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BIRATIONAL RIGIDITY IS NOT AN OPEN PROPERTY

IvAN CHELTSOV AND MIKHAIL GRINENKO

ABSTRACT. We show that birational rigidity of Mori fibre spaces is not
open in moduli.

We assume that all varieties are normal, projective and defined over the
field C.

1. Introduction

In this paper we give a negative answer to the question that is closely related
to the nature of birationally rigid Mori fibre spaces: whether birational rigidity
is open in moduli.

Definition 1.1. A Mori fibre space is a surjective morphism 7: X — S such
that

the variety X has terminal and Q-factorial singularities,

the inequality dim(.S) < dim(X) holds and 7,(Ox) = Og,

the divisor —Kx is relatively ample for 7,

the equality rk Pic(X) = rk Pic(X) 4 1 holds.

Let m: X — S be a Mori fibre space such that dim(X) = 3. Then

e cither dim(S) = 0 and X is a Fano 3-fold,
e or dim(S) =1 and 7: X — S is a del Pezzo fibration,
e or dim(S) =2 and 7: X — S is a conic bundle.

Definition 1.2. The Mori fibre space m: X — S is birationally rigid if, given
any birational map £: X --+ X’ to another Mori fibre space 7': X’ — S, there
exists a commutative diagram

X-———- X - - —-—- > X'
S—— =2 ——— = > S’
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1486 I. CHELTSOV AND M. GRINENKO

for some birational maps p and ¢ such that the composition map £ o p induces
an isomorphism of the generic fibers of the Mori fibre spaces 7w and 7’.

We say that X is birationally rigid if dim(S) = 0 and 7: X — S is bira-
tionally rigid.

Example 1.3. Let X be a general complete intersection in P of a quadric
and a cubic. Then
7KX = OPS (1) ‘X

and Pic(X) = Z[-Kx]. The threefold X is birationally rigid (see [4] and
[7, Chapter 2]).

The following conjecture is Conjecture 1.4 in [2].

Conjecture 1.4. For any scheme T, and a flat family of Mori fibre spaces
parametrised by T

X——S

NS

T
the set of all t € T such that the corresponding fibre Xy — S is birationally
rigid is open in T.
In this paper, we show that Conjecture 1.4 fails in general.

Definition 1.5. The Mori fibre space m: X — S is square birationally equiva-
lent to a Mori fiber space 7’': X’ — S if there is a birational map £: X --+ X’
that fits a commutative diagram

X-———-—- > X'
S—— - -9

for some birational map o such that £ induces an isomorphism of the generic
fibers of m and 7.

The following definition is due to [3].
Definition 1.6. The pliability of a variety V is the set
P(V) = {Mori fibre space 7: Y — T | Y is birational to V}/ ~,
where ~:= square birational equivalence.

Let V7 be a complete intersection of a quadric Q; C P and a cubic T} C P?
such that V7 has singular point P, but @; is non-singular at the point P. Then
(1 can be given by the equation

Ysh (Yo, Y1, Y2, Y3 ¥a) = q1 (Yo, Y1, Y2, Y3, Ya)
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in Proj (C[yo,yhyz,yg,y%yd) = P5, where h(yo,y1,Y2, Y3, ya) and qi(yo, y1,
Y2,Ys3,y4) are homogeneous polynomials of degree 1 and 2, respectively, and
the point P is given by the equations yo = y1 = y2 = y3 = y4 = 0.
Similarly, the cubic hypersurface T; C P can be given by the equation
Y5Qq2 (yoﬂhayz, yg,y4) = t(yo»yhy% y37y4),
where t(yo, y1, Y2, s, y4) is a homogeneous polynomial of degree 3, and g2 (yo, y1,
Y2,Ys3,Y4) is a homogeneous polynomial of degree 2.
Let V4 be a complete intersection in P® of a quadric Q2 and a cubic 75 such
that Q- is given by
ysh (Yo, Y1, Y2, Y3, Ya) = q2(Y0, Y1, Y2, Y3, Ya),
and the cubic hypersurface T, C P% is given by

Ysq1 (Yo, Y1, Y2, Y35 ya) = t(Yo, Y1, Y2, Y3, Ya)-
Remark 1.7. The threefold V5 is singular at the point P € V5 as well.

Suppose that both V7 and V5 satisfy the following generality conditions:

(A) the quadric hypersurface Q; C P° is non-singular,

(B) the threefold V; = @Q; N T; is smooth outside of the point P € V;,

(C) the point P is an ordinary double point of the threefold V; C P®,

(D) the threefold V; contains 12 lines that pass through the point P € V;.

Remark 1.8. The varieties V7 and V5 are Q-factorial, and
rk Pic(V1) = rk Pic(V2) =1 (see [8]).

The threefolds V7 and V5 are birationally equivalent. Indeed, there is a
commutative diagram

h---2-- -V
B1 \1\1\ 7 B2
i---%o sy,

where Y is a singular quartic hypersurface in P* that is given by the equation
h(yo,-- - ya)t (Yo, - - ya) = @1 (Yo, - ya) @2 (Yo, - - -, ¥a)

in Proj ((C[yo, e ,y4]) =~ P4 the maps ¢; and ¢y are projections from the point

P, the morphisms a7 and «s are flopping contractions, the morphisms 8 and
B2 are blow ups of P, and ~y is a flop in 12 smooth curves.

Remark 1.9. Suppose that h, t, g1 and g2 are general. Then it follows from
[8, Remark 4.3] that Y does not have automorphism that swaps the quadric
surfaces given by

h(yo,---,ya) = a1 (yo,...,ya) =0
and h(yo,...,y4) = q2(yo, .- .,y4) = 0. This implies that V; 2 V5.
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Consider the following additional generality conditions:

(E) for any line L C V;, and for any two-dimensional linear subspace IT C P®
such that L C II, the cycle V;|i1 is reduced along the line L,

(F) for any two-dimensional linear subspace IT C P°, the intersection V; NII
is not three lines with a common point, and if P € II, the intersection
Vi; N 1T does not consist of three lines,

(G) for any line L C V; such that P € L, and for any three-dimensional
linear subspace

AcCP?

such that the intersection Q; N A consists of two different planes, the
three-dimensional linear subspace A is not a tangent space to the three-
fold V; at any point of L\ P,

(H) for any line L C V; such that P € L, and for any point O € L\ P, the
complete intersection V; C P® contains at most three lines that pass
through O,

(I) for any lines L C V; D L' such that L > P ¢ L' and LNL' # &, and for
any three-dimensional linear subspace A C P? such that L ¢ A D L/,
the inequality

multpnz (Vi

)<
A

holds in the case when the scheme V;|5 is not reduced along the lines
L and L'.

In this paper, we prove the following result.

Theorem 1.10. Suppose that Vi and Vs satisfy the conditions A, B, C, D, E,
F, G, H, 1. Then

P() =P(Va) = {Vi. V2 }.
Let F be the family of all complete intersections in P5 that are constructed

similar to V4 or V5. In Section 8, we will show that general threefolds in F
satisfy A, B, C, D, E, F, G, H, L.

Corollary 1.11. Let V be a general threefold in F. Then |[P(V)| =2 and V
s non-rational.

Now we construct a subfamily R C F. Let ¢ € Aut(P%) be an involution
that is given by

Yo — —Yo, Y1 — Y1, Y2 — Y2, Y3 — Y3, Y4 — Y4 Y5 — Y5,

let U; be a complete intersection in P that is given by the equations
Ys.f (1,2, y3,ya) = q(vo, 1, y2, Y3, va)

yst* (q(ymyl,yz,ys,ya;)) = 9(Y0, Y1, Y2, Y3, Y1)
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in Proj ((C[yo, Y1, Y2, Y3, Y4, y5}) =~ P5, and let Uy be a complete intersection in
P5 that is given by the equations

ys S (y1,y2,y3,92) = ¢* (q(yo,m,yz;)),
Y5q (Y0, Y1, Y2, Y3, Y1) = 9(Yo. Y1, Y2, Y3, Ya),

where f, g and ¢ are homogeneous forms of degree 1, 3 and 2, respectively.
Suppose that

o the equality g(—yo,y1, Y2, Y3, Y1) = 9(Yo: Y1, Y2, Y3, ya) holds,
e the threefolds U; and Us satisfy the conditions A, B, C, D.

Remark 1.12. The threefolds U; and Us are isomorphic, because ¢(Uy) = Us.

For a fixed biregular involution ¢ € Aut(P%), let R be a family of complete
intersections that are constructed similar to U; or Us. Then R C F. In this
paper, we prove the following result.

Theorem 1.13. A general threefold in R satisfies the conditions A, B, C, D,
E, F, G, H, L

Corollary 1.14. Let U be a general threefold in R. Then

P(U) ={U},
i.e., the threefold U is birationally rigid, and in particular U is non-rational.
Corollary 1.15. Birational rigidity is not open in moduli.

We organize the paper in the following way: we prove Theorem 1.10 in
Section 2 omitting the proofs of Lemmas 2.2 and 2.6, we prove Lemma 2.2 in
Section 3, we prove Lemma 2.6 in Section 4 omitting the proofs of Lemmas
4.1, 44 and 4.7, we prove Lemmas 4.1, 4.4 and 4.7 in Sections 5, 6 and 7,
respectively, we prove Theorem 1.13 in Section 8.

We thank Max-Planck-Institut fiir Mathematik and Institut des Hautes
Etudes Scientifiques for the hospitality and excellent work conditions. We
thank K. Shramov for useful conversations.

2. Pliability count
Let us use the assumptions and notation of Theorem 1.10.
Remark 2.1. Tt follows from Proposition 3.1.2 in [4] that the following condi-

tions are equivalent:

e for any two-dimensional linear subspace II C P® such that L C II, the
scheme-theoretical intersection V; N1I is reduced along L,
e the normal sheaf N7, /y, is isomorphic to Op1 @ Op1(—1),

where L is any line in the threefold V; such that P & L.
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Let us prove Theorem 1.10. Suppose that there is a Mori fibre space p: U —
S, and a birational map x: U --+ V;. To prove Theorem 1.10, we must show
that U =2 V; or U =2 V5.

Take a sufficiently big very ample divisor A on the variety S. Consider a
linear system

M = —mKU+p*(A)’

for m > 0. Take any o € Bir(V;). Put DJ = gox(M) and D = ¢, " 0¢,(DY).
Then
n{ Ky, + D =0=n3 Ky, + D5

for some natural numbers n{ and ng. Choose o € Bir(V}) that minimizes
min(ng,ng).

