Z). By Lemma 2.1, the action of Aut(P1×P2;Z) on Z
is faithful. Considering the projection Z → P2, we see that Z is a double cover
of P2 branched over a quartic. Hence Z is a smooth del Pezzo surface of degree 2.
Therefore the automorphism group of Z is finite by Theorem 2.2, and the assertion
follows. �

Corollary 8.4. Let X be a smooth Fano threefold with (X)ג = 3.4. Then the group
Aut(X) is finite.

Proof. The varietyX is the blow-up of a smooth Fano threefold Y with Y)ג ) = 2.18.
Thus, the assertion follows from Lemma 8.3. �

Lemma 8.5. Let X be a smooth Fano threefold with =(X)ג 3.3. Then the group
Aut(X) is finite.

Proof. The variety X is a divisor of tridegree (1, 1, 2) in P1×P1×P2 and the natural
projection π : X → P1 × P2 is Aut0(X)-equivariant. One can check that π is the
blow-up of P1×P2 along a smooth curve C which is the complete intersection of two
divisors of bidegree (1, 2). It follows that Aut0(X) is a subgroup of Aut(P1×P2;C).
Since C is not contained in any effective divisor of bidegree (1, 1), the action of
Aut(P1×P2;C) on C is faithful by Lemma 2.1. On the other hand, we see from the
adjunction formula that C has genus 3. Therefore the automorphism group of C is
finite, and the assertion follows. �

The following fact was explained to us by A. Kuznetsov.

Lemma 8.6. Let X be a smooth Fano threefold with =(X)ג 3.8. Then X is the
blow-up of P1 × P2 along a complete intersection of divisors of bidegree (0, 2) and
(1, 2).

Proof. The variety X can be described as follows. Let g : F1 → P2 be the blow-up of
a point, and let p1, p2 be the natural projections of F1×P2 to F1 and P2 respectively.
Then X is a divisor in the linear system |p∗1g∗OP2(1)⊗ p∗2OP2(2)|. We now restate
this description. Put Y = P1 × P2 and let a and b be the pullbacks to Y of the
divisors OP1(1) and OP2(1) respectively. One has

P = F1 × P2 ∼= PY
(
OY ⊕OY (−a)

)
.

Suppose that h ∈ |OP(1)|. Then X is a divisor in the linear system |h+ 2b|.
Suppose that E is a vector bundle of rank 2 over a smooth variety M ,

φ : PM (E)→M is the natural projection, and V ∈ |OPM (E)(1)|. Then the induced
birational map V →M is the blow-up of Z = {s = 0}, where

s ∈ H0(M,E∗) ∼= H0
(
PM (E),OPM (E)(1)

)
.

This means that if π : P → Y is the natural projection, then π∗OP(h) is dual to
OY ⊕OY (−a). Hence X is the blow-up of a section of

π∗OP(h+ 2b) ∼=
(
OY ⊕OY (a)

)
⊗OY (2b) ∼= OY (2b)⊕OY (a+ 2b).

In other words, the threefold X is the blow-up of P1 × P2 along a complete inter-
section of divisors of bidegree (0, 2) and (1, 2). �
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Lemma 8.7. Let n,m be integers with 1 6 n and 1 6 m 6 2 and let C be the family
of smooth curves C of bidegree (n,m) on P1×P2 which project isomorphically to P2

(so that the projection of C to P1 is an n-sheeted covering and the image of C
under the projection to P2 is a curve of degree m). Then, up to the action of
Aut(P1 × P2), the family of curves in C has dimension 0 when 1 6 n 6 2 and
dimension 2n − 5 when n > 3. Furthermore, up to the action of Aut(P1 × P2),
there is a unique curve C0 in this family such that the group Aut(P1 × P2;C0) is
infinite. One has

– Aut0(P1 × P2;C0) ∼= (k+)2 o (k×)2 if m = 1 and n > 2;
– Aut0(P1 × P2;C0) ∼= PGL2(k) if m = 2 and n = 1;
– Aut0(P1 × P2;C0) ∼= k× if m = 2 and n > 2.

Proof. Choose a curve C in C. Let π : P1×P2 → P2 be the natural projection, so that
π(C) is a line when m = 1 and a smooth conic when m = 2. Put S = π−1(π(C)).
Then S ∼= P1×P1 and C is a curve of bidegree (n, 1) on S. Moreover, the surface S is
Aut(P1×P2;C)-invariant. Note that the action of Aut0(S;C) on S comes from the
restriction of the action of Aut(P1 × P2;C). Therefore, the assertions concerning
the number of parameters follow from Corollary 2.7 and Lemma 2.8.

If m = 2, then the action of Aut(P1 × P2;C) on S is faithful by Lemma 2.1,
whence Aut(P1 × P2;C) ∼= Aut(S;C). In this case, the assertions of the lemma
follow from Corollary 2.7 and Remark 2.9.

We now assume that m = 1 and n > 2. Then

Aut(P1 × P2;C) ∼= Γ o Aut(S;C),

where Γ is the pointwise stabilizer of S in Aut(P1 × P2). On the other hand, the
group Γ is isomorphic to the pointwise stabilizer of the line π(S) on P2, whence

Γ ∼= (k+)2 o k×.

Therefore, the assertion of the lemma follows from Corollary 2.7 and Remark 2.9. �

Corollary 8.8. Up to isomorphism, smooth Fano threefolds X with (X)ג = 3.5,
3.8, 3.17 and 3.21 form families of dimensions 5, 3, 0 and 0 respectively. Each
of these families contains a unique variety X0 with infinite automorphism group.
If (X0)ג = 3.17, then Aut0(X0) ∼= PGL2(k). If (X0)ג = 3.5 or 3.8, then
Aut0(X0) ∼= k× . If (X0)ג = 3.21, then

Aut0(X0) ∼= (k+)2 o (k×)2.

