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FACTORIAL THREEFOLD HYPERSURFACES

IVAN CHELTSOV

Abstract

Let X be a hypersurface in P4 of degree d that has at worst isolated
ordinary double points. We prove that X is factorial in the case when
X has at most (d− 1)2 − 1 singular points.

We assume that all varieties are projective, normal, and defined over C.

1. Introduction

The Cayley–Bacharach theorem (see [8] and [11]), in its classical form, may

be seen as a result about the number of independent linear conditions imposed

on forms of a given degree by a certain finite subset of Pn. The purpose of

this paper is to prove the following result.

Theorem 1.1. Let Σ be a finite subset of Pn for n � 2, let μ be a natural

number such that

• the inequalities μ � 2 and |Σ| � μ2 − 1 hold,

• and at most μk points in the set Σ lie on a curve in Pn of degree k =

1, . . . , μ− 1.

Then Σ imposes independent linear conditions on forms of degree 2μ− 3.

Let X be a hypersurface in P4 of degree d � 3 that has at most isolated

ordinary double points. Then X can be given by the equation

f
(
x, y, z, t, u

)
= 0 ⊂ P4 ∼= Proj

(
C
[
x, y, z, t, u

])
,

where f(x, y, z, t, u) is a homogeneous polynomial of degree d.

Remark 1.2. It follows from [1, Section 11], [13, Theorem IV.3.1] and [10,

Proposition 3.3] that the following conditions are equivalent:

• every Weil divisor on the threefold X is Cartier;

• every surface S ⊂ X is cut out on X by a hypersurface in P4;
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• the ring

C
[
x, y, z, t, u

]/〈
f
(
x, y, z, t, u

)〉
is a unique factorization domain (cf. [13, Exercise IV.3.5]);

• the set Sing(X) imposes independent linear conditions on forms of

degree 2d− 5.

We say that X is factorial if every Weil divisor on X is Cartier.

Example 1.3. Suppose that X is given by

xg
(
x, y, z, t, u

)
+ yh

(
x, y, z, t, u

)
= 0 ⊂ P4 ∼= Proj

(
C
[
x, y, z, t, u

])
,

where g and h are general homogeneous polynomials of degree d− 1. Then

• the threefold X has at worst isolated ordinary double points,

• the equality |Sing(X)| = (d− 1)2 holds, but X is not factorial.

The assertion of Theorem 1.1 implies the following result (cf. [7], [3], and

[5]).

Theorem 1.4. Suppose that |Sing(X)| < (d− 1)2. Then X is factorial.

Proof. The set Sing(X) is a set-theoretic intersection of hypersurfaces of

degree d− 1. Now

• the inequalities d− 1 � 2 and | Sing(X)| � (d− 1)2 − 1 hold,

• and at most (n − 1)k points in Sing(X) lie on a curve in P4 of de-

gree k = 1, . . . , n− 2,

which immediately implies that the points of Sing(X) impose independent

linear conditions on forms of degree 2d−5 by Theorem 1.1. Thus, the threefold

X is factorial. �
The assertion of Theorem 1.4 has been proved in [4], [6], and [14] for d � 11.

Remark 1.5. Suppose that d = 4 and X is factorial. Then it follows from

[15, Theorem 2] that the threefold X is non-rational, and the threefold X is

not birational to a fibration by rational surfaces. But general determinantal

quartic hypersurfaces in P4 are rational.

2. The proof

Let Σ be a finite subset of Pn for n � 2, and let μ be a natural number

such that

• the inequalities μ � 2 and |Σ| � μ2 − 1 hold.

• at most μk points in the set Σ lie on a curve in Pn of degree k =

1, . . . , μ− 1.
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Suppose that Σ imposes dependent linear conditions on forms of degree

2μ− 3.

Remark 2.1. The inequality μ � 3 holds, because otherwise we have

μ = 2, at most 3 points in the set Σ lie on a line, and |Σ| � 3. But Σ imposes

dependent linear conditions on linear forms.