Without loss of generality, we may assume that ny < ng. Put D = Dy and
n=nf.

It follows from Theorem 2.4 in [2] that either o o x is an isomorphism, or the
singularities of the log pair (V7 %D) are not canonical. Thus, we may assume
that (Vi, 2D) is not canonical.

Lemma 2.2. Let C C Vi be an irreducible curve. Suppose that multe (D) > n.
Then

e cither the curve C is a line,
e or the curve C is a conic such that (C) C Q1,
e or the curve C is a conic such that (C) ¢ Q1 and P € C.

Proof. See Section 3. O

For a curve C' C P, we denote by (C) the smallest linear subspace in P°
containing C.

Lemma 2.3. Let C C Vi be a conic such that (C) ¢ Q1 and P € C. Then
multe (D) < n.

Proof. Let A C P be a general three-dimensional linear subspace such that
(CYy C A. Then

Vl‘ =C+ Z,
A

where Z is an elliptic curve such that P € C'N Z. There is a commutative
diagram

Vi v
\

51l lw
A\

‘/1 77777 >P2a

where 1) is the restriction of the projection P5 --» P2 from (C'), the morphism
(31 is the blow-up of the singular point P, the morphism § is the blow up of the
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proper transform of the curve C' on the threefold V4, and w is a rational map
whose general fiber is a smooth elliptic curve.

Let E; be the proper transform of the 81-exceptional divisor on the threefold
V. The map

w| 1 Ey--» P2
Ey

is birational, which simply means that E; is a section of a rational fibration w.

For a general point O € Vi, let Z be the fiber of w that passes through O.
Then Z is a smooth elliptic curve such that £, N Z consists of a single point.
Let O’ be a point on Z that is a usual reflection of the point O on the elliptic
curve Z with respect to the point E; N Z.

Let us define an involution 7 € Bir(V') by putting 7(0O) = O’, which implies
that 7(E;) = Ey, and 7 is an isomorphism in codimension one.

Let F be the é-exceptional divisor, and let D be the proper transform of D
on V. Then

D= (o 5)* ( — nKVl) — vpEy — multe (D) F,
where 1g is a natural number. It follows from Proposition 4.5 in [8] that
7(D) = (B108)" (— (150 14multc(D) ) Ky, ) ~voFr — (160~ 15multo (D) ) F,
which immediately implies that the equivalence
Brodoros o (D) = —(15n — L4multe (D) ) Ky,

holds. But 8y 0do71o0d; ! € Bir(Vy). But 15n — l4multe(D) > n by the
minimality in the choice of the number n € N. Thus, multc(D) < n. O

Lemma 2.4. Let C C Vi be a conic such that (C) C Q and P € C. Then
multe (D) < n.

Proof. Arguing as in [4], we construct an involution ¢ € Bir(V;) such that
¢(1) = —(13n — 12multc (D) ) K,
which implies that multc (D) < n due to the minimality of the number n. O
Lemma 2.5. Let C C V; be a line. Then multe(D) < n.
Proof. Arguing as in [4], we construct an involution ¢ € Bir(V;) such that
(D) =~ (4n - 3multc (D) ) Kvi,
which implies that multc (D) < n due to the minimality of the number n. O

Therefore, we see that the log pair (7, %D) is canonical outside of finitely
many points.

Lemma 2.6. Let O be a point in Vi \ P. Then (Vi, D) is canonical at O.
Proof. See Section 4. (I
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Thus, the log pair (V7, %D) is not canonical at the point P = Sing(V}).
Let Ey be the fi-exceptional divisor, and let D be the proper transform of
D on Vi. Then

D= ﬂf(—nKVl) —vokEy,

where 1 is a natural number. It follows from Theorem 3.10 in [2] that vy > n.
Let Es be the Sa-exceptional divisor. Then v(F;) = 85(—Ky,) — 2E3 and

7( - Kvl) = 55( - QKVQ) —3E,
because v(Ky, ) = Ky, = B5(Kv,)+Ea and v is an isomorphism in codimension
one. But
(D) = 83— (20— w)Kv, ) — (30— 200) Ba,
which implies that DJ = — (2n — l/o)KVZ. Then ng = 2n — vy < n = ng, which
is a contradiction, because n{ < ng. The assertion of Theorem 1.10 is proved.

3. Exclusion of curves
Let us use the assumptions and notation of Lemma 2.2.

Remark 3.1. Let A C P° be a three-dimensional linear subspace. Then Vi
is reduced along any curve that is not contained in two-dimensional linear
subspace, because cubic surface does not intersect an irreducible quadric surface
by a double twisted cubic.

Put v = multc(D). Let Q be the smallest linear subspace in P° such that
ccQ.

Suppose that v > n. To prove Lemma 2.2, we must show that

e cither  C @; and deg(C) < 2,
e or P € C and deg(C) = 2.

Arguing as in the proof of [4, Lemma 3.3.6], we see that Q C @; and
deg(C) < 2 in the case when P ¢ Q. Therefore, to complete the proof of
Lemma 2.2, we may assume that P € ().

Lemma 3.2. Suppose that deg(C) =2. Then P € C.

Proof. Suppose that Q C Q1. Then Ti|q = C + L, where L is a line, which
immediately implies that P € C'N L, because multp(7y) =2 and P € Q. O

Thus, to complete the proof of Lemma 2.2, we may assume that deg(C) > 3.
Let us show that this assumption leads to a contradiction with the inequality
v >n.

Lemma 3.3. The inequality deg(C) < 5 holds.
Proof. Let D1 and Dy be general surfaces in D. Then
6n% = Dy - Dy - H > multe (Dl -Dg)deg(C) > nzdeg((}')7
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where Dy - Dy - H is a degree of the zero-cycle of the corresponding scheme-
theoretic intersection, and H is a general hyperplane section of the threefold
Vi C PP, O

Lemma 3.4. The inequality dim(Q) # 2 holds.

Proof. Suppose that dim(2) = 2. Then @ C @7 and deg(C) = 3, because
C C Supp(Ti|q).

Let A be a sufficiently general three-dimensional linear subspace in P° that
contains 2. Then

QN =CcuC,
where C is a plane cubic. But C' N C consists of three distinct points different
from P. Then
3n=D-B >3v>3n,

where D is a general surface in the linear system D. O
Lemma 3.5. The curve C is singular.

Proof. Suppose that C is non-singular. Then we have the following cases:
e deg(C) = dim(Q) € {4,5} and g(C) =0,
e deg(C) =5, dim(Q2) =4 and ¢g(C) =0,
o deg(C) =5, dim(Q2) =4 and ¢g(C) =1,

where g(C) is the genus of the curve C.

Put d = deg(C). Let m be a natural number such that the curve C is cut
out on V; by surfaces in | — mKy, | that pass through C, the scheme-theoretic
intersection of two general surfaces in | — mKy, | that pass through the curve
C is reduced in a general point of the curve C.

We have m < 3, and we can put m = 2 unless deg(C) = 5, dim(2) = 4 and
g(C)=0.

Let 0: V' — Vi be a terminal extraction with the center C' and exceptional
divisor E. Then

(5*( —mKVl) —E) : (6*(—nKV1) _ VE>2 >0,

because §*(—mKy,) — F is nef. Thus, the inequality

Itp(C
6mn? — dmv? — 2dvn — n? <2 —29(C)—d— HM;.M> >0,

holds, which easily leads to a contradiction. O

Let D be the proper transform of D on Vi, and let E; be the (;-exceptional
divisor. Then

b = ﬂf(*ﬂK\/l) — V0E1

for some integer vy > 0. Then vy > v/2 in the case when P € C (see the proof
of Lemma 4.12).
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Lemma 3.6. The equality dim(2) = 3 holds.

Proof. Suppose that dim(£2) # 3. Then dim(2) = 4 and deg(C) = 5 by Lemma
3.5.

Supposg that P € Sing(C). Let C be the proper transform of C on the
threefold V4. Then

o1 (Vi) = —2-Kp,-C = —2— (81 (Ku,) + 1 ) -C = =2 Ky, -C—Ey-C =1,
because C = P' and multp(C) = 2. Let §: V — V; be a blow up of the curve
C. Then

|(8100)" (= nKv,) = 00" (Ex) — vF|

does not have fixed components, where F' is the exceptional divisor of the blow
up 0. But

‘(51 05)*(— 3KV1) — 5" () —F‘

does not have base curves. Thus, we have

* 2 *
((8100)" (—nkv, ) —vod" (Br) —vF) ((8100)" (—3Kv, ) —6" (Ex) = F) > 0,
which leads to a contradiction, because v > n and
0 < 18n2 — 10nv — 1202 + 4wy — l/g = <18n2 — 10nv — 81/2) — (21/ - 1/0)2 < 0.

Therefore, there is a point O € V; such that P # O and Sing(C) = O.

Let v: V — V; be the blow up of the point that dominates O, let C be the
proper transform of the curve C' on the threefold ‘7, and let (: V — V be the
blow up of the curve C. Then

[(Bro600) (= nkw) =1 (30¢)" (Er) - multo (D)¢* (F) - v6|

has no fixed components, where F' and G are exceptional divisors of v and (,
respectively.

Suppose that P € C. Then multo(D) > v and vy > v/2. But the linear
system

|(Brodo0)" (= 3Kw) = (500) () - ¢*(F) - G|
does not have base curves. Arguing as in the proof of Lemma 3.6, we see that
1812 — 10nv — 1402 + 2uvvy — 12 + 4vmulto (D) — mult (D) > 0

which leads to a contradiction. Thus, we see that P ¢ C. Then the linear
system

(rodo0) (=38 ) ~¢ () -]

does not have base curves. Arguing as in the case P € C, we obtain a contra-
diction. (I
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Thus, we proved that Q =2 P3 and deg(C) > 3. Then
‘/1‘ =C + Z miC’i,
@ i=1
where C; is an irreducible curve, and m; € N. Then
deg(C’) + Zmideg(@) =6,
i=1

and C; # C for every i = 1,...,r by Remark 3.1.
Remark 3.7. The quadric @1 N Q is irreducible, because dim(Q2) = 3.