Proof. A variety X with (X)ג = 3.5 is the blow-up of a curve C of bidegree (5, 2) on
P1 × P2. By Lemma 8.6, a variety X with (X)ג = 3.8 is the blow-up of a curve C
of bidegree (4, 2) on P1 × P2. A variety X with (X)ג = 3.17 is the blow-up of
a curve C of bidegree (1, 2) on P1 × P2. A variety X with (X)ג = 3.21 is the
blow-up of a curve C of bidegree (2, 1) on P1 × P2. We conclude that Aut0(X) ∼=
Aut0(P1 × P2;C). Hence everything follows from Lemma 8.7. �

Remark 8.9 (compare with Lemma 7.6). One can use an argument similar to the
proof of Lemma 8.7 in order to show that there is a unique smooth Fano threefold X
with (X)ג = 3.24 and that Aut0(X) ∼= PGL3;1(k). Indeed, such a variety can be
obtained by blowing up P1 × P2 along a curve of bidegree (1, 1).
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Remark 8.10. Theorem 1.1 in [12] asserts that there is a smooth Fano threefold
X with (X)ג = 3.8 admitting a faithful action of (k×)2. Actually, this is not
the case. Corollary 8.8 above shows that the two-dimensional torus cannot act
faithfully on this variety. This also follows since every smooth Fano threefold in
this family admits a fibration into del Pezzo surfaces of degree 5 by means of the
natural projection P1 × P2 → P1 in Lemma 8.6. These Fano threefolds can be
obtained by blowing up a divisor of bidegree (1, 2) in P2×P2 along a smooth conic.
By Lemma 8.6, this conic is mapped isomorphically onto a smooth conic in P2

under the projection to the second factor. In [12], the description of smooth Fano
varieties X with (X)ג = 3.8 uses another conic which is mapped to a point in P2

by this projection. Blowing up this wrong conic yields a weak Fano threefold that
is not actually a Fano threefold. As a consequence of this mistake, we still do not
know whether there exists a smooth Fano threefold X with (X)ג = 3.8 admitting
a non-trivial Kähler–Ricci soliton as stated in [35], Theorem 6.2.

The following assertion can be proved in the same way as Lemma 8.7.

Lemma 8.11. Given any positive integer n, we write C for the family of smooth
curves of tridegree (1, 1, n) on P1 × P1 × P1 . Then, up to the action of Aut(P1 ×
P1×P1), the family C has dimension 0 when 1 6 n 6 2 and dimension 2n−5 when
n > 3. Furthermore, up to the action of Aut(P1 × P1 × P1), this family contains
a unique curve C0 such that the group Aut(P1 × P1 × P1;C0) is infinite. One has

– Aut0(P1 × P1 × P1;C0) ∼= PGL2(k) when n = 1;
– Aut0(P1 × P1 × P1;C0) ∼= k× when n > 2.

Proof. The proof is left to the reader. �

Corollary 8.12. Up to isomorphism, the smooth Fano threefolds X with (X)ג =
4.3 and (X)ג = 4.13 form families of dimensions 0 and 1 respectively. In both cases,
there is a unique variety X0 with infinite automorphism group. In both cases one
has Aut0(X0) ∼= k× .

Proof. A variety X with (X)ג = 4.3 or 4.13 is the blow-up of P1 × P1 × P1 along
a curve C of tridegree (1, 1, 2) or (1, 1, 3) respectively. We conclude that

Aut0(X) ∼= Aut0(P1 × P1 × P1;C).

Thus, the assertion follows from Lemma 8.11. �

Remark 8.13 (compare with Lemma 4.14). One can use Lemma 8.11 to prove that
there is a unique smooth Fano threefold X with (X)ג = 4.6 and that one has
Aut0(X) ∼= PGL2(k). Indeed, such a variety can be obtained by blowing up P1 ×
P1 × P1 along a curve of tridegree (1, 1, 1).

Lemma 8.14. Let X be a smooth Fano threefold with (X)ג = 3.22. Then

Aut0(X) ∼= B×PGL2(k).

Proof. The threefold X is the blow-up of P1 × P2 along a conic Z lying in a fibre
of the projection P1 × P2 → P1. The morphisms X → P1 and X → P2 are
Aut0(X)-equivariant. Thus the assertion follows from Lemma 3.1. �

Lemma 8.15. Let X be a smooth Fano threefold with (X)ג = 4.1. Then the group
Aut(X) is finite.
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Proof. The threefold X is a divisor of multidegree (1, 1, 1, 1) on P1 × P1 × P1 × P1.
Considering a projection X → P1 × P1 × P1, we see that X is the blow-up of
P1 × P1 × P1 along a smooth curve C which is the intersection of two divisors
of tridegree (1, 1, 1). Thus, one has

Aut0(X) ∼= Aut0(P1 × P1 × P1;C).

By the adjunction formula, C is an elliptic curve. Consider the projections

πi : P1 × P1 × P1 → P1, i = 1, 2, 3.

They are Aut0(P1 × P1 × P1;C)-equivariant and the restriction of each πi to C is
a double cover C → P1. The group Aut0(P1 × P1 × P1;C) is non-trivial if and
only if its action on one of the factors P1 is non-trivial. However, this action must
preserve the set of the four branch points of the double cover. It follows that the
group Aut0(P1 × P1 × P1;C) is trivial. �

Lemma 8.16. Let X be a smooth Fano threefold with (X)ג = 4.5. Then

Aut0(X) ∼= (k×)2.

Proof. The threefold X is the blow-up of P1 × P2 along a disjoint union of smooth
curves Z1 and Z2 of bidegrees (2, 1) and (1, 0) respectively. One has

Aut0(X) ∼= Aut0(P1 × P2;Z1 ∪ Z2).

By Lemma 8.7 one has

Aut0(P1 × P2;Z1) ∼= (k+)2 o (k×)2,

where the subgroup Aut0(P1 × P2;Z1) ⊂ Aut(P2) acts as the stabilizer of two
points in P2, namely, the points P1 and P2 that are the images under the projection
π2 : P1 × P2 → P2 of the ramification points of the double cover Z1 → P1 given by
the projection π1 : P1 × P2 → P1.