The following result follows from [2, Theorem 2] and [9, Corollary 4.3].

Theorem 2.2. Let P1, . . . , Pδ ∈ P2 be distinct points such that

• at most k(ξ+3−k)−2 points in {P1, . . . , Pδ} lie on a curve of degree

k � (ξ + 3)/2,

• the inequality

δ � max

{⌊ξ + 3

2

⌋(
ξ + 3−

⌊ξ + 3

2

⌋)
− 1,

⌊ξ + 3

2

⌋2}

holds, where ξ is a natural number such that ξ � 3,

and let π : Y → P2 be a blow up of the points P1, . . . , Pδ. Then the linear

system ∣∣∣π∗
(
OP2

(
ξ
))

−
δ∑

i=1

Ei

∣∣∣
does not have base points, where Ei is the π-exceptional divisor such that

π(Ei) = Pi.

We see that there is a point P ∈ Σ such that every hypersurface in Pn of

degree 2μ− 3 that contains the set Σ \ P must contain the point P ∈ Σ. Let

us derive a contradiction.

Lemma 2.3. The inequality n �= 2 holds.

Proof. Suppose that n = 2. Let us prove that at most k(2μ− k)− 2 points

in Σ \ P can lie on a curve of degree k � μ. It is enough to show that

k
(
2μ− k

)
− 2 � kμ

for every k � μ. We must prove this only for k � 1 such that

k
(
2μ− k

)
− 2 <

∣∣Σ \ P
∣∣ � μ2 − 2,

because otherwise the condition that at most k(2μ− k)− 2 points in the set

Σ \ P can lie on a curve of degree k is vacuous. Therefore, we may assume

that k < μ.

We may assume that k �= 1, because at most μ � 2μ− 3 points of Σ \P lie

on a line. Then

k
(
2μ− k

)
− 2 � kμ ⇐⇒ μ > k,

which implies that at most k(2μ− k)− 2 points in Σ \P can lie on a curve in

P2 of degree k � μ.
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Thus, it follows from Theorem 2.2 that there is a curve of degree 2μ − 3

that contains all points of the set Σ\P and does not contain the point P ∈ Σ,

which is a contradiction. �
Moreover, we may assume that n = 3 because of the following result.

Lemma 2.4. Let Σ be a finite subset in Pn, let μ be a natural number such

that

• the inequalities μ � 2 and |Σ| � μ2 − 1 hold,

• at most μk points in the set Σ lie on a curve in Pn of degree k =

1, . . . , μ− 1,

let Λ ⊆ Σ be a subset, let M ⊆ |OPn(k)| be a linear subsystem that contains

all hypersurfaces of degree k that pass through Λ, and let ψ : Pn ��� Pm be a

general linear projection. Suppose that

• the inequality |Λ| � μk + 1 holds,

• the set ψ(Λ) is contained in an irreducible reduced curve of degree k,

and n > m � 2. Then M has no base curves, and either m = 2, or k > μ.

Proof. There are linear subspaces Ω and Π ⊂ Pn such that

ψ : Pn ��� Π ∼= Pm

is a projection from Ω, where dim(Ω) = n−m− 1 and dim(Π) = m.

Suppose that there is an irreducible curve Z ⊂ Pn that is contained in

the base locus of the linear system M. Put Ξ = Z ∩Λ. We may assume that

ψ|Z is a birational morphism, and

ψ
(
Z
)
∩ ψ

(
Λ \ Ξ

)
= ∅,

because ψ is general. Then deg(ψ(Z)) = deg(Z). Similarly, we may assume

that m = 2.

Let C ⊂ Π be an irreducible curve of degree k that contains ψ(Λ), and let

W ⊂ Pn be the cone over the curve C whose vertex is Ω. Then W ∈ M,

which implies that Z ⊂ W . We have

ψ
(
Z
)
= C,

which immediately implies that Ξ = Λ and deg(Z) = k. But |Z ∩ Σ| � μk,

which is a contradiction. Therefore, the linear system M does not have base

curves.