Let H be a general hyperplane section of V; such that C C H. Then
P € H is a singularity of type A;. Let L be a fiber of a natural projection
E; =Pt x P! — PL

Lemma 3.8. Let Z1 and Zs be lines on the threefold Vi such that ZyNZy = P.
Then

ZiINL+@=2Z,NL =02,

where Z1 and Zy be the proper transform, of the lines Z1 and Zy on the threefold
V1, respectively.

Proof. The surface oy (E}) is a quadric surface in P* that is given by the equa-
tions

h(yo, Y15 Y2, y3,y4) = 2 (Yo, y1, Y2, Y3, ya) = 0

in Proj (C[yg,yl,yg,yg,y4]) >~ P4, the curve ay(L) is a line, and oy (Z;) and

1 (Z,) are singular points of the quartic Y c P*.
Let II be the two-dimensional linear subspace in P° that contains Z; and
Z5, and let

¢: P5 - P
be a projection from the point P. Then ¢(II) is a line in P* such that
(o5} (Zl) S (b(H) S o (22)

Suppose that Z; N L # @ and Z, N L # @. Then ¢(1) = a;(L), which
implies that II C Q5.
The linear subspace II C P° contains two lines Z] and Z} such that

PeZ CcVaDZy>P

and ¢2(Z}) = a1(Z1) and ¢2(Z4) = o1(Zy). Then Z, C Vo N1II D Z, and
II C @2, which is impossible, because V5 satisfies the conditions E and F. 0O
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Let T C P? be a hyperplane that is tangent to the quadric Q; at the point
P e V;. Then

mult p (C’) + Z m;mult p (Cl) >4
i=1
in the case when @ C T. Let H be a proper transform of H on the threefold
V1.
Lemma 3.9. Suppose that Q ¢ Y. Then k < 2

Proof. Suppose that Q ¢ T and k > 3. Let us show that this assumption leads
to a contradiction.

Let H be a linear subsystem in | — K x| consisting of surfaces passing through
the curve C, and let H be the proper transform of the linear system H on the
threefold V. Then

H

=L1+|L2,

1
where L1 and Ly are fibers of two different projections P! x Pl > F;, — PL.
The surface H is a general surface in the linear system # and

E\NH=1L UL,

where L € |La|. Put O = Ly N L. Then H is singular at the point O.
Let H' be another sufficiently general surface in the linear system H. Then

H'| =mLy+ L, +é+z;miéz
i—
for some curve Ly, € |Lo| and for some natural number m, where C' and C;
are proper transforms of the irreducible curves C' and C; on the surface H,
respectively. Then m > multo(H )= 2.
Put H = al(H ). Then His a general hyperplane section of the quartic
Y C P* given by

h(yOa s 7y4)t(y05 .- 'ay4) = ql(yOa v 7y4)q2(y07' e 7y4)
C Proj ((C[yo, e ,y4]) =~ pt

such that ay(L;) € H. Similarly, we have ay(L1) C ai(H'). Then

o (H')

g = ma (Ll) + oy (L + oq —|— Zmlal C~'

which implies that the cubic t(yo, . .., y4) = 0 contains the line a1 (L1), because
m > 2.
The quartic Y has 12 different singular points that are given by the equations

h(yo, Y1, Y2, Y3, ya) = t(Yo, Y1, Y2, Y3, Ya)
= q1(yo,y17y2,y37y4)
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= q2(v0, y1,Y2,Y3,ya) = 0,
which implies that |aq(L1) NSing(Y)| = 2. The latter is impossible by Lemma
3.8. O

For a given point O € V; \ P, the inequality

multo (C’) + Z m;multo (C’z) >4
i=1
holds in the case when ) is the tangent linear subspace to V; at the point O.

Lemma 3.10. Suppose that the subspace Q C P° is a tangent linear subspace to
the complete intersection Vi at some point O € Vi \ P. Then O is an ordinary
double point of the surface H.

Proof. An affine part of the complete intersection V; C P? can be given by the
equations

C° Spec(@[z,y,z,t,w])
w:xhl(m,y,z,t) +9% 4 22 + 12,
T = xhg(x,y,z,t) + g2 (yazat) +gg(:v,y,z,t,w)

such that O is given by ¢ = y = 2z = t = w = 0, where h; and g; are
homogeneous polynomials of degree i. Then (Q is given by w = z = 0, and the
surface H is given by

T = \w,
w za:h1(33,y,z,t) + 2+ 22 12
T = xh?('xayazvt) +92(ya Z,t) +93($ay72at7w)

for some general A € C. We can consider monomials y, z, ¢ as local coordinates

on the quadric
T = \w,
@= w = mhl(x,y,z,t) T i
in a neighbourhood of the point O. Then the surface H C @ is locally given
by
g2 (y, 2, t) — )\(y2 +22 4 t2) + higher degree terms,

which implies that O is an ordinary double points of the surface H, because A
is general. O

The subspace Q C P5 can be a tangent linear subspace to V; at no more
than one point, because the quadric Q1 |q is irreducible and reduced (see Lemma
3.4.1 in [4]).

Lemma 3.11. The intersection form of Cy,...,C, on H is not semi-negative
definite.
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Proof. Suppose that the intersection form of C1,...,C, is semi-negative defi-
nite. Then

T T
D‘H =vC + .ZViCi +B=nC+ ani@,
i=1 i=1
where v; is a non-negative integer, and B is a linear system that does not have
fixed curves. Then

(V—TL)C’—FB—F Z (Vi—nmi)C’,' Z (nmi—w)C’i

vi=2nm; nm;>v;

(5 e

nm;>v;

which implies that nm; < v; for every i, because v > n and C N C; # @ for
every i. Then

(V—n)C—&—Z(nmi—yi)Ci—i—BEO,

i=1
which is a contradiction, because v > n. (]
It follows from [1] that the intersection form of C4, ..., C, on the surface H

is negative definite if and only if they can be contracted on the surface H to
an isolated singular point.

Lemma 3.12. The inequality deg(C) # 5 holds.

Proof. Suppose that deg(C) = 5. Then r = my = deg(C;) = 1, and H is
smooth outside of
sing(C) U (CnCy),
where H has singularity of type Ay at the point P.
Suppose that ¢ Y. Then k& < 2 by Lemma 3.9. Therefore, the set

Sing(H) \ P contains at most one point that must be ordinary double point of
the surface H by Lemma 3.10. Then

1 k
O <24 -+ —— ,
G-y tat e < 0
which is impossible by Lemma 3.11. Thus, we see that @ C Y. Then

multp(C) 4+ 1 =multp (C) + multp (Cl) >4,

which implies that P = Sing(C) € C N Cy and multp(C) = 3. We see that
Sing(H) = {P}.

The inequality & > 3 holds, because it follows from the subadjunction for-
mula that
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if £ <2. But C; - Cy > 0 by Lemma 3.11. Then F,|5 = Ly + Ly, where L,
and Lo are irreducible curves. Put 7 = Bilg: H — H and O = L, N Ly. Then
H has singularity of type Ag_o at O, and m contracts Ly and Ly. Let C; be
the proper transform of Cy on H. Then

Cin (il uik) =0,

because Cy - C; = —2 + kiﬂ in the case when O ¢ Ci. Bt C;-Cy >0 by
Lemma 3.11.

Letn: H — H be the minimal resolution of singularities of H, let Ly and Ly,
be the proper transforms of the curves L; and Lj, on the surface H, respectivley.

Then 7 contracts a chain of smooth rational curves Lo, ..., L,_; to the point
O such that
LyLy=--+=LyLy=-2,L1-Ly=Ly-Ly=---=Lp_9Lj—1 = Ly_1-Lp=1.

Let Cy be the proper transform of the curve C; on the surface H. Then
C,-Cy = —2and
C‘lﬂil :C’l ﬂik =,
where C intersects only one curve among the curves Ly, Ly, L3, ..., Ly_1, Ly.
Arguing as in the proof of Lemma 3.9, we easily see that the morphism
ai|g: H — ai(H) contracts the curve C) to a singular point of the surface
al(ﬁ) of type Ag. Then the curves

C7\(15j127i37 cee 7L1€—1

must form a chain and s = k — 1, where either C1 N Ly # @&, or C1 N Ly_o # @.

Therefore, the curves Cy, Ly, Lo, Ls, . .., L1, Ly, form a graph of type Dy 1,
which implies that their intersection form must be negative definite. Therefore,
the inequality Cy - C7 < 0 holds, which is a impossible by Lemma 3.11. O

Recall that the singular point P € Vi is a singular point of type Ay of the
surface H.

Lemma 3.13. The inequality deg(C) # 4 holds.

Proof. Suppose that deg(C') = 4. Then either C is smooth, or C has one double
point.

Suppose that » = my = 1. Then C; is a smooth conic. Then H is smooth,
which implies that C; - C; = —2. But the inequality C; - C; > 0 holds by
Lemma 3.11.

Suppose that 7 = 2 and m; = ms = 1. Then C; and C5 are lines in P°. The
equalities

Ci1-C1=-2,Cy-Co=-2,C1-C3<1
hold in the case when Cy N Cy € H \ Sing(H ), which is impossible by Lemma
3.11. Then

Cy-Cy=—3/2, Cy-Cy=—3/2, Cy-Cy=1/2
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by Lemma 3.10 in the case when P # C; N Cy € Sing(H). Thus, we see that
CinNnCy=P= Sing(H)

by Lemma 3.11. Similarly, we see that P is not an ordinary double point of
the surface H.

Thus, the intersection HnN FE; consists of two smooth irreducible curves il
and Z/Q.

Let C; and Cs be the proper transforms of C; and Cs on the surface H ,
respectively. Then

C‘lﬂiﬁégssé’gﬂﬂizg

for i =1 and ¢ = 2 by Lemma 3.8. The curves C’l, C’g, [Nq, EQ on the surface H
can be contracted to an isolated singular point of type Ay 2, which is impossible
by Lemma 3.11.

Therefore, we proved that » = 1 and m; = 2. Then C] is a line, and

1-C-Cy
2

on the surface H. So, the inequality C'- C7 < 1 holds, because C7 - C1; > 0 by
Lemma 3.11. Then

C-Cr =

cnNncC C Sing(H),

because C' N Cy # @. To complete the proof, we must show that C - C; > 1.
Suppose that P #% C N C;. There is a point O € C'N Cy such that O €
Sing(H). Then

multo (C) + 2multo (C’l) >4,

because () must be the tangent linear subspace to Vi at the point O. Then
multo (C) = 2 and

1>C-C1 > M —1,
because O is an ordinary double point of the surface H by Lemma 3.10.