Consider the action of Aut0(P1×P2) on P2 induced by the Aut0(P1×P2)-equiva-
riant projection π2. It is easy to see that Aut0(P1×P2;Z1 ∪ Z2) is the subgroup of
Aut0(P1 × P2;Z1) consisting of all elements that preserve the point π2(Z2) on P2.
Note that π2(Z1) is the line through P1 and P2. The point π2(Z2) is not on this line
since otherwise Z1 ∩Z2 ̸= ∅. Therefore Aut0(P1×P2;Z1 ∪ Z2) acts on P2 preserving
three points P1, P2 and π2(Z2) in general position. Hence,

Aut0(P1 × P2;Z1 ∪ Z2) ∼= (k×)2. �

Lemma 8.17. Let X be a smooth Fano threefold with (X)ג = 4.8. Then

Aut0(X) ∼= B×PGL2(k).

Proof. The threefold X is the blow-up of P1 × P1 × P1 along a curve Z of bidegree
(1, 1) contained in a fibre of the projection P1 × P1 × P1→P1. The morphisms
X → P1 and X → P1 × P1 are Aut0(X)-equivariant. Thus, the assertion follows
from Remark 2.9 and Lemma 3.1. �
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Lemma 8.18. Let X be a smooth Fano threefold with (X)ג = 4.11. Then

Aut0(X) ∼= B×PGL3;1(k).

Proof. The threefold X is the blow-up of P1 × F1 along a (−1)-curve Z contained
in a fibre of the projection P1 × F1 → P1. The morphisms X → P1 and X → F1

are Aut0(X)-equivariant. Moreover, the (−1)-curve on F1 is unique and, therefore,
it is invariant under the whole group Aut(F1). Thus, the assertion of the lemma
follows from Theorem 2.2 and Lemma 3.1. �

§ 9. Blow-up of a quadric along a twisted quartic

To deal with the case (X)ג = 2.21, we need some auxiliary information about
representations of the group SL2(k).

Lemma 9.1. Let U4 be the (unique) irreducible five-dimensional representation of
the group SL2(k) (or PGL2(k)), and let U0 be its trivial (one-dimensional) repre-
sentation. Consider the projective space P = P(U0⊕U4)∼= P5 and, for every point
R ∈ P, write Γ0

R for the connected component of the identity in the stabilizer of R
in PGL2(k). Then the following assertions hold.

– There is a unique point Q0 ∈ P such that Γ0
Q0

= PGL2(k).
– Up to the action of PGL2(k), there is a unique Qa ∈ P such that Γ0

Qa

∼= k+ .
– Up to the action of PGL2(k), there is a unique QB ∈ P such that Γ0

QB
∼= B.

– Up to the action of PGL2(k), there are a one-dimensional family of points
Qξm ∈ P parametrized by an open subset of k and an isolated point Q3,1

m ∈ P such
that

Γ0
Qξ

m

∼= Γ0
Q3,1

m

∼= k×.

– The point Q0 is contained in the closure of the PGL2(k)-orbit of Qa and in
the closure of the family Qξm .

Proof. There is a PGL2(k)-equivariant (set-theoretical) identification of P with the
disjoint union U4 ⊔ P(U4). Thus, we need to find points with infinite stabilizers
in U4 and P(U4).

The representation U4 can be identified with the space of homogeneous poly-
nomials of degree 4 in two variables u and v, where the action of PGL2(k) comes
from the natural action of SL2(k). The point Q0 = 0 is clearly the only one with
stabilizer PGL2(k). The point Qa can be chosen in the PGL2(k)-orbit of the poly-
nomial u4, and the points Qξm can be chosen as ξ−1u2v2.

Consider the projectivization P(U4). The point QB can be chosen as the equiva-
lence class of the polynomial u4. Furthermore, up to the action of PGL2(k), there
are exactly two points Q3,1

m and Q2,2
m in P(U4) such that the connected component

of the identity in their stabilizers is isomorphic to k×. These points may be chosen
as the classes of the polynomials u3v and u2v2 respectively. Clearly, the point Q2,2

m

is the limit of the points Qξm as ξ → 0 (while Q0 is their limit as ξ →∞).
Finally, we note that Q3,1

m is not contained in the closure of the family Qξm (nor in
the union of the PGL2(k)-orbits of the corresponding points) because a polynomial
of u and v with a simple root cannot be the limit of polynomials having only
multiple roots. �
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Lemma 9.2. The following assertions hold.
– There is a unique smooth Fano threefold X with (X)ג = 2.21 and

Aut0(X) ∼= PGL2(k).

– There is a unique smooth Fano threefold X with (X)ג = 2.21 and Aut0(X)∼= k+ .
– There is a one-parameter family of smooth Fano threefolds X with (X)ג = 2.21

and Aut0(X) ∼= k× .
– For all other smooth Fano threefolds X with (X)ג = 2.21, the group Aut(X)

is finite.

Proof. The threefold X is the blow-up of the quadric Q along a twisted quartic Z.
As in Lemma 4.3, we conclude that Aut(X) is the stabilizer of the quadric Q in the
subgroup Γ ∼= PGL2(k) of Aut(P4) that acts naturally on Z.

Let U1 be a two-dimensional vector space such that the twisted quartic Z ∼= P1 is
identified with P(U1). Then U1 has the natural structure of an SL2(k)-representation
which induces the action of Γ on Z. The projective space P4 is identified with
the projectivization of the SL2(k)-representation Sym4(U1), and the linear sys-
tem Q of quadrics in P4 passing through Z is identified with the projectivization
of an SL2(k)-invariant six-dimensional vector subspace U in Sym2(Sym4(U1)). By
Exercise 11.31 in [49], the latter SL2(k)-representation splits into irreducible sum-
mands:

Sym2(Sym4(U1)) ∼= U0 ⊕ U4 ⊕ U8,

where Ui is the (unique) irreducible SL2(k)-representation of dimension i+1. There-
fore, one has an isomorphism U ∼= U0 ⊕ U4.

Let Q0 be the quadric corresponding to the trivial SL2(k)-representation
U0 ⊂ U . Then Q0 is PGL2(k)-invariant and Aut(Q0;Z) ∼= PGL2(k). We observe
that Q0 is smooth. Indeed, suppose that it is singular. If it is a cone (whose
vertex is either a point or a line), then its vertex determines an SL2(k)-
subrepresentation in Sym4(U1) ∼= U4. This contradicts the irreducibility of the
SL2(k)-representation U4. We similarly see that Q0 cannot be reducible or non-
reduced. Thus we conclude that there is a unique smooth Fano threefold X0 with
(X0)ג = 2.21 and Aut0(X0) ∼= PGL2(k).