Now we suppose that m � 3 and k � μ. Let us show that this assumption

leads to a contradiction. Without loss of generality, we may assume that

m = 3 and n = 4.

Let Y be the set of all irreducible reduced surfaces in P4 of degree k that

contain the set Λ, and let Υ be a subset of P4 that consists of all points that
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are contained in every surface of the set Y . Then Λ ⊆ Υ. Arguing as above,

we see that Υ is a finite set.

Let S be the set of all surfaces in P3 of degree k such that

S ∈ S ⇐⇒ ∃ Y ∈ Y such that ψ
(
Y
)
= S and ψ

∣∣
Y

is a birational morphism,

and let Ψ ⊂ P3 be a subset such that Ψ consists of all points that are contained

in every surface of the set S. Then S �= ∅ and ψ(Λ) ⊆ ψ(Υ) ⊆ Ψ.

It follows from the generality of the point Ω that Ψ is a finite set. But

ψ(Λ) ⊆ Ψ contains at least μk+1 � k2+1 points that are contained in a curve

of degree k, which is impossible, because Ψ is a set-theoretic intersection of

surfaces of degree k. �
Fix a sufficiently general hyperplane Π ⊂ P3. Let

ψ : P3 ��� Π ∼= P2

be a projection from a sufficiently general point O ∈ P3. Put Σ′ = ψ(Σ) and

P ′ = ψ(P ).

Lemma 2.5. There is a curve C ⊂ Π of degree k � μ − 1 such that

|C ∩ Σ′| � μk + 1.

Proof. We suppose that at most μk points of the set Σ′ are contained in a

curve in Π of degree k for every k � μ − 1. Then arguing as in the proof of

Lemma 2.3, we obtain a curve

Z ⊂ Π ∼= P2

of degree 2μ − 3 that contains the set Σ′ \ P ′ and does not pass through

the point P ′.

Let Y be the cone in P3 over the curve Z whose vertex is the point O.

Then Y is a surface of degree 2μ− 3 that contains all points of the set Σ \ P
but does not contain the point P ∈ Σ. �

It immediately follows from Lemma 2.4 that for the curve C in Lemma 2.5,

one has k � 2.

Lemma 2.6. Suppose that |C ∩ Σ′| � 9. Then k � 3.

Proof. Suppose that k = 2. Let Φ ⊆ Σ be a subset such that |Φ| � 9, but

ψ(Φ) is contained in the conic C ⊂ Π. Then C is irreducible by Lemma 2.4.

Let D be a linear system of quadric hypersurfaces in P3 containing Φ. Then

D does not have base curves by Lemma 2.4. Let W be a cone in P3 over C
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with vertex Ω. Then

8 = D1 ·D2 ·W �
∑
ω∈Φ

multω(D1)multω(D2) � |Φ| � 9,

where D1 and D2 are general divisors in the linear system D. �
We may assume that k is the smallest natural number such that at least

μk + 1 points in Σ′ lie on a curve of degree k. Then there is a non-empty

disjoint union
l⋃

j=k

cj⋃
i=1

Λi
j ⊂ Σ

such that |Λi
j | � μj + 1, all points of the the set ψ(Λi

j) are contained in an

irreducible reduced curve of degree j, and for every natural number ζ at most

μζ points of the subset

ψ

⎛
⎝Σ \

( l⋃
j=k

cj⋃
i=1

Λi
j

)⎞⎠ � Σ′ ⊂ Π ∼= P2

lie on a curve in Π of degree ζ. Put

Λ =
l⋃

j=k

cj⋃
i=1

Λi
j .

Let Ξi
j be the base locus of the linear subsystem of |OP3(j)| that contains

all surfaces passing through the set Λi
j . Then Ξi

j is a finite set by Lemma 2.4,

and

(2.7)
∣∣Σ \ Λ

∣∣ � μ

(
μ−

l∑
i=k

cii

)
− 2.

Corollary 2.8. The inequality
∑l

i=k ici � μ− 1 holds.