Thus, we see that C N Cy = P. Put Q = Q1|q and T = T} |q.

Suppose that @ is a cone. Then C; is its rulings. Either the cubic T is
singular along C, or the cubic T is tangent to the cone Q along the line C.
Hence, there is a two-dimensional linear subspace II C €2 that is tangent to
both T and Q along the line C;. The sub-scheme V;|p is not reduced along
the line C4, which is impossible, because Vi satisfies the condition E.

We see that the surface @ is smooth. Then Q =2 P! x P!, where C and C}
are divisors of bi-degree (3,1) and (0,1) on the quadric @, respectively.

It follows from C' N C7; = P that C is tangent to the curve C' at the point
P with multiplicity 3, because the equality C; - C' = 3 holds on the quadric
surface Q.

Let H be a proper transform of H on the threefold V, let C and C; be the
proper transforms of the curves C' and C; on the surface H, respectively. Then
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H is smooth by Lemma 3.9, and

3/2 in the case when k =1,
¢ -C= .
4/3 in the case when k = 2,

because C - C; = 2 on the surface H. But C-C; < 1. [l

Thus, the curve C' is a smooth rational curve of degree 3.
Lemma 3.14. Suppose that r = 1. Then mq # 3.

Proof. Suppose that m; = 3. Then C is a line. Put Q = Q1|q and T} = T|q.
Then

Q- T=C+3C

in Q = P3. But the quadric surface Q is irreducible.

Suppose that @ is smooth. Then C is a divisor of type (3,0) on the surface
Q = P! x P!, which is impossible, because the curve C is irreducible and
reduced. Thus, the quadric @ is a cone.

The line C; is a ruling of the cone Q). Then either T is singular along Cj,
or T is tangent to the quadric Q along C;. Then there is a two-dimensional
linear subspace IT C €2 that is tangent to T and @ along Cy. Then Vi is not
reduced along C', which contradicts the condition E. (I

Lemma 3.15. The inequality r # 1 holds.

Proof. Suppose that r = 1. Then m; = 1 by Lemma 3.14, and V;|q = C + C1,
where C; is an irreducible reduced cubic curve. Then the curve C; is not
contained in any two-dimensional linear subspace in = P3, because Q1|q is
irreducible. Then C} is a smooth rational cubic curve.

It follows from Lemmas 3.10 and 3.9 that H is smooth outside of P, and
either P is an ordinary double point of the surface H, or P is a singular point
of the surface H of type Ay. Then

o — 3/2 in the case when k = 1,
e —4/3 in the case when k = 2,

on the surface H. But Cy - C; > 0 by Lemma 3.11. [l
Let m: S — H be a minimal resolution of singularities. Then 7 contracts a
chain or smooth rational curves Ly, ..., Lx to the point P such that L? = —2
on the surface S for all 7, and
Li-Lo=Ly-Ly=---=Lp o -Lpy1=Lp Lp_1=1

on the surface S. Then Ly - L; = Ly - Ly =0 for all ¢ # 2 and j # k — 1.

Lemma 3.16. The inequality r # 3 holds.
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Proof. Suppose that r = 3. Then the curves C;, Cs and Cj are distinct lines.

The intersection C7; N Cy N C3 contains no smooth points of the surface
H, because otherwise there is a two-dimensional linear subspace IT C P? that
contains Cq, Cy, Cy, which is impossible, because dim(§2) = 3 and the quadric
surface Q1|q is irreducible and reduced.

To complete the proof, we must consider the following possible cases:

e the intersection C; N Cy N C3 consists of the point P,
e the intersection C; N Cy N C3 consists of a point in Sing(H) \ P,
e the intersection C7 N Cy N Cs is empty.

Suppose that C; N Co N C3 = P. So, the surface H must be smooth outside
of the point P, and it follows from Lemma 3.8 that k£ = 1. Hence, we can
contract the curves Cy, Cy and C3 to an isolated singular points of type Dy,
which is a contradiction.

Suppose that C; NCe N Cs5 consists of a point O € Sing(H )\ P. Then O is an
ordinary double point of the surface H by Lemma 3.10. But P € C; UCy U (s,
and k < 2 by Lemma 3.9, which implies that C7, Cy and C3 can be contracted
to a points of type Dy44, which is a contradiction.

Thus, we see that C; N Cy N C5 = @. Then Q1] is smooth. Thus, we may
assume that

CiNCy #2, ConNC3#2, C1NCy =0.

The surface H has singularity of type Ay at the point P = Sing(H), and
k < 2 by Lemma 3.9. Moreover, the blow up f: Vi — V4 induces a partial
resolution of singularities of the surface H. Thus, it follows from Lemma 3.8
that C1, Cs, C5 can be contracted to the following points:

e a point of type Dy 3 in the case when P € Cy and Cy Z P € Cs,
e a point of type Agy3 in the case when P € C or P € Cj,

which is a contradiction. The obtained contradiction completes the proof. [
Hence, we see that r = 2 by Lemmas 3.14 and 3.16.
Lemma 3.17. Either mqy =2, or mg = 2.

Proof. Suppose that m; = ms = 1. We may assume that C; is a line, and Co
is a conic, which implies that Sing(H) = P and k& < 2 by Lemma 3.9. Then C4
and Cy can be contracted on the surface H to the following points:

e a singular point of type Ao in the case when P ¢ Cy N Cy,
e a singular point of type Agyo or Diyo in the case when P € C1 N Cy,

because C;UC5 is not contained in a two-dimensional linear subspace of P>. [

We see that » = 2, the curves C; and Cs are lines. We may assume that
m1 = 1 and mq = 2.

Lemma 3.18. Let O be a point in Vi \ P. Then § is not a tangent subspace
to Vi at the point O.
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Proof. Suppose that (2 is a tangent linear subspace to V; at the point O. Then
multo (C’) + multp (Cl) + 2multp (C’g) >4,
which implies that O = C N C; N Cy. Put Q = Q1|q and Ty = T|q. Then
Q-T=CH+C1+2C,
in Q = P3, where @ is an irreducible quadric cone, whose vertex is O.

The line Cs is a ruling of the cone Q. Then

e cither the cubic T is singular along Co, -
e or the cubic T is tangent to the quadric @ along Cs.

_ There is a two-dimensional linear subspace II C €2 that is tangent to T and
Q along Co, which implies that Vi|n is not reduced along the line Co. The
latter contradicts the condition E. O

Arguing as in the proof of Lemma 3.18, we see that Q1|q is smooth and
Qg T.

Remark 3.19. Tt follows from Q1|q = P! x P! that C, C}, Oy form the following
configuration:

e the curve C intersects the curve C; transversally in one point,

e the curve C intersects the curve C5 transversally in one point,

e cither C intersects Cy transversally in two points, or C is tangent to
C5 in one point.

The subspace 2 C P? is not a tangent linear subspace to V; at any smooth

point of V; C P°.

Remark 3.20. The surface H is smooth outside of the set Cy U P. Moreover,
we have

Sing(H) ¢ PU <Cz \ ((Cz NCy)U(Can Cl)))7

and H has singularity of type Ay at the point P € Co U (Cy NC), where k < 2
by Lemma 3.9.

The equivalence Ky ~ 0 holds. Thus, it follows from the adjunction formula
that " N
C-C- mmult}? (C) = C]_ . C] — mmultp (Cl) = —2,
because C' and (' are smooth rational curves. It follows from C + Cy + 2Csy =
Ops (1)| g that

(C+C1+2C5)-Cy = (C+Cy+2Cy) - Cy =1
Lemma 3.21. The equality k = 2 holds.
Proof. Suppose that £ = 1. In the case when P = C' N Cy; N Cs, we have
C-Ci=1/2=0C-C1 =1/2,
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which implies that C; - C; = —1/2. But Cy - C; = —3/2 by the adjunction
formula.
Therefore, we see that P # C' N Cy N Cy. Then

e in the case when P € (5 and P ¢ C U Cq, we have
C-Ci=1,0-Cy3=2,C1-Co=1,Cy-C,=-2, Cy-Cy =—1,
e in the case when P € CN (s and P # C N Cy, we have
C-Ci=1,C-C3=3/2,C1-Co=1, C;-Cy=-2, Cy-Cy = —-3/4,
e in the case when P = C NCy and P ¢ Cy, we have
C-C1=1/2,C-Cy=2,C1-Co=1, C;-C, =-3/2, Cy-Cy = —1,

which is impossible by Lemma 3.11. Thus, we see that P = C; N Cy # C N Ch.
Then

2+Cl-01:1+01'01+202'01:(C+Cl+202)'01:1,

which implies that Cy - Cy = —1. But Cy - C; = —3/2 by the adjunction
formula. O

Hence, we see that H has singularity of type Ao at the point P = Sing(V;).
Lemma 3.22. The case P & C' U C1 is impossible.

Proof. Suppose that P ¢ C U C;. Then P € C5 and
C-Ci=1,C-Cy3=2,C1-Co=1,C;-Cy=-2, Cy-Cy = —1,
which is impossible by Lemma 3.11. t

Lemma 3.23. The case P & Cy is impossible.
Proof. Suppose that P ¢ Cy. Then P = C N C;. Therefore, we have
C-Cy=2,C-Cy=1, C;-Cy =-4/3,

which immediately implies that C - C; = 1/3 and C3 - C3 = —1. Thus, we see
that the intersection form of the curves Cy and C5 is negative definite, which
is impossible by Lemma 3.11. (|

Therefore, we see that P € Co N (C1 UC).
Lemma 3.24. The case C1 Z P € C'NCy is impossible.

Proof. Suppose that C; Z P € CNCy. Then C - C = —4/3 by the adjunction
formula. But
C-C+C-C+20Cy-C =3,
which implies that C' - Cy = 5/3, because C - C; = 1. Thus, we have
Cy-Ca=1,C1-C1=-2, Cy-Cy =-5/6,
which is impossible by Lemma 3.11. (]

Lemma 3.25. The case C' Z P = Cy N Cy is impossible.
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Proof. Suppose that C Z P = C7; N Cy. Then it follows from the adjunction
formula that
Cp-Cr=0Cy-Cy=-4/3,
but Cy - Co = 1/3 by Lemma 3.8, which is impossible by Lemma 3.11. O
Hence, we see that P = C; N C N Cy. Then
C-C=0C-Ci=0Cy-Cy=-4/3

by the adjunction formula. But it follows from Lemma 3.8 that Cy - Cy = 1/3.
Then

C-Ci1+C1-C1+20C,-Cy :deg(Cl) =1,
which implies that C'-Cy = 5/3. But C'-Cy < 2/3, because the curves C and C4
intersect transversally in the point P. The obtained contradiction completes
the proof of Lemma 2.2.