We now use the results in Lemma 9.1. They yield all the desired assertions
provided that we can check the smoothness (or otherwise) of the corresponding
varieties. For the threefold X with Aut0(X) ∼= k+ and for a general threefold X
with Aut0(X) ∼= k×, the smoothness follows from the existence of a smooth vari-
ety X0 in the closure of the corresponding family.

It remains to notice that the quadrics QB and Q3,1
m are singular. Indeed, one

can choose homogeneous coordinates [x : y : z : t : w] on P4 in such a way that the
group k× acts on P4 as

ζ : [x : y : z : t : w] 7→ [x : ζy : ζ2z : ζ3t : ζ4w], (9.3)

whence the quadrics QB and Q3,1
m are given by the equations y2 = xz and xt = yz

respectively. �

Remark 9.4. There is a simple geometric way to construct the singular B-invariant
quadric QB containing the twisted quartic Z. Indeed, the group B has a fixed
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point P on Z. The projection from P maps P4 (resp. Z) to a projective space P3

acted on by B (resp. to a B-invariant twisted cubic Z ′ in P3). Furthermore, there is
a B-fixed point P ′ on Z ′. The projection from P ′ maps P3 (resp. Z ′) to a projective
plane P2 acted on by B (resp. to a B-invariant conic in P2). Taking the cone with
vertex P ′ over this conic, we obtain a B-invariant quadric in P3 passing through Z ′.
Taking the cone with vertex P over this quadric, we obtain a B-invariant quadricQB

in P4 passing through Z. Note that this quadric is singular and, therefore, different
from Q0. By Lemma 9.1, every B-invariant quadric passing through Z is either Q0

or QB. This means that there is no smooth Fano threefold X with (X)ג = 2.21
and Aut0(X) ∼= B.

Remark 9.5. The Fano threefold X with (X)ג = 2.21 and Aut0(X) ∼= PGL2(k) was
considered in [36], Example 2.3.

Smooth Fano threefolds with =(X)ג 2.21 and Aut0(X)∼= k× can be described
very explicitly. Namely, every such threefold X is the blow-up of the quadric Qλ
in P4 given by

z2 = λxw + (1− λ)yt (9.6)

along a twisted quartic Z given by the parametrization

[u4 : u3v : u2v2 : uv3 : v4],

where [u : v] ∈ P1. Here [x : y : z : t : w] are homogeneous coordinates in P4, the
group k× acts on P4 as in (9.3), and λ ∈ k is such that λ ̸= 0 and λ ̸= 1. Note that
Aut(Qλ;Z) also contains an additional involution

ι : [x : y : z : t : w] 7→ [w : t : z : y : x].

Along with the group k×, it generates the subgroup k× o Z/2Z. The action of this
subgroup lifts to X. Observe that there is an Aut(Qλ;Z)-commutative diagram

X

π′

!!

π

~~
Qλ

φ // Qλ′ ,

where π is the blow-up of Qλ along Z, the morphism π′ is the blow-up of some
smooth quadric Qλ′ along Z, and φ is the birational map given by a linear system
of quadrics passing through Z. In fact, it follows from Remark 2.13 in [32] that
λ = λ′, and φ can be chosen to be an involution. In the case when Aut0(Qλ;Z) ∼=
Aut0(X) ∼= PGL2(k), this follows from Example 2.3 in [36].

Remark 9.7. A. Kuznetsov pointed out to us that Aut0(X−1/3) ∼= PGL2(k) for the
variety X−1/3 corresponding to λ = −1/3 in the notation above. To check this, it
suffices to write down the condition for the quadric (9.6) to be invariant under the
generators of the Lie algebra of the group SL2(k).

§ 10. Divisors of bidegree (1, 2) on P2 × P2

In this section we consider smooth Fano threefolds X with (X)ג = 2.24. All of
them are divisors of bidegree (1, 2) on P2 × P2.
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Lemma 10.1. Let C and ℓ be a conic and a line in P2 respectively. Suppose
that C and ℓ intersect each other transversally (at two distinct points). Then
Aut0(P2;C ∪ ℓ) ∼= k× .

Proof. Denote the intersection points in C ∩ ℓ by P1 and P2. Let ℓ′ be the tangent
line to C at P1. Choose coordinates [x : y : z] on P2 in such a way that the lines
ℓ and ℓ′ are given by x = 0 and y = 0. In particular, P1 = [0 : 0 : 1]. We can
also assume that P2 = [0 : 1 : 0]. In these coordinates, the conic C is given by
x2 = yz. An automorphism of P2 preserving ℓ and C acts on the tangent space
TP1(C ∪ ℓ) ∼= k2 by dilation of the coordinates x and y (regarded as coordinates on
TP1(C ∪ ℓ)). Therefore it acts in the same way on the original plane P2. Keeping
in mind that this automorphism preserves C = {x2 = yz}, we get the assertion of
the lemma. �

Lemma 10.2 (compare with Theorem 1.1 in [12]). Any smooth divisor of bidegree
(1, 2) on P2 × P2 has a finite automorphism group with two exceptions. The con-
nected component of the identity of the automorphism group of the first (resp. sec-
ond) exception is isomorphic to k× (resp. (k×)2).

Proof. Let X be a smooth divisor of bidegree (1, 2) on P2 × P2. The projection φ
to the first factor provides X with the structure of a conic bundle. Its discriminant
curve ∆ is a curve of degree 3 given by the vanishing of the discriminant of the
quadratic form (whose coordinates are linear functions on the base of the conic
bundle). The curve ∆ is at worst nodal by Remark 2.3.

We denote coordinates on P2×P2 = P2
x×P2

y by [x0 :x1 :x2]× [y0 : y1 : y2].
Define Θ as the maximal subgroup of Aut0(X) acting by fibrewise transformations
with respect to φ. There is an exact sequence of groups

1 → Θ → Aut0(X) → Γ,

where Γ acts faithfully on P2
x.