Put Δ = Σ ∩ (
⋃l

j=k

⋃cj
i=1 Ξ

i
j). Then Λ ⊆ Δ ⊆ Σ.

Lemma 2.9. The set Δ imposes independent linear conditions on forms

of degree 2μ− 3.

Proof. Let us consider the subset Δ ⊂ P3 as a closed subscheme of P3, and

let IΔ be the ideal sheaf of the subscheme Δ. Then there is an exact sequence

0 −→ IΔ ⊗OP3

(
2μ− 3

)
−→ OP3

(
2μ− 3

)
−→ OΔ −→ 0,

which implies that Δ imposes independent conditions on forms of degree 2μ−3

if and only if

h1
(
IΔ ⊗OP3

(
2μ− 3

))
= 0.

Suppose h1(IΔ⊗OP3(2μ−3)) �= 1. Let us show that this assumption leads

to a contradiction.
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Let M be the linear subsystem of |OP3(μ − 1)| that contains all surfaces

that pass through all points of the set Δ. Then the base locus of M is zero-

dimensional, because
∑l

i=k ici � μ− 1 and

Δ ⊆
l⋃

j=k

cj⋃
i=1

Ξi
j ,

but Ξi
j is zero-dimensional base locus of a linear subsystem of |OP3(j)|. Put

Γ = M1 ·M2 ·M3,

where M1,M2,M3 are general surfaces in the linear system M. Then Γ is

a zero-dimensional subscheme of P3, and Δ is a closed subscheme of the

scheme Γ.

Let Υ be a closed subscheme of Γ such that

IΥ = Ann
(
IΔ

/
IΓ

)
,

where IΥ and IΓ are the ideal sheaves of the subschemes Υ and Γ, respectively.

Then

0 �= h1
(
OP3

(
2μ− 3

)
⊗ IΔ

)
= h0

(
OP3

(
μ− 4

)
⊗ IΥ

)
− h0

(
OP3

(
μ− 4

)
⊗ IΓ

)
by [8, Theorem 3] (see also [11]). Thus, there is a surface F ∈ |OPn(μ−4)⊗IΥ|.
Then(
μ−4

)(
μ−1

)2
= F ·M1 ·M2 � h0

(
OΥ

)
= h0

(
OΓ

)
−h0

(
OΔ

)
=

(
μ−1

)3−∣∣Δ∣∣,
which implies that |Δ| � 3(μ− 1)2. But |Δ| � |Σ| < μ2, which is impossible,

because μ � 3. �
We see that Δ � Σ. Put Γ = Σ \Δ and d = 2μ− 3−

∑l
i=k ici.

Lemma 2.10. The set Γ imposes dependent linear conditions on forms of

degree d.

Proof. Suppose that the points of the set Γ impose independent linear

conditions on homogeneous polynomials of degree d. Let us show that this

assumption leads to a contradiction.

The construction of Δ implies the existence of a homogeneous form H of

degree
∑l

i=k ici that vanishes at all points of the set Δ and does not vanish

at any point of Γ.

Suppose that P ∈ Δ. Then there is a homogenous form F of degree 2μ− 3

that vanishes at every point of the set Δ \ P and does not vanish at P by

Lemma 2.9. Put

Γ =
{
Q1, . . . , Qγ

}
,
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where Q1, . . . , Qγ are distinct points in Γ. Then there is a homogeneous form

Gi of degree d that vanishes at every point in Γ \Qi and does not vanish at

the point Qi. Then

F
(
Qi

)
+ μiHGi

(
Qi

)
= 0

for some μi ∈ C, because Gi(Qi) �= 0. Then the homogenous form

F +

γ∑
i=1

μiHGi

vanishes on the set Σ \ P and does not vanish at the point P , which is a

contradiction.

We see that P ∈ Γ. Then there is a homogeneous form G of degree d that

vanishes at every point in Γ\P and does not vanish at P . Then HG vanishes

at every point of the set Σ \ P and does not vanish at the point P , which is

a contradiction. �
Put Γ′ = ψ(Γ). Let us check that Γ′ and d satisfy the hypotheses of

Theorem 2.2.