4. Exclusion of points
Let us use the assumptions and notation of Lemma 2.6.
Lemma 4.1. The inequality multo (D) < 2n holds.
Proof. See Section 5. O

Thus, it follows from Theorem 1.1 in [5] that there is a sequence of blow ups

TN —1 TL+1 L

Xy —% Xy

Xr41 Xr

T

X1 Vi

such that 1 < L < N and the following conditions are satisfied:

e the morphism 7y is a blow up of the point O € Vi,
e for ¢ > 2, the morphism 7; is a blow up of a smooth subvariety B;_1 C
Xi-1,
e let F; C X; be an exceptional divisor of the blow up m;, then B; C E;,
o for s > i, let E7 be a proper transform of E; on the threefold Vs, then
B, ¢ E; C X,,
e for i < L — 1, the subvariety B; C E; is a point,
e for ¢ > L, the subvariety B; C E; is a smooth curve such that
— the curve By, C Ep is a line in Ep = P2,
— for i > L, the curve B; C E; is a section of the P!-bundle

mi|E;t By — Bi1,
e let D; be the proper transform of the linear system D on the threefold
X;, then

L s
1 e s e i
K&+1%z§jC“**”—m)@ﬂ-ij(”*‘*”—L—QE;
n n n
=1 i=L+1
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for s > L, where v; 11 = multp, (D;) and v; = multo (D),
e the inequality Y., ;v; < n(L + s) holds for every s > L such that
s # N, but
(4.2) v+ +vy >n(L+N).

Let A be the three-dimensional linear subspace in P° that is tangent to the
threefold V; at the point O. Arguing as in the proof of [4, Proposition 3.3.1],
we see that P € A.

Let Li,...,L, be lines in V; that pass through the point O. Then P €
Ui_,L;, and we may assume that P € L;. Let D; and Dy be general surfaces
in D. Put

Dy - Dy = aly + Cy,
where Dy - D5 is an effective one-cycle that corresponds to the scheme-theoretic
intersection of the divisors D and Dy, and Cj is an effective one-cycle on V
such that L; ¢ Supp(C}). Then
67’l2 = _KV1 . (OétLt + Ct) = o+ deg(C’t) = Qi
Let L be a proper transform of the line L; on the threefold X,. Put
ke = max{s <L ‘ B, € Lf—l}

whenever B; € L%. In the case when B; ¢ L%, we put k; = 1. Then either
By, & L or ky = L.
Let C} be a proper transform of the one-cycle Ct on the threefold X,. Then
L-1
N + L
(4.3) ki +multo Ct —|— ZmultB C’Z Z 2 ) n?

i=1

by Theorem 7.5 in [6], because Zivzl v; > n(L + N). It should be pointed out
that
multo (Cy) > multg, (CF) > -+ > multg, , (CF).

Lemma 4.4. The inequality L # 1 holds.
Proof. See Section 6. O
The inequalities 3 > r > 1 hold, because V; satisfies the condition H.
Lemma 4.5. The inequality ky -- -k, > 1 holds.
Proof. Suppose that ky = --- =k, = 1. Then the linear system
‘(71’1 o 7T2)* ( - Kvl) - W;(El) — Eg’
does not have base curves. Therefore, we have

6n% — ay — multp (Ct) — multp, (Ctl)
= ((7T1 OWQ)*(val) 77T;(E1) 7E2> Ct2

WV

0,
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but it follows from multo(C;) > multg, (C}) > --- > multp, ,(CE™!) that the
inequality

= P mUItO Cy) + multBl Cl L
multp (C’t) + Z mult g, (Cy) < < ( t) ; ( i ))
i=1

holds. Thus, we have

L—1
3L > ay + (3n2 - %) L > a; +multo (Cy) + Z mult g, (C})
i=1

N 2
> ny > Wﬂz > 4Ln?,

which is a contradiction. O

Let H; be a proper transform on the threefold Vi, of a sufficiently general
hyperplane section of the complete intersection V; C P° that passes through
the line L;. Then

HtN(WIOF2O"'O7T’Q)*(_KVI>_(W2O"'O7Tkt)*(E1)_"'_Ekt

and Lft is the only curve on Vj, that has negative intersection with H;. Then

ke—1
0< Hy - Cf* < 6n° — oy — multo(Cy) — > multp, (CF),
i=1

and it follows from the inequality (4.3) that

L>>(N+Lf2

L L
(4.6) (kt—l)at+6n2k7 = (kt—l)at+6n2]?t + oy (1 - th N ne,

t
because multo (C;) > multp, (C}) > - > multg, ,(CF™") and L > k.
Lemma 4.7. The inequality k1 # 1 holds.

Proof. See Section 7. O

Put k = k1 and o = o3 and p = multy, (D).
Remark 4.8. The inequality © < n holds by Lemma 2.5.

_ Let vy X, = X}, be the blow up of the point dominating P, let wy: X —
X be the blow up of the proper transform of L1, let Fj, and G}, be the excep-
tional divisor of v, and wy, respectively.

Lemma 4.9. The isomorphisms F, = G, = P! x P! hold.
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Proof. The isomorphism Fj, = P! x P! is obvious. There is a commutative
diagram

lwk \kal lm i&l
\ka J/Ukl lvl lﬁl
Xk ik Xpog ——— e ik X1 ik Vi,

where 7; and 7; are birational morphisms, v; is the blow up of the point that
dominates P € V7, the morphism w; is the blow up of the proper transform of
the curve L, and 47 is the blow up of the proper transform of the line L; on
the threefold V;,

Let O be the point in V; that dominates O € V4. Then #; is the blow up of
the point 0.

Let G be the exceptional divisor of §;. Then G = P! x P!, because V;
satisfies the generality condition D. But G; = G = P! x P!, because 7 is a
blow up of a smooth curve in G.

Let G; be the exceptional divisor of w;. Arguing as above, we see that

GG G 2GxP x P!,
which completes the proof. (I

Let Z; and Z; be curves on Gy, such that Z; - Z; = Z%~ Zo=0,21-Zy=1
and Z is contracted by the morphism wy to a point in Xj.

Lemma 4.10. The equivalence —Gygla, ~ Z1 + (k + 1)Z3 holds.
Proof. There is an integer € such that —Gy|g, ~ Z1 + €Z2. Then
2e = (Z1+6Z2) ‘ (Z1+622) =G} = —01(J\/pf/;(k) =2+ Ky, CLF =242k,
where f/’f is the proper transform of the line Ly on the threefold Xj. O

Let Dy, be the proper transform of the linear system D on the threefold Xj,.
Then

Dy ~ (vk owk)*((ﬂl 0---0 Wk)*< — nKV1> — (7r2 o--- owk)*(l/lEl)
— = VkEk> — wi (v Fx) — uGy,
where vg is an integer number. Therefore, it follows from Lemma 4.10 that

k

which implies that Zle vi <n+ pu(k+1) — vy, because Dilg, is effective.
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Lemma 4.11. The inequality

Zz/iN/s >(N+L)n
i=1
holds for every 1 < s < N.

Proof. The inequality Zfil v; > n(N + L) implies that

(Zl’> g >n(N+1L)

i=1
for every 1 < s < N, because vy > vp > --- > vn. O
Put 6 = Zle vi/k. Then n+ p(k+ 1) — vo > k6.
Lemma 4.12. The inequality vy > /2 holds.

Proof. Let Dy, be the proper transform on the threefold X, of a general surface
in D . Then
Dy,

= —yF},
Fy,

)
Fy,

which implies that Dy|r, is an effective divisor of bi-degree (v, 1) on Fj =
P! x PL.
Let f/f be the proper transform of the line L; on the threefold Xj. Then

multg (Dk‘F > > multg (bk) Z mult (Dk) = U,
k

where Q = L¥ N F,. Thus, we see that vy > /2. O
Corollary 4.13. The inequality (k+ 1/2)u+ n > k6 holds.

Let H be the proper transform on X}, of the linear system that is cut out
on threefold V; C P by hyperplanes that pass through the line L;. Then #H
has no base curves and

H = ‘(Ukowk)*((wlo~~~o7rk)*<fKV1) — (7r20~~~o7rk)*(E1) f~~~—Ek)
—wZ(Fk) — Gy,

9

which implies that the equivalence H|g, ~ Z1 + Z3 holds by Lemma 4.12.
Lemma 4.14. The inequality o < 6n% — 2n0 + n?/k holds.

Proof. Let D, and Dy be general surfaces in Dy, and let H be general surface
in H. Then

k k
Dy Dy - H = 6n? —ny —2u(n— 1/,-) - (,u—l/o)2 — (k+1)p2,
i=1 i=1

but o < p? + Dy - D because H|g, is ample. Thus, we have

Q‘Ha
a < 6n? — k02 — 2u(n — k) — ku?,
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because the inequality Zle v? > k62 holds. Put ¢(u) = 6n2 — k6% — 2u(n —
k6) — ku?. Then

_ 2
o(n) <6 (kak ") =6 200+

which completes the proof. (I
The inequality N > n(N + L) holds by Lemma 4.11.
Lemma 4.15. The inequality 6 > 5n/4 holds.

Proof. Suppose that 8 < 5n/4. Then N > 4L by Lemma 4.11. It follows
from the inequalities (4.3) that @ > 6n2. On the other hand, we know that
a < 6n2. O

Therefore, the inequalities o < 6n2 — 2nf + n?/k < (7/2 + 1/k)n? < 4n?
hold.

Lemma 4.16. The equality L = k holds.