We claim that the group Θ is finite. Indeed, suppose that it is not. Let ℓ be
a general line on P2

x, and let S be the surface φ−1(ℓ). Then S is Θ-invariant and the
image of Θ in Aut(S) is infinite. On the other hand, S is a smooth del Pezzo surface
of degree 5, so that Aut(S) is finite by Theorem 2.2. The resulting contradiction
shows that the kernel of the action of Aut0(X) on P2

x is finite.
The variety X is given by

x0Q0 + x1Q1 + x2Q2 = 0, (10.3)

where Qi are quadratic forms in yj . Note that they are linearly independent since
X is smooth.

The curve ∆ is Γ-invariant. If ∆ is a smooth cubic, then the group Γ is finite
by Lemma 2.1. If ∆ is singular but irreducible, then Γ is finite by Remark 2.3 and
Lemma 2.4.

Suppose that ∆ is the union of a line and a smooth conic. Then the line intersects
the conic transversally since ∆ is nodal. In particular, Γ (and hence Aut0(X)) is
a subgroup of k×. We shall find an equation for X in appropriate coordinates.

First, we can assume that the line is given by x0 = 0, and its intersection points
with the conic are [0 : 1 : 0] and [0 : 0 : 1]. This means that by putting x0 = x1 = 0
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or x0 = x2 = 0 in (10.3), we obtain squares of linear forms because the fibres over
the nodes of ∆ are double lines by Remark 2.3. Taking these (linearly independent!)
linear forms for coordinates in P2

y, we obtain Q1 = y2
1 and Q2 = y2

2 .
We now put

Q0 = a0y
2
0 + a1y0y1 + a2y0y2 + a3y

2
1 + a4y1y2 + a5y

2
2 .

Notice that a0 ̸= 0 since otherwise the point of X given by x0 = y1 = y2 = 0 is
singular. Hence we can assume that a0 = 1. Making the linear change of coordinates

y0 = y′0 −
a1

2
y′1 −

a2

2
y′2, y1 = y′1, y2 = y′2

and dropping the primes, we may assume that a1 = a2 = 0. Making another linear
change of coordinates,

x0 = x′0 − a3x
′
1 − a5x

′
2, x1 = x′1, x2 = x′2

and dropping the primes, we may assume that a3 = a5 = 0. Finally, scaling
the coordinates, we may assume that a4 = −1 since a4 ̸= 0 (otherwise ∆ would
be the union of three lines). To summarize, there are coordinates in which X is
given by

x0(y2
0 − y1y2) + x1y

2
1 + x2y

2
2 = 0.

The action of k× in Lemma 10.1 is given by the weights

wt(x0) = 0, wt(x1) = 2, wt(x2) = −2,
wt(y0) = 0, wt(y1) = −1, wt(y2) = 1,

whence we have Aut0(X) ∼= k× in this case.
Similarly, if ∆ is the union of three lines in general position, then Γ (and hence

Aut0(X)) is a subgroup of (k×)2. Letting the intersection points of the lines be
[1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], we easily see that X can be given by

x0y
2
0 + x1y

2
1 + x2y

2
2 = 0.

The toric structure on P2
x defined by the three lines induces the action of (k×)2

on X, whence we have Aut0(X) ∼= (k×)2 in this case. �

§ 11. The manifold missing from Iskovskikh’s trigonal list

Let X be a smooth Fano threefold with (X)ג = 3.2. It may be described as
follows. Put

U = P
(
OP1×P1 ⊕OP1×P1(−1,−1)⊕OP1×P1(−1,−1)

)
.

Let π : U → P1×P1 be the natural projection and let L be the tautological line bun-
dle on U . Then X is a smooth threefold in the linear system |2L+π∗(OP1×P1(2, 3))|.

By [1], the threefold X is not hyperelliptic; see also [50]. Thus the linear system
|−KX | determines an embedding X ↪→ P9. Note that X is not an intersection of
quadrics in P9. Indeed, let ω : X → P1×P1 be the restriction of the projection π
to X, and let π1 : P1 × P1 → P1 and π2 : P1 × P1 → P1 be the projections to the
first and second factors respectively. Put φ1 = π1 ◦ ω and φ2 = π2 ◦ ω. Then
the general fibre of φ1 is a smooth cubic surface. It follows immediately that X is
not an intersection of quadrics in P9.
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Remark 11.1. In the terminology of [2], § 2, the threefold X is trigonal. However, it
is missing from the classification of smooth trigonal Fano threefolds obtained in [2],
Theorem 2.5. More precisely, in the proof of this theorem, Iskovskikh showed
that X can be obtained as follows. The scheme intersection of all quadrics in P9

containing X is a scroll

R = P
(
OP1(2)⊕OP1(2)⊕OP1(1)⊕OP1(1)

)
.

It is embedded in P9 by the tautological linear system, which we denote by M .
Write F for the fibre of a general projection R → P1. Then X is contained in the
linear system |3M − 4F |. In the notation of [51], § 2, we have R = F(2, 2, 1, 1), and
X is given by

α1
2(t1, t2)x

3
1 + α2

2(t1, t2)x
2
1x2 + α1

1(t1, t2)x
2
1x3 + α2

1(t1, t2)x
2
1x4

+ α3
2(t1, t2)x1x

2
2 + α3

1(t1, t2)x1x2x3 + α4
1(t1, t2)x1x2x4 + α1

0(t1, t2)x1x
2
3

+ α2
0(t1, t2)x1x3x4 + α3

0(t1, t2)x1x
2
4 + α4

2(t1, t2)x
3
2 + α5

1(t1, t2)x
2
2x3

+ α6
1(t1, t2)x

2
2x4 + α4

0(t1, t2)x2x
2
3 + α5

0(t1, t2)x2x3x4 + α6
0(t1, t2)x2x

2
4 = 0,

where each αid(t1, t2) is a homogeneous polynomial of degree d. Thus, X is the
threefold T11 in [50]. Note that the restriction to X of the natural projection
R→ P1 determines the morphism φ1. In the proof of Theorem 2.5 in [2], Iskovskikh
applied the Lefschetz theorem for X to deduce that its Picard group is cut out by
divisors on the scroll R and exclude this case (this is case 4 in his proof). However,
the threefold X is not an ample divisor on R since its restriction to the subscroll
x3 = x4 = 0 is negative. Hence the Lefschetz theorem is not applicable here.