Lemma 2.11. The inequality d � 3 holds.

Proof. Suppose that d � 2. It follows from Corollary 2.8 that

2 � d = 2μ− 3−
l∑

i=k

ici � μ− 2 � 1,

because μ � 3 by Remark 2.1. Thus, we see that either μ = 3 or μ = 4.

Suppose that μ = 3. Then it follows from the inequality (2.7) that

|Γ| �
∣∣Σ \ Λ

∣∣ � μ

(
μ−

l∑
i=k

cii

)
− 2 � 3

(
3− k

)
− 2 � 1,

because k � 2 by Lemma 2.4. But d � 1. So, the set Γ imposes independent

linear conditions on forms of degree d � 1, which is impossible by Lemma 2.10.

Thus, we see that μ = 4. Then k = 3 by Lemma 2.6, which implies that

∣∣Γ∣∣ �
∣∣Σ \ Λ

∣∣ � 14− 4

l∑
i=k

cii � 2,

which is impossible by Lemma 2.10, because d � 1. �
It follows from the inequality (2.7) that

|Γ′| = |Γ| � |Σ \ Λ| � μ

(
μ−

l∑
i=k

cii

)
− 2.
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Then

∣∣Γ′∣∣ � μ

(
μ−

l∑
i=k

cii

)
− 2

� max

{⌊d+ 3

2

⌋(
d+ 3−

⌊d+ 3

2

⌋)
− 1,

⌊d+ 3

2

⌋2}
,

because d = 2μ− 3−
∑l

i=k cii and μ � 3 (see Remark 2.1).

Lemma 2.12. At most d points of the set Γ are contained in a line.

Proof. Suppose that at least d + 1 points of the set Γ are contained in

some line. Then

μ � d+ 1 = 2μ− 2−
l∑

i=k

cii,

because at most μ points of Γ are contained in a line. It follows from Corol-

lary 2.8 that

μ− 1 �
l∑

i=k

cii � μ− 2.

Suppose that
∑l

i=k cii = μ− 2. Then |Γ| � 2μ− 2. So, the set Γ imposes

independent linear conditions on forms of degree d = μ−1 by [12, Theorem 2],

which is impossible by Lemma 2.10.

We see that
∑l

i=k cii = μ − 1. Then |Γ| � μ − 2 = d, which is impossible

by Lemma 2.10. �
Therefore, at most d points of the set Γ′ lie on a line by Lemmas 2.12 and

2.4.

Lemma 2.13. For every t � (d+ 3)/2, at most

t
(
d+ 3− t

)
− 2

points of the set Γ′ lie on a curve of degree t in Π ∼= P2.

Proof. At most μt points of the set Γ′ lie on a curve of degree t. It is

enough to show that

t
(
d+ 3− t

)
− 2 � μt

for every t � (d+ 3)/2 such that t > 1 and t(d+ 3− t)− 2 < |Γ′|. But

t(d+ 3− t)− 2 � tμ ⇐⇒ μ−
l∑

i=k

cii > t,

because t > 1. Thus, we may assume that t(d+ 3− t)− 2 < |Γ′| and

μ−
l∑

i=k

cii � t � d+ 3

2
.
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Let g(x) = x(d+ 3− x)− 2. Then

g
(
t
)

� g
(
μ−

l∑
i=k

cii
)
,

because g(x) is increasing for x < (d+ 3)/2. Therefore, we have

μ
(
μ−

l∑
i=k

ici

)
− 2 �

∣∣Γ′∣∣ > g(t) � g
(
μ−

l∑
i=k

cii
)
= μ

(
μ−

l∑
i=k

ici

)
− 2,

which is a contradiction. �
Thus, the set Γ′ imposes independent linear conditions on forms of degree d

by Theorem 2.2, which implies that Γ also imposes independent linear condi-

tions on forms of degree d, which is impossible by Lemma 2.10. The assertion

of Theorem 1.1 is proved.
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