Proof. Suppose that L > k > 3. Then it follows from Lemma 4.14 that the
inequality
n?  Tn? n? _ 23n?
<6n? -2+ — < — 4+ — <2
asonm it < 5ty s T
holds, because 6 > 5n/4. But u < n. Therefore, it follows from Corollary 4.13

that
E+1/2)pu+
< % < 3n /27
which implies that N > 2L by Lemma 4.11. Then it follows from the inequal-
ities (4.6) that

28(:-1) 6L\ LD, e

which implies that & < 1. Therefore, the inequalities L > k > 3 are inconsis-
tent.
To complete the proof, we may assume that L > k = 2. Then

2
a<6n272n0+%<4n2

by Lemma 4.14, because 6§ > 5n/4. On the other hand, it follows from Corollary
4.13 that

0 < (k—|—1/2)u—|—n
h k

<Tn / 4,
which implies that 3N > 4L by Lemma 4.11. Then it follows from the inequal-
ities (4.6) that

L >(N+L)2 , 49
K N 12

3Ln*+a(2—L/2) = (k—l)a+6n2£+a(1— n* > —Ln?,
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which implies that L < 2, because a < 4n?. But L > k = 2. O
Therefore, we have L = k > 2.
Lemma 4.17. The inequality 6 > 4n/3 holds.

Proof. Suppose that 8 < 4n/3. Then N > 3L. Now it follows from the
inequalities (4.6) that

2
_ 2 (N + L) 2 16, 5
(k—1)a+6n° > N> 3Ln,
which implies that L < 3/2, because a < 4n? by Lemma 4.14. But L # 1 by
Lemma 4.4. [l

It follows from Lemma 4.14 that o < 6n% — 2nf +n?/k < (10/3 + 1/k)n? <
23n%/6. But

(k+3/2)n< (k+1/2)p+n > ko > 4k/3

by Corollary 4.13. In particular, we have L = k < 4.

Lemma 4.18. The inequality L # 4 holds.

Proof. Suppose that L = 4. Then 6 < 11n/8 by Corollary 4.13, which implies
that

2
35 N+L 98
?nQ > 3a + 6n% > %nz > EnQ,
because N > 10 by Lemma 4.11. The obtained contradiction completes the
proof. O

Therefore, we proved that either L =%k =2, or L = k = 3.
Lemma 4.19. The equality L = 2 holds.

Proof. Suppose that L = 3. Then 6 < n(L+3/2)/L = 3n/2 by Corollary 4.13.

But )
11
a<6n2—2n9+% < §n2
by Lemma 4.14, because 6 > 4n/3. Thus, it follows from the inequalities (4.6)

that

2
40 N+L 27
Enz > 200+ 6n? > %nQ > ?nz,
because N > 2L = 6 by Lemma 4.11. The obtained contradiction completes
the proof. O

Therefore, it follows from the inequalities (4.6) that

2
59 N+2
gnQ > a4 6n? > %n{
because o < 23n2/6 by Lemmas 4.14 and 4.17. Thus, the inequality N < 5
holds.
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Lemma 4.20. The inequality N # 5 holds.

Proof. Suppose that N = 5. Then 50 > 7n by Lemma 4.11. Then

237
a<6n2—2n9+%<ﬁn2

by Lemma 4.14. Thus, it follows from the inequalities (4.6) that

2
97 5 2 (N + L) 249 4
10n > a4+ 6n° > N n® = 3 n-,

which is a contradiction. O

Let B be a proper transform of the curve By on the threefold Xo.
Lemma 4.21. The inequality Go N By # @ holds.

Proof. Suppose that Go N By = @. Then L? N By consists of a point Q ¢ Bs.

Recall that By is a line in Ey = P2. Let I' be a general line in By = P2
that passes through the point Q. Then v1 > 1o =Dy -T' > p+v3 > u+ n.
Then 5u/2 +n > 2(u + n) by Corollary 4.13, which implies that p > 2n. But
w<n. O

Let @ C G & P! x P! be a general curve in |Z; + Z5| that contains the
point Go N By. Then

4u+n—u1—l/2—l/0:@2‘c +Q > multg, (Ds) = vs,
2

which gives v; + 15 + v3 < 9n/2, because p < n by Lemma 2.5 and vg > pu/2
by Lemma 4.12. But
3(N +2) 29
—————n>-n
N 2
by Lemma 4.11, because N < 4 by Lemma 4.20. The assertion of Lemma 2.6

is proved.

vV + v +v3 >

5. Exclusion of non-infinitely close points

We use the assumptions and notation of Lemma 4.1. Suppose that multo (D)
> 2n, and let us show that this assumption leads to a contradiction. Let A be
the three-dimensional linear subspace in P? that is tangent to the threefold V;
at the point O. Put v = multo (D).

Remark 5.1. The quadric 1|y and the cubic Tj|p are both singular at the
point O.

Arguing as in the proof of [4, Proposition 3.3.1], we see that P € A. Let
L; be a line in P° such that P € L; > O. Then Ly C Vi N A, and A is not
contained in the hyperplane in P° that is tangent to @ at the point P.

Remark 5.2. The quadric Q1|4 is irreducible and reduced, because V; satisfies
the condition G.
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Let H be a general hyperplane section of the threefold V; such that ANV C
H.

Lemma 5.3. The point O is an isolated ordinary double point of the surface
H.

Proof. Arguing as in the proof of Lemma 3.10, we see that the point O is an
isolated ordinary double point of the surface H, because the quadric Qq|a is
irreducible and reduced. |

Arguing as in the proof of the Lemma 3.14, we see that V;|a is reduced.
Corollary 5.4. The surface H is smooth outside of the points P and O.

The surface H has singularity of type A, at the point P, where k < 2 by
Lemma 3.9. Put

Vl\A:Lﬁ;Ci,

where C; is an irreducible reduced curve such that C; # C; <= i # j and
C; # Ly for all i. Then

(deg(C:), mutto(C1)) ¢ {(3,2). (2.1)}

and deg(C;) = 1 = O € C; for all i, because Q1| is a quadric cone whose
vertex is the point O.

Remark 5.5. The inequality r < 3 holds, because V; satisfies the condition H.
Then

O=LinCiN---NC.

Let 7: V; — V4 be a blow up of O, let E be the exceptional of 7, and let H
be the proper transforms of the surface H on the threefold V3. Then H N E is
an irreducible conic in E = P2,

Lemma 5.6. The equality Y., multo(C;) = 3 holds.

Proof. Let H' be a general hyperplane section of V; such that ANV, C H'.
Then

H-H=L+Y C;
i=1
and the inequality > ;_, multo(C;) > 3 holds by construction.

Let H' be the proper transforms of the surface H’ on the threefold V;. Then
either

14+ Z multp (C’,) = multp (Ll) + Z multp (C,) = multp (H) multp (H’) =4,
i=1

i=1
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or we have H N E = H' N E. But in the latter case, we have
multp (Ll) + Z multo (CZ) > multp (H) multo (H/) +2 =06,
i=1

which implies that » = 5. But r < 3. O

Let L; and C; be the proper transforms of L; and C; on the threefold V7,
respectively.

Lemma 5.7. The intersection form of the curves
Ly,Cy,...,C,
on the normal surface H is not semi-negative definite.
Proof. Let B be the proper transform of the linear system D on the threefold
V1. Then
B‘H =€l + ;VZ-CQ +R=nl+ ;nC’i + (2n— V)E’H,

where € and v; are non-negative integers, and R is a linear system that has no
fixed curves.

The inequalities € < n and v; < n hold for every i € {1,...,r} by Lemmas
2.2, 2.3, 2.4, 2.5. o .

Suppose that the intersection form of L1, C1, ..., C, is semi-negative definite.
Then

0< ((V— 2n)E‘H +R) . ((n €)L1 Jri (n* Vi)ci>
= ((n — 6)L1 + i (n - Vi)ci> <0,

=1

which gives e = vy = -+ = 1. = n, because O = Ly NCyN---NC,. Then
v =2n. But v > 2n. [l

The equality (L1 +Y_;_, C;) - L1 = —1 holds on the surface H, because the
equivalences

Ly +Zél = _KV1

=1

g = (W*(—Kvl) —QE)’H

hold on the surface H. Similarly, the equality

(L1 +30Ci) - Ci = deg(C) — 2multo ()
i=1
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holds for every ¢t € {1,...,r}. Therefore, it follows from Lemma 5.7 and [1]
that

(El + 27: C_’i) Cy = deg(Ck) — 2multo (CS) >0
i=1

for some s € {1,...,r}. We may assume that s = r.
The equalities Y _;_, deg(C;) = 5 and Y ;_, multo(C;) = 3 hold. Then
r = deg(Cs) = 3 and

deg (C’l) = deg(Cg) = multp (Cl) = multp (C’g) = multp (Cg) =1,
which implies, in particular, that multp(Ly) + Y. multp(C;) = 2.
Corollary 5.8. The point P is an ordinary double point of the surface H.

On the surface H, the curves Ly, C1, Cy, C3 can be contracted to an isolated
singular point of type Ds. So, their intersection form is negative definite by [1],
which is impossible by Lemma 5.7.

The obtained contradiction completes the proof of Lemma 4.1.

6. Infinitely close points
Let us use the assumptions and notation of Lemma 4.4. Suppose that L = 1.
Lemma 6.1. The inequality N < 3 holds.
Proof. The linear system |rj(—Ky, ) — F1] has no base points. Then
6n% — ay — multp (Ct) = (Wf( — Kvl) — E1> . Ctl >0,
which implies that multo(Cy) < 6n? — a;. Thus, we have

N 2
6n% > ay + multo (Ct) > Z VZ»Q > nzw,
i=1

which implies that N < 3. ([

Let R be a proper transform of the linear system
(771 o Wg)*( — KV1> — (El) — Eg‘

on V;. There is a two-dimensional linear subspace II C A such that R is cut
out on V; by hyperplanes that pass through II, and Bs(R) =11 N V4.

Arguing as in the proof of [4, Proposition 3.3.1], we see that P € II. Let T
be a hyperplane in P° that is tangent to the quadric Q; at the point P. Then

LicIICA¢ZTYCPd,

because V; satisfies the condition G. Let H be a sufficiently general surface in
R.

Arguing as in the proof of [4, Lemma 3.5.3], we see that H is smooth outside
of P.
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The surface H has singularity of type Ay at the point P. Then k < 2 by
Lemma 3.9, and the point P is an ordinary double point of the surface H in
the case when IT ¢ Y. But

HIcY < QNI =L,.

Let S be a proper transform of H on the threefold X5, and let 7: S — H be
a birational morphism induced by the composition 7 o w5. Then 7 is a blow
up of the point O that contracts an irreducible smooth curve E C S such that
E =FEyNS, where E; 2Fy and By C Es.