Lemma 11.2. Let X be a smooth Fano threefold with (X)ג = 3.2. Then the group
Aut(X) is finite.

Proof. In the notation of Remark 11.1, let S be the subscroll given by x3 = x4 = 0.
Then S ∼= P1×P1 and S is contained in X. Moreover, the normal bundle of S in X
is OP1×P1(−1,−1). This yields the existence of a commutative diagram,

V

U1

ψ1

��

γ1
55

U2

ψ2

��

γ2
ii

X

ω

��

φ1

uu

φ2

))

α

OO

β1

ii

β2

55

P1 P1.

P1 × P1
π1

ii

π2

55

(11.3)

Here U1 and U2 are smooth threefolds, the morphisms β1 and β2 are contractions of
the surface S to curves in these threefolds, the morphism α is a contraction of S to
an isolated ordinary double point of the threefold V , the morphism φ2 is a fibration
into del Pezzo surfaces of degree 6, the morphism ψ1 is a fibration into del Pezzo
surfaces of degree 4, and ψ2 is a fibration into quadric surfaces. By construction,
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V is a Fano threefold with a single isolated ordinary double point and the morphisms
γ1 and γ2 are small resolutions of this singular point. We also note that −K3

V = 16.
Observe that the diagram (11.3) is Aut(X)-equivariant. In particular, there is

an exact sequence of groups

1 −→ Gφ1 −→ Aut(X) −→ GP1 −→ 1,

where Gφ1 is a subgroup of Aut(X) that leaves the general fibre of φ1 invariant
and GP1 is a subgroup of Aut(P1). Since the general fibre of φ1 is a cubic surface,
we see from Theorem 2.2 that the group Gφ1 is finite. We claim that GP1 is also
finite.

Indeed, consider an exact sequence of groups,

1 −→ Gω −→ Aut(X) −→ GP1×P1 −→ 1,

where Gω is a subgroup of Aut(X) that leaves the general fibre of ω invariant and
GP1×P1 is a subgroup of Aut(P1× P1). If the group GP1×P1 is finite, then so is GP1

since there is a natural surjective homomorphism GP1×P1 → GP1 .
To prove the lemma, it suffices to show that GP1×P1 is finite. Note that this

group preserves the projections π1 and π2 because φ1 is a fibration into cubic
surfaces while φ2 is a fibration into del Pezzo surfaces of degree 6. Thus, the group
GP1×P1 is contained in Aut0(P1 × P1) ∼= PGL2(k)× PGL2(k).

The morphism ω in (11.3) is a standard conic bundle and its discriminant curve ∆
is a curve of bidegree (5, 2) in P1×P1. The curve ∆ is GP1×P1 -invariant. Moreover,
it is reduced and has at most isolated ordinary double points as singularities; see
Remark 2.3. If C is an irreducible component of ∆, then the intersection number

C · (∆− C)

must be even ([52], Corollary 2.1). In particular, this means that ∆ has no irre-
ducible components of bidegree (0, 1).

Let C be an irreducible component of ∆ of bidegree (a, b), where b > 1. Then
C is G0

P1×P1-invariant, where G0
P1×P1 is the connected component of the identity in

the group GP1×P1 . Moreover, the action of G0
P1×P1 on C is faithful. This follows

from Lemma 2.1 when b > 2 and from Lemma 2.5 when b = 1.
Assume that the curve ∆ has an irreducible component C of bidegree (a, 1).

Then the intersection of C with ∆−C consists of a+ 5− a = 5 points. Thus, the
group G0

P1×P1 is trivial in this case.
This means that we may assume that ∆ has an irreducible component C of

bidegree (a, 2). Suppose that a > 4. If the normalization of C has positive genus,
then the group G0

P1×P1 is trivial by Lemma 2.1. Thus we may suppose that C has
at least pa(C) > 3 singular points. This again means that G0

P1×P1 is trivial because
the action of G0

P1×P1 lifts to the normalization of C and preserves the preimage
of the singular locus of C.

We are left with the case when 1 6 a 6 3. Then the intersection of C with ∆−C
consists of 2(5− a) > 6 points. Thus, the group G0

P1×P1 is trivial in this case. �

Remark 11.4. The commutative diagram (11.3) is well known to experts. For exam-
ple, it occurs in the proofs of Theorem 2.3 in [53], Proposition 3.8 in [54], and
Lemma 8.2 in [55].
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§ 12. Remaining cases

In this section we consider smooth Fano threefolds X with

(X)ג ∈ {2.1, 2.3, 2.5, 2.6, 2.8, 2.10, 2.11, 2.16, 2.19}.

Theorem 1.1 immediately implies the following assertion.

Corollary 12.1. Let X be a smooth Fano threefold with

(X)ג ∈ {2.1, 2.3, 2.5, 2.10, 2.11, 2.16, 2.19}.

Then the group Aut(X) is finite.

Proof. These varieties can be described as blow-ups of smooth Fano threefolds Y
with Y)ג ) ∈ {1.11, 1.12, 1.13, 1.14}. �

We need the following auxiliary fact.

Lemma 12.2. Let ∆ ⊂ P2 be a nodal curve of degree at least 4. Then the group
Aut(P2; ∆) is finite.

Proof. The proof is left to the reader. �

Lemma 12.3. Let X be a smooth Fano threefold with (X)ג = 2.6. Then the group
Aut(X) is finite.

Proof. The threefold X is either a divisor of bidegree (2, 2) on P2 × P2 or a double
cover of the flag variety W branched over a divisor Z ∼ −KW .

Let X be a divisor of bidegree (2, 2) on P2 × P2. We write φi : X → P2, i = 1, 2,
for the natural projections. They determine Aut0(X)-equivariant standard conic
bundles whose discriminant curves ∆i are sextics. By Remark 2.3, the curves ∆i

are at worst nodal. Hence the group Aut(P2; ∆i) is finite by Lemma 12.2.
There are exact sequences of groups

1 → Θi → Aut0(X) → Γi,

where the action of Θi is fibrewise with respect to φi and Γi acts faithfully on P2

and preserves ∆i. In particular, the groups Γi ⊂ Aut(P2; ∆i) are finite. Since
Aut0(X) is connected, we conclude from these sequences that

Θ1 = Aut0(X) = Θ2.

On the other hand, the intersection Θ1∩Θ2 acts trivially on P2×P2 and, therefore,
is a trivial group. This means that the group Aut0(X) is trivial.

We now suppose that X is a double cover of the flag variety W branched
over a divisor Z ∼ −KW . The divisor class − 1

2KW is very ample. Hence the
group Aut(W ;Z) is finite by Lemma 2.1. On the other hand, both conic bun-
dles X → P2 are Aut0(X)-equivariant, whence the double cover θ : X → W is
also Aut0(X)-equivariant. Thus, Aut0(X) is a subgroup of Aut(W ;Z), and the
assertion follows. �

Lemma 12.4. Let X be a smooth Fano threefold with (X)ג = 2.8. Then the group
Aut(X) is finite.
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Proof. There is a commutative diagram

X

α

��

φ // V

β

��
V7

π // P3,

where π is the blow-up of a point O ∈ P3, the morphism β is a double cover branched
over an irreducible quartic surface S that has a single isolated double point at O,
the morphism φ is the blow-up of the (singular) threefold V at the preimage of O
under β, and α is a double cover branched over the proper transform of S under π.
The surface S has a singularity of type A1 or A2 at the point O. (The exceptional
divisor of φ is a smooth quadric in the former case and a quadric cone in the
latter.) In both cases, the morphism φ is a contraction of an extremal ray, so
that φ is Aut0(X)-equivariant. Furthermore, the morphism β is given by the linear
system

∣∣− 1
2KV

∣∣ and, therefore, it is also Aut0(X)-equivariant. This means that the
group Aut0(X) is isomorphic to a subgroup of Aut(P3;S). Since S is not uniruled,
the group Aut(P3;S) is finite by Lemma 2.1. Thus, we see that the group Aut0(X)
is trivial. �

Appendix A. The big table

In this appendix we provide an explicit description of the infinite automorphism
groups arising in Theorem 1.2 and give more details about the corresponding Fano
varieties. The notation for some frequently appearing groups is given at the end
of § 1. We write Sd for a smooth del Pezzo surface of degree d, except for the
quadric surface.

The first column of Table 1 contains the identifier (X)ג of a smooth Fano three-
fold X. The second column gives the anticanonical degree −K3

X . In the third
column we briefly describe the variety, following mainly [3], [20] and [4]. The
fourth column contains the dimension of the family of Fano threefolds of the given
type. In columns 5 and 6 we put the group Aut0(X) (if it is non-trivial) and the
dimension of the family of varieties with the given group Aut0(X). The last column
contains a reference to the statement in the text of the present paper where the
variety is discussed.

Table 1. Automorphisms of smooth Fano threefolds

ג −K3 Brief description δ Aut0 δ0 ref.

1.10 22

the zero locus of three sections of the
rank 3 vector bundle

∧2Q, where
Q is the universal quotient bundle on
Gr(3, 7)

6

k× 1

1.1k+ 0

PGL2(k) 0

1.15 40
the section V5 of Gr(2, 5) ⊂ P9 by
a linear subspace of codimension 3

0 PGL2(k) 0 1.1

1.16 54 the hypersurface Q of degree 2 in P4 0 PSO5(k) 0 1.1
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1.17 64 P3 0 PGL4(k) 0 1.1

2.20 26 the blow-up of V5 ⊂ P6 along a twisted
cubic

3 k× 0 6.10

2.21 28
the blow-up of Q ⊂ P4 along a twisted
quartic

2

k× 1

§ 9PGL2(k) 0

k+ 0

2.22 30 the blow-up of V5 ⊂ P6 along a conic 1 k× 0 6.13

2.24 30 a divisor on P2 × P2 of bidegree (1, 2) 1
(k×)2 0

§ 10
k× 0

2.26 34 the blow-up of V5 ⊂ P6 along a line 0
k× 0

6.5
B 0

2.27 38 the blow-up of P3 along a twisted cubic 0 PGL2(k) 0 4.3

2.28 40 the blow-up of P3 along a plane cubic 1 (k+)3 o k× 1 4.4

2.29 40 the blow-up of Q ⊂ P4 along a conic 0 k× × PGL2(k) 0 5.8

2.30 46 the blow-up of P3 along a conic 0 PSO5;1(k) 0 5.3

2.31 46 the blow-up of Q ⊂ P4 along a line 0 PSO5;2(k) 0 5.3

2.32 48 a divisor W on P2×P2 of bidegree (1, 1) 0 PGL3(k) 0 7.1

2.33 54 the blow-up of P3 along a line 0 PGL4;2(k) 0 4.5

2.34 54 P1 × P2 0 PGL2(k)×PGL3(k) 0 3.2

2.35 56 the blow-up V7 of a point on P3 0 PGL4;1(k) 0 4.5

2.36 62 P(OP2 ⊕OP2(2)) 0 Aut(P(1, 1, 1, 2)) 0 3.3

3.5 20

the blow-up of P1×P2 along a curve C
of bidegree (5, 2) such that the com-
posite C ↪→ P1×P2 → P2 is an embed-
ding

5 k× 0 8.8

3.8 24

a divisor in the linear system
|(α ◦ π1)

∗(OP2(1))⊗ π∗2(OP2(2))|,
where π1 : F1 × P2 → F1 and
π2 : F1 × P2 → P2 are the projections
and α : F1 → P2 is the blow-up of
a point

3 k× 0 8.8

3.9 26

the blow-up of a cone over the
Veronese surface R4 ⊂ P5 with cen-
tre at the disjoint union of the vertex
and a quartic on R4

∼= P2

6 k× 6 3.5
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3.10 26
the blow-up of Q ⊂ P4 along the dis-
joint union of two conics

2
k× 1

5.9
(k×)2 0

3.12 28 the blow-up of P3 along the disjoint
union of a line and a twisted cubic

1 k× 0 4.6

3.13 30

the blow-up of W ⊂ P2 × P2 along
a curve of bidegree (2, 2) that is
mapped by the natural projections
π2 : W → P2 and π1 : W → P2 to irre-
ducible conics