Let C be a section of the natural projection Ey — P! such that C? = —2,
and let F be a fiber of the natural projection Ey — P'. Then E ~ C +2F. It
follows from [5] that By ~ C' 4+ 2F in the case when N = 3, where E # By due
to generality in the choice of the surface H € R.

Let Ly be a proper transform of L; on the surface S. Then

Ly-Li=-34+k/(k+1).
Lemma 6.2. We inequality 11N V1 # L1 holds.
Proof. Suppose that IINVy = Ly. Then Vi|g = Ly and
Dy| = multr, (D) Ly + M =7 (Os(n)| ) = (1 + 1),
where M is a linear system on S that has no fixed curves. Then
M - My = 6n% — 2multy, (D) — multzL1 (D)El Ly
+ 2multy,, (D) (V1 + 1/2) — (1/1 + VQ)Q,
where M; and M, are general curves in M. But M; - My > 0 and
Vi +vs+ -+ Uy > (N—i—l)n,

which implies that N = 3, because L; - L; < —7/3. Let @ be a point in
EN By # @. Then

multz, (D)multg (L1) + multg (M) > vs,
which implies that the inequality
My My > (vs = multy, (D))2
holds. Therefore, we see that
602 — 2multz, (D) — mult?, (D)L; - Ly + 2multy, (D) (11 + ) — (w1 + 1)
> (v — multy, (D))Q,

where 11 + vo + 13 > 4n. The obtained inequalities are inconsistent. We see
that Hﬂvl#Ll [l
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The quadric Q1| is irreducible. Then IT ¢ @1, because IT C A. So, we may
assume that
INQy = L1+ La,

where Ly is a line on V; such that O€Ly#Ly. Thenk=1and L-L; = —5/2.
Let L be a proper transform of the line Lo on the surface S. Then

DQ‘S — multy, (D) Ly + multr, (D) Lz + T = 7* (Ops (n) ‘H) ~ (11 +m)E,

where T is a linear system on .S that has no fixed curves. Then vy +---4+vy >
(N + 1)n and

B 5Inu1t%1 (D)

2
T, - Ty = 6n% — Z 2multy, (D) 5

i=1
2
+ Z 2<V1 + yg)multLi (D) — (1/1 + V2)2,

i=1

— 3mult} (D)

where T; and 75 are general curves in £. But 73 - T5 > 0, which implies that
N =3.

Lemma 6.3. The equality |E N Ba| = 2 holds.

Proof. The equality |E N Bz| = 2 holds, because the restriction of the linear
system

‘(771 OWQ)*(—Kvl) —W;(El) _EQ‘

to the surface E» is a pencil in |C + 2F|, whose base locus consists of L N Es
and L2 n Eg. O

Let @1 and @2 be two points in £ N By such that 1 # Q2. Then
multy, (D) multg, (El) + multy, (D) multg, (Eg) + multg, (./\/l) > vs.
Lemma 6.4. Either Q1 € L1 ULy, or Qo € Ly U Ls.

Proof. Suppose that Q1 & Ly U Ly # Q2. Then Ty - Ty > 2v3. Therefore, we
have
2

6n? — Z 2multy, (D) —

=1

5rnult2L1 (D)

> — 3mul‘LQL1 (D)

I8

+ 2(1/1 + Vg)multLi (D) — (1/1 + 1/2)2
=1
> 203,
which is impossible, because v + vo + v3 > 4n. O

We may assume that Q1 € L1 U Lo.
Lemma 6.5. The set L1 U Ly contains Qs.
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Proof. Suppose that Q, & L1 U Ly. Then
7Ty > 03 + (v — multy, (D)l (Ly) — multz, (D), (L))
which leads to a contradiction, because v1 + vo + v3 > 4n. O
We may assume that Q; € L; and Qs € Ly. Put
B= ‘(m 0 Ty o7r3)*( - KV1> - (7r2 O7T3)*(E1) - W;(EQ) — Eg‘

and P = m o mg o w3(B). Then there is a three-dimensional linear subspace
¥ C PP such that the system P is cut out on V; C P° by hyperplanes in P°
that pass through ¥. Then II C X.

Lemma 6.6. The inequality > # A holds.
Proof. Suppose that ¥ = A. Then

7'('2071'3(8) = ‘T(T(—KVI) —2E1’ —|—E1,

but |7} (—Ky, ) —2E1| does not have base curves in F; (see the proof of Lemma
3.10). Then

B ot (w1 0m 07@,)*( _ Kvl) — (myoms) " (B) — 73 (Es) — Es,
which is a contradiction. (]
Let B and D3 be general surfaces in B and Ds, respectively. Then
Dg’B:m1z1+m2i2+A = ((m 01 O 7r3)*(7 nKVl) —(n+re+ 1/3)E3) ’B

for some non-negative integers mi and ms, where A is an effective divisor such
that

Ez Z SUPP(A) 2 f/z,

and L; and Lo are proper transforms of the curves Li and Lo on the threefold
V3, respectively.

Lemma 6.7. The scheme Vi|s is not reduced along Ly and is not reduced along
Lo.

Proof. Suppose that Vj|x is reduced along L;, where i € {1,2}. Then m; =
multy, (D). But

v

—3m; < mzlvq -L; < (mlle +m2f/2 +A) . -iz =n—v —vy —rv3 < —3n,

because L; - L; > —3. Then multy, (D) > n, which is impossible by Lemma
2.2. O
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The quadric hypersurface Qs C ¥ = P3 must be irreducible, because V;
satisfies the generality conditions E and F. Arguing as in the proof of Lemma
3.14, we see that Q1|x is smooth. Then

Vi =2Li+2L + Z,

where Z is a conic such that O ¢ Supp(Z), because V; satisfies the generality
condition I.

Lemma 6.8. The curve Z is reduced.

Proof. The curve Z is a divisor of bi-degree (1,1) on Qi|x = P* x P'. Then Z
is reduced. g

Lemma 6.9. The surface B is smooth outside of the set LiUL.

Proof. For every point Q € V1 \{P, O}, we have multq(V1]x) < 3, which implies
that X is not a tangent linear subspace to Vi at the point Q. Then

Sing(B) € L1 ULy U (Bs N B),
because Z is reduced. But B is smooth along F3 N B. 0
Let P € X3 bea point such that m oy 0773(15) =P. Put F3 = Es|p. Then
LiNEs ¢ Sing(B) # Ly N Es

and B has singularity at P of type A,. Then ¢ < 2 by Lemma 3.9, because
multp(‘/l‘z) < 4.
Let Z be a proper transform of the curve Z on the threefold X3. Then

B 5= 2L+ 2Ly + 7 + B3 = ((m o7r207r3)*<—Kvl) —3E3> ‘B
= (71'1 0 Ty o7r3)*<— Kvl) ‘B + 3E’3
and Ly N Z ¢ Sing(B) 2 (L1 \ P)n Z.
Lemma 6.10. The conic Z is reducible.
Proof. Suppose that Z is irreducible. Put
Dg‘B = my Ly + molLy + multy (D)Z + 6E3 + F
= (711 0Ty 0 7T3)*( — nKVl) ‘B — (1/1 +vo + y3)E3,

where € > 0 is an integer, and F is a linear system on B that has no fixed
components. Then

o 9

(2n—m1)lu/1—|— (2n—m2)lv/2+ (n—multz(’D)>Z =F+ (Vl +u2+u3+e—4)E3,
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on the surface B. Arguing as in the proof of Lemma 3.11, we easily see that in-
tersection form of the curves Ll, Lg, Z on the surface B is not negative definite.

But
Iy Z=1Ly-Z=1,2-Z=10Ly-Lh=1Ly-Ly=-2, Ly -Ly=0
in the case whven P ¢ Z. Therefore, we have P € Z.
The point P must be a singular point of the surface B of type A,, because
3
2
in the case when P is an ordmary double pomt of the surface B.

We have Z - L2 =1and L1 L2 =0.But Z-Z = —4/3 by the subadjunction
formula. Then

:Z-Z+3:Z-(2i1+2i1+2):

27 - L +2/37 (2i1+2il+2) —9,

which implies that Z - [, = 2/3 on the surface B. Then Ly L = —11/6,
because the equalities

2Ly Ly +2/3=Ly- (2L 420+ 2) = -

hold. Similarly, we easily see that ig . IU/Q = —2. Therefore, we proved that
the intersection form of the curves Lq, Lo, Z is negative definite, which is a
contradiction. O

We have Z = Zy + Z5, where Z; and Z, are lines such that Z1 N Zy # &.

We may assume that
Z1NLy=ZyN Ly =

and Z1 N Ly # @ # Z3 N Ly. Then it follows from Lemma 3.8 that P ¢ Z;.

Let Z; and Zs be the proper transform of Z; and Zs on X3, respectively.
Then

Z1- Iy =0y Zo=1L1 Ly =1Ly Ly=—2,

and Z; - Zg = Zl L= ZQ . ig = 1 on the surface B. Therefore, we see that
the intersection form of the curves f/l, fg, Zl, 75 on the surface B is negative
definite. Arguing as in the proof of Lemma 6.10, we get a contradiction that
proves Lemma 4.4.

7. Lines in smooth locus

Let us use the assumptions and notation of Lemma 4.7. Suppose that k; = 1.
Then kiks - k. # 1 by Lemma 4.5. Thus, we may assume that ky > 2 . Put
k = ko and a = as.

Remark 7.1. The isomorphism Ny, /v, = Op, ® Op, (—1) holds by Remark 2.1.

Let wy: Xr — Xi be the blow up of L§, and let G be the exceptional
divisor of wy.

Lemma 7.2. The isomorphism G = Fy hold.
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Proof. Arguing as in the proof of Lemma 4.9, we see that G = F;. O

Let Z; and Z; be curves on G = Fy such that 7, - 71 = —1, Zy - Zy = 0,
Z1-Zy = 1.

Lemma 7.3. The equivalence —Gg|g, ~ Z1 + (k + 1)Z2 holds.

Proof. There is an integer € such that —Gy|g, ~ Z1 + €Z2. Then

142 = (Z1+6ZQ)~(21+6Z2) =G = —q (/\/Lg/xk) — 24 Ky, Lk = 2k+1,

which implies that e = k + 1. O
Let Dy, be the proper transform of D on X;. Then

Dy,
G

~ multy, (D)Z; + (n + (k+ )mult, (D) - ui) Z

¥ i=1

by Lemma 7.3. Put p = multy, (D) and § = Zle v;/k. Then p < n by Lemma
2.5.