1

k× 1

7.4
k+ 0

PGL2(k) 0

3.14 32

the blow-up of P3 along the disjoint
union of a plane cubic curve contained
in a plane Π ⊂ P3 and a point not
belonging to Π

1 k× 1 4.7

3.15 32
the blow-up of Q ⊂ P4 along the dis-
joint union of a line and a conic

0 k× 0 5.10

3.16 34

the blow-up of V7 along the proper
transform under the blow-up α : V7 →
P3 of a twisted cubic passing through
the centre of the blow-up α

0 B 0 4.8

3.17 36 a divisor on P1 × P1 × P2 of tridegree
(1, 1, 1)

0 PGL2(k) 0 8.8

3.18 36 the blow-up of P3 along the disjoint
union of a line and a conic

0 B×k× 0 5.11

3.19 38 the blow-up of Q ⊂ P4 at two
non-collinear points

0 k× × PGL2(k) 0 5.13

3.20 38
the blow-up of Q ⊂ P4 along the dis-
joint union of two lines

0 k× × PGL2(k) 0 5.14

3.21 38
the blow-up of P1 × P2 along a curve
of bidegree (2, 1)

0 (k+)2 o (k×)2 0 8.8

3.22 40
the blow-up of P1 × P2 along a conic
lying in a fibre of the projection
P1 × P2 → P1

0 B×PGL2(k) 0 8.14

3.23 42

the blow-up of V7 along the proper
transform under the blow-up α : V7 →
P3 of an irreducible conic passing
through the centre of the blow-up α

0 (k+)3 o (B×k×) 0 4.9

3.24 42 the blow-up of W along a fibre of the
projection W → P2

0 PGL3;1(k) 0 7.6

3.25 44 the blow-up of P3 along the disjoint
union of two lines

0 PGL(2,2)(k) 0 4.10

3.26 46
the blow-up of P3 along the disjoint
union of a point and a line

0 (k+)3o(GL2(k)×k×) 0 4.11
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3.27 48 P1 × P1 × P1 0 (PGL2(k))3 0 3.2

3.28 48 P1 × F1 0 PGL2(k)×PGL3;1(k) 0 3.2

3.29 50
the blow-up of V7 along a line lying
in E ∼= P2, where E is the exceptional
divisor of the blow-up V7 → P3

0 PGL4;3,1(k) 0 4.12

3.30 50

the blow-up of V7 along the proper
transform under the blow-up α : V7 →
P3 of the line passing through the cen-
tre of the blow-up α

0 PGL4;2,1(k) 0 4.13

3.31 52 the blow-up of a cone over a smooth
quadric in P3 at the vertex

0 PSO6;1(k) 0 3.6

4.2 28

the blow-up of the cone over a smooth
quadric S ⊂ P3 along the disjoint
union of the vertex and an elliptic
curve on S

1 k× 1 3.5

4.3 30
the blow-up of P1 × P1 × P1 along
a curve of tridegree (1, 1, 2)

0 k× 0 8.12

4.4 32

the blow-up of the smooth Fano three-
fold Y with Y)ג ) = 3.19 along
the proper transform of a conic on
a quadric Q ⊂ P4 that passes through
both centres of the blow-up Y → Q

0 (k×)2 0 5.15

4.5 32
the blow-up of P1 × P2 along the dis-
joint union of two irreducible curves of
bidegrees (2, 1) and (1, 0)

0 (k×)2 0 8.16

4.6 34 the blow-up of P3 along the disjoint
union of three lines

0 PGL2(k) 0 4.14

4.7 36

the blow-up of W ⊂ P2×P2 along the
disjoint union of two curves of bide-
grees (0, 1) and (1, 0)

0 GL2(k) 0 7.7

4.8 38
the blow-up of P1 × P1 × P1 along
a curve of tridegree (0, 1, 1)

0 B×PGL2(k) 0 8.17

4.9 40
the blow-up of the smooth Fano three-
fold Y with Y)ג ) = 3.25 along a curve
contracted by the blow-up Y → P3

0 PGL(2,2);1(k) 0 4.15

4.10 42 P1 × S7 0 PGL2(k)× B×B 0 3.2

4.11 44

the blow-up of P1 × F1 along a curve
C ∼= P1 contained in a fibre F ∼= F1

of the projection P1 × F1 → P1 and
satisfying C · C = −1 on F

0 B×PGL3;1(k) 0 8.18

4.12 46

the blow-up of the smooth Fano three-
fold Y with Y)ג ) = 2.33 along
two curves contracted by the blow-up
Y → P3

0 (k+)4o(GL2(k)×k×) 0 4.16
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4.13 26
the blow-up of P1 × P1 × P1 along
a curve of tridegree (1, 1, 3)

1 k× 0 8.12

5.1 28

the blow-up of the smooth Fano three-
fold Y with Y)ג ) = 2.29 along three
curves contracted by the blow-up Y →
Q

0 k× 0 5.16

5.2 36

the blow-up of the smooth Fano three-
fold Y with Y)ג ) = 3.25 along two
curves C1 ̸= C2 contracted by the
blow-up φ : Y → P3 and contained in
the same fibre of φ

0 k× ×GL2(k) 0 4.17

5.3 36 P1 × S6 0 PGL2(k)× (k×)2 0 3.2

6.1 30 P1 × S5 0 PGL2(k) 0 3.2

7.1 24 P1 × S4 2 PGL2(k) 2 3.2

8.1 18 P1 × S3 4 PGL2(k) 4 3.2

9.1 12 P1 × S2 6 PGL2(k) 6 3.2

10.1 6 P1 × S1 8 PGL2(k) 8 3.2
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[34] V. Datar and G. Székelyhidi, “Kähler–Einstein metrics along the smooth continuity
method”, Geom. Funct. Anal. 26:4 (2016), 975–1010.

[35] N. Ilten and H. Süss, “K-stability for Fano manifolds with torus action of
complexity 1”, Duke Math. J. 166:1 (2017), 177–204.

[36] Yu. Prokhorov, “G-Fano threefolds. II”, Adv. Geom. 13:3 (2013), 419–434.
[37] A. Kuznetsov and Yu. Prokhorov, “Prime Fano threefolds of genus 12 with

a Gm-action”, Épijournal Géom. Algébrique 2 (2018), 3.
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