Corollary 7.4. The inequality (k+ 1)u+n > k6 holds.

Let H be the proper transform on X}, of the linear system that is cut out on
Vi by hyperplanes that pass through Ly. Then H|g, ~ Z1 + 27> by Lemma
7.3. Then H has no base curves.

Lemma 7.5. The inequality o < 6n2 — p?(k + 1) + 2u(k0 — n) — k62 holds.

Proof. Let D, and D, be general surfaces in Dy, and let H be general surface
in H. Then

k
a<u2+D1~D2~H:6n2—ZVf—u2(k+l)+2u(kz0—n),

i=1

because the divisor H|g, is ample, and the inequality 2% | 2 > k62 holds. O

i=1Yi
Arguing as in the proof of Lemma 4.15, we see that § > 5n/4. Then it
follows from by Lemma 7.5 that o < 29n?/8.
Lemma 7.6. The equality k = 2 holds.

Proof. Suppose that k > 3. Then 6 < 5n/3 by Lemma 7.4. Hence, we have

2
N+L 25
%TIQ > FLTL2,
because 2N > 3L by Lemma 4.11. But it follows from Lemma 7.5 that
205
77’1/27

a < 6n® — p?(k+ 1)+ 2u(k0 —n) — k6% < o1
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because k > 3 and € > 5n/4. Then it follows from the inequalities (4.6) that

205(k—1) 6L\ , L (N+L)? , 25,

which implies that k£ < 2, because L > k. The obtained contradiction completes
the proof. i

We have N > L > k = 2. Then L < 3, because it follows from the
inequalities (4.6) that

2
29 N+ L
(8 + SL) n®>a+3Ln > %nQ > 4Ln?.

Lemma 7.7. The equality L = 2 holds.

Proof. Suppose that L = 3. Then it follows from the inequalities (4.6) that
101

2
N +3
?n2 Z o+ 9n2 > %n2,

which implies that N = 4, because N > L = 3. Then 6 > 7n/4 by Lemma
4.11, and

49 ,

2"

by Lemma 7.5. Then it follows from the inequalities (4.6) that

a < 6n? — p?(k+1) +2u(kd —n) — k6? <

2
274 N+3 49
%HQ = Oé+9n2 > %HQ = ZTIP,
which is a contradiction. O

It follows from the inequalities (4.6) that 77/8 > (N +2)?/N. Then N < 4.
Lemma 7.8. The equality N = 3 holds.

Proof. Suppose that N = 4. Then 6 > 3n/2 by Lemma 4.11, which implies

that
1
a < 6n? — p?(k+1) +2u(kd —n) — k6* < %n2,
by Lemma 7.5. Then it follows from the inequalities (4.6) that

(v +2)°

221
—n2>a+6n2> n :9n2,

25 N
which is a contradiction. O

Therefore, the inequality 6 > 5n/3 holds by Lemma 4.11. Then
11
U3 2

a < 6n® — p?(k+ 1) +2u(k0 —n) — k6* < =
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by Lemma 7.5. Then it follows from the inequalities (4.6) that

2
41 N+ 2 2
o> a6’ > %"2 -

which is a contradiction. The assertion of Lemma 4.7 is proved.

8. Generality conditions

Let us use the assumption and notation of Section 1, and let us prove The-
orem 1.13. Put

o h(y1,Y2,Y3,Ya) = Q1y1 + Q22 +40zgy3 + QqYy,

® (Y0, Y1, Y2, Y3, Ya) = AYg + Yo Doy Bii + D 1cicjca VidYilis
4

hd t(y07 Y1,Y2,Y3, y4) = Zlgigjgkgél 6ijkyiyjyk + y(% Zi:l €iYi,

where «;, Bi, Vij, A, dijk, € are complex numbers. Let Q C P® be a quadric in
that is given by

Ys Z oy = Ayg + Yo Z Biyi + Z ViiYil;

in Proj ((C[yo, yl,yg,yg,y4,y5]) =~ P5 let T C P° be a cubic hypersurface that

is given by

Ys (Ayé — Yo Zﬂiyi + Z%‘jyz‘yj) = Z SikYiiyk + Yo Z €ili,
and let P € P be the point {yo = --- = y4 = 0}. Put V.= QN T. Suppose
that

e the threefold V satisfy the conditions A, B, C, D,
e the inequality A # 0 holds.

Remark 8.1. To prove Theorem 1.13, we must show that the threefold V sat-
isfies the generality conditions E, F, G, H, I in the case when the polynomials
h, ¢ and t are sufficiently general.

Let F' C P5 be a hyperplane {yo = 0}, let ¢ € Aut(PP%) be an involution that
is given by
Yo — —Yo, Y1 = Y1, Y2 7 Y2, Y3 7 Y3, Y4 > Y4 Y5 — Y5,
and let ¢ € P® be the point {y; = -+ = y5 = 0}. Then ¢ fixes F and (.
Remark 8.2. It follows from A # 0 that ¢ ¢ V.

Let L be a line that pass through P and ¢. Then L ¢ V', and L is given by
the equations

Y1 =y2=Yy3 =ys = 0.
Lemma 8.3. Let Ly be a line in V' such that P & Ly. Then LN L = @.
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Proof. Suppose that L N L; # @. Let II C P° be a two-dimensional linear
subspace that contains both lines L; and L. We may assume that L; N F =
{yo =y2 = -+ = y5 = 0}. Then II is given by y2 = y3 = y4 = 0, which implies
that IT ¢ @, because A # 0. Then the conic Q| is given by

Ayg + Biyoyr + 111yt — oayiys = y2 = y3 = ys = 0,

but L; C Supp(Q|m). Therefore, we have a; = 0, because the homogeneous
polynomial

Ay3 + Biyoyr + y1yi — a1y1ys

must be a product of two linear forms. Then P € L, which is a contradiction.
O

Now we suppose that the polynomials h, ¢ and t are sufficiently general.
Lemma 8.4. Let Ly be a line in V' such that P & Ly. Then L1 ¢ F.

Proof. Let ¢: P5 --» P* be a projection from the point P. Put X = ¢(V).
Then X is given by

h(yl -~-ay4)t(y()a"'7y4> :q(y()a"'7y4)q(_y0a"'7y4)

in Proj ((C[yo, . ,y4]> ~ Pt

Put L1 = ¢(L1) and F = ¢(F). Suppose that Ly C F. Then X|z is given
by

(8.5) (Z ai%) (Z 5ijkyiyjyk) = (Z %'jl/z‘yj)Q

in Proj ((C[yh yg,yg,y4]) = P3,
_ We may assume L, is given by yg = y3 = y4 = 0. Then it follows from
L1 C X that

a10111 + 7121 =0,
a1d112 + 20111 + 2711712 = 0,

(8.6) 18122 + a2d112 + 2711722 + 772 = 0,
10222 + Q20122 + 2712722 = 0,
90999 + 7%2 =0.

Let X be the set of all quartic hypersurfaces in P? that are given by the
equations (8.5). Put

T-{(r, X)|rcX}car(2e)xy,

and let w: Z — X be the natural projections. Then it follows from the equations
(8.6) that

dim (Z) = dim (%) = 5+ dim (Gr(2,4) ) = dim(¥) — 1 < dim (),
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which implies that w is not surjective. But the polynomials h, ¢ and ¢ are
chosen to be sufficiently general by assumption, which implies that L; C F.
Therefore, we see that Ly ¢ F. O

Let Ly be aline on V such that P ¢ Ly, and let [z : - - - : 5] be coordinates
on P° such that
e the hyperplane F' C P is given by zg = 0,
e the line Ly C V is given by o = z3 =24 =25 =0,
e the point P is given by g =21 =22 = 23 = x4 =0,
and ( = (1: —ay: —as : —az: —aq : —as). Then

Yo = To,

Y1 = X1 + a1,

Y2 = T2 + a2o,

Y3 = T3 + azo,

Ya = T4 + a4,

ys = o5 + by + (a5 + bai)zo,

(8.7)

where b and a; are complex numbers. Then the reflection ¢ acts as
To — —Tg, T1 — X1+ 2a1x9, ..., Tz — Ts + 2a5T-
Let II C P° be a two-dimensional linear subspace such that L; C II.
Lemma 8.8. The scheme V|11 is reduced along L.

Proof. Tt follows from Lemmas 8.3 and 8.4 that LN L) = @ and L, ¢ F. Let
us consider an open subset of a variety of (1,2)-flags

T:{(F, m‘rcz, r¢F rmLzz},

and a closed subset S = {(T', ¥) | ¥ Cc (I, L)} C T, where (I', L) is a three-
dimensional linear subspace in P° that contains the lines I' and L. Then
dim(7) = 11 and dim(S) = 6.

Choose the coordinates [zg : -+ : x5] such that ¥ is given by x5 = x4 =
Iy = 0.

Suppose that Vx is not reduced along I'. Then the scheme

vy =wa =5 =AY +y0 Y Bivi + D V¥ —Ys Y it =0
is not reduced along the line L1, and the scheme

T3 = Xg4 = Ty

= s (Ayé = Yo Z Biyi + Z 'Yijyiyj) - Z SikYiliYe — Yo Z €y =0
is not reduced along L;, where yo,y1,...,ys are given by the equations 8.7.
Suppose that (L1,1I) ¢ S. Then ag # 0 or aq # 0, because II ¢ (Lq, L),
which implies that the non-reducedness of the scheme V| along the line L,
imposes 12 independent linear conditions on the coefficients o, 8i, vij, 4, dijk,
€;.
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Let R be a family of threefolds that are constructed like the threefold V.
Put

7= {((R E),Y) ‘ rcy, Pgr, Y‘Z is not reduced along P} CT\SXR,
and let a: Z — R be the natural projection. Then
dim(Z) = dim 7\ §) + dim(R) — 12 = dim(R) - 1,

which implies that « is not surjective. Thus, the scheme V| is reduced along
Ly if I ¢ (L4, Lo).

We see that (L1,1I) € S. Then az = a4 = 0, but as # 0, because L1NL = &,
which implies that the non-reducedness of the scheme V|1 along L; imposes at
least 9 independent linear conditions on o, B, 7¥ij, 4, 0ijk, €. But dim(S) = 6,
which is a contradiction. O

Arguing as in the proof of Lemma 8.8, we see that V satisfies the conditions
E, F, G, H, L
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